CN112038419B - 一种兼具激光供能与太阳发电的光伏电池制作方法 - Google Patents

一种兼具激光供能与太阳发电的光伏电池制作方法 Download PDF

Info

Publication number
CN112038419B
CN112038419B CN202010768046.3A CN202010768046A CN112038419B CN 112038419 B CN112038419 B CN 112038419B CN 202010768046 A CN202010768046 A CN 202010768046A CN 112038419 B CN112038419 B CN 112038419B
Authority
CN
China
Prior art keywords
battery
layer
metal grid
metal
gainp top
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010768046.3A
Other languages
English (en)
Other versions
CN112038419A (zh
Inventor
唐道远
徐建明
张冬冬
马宁
蒋帅
陈开建
陈臻纯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Space Power Sources
Original Assignee
Shanghai Institute of Space Power Sources
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Space Power Sources filed Critical Shanghai Institute of Space Power Sources
Priority to CN202010768046.3A priority Critical patent/CN112038419B/zh
Publication of CN112038419A publication Critical patent/CN112038419A/zh
Application granted granted Critical
Publication of CN112038419B publication Critical patent/CN112038419B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022433Particular geometry of the grid contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/044PV modules or arrays of single PV cells including bypass diodes
    • H01L31/0443PV modules or arrays of single PV cells including bypass diodes comprising bypass diodes integrated or directly associated with the devices, e.g. bypass diodes integrated or formed in or on the same substrate as the photovoltaic cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0725Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种兼具激光供能与太阳发电的光伏电池制作方法,采用红外透明“金属格栅”预埋工艺,对三结砷化镓太阳电池完成“双负极”引出,通过双负极实现全天时能源供应的空间光伏器件,在光照区时利用太阳光发电,由三结砷化镓电池负极输出电流,在阴影区时由地面或其他航天器利用近红外激光激发底电池产生光伏效应,进行无线能量传输,解决了传统三结砷化镓太阳电池在航天器运行至地球阴影区时无法进行光伏发电、仅能通过蓄电池使航天器运行的问题。

Description

一种兼具激光供能与太阳发电的光伏电池制作方法
技术领域
本发明涉及一种兼具激光供能与太阳发电的光伏电池制作方法,属于光伏电池领域。
背景技术
激光无线能量传输具有单色性好、方向性好、无电磁干扰等优点,可以实现天地或空间点对点能量传输,其核心器件为激光电池,一般根据配套激光器的波长进行结构设计及材料选择,只能利用特定波长的激光能量而无法有效利用空间中的太阳光进行光伏发电。
三结砷化镓太阳电池以其转化效率高、抗辐照能量强等特点,近年来作为最重要的光伏器件被广泛应用于各类航天器。顶、中、底三个子电池的带隙分别为1.85eV、1.42eV、0.67eV,所对应的响应光谱波段分别为350~700nm、 700~880nm、880~1750nm,由于可以对太阳光谱进行分段吸收利用,因此三结砷化镓太阳电池的光电转换效率可以在30%以上。当航天器运行到地球阴影区时,太阳电池将无法光伏发电,此时航天器只能利用蓄电池电能运行,这极大地限制了航天器有效载荷的工作效率,而普通的三结砷化镓太阳电池不但无法利用激光进行光伏发电,其被高能量激光照射还会引起热损伤,造成电池的降能失效。
发明内容
本发明解决的技术问题是:针对目前现有技术中,传统三结砷化镓太阳电池在航天器运行至地球阴影区时无法进行光伏发电、仅能通过蓄电池使航天器运行的问题,提出了一种兼具激光供能与太阳发电的光伏电池制作方法。
本发明解决上述技术问题是通过如下技术方案予以实现的:
一种兼具激光供能与太阳发电的光伏电池制作方法,步骤如下:
(1)选取Ge衬底晶片,并采用蒸镀工艺于Ge衬底晶片表面沉积Ag金属层;
(2)通过光刻刻蚀将步骤(1)沉积Ag金属层制备为Ag金属格栅;
(3)利用MOCVD工艺于Ag金属格栅上外延生长三结砷化镓电池,获取沉积Ge底电池、GaAs中电池、GaInP顶电池;
(4)于Ge衬底晶片背面进行背面电极制备;
(5)利用光刻及干法刻蚀工艺于电池区域对Ag金属格栅上的GaAs中电池、GaInP顶电池进行刻蚀直至露出Ag金属格栅;
(6)于GaInP顶电池表面及电池区域露出的Ag金属格栅表面,通过光刻及蒸镀工艺制备负极;
(7)利用套刻及湿法腐蚀于GaInP顶电池表面制备减反射膜;
(8)利用高温合金工艺进行电极材料与外部半导体材料欧姆接触,根据所需光伏电池设计参数进行机械划片,连接负极与互联片、负极与激光输出二极管、背面电极与旁路二极管。
所述步骤(1)中,所述Ag金属层可替换为Au或Pt金属层。
所述步骤(2)中,所述Ag金属格栅根据光伏电池设计参数设计的光刻版图进行制备,红外透过率大于90%。
所述步骤(3)中,外延生长三结砷化镓电池所得电池结构包括Ge底电池、 GaAs中电池、GaInP顶电池、隧穿结、背场层、窗口层、帽子层,其中,所述Ge底电池、GaAs中电池、GaInP顶电池可替换为Ge底电池、GaInAs中电池、GaInP顶电池。
所述步骤(4)中,所述背面电极包括Pd层、Ag层、Au层,可替换为Ti 层、Pd层、Ag层。
所述步骤(5)中,所述电池区域位于Ge衬底晶片上表面边缘位置,通过光刻及干法刻蚀工艺对GaInP顶电池与GaAs中电池层进行刻蚀露出Ag金属格栅以制作负极,即激光输出电极。
所述步骤(6)中,制备于GaInP顶电池表面的负极结构分层具体为Au 层、Ag层、Au层、AuGeNi层,制备于电池区域露出的Ag金属格栅表面的负极结构分层具体为Au层、Ag层、Au层。
所述步骤(7)中,所述减反射膜即TiO2/Al2O3双层减反射膜层,制备减反射膜同时采用套刻及湿法腐蚀对步骤(3)中外延生长三结砷化镓电池所得 GaAs帽子层进行刻蚀。
所述步骤(8)中,所述高温合金工艺温度为350℃,通过高温合金工艺实现电极材料与半导体材料欧姆接触,并通过机械划片将单片器件从衬底片中分离,连接GaInP顶电池表面负极与互联片,依次连接Ag金属格栅表面负极、激光输出二极管、互联片,依次连接背面电极、旁路二极管、互联片。
所述互联片为Ag互联片,所述激光输出二极管通过在Ag金属格栅表面负极上焊接Ge材料制作,并通过Ag互联片引出,所述旁路二极管通过在背面电极焊接Si材料制作,并通过Ag互联片引出。
本发明与现有技术相比的优点在于:
本发明提供的一种兼具激光供能与太阳发电的光伏电池制作方法,采用红外透明“金属格栅”预埋工艺,对三结砷化镓太阳电池完成“双负极”引出,即在三结砷化镓太阳电池表面及Ge底电池表面分别制作负电极,通过双负极实现全天时能源供应的空间光伏器件,即在光照区时利用太阳光发电,由三结砷化镓电池负极输出电流,而在阴影区时由地面或其他航天器利用近红外激光激发底电池产生光伏效应,进行无线能量传输,由底电池负极输出电流,兼具激光供能与太阳发电两种工作模式,可以串并联组成兼具激光供能与太阳发电的光伏电池组件,实现航天器在光照区与阴影区的全天时能量供应,大幅提高航天器应用适应性与灵活,可保证航天器在光照区与阴影区均有充足的能源供应。
附图说明
图1为发明提供的光伏电池制作方法流程图;
图2为发明提供的金属Ag层沉积示意图;
图3为发明提供的Ag金属格栅制备示意图;
图4为发明提供的三结砷化镓电池沉积工艺示意图;
图5为发明提供的背面电极沉积工艺示意图;
图6为发明提供的顶电池及中电池刻蚀工艺示意图;
图7为发明提供的双负极制备工艺示意图;
图8为发明提供的减反射膜制备工艺示意图;
图9为发明提供的二极管及互联片焊接工艺示意图;
具体实施方式
一种兼具激光供能与太阳发电的光伏电池制作方法,采用红外透明“金属格栅”预埋工艺,对三结砷化镓太阳电池完成“双负极”引出,即在三结砷化镓太阳电池表面及Ge底电池表面分别制作负电极,通过双负极实现全天时能源供应的空间光伏器件,即在光照区时利用太阳光发电,由三结砷化镓电池负极输出电流,而在阴影区时由地面或其他航天器利用近红外激光激发底电池产生光伏效应,进行无线能量传输,由底电池负极输出电流,兼具激光供能与太阳发电两种工作模式,实现器件在激光供能与太阳发电两种工作模式下均能进行高效光伏能量输出,具体制作步骤为:
(1)选取Ge衬底晶片,并采用蒸镀工艺于Ge衬底晶片表面沉积Ag金属层;
采用蒸镀工艺沉积Ag金属层,因为Ag导电性良好,且在半导体材料中性能稳定,不影响PN结的掺杂,也可以采用Au、Pt等其他金属;
(2)通过光刻刻蚀将步骤(1)沉积Ag金属层制备为Ag金属格栅;
制备红外透明的Ag金属格栅,是一预埋结构,红外透过率超90%,其良好的导电性可实现底电池光伏效应中光生电流的有效收集。按照设计的金属格栅结构尺寸设计光刻版图,采用光刻及干法刻蚀的方法制备;
(3)利用MOCVD工艺于Ag金属格栅上外延生长三结砷化镓电池,获取沉积Ge底电池、GaAs中电池、GaInP顶电池;
外延生长三结砷化镓电池所得电池结构包括Ge底电池、GaAs中电池、GaInP顶电池、隧穿结、背场层、窗口层、帽子层,其中,所述Ge底电池、GaAs中电池、GaInP顶电池可替换为Ge底电池、GaInAs中电池、GaInP顶电池;
(4)于Ge衬底晶片背面进行背面电极制备;
背面电极包括Pd层、Ag层、Au层,可替换为Ti层、Pd层、Ag层,Pd 层、Ag层、Au层的厚度分别为0.1μm、4.5μm、0.1μm,其与P型Ge衬底可实现良好的欧姆接触;
(5)利用光刻及干法刻蚀工艺于电池区域对Ag金属格栅上的GaAs中电池、GaInP顶电池进行刻蚀直至露出Ag金属格栅;
电池区域位于Ge衬底晶片上表面边缘位置,通过光刻及干法刻蚀工艺对 GaInP顶电池与GaAs中电池层进行刻蚀露出Ag金属格栅以制作负极,即激光输出电极;
采用光刻及干法刻蚀工艺在电池区域刻蚀掉顶电池及中电池,该区域位于电池边缘,占整个表面积的比例很小,主要目的是将预埋的Ag金属格栅结构露出以制作激光输出电极,刻蚀厚度约为5μm;
(6)于GaInP顶电池表面及电池区域露出的Ag金属格栅表面,通过光刻及蒸镀工艺制备负极;
制备于GaInP顶电池表面的负极结构分层具体为Au层、Ag层、Au层、 AuGeNi层,厚度分别为0.02μm、4.5μm、0.02μm、0.1μm,制备于电池区域露出的Ag金属格栅表面的负极结构分层具体为Au层、Ag层、Au层,厚度分别为0.02μm、4.5μm、0.02μm;
(7)利用套刻及湿法腐蚀于GaInP顶电池表面制备减反射膜;
套刻工艺刻蚀掉电池表面最顶部的帽子层,在露出窗口层上沉积 TiO2/Al2O3双层减反射膜,TiO2/Al2O3厚度分别为0.05μm、0.05μm。
制备减反射膜同时采用套刻及湿法腐蚀对步骤(3)中外延生长三结砷化镓电池所得GaAs帽子层进行刻蚀;
(8)利用高温合金工艺进行电极材料与外部半导体材料欧姆接触,根据所需光伏电池设计参数进行机械划片,连接负极与互联片、负极与激光输出二极管、背面电极与旁路二极管;
合金工艺可实现电极层与电池层的欧姆接触并提高牢固度,按照设计尺寸采用激光或机械划片的工艺将电池单片从晶圆片上划出,高温合金工艺温度为 350℃,通过高温合金工艺实现电极材料与半导体材料欧姆接触,并通过机械划片将单片器件从衬底片中分离,连接GaInP顶电池表面负极与互联片,依次连接Ag金属格栅表面负极、激光输出二极管、互联片,依次连接背面电极、旁路二极管、互联片;激光输出二级管采用Ge二级管,旁路二级管采用Si二级管;
互联片为Ag互联片,所述激光输出二极管通过在Ag金属格栅表面负极上焊接Ge材料制作,并通过Ag互联片引出,所述旁路二极管通过在背面电极焊接Si材料制作,并通过Ag互联片引出。
下面结合具体实施例进行进一步说明:
在本实施例中,如图1所示,对光伏电池进行制作,如图2所示,选择170μm 厚的P型Ge衬底晶片,采用电子束蒸发的方法沉积一层200nm厚的金属Ag 层;
制备红外透过率超90%的红外透明的Ag金属格栅,如图3所示,采用光刻与离子刻蚀的方法,将金属Ag层制备为Ag金属格栅。格栅单元尺寸为100 微米×100微米,线宽为5微米;
采用MOCVD工艺外延生长三结砷化镓电池结构,包括Ge底电池、GaAs 中电池、GaInP顶电池、隧穿结、背场层、窗口层、帽子层,采用蒸镀工艺制备背面电极,分别为Pd/Ag/Au层,放入MOCVD设备中,分别沉积Ge底电池、GaAs中电池、GaInP顶电池。这其中包括相应子电池的Buffer层、窗口层以及子电池间的隧穿结等结构,由于三结砷化镓太阳电池结构比较成熟,在此不再赘述。Ge底电池的PN结是在外延生长时GaAs扩散形成,因此S12 制备的Ag金属格栅处于Ge底电池N区,如图4所示。Ge底电池、GaAs中电池、GaInP顶电池的厚度分别为170μm、4μm、0.6μm;
在Ge衬底背面电子束蒸发Pd/Ag/Au,厚度分别为0.1μm、4.5μm、0.1μm,制备背面电极,如图5所示;
采用光刻及干法刻蚀工艺在电池部分区域刻蚀掉顶电池及中电池,该部分区域位于电池边缘,占整个表面积的比例很小,主要目的是将预埋的Ag金属格栅结构露出以制作激光输出电极,刻蚀厚度约为4.6μm,如图6所示;
采用光刻及蒸镀工艺制备负极作为太阳发电模式输出电极,如图7所示, Au/Ag/Au/AuGeNi层分别采用0.02μm、4.5μm、0.02μm、0.1μm厚度,同时制备另一类负极,作为激光供能模式的输出电极,Au/Ag/Au层分别采用0.02μm、 4.5μm、0.02μm厚度;
利用套刻工艺刻蚀掉电池表面最顶部的帽子层,如图8所示,在露出窗口层上沉积TiO2/Al2O3减反射膜,TiO2/Al2O3厚度分别为0.05μm、0.05μm;
合金工艺可实现电极层与电池层的欧姆接触并提高牢固度,按照设计尺寸采用激光或机械划片的工艺将电池单片从晶圆片上划出,如图9所示,在GaInP 顶电池表面负极处焊接金属互联片,在Ag金属格栅表面负极处焊接激光输出二级管与金属互联片,在电池背电极焊接旁路二极管与Ag金属互联片。激光输出二级管采用Ge二级管,正向开压0.2V;旁路二级管采用Si二级管,正向开压0.5V,金属互联片采用纯Ag材料,也可以采用可伐镀Ag材料。
以上所述为本发明最佳实施方式的举例,其中未详细述及的部分均为本领域普通技术人员的公共常识,本发明的保护范围以权利要求的内容为准,任何基于本发明的技术启示而进行的等效变换,也在本发明的保护范围之内。

Claims (1)

1.一种兼具激光供能与太阳发电的光伏电池制作方法,其特征在于步骤如下:
(1)选取Ge衬底晶片,并采用蒸镀工艺于Ge衬底晶片表面沉积Ag金属层;
(2)通过光刻刻蚀将步骤(1)沉积Ag金属层制备为Ag金属格栅;
(3)利用MOCVD工艺于Ag金属格栅上外延生长三结砷化镓电池,获取沉积Ge底电池、GaAs中电池、GaInP顶电池;
(4)于Ge衬底晶片背面进行背面电极制备;
(5)利用光刻及干法刻蚀工艺于电池区域对Ag金属格栅上的GaAs中电池、GaInP顶电池进行刻蚀直至露出Ag金属格栅;
(6)于GaInP顶电池表面及电池区域露出的Ag金属格栅表面,通过光刻及蒸镀工艺制备负极;
(7)利用套刻及湿法腐蚀于GaInP顶电池表面制备减反射膜;
(8)利用高温合金工艺进行电极材料与外部半导体材料欧姆接触,根据所需光伏电池设计参数进行机械划片,连接负极与互联片、负极与激光输出二极管、背面电极与旁路二极管;
所述步骤(1)中,所述Ag金属层可替换为Au或Pt金属层;
所述步骤(2)中,所述Ag金属格栅根据光伏电池设计参数设计的光刻版图进行制备,红外透过率大于90%;
所述步骤(3)中,外延生长三结砷化镓电池所得电池结构包括Ge底电池、GaAs中电池、GaInP顶电池、隧穿结、背场层、窗口层、帽子层,其中,所述Ge底电池、GaAs中电池、GaInP顶电池可替换为Ge底电池、GaInAs中电池、GaInP顶电池;
所述步骤(4)中,所述背面电极包括Pd层、Ag层、Au层,可替换为Ti层、Pd层、Ag层;
所述步骤(5)中,所述电池区域位于Ge衬底晶片上表面边缘位置,通过光刻及干法刻蚀工艺对GaInP顶电池与GaAs中电池层进行刻蚀露出Ag金属格栅以制作负极,即激光输出电极;
所述步骤(6)中,制备于GaInP顶电池表面的负极结构分层具体为Au层、Ag层、Au层、AuGeNi层,制备于电池区域露出的Ag金属格栅表面的负极结构分层具体为Au层、Ag层、Au层;
所述步骤(7)中,所述减反射膜即TiO2/Al2O3双层减反射膜层,制备减反射膜同时采用套刻及湿法腐蚀对步骤(3)中外延生长三结砷化镓电池所得GaAs帽子层进行刻蚀;
所述步骤(8)中,所述高温合金工艺温度为350℃,通过高温合金工艺实现电极材料与半导体材料欧姆接触,并通过机械划片将单片器件从衬底片中分离,连接GaInP顶电池表面负极与互联片,依次连接Ag金属格栅表面负极、激光输出二极管、互联片,依次连接背面电极、旁路二极管、互联片;
所述互联片为Ag互联片,所述激光输出二极管通过在Ag金属格栅表面负极上焊接Ge材料制作,并通过Ag互联片引出,所述旁路二极管通过在背面电极焊接Si材料制作,并通过Ag互联片引出。
CN202010768046.3A 2020-08-03 2020-08-03 一种兼具激光供能与太阳发电的光伏电池制作方法 Active CN112038419B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010768046.3A CN112038419B (zh) 2020-08-03 2020-08-03 一种兼具激光供能与太阳发电的光伏电池制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010768046.3A CN112038419B (zh) 2020-08-03 2020-08-03 一种兼具激光供能与太阳发电的光伏电池制作方法

Publications (2)

Publication Number Publication Date
CN112038419A CN112038419A (zh) 2020-12-04
CN112038419B true CN112038419B (zh) 2022-04-12

Family

ID=73583806

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010768046.3A Active CN112038419B (zh) 2020-08-03 2020-08-03 一种兼具激光供能与太阳发电的光伏电池制作方法

Country Status (1)

Country Link
CN (1) CN112038419B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112909101B (zh) * 2021-01-18 2021-12-14 中山德华芯片技术有限公司 一种太阳能电池及其制作方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003054926A2 (en) * 2001-10-24 2003-07-03 Emcore Corporation An apparatus and method for integral bypass diode in solar cells
US8916769B2 (en) * 2008-10-01 2014-12-23 International Business Machines Corporation Tandem nanofilm interconnected semiconductor wafer solar cells
CN102832271A (zh) * 2012-08-24 2012-12-19 北京航空航天大学 一种掺入量子点的多结叠层太阳电池设计
CN203218991U (zh) * 2013-01-31 2013-09-25 天津大学 一种相干光无线传输能量的装置
CN206595272U (zh) * 2016-12-30 2017-10-27 陕西学前师范学院 GaInP/GaAs/Ge三结太阳能电池
CN111341872B (zh) * 2018-12-18 2022-10-25 紫石能源有限公司 一种砷化镓太阳能电池外延结构及其生长方法
CN210793607U (zh) * 2019-10-29 2020-06-19 湖南航天远望科技有限公司 一种临近空间浮空器集群无线传能系统
CN111463303B (zh) * 2020-04-21 2022-06-10 扬州乾照光电有限公司 一种高电压串联结构多结太阳能电池及其制作方法

Also Published As

Publication number Publication date
CN112038419A (zh) 2020-12-04

Similar Documents

Publication Publication Date Title
TWI542026B (zh) 高效多接面太陽能電池
US8912428B2 (en) High efficiency multijunction II-VI photovoltaic solar cells
KR101000064B1 (ko) 이종접합 태양전지 및 그 제조방법
KR101372536B1 (ko) 탠덤형 박막 태양전지 및 그의 제조방법
JPH05114747A (ja) 改良されたモノリシツクなタンデム型太陽電池
US11830958B2 (en) Tandem solar cell
JP2001524760A (ja) 高効率ソーラセルとその製造方法
JP2009529236A (ja) 薄膜型太陽電池及びその製造方法
CN210073891U (zh) 一种提高抗辐照性能的多结太阳能电池
CN112038419B (zh) 一种兼具激光供能与太阳发电的光伏电池制作方法
Karzazi et al. Inorganic photovoltaic cells: Operating principles, technologies and efficiencies-Review
CN108735848B (zh) 多结叠层激光光伏电池及其制作方法
JP5548878B2 (ja) 多接合型光学素子
CN111725332A (zh) 一种高性能三结砷化镓太阳电池
JPH09172193A (ja) 薄膜太陽電池
CN111430493B (zh) 一种多结太阳能电池及供电设备
Zhu Development of Metal Oxide Solar Cells Through Numerical Modeling
KR101412150B1 (ko) 탠덤 구조 cigs 태양전지 및 그 제조방법
Mizuno et al. A “smart stack” triple-junction cell consisting of InGaP/GaAs and crystalline Si
CN107403850B (zh) 一种含嵌入式背场结构的多结太阳能电池及其制备方法
CN106374001A (zh) 具有锥形背散射层的GaAs薄膜太阳电池及其制备方法
CN104241432A (zh) 一种带隙结构优化的三结太阳电池
CN112289881B (zh) 一种GaInP/GaAs/Ge/Si四结太阳能电池及其制备方法
CN219591399U (zh) 叠层太阳能电池组件
Licht High Efficiency Solar Cells (What are the highest solar energy conversion efficiencies?)

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant