CN107104165A - 一种基于石墨烯硅倒金字塔阵列肖特基光伏电池制造方法 - Google Patents

一种基于石墨烯硅倒金字塔阵列肖特基光伏电池制造方法 Download PDF

Info

Publication number
CN107104165A
CN107104165A CN201710250816.3A CN201710250816A CN107104165A CN 107104165 A CN107104165 A CN 107104165A CN 201710250816 A CN201710250816 A CN 201710250816A CN 107104165 A CN107104165 A CN 107104165A
Authority
CN
China
Prior art keywords
inverted pyramid
sio
photovoltaic cell
silicon
graphene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710250816.3A
Other languages
English (en)
Inventor
陈秀华
尚钰东
马文会
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yunnan University YNU
Original Assignee
Yunnan University YNU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yunnan University YNU filed Critical Yunnan University YNU
Priority to CN201710250816.3A priority Critical patent/CN107104165A/zh
Publication of CN107104165A publication Critical patent/CN107104165A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/07Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the Schottky type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

一种基于石墨烯硅倒金字塔阵列肖特基光伏电池制造方法,在单晶n‑Si半导体衬底上热氧化生成氧化硅(SiO2)作为隔离层,用氢氟酸HF腐蚀SiO2隔离层形成窗口,将窗口外围的SiO2隔离层和半导体背面用绝缘胶布贴覆保护起来,在窗口内采用金属辅助化学刻蚀方法制备出硅倒金字塔阵列,撕掉绝缘胶布并清洗干净,在衬底背面涂抹In/Ga合金作为背电极,在隔离层上蒸发沉积金属Au作为前电极,最后将石墨烯转移到硅倒金字塔阵列上并与前电极相连。该太阳能电池结构简单,易于制备,成本低廉,不仅可以有效减少入射光的反射,而且增大了肖特基结接触面积,从而达到提高太阳能电池转换效率的目的。

Description

一种基于石墨烯硅倒金字塔阵列肖特基光伏电池制造方法
技术领域
本发明属于太阳能电池技术领域,一种石墨烯硅倒金字塔阵列肖特基结光伏电池制备方法。
背景技术
随着全球环境污染日益加剧和能源形势的日趋紧张,能源问题逐渐受到世界各国的重视。目前,能源主要由石油和煤炭等传统化石燃料组成,但这些能源均属于不可再生能源,其日益减少的存储量难以满足人类日渐增长的需求量,为了可持续发展,可再生能源越来越受到人类的关注。其中,太阳能的能量巨大,取之不尽,用之不竭,分布范围广,适合全球大部分地区利用,使用材料安全可靠,无环境污染,具有很大的开发利用前景。太阳能光伏电池是基于光生伏特效应,直接将光能转化为电能。目前光伏电池多数是基于单晶硅的太阳能电池,但其制备过程中需在1000 ℃左右高温条件下制备p-n结,工艺相对复杂,制造成本一直居高不下,因此,制备新型低成本高效电池具有十分重大的意义。
2010年第一块石墨烯硅肖特基结光伏电池诞生,其光电转换效率为1.65%。虽然光电转换效率较低,但其结构简单,制备容易,成本低廉,环保等优点使其在光伏电池中具有较大发展的潜能。文献中石墨烯硅肖特基结采用平面结构,而平面结构往往不能有效地利用入射光能量,例如:平面硅在可见光范围内的反射率高达30%以上,造成了大量光能的损失。针对这一情况,采用非平面结构能够有效地降低入射光的反射,当硅衬底不是平面而是硅倒金字塔阵列时,光线入射到倒金字塔阵列表面,入射光线可在倒金字塔面进行多次反射,增长了光的传播路径,增强了半导体对入射光的吸收,从而有利于提高光伏电池的能量转换效率,另外,由于石墨烯具有良好的柔韧性,可以倒金字塔状孔洞形成良好接触,增大了有效肖特基结面积,产生更多的光生载流子,有利于提高太阳能电池的能量转换效率。
发明内容
针对现有技术存在的问题及不足,提高电池光电转换效率,本发明提供一种石墨烯硅倒金字塔阵列肖特基结光伏电池制备方法。石墨烯硅倒金字塔阵列肖特基结光伏电池,利用半导体自身特点而不引入其他材料,制备简单,成本低廉,既降提高了太阳光能的利用率,又增加了肖特基结区面积,进而提升了太阳能电池的光电转换效率。
为了达到上述目的,本发明的技术方案是这样实现的:一种石墨烯硅倒金字塔阵列肖特基结光伏电池,包括单晶n-Si衬底1, 单晶n-Si衬底1上面热氧化生长有SiO2隔离层2,在单晶硅衬底1背面涂抹In/Ga合金作为背电极3,在SiO2隔离层2上开窗口形成有效肖特基结区,在结区中制备有硅倒金字塔阵列4,在SiO2隔离层2的窗口周围沉积金属Au作为前电极5,并将石墨烯薄膜6转移到硅倒金字塔阵列4上。
一种石墨烯硅倒金字塔阵列肖特基结光伏电池的制备方法,其具体步骤为:
一、单晶n-Si衬底(1)上热生长SiO2作为SiO2隔离层(2);
二、湿法刻蚀掉单晶n-Si衬底(1)背面氧化层,并在单晶硅衬底(1)背面涂抹In/Ga合金作为背电极(3);
三、通过湿法腐蚀正面SiO2隔离层(2)形成窗口,露出单晶n-Si衬底(1)表面,用于定义肖特基结面积和光照区域,在此区域中再通过金属辅助化学刻蚀方法制备出硅倒金字塔阵列(4);
四、用模板遮住暴露出的硅倒金字塔阵列,在SiO2隔离层(2)的窗口周围电子束蒸发金属Au形成金属前电极(5);
五、通过湿法转移的方法将石墨烯薄膜(6)覆盖到硅倒金字阵列(4)上,并与金属前电极(5)相接触,最终形成石墨烯硅倒金字阵列肖特基结光伏电池。
所述的硅倒金字塔阵列(4)是金属辅助化学刻蚀方法(MACE)形成规则和不规则的倒金字塔状的孔洞,阵列的排布方式方阵或不规则排列。
所述的单晶硅衬底(1)为n型,晶向为100,电阻率为1-10Ω•cm。
所述的SiO2隔离层(2)为采用热氧化方法生长的SiO2,厚度约为300nm左右。
所述的石墨烯(6)是通过CVD方法生长而直接转移的。
所述的金属背电极(3)采用的In/Ga合金液态金属涂抹而成,其与单晶硅衬底(1)形成欧姆接触。
所述的金属前电极(5)采用的金属材料为金(Au),与石墨烯(6)形成欧姆接触。
同现有平面结构的石墨烯硅肖特基结光伏电池相比,本发明具有以下几个优点:
1.硅倒金字塔阵列只需要一步金属辅助化学刻蚀工艺,就可以使得入射光反射率大幅度降低,相比传统的金属银辅助化学刻蚀法,采用金属铜进一步降低的制备成本,且过程更加简单;
2.增加了石墨烯与硅之间形成的肖特基结面积,有利了载流子的传输与分离,进而提升电池光电转换效率。
综合上述基于石墨烯硅倒金字塔阵列肖特基结光伏电池材料及结构特点,相比于单晶硅太阳能电池,其制备工艺更加简易,成本更加低廉,且更加绿色环保,相比于平面型的石墨烯硅肖特基结光伏电池,在性能上具有较大提高,因而在光伏电池的应用中具有更大的应用潜能。
本发明的有益效果为:所述石墨烯硅倒金字塔阵列肖特基结光伏电池可以和现有超大规模集成电路工艺兼容,易于大规模生产,具有制备工艺简单,工艺成本低廉且环保的优点;相比较平面硅结,石墨烯/硅倒金字塔阵列肖特基结光伏电池结构在可见光范围内具有更小的反射系数,具有更大的肖特基结面积,从而可获得更高的光电转换效率。
附图说明
图1是本发明结构剖面示意图。
图2是本发明结构平面示意。
图3是图平面硅衬底的反射原理示意图。
图4是本发明结构减反射原理示意图。
图1-4中各部分对应的名称:1-单晶n-Si衬底,2-SiO2隔离层,3-In/Ga合金背电极3,4-硅倒金字塔阵列,5-前电极金属Au,6-石墨烯薄膜。
具体实施方式
下面结合附图和具体实施方式详细介绍本发明的内容。
参照图1和图2,单晶n-Si衬底(1), 单晶n-Si衬底(1)上面热氧化生长有SiO2隔离层(2),在单晶硅衬底1背面涂抹In/Ga合金作为背电极3,在SiO2隔离层2上开窗口形成有效肖特基结区,在结区中制备有硅倒金字塔阵列4,在SiO2隔离层2的窗口周围沉积金属Au作为前电极5,并将石墨烯薄膜6 硅倒金字塔阵列4上。
参照图3所示的平面硅结构造成较大的入射光反射损失,单晶硅衬底在紫外—可见光区域的反射率高达30%以上,而通过对平面硅衬底进行刻蚀,参照图4,形成硅倒金字塔阵列,既可以使入射光在硅倒金字塔表面经过多次反射,增加了对入射光的吸收,降低反射损失,同时,这种结构还增加了肖特基结面积,促进载流子的传输与分离,有利于提高太阳能电池效率。
实施例一
本实施例制作石墨烯硅倒金字塔阵列肖特基结光伏电池时,首先将n型(100)电阻率1-10Ω•cm的单晶硅衬底1热氧化,热氧化生长300nm厚的SiO2作为SiO2隔离层2,采用湿法腐蚀的方法去除硅衬底1背面的氧化层,然后在单晶硅衬底1背面涂抹金属In/Ga合金作为背电极3,湿法刻蚀SiO2隔离层2,形成窗口,露出原始硅表面,采用MACE的方法刻蚀硅表面形成硅倒金字塔阵列4,刻蚀时间为15min硅倒金字塔孔洞的深度约为2微米,直径为1微米,最后采用电子束蒸发的方法在隔离层窗口周围制备金属前电极5,金属材料为Au,厚度分别为30nm,将CVD生长的石墨烯直接转移到硅倒金字塔阵列4上,使石墨烯与硅倒金字塔阵列接触,并和金属前电极5接触,形成石墨烯硅倒金字塔阵列肖特基光伏电池,制备得到的器件的光电转换效率为3.14%,相比石墨烯平面硅肖特基光伏电池光电转换效率1.65%,电池性能得以提升。
实施例二
本实施例制作石墨烯硅倒金字塔阵列肖特基光伏电池,与实施例一相似,不同点是采用环十二烷转移石墨烯,转移石墨烯的过程更加简单,表面更加干净,制备得到的器件的光电转换效率为3.50%。
实施例三
本实施例制作石墨烯硅倒金字塔阵列肖特基光伏电池,与实施例一相似,不同点是将石墨烯透明电极进行硝酸p型掺杂,提高石墨烯的功函数以及导电性,进而转移制备电池,制备得到的器件的光电转换效率为5.63%。
实施例四
本实施例制作石墨烯硅倒金字塔阵列肖特基光伏电池,与实施例一相似,不同点是将硅倒金字塔阵列进行钝化处理,减少硅材料暴露出来的悬挂键和缺陷,降低载流子复合机率,同时硝酸掺杂石墨烯,制备得到的器件的光电转换效率为5.97%。
本文中的具体实施方式仅是本发明的几个比较典型实施例,但是这样的描述并不用来以任何方式限定本发明,凡是使用石墨烯硅倒金字塔阵列肖特基结光伏电池均属于本发明范畴。

Claims (9)

1.一种石墨烯硅倒金字塔阵列肖特基结光伏电池,其特征在于,包括单晶n-Si衬底(1), 单晶n-Si衬底(1)上面热氧化生长有SiO2隔离层(2),在单晶硅衬底(1)背面涂抹In/Ga合金作为背电极(3),在SiO2隔离层(2)上开窗口形成有效肖特基结区,在结区中制备有硅倒金字塔阵列(4),在SiO2隔离层(2)的窗口周围沉积金属Au作为前电极(5),并将石墨烯薄膜(6) 硅倒金字塔阵列(4)上。
2.制造方法,其特征在于,包括以下步骤:
a、单晶n-Si衬底(1)上热生长SiO2作为SiO2隔离层(2);
b、湿法刻蚀掉单晶n-Si衬底(1)背面氧化层,并在单晶硅衬底(1)背面涂抹In/Ga合金作为背电极(3);
c、通过湿法腐蚀正面SiO2隔离层(2)形成窗口,露出单晶n-Si衬底(1)表面,用于定义肖特基结面积和光照区域,在此区域中再通过金属辅助化学刻蚀方法制备出硅倒金字塔阵列(4);
d、用模板遮住暴露出的硅倒金字塔阵列,在SiO2隔离层(2)的窗口周围电子束蒸发金属Au形成金属前电极(5);
e、通过湿法转移的方法将石墨烯薄膜(6)覆盖到硅倒金字阵列(4)上,并与金属前电极(5)相接触,最终形成石墨烯/硅倒金字阵列肖特基结光伏电池。
3.根据权利要求2所述的光伏电池的制造方法,其特征在于,所述的硅倒金字塔阵列(4)是金属辅助化学刻蚀方法(MACE)形成规则和不规则的倒金字塔状的孔洞,阵列的排布方式为规则、不规则排列。
4.根据权利要求2所述的光伏电池的制造方法,其特征在于,所述的单晶硅衬底(1)为n型,晶向为100,电阻率为1-10Ω•cm。
5.根据权利要求2所述的光伏电池的制造方法,其特征在于,所述的SiO2隔离层(2)为采用热氧化方法生长的SiO2,厚度为300nm。
6.根据权利要求2所述的光伏电池的制造方法,其特征在于,所述石墨烯(6)是通过气相沉积CVD法制备得到的并且利用湿法转移至衬底作为电池透明电极。
7.根据权利要求2所述的光伏电池的制造方法,其特征在于,所述的金属背电极(3)采用的In/Ga合金液态金属涂抹而成,其与单晶硅衬底(1)形成欧姆接触。
8.根据权利要求2所述的光伏电池的制造方法,其特征在于,所述的金属前电极(5)采用的金属材料为金(Au),与石墨烯(6)形成欧姆接触。
9.根据权利要求2所述的光伏电池的制造方法,其特征在于,所述的硅倒金字塔阵列(4)采用金属辅助化学刻蚀的方法制备,该方法采用金属铜辅助刻蚀。
CN201710250816.3A 2017-04-18 2017-04-18 一种基于石墨烯硅倒金字塔阵列肖特基光伏电池制造方法 Pending CN107104165A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710250816.3A CN107104165A (zh) 2017-04-18 2017-04-18 一种基于石墨烯硅倒金字塔阵列肖特基光伏电池制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710250816.3A CN107104165A (zh) 2017-04-18 2017-04-18 一种基于石墨烯硅倒金字塔阵列肖特基光伏电池制造方法

Publications (1)

Publication Number Publication Date
CN107104165A true CN107104165A (zh) 2017-08-29

Family

ID=59656298

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710250816.3A Pending CN107104165A (zh) 2017-04-18 2017-04-18 一种基于石墨烯硅倒金字塔阵列肖特基光伏电池制造方法

Country Status (1)

Country Link
CN (1) CN107104165A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109920875A (zh) * 2017-12-12 2019-06-21 中国科学院苏州纳米技术与纳米仿生研究所 日盲紫外探测器、其制作方法与应用
CN111282443A (zh) * 2019-12-30 2020-06-16 南京理工大学 用于太阳能界面蒸发海水淡化的膜材料及其制备方法
CN111916521A (zh) * 2020-06-09 2020-11-10 华南理工大学 一种具有界面等离激元效应的双结GaAs/Si肖特基结太阳电池及其制备方法
CN111916522A (zh) * 2020-06-09 2020-11-10 华南理工大学 一种钯连接的双结GaAs/Si肖特基结太阳电池及其制备方法
CN113782622A (zh) * 2021-08-17 2021-12-10 中国建材国际工程集团有限公司 一种薄膜太阳能电池板及其制造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102254963A (zh) * 2011-07-29 2011-11-23 清华大学 一种石墨烯/硅柱阵列肖特基结光伏电池及其制造方法
CN102263144A (zh) * 2011-07-29 2011-11-30 清华大学 基于仿生蛾眼半导体异质结太阳能电池及其制造方法
CN103296123A (zh) * 2013-05-15 2013-09-11 合肥工业大学 P-型碳量子点/n-型硅纳米线阵列异质结太阳能电池及其制备方法
CN104195645A (zh) * 2014-08-06 2014-12-10 中国科学院物理研究所 用于刻蚀太阳能电池硅片的酸性制绒液、制绒方法、太阳能电池片及其制作方法
CN104600131A (zh) * 2015-01-16 2015-05-06 浙江大学 一种界面钝化的石墨烯/硅光电探测器及其制备方法
CN204558500U (zh) * 2015-04-21 2015-08-12 中国科学院重庆绿色智能技术研究院 柔性异质结薄膜太阳能电池
CN105226113A (zh) * 2015-07-09 2016-01-06 苏州阿特斯阳光电力科技有限公司 一种晶体硅太阳能电池的绒面结构及其制备方法
CN105244414A (zh) * 2015-10-20 2016-01-13 华中科技大学 一种二硫化钼/硅异质结太阳能电池及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102254963A (zh) * 2011-07-29 2011-11-23 清华大学 一种石墨烯/硅柱阵列肖特基结光伏电池及其制造方法
CN102263144A (zh) * 2011-07-29 2011-11-30 清华大学 基于仿生蛾眼半导体异质结太阳能电池及其制造方法
CN103296123A (zh) * 2013-05-15 2013-09-11 合肥工业大学 P-型碳量子点/n-型硅纳米线阵列异质结太阳能电池及其制备方法
CN104195645A (zh) * 2014-08-06 2014-12-10 中国科学院物理研究所 用于刻蚀太阳能电池硅片的酸性制绒液、制绒方法、太阳能电池片及其制作方法
CN104600131A (zh) * 2015-01-16 2015-05-06 浙江大学 一种界面钝化的石墨烯/硅光电探测器及其制备方法
CN204558500U (zh) * 2015-04-21 2015-08-12 中国科学院重庆绿色智能技术研究院 柔性异质结薄膜太阳能电池
CN105226113A (zh) * 2015-07-09 2016-01-06 苏州阿特斯阳光电力科技有限公司 一种晶体硅太阳能电池的绒面结构及其制备方法
CN105244414A (zh) * 2015-10-20 2016-01-13 华中科技大学 一种二硫化钼/硅异质结太阳能电池及其制备方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109920875A (zh) * 2017-12-12 2019-06-21 中国科学院苏州纳米技术与纳米仿生研究所 日盲紫外探测器、其制作方法与应用
CN109920875B (zh) * 2017-12-12 2021-12-17 中国科学院苏州纳米技术与纳米仿生研究所 日盲紫外探测器、其制作方法与应用
CN111282443A (zh) * 2019-12-30 2020-06-16 南京理工大学 用于太阳能界面蒸发海水淡化的膜材料及其制备方法
CN111282443B (zh) * 2019-12-30 2022-05-13 南京理工大学 用于太阳能界面蒸发海水淡化的膜材料及其制备方法
CN111916521A (zh) * 2020-06-09 2020-11-10 华南理工大学 一种具有界面等离激元效应的双结GaAs/Si肖特基结太阳电池及其制备方法
CN111916522A (zh) * 2020-06-09 2020-11-10 华南理工大学 一种钯连接的双结GaAs/Si肖特基结太阳电池及其制备方法
CN113782622A (zh) * 2021-08-17 2021-12-10 中国建材国际工程集团有限公司 一种薄膜太阳能电池板及其制造方法
CN113782622B (zh) * 2021-08-17 2024-01-26 中国建材国际工程集团有限公司 一种薄膜太阳能电池板及其制造方法

Similar Documents

Publication Publication Date Title
KR101000064B1 (ko) 이종접합 태양전지 및 그 제조방법
US8003883B2 (en) Nanowall solar cells and optoelectronic devices
US7847180B2 (en) Nanostructure and photovoltaic cell implementing same
US10084107B2 (en) Transparent conducting oxide for photovoltaic devices
CN105185866B (zh) 一种高效钝化接触晶体硅太阳电池的制备方法
CN107104165A (zh) 一种基于石墨烯硅倒金字塔阵列肖特基光伏电池制造方法
CN102751371B (zh) 一种太阳能薄膜电池及其制造方法
CN102064216A (zh) 一种新型晶体硅太阳电池及其制作方法
JP6975368B1 (ja) 太陽電池及び太陽電池モジュール
CN102254963A (zh) 一种石墨烯/硅柱阵列肖特基结光伏电池及其制造方法
CN102184975A (zh) 一种能增加光电转换效率的薄膜太阳能电池及其制造方法
CN206271715U (zh) 一种晶体硅异质结太阳电池
CN103413838A (zh) 一种晶体硅太阳电池及其制备方法
CN103441155A (zh) 集成旁路二极管的太阳电池及其制备方法
CN104716209A (zh) 基于硅基纳米线的太阳能电池及其制备方法
CN108461554A (zh) 全背接触式异质结太阳能电池及其制备方法
CN204315587U (zh) 基于GaN纳米线阵列的太阳能电池
CN101325225B (zh) 一种提高晶硅太阳电池短波响应的发射极结构
CN102368506A (zh) 一种n-氧化锌/p-硅纳米线三维异质结太阳能转换装置
CN101325224B (zh) 一种提高晶硅太阳电池效率的发射极结构
CN210272380U (zh) 一种p型晶体硅电池及光伏组件
CN104282772A (zh) 一种四主栅正电极太阳能晶体硅电池
CN207705207U (zh) 全背接触式异质结太阳能电池
CN203434166U (zh) 一种四主栅正电极太阳能晶体硅电池结构
CN202977494U (zh) 一种晶体硅\非晶硅双节双面电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170829