CN108336176A - 一种Si基局域发射极双面太阳电池结构 - Google Patents

一种Si基局域发射极双面太阳电池结构 Download PDF

Info

Publication number
CN108336176A
CN108336176A CN201810198932.XA CN201810198932A CN108336176A CN 108336176 A CN108336176 A CN 108336176A CN 201810198932 A CN201810198932 A CN 201810198932A CN 108336176 A CN108336176 A CN 108336176A
Authority
CN
China
Prior art keywords
layer
solar cell
crystal silicon
emitter
grid lines
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810198932.XA
Other languages
English (en)
Inventor
袁吉仁
周浪
黄海宾
高超
岳之浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang University
Original Assignee
Nanchang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang University filed Critical Nanchang University
Priority to CN201810198932.XA priority Critical patent/CN108336176A/zh
Publication of CN108336176A publication Critical patent/CN108336176A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0684Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells double emitter cells, e.g. bifacial solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种Si基局域发射极双面太阳电池结构,以n型晶体硅片作为基底,发射极面分为发射极‑导电区域和钝化‑进光区域:前者由重掺杂p型晶体硅发射极层和金属栅线I构成,其中重掺杂p型晶体硅发射极层开槽较小,而金属栅线I开槽稍大,金属栅线I与n型晶体硅片之间没有重掺杂p型晶体硅发射极层的区域由钝化减反射层I填充;后者由重掺杂n型晶体硅场钝化层I和钝化减反射层I构成;背电场面分为钝化‑进光区域和背电场‑导电区域:前者由重掺杂n型晶体硅层II、钝化减反射层II构成;后者由重掺杂n型晶体硅层II、金属栅线II构成。本发明保持了晶体硅太阳电池双面进光特性下,获得了更高开路电压和短路电流,提高了太阳电池的发电能力。

Description

一种Si基局域发射极双面太阳电池结构
技术领域
本发明属于太阳电池领域和半导体器件领域。涉及太阳电池的制备技术。
背景技术
对于双面晶体硅太阳电池,PERT结构因为其与现有扩散制结的晶体硅产线的兼容性好,效率比较高一直受到太阳电池行业内的重点关注。但该结构的太阳电池的发展目前遇到了瓶颈,其中关键之一在于硼扩散形成的发射极层的性能以及其制备技术。为了达到更高的开路电压硼掺杂浓度一定要高,但这又会带来载流子复合的增加。而且硼掺杂层中载流子的横向传输损耗所需要的低方阻与达到这一条件所需要的提高硼掺杂浓度(会造成复合损耗的增加)的技术改进方向是相互矛盾的。
如何解决这一矛盾对PERT技术的发展至关重要,我们认为从器件结构的设计上入手可能是一个有效的突破口。本发明即是在这个方向上的一个努力尝试。
发明内容
本发明是通过以下技术方案实现的。
本发明所述的一种Si基局域发射极双面太阳电池结构,以n型晶体硅片(5)作为基底,其发射极面分为发射极-导电区域和钝化-进光区域:发射极-导电区域由基底向外依次由重掺杂p型晶体硅发射极层(2)和金属栅线I(1)构成,其中重掺杂p型晶体硅发射极层(2)开槽较小,而金属栅线I(1)开槽稍大,金属栅线I(1)与n型晶体硅片(5)之间没有重掺杂p型晶体硅发射极层(2)的区域由钝化减反射层I(3)填充;钝化-进光区域由基底向外依次由重掺杂n型晶体硅场钝化层I(4)和钝化减反射层I(3)构成。这两个区域交叉分布且不重叠。
本发明所述的钝化减反射层I(3)优选氮化硅。
本发明所述的发射极与重掺杂n型晶体硅场钝化层I(4)之间优选进行绝缘处理。
进一步地,为提高器件的性能,所述的重掺杂n型晶体硅场钝化层I(4)的厚度优选1-300nm。
本发明所述的一种Si基局域发射极双面太阳电池结构,为双面进光太阳电池,其正负电极分别位于n型晶体硅片(5)基底的两个表面,为双面进光太阳电池。太阳电池在发射极面之外的另外一面(背电场面)结构分为钝化-进光区域和背电场-导电区域:钝化-进光区域由基底向外依次为重掺杂n型晶体硅层II(6)、钝化减反射层II(7);背电场-导电区域由基底向外依次为重掺杂n型晶体硅层II(6)、金属栅线II(8)。这两个区域交叉分布且不重叠。
其中,钝化减反射层II(7)优选氮化硅。
进一步地,为提高器件的性能,本发明所述的n型晶体硅片(5)可以双面制绒,以进一步提高太阳电池短路电流。
进一步地,n型晶体硅片(5)的双面的制绒情况可以不同,一面采用较小尺寸金字塔结构的绒面,另外一面采用较大尺寸的金字塔绒面或者无金字塔的抛光结构。
进一步地,有金属栅线(金属栅线I、金属栅线II)区域可以抛光或做更大尺寸金字塔的绒面,以减少复合损耗,提高太阳电池的开路电压。
进一步地,器件表面金属栅线(金属栅线I、金属栅线II)总覆盖面积比例优选为1~3%,以提高太阳电池的短路电流并保证足够好的导电性。
发明的技术效果是:本发明适用于单晶硅片太阳电池、多晶硅片太阳电池和准单晶硅片太阳电池。在保持晶体硅太阳电池双面进光特性的前提下,获得了更高开路电压和短路电流,最大程度的提高晶体硅太阳电池的发电能力。其机理是通过金属栅线覆盖面积下的p型重掺杂晶体硅发射极及配套结构获得高的开路电压,因为本结构可只考虑发射极的电学性能而不用如PERT结构中发射极层般还要平衡吸光损耗的程度;在没有金属栅线的地方采用重掺杂n型晶体硅场钝化层结合表面减反射钝化层的结构相比于PERT全表面重掺杂p型层结合钝化层的结构可减少载流子的复合损耗导致的短路电流和开路电压下降。在发射极面,产生的光生空穴在重掺杂n型层形成的内建电场的推动下进入体硅内部,然后集中流向发射极区域,形成了类似聚光太阳电池的大电流效应,可进一步提高太阳电池的内建电势,从而进一步提高太阳电池的电压;而产生的电子因为发射极面的重掺杂n型区域没有电极,只能流向硅片另外一面的金属电极被收集起来。
附图说明
附图1为本发明的示意图。其中:1为金属栅线I;2为重掺杂p型晶体硅层;3为钝化减反射层I;4为重掺杂n型晶体硅场钝化层I;5为n型晶体硅片;6重掺杂n型晶体硅层II;7为钝化减反射层II;8为金属栅线II。
具体实施方式
本发明将通过以下实施例作进一步说明。
实施例1。
如附图1所示的一种Si基局域发射极双面太阳电池结构。n型晶体硅片5的双面均采用平均~2微米的金字塔结构绒面,重掺杂n型晶体硅场钝化层I 4的厚度为10nm,重掺杂n型晶体硅层II 6厚度为200nm,钝化减反射层I 3和钝化减反射层II 7均采用氮化硅薄膜,金属栅线I 1和金属栅线II 8均采用主副栅配合的Ag栅线结构,遮盖面积为硅片表面积的3%。金属栅线I1的开槽宽度为30μm,重掺杂p型晶体硅层2的开槽宽度为20微米。该结构双面进光特性均非常优异,即任何一面均可作为主进光面。如作为单面进光太阳电池使用,则可在背光面镀一层金属作为反光层,增加作为单面进光太阳电池的短路电流。优选以发射极面作为主迎光面。
该结构的两个表面的进光特性均十分优异,均可作为主进光面。如作为单面进光太阳电池使用,则可在背光面镀一层金属作为反光层,增加作为单面进光太阳电池的短路电流。
实施例2。
如附图1所示的一种Si基局域发射极双面太阳电池结构。n型晶体硅片5的双面均采用平均~1微米的金字塔结构绒面,重掺杂n型晶体硅场钝化层I 4的厚度为5nm,重掺杂n型晶体硅层II 6厚度为150nm,钝化减反射层I 3和钝化减反射层II 7均采用氧化硅(10nm)/氮化硅(80nm)复合薄膜,金属栅线I 1和金属栅线II 8均采用主副栅配合的Ag栅线结构,遮盖面积为硅片表面积的2%。金属栅线I1的开槽宽度为20μm,重掺杂p型晶体硅层2的开槽宽度为15微米。该结构双面进光特性均非常优异,即任何一面均可作为主进光面。如作为单面进光太阳电池使用,则可在背光面镀一层金属作为反光层,增加作为单面进光太阳电池的短路电流。优选以发射极面作为主迎光面。
该结构的两个表面的进光特性均十分优异,均可作为主进光面。如作为单面进光太阳电池使用,则可在背光面镀一层金属作为反光层,增加作为单面进光太阳电池的短路电流。
实施例3。
如附图1所示的一种Si基局域发射极双面太阳电池结构。n型晶体硅片5的双面均采用平均~3微米的金字塔结构绒面,重掺杂n型晶体硅场钝化层I 4的厚度为50nm,重掺杂n型晶体硅层II 6厚度为220nm,钝化减反射层I 3和钝化减反射层II 7均采用氧化硅(10nm)/氮化硅(80nm)复合薄膜,金属栅线I 1和金属栅线II 8均采用主副栅配合的Ni/Ag复合栅线结构,遮盖面积为硅片表面积的2%。金属栅线I1的开槽宽度为40μm,重掺杂p型晶体硅层2的开槽宽度为30微米。该结构双面进光特性均非常优异,即任何一面均可作为主进光面。如作为单面进光太阳电池使用,则可在背光面镀一层金属作为反光层,增加作为单面进光太阳电池的短路电流。优选以发射极面作为主迎光面。
该结构的两个表面的进光特性均十分优异,均可作为主进光面。如作为单面进光太阳电池使用,则可在背光面镀一层金属作为反光层,增加作为单面进光太阳电池的短路电流。

Claims (9)

1.一种Si基局域发射极双面太阳电池结构,其特征是以n型晶体硅片(5)作为基底,其发射极面分为发射极-导电区域和钝化-进光区域:发射极-导电区域由基底向外依次由重掺杂p型晶体硅发射极层(2)和金属栅线I(1)构成,其中重掺杂p型晶体硅发射极层(2)开槽小,金属栅线I(1)开槽大,金属栅线I(1)与n型晶体硅片(5)之间没有重掺杂p型晶体硅发射极层(2)的区域由钝化减反射层I(3)填充;钝化-进光区域由基底向外依次由重掺杂n型晶体硅场钝化层I(4)和钝化减反射层I(3)构成,这两个区域交叉分布且不重叠;
背电场面分为钝化-进光区域和背电场-导电区域:钝化-进光区域由基底向外依次为重掺杂n型晶体硅层II(6)、钝化减反射层II(7);背电场-导电区域由基底向外依次为重掺杂n型晶体硅层II(6)、金属栅线II(8),这两个区域交叉分布且不重叠。
2.根据权利要求1所述的一种Si基局域发射极双面太阳电池结构,其特征是所述的钝化减反射层I(3)为氮化硅。
3.根据权利要求1所述的一种Si基局域发射极双面太阳电池结构,其特征是所述的发射极与重掺杂n型晶体硅场钝化层I(4)之间进行绝缘处理。
4.根据权利要求1所述的一种Si基局域发射极双面太阳电池结构,其特征是所述的重掺杂n型晶体硅场钝化层I(4)的厚度为1-300nm。
5.根据权利要求1所述的一种Si基局域发射极双面太阳电池结构,其特征是所述的钝化减反射层II(7)为氮化硅。
6.根据权利要求1所述的一种Si基局域发射极双面太阳电池结构,其特征是所述的n型晶体硅片(5)为双面制绒。
7.根据权利要求1所述的一种Si基局域发射极双面太阳电池结构,其特征是所述的n型晶体硅片(5)的双面的制绒情况:一面采用小尺寸金字塔结构的绒面,另外一面采用大尺寸的金字塔绒面或者无金字塔的抛光结构。
8.根据权利要求1所述的一种Si基局域发射极双面太阳电池结构,其特征是有金属栅线区域抛光或做大尺寸金字塔的绒面。
9.根据权利要求1所述的一种Si基局域发射极双面太阳电池结构,其特征是器件表面金属栅线总覆盖面积比例为1~3%。
CN201810198932.XA 2018-03-12 2018-03-12 一种Si基局域发射极双面太阳电池结构 Pending CN108336176A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810198932.XA CN108336176A (zh) 2018-03-12 2018-03-12 一种Si基局域发射极双面太阳电池结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810198932.XA CN108336176A (zh) 2018-03-12 2018-03-12 一种Si基局域发射极双面太阳电池结构

Publications (1)

Publication Number Publication Date
CN108336176A true CN108336176A (zh) 2018-07-27

Family

ID=62929104

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810198932.XA Pending CN108336176A (zh) 2018-03-12 2018-03-12 一种Si基局域发射极双面太阳电池结构

Country Status (1)

Country Link
CN (1) CN108336176A (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110060374A (ko) * 2009-11-30 2011-06-08 주식회사 테스 선택적 에미터를 포함하는 태양 전지 제조 방법
CN102169923A (zh) * 2011-03-05 2011-08-31 常州天合光能有限公司 钝化n型硅太阳能电池的p型掺杂层的方法及电池结构
CN102437243A (zh) * 2011-12-08 2012-05-02 常州天合光能有限公司 异质浮动结背钝化的hit太阳能电池结构及其制备工艺
JP2012142568A (ja) * 2010-12-17 2012-07-26 Semiconductor Energy Lab Co Ltd 光電変換素子
CN203071081U (zh) * 2012-11-28 2013-07-17 山东力诺太阳能电力股份有限公司 一种花片太阳能电池
CN104412394A (zh) * 2012-06-29 2015-03-11 洛桑联邦理工学院 太阳能电池
CN105322043A (zh) * 2015-11-16 2016-02-10 南昌大学 一种可双面进光的晶硅太阳电池及其制备方法
CN105826411A (zh) * 2016-05-17 2016-08-03 常州天合光能有限公司 单晶硅双面太阳电池及其制备方法
CN205452299U (zh) * 2015-12-31 2016-08-10 广东爱康太阳能科技有限公司 一种背钝化晶体硅太阳能电池
WO2017197811A1 (zh) * 2016-05-17 2017-11-23 常州天合光能有限公司 一种单晶硅双面太阳电池及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110060374A (ko) * 2009-11-30 2011-06-08 주식회사 테스 선택적 에미터를 포함하는 태양 전지 제조 방법
JP2012142568A (ja) * 2010-12-17 2012-07-26 Semiconductor Energy Lab Co Ltd 光電変換素子
CN102169923A (zh) * 2011-03-05 2011-08-31 常州天合光能有限公司 钝化n型硅太阳能电池的p型掺杂层的方法及电池结构
CN102437243A (zh) * 2011-12-08 2012-05-02 常州天合光能有限公司 异质浮动结背钝化的hit太阳能电池结构及其制备工艺
CN104412394A (zh) * 2012-06-29 2015-03-11 洛桑联邦理工学院 太阳能电池
CN203071081U (zh) * 2012-11-28 2013-07-17 山东力诺太阳能电力股份有限公司 一种花片太阳能电池
CN105322043A (zh) * 2015-11-16 2016-02-10 南昌大学 一种可双面进光的晶硅太阳电池及其制备方法
CN205452299U (zh) * 2015-12-31 2016-08-10 广东爱康太阳能科技有限公司 一种背钝化晶体硅太阳能电池
CN105826411A (zh) * 2016-05-17 2016-08-03 常州天合光能有限公司 单晶硅双面太阳电池及其制备方法
WO2017197811A1 (zh) * 2016-05-17 2017-11-23 常州天合光能有限公司 一种单晶硅双面太阳电池及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
黄其励,谢和平: "《中国可再生能源发展现状与展望 中国工程院"可再生能源发展"工程科技论坛论》", 30 June 2003, 中国矿业大学出版社 *

Similar Documents

Publication Publication Date Title
JP6975368B1 (ja) 太陽電池及び太陽電池モジュール
CN101221992B (zh) 多层膜-纳米线复合物、双面型和串联型太阳能电池
CN106531816B (zh) 一种背结背接触太阳能电池
CN103413838B (zh) 一种晶体硅太阳电池及其制备方法
CN101262023B (zh) 一种肖特基背结硅太阳能电池
CN107104165A (zh) 一种基于石墨烯硅倒金字塔阵列肖特基光伏电池制造方法
CN209029399U (zh) 太阳能电池
CN208315578U (zh) 一种具有局域发射极特性的Si基双面太阳电池结构
CN208315555U (zh) 一种异质结晶体硅双面太阳电池结构
CN209675316U (zh) 一种太阳电池
Untila et al. A new type of high-efficiency bifacial silicon solar cell with external busbars and a current-collecting wire grid
CN108461570A (zh) 一种晶体硅双面太阳电池结构
CN108336164A (zh) 一种局域非晶硅/晶体硅异质结双面太阳电池结构
CN106876513B (zh) 一种等离极化激元横向异质集成的太阳电池
CN108336176A (zh) 一种Si基局域发射极双面太阳电池结构
CN208315557U (zh) 一种钝化进光层的晶体硅双面太阳电池结构
CN108305910A (zh) 一种同质结晶体硅双面太阳电池结构
CN108540045A (zh) 基于垂直型纳米热电偶和超晶格光电结构的微型发电机
CN209675317U (zh) 一种太阳能电池
CN108365024A (zh) 一种具有局域发射极特征的硅基同质结双面太阳电池结构
CN108461569A (zh) 一种具有局域发射极特性的Si基双面太阳电池结构
CN108346706A (zh) 一种局域发射极同质结晶体硅双面太阳电池结构
CN108336178A (zh) 一种晶硅异质结双面太阳电池结构
CN108336158A (zh) 一种进光区域无重掺杂层遮挡的同质结晶体硅双面太阳电池结构
CN208315579U (zh) 一种钝化进光层的局域发射极晶体硅双面太阳电池结构

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180727

RJ01 Rejection of invention patent application after publication