WO2017195522A1 - 糖化ヘモグロビンの測定方法及び糖化ヘモグロビン測定装置 - Google Patents

糖化ヘモグロビンの測定方法及び糖化ヘモグロビン測定装置 Download PDF

Info

Publication number
WO2017195522A1
WO2017195522A1 PCT/JP2017/014984 JP2017014984W WO2017195522A1 WO 2017195522 A1 WO2017195522 A1 WO 2017195522A1 JP 2017014984 W JP2017014984 W JP 2017014984W WO 2017195522 A1 WO2017195522 A1 WO 2017195522A1
Authority
WO
WIPO (PCT)
Prior art keywords
hemoglobin
peak
abnormal
sa1c
glycated
Prior art date
Application number
PCT/JP2017/014984
Other languages
English (en)
French (fr)
Inventor
幸行 長谷川
Original Assignee
東ソー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=60266571&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2017195522(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 東ソー株式会社 filed Critical 東ソー株式会社
Priority to US16/099,766 priority Critical patent/US11555807B2/en
Priority to CN201780025012.1A priority patent/CN109073616B/zh
Priority to EP17795883.2A priority patent/EP3457129B1/en
Publication of WO2017195522A1 publication Critical patent/WO2017195522A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/86Signal analysis
    • G01N30/8624Detection of slopes or peaks; baseline correction
    • G01N30/8631Peaks
    • G01N30/8637Peak shape
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/86Signal analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/49Blood
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/72Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood pigments, e.g. haemoglobin, bilirubin or other porphyrins; involving occult blood
    • G01N33/721Haemoglobin
    • G01N33/723Glycosylated haemoglobin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/36Selective adsorption, e.g. chromatography characterised by the separation mechanism involving ionic interaction
    • B01D15/361Ion-exchange
    • B01D15/362Cation-exchange
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/8813Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials
    • G01N2030/8822Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials involving blood
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/86Signal analysis
    • G01N30/8624Detection of slopes or peaks; baseline correction
    • G01N30/8631Peaks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/86Signal analysis
    • G01N30/8675Evaluation, i.e. decoding of the signal into analytical information
    • G01N30/8679Target compound analysis, i.e. whereby a limited number of peaks is analysed

Definitions

  • the present invention relates to a method and an apparatus for measuring glycated hemoglobin in a blood sample by liquid chromatography. More specifically, the present invention relates to a blood sample group in which blood samples containing abnormal hemoglobin may coexist. The present invention relates to a measuring method and a measuring apparatus for glycated hemoglobin capable of measuring glycated hemoglobin as an index.
  • Hemoglobin has an ⁇ 2 ⁇ 2 structure composed of two ⁇ chains and two ⁇ chains, and has an ⁇ 2 ⁇ 2 structure composed of two ⁇ chains and two ⁇ chains in addition to hemoglobin A, which accounts for about 97% of the total hemoglobin. And has an ⁇ 2 ⁇ 2 structure composed of two ⁇ -chains and two ⁇ -chains that occupy less than 1% of the total hemoglobin, and is composed of hemoglobin A2 that occupies less than 1% of the total hemoglobin.
  • Hemoglobin forms glycated hemoglobin by non-enzymatic binding (glycation) with sugar (blood sugar) and its metabolites present in the blood. Strictly speaking, hemoglobin A1 glycated from hemoglobin A, which accounts for the majority of all hemoglobin, is not strictly all glycated hemoglobin, but is often treated clinically as glycated hemoglobin.
  • Hemoglobin A1 can be further separated into A1a, A1b, A1c, but is not affected by a temporary increase in blood glucose level due to meals, etc., and the concentration changes reflecting the change in blood glucose level over the past 2 to 3 months,
  • the ratio of so-called stable hemoglobin A1c (hereinafter sometimes abbreviated as “sA1c”) to total hemoglobin (hereinafter sometimes abbreviated as A1c%) is widely used as an index for diagnosis of diabetes and follow-up of diabetic patients. It is used.
  • the measurement of glycated hemoglobin has been conventionally performed by a liquid chromatography technique.
  • the measurement of glycated hemoglobin by liquid chromatography can be broadly classified by cation exchange chromatography, which uses a packing material to which an ion exchange material is fixed and fractionates various hemoglobins using the difference in their charge.
  • glycated hemoglobin for all hemoglobins is measured. Percentage is used.
  • sA1c is measured, and the ratio A1c% to the total hemoglobin can be calculated.
  • the blood sample to be measured contains abnormal hemoglobin D, abnormal hemoglobin S, or abnormal hemoglobin C
  • measurement of sA1c by cation exchange chromatography is performed simultaneously with or after A0 which is a non-glycated component of hemoglobin A.
  • A0 which is a non-glycated component of hemoglobin A.
  • some of these abnormal hemoglobin components are eluted. In this case, even if a corresponding prominent peak is excluded from the calculation of A1c%, A1c% shows a low value.
  • affinity chromatography the value of glycated hemoglobin in the total hemoglobin was found to be unaffected.
  • the present invention provides a method for measuring blood samples containing abnormal hemoglobin D, abnormal hemoglobin S, or abnormal hemoglobin C, which are known to have many carriers worldwide, by cation exchange chromatography. By eliminating the influence of abnormal hemoglobin, it is intended to obtain a measurement result of A1c% reflecting the symptoms of the subject who provided the blood sample.
  • the present inventors obtained a chromatogram by subjecting a blood sample containing abnormal hemoglobin D, abnormal hemoglobin S or abnormal hemoglobin C to cation exchange chromatography, and as a result of analysis, a peak not found in the chromatogram of a healthy person was obtained. Was found to appear. Further, when A1c% corrected based on the area of this peak is calculated, the corrected result is good with the measurement result by affinity chromatography that is hardly affected by abnormal hemoglobin D, abnormal hemoglobin S or abnormal hemoglobin C. As a result, the present invention has been completed.
  • the present invention has been completed as a result of intensive studies to solve the above problems.
  • step 5 When an abnormal hemoglobin D or abnormal hemoglobin S peak is identified in step 5, the glycated peak of abnormal hemoglobin D or abnormal hemoglobin S is eluted and overlaps with the non-glycated peak A0 of hemoglobin A, and On the assumption that the ratio of sA1c to the sum of all peak areas related to hemoglobin A is equal to the ratio of the glycation peak area of abnormal hemoglobin to the sum of the areas of other peaks, all peaks related to hemoglobin A of the sA1c peak area The method according to [1], wherein a ratio (%) to the area is corrected.
  • step 5 When the peak of abnormal hemoglobin C is identified in step 5, the glycated peak of abnormal hemoglobin C is eluted after the non-glycated peak A0 of hemoglobin A, and the peak of sA1c The method according to [1], wherein the ratio (%) of the area to the total peak area related to hemoglobin A is corrected.
  • a ′ is the sum of A0 and the glycation peak area of abnormal hemoglobin that elutes at the same time, the peak area observed as A0 on the chromatogram, sA1c and A0 are the glycation and non-glycation peak areas of hemoglobin A, and X1c, respectively.
  • the peak of sA1c is based on the assumption that the glycated peak of abnormal hemoglobin C is eluted after the non-glycated peak A0 of hemoglobin A.
  • the method according to [1] or [3], wherein the ratio (%) of the area to the total peak area related to hemoglobin A is corrected according to the following formula.
  • a ′ is a peak area observed as A0 on the chromatogram.
  • a measuring device for stable glycated hemoglobin sA1c (1) Sample introduction means for introducing a hemolyzed blood sample, (2) Separation means comprising a resin having cation exchange capacity, (3) Liquid feeding means for transporting the liquid, (4) Detection means for detecting hemoglobin eluted from the separation means and obtaining a chromatogram, (5) Analyzing means for analyzing the chromatogram detected by the detecting means, each of the means, the analyzing means, a) setting of a baseline for calculating the peak area appearing in the chromatogram; b) identification of which hemoglobin the peak appearing in the chromatogram is derived from; c) calculation of the peak area appearing in the chromatogram, d) calculating the ratio (%) of the peak area of sA1c to the peak area of all hemoglobin, and when the abnormal hemoglobin D, abnormal hemoglobin S or abnormal hemoglobin C peak is identified in b above, The area of the peak of the abnormal hemoglobin is calculated
  • H-V0, H-V1, and H-V2 are prominent peaks other than hemoglobin A whose identification elution time is set by the composition of the eluent and its flow rate on the chromatogram. Point to.
  • These H-V0, H-V1, and H-V2 peaks are estimated to be non-glycated peaks derived from each abnormal hemoglobin, and the glycated peaks of each abnormal hemoglobin are estimated to be eluted simultaneously with A0. .
  • the peak area eluted simultaneously with A0 that is considered to be derived from abnormal hemoglobin that is, the area of the abnormal glycated hemoglobin peak eluted simultaneously with A0, the remarkable non-glycated peak (H-V0, A1c related to hemoglobin A when the abnormal hemoglobin sample was measured under the following assumptions regarding the ratio to the peak area eluted after A0 that is considered to be derived from abnormal hemoglobin including H-V1 or H-V2) % Correction was found.
  • the present invention corrects A1c% based on the assumption that the ratio to the sum of A1a, A1b, LA1c and sA1c derived from hemoglobin A including A0 of glycation peak sA1c for hemoglobin A is the same for abnormal hemoglobin. It is characterized by that.
  • X1c and A0 were estimated, and A1c% corrected from 100 sA1c / (A0 + ⁇ ) of equation (1) was calculated, thereby making it possible to achieve the above problem.
  • a ′ refers to the sum of A0 and the saccharification peak area of abnormal hemoglobin eluted at the same time.
  • the glycation peaks of A0 and abnormal hemoglobin eluting at the same time cannot be separated on the chromatogram and are observed as the sum.
  • sA1c and A0 represent glycated and non-glycated peak areas of hemoglobin A
  • X1c and X0 represent glycated peak areas of abnormal hemoglobin eluted simultaneously with A0
  • non-glycated peak areas of abnormal hemoglobin eluted after A0 respectively.
  • A1a + A1b + LA1c + sA1c, ⁇ is a value obtained by removing X0 from the total peak area eluted after A0.
  • the above-mentioned problem can be achieved by calculating.
  • the peak area eluted after A0 that is considered to be derived from abnormal hemoglobin that is, a remarkable non-glycation peak (H-V0, H-V1 or H-V2) of abnormal hemoglobin, and A0 simultaneously.
  • the ratio of the abnormal hemoglobin glycation peak to the sum of the eluted abnormal hemoglobin glycation peaks can be calculated using the above formula, it can be calculated even if the abnormal hemoglobin is other than abnormal hemoglobin D, abnormal hemoglobin S, or abnormal hemoglobin C. Can do.
  • the measurement method of the present invention can be easily carried out by an automated measurement apparatus, and comprises (1) sample introduction means for introducing a hemolyzed blood sample, and (2) a resin having a cation exchange capacity. Separation means, (3) liquid feeding means for transferring liquid, (4) detection means for detecting hemoglobin eluted from the separation means to obtain a chromatogram, and (5) chromatogram detected by the detection means.
  • An apparatus constituted by each means of analyzing means for analyzing can be exemplified.
  • the present invention further relates to a measurement program for stable glycated hemoglobin sA1c that causes a computer to execute the means (1) to (5).
  • the sample introduction means (1) is for introducing a fixed amount of blood sample into the separation means described later, and can be configured by using a commercially available autosampler, using a six-way valve, or the like. .
  • the measurement of sA1c uses a hemolyzed blood sample, but the hemolysis operation may be performed by the sample introduction means, or the blood sample after the hemolysis operation may be used for the sample introduction means. Hemolysis may be performed by adding a blood sample containing blood cell components to the hypertonic solution.
  • the separation means comprising the resin having cation exchange capacity (2) may be a column packed with a resin bound with a modification group for so-called cation exchange chromatography such as sulfone.
  • cation exchange chromatography such as sulfone.
  • the resin for cation exchange chromatography include a non-porous cation exchanger, and a column packed with such a resin is, for example, a non-porous cation exchanger column manufactured by Tosoh Corporation. Examples include TSKgel (registered trademark) SP-NPR.
  • the liquid feeding means for transferring the liquid of (3) is for transferring the blood sample introduced from the sample introduction means and the eluent for elution of hemoglobin to the separation means, and illustrates a pump. be able to.
  • Various eluents have been conventionally used. For example, a mixer for performing gradient elution using three types of eluents having different salt concentrations may be provided.
  • the detection means for detecting hemoglobin eluted from the separation means and obtaining a chromatogram in (4) is not limited as long as it can detect hemoglobin.
  • elution of hemoglobin as a protein is based on absorbance at 415 nm.
  • an extinction detector that can be detected and an electric conductivity detector can be exemplified.
  • the analyzing means (5) is a means for analyzing the chromatogram detected by the detecting means, but the measuring device of the present invention is characterized by this analyzing means.
  • This analysis means first sets a baseline for calculating the peak area appearing in the chromatogram.
  • Various baseline setting methods have been proposed (see, for example, Patent Document 1), but there is no particular limitation. Following the setting of the baseline, it is identified which hemoglobin the peak that appeared in the chromatogram is from. For this identification, it is possible to provide a storage means for storing the expected elution time for each hemoglobin in the apparatus so that the identification is performed from the elution time. Note that the order of setting the baseline and the peak identification may be reversed.
  • a ratio (%) obtained by dividing the peak area of sA1c by the sum of the peak areas of all hemoglobin is obtained.
  • abnormal hemoglobin D is obtained.
  • the total peak area (Total area) of the chromatogram and A1a, A1b, HbF, LA1c, sA1c, A ′, H Each peak area of -V0 or H-V1 is calculated, the X1c area is determined by equation (3), the A0 area is determined by equation (2), and A1c% is calculated by equation (1).
  • the peak identification if the peak corresponding to abnormal hemoglobin C, HV2, is identified, the peak areas of A1a, A1b, HbF, LA1c, sA1c, A ′, and HV2 are calculated in advance. A1c% is calculated from the equation (4). At this time, the denominator of the equation (4) may be calculated using Total area-X0- ⁇ -HbF after calculating the peak areas of Total area, X0, and ⁇ .
  • the analysis means is not limited as long as the above-described analysis can be performed on the chromatogram detected by the detection means, and can be configured, for example, by installing a program for the analysis in a computer equipped with a processor.
  • a computer may be incorporated in an integral manner in the apparatus of the present invention, or may be in a so-called external form.
  • the measurement apparatus will be described more specifically with reference to FIG.
  • the hemolyzed blood sample introduced into the sample introduction means 11 is sent to the separation means 13, and further the eluent is sent to the separation means 13 by the liquid delivery means 12, whereby hemoglobins are fractionated and eluted.
  • the eluted hemoglobin is detected by the detection means 14 to give a chromatogram, and the obtained chromatogram is analyzed by the analysis means 15.
  • the analysis means 15 includes a baseline setting module 16, a peak identification module 17, a peak area calculation module 18, and an sA1c ratio calculation module 19, and first the baseline setting module 16 calculates the peak area that appears in the chromatogram. Set baseline for.
  • the peak identification module 17 identifies which hemoglobin the peak that appears in the chromatogram is derived from.
  • the peak identification module 17 compares, for example, a chromatogram of a blood sample that does not contain abnormal hemoglobin D, abnormal hemoglobin S, and abnormal hemoglobin C stored in advance in the storage means with the chromatogram given by the detection means 14. By doing so, it is possible to determine the presence or absence of peaks (H-V0, H-V1, and H-V2) derived from abnormal hemoglobins D, S, and C, respectively.
  • the elution time of a peak derived from abnormal hemoglobin obtained from a chromatogram of a blood sample containing abnormal hemoglobin D, S or C is stored in advance in a storage means, It is determined whether or not a peak corresponding to the time appears, and if a peak appears, the peak is derived from abnormal hemoglobin D, S or C (H-V0, H-V1, H-V2). It can also be exemplified to identify. Subsequently, the peak area calculation module 18 calculates the peak area of each hemoglobin.
  • the sA1c ratio calculation module 19 obtains the ratio (%) of the peak area of sA1c to the sum of the peak areas of all hemoglobin, A1c%.
  • the peak identification module 17 identifies a peak derived from abnormal hemoglobin D, S, or C
  • the sA1c ratio calculation module 19 corrects A1c%, which is a feature of the present invention.
  • the A1c% calculation module 19 performs A1c% without correcting A1c%.
  • the peak identification module 17 determines that H-V0 or H-V1 exists, the total peak area (Total area) of the chromatogram and A1a, A1b, HbF, LA1c, sA1c, A ′ , H-V0 or H-V1 peak areas are calculated, X1c area is obtained by equation (3), A0 area is determined by equation (2), and A1c% is calculated by equation (1). To do.
  • the peak identification module 17 determines that H-V2 exists the peak areas of A1a, A1b, HbF, LA1c, sA1c, A ′, and H-V2 are calculated, and A1c% is obtained from the equation (4). Is calculated.
  • the peak areas of Total area, X0, ⁇ , and HbF are calculated, and the denominator of Equation (4) is calculated using Total area-X0- ⁇ -HbF to calculate A1c%.
  • the A1c% calculated as described above is further calibrated using standard products established by various academic societies such as National Glycohemoglobin Sandardization Program (NGSP), International Clinical Chemistry Union (IFCC), and Japan Diabetes Society (JDS). By correcting, it is possible to calculate A1c%, which is an index for carrying out diagnosis and the like in accordance with the criteria set by the relevant academic society, and to eliminate the influence of abnormal hemoglobins D, S, and C, and affinity Good correlation with chromatographic measurement results can be achieved.
  • the result analyzed by the analyzing means 15 can be displayed or printed via the output means 20.
  • the present invention also relates to a measurement program for stable glycated hemoglobin sA1c that causes a computer to execute each module in the analysis means.
  • FIG. 12 is a diagram illustrating the analysis unit 15 from the hardware configuration.
  • the analysis unit 15 includes a processor 21, a memory 22, an output interface 23, an auxiliary storage unit 24, an input interface 25, an input unit 26, and the like.
  • the processor 21 executes processing for realizing the function performed by the analysis unit 15 described above by executing a program described in the auxiliary storage unit 24.
  • the memory 22 stores a program being executed by the processor 21 and data temporarily used by the program.
  • the memory 22 may include a read only memory (ROM) or a random access memory (RAM).
  • the above 21 to 26 are electrically connected by a data bus 27.
  • the output interface 23 is an interface circuit that outputs the chromatogram and the calculated ratio (%) of sA1c to output means such as a monitor or a printer.
  • the input interface 25 is an interface circuit that inputs a chromatogram output from the detection means.
  • the input means 26 is for accepting user operation inputs, and includes a normal input device such as a keyboard for inputting information related to activation and termination of the apparatus, blood sample, and the like. Each means is electrically connected by a bus.
  • the measuring apparatus of the present invention When the measuring apparatus of the present invention is equipped with display means such as a monitor or printer as exemplified above, peaks derived from abnormal hemoglobins D, S, and C (respectively HV0, HV1, HV2). ) Is identified, it can be displayed on these display means to call attention. In addition, it can be exemplified that the fact that the present invention is applied is displayed together with the measurement result (A1c%) regarding the blood sample in which H-V0, H-V1 or H-V2 is identified.
  • the blood sample to be measured contains abnormal hemoglobin D, abnormal hemoglobin S, or abnormal hemoglobin C
  • sA1c is measured by cation exchange chromatography, it is derived from abnormal hemoglobin D, abnormal hemoglobin S, or abnormal hemoglobin C. It has been reported that the value of sA1c occupying all hemoglobins is low even when calculation is performed excluding a prominent peak, but according to the present invention, it is caused by abnormal hemoglobin D, abnormal hemoglobin S, or abnormal hemoglobin C.
  • A1c% measurement that eliminates the effects and achieves a good correlation with the affinity chromatographic measurements reported to be less susceptible to these abnormal hemoglobins and reflects the symptoms of the subject who provided the blood sample The result can be obtained.
  • FIG. 1, FIG. 2 and FIG. 3 respectively show blood samples containing abnormal hemoglobin D, abnormal hemoglobin S and abnormal hemoglobin C (38, 33 and 53 types, respectively) and blood samples not containing those abnormal hemoglobin (22 types, It is a figure which shows the correlation with the measurement result by affinity chromatography, and the measurement result by cation exchange chromatography about white).
  • the former was confirmed to contain abnormal hemoglobin D, abnormal hemoglobin S, and abnormal hemoglobin C using a commercially available device (Sebia Capillarys 2).
  • Affinity chromatography was measured using a commercially available device (Trinity Biotech Ultra 2 ), and cation chromatography was measured using an automated glycohemoglobin analyzer HLC- manufactured by Tosoh Corporation equipped with a non-porous cation exchanger column. It is a measurement result by cation exchange chromatography using 723G8 (trade name).
  • FIG. 1, FIG. 2 and FIG. 3 shows the measurement result by cation exchange chromatography
  • the horizontal axis shows the measurement result by affinity chromatography
  • all the results are the ratio (%) of sA1c in the total hemoglobin
  • FIG. 4 is an example of a chromatogram obtained by subjecting a blood sample of a healthy person to cation exchange chromatography measurement.
  • the blood sample of a healthy person no significant peak derived from other components appears after the hemoglobin A peak (A0).
  • FIGS. 5, 6 and 7 are examples of chromatograms obtained by subjecting a blood sample of a subject containing abnormal hemoglobin D, abnormal hemoglobin S and abnormal hemoglobin C to cation exchange chromatography measurement, respectively. .
  • the blood sample containing abnormal hemoglobin D, abnormal hemoglobin S, and abnormal hemoglobin C was not observed in FIG. 4 after (A0) of hemoglobin A. Remarkable peaks (H-V0, H-V1 and H-V2 respectively) derived from these abnormal hemoglobins appear.
  • the peaks derived from abnormal hemoglobin D, abnormal hemoglobin S, and abnormal hemoglobin C are compared with the chromatograms of blood samples that do not contain these abnormal hemoglobins. Can be identified. Therefore, remember the elution times (1.0 minutes, 1.2 minutes, and 1.3 minutes in the example in the figure, respectively) at which H-V0, H-V1, and H-V2 appear under the specified conditions. For example, as long as sA1c is measured under the same conditions, it is possible to identify a peak derived from abnormal hemoglobin D, abnormal hemoglobin S or abnormal hemoglobin C from the elution time.
  • Example 1 For a blood sample containing abnormal hemoglobin D, in the chromatogram obtained by cation exchange chromatography (FIG. 5), the total peak area of the chromatogram (Total area) and A1a, A1b, HbF, LA1c, sA1c, A ′ , H-V0 peak areas are calculated, X1c area is obtained by equation (3), A0 area is determined by equation (2), and A1c% is calculated by equation (1). Carried out. The peak detection range of HV0 was 1.00 ⁇ 0.07 minutes. (1) Peak area of A ′ From the chromatogram, the peak area of A ′ was calculated as 921.2.
  • Peak area of sA1c From the chromatogram, the peak area of sA1c was calculated to be 63.9.
  • X0 Peak Area From the chromatogram, the peak area of X0 H ⁇ V0 was calculated to be 576.7.
  • Example 2 For a blood sample containing abnormal hemoglobin S, in the chromatogram obtained by cation exchange chromatography (FIG. 6), the total peak area of the chromatogram (Total area) and A1a, A1b, HbF, LA1c, sA1c, A ′ , H-V1 peak areas are calculated, X1c area is obtained by equation (3), A0 area is determined by equation (2), and A1c% is calculated by equation (1). Carried out. The peak detection range of H-V1 was 1.16 ⁇ 0.09 minutes. (1) Peak area of A ′ From the chromatogram, the peak area of A ′ was calculated as 899.0.
  • Peak area of sA1c From the chromatogram, the peak area of sA1c was calculated to be 78.6.
  • X0 Peak Area From the chromatogram, the peak area of X0 H ⁇ V1 was calculated to be 573.6.
  • Example 4 The chromatogram obtained by subjecting the blood sample containing abnormal hemoglobins D, S, and C shown in FIGS. 5, 6, and 7 to measurement by cation chromatography, the present invention shown in Examples 1, 2, and 3. The results of applying are shown in FIGS. 8, 9 and 10, respectively. As shown in these figures, as a result of applying the present invention, the difference from the measurement result by affinity chromatography was improved, and the slope of the correlation coefficient was 0.8841 to 0.8. 9731, 0.8767 to 0.9732, and 0.8919 to 1.018.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Ecology (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Library & Information Science (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

異常ヘモグロビンD、異常ヘモグロビンS、又は異常ヘモグロビンCを含有する血液試料を陽イオン交換クロマトグラフィーにより測定する場合に、その異常ヘモグロビンによる影響を排除して、血液試料を提供した被験者の症状を反映するsA1cの測定結果を得ることを目的とする。 異常ヘモグロビンD、異常ヘモグロビンS、又は異常ヘモグロビンCに由来するピークが同定された場合に、そのピークの面積を計算し、その計算結果を用いて補正したsA1cの割合(%)を測定することを特徴とする、sA1cの割合(%)の測定方法により、前記課題を解決する。

Description

糖化ヘモグロビンの測定方法及び糖化ヘモグロビン測定装置
 本発明は、液体クロマトグラフィーにより血液試料中の糖化ヘモグロビンを測定する方法と装置に関するものであり、詳しくは、異常ヘモグロビンを含有する血液試料が混在する可能性のある血液試料群について、糖尿病診断の指標となる糖化ヘモグロビンの測定を実施可能な糖化ヘモグロビンの測定方法と測定装置に関するものである。
 ヘモグロビンは、2個のα鎖及び2個のβ鎖からなるα2β2の構造を持ち、全ヘモグロビンの約97%を占めるヘモグロビンAの他、2個のα鎖及び2個のγ鎖からなるα2γ2構造を持ち、全ヘモグロビンの1%弱を占めるヘモグロビンF、2個のα鎖及び2個のδ鎖からなるα2δ2構造を持ち、全ヘモグロビンの1%弱を占めるヘモグロビンA2から構成される。
 ヘモグロビンは、血中に存在する糖(血糖)やその代謝物と非酵素的に結合(糖化)して糖化ヘモグロビンを形成する。全ヘモグロビンの大半を占めるヘモグロビンAが糖化したヘモグロビンA1は、厳密には糖化ヘモグロビンの全てではないが、臨床的に糖化ヘモグロビンと同義に扱われることが多い。ヘモグロビンA1は、更にA1a、A1b、A1cに分離できるが、食事等による一時的な血糖値の上昇に影響されず、過去2から3ヶ月間の血糖値の変化を反映して濃度が変化する、いわゆる安定型のヘモグロビンA1c(以下「sA1c」と略記することがある)の全ヘモグロビンに対する割合(以下A1c%と略記することがある)は、糖尿病の診断や、糖尿病患者の経過観察の指標として広く用いられている。
 糖化ヘモグロビンの測定は、従来、液体クロマトグラフィーの手法により実施されている。液体クロマトグラフィーによる糖化ヘモグロビンの測定には、大別すると、イオン交換物質を固定した充填材を用い、種々のヘモグロビンをその電荷の相違を利用して分画して測定する陽イオン交換クロマトグラフィーによる測定方法と、糖に対して親和性の高いアミノフェニルボロン酸基を固定した充填材を用いるアフィニティークロマトグラフィーによる測定方法とがある。アフィニティークロマトグラフィーによる測定方法は、糖鎖部分に対する親和性を利用することから、sA1cを含む種々の糖化ヘモグロビンを測定することになる(非特許文献2)が、この場合も全ヘモグロビンに対する糖化ヘモグロビンの割合が利用される。一方、陽イオン交換クロマトグラフィーによる測定方法では、種々のヘモグロビンを分離したうえで、sA1cのみを測定し、全ヘモグロビンに対する割合A1c%を計算することができる。
 ヘモグロビンには、ヘモグロビン遺伝子に変異が生じることにより生じるヘモグロビンE、ヘモグロビンD、ヘモグロビンS、ヘモグロビンCなどの様々な異常ヘモグロビンも存在する。そして近年、希にではあるが、糖化ヘモグロビンの測定を実施すべき血液試料がかかる遺伝子変異の結果生じた種々の異常ヘモグロビンを含有する場合、アフィニティークロマトグラフィーによる測定方法では血液試料を提供した被験者の症状を反映する測定結果が得られる一方で、陽イオンクロマトグラフィーによる測定方法では、sA1c%測定値が低い値を示し、時として血液試料を提供した被験者の症状を反映し難いことがある、と報告されている(非特許文献1-3)。
日本国特開平9-264889号公報
R.R.Little and W.L.Roberts,J Diabetes Sci Technol, Vol 3(3),446-451(2009). R.R.Little et al., Clin Chem, Vol 54(8), 1277-1282(2008). L.Bry et al., Clin Chem, Vol 47(2), 153-163(2001).
 測定を実施すべき血液試料が異常ヘモグロビンD、異常ヘモグロビンS又は異常ヘモグロビンCを含有する場合、陽イオン交換クロマトグラフィーによってsA1cの測定を実施すると、ヘモグロビンAの非糖化成分であるA0と同時又はその後に、これら異常ヘモグロビン成分の一部が溶出する。この場合、それに対応する顕著なピークをA1c%の計算から除外しても、A1c%は低値を示してしまう一方で、アフィニティークロマトグラフィーによる糖化ヘモグロビンの測定では、全ヘモグロビンに占める糖化ヘモグロビンの値は影響を受けないことが認められた。そこで本発明は、全世界的に保因者の多いことが知られている異常ヘモグロビンD、異常ヘモグロビンS又は異常ヘモグロビンCを含有する血液試料を陽イオン交換クロマトグラフィーにより測定する場合に、それらの異常ヘモグロビンによる影響を排除して、血液試料を提供した被験者の症状を反映するA1c%の測定結果を得ようとするものである。
 本発明者らは、異常ヘモグロビンD、異常ヘモグロビンS又は異常ヘモグロビンCを含有する血液試料を陽イオン交換クロマトグラフィーに供してクロマトグラムを取得し、分析した結果、健常者のクロマトグラムにはないピークが出現することを見いだした。更に、このピークの面積に基づいて補正したA1c%を算出すると、その補正された結果は異常ヘモグロビンD、異常ヘモグロビンS又は異常ヘモグロビンCの影響を受けにくいとされるアフィニティークロマトグラフィーによる測定結果と良好に相関することを見いだし、本発明を完成するに至った。
 すなわち本発明は、上記課題を解決すべく鋭意検討を重ねた結果、完成するに至ったものである。
 [1] 安定型糖化ヘモグロビンsA1cの測定方法であって、(1)血液試料を溶血後、陽イオン交換クロマトグラフィーに供してsA1cを他のヘモグロビンから分離して溶出し、各ヘモグロビン分画の溶出を示すクロマトグラムを取得する工程、(2)取得したクロマトグラムからsA1cのピークを同定し、そのピーク面積を計算する工程、(3)取得したクロマトグラムから、sA1c以外のヘモグロビンのピークを同定し、それらのピーク面積を計算する工程、及び、(4)全ヘモグロビンのピーク面積に占めるsA1cのピーク面積の割合(%)を計算する工程、(5)ヘモグロビンAの非糖化ピークの後ろに出現するピークから異常ヘモグロビンD、異常ヘモグロビンS又は異常ヘモグロビンCの非糖化ピークを同定する工程、(6)同定された異常ヘモグロビンD、異常ヘモグロビンS又は異常ヘモグロビンCの非糖化ピーク面積等を用いて、その糖化ピークの面積を推定する工程を含み、その推定計算結果を用いて上記工程4におけるsA1cのピーク面積の割合(%)を補正することを特徴とする、その方法。
 [2] 前記工程5において、異常ヘモグロビンD又は異常ヘモグロビンSのピークが同定されたときに、その異常ヘモグロビンD又は異常ヘモグロビンSの糖化ピークはヘモグロビンAの非糖化ピークA0と重なって溶出され、かつsA1cのヘモグロビンAに関わる全ピーク面積の和に対する割合は、その異常ヘモグロビンの糖化ピーク面積のその他のピークの面積の和に対する割合に等しいという前提の元に、sA1cピーク面積のヘモグロビンAに関わる全ピーク面積に対する割合(%)を補正する、[1]に記載の方法。
 [3] 前記工程5において、異常ヘモグロビンCのピークが同定されたときに、その異常ヘモグロビンCの糖化ピークはヘモグロビンAの非糖化ピークA0の後ろに溶出されるという前提の元に、sA1cのピーク面積のヘモグロビンAに関わる全ピーク面積に対する割合(%)を補正する、[1]に記載の方法。
 [4] 前記工程5において、異常ヘモグロビンD又は異常ヘモグロビンSのピークが同定されたときに、その異常ヘモグロビンD又は異常ヘモグロビンSの糖化ピークはヘモグロビンAの非糖化ピークA0と重なって溶出され、かつsA1cのヘモグロビンAに関わる全ピーク面積の和に対する割合は、その異常ヘモグロビンの糖化ピーク面積のその他のピークの面積の和に対する割合に等しいという前提の元に、sA1cピーク面積のヘモグロビンAに関わる全ピーク面積に対する割合(%)を以下の式に従って補正する、[1]又は[2]に記載の方法。
Figure JPOXMLDOC01-appb-M000003
ここで、A´はA0とそれと同時に溶出する異常ヘモグロビンの糖化ピーク面積の和で、クロマトグラム上はA0として観測されるピーク面積、sA1c、A0はそれぞれヘモグロビンAの糖化、非糖化ピーク面積、X1c及びX0はそれぞれA0と同時に溶出される異常ヘモグロビンの糖化ピーク面積、A0の後で溶出される異常ヘモグロビンの非糖化ピーク面積を表し、又、α=A1a+A1b+LA1c+sA1c、βはA0から後ろに溶出されるピーク総面積からX0を除いたものである。
 [5] 前記工程5において、異常ヘモグロビンCのピークが同定されたときに、その異常ヘモグロビンCの糖化ピークはヘモグロビンAの非糖化ピークA0の後ろに溶出されるという前提の元に、sA1cのピーク面積のヘモグロビンAに関わる全ピーク面積に対する割合(%)を以下の式に従って補正する、[1]又は[3]に記載の方法。
Figure JPOXMLDOC01-appb-M000004
ここで、A´はクロマトグラム上A0として観測されるピーク面積。sA1c、A0はそれぞれヘモグロビンAの糖化、非糖化ピーク面積、又、α=A1a+A1b+LA1c+sA1cである。
 [6] 安定型糖化ヘモグロビンsA1cの測定装置であって、
(1)溶血した血液試料を導入するための試料導入手段、
(2)陽イオン交換能を有する樹脂からなる分離手段、
(3)液体を移送するための送液手段、
(4)前記分離手段から溶出するヘモグロビンを検出しクロマトグラムを得るための検出手段、
(5)前記検出手段が検出したクロマトグラムを分析するための分析手段、の各手段を備え、前記分析手段は、
a)クロマトグラムに出現したピーク面積を計算するためのベースラインの設定、
b)クロマトグラムに出現したピークがいずれのヘモグロビンに由来するものであるかの同定、
c)クロマトグラムに出現したピーク面積の計算、
d)全ヘモグロビンのピーク面積に占めるsA1cのピーク面積の割合(%)の計算、を実施するものであり、上記bにおいて異常ヘモグロビンD、異常ヘモグロビンS又は異常ヘモグロビンCのピークが同定されたときには、その異常ヘモグロビンのピークの面積を計算し、その計算結果を用いて上記dにおいてsA1cのピーク面積の割合(%)を補正し、その補正したsA1cのピーク面積の割合(%)を測定することを特徴とする、前記装置。
 [7] ヘモグロビンAの非糖化ピークの後に出現する最も顕著なピークを異常ヘモグロビンD,異常ヘモグロビンS又は異常ヘモグロビンCのピークとして同定し、分析手段において上記分析を実施することを特徴とする[6]に記載の測定装置。
 [8] 前記bにおいて、異常ヘモグロビンD又は異常ヘモグロビンSのピークが同定されたときに、前記dにおいてその異常ヘモグロビンD又は異常ヘモグロビンSの糖化ピークはヘモグロビンAの非糖化ピークA0と重なって溶出され、かつsA1cピーク面積のヘモグロビンAに関わる全ピーク面積の和に対する割合は、その異常ヘモグロビンの糖化ピーク面積のその他のピークの面積の和に対する割合に等しいという前提の元に、sA1cのピーク面積の割合(%)を補正する、[6]又は[7]に記載の測定装置。
 [9] 前記bにおいて、異常ヘモグロビンCのピークが同定されたときに、前記dにおいてその異常ヘモグロビンCの糖化ピークはヘモグロビンAの非糖化ピークA0の後ろに溶出されるという前提の元に、sA1cのピーク面積の割合(%)を補正する、[6]又は[7]に記載の測定装置。
 以下、本発明を詳細に説明する。後述する実施例に示した条件下では、異常ヘモグロビンD、異常ヘモグロビンS及び異常ヘモグロビンCを含有する血液試料を陽イオン交換クロマトグラフィーに供すると、それぞれ図5、図6及び図7のようなクロマトグラムが取得できる。このクロマトグラムを、健常者の血液試料を陽イオンクロマトグラフィーに供して得たクロマトグラム(図4)と比較すると、非糖化のヘモグロビンAのピーク(A0)の後ろに各異常ヘモグロビンに対応した顕著なピーク(H-V0、H-V1及びH-V2)が出現する。
 また、本発明においてH-V0、H-V1及びH-V2とは、クロマトグラム上において、溶離液の組成とその流速によってその同定溶出時間が設定されたヘモグロビンA以外の顕著なピークのことを指す。これらのH-V0、H-V1及びH-V2のピークは、各異常ヘモグロビンに由来する非糖化ピークであると推定され、また各異常ヘモグロビンの糖化ピークはA0と同時に溶出されると推定される。
 そこで本発明では、異常ヘモグロビンに由来すると考えられるA0と同時に溶出されるピーク面積、つまり、A0と同時に溶出される糖化異常ヘモグロビンピークの面積の、異常ヘモグロビンの顕著な非糖化ピーク(H-V0、H-V1又はH-V2)を含む異常ヘモグロビンに由来すると考えられるA0以降に溶出するピーク面積に対する割合について次のような仮定のもとにその異常ヘモグロビン検体を測定した際に、ヘモグロビンAに関するA1c%の補正が行えることを見出した。
 本発明は、ヘモグロビンAに関する糖化ピークsA1cのA0を含むヘモグロビンAに由来するA1a,A1b,LA1cとsA1cの和に対する割合は異常ヘモグロビンの場合も同じであるという仮定に基づいて、A1c%を補正することを特徴とする。具体的には、A0と同時に溶出する異常ヘモグロビンの糖化ピークは、クロマトグラム上で分離できないという課題を解決するため、前記仮定に則り、
A1c%=100sA1c/(A0+α)=100X1c/(X0+β+X1c) 式(1)
A´=A0+X1c                             式(2)
を満足する、
X1c=[(A´+α-sA1c)
-√{(A´+α-sA1c)-4sA1c(X0+β)}]/2        式(3)
でX1c及びA0を推定し、式(1)の100sA1c/(A0+α)から補正されたA1c%を計算することで前記課題を達成することが可能となった。
 ここで、A´はA0とそれと同時に溶出する異常ヘモグロビンの糖化ピーク面積の和を指す。A0とそれと同時に溶出する異常ヘモグロビンの糖化ピークは、クロマトグラム上では分離できず、その和として観測される。sA1c、A0はそれぞれヘモグロビンAの糖化、非糖化ピーク面積、X1c及びX0はそれぞれA0と同時に溶出される異常ヘモグロビンの糖化ピーク面積、A0の後で溶出される異常ヘモグロビンの非糖化ピーク面積を表す。また、α=A1a+A1b+LA1c+sA1c、βはA0から後ろに溶出されるピーク総面積からX0を除いたものである。
 なお、異常ヘモグロビンとして、H-V2ピーク、つまり異常ヘモグロビンCが検出された際は、その糖化ピークもA0から後に溶出される可能性が高いため、式(2)の仮定は適用できず、補正A1c%は式(1)でA0=A´とおいて、
A1c%=100sA1c/(A´+α)                   式(4)
を計算することで前記課題を達成することが可能となった。
 また本発明を用いることによって、異常ヘモグロビンに由来すると考えられるA0以降に溶出するピーク面積、つまり異常ヘモグロビンの顕著な非糖化ピーク(H-V0、H-V1又はH-V2)と、A0と同時に溶出する異常ヘモグロビン糖化ピークの和に対する異常ヘモグロビン糖化ピークの割合を、上記式を用いて算出することができれば、異常ヘモグロビンが異常ヘモグロビンD、異常ヘモグロビンS、異常ヘモグロビンC以外であっても算出することができる。
 本発明の測定方法は、自動化した測定装置により容易に実施することが可能であり、(1)溶血した血液試料を導入するための試料導入手段、(2)陽イオン交換能を有する樹脂からなる分離手段、(3)液体を移送するための送液手段、(4)前記分離手段から溶出するヘモグロビンを検出しクロマトグラムを得るための検出手段、(5)前記検出手段が検出したクロマトグラムを分析するための分析手段、との各手段により構成される装置を例示することができる。さらに本発明は、上記(1)~(5)の手段をコンピューターに実行させる安定型糖化ヘモグロビンsA1cの測定プログラムにも関する。
 上記(1)の試料導入手段は、一定量の血液試料を後述する分離手段に導入するためのものであり、市販のオートサンプラーを使用すること、六方バルブを用いるなどして構成することができる。なお、sA1cの測定は、溶血した血液試料を使用するが、試料導入手段で溶血操作を実施しても良いし、溶血操作を実施後の血液試料を試料導入手段に供するようにしても良い。溶血は、血球成分を含む血液試料を高張液に添加する等により行えば良い。
 上記(2)の陽イオン交換能を有する樹脂からなる分離手段は、スルホン系等の、いわゆる陽イオン交換クロマトグラフィー用の修飾基を結合した樹脂を充填したカラム等を使用することができる。陽イオン交換クロマトグラフィー用の樹脂としては、例えば非多孔性陽イオン交換体等が例示でき、また、かかる樹脂を充填したカラムとしては、例えば東ソー(株)製の非多孔性陽イオン交換体カラム TSKgel(登録商標) SP-NPR 等を例示することができる。
 上記(3)の液体を移送するための送液手段は、試料導入手段から導入された血液試料やヘモグロビンを溶出させるための溶離液を分離手段に移送するためのものであり、ポンプを例示することができる。なお、溶離液としては、従来から種々のものが利用されており、例えば塩濃度の異なる3種類の溶離液を利用してグラジエント溶出させるためのミキサー等を装備しても良い。
 上記(4)の、分離手段から溶出するヘモグロビンを検出しクロマトグラムを得るための検出手段は、ヘモグロビンを検出できるものであれば制限はなく、例えば蛋白質であるヘモグロビンの溶出を415nmの吸光度に基づいて検出可能な吸光検出器や、電気伝導度検出器等を例示できる。
 上記(5)の分析手段は、検出手段が検出したクロマトグラムを分析するための手段であるが、本発明の測定装置はこの分析手段に特徴を有する。この分析手段は、まず、クロマトグラムに出現したピーク面積を計算するためのベースラインの設定を行う。ベースラインの設定方法は種々提案されているが(例えば特許文献1参照)、特に制限はない。ベースラインの設定に続いて、クロマトグラムに出現したピークがいずれのヘモグロビンに由来するものであるかを同定する。この同定のためには、装置にヘモグロビンごとに予想される溶出時間を記憶する記憶手段を設け、溶出時間から同定を行うように構成することができる。なお、ベースラインの設定とピーク同定は順序が逆になっても良い。このようにしてクロマトグラムに出現した各ピーク面積の計算を行った後に、sA1cのピーク面積を全ヘモグロビンのピーク面積の和で割った割合(%)を求めるが、ピーク同定の際に異常ヘモグロビンD、異常ヘモグロビンSに対応したピーク、それぞれH-V0、H-V1が同定されたときは、クロマトグラムの全ピーク面積合計(Total area)及びA1a、A1b,HbF、LA1c、sA1c、A´、H-V0又はH-V1の各ピーク面積を計算しておき、式(3)によりX1c面積、又式(2)によりA0面積を確定し、式(1)により、A1c%を算出する。
 なお、ピーク同定の際、異常ヘモグロビンCに対応したピーク、H-V2が同定されたときは、A1a、A1b,HbF、LA1c、sA1c、A´、H-V2の各ピーク面積を計算しておき、式(4)からA1c%を算出する。この際、式(4)の分母は、Total area、X0及びβの各ピーク面積を計算しておき、Total area-X0-β-HbFで計算してもよい。
 上記分析手段は、検出手段で検出したクロマトグラムについて上記のような分析を実施できれば制限されず、例えばプロセッサを備えたコンピューターに上記分析のためのプログラムをインストールすることにより構成することができる。かかるコンピューターは、本発明の装置に一体不可分に組み込まれた形態であっても良いし、いわゆる外付けの形態であっても良い。
 本発明に係る測定装置を図11に基づいて更に具体的に説明する。試料導入手段11に導入された溶血した血液試料は、分離手段13に送られ、さらに送液手段12により溶離液が分離手段13に送られることにより、ヘモグロビン類が分画されて溶出する。溶出されたヘモグロビンは、検出手段14により検出されて、クロマトグラムを与え、得られたクロマトグラムが分析手段15により分析される。分析手段15は、ベースライン設定モジュール16、ピーク同定モジュール17、ピーク面積計算モジュール18、及びsA1c割合計算モジュール19を含み、まずベースライン設定モジュール16が、クロマトグラムに出現したピーク面積を計算するためのベースラインの設定を行う。
 続いて、ピーク同定モジュール17が、クロマトグラムに出現したピークがいずれのヘモグロビンに由来するものであるかを同定する。ここでピーク同定モジュール17は、例えば、記憶手段に予め記憶された異常ヘモグロビンD、異常ヘモグロビンS及び異常ヘモグロビンCを含有しない血液試料のクロマトグラムと、検出手段14により与えられたクロマトグラムとを比較することにより、それぞれ異常ヘモグロビンD、S、Cに由来するピーク(H-V0、H-V1、H-V2)の有無を判定することができる。他の特定方法として、例えば、異常ヘモグロビンD、S又はCを含有する血液試料のクロマトグラムから得られた異常ヘモグロビンに由来するピークの溶出時間を記憶手段に予め記憶しておき、クロマトグラム上の当該時間に該当するピークが出現するかどうかを判断して、ピークが出現した場合にはそのピークを異常ヘモグロビンD、S又はCに由来するピーク(H-V0、H-V1、H-V2)と同定することも例示できる。続いて、ピーク面積計算モジュール18が各ヘモグロビン類のピーク面積を計算する。
 最後に、sA1c割合計算モジュール19が、全ヘモグロビンのピーク面積の和に対するsA1cのピーク面積の割合(%)、A1c%を求める。ここでピーク同定モジュール17が異常ヘモグロビンD、S又はCに由来するピークを同定した場合、sA1c割合計算モジュール19は、本発明の特徴であるA1c%を補正するものである。当然のことであるが、ピーク同定モジュール17にて異常ヘモグロビンD、S又はCに由来するピークが同定されなかった場合には、A1c%計算モジュール19は、A1c%について補正を行うことなくA1c%を計算する。具体的には、ピーク同定モジュール17が、H-V0又はH-V1が存在すると判定したときは、クロマトグラムの全ピーク面積合計(Total area)及びA1a、A1b,HbF、LA1c、sA1c、A´、H-V0又はH-V1の各ピーク面積を計算しておき、式(3)によりX1c面積を得て、式(2)によりA0面積を確定し、式(1)により、A1c%を算出する。一方、ピーク同定モジュール17が、H-V2が存在すると判定したときは、A1a、A1b,HbF、LA1c、sA1c、A´、H-V2の各ピーク面積を計算し、式(4)からA1c%を算出する。或いは、Total area、X0、β及びHbFの各ピーク面積を計算し、式(4)の分母をTotal area-X0-β-HbFで計算して、A1c%を算出する。
 以上の様にして計算したA1c%に、更にNational Glycohemoglobin Sandardization Program(NGSP)、国際臨床化学連合(IFCC)、日本糖尿病学会(JDS)等の各学会が定めた標準品を用いてキャリブレーションを行い、補正することで当該学会が定めた基準に沿った診断等を実施するための指標となるA1c%を計算することができ、また異常ヘモグロビンD、S、及びCによる影響を排除して、アフィニティークロマトグラフィーによる測定結果との良好な相関を達成できる。こうして分析手段15により分析された結果は、出力手段20を介して表示又は印字することもできる。本発明は、分析手段内の各モジュールをコンピューターに実行させる安定型糖化ヘモグロビンsA1cの測定プログラムにも関する。
 図12は、分析手段15をハードウェア構成から説明した図である。分析手段15は、プロセッサー21、メモリ22、出力インターフェース23、補助記憶手段24、入力インターフェース25、入力手段26等を備える。プロセッサー21は、補助記憶手段24に記載されるプログラムを実行することにより、上述した分析手段15が果たす機能を実現するための処理を実行する。メモリー22には、プロセッサ21が実行中のプログラムや、このプログラムにより一時的に使用されるデータが記憶される。メモリー22は読み出し専用メモリ(ROM)やランダムアクセスメモリ(RAM)を含んでも良い。上記21~26はデータバス27により電気的に接続されている。出力インターフェース23は、クロマトグラムや計算したsA1cの割合(%)をモニターやプリンター等の出力手段へ出力するインターフェース回路である。入力インターフェース25は、検出手段から出力されるクロマトグラムを入力するインターフェース回路である。入力手段26は、ユーザーの操作入力を受け付けるためのものであり、装置の起動、終了、血液試料に関する情報等を入力するため、キーボード等の通常の入力機器を備える。各手段は、バスで電気的に接続されている。
 本発明の測定装置において、上記例示したようにモニターやプリンター等の表示手段を装備する場合には、異常ヘモグロビンD、S、Cに由来するピーク(それぞれH-V0、H-V1、H-V2)が同定された場合にはその旨をこれらの表示手段に表示して注意を喚起することができる。また、H-V0、H-V1又はH-V2が同定された血液試料に関する測定結果(A1c%)とともに本発明を適用した旨を表示するように構成することも例示できる。
 測定を実施すべき血液試料が異常ヘモグロビンD、異常ヘモグロビンS又は異常ヘモグロビンCを含有する場合、陽イオン交換クロマトグラフィーによってsA1cの測定を実施すると、異常ヘモグロビンD、異常ヘモグロビンS又は異常ヘモグロビンC由来の顕著なピークを除外して計算しても、全ヘモグロビンに占めるsA1cの値が低値を示すことが報告されているが、本発明によれば、異常ヘモグロビンD、異常ヘモグロビンS又は異常ヘモグロビンCによる影響を排除して、それらの異常ヘモグロビンの影響を受けにくいと報告されているアフィニティークロマトグラフィーによる測定結果との良好な相関を達成し、血液試料を提供した被験者の症状を反映するA1c%の測定結果を得ることが可能となる。
異常ヘモグロビンDを含有する血液試料と、異常ヘモグロビンDを含有しない血液試料について、アフィニティークロマトグラフィーによる測定結果と陽イオン交換クロマトグラフィーによる測定結果との相関を示す図である。 異常ヘモグロビンSを含有する血液試料と、異常ヘモグロビンSを含有しない血液試料について、アフィニティークロマトグラフィーによる測定結果と陽イオン交換クロマトグラフィーによる測定結果との相関を示す図である。 異常ヘモグロビンCを含有する血液試料と、異常ヘモグロビンCを含有しない血液試料について、アフィニティークロマトグラフィーによる測定結果と陽イオン交換クロマトグラフィーによる測定結果との相関を示す図である。 異常ヘモグロビンD、異常ヘモグロビンS及び異常ヘモグロビンCを含有しない血液試料について、陽イオン交換クロマトグラフィーによって得られたクロマトグラムである。 異常ヘモグロビンDを含有する血液試料について、陽イオン交換クロマトグラフィーによって得られたクロマトグラムである。 異常ヘモグロビンSを含有する血液試料について、陽イオン交換クロマトグラフィーによって得られたクロマトグラムである。 異常ヘモグロビンCを含有する血液試料について、陽イオン交換クロマトグラフィーによって得られたクロマトグラムである。 異常ヘモグロビンDを含有する血液試料と、異常ヘモグロビンDを含有しない血液試料について、アフィニティークロマトグラフィーによる測定結果と、異常ヘモグロビンDに対応した顕著なピーク(H-V0)面積、その他クロマトグラム上のピーク面積情報に基づいて、A1c%を補正することに基づく本発明の方法によって得られた測定結果との相関を示す図である。 異常ヘモグロビンSを含有する血液試料と、異常ヘモグロビンSを含有しない血液試料について、アフィニティークロマトグラフィーによる測定結果と、異常ヘモグロビンSに対応した顕著なピーク(H-V1)面積、その他クロマトグラム上のピーク面積情報に基づいて、A1c%を補正することに基づく本発明の方法によって得られた測定結果との相関を示す図である。 異常ヘモグロビンCを含有する血液試料と、異常ヘモグロビンCを含有しない血液試料について、アフィニティークロマトグラフィーによる測定結果と、異常ヘモグロビンCに対応した顕著なピーク(H-V2)面積、その他クロマトグラム上のピーク面積情報に基づいて、A1c%を補正することに基づく本発明の方法によって得られた測定結果との相関を示す図である。 本発明の測定装置を説明するための図である。 本発明の測定装置を説明するための図である。
 図1、図2及び図3は、それぞれ異常ヘモグロビンD、異常ヘモグロビンS及び異常ヘモグロビンCを含有する血液試料(それぞれ38、33及び53種)とそれらの異常ヘモグロビンを含有しない血液試料(22種、白抜き)について、アフィニティークロマトグラフィーによる測定結果と陽イオン交換クロマトグラフィーによる測定結果との相関を示す図である。なお前者については、市販の装置(Sebia社 Capillarys2)により異常ヘモグロビンD、異常ヘモグロビンS及び異常ヘモグロビンCを含有することを確認した。
 アフィニティークロマトグラフィーによる測定は、市販の装置(Trinity Biotech社 Ultra)により、陽イオンクロマトグラフィーによる測定は、非多孔性陽イオン交換体カラムを装備した東ソー(株)製自動グリコヘモグロビン分析計HLC-723G8(商品名)を用いた陽イオン交換クロマトグラフィーによる測定結果である。
 図1、図2及び図3の縦軸は陽イオン交換クロマトグラフィーによる測定結果、横軸はアフィニティークロマトグラフィーによる測定結果を示し、いずれの結果も全ヘモグロビンに占めるsA1cの割合(%)であり、いずれも専用試薬を用いて装置をキャリブレーション後、装置から出力された測定結果をそのままプロットしたものである。
 異常ヘモグロビンを含有しない血液試料(22種、白抜き)ではアフィニティークロマトグラフィーの結果と陽イオン交換クロマトグラフィーの結果は良好な相関性を示したが、異常ヘモグロビンD、異常ヘモグロビンS又は異常ヘモグロビンCを含有する血液試料(それぞれ、38、33及び53種、いずれも黒塗り)では、陽イオン交換クロマトグラフィーの結果はアフィニティークロマトグラフィーの結果と比較して低い値を示すことが分かる。
 図4は、健常者の血液試料を、陽イオン交換クロマトグラフィー測定に供して得たクロマトグラムの例である。健常者の血液試料では、ヘモグロビンAのピーク(A0)の後ろに他の成分に由来する顕著なピークは出現しない。一方、図5,図6及び図7は、それぞれ異常ヘモグロビンD、異常ヘモグロビンS及び異常ヘモグロビンCを含有する被験者の血液試料を、陽イオン交換クロマトグラフィー測定に供して得たクロマトグラムの例である。これら図5,図6及び図7から明らかなように、異常ヘモグロビンD、異常ヘモグロビンS及び異常ヘモグロビンCを含有する血液試料では、ヘモグロビンAの(A0)の後ろに、図4では観察されなかったそれら異常ヘモグロビンに由来する顕著なピーク(それぞれH-V0,H-V1及びH-V2)が出現する。
 このように、異常ヘモグロビンD、異常ヘモグロビンS及び異常ヘモグロビンCに由来するピーク(それぞれH-V0,H-V1及びH-V2)は、それらの異常ヘモグロビンを含有しない血液試料のクロマトグラムと比較することにより同定することができる。従って、所定の条件下、H-V0,H-V1及びH-V2が出現する溶出時間(図の例では、それぞれ1.0分、1.2分、1.3分)を記憶しておけば、同一条件下でsA1cの測定を実施する限り、溶出時間から異常ヘモグロビンD、異常ヘモグロビンS又は異常ヘモグロビンCに由来するピークを同定することが可能である。
 実施例1
 異常ヘモグロビンDを含有する血液試料について、陽イオン交換クロマトグラフィーによって得たクロマトグラム(図5)において、クロマトグラムの全ピーク面積合計(Total area)及びA1a、A1b,HbF、LA1c、sA1c、A´、H-V0の各ピーク面積を計算し、式(3)によりX1c面積を得て、式(2)によりA0面積を確定し、式(1)により、A1c%を算出する本発明の方法を実施した。なお、H-V0のピーク検出レンジは1.00±0.07分とした。
(1)A´のピーク面積
   クロマトグラムから、A´のピーク面積を921.2と計算した。
(2)αのピーク面積
   クロマトグラムから、αのピーク面積を8.0+6.7+38.1+63.9=116.7と計算した。
(3)sA1cのピーク面積
   クロマトグラムから、sA1cのピーク面積を63.9と計算した。
(4)X0のピーク面積
   クロマトグラムから、X0=H-V0のピーク面積を576.7と計算した。
(5)βのピーク面積
   Total areaを用いると、ピーク面積に関して、Total area-HbF-α-A´-X0で計算できるので、クロマトグラムから、βのピーク面積を1645.2-12.6-116.7-921.2-576.7=18.0と計算した。
(6)X1cの計算
   上記の数値を式(3)に代入して、X1c=40.7と計算した。
(7)A0の計算
   上で得られたX1cの値を式(2)に代入して、A0=880.5と計算した。
(8)A1c%の計算
   上記で得られた数値を式(1)に代入して、A1c%=6.4%と計算した。
(9)NGSP値への換算(換算ファクター 1.1151、0.6558)
   NGSP値換算値(%)=6.4x1.1151+0.6558
              =7.8(%)
 実施例2
 異常ヘモグロビンSを含有する血液試料について、陽イオン交換クロマトグラフィーによって得たクロマトグラム(図6)において、クロマトグラムの全ピーク面積合計(Total area)及びA1a、A1b,HbF、LA1c、sA1c、A´、H-V1の各ピーク面積を計算し、式(3)によりX1c面積を得て、式(2)によりA0面積を確定し、式(1)により、A1c%を算出する本発明の方法を実施した。なお、H-V1のピーク検出レンジは1.16±0.09分とした。
(1)A´のピーク面積
   クロマトグラムから、A´のピーク面積を899.0と計算した。
(2)αのピーク面積
   クロマトグラムから、αのピーク面積を11.8+7.8+31.4+78.6=129.6と計算した。
(3)sA1cのピーク面積
   クロマトグラムから、sA1cのピーク面積を78.6と計算した。
(4)X0のピーク面積
   クロマトグラムから、X0=H-V1のピーク面積を573.6と計算した。
(5)βのピーク面積
   Total areaを用いると、ピーク面積に関して、Total area-HbF-α-A´-X0で計算できるので、クロマトグラムから、βのピーク面積を1619.0-10.5-129.6-899.0-573.6=6.3と計算した。
(6)X1cの計算
   上記の数値を式(3)に代入して、X1c=50.7と計算した。
(7)A0の計算
   上で得られたX1cの値を式(2)に代入して、A0=848.3と計算した。
(8)A1c%の計算
   上記で得られた数値を式(1)に代入して、A1c%=8.0%と計算した。
(9)NGSP値への換算(換算ファクター 1.1151、0.6558)
   NGSP値換算値(%)=8.0x1.1151+0.6558
              =9.6(%)
 実施例3
 異常ヘモグロビンCを含有する血液試料について、陽イオン交換クロマトグラフィーによって得たクロマトグラム(図7)において、A1a、A1b,LA1c、sA1c、A0の各ピーク面積を計算し、式(4)により、A1c%を算出する本発明の方法を実施した。なお、H-V2のピーク検出レンジは1.34±0.09分とした。
(1)A0のピーク面積
   クロマトグラムから、A0のピーク面積を1140.3と計算した。
(2)αのピーク面積
   クロマトグラムから、αのピーク面積を10.8+11.8+34.8+89.9=147.3と計算した。
(3)sA1cのピーク面積
   クロマトグラムから、sA1cのピーク面積を89.9と計算した。
(8)A1c%の計算
   上記で得られた数値を式(4)に代入して、A1c%=6.7%と計算した。
(9)NGSP値への換算(換算ファクター 1.1151、0.6558)
   NGSP値換算値(%)=6.7x1.1151+0.6558
              =8.1(%)
 実施例4
 図5、6、7に示した異常ヘモグロビンD、S及びCを含有する血液試料を陽イオンクロマトグラフィーによる測定に供して得られたクロマトグラムについて、実施例1、2、3で示した本発明を適用した結果をそれぞれ図8、9及び10に示す。これらに示したように、本発明を適用した結果、アフィニティークロマトグラフィーによる測定結果との差が改善され、相関係数の傾きは図1、2、3における場合より、それぞれ0.8841から0.9731、0.8767から0.9732及び0.8919から1.018と改善された。
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の本質と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 なお、2016年5月11日に出願された日本特許出願2016-095191号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
 1  陽イオン交換クロマトグラフィー装置
 11 試料導入手段
 12 送液手段
 13 分離手段
 14 検出手段
 15 分析手段
 16 ベースライン設定モジュール
 17 ピーク同定モジュール
 18 ピーク面積計算モジュール
 19 sA1c割合計算モジュール
 20 出力手段

Claims (9)

  1.  安定型糖化ヘモグロビンsA1cの測定方法であって、(1)血液試料を溶血後、陽イオン交換クロマトグラフィーに供してsA1cを他のヘモグロビンから分離して溶出し、各ヘモグロビン分画の溶出を示すクロマトグラムを取得する工程、(2)取得したクロマトグラムからsA1cのピークを同定し、そのピーク面積を計算する工程、(3)取得したクロマトグラムから、sA1c以外のヘモグロビンのピークを同定し、それらのピーク面積を計算する工程、及び、(4)全ヘモグロビンのピーク面積に占めるsA1cのピーク面積の割合(%)を計算する工程、(5)ヘモグロビンAの非糖化ピークの後ろに出現するピークから異常ヘモグロビンD、異常ヘモグロビンS又は異常ヘモグロビンCの非糖化ピークを同定する工程、(6)同定された異常ヘモグロビンD、異常ヘモグロビンS又は異常ヘモグロビンCの非糖化ピーク面積等を用いて、その糖化ピークの面積を推定する工程を含み、その推定計算結果を用いて上記工程4におけるsA1cのピーク面積の割合(%)を補正することを特徴とする、その方法。
  2.  前記工程5において、異常ヘモグロビンD又は異常ヘモグロビンSのピークが同定されたときに、その異常ヘモグロビンD又は異常ヘモグロビンSの糖化ピークはヘモグロビンAの非糖化ピークA0と重なって溶出され、かつsA1cのヘモグロビンAに関わる全ピーク面積の和に対する割合は、その異常ヘモグロビンの糖化ピーク面積のその他のピークの面積の和に対する割合に等しいという前提の元に、sA1cピーク面積のヘモグロビンAに関わる全ピーク面積に対する割合(%)を補正する、請求項1に記載の方法。
  3.  前記工程5において、異常ヘモグロビンCのピークが同定されたときに、その異常ヘモグロビンCの糖化ピークはヘモグロビンAの非糖化ピークA0の後ろに溶出されるという前提の元に、sA1cのピーク面積のヘモグロビンAに関わる全ピーク面積に対する割合(%)を補正する、請求項1に記載の方法。
  4.  前記工程5において、異常ヘモグロビンD又は異常ヘモグロビンSのピークが同定されたときに、その異常ヘモグロビンD又は異常ヘモグロビンSの糖化ピークはヘモグロビンAの非糖化ピークA0と重なって溶出され、かつsA1cのヘモグロビンAに関わる全ピーク面積の和に対する割合は、その異常ヘモグロビンの糖化ピーク面積のその他のピークの面積の和に対する割合に等しいという前提の元に、sA1cピーク面積のヘモグロビンAに関わる全ピーク面積に対する割合(%)を以下の式に従って補正する、請求項1又は2に記載の方法。
    Figure JPOXMLDOC01-appb-M000001
    ここで、A´はA0とそれと同時に溶出する異常ヘモグロビンの糖化ピーク面積の和で、クロマトグラム上はA0として観測されるピーク面積、sA1c、A0はそれぞれヘモグロビンAの糖化、非糖化ピーク面積、X1c及びX0はそれぞれA0と同時に溶出される異常ヘモグロビンの糖化ピーク面積、A0の後で溶出される異常ヘモグロビンの非糖化ピーク面積を表し、又、α=A1a+A1b+LA1c+sA1c、βはA0から後ろに溶出されるピーク総面積からX0を除いたものである。
  5.  前記工程5において、異常ヘモグロビンCのピークが同定されたときに、その異常ヘモグロビンCの糖化ピークはヘモグロビンAの非糖化ピークA0の後ろに溶出されるという前提の元に、sA1cのピーク面積のヘモグロビンAに関わる全ピーク面積に対する割合(%)を以下の式に従って補正する、請求項1又は3に記載の方法。
    Figure JPOXMLDOC01-appb-M000002
    ここで、A´はクロマトグラム上A0として観測されるピーク面積。sA1c、A0はそれぞれヘモグロビンAの糖化、非糖化ピーク面積、又、α=A1a+A1b+LA1c+sA1cである。
  6.  安定型糖化ヘモグロビンsA1cの測定装置であって、
    (1)溶血した血液試料を導入するための試料導入手段、
    (2)陽イオン交換能を有する樹脂からなる分離手段、
    (3)液体を移送するための送液手段、
    (4)前記分離手段から溶出するヘモグロビンを検出しクロマトグラムを得るための検出手段、
    (5)前記検出手段が検出したクロマトグラムを分析するための分析手段、
    の各手段を備え、前記分析手段は、
    a)クロマトグラムに出現したピーク面積を計算するためのベースラインの設定、
    b)クロマトグラムに出現したピークがいずれのヘモグロビンに由来するものであるかの同定、
    c)クロマトグラムに出現したピーク面積の計算、
    d)全ヘモグロビンのピーク面積に占めるsA1cのピーク面積の割合(%)の計算、
    を実施するものであり、上記bにおいて異常ヘモグロビンD、異常ヘモグロビンS又は異常ヘモグロビンCのピークが同定されたときには、その異常ヘモグロビンのピークの面積を計算し、その計算結果を用いて上記dにおいてsA1cのピーク面積の割合(%)を補正し、その補正したsA1cのピーク面積の割合(%)を測定することを特徴とする、前記装置。
  7.  ヘモグロビンAの非糖化ピークの後に出現する最も顕著なピークを異常ヘモグロビンD,異常ヘモグロビンS又は異常ヘモグロビンCのピークとして同定し、分析手段において上記分析を実施することを特徴とする請求項6に記載の測定装置。
  8.  前記bにおいて、異常ヘモグロビンD又は異常ヘモグロビンSのピークが同定されたときに、前記dにおいてその異常ヘモグロビンD又は異常ヘモグロビンSの糖化ピークはヘモグロビンAの非糖化ピークA0と重なって溶出され、かつsA1cピーク面積のヘモグロビンAに関わる全ピーク面積の和に対する割合は、その異常ヘモグロビンの糖化ピーク面積のその他のピークの面積の和に対する割合に等しいという前提の元に、sA1cのピーク面積の割合(%)を補正する、請求項6又は7に記載の測定装置。
  9.  前記bにおいて、異常ヘモグロビンCのピークが同定されたときに、前記dにおいてその異常ヘモグロビンCの糖化ピークはヘモグロビンAの非糖化ピークA0の後ろに溶出されるという前提の元に、sA1cのピーク面積の割合(%)を補正する、請求項6又は7に記載の測定装置。
PCT/JP2017/014984 2016-05-11 2017-04-12 糖化ヘモグロビンの測定方法及び糖化ヘモグロビン測定装置 WO2017195522A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/099,766 US11555807B2 (en) 2016-05-11 2017-04-12 Method for measuring glycated hemoglobin and device for measuring glycated hemoglobin
CN201780025012.1A CN109073616B (zh) 2016-05-11 2017-04-12 糖化血红蛋白的测定方法及糖化血红蛋白测定装置
EP17795883.2A EP3457129B1 (en) 2016-05-11 2017-04-12 Method for measuring glycosylated hemoglobin, and device for measuring glycosylated hemoglobin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-095191 2016-05-11
JP2016095191A JP6780290B2 (ja) 2016-05-11 2016-05-11 糖化ヘモグロビンの測定方法及び糖化ヘモグロビン測定装置

Publications (1)

Publication Number Publication Date
WO2017195522A1 true WO2017195522A1 (ja) 2017-11-16

Family

ID=60266571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/014984 WO2017195522A1 (ja) 2016-05-11 2017-04-12 糖化ヘモグロビンの測定方法及び糖化ヘモグロビン測定装置

Country Status (5)

Country Link
US (1) US11555807B2 (ja)
EP (1) EP3457129B1 (ja)
JP (1) JP6780290B2 (ja)
CN (1) CN109073616B (ja)
WO (1) WO2017195522A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113237985A (zh) * 2021-03-24 2021-08-10 迈克医疗电子有限公司 血红蛋白中组分类型的确定方法、装置和计算机设备

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113009025B (zh) * 2018-12-29 2023-04-07 江山德瑞医疗科技有限公司 一种测定值不受样本保存时间的影响糖化血红蛋白测定方法
CN110133280B (zh) * 2019-04-29 2022-05-20 融智生物科技(青岛)有限公司 一种β链变异的血红蛋白糖化率的测定方法
JP7368308B2 (ja) * 2019-06-21 2023-10-24 アークレイ株式会社 安定型A1cの測定方法
US11385244B2 (en) * 2019-06-21 2022-07-12 Arkray, Inc. Method of measuring stable A1c
JP7175240B2 (ja) * 2019-06-21 2022-11-18 アークレイ株式会社 安定型A1cの測定方法
EP3754338A1 (en) * 2019-06-21 2020-12-23 ARKRAY, Inc. Method of measuring stable a1c
JP7556279B2 (ja) 2020-12-08 2024-09-26 東ソー株式会社 ヘモグロビン分析装置
JP7171959B1 (ja) 2022-04-08 2022-11-15 積水メディカル株式会社 安定型HbA1c割合の算出方法、液体クロマトグラフィー装置及びプログラム
JP7171960B1 (ja) 2022-04-08 2022-11-15 積水メディカル株式会社 糖化ヘモグロビンの検出方法、糖化ヘモグロビンの測定方法、液体クロマトグラフィー装置及びプログラム
JP2024016631A (ja) 2022-07-26 2024-02-07 アークレイ株式会社 安定型ヘモグロビンA1cの測定方法及び測定装置
JP2024086236A (ja) * 2022-12-16 2024-06-27 アークレイ株式会社 ヘモグロビンA1c値の推定方法、情報処理装置、推定プログラム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001221788A (ja) * 2000-02-07 2001-08-17 Sekisui Chem Co Ltd ヘモグロビン類の測定方法
JP2012215470A (ja) * 2011-03-31 2012-11-08 Tosoh Corp 糖化ヘモグロビンの測定方法及び糖化ヘモグロビン測定装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2800509B2 (ja) 1990-11-30 1998-09-21 株式会社日立製作所 液体クロマトグラフ装置
JP3496390B2 (ja) 1996-03-28 2004-02-09 東ソー株式会社 液体クロマトグラフィーを用いた糖化ヘモグロビン測定装置のデータ処理方法
EP1103812B1 (en) * 1998-08-07 2015-11-18 Sekisui Chemical Co., Ltd. Method for determining hemoglobins
JP4740036B2 (ja) 2006-05-26 2011-08-03 積水化学工業株式会社 ヘモグロビン類の測定方法
EP2533043B1 (en) * 2010-02-02 2022-11-02 Sekisui Medical Co., Ltd. Hemoglobin s analysis method
JP2012032395A (ja) * 2010-07-09 2012-02-16 Sekisui Medical Co Ltd ヘモグロビン類の測定方法
JP5843509B2 (ja) * 2010-07-26 2016-01-13 アークレイ株式会社 クロマトグラムの表示方法
CN103874921A (zh) * 2011-09-29 2014-06-18 积水医疗株式会社 利用液相色谱法的稳定型血红蛋白A1c的测定方法以及利用液相色谱法的稳定型血红蛋白A1c和异常血红蛋白的同时测定法
JP6657003B2 (ja) 2016-04-20 2020-03-04 アークレイ株式会社 糖化ヘモグロビン測定方法、糖化ヘモグロビン測定装置、及び糖化ヘモグロビン測定プログラム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001221788A (ja) * 2000-02-07 2001-08-17 Sekisui Chem Co Ltd ヘモグロビン類の測定方法
JP2012215470A (ja) * 2011-03-31 2012-11-08 Tosoh Corp 糖化ヘモグロビンの測定方法及び糖化ヘモグロビン測定装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"HbA1c and interference due to hemoglobin disorders", HBALC AND INTERFERENCE DUE TO HEMOGLOBIN DISORDERS, SCIENTIFIC DISCUSSION PAPER, 22 October 2013 (2013-10-22), pages 1 - 16, XP055551035, Retrieved from the Internet <URL:http://www.roche-diagnostics.ch/content/dam/corporate/roche-dia_ch/documents/broschueren/professional_diagnostics/serumarbeitsplatz/klinische_chemie/03HbA1c/ENEA_HbAlc_scientific-discussion-paper.pdf> [retrieved on 20170628] *
MOIZ, B. ET AL.: "Performance evaluation of ion exchange and affinity chromatography for HbAlc estimation in diabetic patients with HbD: A study of 129 samples", CLINICAL BIOCHEMISTRY, vol. 41, no. 14-15, October 2008 (2008-10-01), pages 1204 - 1210, XP025660801 *
SAW, S. ET AL.: "Identification of hemoglobin variants in samples received for gylcated hemoglobin testing", CLINICA CHIMICA ACTA, vol. 415, 16 January 2013 (2013-01-16), pages 173 - 175, XP055436485 *
See also references of EP3457129A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113237985A (zh) * 2021-03-24 2021-08-10 迈克医疗电子有限公司 血红蛋白中组分类型的确定方法、装置和计算机设备
CN113237985B (zh) * 2021-03-24 2023-10-20 迈克医疗电子有限公司 血红蛋白中组分类型的确定方法、装置和计算机设备

Also Published As

Publication number Publication date
JP6780290B2 (ja) 2020-11-04
EP3457129A4 (en) 2020-01-01
EP3457129A1 (en) 2019-03-20
CN109073616B (zh) 2020-10-09
CN109073616A (zh) 2018-12-21
EP3457129B1 (en) 2021-06-23
US11555807B2 (en) 2023-01-17
US20190120803A1 (en) 2019-04-25
JP2017203677A (ja) 2017-11-16

Similar Documents

Publication Publication Date Title
WO2017195522A1 (ja) 糖化ヘモグロビンの測定方法及び糖化ヘモグロビン測定装置
JP5948727B2 (ja) 糖化ヘモグロビンの測定方法及び糖化ヘモグロビン測定装置
Little et al. The long and winding road to optimal HbA1c measurement
Greene et al. Comparison of Sebia Capillarys Flex capillary electrophoresis with the BioRad Variant II high pressure liquid chromatography in the evaluation of hemoglobinopathies
Silva et al. Effect of iron deficiency anaemia on HbA1c levels is dependent on the degree of anaemia
Rohlfing et al. The effect of elevated fetal hemoglobin on hemoglobin A1c results: five common hemoglobin A1c methods compared with the IFCC reference method
Little et al. Measurement of HbA1c in patients with chronic renal failure
Mahajan et al. Using glycated hemoglobin HbA1c for diagnosis of diabetes mellitus: an Indian perspective
Jaisson et al. Interference of the most frequent haemoglobin variants on quantification of HbA1c: comparison between the LC–MS (IFCC reference method) and three routinely used methods
Iyer et al. Hemoglobinopathy in India
del Castillo et al. Quantitative targeted biomarker assay for glycated haemoglobin by multidimensional LC using mass spectrometric detection
Strickland et al. Recognition of rare hemoglobin variants by hemoglobin A1c measurement procedures
Herpol et al. Evaluation of the Sebia Capillarys 3 Tera and the Bio-Rad D-100 systems for the measurement of hemoglobin A1c
EP2466301B1 (en) Chromatogram display method, data processing device, analysis device, and display program
Xu et al. Unexpected HbA1c results in the presence of three rare hemoglobin variants
Urrechaga Analytical evaluation of the ADAMS™ A1c HA 8180T analyzer for the measurement of HbA1c
Xu et al. Identification of a new hemoglobin variant Hb Liuzhou [HBA1: C. 182A→ G] by MALDI-TOF mass spectrometry during HbA1c measurement
Zhang et al. Effects of hemoglobin variants HbJ Bangkok, HbE, HbG Taipei, and HbH on analysis of glycated hemoglobin via ion‐exchange high‐performance liquid chromatography
US20120105470A1 (en) HbA1c Measurement Result Display Method, and Display Device
Yuan et al. Silent hemoglobin variant during capillary electrophoresis: a case report
Kim et al. Analysis of glycated serum proteins in type 2 diabetes patients with nephropathy
Adekanmbi et al. Erroneous HbA1c results in a patient with elevated HbC and HbF
Cheng et al. HbG-Coushatta: an unexpected discovery during HbA1c measurement
Doggui et al. Capillarys 2 Flex Piercing: analytical performance assessment according to CLSI protocols for HbA1c quantification
Ito et al. Usefulness of measuring fast valley height rate using high-performance liquid chromatography for variant hemoglobin, Hb A2-Niigata

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17795883

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017795883

Country of ref document: EP

Effective date: 20181211