CN103441155A - 集成旁路二极管的太阳电池及其制备方法 - Google Patents

集成旁路二极管的太阳电池及其制备方法 Download PDF

Info

Publication number
CN103441155A
CN103441155A CN2013103991406A CN201310399140A CN103441155A CN 103441155 A CN103441155 A CN 103441155A CN 2013103991406 A CN2013103991406 A CN 2013103991406A CN 201310399140 A CN201310399140 A CN 201310399140A CN 103441155 A CN103441155 A CN 103441155A
Authority
CN
China
Prior art keywords
via hole
substrate
bypass diode
solar cell
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013103991406A
Other languages
English (en)
Other versions
CN103441155B (zh
Inventor
刘冠洲
林桂江
毕京锋
熊伟平
安晖
吴志敏
宋明辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Sanan Optoelectronics Co Ltd
Original Assignee
Tianjin Sanan Optoelectronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Sanan Optoelectronics Co Ltd filed Critical Tianjin Sanan Optoelectronics Co Ltd
Priority to CN201310399140.6A priority Critical patent/CN103441155B/zh
Publication of CN103441155A publication Critical patent/CN103441155A/zh
Priority to PCT/CN2014/081786 priority patent/WO2015032241A1/zh
Application granted granted Critical
Publication of CN103441155B publication Critical patent/CN103441155B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/044PV modules or arrays of single PV cells including bypass diodes
    • H01L31/0443PV modules or arrays of single PV cells including bypass diodes comprising bypass diodes integrated or directly associated with the devices, e.g. bypass diodes integrated or formed in or on the same substrate as the photovoltaic cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0693Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells the devices including, apart from doping material or other impurities, only AIIIBV compounds, e.g. GaAs or InP solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/108Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Sustainable Development (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Photovoltaic Devices (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明公开了一种集成旁路二极管的太阳电池及其制备方法,其特征在于:所述衬底的掺杂类型为P型,衬底上形成有光电转换部。所述衬底形成有至少一个贯穿衬底的过孔,在过孔侧壁及衬底背面的过孔周围形成N型扩散层,在过孔中填充金属,从而在过孔侧壁形成肖特基旁路二极管。光电转换部上的正面电极通过过孔中的填充金属连接至衬底背面。本发明在制备全背电极芯片的过程中集成了旁路二极管,芯片制备封装简单,有利于太阳电池的规模化应用。

Description

集成旁路二极管的太阳电池及其制备方法
技术领域
本发明涉及一种集成旁路二极管的太阳电池及其制备方法,属半导体器件与工艺技术领域。
背景技术
目前市场上大部分太阳电池为硅太阳电池,作为第一代太阳电池,其成本低,制作简单,得到了快速发展和广泛应用,然而硅太阳电池存在一些难以克服的缺点,例如高纯硅的制备过程中会导致严重的环境污染问题、硅电池的效率达到了理论瓶颈难以继续提升,整体效率偏低、硅电池不适用于聚光使得成本下降空间较小。而近些年来,作为第三代光伏发电技术的多结化合物太阳电池开始倍受关注,其光电转化效率无论理论还是实际都是太阳能电池中最高的,并且通过优化子电池的数量和能带结构可以不断优化,使其拥有广阔的效率提升前景,另外由于三五族材料良好的耐热能力,使得多结化合物太阳电池十分适合于高倍聚光条件,通过聚光可大大降低多结化合物太阳电池模组成本。
采用全背电池的太阳电池芯片,由于其正负电极都在芯片背面,使得组件焊接变得简单,可大大降低封装成本,降低封装损耗,提高模组的整体效率。目前全背电极的硅太阳电池技术已经十分成熟,可以利用成熟的贯穿硅过孔(Through-Silicon-Via)工艺技术或者全背电极硅太阳电池芯片制备工艺,广泛应用于工业化生产。而多结化合物太阳电池由于其本身的结构特点,还没有可行性较高的全背电极方案。较常见的Ge/GaAs/GaInP三结太阳电池由于锗衬底机械强度较弱,绝缘层难以制备,很难通过形成贯穿衬底的过孔的方式来形成全背电极的锗基多结化合物太阳电池。
另一方面,在太阳能电池的实际应用中,彼此独立的太阳能电池往往需要串联连接在一起形成阵列,从而达到特定的输出功率来满足应用需求。组件中每一个单独的电池均将承受正向偏压,但这其中就涉及到一个无法避免的问题:当所述电池中的任何一个因损坏或光照遮蔽,被遮蔽的电池将被迫承受阵列中其它电池产生的反向偏压和电流,最终可能会永久性损坏该电池甚至导致组件的失效。因此,以单个或多个电池为单位并联旁路二极管已成为各种类型太阳能电池组件阵列中不可缺少的组成部分。为了提高芯片集成度、优化封装效率,人们设计了很多种方式在太阳能电池芯片制备过程中集成旁路二极管,但这些方案有些需要牺牲芯片面积,有些不适用于全背电极的多结太阳能电池,而有些芯片工艺较为复杂。
发明内容
本发明的目的是在于提供一种集成旁路二极管的太阳电池及其制备方法,该结构与工艺能够节省芯片面积,简化工艺步骤,使封装更为方便,非常适用于全背电极的高效多结太阳电池,利于规模化和小型化。
为了达到上述技术方案,本发明是按以下技术方案实现的:
本发明公开了一种集成旁路二极管的太阳电池,其特征在于:包括P型衬底,至少具有一个贯穿所述衬底的第一过孔;N型扩散层,形成于所述第一过孔的侧壁并向所述P型衬底的背面延伸;金属结构,填充所述第一过孔,其中直接接触所述N型扩散层的部分与所述N型扩散层构成肖特基旁路二极管,另一部分作为导电连接部;光电转换部,形成于所述P型衬底之上,具有贯穿所述光电转换部的第二过孔,其与所述第一过孔对应,所述第二过孔内填充有导电材料并通过一绝缘层与所述光电转换部实现隔离;正面电极,形成于所述光电转换部的正面上,并通过所述第一过孔和第二过孔引至所述衬底的背面。
优选地,所述衬底为P型衬底,衬底材料为能形成N型掺杂区的半导体材料。
优选地,所述金属结构为多层结构,包括侧壁直接接触、与N型扩散层形成肖特基接触的金属层,以及形成于肖特基接触层金属表面的高电导率的金属层。
优选地,所述光电转换部为单结或多结的太阳电池结构,每一结子电池的结构均为上面为N型材料、下面为P型材料。
优选地,所述形成于肖特基接触层金属表面的金属层为高电导率金属。
优选地,所述绝缘层使得过孔内金属与外延层隔离开。
优选地,所述衬底的背面设置有图形化的正电极、与所述正面电极连接的负电极以及旁路二极管的N型电极。
优选地,所述正面电极通过第二过孔中的导电材料与所述第一过孔中的导电连接部连接,从而引至所述衬底的背面。
优选地,所述第二过孔位置与所述第一过孔的位置一致,其尺寸等于或略大于衬底上的第一过孔的尺寸。
本发明还公开了上述集成旁路二极管的太阳电池的制备方法,其特征在于:包括以下步骤:
(1)     提供一P型衬底;
(2)     在所述衬底上形成至少一个贯穿的第一过孔;
(3)     在所述第一过孔的侧壁形成N型扩散层,并向所述衬底背面延伸;
(4)     在所述第一过孔中填充金属,其中直接接触所述N型扩散层的部分与所述N型扩散层构成肖特基旁路二极管,另一部分作为导电连接部;
(5)     在所述衬底上形成光电转换部;
(6)     在所述光电转换部上形成第二过孔并填充导电材料,其位置与所述P型衬底上的第一过孔相对应,导电材料通过一绝缘层与所述光电转换部实现隔离;
(7)     在所述光电转换部上形成正面电极,其通过所述第一过孔和第二过孔引至所述衬底的背面。
优选地,还包括步骤(8)在所述衬底背面形成肖特基旁路二极管的N型电极、电池的正电极以及与所述正面电极连接的电池负电极。
优选地,所述步骤(4)中在第一过孔中填充第一层金属材料,并高温处理使其与N型扩散层形成肖特基接触。
优选地,所述步骤(4)形成的金属结构为多层结构,包括与侧壁直接接触、与N型扩散层形成肖特基接触的金属层,以及形成于肖特基接触层金属表面的高电导率的金属层。
优选地,所述正面电极通过第二过孔中的导电材料与所述第一过孔中的导电连接部连接,从而引至所述衬底的背面。
优选地,所述第二过孔位置与所述第一过孔位置一致,其尺寸等于或略大于所述衬底上第一过孔内的导电连接部的尺寸。
本发明的创新点及技术效果包括以下:
采用衬底和光电转换部上的过孔结构将太阳电池的正面电极引到衬底背面,从而实现全背电极的单结或多结太阳电池结构芯片,通过选择较易制备过孔和过孔侧壁绝缘层的衬底材料,避免了多结化合物太阳电池的过孔以及过孔侧壁绝缘层制备难的问题,在P型衬底的过孔侧壁形成N型扩散层,并利用过孔中金属与其形成肖特基接触,从而利用过孔集成了肖特基结的旁路二极管,可节省芯片面积,简化工艺步骤,使封装更为方便,非常适用于全背电极的高效多结太阳电池,有利于规模化和小型化的高效多结太阳电池芯片封装。
附图说明
图1为本发明一种集成旁路二极管的全背电极太阳电池结构侧面剖面示意图,图中:
001:正面电极;002:绝缘层;003:多结太阳电池结构外延层;004:Si衬底;005:高电导率金属;006:肖特基接触层金属;007:N型扩散层;008:绝缘保护层;009:电池的负电极;010:旁路二极管的N型电极;011:电池的正电极。
具体实施方式
下面结合实施例对本发明作进一步描述,但不应以此限制本发明的保护范围。
实施例
下面实施例公开了一种集成旁路二极管的太阳电池,如图1所示,包括:P型单晶Si衬底004,其至少具有一个贯穿所述衬底的第一过孔;N型扩散层007,形成于所述第一过孔的侧壁并向所述P型衬底的背面延伸;多层金属结构,填充所述第一过孔,其中肖特基接触层金属006直接与所述N型扩散层007接触,并构成肖特基旁路二极管,高电导率金属005,形成于肖特基接触层金属006表面,与其形成欧姆接触;多结太阳电池结构外延层003,形成于所述P型单晶Si衬底004之上,具有贯穿所述多结太阳电池结构外延层003的第二过孔,其与所述第一过孔对应,所述第二过孔内填充有导电材料并通过SiNx绝缘层002与所述多结太阳电池结构外延层003实现隔离;形成于所述多结太阳电池结构外延层003的第二过孔侧壁;正面电极001,形成于所述多结太阳电池结构外延层003的正面上,并通过所述第一过孔和第二过孔引至所述衬底的背面;SiO2绝缘保护层008,形成于在所述衬底的背面,并露出电极窗口;肖特基旁路二极管的N型电极010、电池的正电极011以及与所述正面电极连接的负电极009,形成于所述衬底背面的电极窗口。
以下通过实施例对本发明所述的一种集成旁路二极管的太阳电池的制备方法进行具体说明:
如图1所示,一种集成旁路二极管的太阳电池,可选择如下步骤获得:
(1)本实例采用的衬底为P型单晶Si衬底004,采用激光蚀刻的方法形成至少一个贯穿衬底的第一过孔,在Si衬底004正面与背面采用热氧化等方式形成SiO2等扩散阻挡层,然后采用热扩散的方法在第一过孔侧壁以及衬底背面的过孔周围形成N型扩散层007,采用蒸发、电镀或者丝网印刷等方式在过孔中填充Cu或Ag等高电导率金属005,经高温退火,直接接触N型扩散层007接触的高电导率金属005表面形成肖特基接触层金属006,高电导率金属005的上下端作为导电连接部,去除扩散阻挡层。
(2)用MBE方式在Si衬底004上生长Ge缓冲层,用MOCVD方式在Ge缓冲层上依次生长Ge底电池、InGaAs中电池、GaInP顶电池以及高掺杂InGaAs欧姆接触层,从而形成多结太阳电池结构外延层003。
(3)从该外延片正面对多结太阳电池结构外延层003进行光刻,并通过Cl2/Ar混合气体氛围下的反应离子刻蚀制备出外延层第二过孔,其位置与所述P型衬底上的第一过孔相对应,第二过孔直径稍大于Si衬底上的第一过孔直径。
(4)采用PECVD方式在外延层第二过孔侧壁上形成一层SiNx绝缘层002,并通过光刻和腐蚀的方法去除第二过孔底部的SiNx绝缘层,露出Si衬底过孔中的贯穿高电导率金属但不露出硅材料。
(5)从该外延片正面进行光刻,蒸镀金属导电材料并剥离形成图形化正面电极001,金属导电材料通过SiNx绝缘层002与所述光电转换部实现隔离,金属导电材料厚度应大于外延层厚度,使得正面电极001通过外延层第二过孔与Si衬底第一过孔引至所述衬底的背面,使得金属电极001与贯穿高电导率金属005相连,腐蚀掉未被正面电极覆盖的高掺杂InGaAs欧姆接触层。
(6)用电子束蒸发的方法在太阳电池正面形成减反膜,在衬底背面进行光刻,腐蚀掉贯穿金属上和背电极区域的SiO2绝缘保护层008,蒸镀并剥离形成肖特基旁路二极管的N型电极010、电池的正电极011以及与所述正面电极连接的电池的负电极009,其中电池的负电极兼做旁路二极管的P型电极,最后对芯片进行快速热退火使得金属与半导体相熔合形成欧姆接触。

Claims (13)

1.集成旁路二极管的太阳能电池,包括:
[0001] P型衬底,至少具有一个贯穿所述衬底的第一过孔;
N型扩散层,形成于所述第一过孔的侧壁并向所述P型衬底的背面延伸;
金属结构,填充所述第一过孔,其中直接接触所述N型扩散层的部分与所述N型扩散层构成肖特基旁路二极管,另一部分作为导电连接部;
光电转换部,形成于所述P型衬底之上,具有贯穿所述光电转换部的第二过孔,其与所述第一过孔对应,所述第二过孔内填充有导电材料并通过一绝缘层与所述光电转换部实现隔离;
正面电极,形成于所述光电转换部的正面上,并通过所述第一过孔和第二过孔引至所述衬底的背面。
2.如权利要求1所述的集成旁路二极管的太阳电池,其特征在于:所述P型衬底的材料为能形成N型掺杂区的半导体材料。
3.如权利要求1所述的一种集成旁路二极管的太阳电池,其特征在于:所述金属结构为多层结构,包括侧壁直接接触、与N型扩散层形成肖特基接触的金属层,以及形成于肖特基接触层金属表面的高电导率的金属层。
4.如权利要求1所述的集成旁路二极管的太阳电池,其特征在于:所述光电转换部为单结或多结的太阳电池结构,每一结子电池的结构均为上面为N型材料、下面为P型材料。
5.如权利要求1所述的集成旁路二极管的太阳电池,其特征在于:所述正面电极通过第二过孔中的导电材料与所述第一过孔中的导电连接部连接,从而引至所述衬底的背面。
6.如权利要求1所述的集成旁路二极管的太阳电池,其特征在于:所述衬底的背面设置有图形化的正电极、与所述正面电极连接的负电极以及旁路二极管的N型电极。
7.如权利要求1所述的集成旁路二极管的太阳电池,其特征在于:所述第二过孔位置与所述第一过孔的位置一致,其尺寸等于或略大于衬底上的第一过孔的尺寸。
8.集成旁路二极管的太阳电池的制备方法,包括以下步骤:
提供一P型衬底;
在所述衬底上形成至少一个贯穿的第一过孔;
在所述第一过孔的侧壁形成N型扩散层,并向所述衬底背面延伸;
在所述第一过孔中填充金属,其中直接接触所述N型扩散层的部分与所述N型扩散层构成肖特基旁路二极管,另一部分作为导电连接部;
在所述衬底上形成光电转换部;
在所述光电转换部上形成第二过孔并填充导电材料,其位置与所述P型衬底上的第一过孔相对应,导电材料通过一绝缘层与所述光电转换部实现隔离;
在所述光电转换部上形成正面电极,其通过所述第一过孔和第二过孔引至所述衬底的背面。
9.如权利要求8所述的集成旁路二极管的太阳电池的制备方法,其特征在于:还包括步骤(8)在所述衬底背面形成肖特基旁路二极管的N型电极、电池正电极以及与所述正面电极连接的电池负电极。
10.如权利要求8所述的集成旁路二极管的太阳电池的制备方法,其特征在于:所述步骤(4)中在第一过孔中填充第一层金属材料,并高温处理使其与N型扩散层形成肖特基接触。
11.如权利要求8所述的集成旁路二极管的太阳电池的制备方法,其特征在于:所述步骤(4)形成的金属结构为多层结构,包括与侧壁直接接触、与N型扩散层形成肖特基接触的金属层,以及形成于肖特基接触层金属表面的高电导率的金属层。
12.如权利要求11所述的集成旁路二极管的太阳电池的制备方法,其特征在于:所述正面电极通过第二过孔中的导电材料与所述第一过孔中的导电连接部连接,从而引至所述衬底的背面。
13.如权利要求11所述的集成旁路二极管的太阳电池的制备方法,其特征在于:所述第二过孔位置与所述第一过孔位置一致,其尺寸等于或略大于所述衬底上第一过孔内的导电连接部的尺寸。
CN201310399140.6A 2013-09-05 2013-09-05 集成旁路二极管的太阳电池及其制备方法 Active CN103441155B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201310399140.6A CN103441155B (zh) 2013-09-05 2013-09-05 集成旁路二极管的太阳电池及其制备方法
PCT/CN2014/081786 WO2015032241A1 (zh) 2013-09-05 2014-08-15 集成旁路二极管的太阳电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310399140.6A CN103441155B (zh) 2013-09-05 2013-09-05 集成旁路二极管的太阳电池及其制备方法

Publications (2)

Publication Number Publication Date
CN103441155A true CN103441155A (zh) 2013-12-11
CN103441155B CN103441155B (zh) 2016-08-10

Family

ID=49694840

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310399140.6A Active CN103441155B (zh) 2013-09-05 2013-09-05 集成旁路二极管的太阳电池及其制备方法

Country Status (2)

Country Link
CN (1) CN103441155B (zh)
WO (1) WO2015032241A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015032241A1 (zh) * 2013-09-05 2015-03-12 厦门市三安光电科技有限公司 集成旁路二极管的太阳电池及其制备方法
CN104576792A (zh) * 2014-12-19 2015-04-29 彭·詹姆斯·宇 太阳能电池片、太阳能电池组件和旁路二极管的组装方法
CN105336749A (zh) * 2015-10-14 2016-02-17 天津三安光电有限公司 集成旁路二极管的倒装多结太阳电池芯片及其制备方法
EP3787038A1 (de) * 2019-08-29 2021-03-03 AZUR SPACE Solar Power GmbH Zweistufiges loch-ätzverfahren
WO2022217538A1 (zh) * 2021-04-15 2022-10-20 苏州晶湛半导体有限公司 半导体结构及其制备方法
WO2023160679A1 (zh) * 2022-02-28 2023-08-31 上海曦智科技有限公司 封装结构及其制造方法、光子集成电路芯片

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112740425A (zh) * 2018-07-13 2021-04-30 阵列光子学公司 用于大型背接触太阳能电池的双深度通孔器件和工艺
DE102019006091B4 (de) * 2019-08-29 2022-03-17 Azur Space Solar Power Gmbh Mehrfachsolarzelle mit rückseitenkontaktierter Vorderseite
DE102019008106B4 (de) 2019-11-21 2022-06-09 Azur Space Solar Power Gmbh Stapelförmige Mehrfachsolarzelle und Herstellungsverfahren

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5009720A (en) * 1988-11-16 1991-04-23 Mitsubishi Denki Kabushiki Kaisha Solar cell
US5626686A (en) * 1994-12-28 1997-05-06 Fuji Electric Co. Ltd. Thin-film solar cell and method of manufacturing the same
CN101405873A (zh) * 2006-09-04 2009-04-08 Lg电子株式会社 具有旁路二极管的薄膜式太阳能电池及其制造方法
CN102683432A (zh) * 2011-03-18 2012-09-19 富士电机株式会社 光伏模块

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5138403A (en) * 1989-10-27 1992-08-11 Kopin Corporation High temperature Schottky barrier bypass diodes
AU2002329656A1 (en) * 2001-07-27 2003-02-17 Chu Chaw-Long Solar cell having a bypass diode for reverse bias protection and method of fabrication
US7687707B2 (en) * 2005-11-16 2010-03-30 Emcore Solar Power, Inc. Via structures in solar cells with bypass diode
DE102011010077A1 (de) * 2011-02-01 2012-08-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Photovoltaische Solarzelle sowie Verfahren zu deren Herstellung
CN103441155B (zh) * 2013-09-05 2016-08-10 天津三安光电有限公司 集成旁路二极管的太阳电池及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5009720A (en) * 1988-11-16 1991-04-23 Mitsubishi Denki Kabushiki Kaisha Solar cell
US5626686A (en) * 1994-12-28 1997-05-06 Fuji Electric Co. Ltd. Thin-film solar cell and method of manufacturing the same
CN101405873A (zh) * 2006-09-04 2009-04-08 Lg电子株式会社 具有旁路二极管的薄膜式太阳能电池及其制造方法
CN102683432A (zh) * 2011-03-18 2012-09-19 富士电机株式会社 光伏模块

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015032241A1 (zh) * 2013-09-05 2015-03-12 厦门市三安光电科技有限公司 集成旁路二极管的太阳电池及其制备方法
CN104576792A (zh) * 2014-12-19 2015-04-29 彭·詹姆斯·宇 太阳能电池片、太阳能电池组件和旁路二极管的组装方法
CN105336749A (zh) * 2015-10-14 2016-02-17 天津三安光电有限公司 集成旁路二极管的倒装多结太阳电池芯片及其制备方法
WO2017063461A1 (zh) * 2015-10-14 2017-04-20 天津三安光电有限公司 集成旁路二极管的倒装多结太阳电池芯片及其制备方法
CN105336749B (zh) * 2015-10-14 2018-05-08 天津三安光电有限公司 集成旁路二极管的倒装多结太阳电池芯片及其制备方法
EP3787038A1 (de) * 2019-08-29 2021-03-03 AZUR SPACE Solar Power GmbH Zweistufiges loch-ätzverfahren
US11063170B2 (en) 2019-08-29 2021-07-13 Azur Space Solar Power Gmbh Two-step hole etching process
WO2022217538A1 (zh) * 2021-04-15 2022-10-20 苏州晶湛半导体有限公司 半导体结构及其制备方法
WO2023160679A1 (zh) * 2022-02-28 2023-08-31 上海曦智科技有限公司 封装结构及其制造方法、光子集成电路芯片

Also Published As

Publication number Publication date
CN103441155B (zh) 2016-08-10
WO2015032241A1 (zh) 2015-03-12

Similar Documents

Publication Publication Date Title
CN103441155A (zh) 集成旁路二极管的太阳电池及其制备方法
KR101000064B1 (ko) 이종접합 태양전지 및 그 제조방법
JP5380546B2 (ja) エミッタ層に接触する裏面バイアを備えた太陽電池
US8435825B2 (en) Methods for fabrication of nanowall solar cells and optoelectronic devices
US20060231130A1 (en) Solar cell with feedthrough via
CN105336749B (zh) 集成旁路二极管的倒装多结太阳电池芯片及其制备方法
CN106684160A (zh) 一种背结背接触太阳能电池
CN107104165A (zh) 一种基于石墨烯硅倒金字塔阵列肖特基光伏电池制造方法
CN102790116B (zh) 倒装GaInP/GaAs/Ge/Ge四结太阳能电池及其制备方法
CN106449845B (zh) 一种基于Si/TiOx异质结的双面晶体硅太阳电池
Soley et al. Advances in high efficiency crystalline silicon homo junction solar cell technology
CN102790117B (zh) GaInP/GaAs/InGaNAs/Ge四结太阳能电池及其制备方法
CN108231936A (zh) 一种太阳能电池组件及其制备方法
JP2011210802A (ja) 太陽電池
CN206271724U (zh) 一种基于Si/TiOx异质结的双面晶体硅太阳电池
CN112038419B (zh) 一种兼具激光供能与太阳发电的光伏电池制作方法
CN106611803B (zh) 一种太阳能电池片、其制备方法及其组成的太阳能电池组
CN106298983A (zh) 一种基于Si/NiOx异质结的晶体硅太阳电池
KR101034318B1 (ko) 태양전지 및 태양전지 제조방법
CN206148438U (zh) 一种基于Si/NiOx异质结的晶体硅太阳电池
CN104465814A (zh) 一种结合氧化锌纳米结构超小绒面太阳电池及其制备方法
CN108231935A (zh) 太阳能电池组件及其制备方法
CN101882638B (zh) 基于tco薄膜和键合技术的太阳能电池
KR101172619B1 (ko) Ain 패시베이션막을 구비하는 실리콘 태양전지
CN108540044A (zh) 基于多晶硅纳米线矩形阵列和纳米pn结的微型能量收集器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant