WO2017197811A1 - Cellule solaire en silicium monocristallin à double face et son procédé de fabrication - Google Patents

Cellule solaire en silicium monocristallin à double face et son procédé de fabrication Download PDF

Info

Publication number
WO2017197811A1
WO2017197811A1 PCT/CN2016/098553 CN2016098553W WO2017197811A1 WO 2017197811 A1 WO2017197811 A1 WO 2017197811A1 CN 2016098553 W CN2016098553 W CN 2016098553W WO 2017197811 A1 WO2017197811 A1 WO 2017197811A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
single crystal
crystal silicon
double
silicon substrate
Prior art date
Application number
PCT/CN2016/098553
Other languages
English (en)
Chinese (zh)
Inventor
盛赟
Original Assignee
常州天合光能有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常州天合光能有限公司 filed Critical 常州天合光能有限公司
Publication of WO2017197811A1 publication Critical patent/WO2017197811A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to a solar cell and a preparation method thereof, in particular to a single crystal silicon double-sided solar cell and a preparation method thereof, and belongs to the technical field of solar cells.
  • the double-sided solar cell utilizes the front and back two light receiving surfaces to obtain a higher photocurrent density and greatly increase the power generation.
  • a photovoltaic system based on double-sided solar cells can achieve 10 to 30% power gain.
  • the double-sided solar cell structure includes: a front and back suede structure, a pn junction emitter, a passivation anti-reverse dielectric layer, and a front and back electrode.
  • the suede on the back side can effectively improve the absorption of the ground and ambient reflected light on the back side of the double-sided battery, and is an important structure of the double-sided solar cell.
  • the back side of the double-sided solar cell adopts a suede-like structure similar to that of the front surface, that is, the pyramids obtained by the texturing are closely distributed and overlap each other.
  • the present invention is directed to the above-mentioned technical problems existing in the prior art, and provides a single crystal silicon double-sided solar cell, which optimizes minority carrier surface load and optical absorption characteristics of a solar cell, and improves quantum conversion efficiency.
  • a method for preparing a single crystal silicon double-sided solar cell is provided to improve conversion efficiency and production efficiency of a solar cell.
  • a single crystal silicon double-sided solar cell sequentially forms a front pyramidal pile surface (101), a front side doped emitter junction (102), and a front passivation anti-reflection medium layer on the front side of the single crystal silicon substrate (100).
  • the front electrode (104) which sequentially forms a back pyramid-shaped suede (105) on the back surface of the single crystal silicon substrate, a back surface field (106), a back passivation anti-reverse dielectric layer (107), and a back surface electrode (108), wherein the back pyramidal pile surface (105) is a split pyramidal pile surface, and the pyramid structure (105a)
  • the single crystal silicon substrate is only partially covered, and the pyramid structure (105a) is dispersedly distributed on the silicon substrate, and the region covered by the pyramid structure (105a) accounts for 20% to 90% of the back silicon substrate.
  • the base length of the single pyramid structure (105a) is 1-7 ⁇ m.
  • the front passivation anti-reflection dielectric layer (103) and the back passivation anti-reflection dielectric layer (107) are respectively made of silicon oxide, silicon nitride, silicon oxynitride, aluminum oxide, silicon carbide, amorphous silicon, Microcrystalline silicon, indium tin oxide or titanium oxide is a single layer film or a multilayer film composed of a material.
  • the front electrode (104) and the back electrode (108) are one or more metals of silver, aluminum, copper, nickel, titanium, tin, lead, cadmium, gold, zinc or alloys thereof.
  • a method for preparing a single crystal silicon double-sided solar cell for preparing the single crystal silicon double-sided solar cell includes the following steps:
  • S2 front side doping to form an emitter junction
  • step S4 the chemical agent used for preparing the backside separation pyramid topography by wet chemical method is sodium hydroxide, potassium hydroxide, tetramethylammonium hydroxide, nitric acid, phosphoric acid, hydrofluoric acid, ethanol, isopropanol or One or more aqueous solutions of ethylene glycol; the preparation temperature is 60 to 80 ° C, and the time is 10 to 900 seconds.
  • steps S2 and S3 may also be included: S2-1: depositing a barrier layer on the front side.
  • the method further comprises the following steps: S5-1: removing the front silicon oxide, the phosphosilicate glass and the back borosilicate glass using hydrofluoric acid.
  • the single crystal silicon double-sided solar cell of the invention reduces the surface area of the surface of the back surface of the solar cell by providing a separate pyramid-shaped suede on the back side of the battery, and significantly reduces the photo-generated minority carriers on the back surface.
  • Composite the long-wavelength light incident on the front surface increases in reflection on the back surface, the transmission is reduced, and is absorbed by the solar cell again; at the same time, the back surface is covered with the anti-reflective dielectric layer, and the optical reflection on the back surface is not significantly increased, thereby ensuring the optical absorption characteristics of the back surface. Therefore, by separating the pyramid topography structure on the back surface, the minority carrier surface recombination and optical absorption characteristics of the double-sided solar cell can be optimized, and the quantum conversion efficiency is improved.
  • the preparation method of the single crystal silicon double-sided solar cell of the invention only adds a wet chemical method to prepare the backside separation pyramid topography structure, and the process is relatively simple, and is suitable for low-cost, large-volume, stable industrial manufacturing.
  • FIG. 1 is a schematic structural view of a single crystal silicon double-sided solar cell of the present invention.
  • Figure 2 is a photomicrograph of a split pyramidal suede of the present invention.
  • 100 is a single crystal silicon substrate, 101 is a front pyramidal suede, 102 is a front doped emitter junction, 103 is a front passivation antireflection dielectric layer, 104 is a front electrode, and 105 is a back pyramidal suede, 105a
  • 106 is the back surface field
  • 107 is the back passivation anti-reverse dielectric layer
  • 108 is the back electrode
  • 109 is the area not covered by the pyramid structure; the corresponding product structure in the figure is only a schematic diagram, not drawn to scale.
  • This embodiment is a case where the present invention is applied to P-type single crystal silicon.
  • a front pyramidal pile surface 101, a front side phosphorus doped emitter junction 102, a front passivation anti-reflection dielectric layer 103, and a front surface electrode 104 are sequentially formed on the front surface of the P-type single crystal silicon substrate 100, in the P-type.
  • the back surface of the single crystal silicon substrate is sequentially formed with a back side separation type pyramidal pile surface 105, a boron doped back surface field 106 formed by back surface boron doping, a back passivation anti-reflection medium layer 107, and a back surface electrode 108, wherein, as shown in FIG.
  • the pyramid structure 105a only partially covers the single crystal silicon substrate, and the pyramid structure 105a is dispersedly distributed on the back surface of the single crystal silicon substrate, leaving some not covered by the pyramid structure. Area 109.
  • the area covered by the pyramid structure 105a accounts for 85% of the entire back surface silicon substrate, and the bottom side length of the single pyramid structure 105a is 5 ⁇ m;
  • the front passivation anti-reflection dielectric layer 103 is made of silicon nitride.
  • a back passivation anti-reflective dielectric layer 107 is a two-layer film made of aluminum oxide and silicon nitride, wherein the aluminum oxide film has a thickness of 20 to 30 nm and a silicon nitride film has a thickness of 50 to 70nm.
  • the front electrode 104 and the back electrode 108 are both silver gate electrodes.
  • Embodiment 1 differs from Embodiment 1 in that, in the back-separated pyramidal pile 105, the area covered by the pyramid structure 105a accounts for 50% of the entire back surface silicon substrate, and the bottom side length of the single pyramid structure 105a is 7 ⁇ m.
  • the front passivation anti-reflection dielectric layer 103 is a single-layer film made of silicon oxynitride having a film thickness of 70 to 80 nm; and the back passivation anti-reflective dielectric layer 107 is a two-layer film made of titanium oxide and silicon oxide, wherein The titanium oxide film has a thickness of 20 to 30 nm and a silicon oxide film thickness of 50 to 70 nm.
  • the front electrode 104 and the back electrode 108 are both copper electrodes.
  • This embodiment is a case where the present invention is applied to N-type single crystal silicon.
  • a front pyramidal pile surface 101, a front side boron doped emitter junction 102, a front passivation anti-reflection dielectric layer 103, and a front surface electrode 104 are sequentially formed on the front surface of the N-type single crystal silicon substrate 100.
  • the back surface of the single crystal silicon substrate is sequentially formed with a back surface separation type pyramidal surface 105, a phosphorus-doped back surface field 106 formed by back surface phosphorus doping, a back passivation anti-reflection dielectric layer 107, and a back surface electrode 108, wherein the back surface is separated
  • the pyramid structure 105a only partially covers the single crystal silicon substrate, the pyramid structure 105a is dispersedly distributed on the back surface of the single crystal silicon substrate, and the region covered by the pyramid structure 105a occupies the entire back silicon substrate. 30%, the base length of the single pyramid structure 105a is 2 ⁇ m.
  • the front passivation anti-reflective dielectric layer 103 is a two-layer film made of aluminum oxide and silicon nitride, wherein the aluminum oxide film is 20 to 30 nm thick and the silicon nitride film is 50 to 70 nm thick;
  • the passivation anti-reflection dielectric layer 107 is a single-layer film made of silicon nitride having a film thickness of 70 to 80 nm;
  • the front electrode 104 and the back surface electrode 108 are both silver gate electrodes.
  • Embodiment 3 differs from Embodiment 3 in that, in the back-separated pyramidal pile 105, the area covered by the pyramid structure 105a accounts for 65% of the entire back silicon substrate, and the bottom side length of the single pyramid structure 105a is 4 ⁇ m.
  • the front passivation anti-reflective dielectric layer 103 is a double made of indium tin oxide and amorphous silicon.
  • the back passivation anti-reflective dielectric layer 107 is a two-layer film made of indium tin oxide and amorphous silicon, wherein indium oxide The tin film is 60 to 80 nm thick and the amorphous silicon film is 5 to 20 nm thick; the front electrode 104 and the back electrode 108 are both silver electrodes.
  • a method for preparing a single crystal silicon double-sided solar cell which is used for preparing the P single crystal silicon double-sided solar cell described in Embodiment 1, comprising the following steps:
  • S1 Texturing on the surface of a single crystal silicon substrate: using an alkaline fluffing liquid containing sodium hydroxide and isopropyl alcohol at a temperature of 80 ° C, the surface of the p-type single crystal silicon substrate 100 is textured to form a front pyramid Forming the suede 101 while removing the silicon wafer to cut the damaged layer;
  • S2 front side doping forms an emitter junction: phosphorus doping is performed to form a front doped emitter junction 102, and phosphorus doping may be performed by a tube furnace diffusion of a phosphorus oxychloride source, ion implantation or diffusion of a phosphorus-containing impurity layer, diffusion.
  • the square resistance is 40 to 200 ⁇ / ⁇ ;
  • a front side deposition barrier layer a process barrier layer for depositing a silicon oxide film on the front side by PECVD, having a thickness of 50 to 300 nm;
  • boron doping is performed to form a back surface field 106, boron doping may be performed by a tube furnace diffusion of boron tribromide source, ion implantation or diffusion of a boron-containing impurity layer, diffusion The resistance is 60 to 200 ⁇ / ⁇ ;
  • S6 preparing a front side and a back passivation anti-reflection medium layer: a passivation anti-reflection dielectric layer 107 of a front side silicon nitride 103 and a back side aluminum oxide/silicon nitride layer prepared by PECVD; a front side silicon nitride thickness of 70 to 80 nm, back surface oxidation The thickness of the aluminum is 20 to 30 nm, and the thickness of the silicon nitride is 50 to 70 nm;
  • Silver-containing gate electrode electrodes 104 and 108 were prepared by screen printing on the front and back sides, respectively, and sintered at a high temperature, and the sintering temperature was 850 to 900 °C.
  • Example 2 The preparation method of Example 2 was referred to the production method of Example 1.
  • a method for preparing a single crystal silicon double-sided solar cell which is used for preparing the N single crystal silicon double-sided solar cell described in Embodiment 3, comprising the following steps:
  • S1 Texturing on the surface of a single crystal silicon substrate: using an alkaline fluffing liquid containing sodium hydroxide and isopropyl alcohol at a temperature of 80 ° C, the surface of the n-type single crystal silicon substrate 100 is textured to form a front velvet Surface morphology 101, while removing the silicon wafer to cut the damage layer;
  • S2 front side doping to form an emitter junction: boron doping is performed to form a front side boron doped emitter junction 102, and phosphorus doping may be performed by a tube furnace diffusion of boron tribromide source, ion implantation or diffusion of a boron-containing impurity layer.
  • the diffusion resistance is 60 to 200 ⁇ / ⁇ ;
  • a front side deposition barrier layer a process barrier layer for depositing a silicon oxide film on the front side by PECVD, having a thickness of 50 to 300 nm;
  • S5 back doping to form a back surface field: phosphorus doping is performed to form a back surface field 106, and phosphorus doping may be performed by a tube furnace diffusion of a phosphorus oxychloride source, ion implantation or diffusion of a phosphorus-containing impurity layer, and diffusion.
  • the resistance is 40 to 200 ⁇ / ⁇ ;
  • S5-1 using hydrofluoric acid to remove the front side silicon oxide, borosilicate glass and the back side of the phosphosilicate glass;
  • S6 preparing a front side and a back passivation anti-reflective medium layer: a front side alumina/silicon nitride, a passivation anti-reflective dielectric layer 107 of 103 and a back silicon nitride by PECVD; a front side alumina thickness of 20 to 30 nm, nitriding The thickness of the silicon is 50 to 70 nm; the thickness of the back silicon nitride is 70 to 80 nm;
  • Silver-containing gate electrode electrodes 104 and 108 were prepared by screen printing on the front and back sides, respectively, and sintered at a high temperature, and the sintering temperature was 850 to 900 °C.
  • Example 4 The preparation method of Example 4 was referred to the production method of Example 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

L'invention relève du domaine de la technologie des cellules solaires et concerne une cellule solaire en silicium monocristallin à double face ayant une surface texturée en pyramide de face avant (101), une jonction émetteur dopée de face avant (102), une couche de milieu de passivation antireflet de face avant (103) et une électrode de face avant (104) étant chacune formée de manière séquentielle sur une face avant d'un substrat en silicium monocristallin (100) ; une surface texturée en pyramide de face arrière (105), un champ de surface arrière (106), une couche de milieu de passivation antireflet de face arrière (107) et une électrode de face arrière (108), étant chacun formé de manière séquentielle sur une face arrière du substrat en silicium monocristallin (100). La cellule solaire en silicium monocristallin à double face est caractérisée en ce que : la surface texturée en pyramide de face arrière (105) est de type discret ; des structures pyramidales (105a) ne recouvrent que partiellement le substrat en silicium monocristallin (100) et sont réparties de manière discrète sur le substrat en silicium monocristallin ; les structures pyramidales (105a) recouvrent 20 % à 90 % d'une zone de la face arrière du substrat en silicium. La cellule solaire en silicium monocristallin à double face et son procédé de fabrication permettent d'optimiser la recombinaison de surface de porteurs de charge minoritaires et les caractéristiques d'absorption optique, augmentant ainsi l'efficacité de conversion quantique.
PCT/CN2016/098553 2016-05-17 2016-09-09 Cellule solaire en silicium monocristallin à double face et son procédé de fabrication WO2017197811A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610331351.X 2016-05-17
CN201610331351.XA CN105826405A (zh) 2016-05-17 2016-05-17 一种单晶硅双面太阳电池及其制备方法

Publications (1)

Publication Number Publication Date
WO2017197811A1 true WO2017197811A1 (fr) 2017-11-23

Family

ID=56530894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/098553 WO2017197811A1 (fr) 2016-05-17 2016-09-09 Cellule solaire en silicium monocristallin à double face et son procédé de fabrication

Country Status (2)

Country Link
CN (1) CN105826405A (fr)
WO (1) WO2017197811A1 (fr)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108336176A (zh) * 2018-03-12 2018-07-27 南昌大学 一种Si基局域发射极双面太阳电池结构
CN109950352A (zh) * 2019-04-23 2019-06-28 通威太阳能(成都)有限公司 一种采用非晶硅钝化层的太阳电池及其制造方法
CN109980022A (zh) * 2019-04-24 2019-07-05 通威太阳能(成都)有限公司 一种p型隧穿氧化物钝化接触太阳能电池及其制备方法
CN112349816A (zh) * 2020-11-19 2021-02-09 江苏大学 一种基于PECVD技术的高效低成本N型TOPCon电池的制备方法
CN112599636A (zh) * 2020-12-07 2021-04-02 浙江晶科能源有限公司 一种晶体硅太阳能电池的制备方法及晶体硅太阳能电池
CN112993079A (zh) * 2019-12-02 2021-06-18 阜宁阿特斯阳光电力科技有限公司 光伏电池片的制备方法及光伏电池片
CN113990980A (zh) * 2020-07-09 2022-01-28 嘉兴阿特斯技术研究院有限公司 太阳能电池的制备方法与太阳能电池
CN114447156A (zh) * 2022-01-27 2022-05-06 环晟光伏(江苏)有限公司 一种适用于电镀电池片正表面激光开槽方法
CN114649438A (zh) * 2020-12-17 2022-06-21 浙江爱旭太阳能科技有限公司 一种n型hibc太阳电池的制备方法
US20230079826A1 (en) * 2021-09-14 2023-03-16 Zhejiang Jinko Solar Co., Ltd. Solar cell, method for manufacturing solar cell, and photovoltaic module
CN116435403A (zh) * 2023-02-28 2023-07-14 中国科学院上海微系统与信息技术研究所 一种柔性单晶硅片和柔性太阳电池及其制备方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105826405A (zh) * 2016-05-17 2016-08-03 常州天合光能有限公司 一种单晶硅双面太阳电池及其制备方法
CN106952974B (zh) * 2017-03-31 2019-06-11 浙江晶科能源有限公司 一种p型黑硅双面电池的制备方法
CN107887453B (zh) * 2017-10-10 2019-03-15 横店集团东磁股份有限公司 一种双面氧化铝p型perc太阳能电池及制作方法
CN108336156A (zh) * 2018-03-12 2018-07-27 南昌大学 一种具有hac-d特征的晶体硅双面太阳电池结构
CN108336157A (zh) * 2018-03-12 2018-07-27 南昌大学 一种局域非晶硅发射极晶体硅背场的双面太阳电池结构
CN108336155A (zh) * 2018-03-12 2018-07-27 南昌大学 一种hac-d晶体硅双面太阳电池结构
CN108461553A (zh) * 2018-03-12 2018-08-28 南昌大学 一种具有局域非晶硅/晶体硅异质结特性的双面太阳电池结构
CN109638103A (zh) * 2018-06-05 2019-04-16 中智(泰兴)电力科技有限公司 单晶硅异质结太阳电池用两面差异化绒面结构及制备方法
CN108807565B (zh) * 2018-07-13 2024-04-16 苏州太阳井新能源有限公司 一种钝化接触电极结构,其适用的太阳能电池及制作方法
CN109346535A (zh) * 2018-09-14 2019-02-15 江苏林洋光伏科技有限公司 激光制备硅太阳能电池选择性绒面及发射极的方法
CN110071183A (zh) * 2019-05-10 2019-07-30 苏州腾晖光伏技术有限公司 一种太阳能电池及其制备方法
CN112635591A (zh) * 2020-12-22 2021-04-09 泰州隆基乐叶光伏科技有限公司 一种太阳能电池的制备方法以及太阳能电池
CN115020503B (zh) 2021-08-04 2023-03-24 上海晶科绿能企业管理有限公司 太阳能电池及其制备方法、光伏组件
US11843071B2 (en) 2021-08-04 2023-12-12 Shanghai Jinko Green Energy Enterprise Management Co., Ltd. Solar cell, manufacturing method thereof, and photovoltaic module
CN114678446A (zh) * 2022-03-25 2022-06-28 江苏润阳世纪光伏科技有限公司 一种低成本接触钝化全背电极太阳能电池及其制备方法
CN117153925A (zh) * 2022-07-27 2023-12-01 浙江晶科能源有限公司 一种太阳能电池以及光伏组件
CN116504877A (zh) * 2023-05-08 2023-07-28 安徽华晟新能源科技有限公司 异质结电池及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103489951A (zh) * 2013-09-05 2014-01-01 西南科技大学 双面黑晶硅高效太阳能电池
KR20140110230A (ko) * 2013-03-06 2014-09-17 엘지전자 주식회사 태양 전지 및 이의 제조 방법
CN104350607A (zh) * 2012-06-13 2015-02-11 三菱电机株式会社 太阳能电池及其制造方法
CN204315603U (zh) * 2014-10-30 2015-05-06 广东爱康太阳能科技有限公司 一种背面抛光晶硅太阳能电池
CN105047742A (zh) * 2015-09-07 2015-11-11 中国东方电气集团有限公司 一种双面n型晶体硅电池及其制备方法
CN105826405A (zh) * 2016-05-17 2016-08-03 常州天合光能有限公司 一种单晶硅双面太阳电池及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2354400T3 (es) * 2007-05-07 2011-03-14 Georgia Tech Research Corporation Formación de un contacto posterior de alta calidad con un campo en la superficie posterior local serigrafiada.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104350607A (zh) * 2012-06-13 2015-02-11 三菱电机株式会社 太阳能电池及其制造方法
KR20140110230A (ko) * 2013-03-06 2014-09-17 엘지전자 주식회사 태양 전지 및 이의 제조 방법
CN103489951A (zh) * 2013-09-05 2014-01-01 西南科技大学 双面黑晶硅高效太阳能电池
CN204315603U (zh) * 2014-10-30 2015-05-06 广东爱康太阳能科技有限公司 一种背面抛光晶硅太阳能电池
CN105047742A (zh) * 2015-09-07 2015-11-11 中国东方电气集团有限公司 一种双面n型晶体硅电池及其制备方法
CN105826405A (zh) * 2016-05-17 2016-08-03 常州天合光能有限公司 一种单晶硅双面太阳电池及其制备方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108336176A (zh) * 2018-03-12 2018-07-27 南昌大学 一种Si基局域发射极双面太阳电池结构
CN109950352A (zh) * 2019-04-23 2019-06-28 通威太阳能(成都)有限公司 一种采用非晶硅钝化层的太阳电池及其制造方法
CN109980022A (zh) * 2019-04-24 2019-07-05 通威太阳能(成都)有限公司 一种p型隧穿氧化物钝化接触太阳能电池及其制备方法
CN112993079A (zh) * 2019-12-02 2021-06-18 阜宁阿特斯阳光电力科技有限公司 光伏电池片的制备方法及光伏电池片
CN113990980A (zh) * 2020-07-09 2022-01-28 嘉兴阿特斯技术研究院有限公司 太阳能电池的制备方法与太阳能电池
CN112349816A (zh) * 2020-11-19 2021-02-09 江苏大学 一种基于PECVD技术的高效低成本N型TOPCon电池的制备方法
CN112349816B (zh) * 2020-11-19 2022-05-17 江苏大学 一种基于PECVD技术的高效低成本N型TOPCon电池的制备方法
CN112599636A (zh) * 2020-12-07 2021-04-02 浙江晶科能源有限公司 一种晶体硅太阳能电池的制备方法及晶体硅太阳能电池
CN112599636B (zh) * 2020-12-07 2023-08-01 浙江晶科能源有限公司 一种晶体硅太阳能电池的制备方法及晶体硅太阳能电池
CN114649438A (zh) * 2020-12-17 2022-06-21 浙江爱旭太阳能科技有限公司 一种n型hibc太阳电池的制备方法
CN114649438B (zh) * 2020-12-17 2024-05-10 浙江爱旭太阳能科技有限公司 一种n型hibc太阳电池的制备方法
US20230079826A1 (en) * 2021-09-14 2023-03-16 Zhejiang Jinko Solar Co., Ltd. Solar cell, method for manufacturing solar cell, and photovoltaic module
CN114447156A (zh) * 2022-01-27 2022-05-06 环晟光伏(江苏)有限公司 一种适用于电镀电池片正表面激光开槽方法
CN116435403A (zh) * 2023-02-28 2023-07-14 中国科学院上海微系统与信息技术研究所 一种柔性单晶硅片和柔性太阳电池及其制备方法

Also Published As

Publication number Publication date
CN105826405A (zh) 2016-08-03

Similar Documents

Publication Publication Date Title
WO2017197811A1 (fr) Cellule solaire en silicium monocristallin à double face et son procédé de fabrication
KR101000064B1 (ko) 이종접합 태양전지 및 그 제조방법
US10084107B2 (en) Transparent conducting oxide for photovoltaic devices
US20150040975A1 (en) Heterojunction solar cell based on epitaxial crystalline-silicon thin film on metallurgical silicon substrate design
CN105826411B (zh) 单晶硅双面太阳电池及其制备方法
EP4293729A1 (fr) Procédé de préparation de cellule solaire et cellule solaire, module photovoltaïque
CN210926046U (zh) 太阳能电池
US20130157404A1 (en) Double-sided heterojunction solar cell based on thin epitaxial silicon
WO2023093604A1 (fr) Cellule solaire et procédé de préparation de cellule solaire
CN217306521U (zh) 一种太阳能电池及一种光伏组件
CN112951927A (zh) 太阳能电池的制备方法
WO2022062381A1 (fr) Structure de cellule empilée et son procédé de fabrication
WO2024000399A1 (fr) Structure de cellule solaire et son procédé de fabrication
TWM527159U (zh) 異質接面太陽能電池結構
CN110660883A (zh) 一种太阳能电池的制备方法及太阳能电池
US20230361227A1 (en) Laminated passivation structure of solar cell and preparation method thereof
CN114050105A (zh) 一种TopCon电池的制备方法
CN217306520U (zh) 太阳能电池和光伏组件
CN111524982A (zh) 太阳电池
CN116093191A (zh) 一种太阳能电池和光伏组件
CN205900558U (zh) 单晶硅双面太阳电池
WO2022156102A1 (fr) Structure de passivation d'empilement de photopiles et son procédé de préparation
CN111403534B (zh) 一种太阳能电池及其制备方法
CN117012839A (zh) 太阳能电池和光伏组件
CN114582983A (zh) 异质结太阳能电池及其制备方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16902191

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16902191

Country of ref document: EP

Kind code of ref document: A1