CN108540045A - 基于垂直型纳米热电偶和超晶格光电结构的微型发电机 - Google Patents

基于垂直型纳米热电偶和超晶格光电结构的微型发电机 Download PDF

Info

Publication number
CN108540045A
CN108540045A CN201810208117.7A CN201810208117A CN108540045A CN 108540045 A CN108540045 A CN 108540045A CN 201810208117 A CN201810208117 A CN 201810208117A CN 108540045 A CN108540045 A CN 108540045A
Authority
CN
China
Prior art keywords
thermoelectric
type
electrode
silicon
thermoelectric pile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201810208117.7A
Other languages
English (en)
Inventor
廖小平
严嘉彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201810208117.7A priority Critical patent/CN108540045A/zh
Publication of CN108540045A publication Critical patent/CN108540045A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • H02S10/10PV power plants; Combinations of PV energy systems with other systems for the generation of electric power including a supplementary source of electric power, e.g. hybrid diesel-PV energy systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • H01L31/022458Electrode arrangements specially adapted for back-contact solar cells for emitter wrap-through [EWT] type solar cells, e.g. interdigitated emitter-base back-contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N19/00Integrated devices, or assemblies of multiple devices, comprising at least one thermoelectric or thermomagnetic element covered by groups H10N10/00 - H10N15/00
    • H10N19/101Multiple thermocouples connected in a cascade arrangement
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Computer Hardware Design (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明的基于垂直型纳米热电偶和超晶格光电结构的微型发电机,衬底为N型硅片,光电池的受光面上制作有绒面结构、第二氮化硅薄膜和背电场结构,超晶格结构上覆盖了一层外延的单晶硅薄膜,部分为P型掺杂区域,部分为N型掺杂区域,单晶硅薄膜上淀积了一层二氧化硅层钝化层,并开了一系列的电极接触孔,与光电池的基区电极和发射区电极相连;热电式发电机与光电池之间隔有第一氮化硅薄膜,垂直衬底表面的N型多晶硅纳米线簇和P型多晶硅纳米线簇构成了热电偶的半导体臂,通过热电堆下电极和热电堆上电极串联成热电堆,金属板位于热电堆的正上方,与热电堆上电极之间隔有第三氮化硅薄膜。

Description

基于垂直型纳米热电偶和超晶格光电结构的微型发电机
技术领域
本发明提出了一种基于垂直型纳米热电偶和超晶格光电结构的微型发电机,属于微电子机械系统(MEMS)的技术领域。
背景技术
射频收发组件广泛应用于通信和雷达系统,是无线收发系统至关重要的组成部分,功率放大器作为发射环节的关键部件,在工作时有相当一部分能量以热能的形式耗散,不仅造成收发组件的升温,影响了模块正常的工作,还造成了能量的浪费。因量子限制和声子散射效应,纳米材料热导率远低于传统体材料,热电式发电机转换效率获得提升,可对射频功率放大器工作中耗散的热能进行收集,收集的电能通过DC-DC转换被存贮在电池中,不仅能够提高能量的使用效率,减少能源的浪费,同时也可为布置在功率放大器周边的各种无线传感节点供电。此外,将光电池与热电式发电机进行单片集成,能够在光照条件下收集光能,可作为热能收集的有力补充。
发明内容
技术问题:本发明的目的是提供一种基于垂直型纳米热电偶和超晶格光电结构的微型发电机,光电池与热电式发电机分别采用超晶格与垂直型纳米热电偶结构,用以提高输出功率,且集成在同一片衬底上,可同时对环境中的热能和光能进行收集,在复杂周围环境下,两种收集方式可相互补充,协同供电。
技术方案:为解决上述技术问题,本发明提出了一种基于垂直型纳米热电偶和超晶格光电结构的微型发电机。其结构主要包括光电池和热电式发电机,两个部分制作于同一片硅衬底上,实现了热电与光电的单片集成,且光电池和热电式发电机电极位于硅片的同一侧,便于实际应用中的封装,采用第一氮化硅薄膜作为两个部分的绝缘结构,避免电学短路。
光电池的衬底选用长载流子寿命的N型硅片,受光面采用织构化的倒金字塔绒面结构,作用是减小入射光的反射;在绒面结构上涂覆了一层特定厚度的抗反射第二氮化硅薄膜,利用氢钝化和固定电荷效应来减小电池的体复合与表面复合;采用离子注入方法制作了一个N-N+高低结,又被称为背电场结构,用于减小表面复合;非晶硅和碳化硅纳米薄膜交替排列构成超晶格结构,在超晶格结构的上方覆盖了一层外延的单晶硅薄膜,部分为P型掺杂区域,作为光电池的发射区,部分为N型掺杂区域,用于和基区电极形成欧姆接触,单晶硅薄膜上覆盖一层二氧化硅层钝化层,并开了一系列的电极接触孔,用于减少上表面的表面复合,叉指形光电池电极包括基区电极和发射区电极,相比传统的光电池结构,上表面的电极宽度很大,一方面减少了电池的背面反射,另一方面减小了电池的寄生电阻,有利于提高输出性能。
热电式发电机主要由水平放置的热电堆和金属板构成。其中热电堆是由多对热电偶串联而成,垂直衬底表面的N型多晶硅纳米线簇和P型多晶硅纳米线簇构成了热电偶的半导体臂,热电堆下电极为钨,热电堆上电极为金,因为热量皆由热电堆的热端传递到冷端,所以热电偶在传热学上并联;为了增加衬底到热电堆的热耦合,热电堆下电极位于光电池电极的上方;为了增加热电式发电机结构的稳定性,热电偶之间填充有聚甲基丙烯酸甲酯;在热电堆的正上方,覆盖了一块金属板,有效地实现了散热,增大了热电堆与周围环境的热耦合,同时,金属板的反光性可以减小光电池的透光损失,提高光电池的光电转换效率,金属板与热电堆上电极之间隔有第三氮化硅薄膜以实现绝缘。
光电池的工作原理如下:当具有适当能量的光子入射于光电池的PN结时,光子与构成半导体材料相互作用产生电子和空穴,在PN结区域的电场作用下,电子向N型半导体扩散,空穴向P型半导体扩散,分别聚集于两个电极部分,产生一定的电势差同时输出功率。电极输出功率时,除了光生电流外,由于输出电压,还存在一个与光生电流相反的结“暗电流”,输出到负载的电流实为光生电流和暗电流之差。
热电式发电机的工作原理如下:当在发电机冷热端施加一定的温差,热量会从热端面注入,经过热电堆后,最后从冷端面排出,并在热电式发电机上形成一定的温度分布。由于热电堆存在一定的热阻,在热电堆的冷热结点之间会产生相应的温差,基于塞贝克效应热电堆的两端会输出与温差成正比的电势,连接负载后可实现功率输出。
该微型发电机用于射频收发组件中,光电池的受光面朝上,用于接受环境中的光线,对光能进行俘获,覆盖金属板的另一表面贴在射频收发组件的功率放大器上方,对功率放大器工作中耗散的热能进行收集,能够减少能源的浪费;光电池和热电式发电机收集的能量通过DC-DC转换模块后,被存贮在电池中,可为布置在功率放大器周边的各种无线传感节点供电。
有益效果:
本发明相对于现有的发电机具有以下优点:
1.本发明的微型发电机工艺上采用成熟的CMOS工艺和MEMS工艺制造,优点有体积小、成本低、可批量制造,以及能够和微电子电路实现单片集成;
2.实现了热电-光电两种能量收集方式的单片集成,在复杂周围环境下,两种收集方式可相互补充,协同供电;
3.光电池采用全背电极结构,相对传统光电池结构,具有无遮光损失、低电极串阻和便于器件互联的优势;
4.超晶格的纳米尺寸效应使光电池拥有优异的光敏性、光电特性、高电导率、高光吸收系数和高光学带隙,且光电导在光照条件下衰减较小,从而提高了光电池的效率;
5.热电式发电机采用混合型结构,即热流路径垂直于芯片表面,而电流路径平行于芯片表面,垂直于芯片表面的热流路径简化了微型发电机的封装,而位于芯片平面内的热电堆,可采用IC兼容工艺制作,具有较高的集成密度和较大的输出电压密度;
6.因量子限制和声子散射效应,多晶硅纳米线的热导率远低于传统体材料,提高了热电式发电机的转换效率;
7.光电池与热电式发电机均为固态能量转换器,没有可动部件,可靠性高,使用寿命长,无需维护,工作时不会产生噪音;
8.微型发电机的所有电极均在同一平面,避免了类似过孔的复杂电学连接。
附图说明
图1为本发明基于垂直型纳米热电偶和超晶格光电结构的微型发电机在射频收发组件中的应用示意图;
图2为本发明基于垂直型纳米热电偶和超晶格光电结构的微型发电机的俯视结构示意图;
图3为本发明光电池电极制备完成后的俯视结构示意图;
图4为本发明热电式发电机电极制备完成后的俯视结构示意图;
图5为本发明基于垂直型纳米热电偶和超晶格光电结构的微型发电机A-A’向剖视图。
图中包括:光电池1,热电式发电机2,第一氮化硅薄膜3,硅片4,绒面结构5,第二氮化硅薄膜6,背电场结构7,超晶格结构8,单晶硅薄膜9,N型掺杂区域10,二氧化硅层钝化层11,基区电极12,发射区电极13,金属板14,N型多晶硅纳米线簇15,P型多晶硅纳米线簇16,热电堆下电极17,热电堆上电极18,聚甲基丙烯酸甲酯19,第三氮化硅薄膜20,受光面21,射频收发组件22,无线传感节点23,DC-DC转换模块24,电池25。
具体实施方式
下面结合附图对本发明的具体实施方式做进一步说明。
参见图1-5,本发明提出了一种基于垂直型纳米热电偶和超晶格光电结构的微型发电机。其结构主要包括光电池1和热电式发电机2,两个部分制作于同一片硅衬底上,实现了热电与光电的单片集成,且光电池1和热电式发电机2电极位于硅片的同一侧,便于实际应用中的封装,采用第一氮化硅薄膜3作为两个部分的绝缘结构,避免电学短路。
光电池的衬底选用长载流子寿命的N型硅片4,受光面21采用织构化的倒金字塔绒面结构5,作用是减小入射光的反射;在绒面结构5上涂覆了一层特定厚度的抗反射第二氮化硅薄膜6,利用氢钝化和固定电荷效应来减小电池的体复合与表面复合;采用离子注入方法制作了一个N-N+高低结,又被称为背电场结构7,用于减小表面复合;非晶硅和碳化硅纳米薄膜交替排列构成超晶格结构8,每层厚度在2-10nm,超晶格的纳米尺寸效应使光电池1拥有优异的光敏性、光电特性、高电导率、高光吸收系数和高光学带隙,且光电导在光照条件下衰减较小;在超晶格结构8的上方覆盖了一层外延的单晶硅薄膜9,部分为P型掺杂区域,作为光电池的发射区,部分为N型掺杂区域10,用于和基区电极12形成欧姆接触,单晶硅薄膜9上覆盖一层二氧化硅层钝化层11,并开了一系列的电极接触孔,用于减少上表面的表面复合,叉指形光电池电极包括基区电极12和发射区电极13,相比传统的光电池结构,上表面的电极宽度很大,一方面减少了电池的背面反射,另一方面减小了电池的寄生电阻,有利于提高输出性能。
热电式发电机主要由水平放置的热电堆和金属板14构成。其中热电堆是由多对热电偶串联而成,垂直衬底表面的N型多晶硅纳米线簇15和P型多晶硅纳米线簇16构成了热电偶的半导体臂,多晶硅纳米线簇含有的纳米线数量为50-200,多晶硅纳米线直径为1-100nm,高度为2-10um,热电堆下电极17为钨,热电堆上电极18为金,因为热量皆由热电堆的热端传递到冷端,所以热电偶在传热学上并联;为了增加衬底到热电堆的热耦合,热电堆下电极17位于光电池电极的上方;为了增加热电式发电机结构的稳定性,热电偶之间填充有聚甲基丙烯酸甲酯19;在热电堆的正上方,覆盖了一块金属板14,有效地实现了散热,增大了热电堆与周围环境的热耦合,同时,金属板的反光性可以减小光电池的透光损失,提高光电池的光电转换效率,金属板14与热电堆上电极18之间隔有第三氮化硅薄膜20以实现绝缘。
光电池的工作原理如下:当具有适当能量的光子入射于光电池的PN结时,光子与构成半导体材料相互作用产生电子和空穴,在PN结区域的电场作用下,电子向N型半导体扩散,空穴向P型半导体扩散,分别聚集于两个电极部分,产生一定的电势差同时输出功率。电极输出功率时,除了光生电流外,由于输出电压,还存在一个与光生电流相反的结“暗电流”,输出到负载的电流实为光生电流和暗电流之差。
热电式发电机的工作原理如下:当在发电机冷热端施加一定的温差,热量会从热端面注入,经过热电堆后,最后从冷端面排出,并在热电式发电机上形成一定的温度分布。由于热电堆存在一定的热阻,在热电堆的冷热结点之间会产生相应的温差,基于塞贝克效应热电堆的两端会输出与温差成正比的电势,连接负载后可实现功率输出。
该微型发电机用于射频收发组件22中,如附图1所示,光电池1的受光面21朝上,用于接受环境中的光线,对光能进行俘获,覆盖金属板14的另一表面贴在射频收发组件22的功率放大器上方,对功率放大器工作中耗散的热能进行收集,能够减少能源的浪费;光电池1和热电式发电机2收集的能量通过DC-DC转换模块24后,被存贮在电池25中,可为布置在功率放大器周边的各种无线传感节点23供电。
本发明的基于垂直型纳米热电偶和超晶格光电结构的微型发电机的制备方法如下:
1)选择N型硅片4作为衬底,磷的掺杂浓度为1×1015cm-3,电阻率约为5Ωcm,制作前进行双面抛光,并在氢氟酸溶液中浸泡,去除金属颗粒等杂质;
2)在衬底上采用等离子体增强化学气相淀积(PECDV)工艺制作非晶硅碳化硅纳米超晶格结构8,非晶硅和碳化硅薄膜交替排列,厚度分别为2nm和4nm;
3)在硅片的上表面外延一层单晶硅薄膜9,进行硼离子扩散掺杂,掺杂浓度为1×1020cm-3,形成P+区,作为光电PN结发射极;
4)采用PECVD工艺淀积一层氮化硅,厚度约200nm,并光刻成型,这里采用缓冲的氢氟酸除去特定区域的氮化硅,作为后面磷离子注入的窗口;
5)磷离子注入并退火,用氢氟酸去除剩余区域的氮化硅;
6)采用PECVD工艺淀积一层100nm的二氧化硅并光刻成型,作为二氧化硅层钝化层11,并暴露出电极接触区域;
7)在N型硅片4背面制作绒面结构5,再进行P离子注入,形成背电场结构7,接着采用PECVD工艺淀积第二氮化硅薄膜6作为光学抗反射层;
8)蒸发一层2μm厚的铝层并光刻,形成光电池的叉指电极,包括基区电极12和发射区电极13;
9)采用PECVD工艺淀积第一氮化硅薄膜3,作为电学绝缘层;
10)溅射一层厚度为0.15μm的金属钨层,干法刻蚀成型,形成热电堆下电极17;
11)采用低压化学气相淀积(LPCDV)工艺生长一层厚度为2μm的多晶硅;
12)采用LPCVD工艺生长一层二氧化硅作为掩膜层,对多晶硅进行深紫外光刻,形成多晶硅纳米线结构;
13)分别对多晶硅纳米线的相应区域进行N型磷离子掺杂和P型硼离子掺杂,分别形成N型多晶硅纳米线簇15和P型多晶硅纳米线簇16;
14)旋涂一层聚甲基丙烯酸甲酯19填充热电偶之间的间隙,提高发电机结构的稳定性;
15)蒸发一层厚度为0.3μm的金层,剥离法成型,作为热电堆上电极18;
16)采用PECVD工艺生长第三氮化硅薄膜20,厚度为0.1μm,作为介质绝缘层;
17)电镀一层厚度为1μm的金属铝,作为器件的散热金属板14。
区分是否为该结构的标准如下:
本发明的基于垂直型纳米热电偶和超晶格光电结构的微型发电机,衬底为N型硅片4,光电池的受光面21上制作有绒面结构5、第二氮化硅薄膜6和背电场结构7;超晶格结构8上覆盖了一层外延的单晶硅薄膜9,部分为P型掺杂区域,部分为N型掺杂区域10,超晶格的纳米尺寸效应使光电池拥有优异的光敏性、光电特性、高电导率、高光吸收系数和高光学带隙,且光电导在光照条件下衰减较小,从而提高了光电池的效率;单晶硅薄膜9上淀积了一层二氧化硅层钝化层11,并于特定的区域开了一系列的电极接触孔,与光电池的基区电极12和发射区电极13相连;热电式发电机与光电池之间隔有第一氮化硅薄膜3,热电式发电机的主要功能单元为热电堆,热电堆下电极17位于光电池电极的上方,垂直衬底表面的N型多晶硅纳米线簇15和P型多晶硅纳米线簇16构成了热电偶的半导体臂,通过热电堆下电极17和热电堆上电极18串联成热电堆,因量子限制和声子散射效应,多晶硅纳米线的热导率远低于传统体材料,提高了热电式发电机的转换效率;金属板14位于热电堆的正上方,与热电堆上电极18之间隔有第三氮化硅薄膜20。
满足以上条件的结构即视为本发明的基于垂直型纳米热电偶和超晶格光电结构的微型发电机。

Claims (4)

1.一种基于垂直型纳米热电偶和超晶格光电结构的微型发电机,其特征是:该微型发电机由制作于同一N型硅片(4)上的光电池(1)和热电式发电机(2)两个部分构成,硅片(4)的受光面(21)上制作有绒面结构(5)、第二氮化硅薄膜(6)和背电场结构(7);在超晶格结构(8)的上方覆盖了一层外延的单晶硅薄膜(9),部分为P型掺杂区域,部分为N型掺杂区域(10),单晶硅薄膜(9)上淀积了一层二氧化硅层钝化层(11),二氧化硅层钝化层(11)上的电极接触孔与光电池的基区电极(12)和发射区电极(13)相连;热电式发电机与光电池之间隔有第一氮化硅薄膜(3),热电式发电机(2)的主体为热电堆,由多对热电偶通过热电堆下电极(17)和热电堆上电极(18)串联而成,垂直衬底表面的N型多晶硅纳米线簇(15)和P型多晶硅纳米线簇(16)构成了热电偶的半导体臂,热电偶之间填充有聚甲基丙烯酸甲酯(19),在热电堆的正上方,覆盖了一块金属板(14);纳米超晶格结构(8)由非晶硅和碳化硅薄膜交替排列而成,每层厚度在1-10nm,纳米超晶格结构(8)的纳米尺寸效应使光电池(1)拥有优异的光敏性、光电特性、高电导率、高光吸收系数和高光学带隙,且光电导在光照条件下衰减较小,从而提高了光电池(1)的效率;N型多晶硅纳米线簇(15)和P型多晶硅纳米线簇(16)含有的纳米线数量为50-200,纳米线直径为1-100nm,高度为2-10um,因量子限制和声子散射效应,N型多晶硅纳米线簇(15)和P型多晶硅纳米线簇(16)的热导率远低于传统体材料,提高了热电式发电机(2)的转换效率。
2.根据权利要求1所述的一种基于垂直型纳米热电偶和超晶格光电结构的微型发电机,其特征是:基区电极(12)和发射区电极(13)相互交错,呈叉指形排列。
3.根据权利要求1所述的一种基于垂直型纳米热电偶和超晶格光电结构的微型发电机,其特征是:热电堆下电极(17)材料为钨,热电堆上电极(18)材料为金,金属板(14)材料为铝。
4.根据权利要求1所述的一种基于垂直型纳米热电偶和超晶格光电结构的微型发电机,其特征是:应用中金属板(14)的表面贴在射频收发组件(22)的上方,受光面(21)用于接受环境中的光线,光电池(1)和热电式发电机(2)输出到DC-DC转换模块(24)后,电能被存贮在电池(25)中,可为布置在功率放大器周边的各种无线传感节点(23)供电。
CN201810208117.7A 2018-03-14 2018-03-14 基于垂直型纳米热电偶和超晶格光电结构的微型发电机 Withdrawn CN108540045A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810208117.7A CN108540045A (zh) 2018-03-14 2018-03-14 基于垂直型纳米热电偶和超晶格光电结构的微型发电机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810208117.7A CN108540045A (zh) 2018-03-14 2018-03-14 基于垂直型纳米热电偶和超晶格光电结构的微型发电机

Publications (1)

Publication Number Publication Date
CN108540045A true CN108540045A (zh) 2018-09-14

Family

ID=63483828

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810208117.7A Withdrawn CN108540045A (zh) 2018-03-14 2018-03-14 基于垂直型纳米热电偶和超晶格光电结构的微型发电机

Country Status (1)

Country Link
CN (1) CN108540045A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110690846A (zh) * 2019-09-29 2020-01-14 西南大学 一种基于倾斜硅纳米线的光热电转换器件
CN115077648A (zh) * 2022-08-19 2022-09-20 无锡芯感智半导体有限公司 一种mems质量流量传感器及制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110690846A (zh) * 2019-09-29 2020-01-14 西南大学 一种基于倾斜硅纳米线的光热电转换器件
CN115077648A (zh) * 2022-08-19 2022-09-20 无锡芯感智半导体有限公司 一种mems质量流量传感器及制备方法

Similar Documents

Publication Publication Date Title
US9935217B1 (en) High efficiency photovoltaic cells and manufacturing thereof
US8435825B2 (en) Methods for fabrication of nanowall solar cells and optoelectronic devices
US8716596B1 (en) Solar cell having silicon nano-particle emitter
US9105787B2 (en) Techniques for enhancing efficiency of photovoltaic devices using high-aspect-ratio nanostructures
US20080110486A1 (en) Amorphous-crystalline tandem nanostructured solar cells
US9064991B2 (en) Photovoltaic devices with enhanced efficiencies using high-aspect ratio nanostructures
CN101401215A (zh) 太阳能电池
EP2253021B1 (en) Photovoltaic devices with high-aspect-ratio nanostructures
CN108540046A (zh) 自供能无线传感节点中集成化纳米能量获取器及制备方法
US11271128B2 (en) Multi-junction optoelectronic device
CN108540045A (zh) 基于垂直型纳米热电偶和超晶格光电结构的微型发电机
KR20090075421A (ko) 태양 전지
CN108511591A (zh) 多晶硅纳米线矩形阵列和超晶格光电结构微型能量收集器
CN108540048A (zh) 自供能无线传感节点中的热电光电集成化纳米能量收集器
CN108598207A (zh) 基于纳米薄膜热电偶和超晶格光电结构的微型发电机
CN117321776A (zh) 多结太阳能电池
CN108540044A (zh) 基于多晶硅纳米线矩形阵列和纳米pn结的微型能量收集器
CN108493283A (zh) 基于多晶硅纳米薄膜热电偶和纳米pn结的微型能量收集器
CN108512487A (zh) 基于多晶硅纳米薄膜和超晶格结构的热电光电能量收集器
CN108494287A (zh) 悬臂梁自供电收发组件中微纳电磁光热集成能量收集器
CN108540051A (zh) 基于垂直型热电偶和纳米pn结的热电光电集成微型发电机
CN108400749A (zh) 水平发散型纳米热电光电能量收集器
CN108470820A (zh) 串联四方式纳米热电光电能量收集器
CN108767104A (zh) 基于纳米pn结和纳米热电堆的热电光电能量收集器
KR101172619B1 (ko) Ain 패시베이션막을 구비하는 실리콘 태양전지

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20180914

WW01 Invention patent application withdrawn after publication