WO2017188325A1 - 組成物、組成物収容体、組成物の製造方法 - Google Patents

組成物、組成物収容体、組成物の製造方法 Download PDF

Info

Publication number
WO2017188325A1
WO2017188325A1 PCT/JP2017/016580 JP2017016580W WO2017188325A1 WO 2017188325 A1 WO2017188325 A1 WO 2017188325A1 JP 2017016580 W JP2017016580 W JP 2017016580W WO 2017188325 A1 WO2017188325 A1 WO 2017188325A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
mass
hydrogen peroxide
content
metal
Prior art date
Application number
PCT/JP2017/016580
Other languages
English (en)
French (fr)
Inventor
上村 哲也
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to KR1020187030546A priority Critical patent/KR102111305B1/ko
Priority to CN201780025662.6A priority patent/CN109075052B/zh
Priority to JP2018514670A priority patent/JP6646140B2/ja
Publication of WO2017188325A1 publication Critical patent/WO2017188325A1/ja
Priority to US16/170,638 priority patent/US11192786B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B15/00Peroxides; Peroxyhydrates; Peroxyacids or salts thereof; Superoxides; Ozonides
    • C01B15/01Hydrogen peroxide
    • C01B15/022Preparation from organic compounds
    • C01B15/023Preparation from organic compounds by the alkyl-anthraquinone process
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/22Organic compounds
    • C11D7/26Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0008Detergent materials or soaps characterised by their shape or physical properties aqueous liquid non soap compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/04Detergent materials or soaps characterised by their shape or physical properties combined with or containing other objects
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3947Liquid compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/02Inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/02Inorganic compounds
    • C11D7/04Water-soluble compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/02Inorganic compounds
    • C11D7/04Water-soluble compounds
    • C11D7/08Acids
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/22Organic compounds
    • C11D7/26Organic compounds containing oxygen
    • C11D7/264Aldehydes; Ketones; Acetals or ketals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31127Etching organic layers
    • H01L21/31133Etching organic layers by chemical means
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D2111/00Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
    • C11D2111/10Objects to be cleaned
    • C11D2111/14Hard surfaces
    • C11D2111/22Electronic devices, e.g. PCBs or semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture

Definitions

  • the present invention relates to a composition containing hydrogen peroxide, a method for producing the same, and a composition container.
  • the semiconductor device manufacturing process includes various processes such as a semiconductor silicon wafer cleaning process, a lithography process, an etching process, an ion implantation process, and a peeling process.
  • a process of treating unnecessary organic substances and inorganic substances using a treatment liquid is included after completion of each process or before moving to the next process.
  • a treatment solution containing hydrogen peroxide may be used as this treatment solution.
  • Hydrogen peroxide is generally synthesized by a so-called anthraquinone method using an anthraquinone compound as a raw material (see, for example, Patent Document 1).
  • the process liquid used for the manufacturing process of a semiconductor device is calculated
  • “high purity” means that each concentration of metal components or particles contained as impurities is low.
  • impurities for example, metal ions or metal particles
  • a phenomenon called migration in which metal diffuses into the target material is caused during processing. Migration hinders transmission of electrical signals and causes defects such as short circuits.
  • metal impurities may become coarse particles with the metal itself as a nucleus, and may remain as a residue on the semiconductor substrate after processing. Residues deteriorate lithographic performance, cause defects, and can adversely affect the formation of fine resist patterns or semiconductor elements.
  • the present inventors have examined the applicability to the production of semiconductor devices using hydrogen peroxide solution produced by the anthraquinone method as described in Patent Document 1, and the storage stability of hydrogen peroxide solution. It came to know that there is room for improvement. The reason for this low storage stability is that the Fe component mixed in from the solvent or from the raw material reacts catalytically in the acidic region to convert hydrogen peroxide into hydroxy radicals (so-called Fenton reaction). It was thought that hydrogen oxide decomposed.
  • the Fenton reaction is known to be suppressed.
  • the inventors of the present invention have tried to improve the storage stability of hydrogen peroxide solution using an Fe component and an acid that is a metal adsorbent. If the Fe component is too small relative to the acid, It has been found that water may not satisfy the high purity required for semiconductor device manufacturing applications.
  • the number of particles adhering to the semiconductor substrate increases, and may not be applicable to the semiconductor device manufacturing process. I came to know. In particular, this problem becomes more conspicuous as semiconductor devices are highly integrated and miniaturized (for example, 30 nm node or less). In recent years, the manufacture of semiconductor devices with a node of 10 nm or less has been studied, but this problem has become more prominent.
  • An object of the present invention is to provide a composition containing hydrogen peroxide, which can be used for semiconductor device manufacturing, which has excellent storage stability and is less susceptible to defects on a semiconductor substrate. And Moreover, this invention also makes it the subject to provide the manufacturing method of the composition containing the said hydrogen peroxide, and the composition container which stored the said composition.
  • the present inventors have found that the above-mentioned problems are achieved according to a composition containing hydrogen peroxide and having an Fe component and an acid that is a metal adsorbent controlled at a specific ratio.
  • the present invention has been completed. That is, it has been found that the above object can be achieved by the following configuration.
  • the hydrogen peroxide composition wherein the content of the Fe component is 10 ⁇ 5 to 10 2 by mass ratio with respect to the content of the acid.
  • the content of Fe particles contained in the Fe component is 0.01 mass ppt to 0.1 mass ppb relative to the total mass of the composition, according to any one of (1) to (5) Composition.
  • it contains at least one metal component containing a specific atom selected from the group consisting of Ni, Pt, Pd, Cr, Ti and Al, The composition according to any one of (1) to (6), wherein the content of the metal component is 0.01 mass ppt to 10 mass ppb with respect to the total mass of the composition for each specific atom.
  • the anthraquinone compound is at least one selected from the group consisting of alkylanthraquinone and alkyltetrahydroanthraquinone.
  • a composition container comprising a storage container and the composition according to any one of (1) to (12), which is stored in the storage container.
  • the material mainly composed of the nonmetal is any one selected from the group consisting of high-density polyethylene, tetrafluoroethylene perfluoroalkyl vinyl ether copolymer, and polytetrafluoroethylene, (13 The composition container as described in).
  • the composition container according to (13) or (14), wherein the contact angle of the material mainly composed of the nonmetal with water is 60 to 120 °.
  • a method for producing the composition according to any one of (1) to (12), A raw material purification step for purifying any one or more selected from a raw material component containing a solvent and an anthraquinone compound;
  • a hydrogen peroxide synthesis step of synthesizing an anthrahydroquinone compound by reducing the anthraquinone compound in the presence of a catalyst, and further oxidizing the anthrahydroquinone compound to synthesize hydrogen peroxide;
  • a hydrogen peroxide composition purification step of further purifying the hydrogen peroxide composition containing hydrogen peroxide separated from the reaction system.
  • a composition containing hydrogen peroxide that can be used for manufacturing a semiconductor device, having excellent storage stability and suppressing the influence of defects on a semiconductor substrate. Can do.
  • the manufacturing method of the composition containing the said hydrogen peroxide and the composition container which stored the said composition can be provided.
  • a container for housing an object can be provided.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the description that does not indicate substitution and non-substitution includes those that do not have a substituent and those that have a substituent, as long as the effects of the present invention are not impaired.
  • the “alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group). This is synonymous also about each compound.
  • the term “preparation” in the present specification means that a specific material is synthesized or blended, and a predetermined item is procured by purchase or the like.
  • the “semiconductor substrate” is not particularly limited as long as it is a substrate used for manufacturing semiconductor devices.
  • a silicon substrate Si substrate
  • a silicon oxide film substrate SiO substrate
  • SiN substrate silicon nitride substrate
  • the substrate may include not only the wafer but also the entire substrate structure having a circuit structure applied thereto.
  • composition of the present invention comprises: Hydrogen peroxide, acid, and Fe component,
  • the content of the Fe component is 10 ⁇ 5 to 10 2 by mass ratio with respect to the content of the acid.
  • the composition of the present invention is excellent in storage stability by having the above-described structure, and has little defect influence on the semiconductor substrate when applied to the semiconductor device manufacturing process. That is, the composition of the present invention has a low hydrogen peroxide decomposition rate even after storage over time. Further, for example, when the composition of the present invention is applied as a processing liquid to a semiconductor device manufacturing process, the semiconductor substrate to be processed has less adhesion of particles (in other words, the number of defects is small), so that the yield of the semiconductor substrate can be reduced. The decrease can be suppressed.
  • the composition of the present invention is purified by removing impurities such as trace amounts of organic contaminants, metal contaminants, and oils and fats contained in the liquid by filtration or ion exchange so that it can be applied to semiconductor device manufacturing processes. It is desirable that The composition of the present invention is characterized in that although this removal and purification is performed excessively at the time of preparation, the above-mentioned impurities are not completely removed but at least a small amount of Fe component remains. In addition, it is thought that Fe component exists to a certain extent in the raw material component containing a solvent or anthraquinone, and mixes in a composition through these solvents or raw materials.
  • the Fe component includes those in which the Fe atom is in an ionic state and those in which the Fe atom is in a non-ionic state.
  • the Fe component may be added so as to be in the predetermined numerical range after the Fe component is purified and removed below the lower limit of the predetermined numerical range. Further, the above impurity removal purification may be performed on a solvent or a raw material component used in the process of synthesizing hydrogen peroxide, and on a composition containing hydrogen peroxide after synthesizing hydrogen peroxide. You may implement.
  • the acid is considered to function as a metal adsorbent.
  • the Fe component decomposes hydrogen peroxide by the Fenton reaction especially in the acidic region (the higher the pH, the faster the decomposition rate), but the acid suppresses the Fenton reaction by complexing the Fe component as a metal adsorbent. Is possible.
  • the content of Fe component in terms of mass ratio to the content of the acid exceeds 10 2 When the suppression of Fenton reaction becomes difficult, the storage stability of the composition becomes insufficient.
  • the content of the Fe component is less than 10 ⁇ 5 by mass ratio with respect to the acid content, colloidal particles are formed in the liquid, which causes an increase in the number of defects adhering to the semiconductor substrate.
  • the composition when the content of the Fe component is 10 ⁇ 5 to 10 2 by mass ratio with respect to the content of the acid, the composition is excellent in storage stability and applied to a semiconductor device manufacturing process. In addition, the effect of defects on the semiconductor substrate is small.
  • the total content of the Fe component is preferably 0.1 mass ppt to 1 mass ppb with respect to the total mass of the composition.
  • the effect of the present invention is further improved. The reason for this is not clear, but when the total content of the Fe component is in a low concentration region, the water is usually mostly condensed with Fe hydrate unless a readily soluble complex ion is formed. Presumed to be dispersed as oxide colloid. If the total content of the Fe component is 0.1 mass ppt or more, the action as a positive colloid is weak, and it becomes difficult to adsorb to the oxide film having a slightly higher negative zeta potential than the silicon surface.
  • the total content of Fe component is 0.1 mass ppt or more with respect to the total mass of the composition, it has also been confirmed that the oxidizing power of the composition is excellent.
  • the amount of hydroxy radicals as reactive active species is present in an appropriate amount in the system. It is thought that it is to do.
  • the total content of the Fe component is less than 0.1 mass ppt with respect to the total mass of the composition, the amount of hydroxy radicals that are reactive active species is too small in the system, and the oxidizing power tends to decrease. There is.
  • the total content of the Fe component is 1 mass ppb or less with respect to the total mass of the composition, the Fe component does not become particles, and defects in the semiconductor substrate increase when applied to a semiconductor device manufacturing process. There is no.
  • the acid content is preferably 0.01 mass ppb to 1000 mass ppb with respect to the total mass of the composition.
  • the content of Fe component in the composition may be excessively increased.
  • the acid content is 0.01 mass ppb or more with respect to the total mass of the composition, the Fe component content is adjusted to an appropriate range, so that the storage stability is excellent, or the Fe component in the liquid.
  • the acid content exceeds 1000 mass ppb with respect to the total mass of the composition, the content of the Fe component in the composition may be relatively decreased.
  • colloidal particles are hardly formed in the liquid, and defects in the semiconductor substrate can be suppressed when applied to the semiconductor device manufacturing process. .
  • Hydrogen peroxide is usually synthesized by the anthraquinone method.
  • a trace amount of impurities derived from a raw material for example, anthraquinone compounds or anthraquinone is reduced to synthesize anthrahydroquinone.
  • a catalyst-derived metal component containing an atom selected from the group consisting of Ni, Pt, Pd, and Al) that can be used in the process remains.
  • These impurities are usually desired to be removed, but in the present invention, it is preferable not to completely remove them but to leave them at least in a small amount in the composition.
  • the content of the anthraquinone compound is preferably 0.01 mass ppb to 1000 mass ppb with respect to the total mass of the composition.
  • the defect performance is improved.
  • the content of the anthraquinone compound is 1000 mass ppb or less with respect to the total mass of the composition, the defect influence on the semiconductor substrate is small when applied to the semiconductor device manufacturing process.
  • the composition of the present invention may contain a metal component containing an atom selected from the group consisting of Ni, Pt, Pd, Cr, Ti and Al (hereinafter also referred to as “specific atom”).
  • the content of the metal component is preferably 0.01 mass ppt to 10 mass ppb with respect to the total mass of the composition for each specific atom.
  • the metal component includes those in which the specific atom is in an ionic state and those in which the specific atom is in a nonionic state, and includes, for example, the form of a specific metal ion and a specific metal particle (nonionic metal). It is.
  • the composition of the present invention includes only the Pt component, for example, the Pt component includes all components derived from Pt atoms (Pt ions and Pt particles) included in the composition, and the content of the Pt component Means the total metal amount of Pt (total Pt atomic amount) (the total metal amount is as described above). Further, “the content of the metal component is 0.01 mass ppt to 10 mass ppb for each specific atom with respect to the total mass of the composition” means that the composition of the present invention includes, for example, the Pt component and When two types of Ni components are included, each specific atom (in other words, both the Pt component content and the Ni component content) is 0.01 mass ppt to 10 mass relative to the total mass of the composition.
  • the content of the metal component containing a specific atom selected from the group consisting of Ni, Pt, Pd, Cr, Ti and Al may be 0.01 mass ppb or more with respect to the total mass of the composition for each specific atom. In this case, the oxidizing power of the composition is more excellent.
  • the content of the metal component containing a specific atom selected from the group consisting of Ni, Pt, Pd, Cr, Ti, and Al is 1000 mass ppb or less (preferably with respect to the total mass of the composition) for each specific atom. Is less than 10 mass ppb), the defect influence on the semiconductor substrate is small when applied to the semiconductor device manufacturing process.
  • the catalyst-derived Ni atom, Pt atom which can be used in the step of synthesizing anthrahydroquinone by reducing anthraquinone
  • Many metal components containing Pd atoms and / or Al atoms may be contained.
  • metal components derived from other raw material components other than the above are often mixed. Among these metal components, it has been confirmed that the above effect can be obtained by setting the content of metal components containing atoms selected from the group consisting of Ni, Pt, Pd, Cr, Ti and Al in the above range. ing.
  • the content of the metal component containing an atom selected from the group consisting of Ni, Pt, Pd and Al is based on the total mass of the composition. It is preferably 0.01 mass ppt to 1 mass ppb.
  • the metal component includes those in which the specific atom is in an ionic state and those in which the specific atom is in a nonionic state, and includes, for example, the form of a specific metal ion and a specific metal particle (nonionic metal). It is.
  • the Pt component includes all components derived from Pt atoms (Pt ions and Pt particles) included in the composition, and the content of the Pt component Means the total metal amount of Pt (total Pt atomic amount) (the total metal amount is as described above). If the content of the metal component containing a specific atom selected from the group consisting of Ni, Pt, Pd and Al is 0.01 mass ppb or more with respect to the total mass of the composition, the oxidizing power of the composition is more excellent.
  • the content of the metal component containing a specific atom selected from the group consisting of Ni, Pt, Pd and Al is 1000 mass ppb or less (preferably 1 mass ppb or less) with respect to the total mass of the composition, a semiconductor device When applied to a manufacturing process, the influence of defects on a semiconductor substrate is small.
  • the catalyst-derived Ni atom, Pt atom which can be used in the step of synthesizing anthrahydroquinone by reducing anthraquinone
  • Many metal components containing Pd atoms and / or Al atoms may be contained. It has been confirmed that the above effect can be obtained by setting the content of the metal component containing atoms selected from the group consisting of Ni, Pt, Pd, and Al within the above range.
  • the content of hydrogen peroxide is preferably 0.001 to 70% by mass, more preferably 10 to 60% by mass, and still more preferably 15 to 60% by mass. .
  • the composition of the present invention contains an acid.
  • the “acid” here does not include hydrogen peroxide.
  • the acid is not particularly limited as long as it can adsorb metal ions present in the liquid (an adsorption form includes an ionic bond or a coordinate bond), but is preferably a water-soluble acidic compound.
  • the water-soluble acidic compound is not particularly limited as long as it has a dissociable functional group that dissolves in water and exhibits acidity, and may be an organic compound or an inorganic compound.
  • water-soluble as used herein means that 5 g or more is dissolved in 100 g of water at 25 ° C.
  • water-soluble acidic compounds and salts thereof include acidic compounds such as inorganic acids (for example, hydrochloric acid, sulfuric acid, phosphoric acid and nitric acid), carboxylic acid derivatives, sulfonic acid derivatives, and phosphoric acid derivatives. Moreover, the compound in which these acidic functional groups formed the salt may be sufficient.
  • the water-soluble acidic compound is preferably a phosphoric acid derivative or phosphoric acid from the viewpoint of effectively chelating and removing impurities.
  • phosphoric acid derivatives include pyrophosphoric acid and polyphosphoric acid.
  • the cations that form salts with water-soluble acidic compounds include alkali metals, alkaline earth metals, quaternary alkyl compounds (for example, tetramethylammonium hydroxide (TMAH), tetraethylammonium hydroxide (TEAH), tetrapropyl hydroxide). Ammonium (TPAH) and tetrabutylammonium hydroxide (TBAH)).
  • TMAH tetramethylammonium hydroxide
  • TEAH tetraethylammonium hydroxide
  • TBAH tetrapropyl hydroxide
  • the cation forming the salt may be one kind or a combination of two or more kinds.
  • a so-called chelating agent may be used in addition to the above-described compounds.
  • a chelating agent it does not specifically limit as a chelating agent, It is preferable that it is polyamino polycarboxylic acid.
  • the polyaminopolycarboxylic acid is a compound having a plurality of amino groups and a plurality of carboxylic acid groups, for example, mono- or polyalkylene polyamine polycarboxylic acid, polyaminoalkane polycarboxylic acid, polyaminoalkanol polycarboxylic acid, and hydroxyalkyl Examples include ether polyamine polycarboxylic acid.
  • Suitable polyaminopolycarboxylic acid chelating agents include, for example, butylenediamine tetraacetic acid, diethylenetriaminepentaacetic acid (DTPA), ethylenediaminetetrapropionic acid, triethylenetetraminehexaacetic acid, 1,3-diamino-2-hydroxypropane-N, N , N ′, N′-tetraacetic acid, propylenediaminetetraacetic acid, ethylenediaminetetraacetic acid (EDTA), trans-1,2-diaminocyclohexanetetraacetic acid, ethylenediaminediacetic acid, ethylenediaminedipropionic acid, 1,6-hexamethylene-diamine -N, N, N ', N'-tetraacetic acid, N, N-bis (2-hydroxybenzyl) ethylenediamine-N, N-diacetic acid, diaminopropanetetraacetic acid,
  • acids can be blended alone or in combination of two or more.
  • the acid content is preferably 0.01 mass ppb to 1000 mass ppb with respect to the total mass of the composition. From the standpoint of further improving the effect of the present invention, it is more preferably 0.05 mass ppb to 800 mass ppb, and still more preferably 0.05 mass ppb to 500 mass ppb.
  • the composition of the present invention contains an Fe component.
  • the content of the Fe component in the composition of the present invention is 10 ⁇ 5 to 10 2 by mass ratio with respect to the acid content.
  • the content of the Fe component is preferably 10 ⁇ 3 to 10 ⁇ 1 in terms of mass ratio with respect to the acid content.
  • the content of the Fe component is preferably 0.1 mass ppt to 1 mass ppb with respect to the total mass of the composition. From the viewpoint of further improving the effect of the present invention, the content is more preferably 0.1 mass ppt to 800 mass ppt, and still more preferably 0.1 mass ppt to 500 mass ppt. In addition, content here intends the total metal amount of Fe atom.
  • the composition of the present invention may contain water as a solvent.
  • the water content is not particularly limited, but may be 1 to 99.999 mass% with respect to the total mass of the composition.
  • the ultrapure water used for semiconductor device manufacture is preferable.
  • the water is particularly preferably water with reduced inorganic anions and metal ions, among which Fe, Co, Na, K, Ca, Cu, Mg, Mn, Li, Al, Cr, Ni, Further, it is more preferable that the ion concentration derived from the metal atom of Zn is reduced.
  • the ppt order or less in one embodiment, the metal content is 0.001). What is adjusted to less than mass ppt) is more preferable.
  • adjustment method purification using a filtration membrane or an ion exchange membrane, or purification by distillation is preferable.
  • Examples of the adjustment method include the method described in paragraphs [0074] to [0084] of JP2011-110515A and the method described in JP2007-254168A.
  • the water used for embodiment of this invention is water obtained as mentioned above.
  • the above-mentioned water is used for cleaning not only the composition of the present invention but also a container, which will be described later, from the viewpoint that the desired effect of the present invention is remarkably obtained. More preferably, it is also used in the preparation.
  • the water mentioned above is used also for the manufacturing process of the composition of this invention, the component measurement of the composition of this invention, the measurement for evaluation of the composition of this invention, etc.
  • the composition of the present invention may contain an anthraquinone compound.
  • the anthraquinone compounds include those used in the process of synthesizing hydrogen peroxide by the anthraquinone method. Specifically, it is preferably at least one selected from the group consisting of alkylanthraquinone and alkyltetrahydroanthraquinone.
  • the alkyl group contained in the alkylanthraquinone and alkyltetrahydroanthraquinone preferably has, for example, 1 to 8 carbon atoms, and more preferably 1 to 5 carbon atoms.
  • alkyl anthraquinone ethyl anthraquinone or amyl anthraquinone is preferable.
  • alkyltetrahydroanthraquinone ethyltetrahydroanthraquinone or amyltetrahydroanthraquinone is preferable.
  • the anthraquinone compounds can be blended alone or in combination of two or more.
  • the content thereof is preferably 0.01 mass ppb to 1000 mass ppb with respect to the total mass of the composition as described above. From the standpoint of further improving the effect of the present invention, it is more preferably 0.05 mass ppb to 800 mass ppb, and still more preferably 0.05 mass ppb to 500 mass ppb.
  • the composition of the present invention may contain at least one metal component containing a specific atom selected from the group consisting of Ni, Pt, Pd, Cr, Ti and Al.
  • the content of the metal component is as described above for each specific atom. It is preferable that the mass is 0.01 mass ppt to 10 mass ppb with respect to the total mass of the composition.
  • 0.01 mass ppt to 1 mass ppb is more preferable, 0.01 mass ppt to 800 mass ppt is still more preferable, and 0.01 mass ppt. It is particularly preferred that the mass be ⁇ 500 mass ppt.
  • the composition of the present invention may contain at least one metal component containing a specific atom selected from the group consisting of Ni, Pt, Pd and Al.
  • the content is 0.01 mass relative to the total mass of the composition as described above.
  • Ppp is preferably 1 mass ppb. From the viewpoint of further improving the effect of the present invention, the mass is more preferably 0.01 mass ppt to 800 mass ppt, and still more preferably 0.01 mass ppt to 500 mass ppt.
  • composition of the present invention may contain other additives in addition to the above-described components within the range where the effects of the present invention are exhibited.
  • other additives include surfactants, antifoaming agents, pH adjusting agents, and fluorides.
  • the method for producing the composition of the present invention comprises: A raw material purification step (hereinafter also referred to as “first step”) for purifying any one or more selected from a raw material component containing a solvent and an anthraquinone compound; A hydrogen peroxide synthesis step (hereinafter, “second step”) in which the anthraquinone compound is reduced in the presence of a catalyst to synthesize an anthrahydroquinone compound, and then the anthrahydroquinone compound is oxidized to synthesize hydrogen peroxide. Also called).
  • first step for purifying any one or more selected from a raw material component containing a solvent and an anthraquinone compound
  • a hydrogen peroxide synthesis step hereinafter, “second step” in which the anthraquinone compound is reduced in the presence of a catalyst to synthesize an anthrahydroquinone compound, and then the anthrahydroquinone compound is oxidized to synthesize hydrogen peroxid
  • a hydrogen peroxide separation step (hereinafter also referred to as “third step”) in which the obtained hydrogen peroxide is extracted from the reaction system by extraction;
  • a hydrogen peroxide composition purification step (hereinafter also referred to as “fourth step”) for further purifying the hydrogen peroxide composition containing hydrogen peroxide separated from the reaction system.
  • the production method of the composition of the present invention is a method of synthesizing hydrogen peroxide by using an anthraquinone compound as a raw material by a so-called anthraquinone method.
  • any one or more selected from a raw material component containing a solvent and an anthraquinone compound is purified in advance by distillation, ion exchange, filtration, or the like.
  • the degree of purification for example, it is preferable to purify until the purity of the raw material becomes 99% or more, and it is more preferable to purify until the purity becomes 99.9% or more.
  • the use of such a high-purity raw material is important in order to obtain a remarkable effect according to the present invention.
  • the solvent referred to in the first step is water used as a hydrogen peroxide extraction solvent in the third step, in addition to the solvent used in the hydrogen peroxide synthesis reaction performed in the second step, or the above A solvent optionally used until the end of the composition purification step is included.
  • the raw material component containing an anthraquinone compound referred to in the first step includes a reduction catalyst for an anthraquinone compound in addition to the anthraquinone compounds such as alkylanthraquinone and alkyltetrahydroanthraquinone described above.
  • the third step is a step of extracting and taking out the hydrogen peroxide obtained in the second step described above, and a known hydrogen peroxide extraction method can be applied. For example, a method described in JP 2014-108903 A can be mentioned.
  • Water in the third step is a metal atom of Fe, Co, Na, K, Ca, Cu, Mg, Mn, Li, Al, Cr, Ni, and Zn after the raw material purification step that is the first step. Those having a reduced ion concentration are preferred, and ion-exchanged water or ultrapure water used for semiconductor device production is more preferred.
  • the fourth step is a step of purifying the hydrogen peroxide composition (hydrogen peroxide solution) obtained in the third step.
  • the method of passing through an ion exchange resin and methods, such as vacuum distillation, are mentioned.
  • Examples of the method of passing through the ion exchange resin include a method using a mixed bed of an anion exchange resin and a cation exchange resin in addition to a method using an acidic cation exchange resin. Further, filtering as described later may be performed on the hydrogen peroxide solution.
  • the purification treatment may be performed by combining a plurality of known purification methods described above. Moreover, you may implement a refinement
  • any filter can be used without particular limitation as long as it has been conventionally used for filtration.
  • fluorine resins such as polytetrafluoroethylene (PTFE) and tetrafluoroethylene perfluoroalkyl vinyl ether copolymer (PFA), polyamide resins such as nylon, and polyolefin resins such as polyethylene and polypropylene (PP) (high density) , And other high molecular weight filters).
  • PTFE polytetrafluoroethylene
  • PFA tetrafluoroethylene perfluoroalkyl vinyl ether copolymer
  • polyamide resins such as nylon
  • polyolefin resins such as polyethylene and polypropylene (PP) (high density)
  • PP polypropylene
  • materials selected from the group consisting of polyethylene, polypropylene (including high-density polypropylene), fluororesins such as PTFE and PTA, and polyamide-based resins such as nylon are preferable.
  • polypropylene high-density polypropylene
  • nylon filters are more preferred.
  • the pore diameter of the filter is suitably about 0.001 to 1.0 ⁇ m, preferably about 0.02 to 0.5 ⁇ m, and more preferably about 0.01 to 0.1 ⁇ m.
  • filters When using filters, different filters may be combined.
  • a method using a first filter and a second filter can be mentioned.
  • the filtering by the first filter may be performed only once or may be performed twice or more.
  • the pore diameter here can refer to the nominal value of the filter manufacturer.
  • it can select from the various filters which Nippon Pole Co., Ltd., Advantech Toyo Co., Ltd., Japan Integris Co., Ltd. (former Japan Microlith Co., Ltd.), KITZ micro filter, etc. provide, for example.
  • the second filter a filter formed of the same material as the first filter described above can be used.
  • the pore size of the second filter is suitably about 0.01 to 1.0 ⁇ m, preferably about 0.1 to 0.5 ⁇ m.
  • the filter to be used is processed before the object to be processed is filtered.
  • the liquid used in this treatment is not particularly limited, but the metal content is preferably less than 0.001 mass ppt.
  • other organic solvents are purified, and the metal content is Or a liquid containing a compound added to the composition of the present invention, or the liquid composition containing the compound added to the composition of the present invention has the desired effect in the present invention. Remarkably obtained.
  • FIG. 1 is a schematic diagram showing one form of the purification apparatus.
  • the purification apparatus 100 includes a tank 101, and the tank 101 includes a supply port 102 for supplying an object to be processed.
  • the refining device 100 includes a filtering device 105, and the tank 101 and the filtering device 105 are connected by a supply line 109, so that a fluid (object to be processed) can be transferred between the tank 101 and the filtering device 105. ing.
  • a valve 103 and a pump 104 are arranged in the supply line 109.
  • the purification device 100 includes a tank 101 and a filtration device 105, but is not limited to this as a purification device that can be used for filtering of an object to be processed.
  • the purification apparatus 100 includes a discharge unit 111 that discharges an object to be processed to the circulation line 110.
  • the discharge unit 111 includes a valve 107 and a container 108, and the object to be processed can be accommodated in the container 108 by switching the valve 106 provided in the circulation line and the valve 107.
  • a switchable pipe line 113 is connected to the valve 107, and the object to be treated after circulation cleaning can be discharged out of the purifier 100 through this pipe line 113.
  • the object to be processed after the circulation cleaning may contain particles, metal impurities, and the like.
  • the purification apparatus 100 including the pipe line 113 for discharging the object to be processed out of the apparatus Foreign matters that easily cause defects in the semiconductor substrate can be effectively removed without contaminating the filling portion.
  • the purification apparatus 100 includes a workpiece monitoring unit 112 in the circulation line 110.
  • the purification apparatus 100 includes a workpiece monitoring unit 112 in the circulation line 110, but the purification apparatus that can be used for filtering the workpiece is not limited thereto.
  • the workpiece monitoring unit 112 may be provided in the supply pipeline 109 or may be provided in the supply pipeline 109 and the circulation pipeline 110. In the purification apparatus 100, the workpiece monitoring unit 112 is directly provided in the circulation pipe 110. However, the purification apparatus that can be used for filtering the workpiece is not limited thereto.
  • the to-be-processed object monitoring part may be provided in a temporary storage tank (different from the tank 101) of fluid (not shown) provided in the pipeline.
  • FIG. 2 is a schematic diagram showing another form of a purification apparatus that can be used for filtering of the object to be processed.
  • the refining device 200 includes a tank 101 and a filtration device 105, and is further connected to the tank 101 through a pipe line 202, a pipe line 204, and a pipe line 203, and fluid between the tank 101 through the pipe lines. Is provided with a distillation column 201 arranged so that it can be transferred.
  • the filtration apparatus 105 and / or the distillation column 201 may not necessarily be provided.
  • a reaction vessel connected to 201 may be provided. Note that in the case where the object to be treated is hydrogen peroxide water, the distillation column 201 and the reaction vessel connected to the distillation column 201 through the pipe 203 may not be provided.
  • the fluid supplied to the distillation column 201 via the pipe line 203 is distilled in the distillation column 201.
  • the distilled fluid is accommodated in the tank 101 via the pipe line 202.
  • the supply pipe 109 is provided with a valve 103 and a valve 206, and the fluid discharged from the tank 101 can flow into the filtration device 105 by switching to the valve 205 provided in the pipe 204. ing.
  • the fluid discharged from the tank 101 can also flow into the distillation column 201 again. In that case, the fluid flows into the distillation column 201 from the pipe line 204 through the valve 207 and the pipe line 203 by switching the valve 103, the valve 206, and the valve 205 described above.
  • the material of the wetted part (the definition of the wetted part will be described later) of the refining device is not particularly limited, but a non-metallic material and an electropolished metal can be used in that the foreign matter of the workpiece can be further reduced It is preferably formed from at least one selected from the group consisting of materials.
  • the “wetted part” is a part (for example, tank inner surface, pipe inner surface, etc.) where the fluid may come into contact, and a region having a thickness of 100 nm from the surface is intended. .
  • the non-metallic material is not particularly limited, but is preferably a fluorine-containing resin material such as a polyolefin resin such as a polyethylene resin, a polypropylene resin, and a polyethylene-polypropylene resin, and a perfluoro resin, and has little elution of metal atoms. From the viewpoint, it is preferably a fluorine-containing resin.
  • fluorine-containing resins include perfluororesins, such as tetrafluoroethylene resin (PTFE), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), and tetrafluoroethylene-hexafluoropropylene copolymer.
  • Resin FEP
  • Tetrafluoroethylene-ethylene copolymer resin ETFE
  • Trifluoroethylene chloride-ethylene copolymer resin ECTFE
  • Vinylidene fluoride resin PVDF
  • PCTFE Trifluoroethylene chloride copolymer resin
  • PVDF Vinyl fluoride resin
  • fluorine-containing resins include tetrafluoroethylene resin, tetrafluoroethylene A perfluoroalkyl vinyl ether copolymer or a tetrafluoroethylene-hexafluoropropylene copolymer resin is preferred.
  • the metal material is not particularly limited, and a known material can be used.
  • the metal material include metal materials in which the total content of chromium and nickel is more than 25% by mass with respect to the total mass of the metal material, and among these, 30% by mass or more is preferable.
  • the upper limit of the total content of chromium and nickel in the metal material is not particularly limited, but is generally preferably 90% by mass or less.
  • the metal material include stainless steel and nickel-chromium alloy.
  • Stainless steel is not particularly limited, and known stainless steel can be used. Especially, the alloy containing 8 mass% or more of nickel is preferable, and the austenitic stainless steel containing 8 mass% or more of nickel is more preferable.
  • austenitic stainless steel for example, SUS (Steel Use Stainless) 304 (Ni content 8 mass%, Cr content 18 mass%), SUS304L (Ni content 9 mass%, Cr content 18 mass%), SUS316 ( Ni content 10 mass%, Cr content 16 mass%), SUS316L (Ni content 12 mass%, Cr content 16 mass%), etc. are mentioned.
  • the nickel-chromium alloy is not particularly limited, and a known nickel-chromium alloy can be used. Among these, a nickel-chromium alloy having a nickel content of 40 to 75% by mass and a chromium content of 1 to 30% by mass is preferable.
  • the nickel-chromium alloy include Hastelloy (trade name, the same applies hereinafter), Monel (trade name, the same applies hereinafter), Inconel (product name, the same applies hereinafter), and the like. More specifically, Hastelloy C-276 (Ni content 63 mass%, Cr content 16 mass%), Hastelloy-C (Ni content 60 mass%, Cr content 17 mass%), Hastelloy C-22 ( Ni content 61 mass%, Cr content 22 mass%) etc. are mentioned. Further, the nickel-chromium alloy may further contain boron, silicon, tungsten, molybdenum, copper, cobalt, and the like in addition to the above-described alloy as necessary.
  • the method for electropolishing the metal material is not particularly limited, and a known method can be used.
  • a known method can be used.
  • the methods described in JP-A-2015-227501, paragraphs 0011 to 0014 and JP-A-2008-264929, paragraphs 0036 to 0042 can be used.
  • the metal material is electropolished so that the chromium content in the passive layer on the surface is higher than the chromium content in the parent phase. For this reason, since a metal column containing metal atoms is unlikely to flow out from a distillation column formed of a metal material whose wetted part is electropolished, a distilled column with a reduced impurity content is prevented. It is presumed that a processed product can be obtained.
  • the metal material may be buffed.
  • the buffing method is not particularly limited, and a known method can be used.
  • the size of the abrasive grains used for buffing finishing is not particularly limited, but is preferably # 400 or less in that the unevenness on the surface of the metal material tends to be smaller.
  • the buffing is preferably performed before the electrolytic polishing.
  • the liquid contact portion is preferably formed from stainless steel that has been subjected to electropolishing because it can further reduce foreign matter on the workpiece.
  • the refining apparatus includes a tank
  • the liquid contact portion of the tank is formed from stainless steel that has been electropolished.
  • the mass ratio of the Cr content to the Fe content in the wetted part (hereinafter also referred to as “Cr / Fe”) is not particularly limited, but is generally preferably 0.5 to 4, and more preferably In the point which a metal impurity and / or an organic impurity do not elute more easily in a processed material, 0.5 and less than 3.5 are more preferable, and 0.7 or more and 3.0 or less are more preferable.
  • the method for adjusting Cr / Fe in the metal material is not particularly limited.
  • the metal material may be applied with a coating technique.
  • a coating technique There are three types of coating technology: metal coating (various plating), inorganic coating (various chemical conversion treatment, glass, concrete, ceramics, etc.), and organic coating (rust prevention oil, paint, rubber, plastics, etc.). It has been separated.
  • Preferable film technology includes surface treatment with a rust inhibitor oil, a rust inhibitor, a corrosion inhibitor, a chelate compound, a peelable plastic, or a lining agent.
  • carboxylic acids such as oleic acid, dimer acid, naphthenic acid, carboxylic acid metal soaps, sulfonates, amine salts, esters (higher fatty acid glycerin) Ester, phosphoric acid esters,
  • the above-mentioned purification apparatus can further reduce foreign substances in the object to be processed by including the filtration apparatus 105.
  • limit especially as a filtration member which the filtration apparatus 105 contains, At least 1 sort (s) selected from the group which consists of a filter with a particle removal diameter of 20 nm or less and a metal ion adsorption filter is preferable, and a particle removal diameter is 20 nm or less. More preferably, the filter is a metal ion adsorption filter.
  • a filter having a particle removal diameter of 20 nm or less has a function of efficiently removing particles having a diameter of 20 nm or more from the object to be processed.
  • the particle removal diameter of the filter is preferably 1 to 15 nm, and more preferably 1 to 12 nm. When the particle removal diameter is 15 nm or less, finer particles can be removed, and when the particle removal diameter is 1 nm or more, the filtration efficiency is improved.
  • the particle removal diameter means the minimum particle size that can be removed by the filter. For example, when the particle removal diameter of the filter is 20 nm, particles having a diameter of 20 nm or more can be removed.
  • the filter material examples include nylon such as 6-nylon and 6,6-nylon, polyethylene, polypropylene, polystyrene, polyimide, polyamideimide, and fluororesin.
  • the polyimide and / or the polyamideimide may have at least one selected from the group consisting of a carboxy group, a salt-type carboxy group, and an —NH— bond.
  • fluororesin, polyimide and / or polyamideimide are excellent. From the viewpoint of adsorbing metal ions, nylon such as 6-nylon and 6,6-nylon is particularly preferable.
  • the filtration device 105 may contain a plurality of the above filters.
  • the other filter is not particularly limited, but a filter having a particle removal diameter of 50 nm or more (for example, a microfiltration membrane for removing fine particles having a pore diameter of 50 nm or more) is preferable. .
  • a filter having a particle removal diameter of 20 nm or less for example, Before filtration using a microfiltration membrane having a pore diameter of 20 nm or less, the material to be purified is filtered using a filter having a particle removal diameter of 50 nm or more (for example, a microfiltration membrane for removing fine particles having a pore diameter of 50 nm or more).
  • a filter having a particle removal diameter of 20 nm or less for example, a microfiltration membrane having a pore diameter of 20 nm or less
  • the particle removal performance is further improved.
  • the said filtration apparatus 105 contains a metal ion adsorption filter. It does not restrict
  • the metal ions to be adsorbed are not particularly limited, but, for example, one or more metals selected from the group consisting of Fe ions, Ni ions, Pt ions, Pd ions, Cr ions, Ti ions, and Al ions.
  • the metal ion adsorption filter preferably contains an acid group on the surface from the viewpoint of improving the adsorption performance of metal ions.
  • the acid group include a sulfo group and a carboxy group.
  • the base material (material) constituting the metal ion adsorption filter include cellulose, diatomaceous earth, nylon, polyethylene, polypropylene, polystyrene, and fluororesin. Nylon is particularly preferable from the viewpoint of the efficiency of adsorbing metal ions.
  • the metal ion adsorption filter may be made of a material containing polyimide and / or polyamideimide.
  • the metal ion adsorption filter include a polyimide and / or polyamide-imide porous membrane described in JP-A-2016-155121 (JP2016-155121).
  • the polyimide and / or polyamideimide porous membrane may contain at least one selected from the group consisting of a carboxy group, a salt-type carboxy group, and an —NH— bond.
  • the metal ion adsorption filter is made of fluororesin, polyimide, and / or polyamideimide, it has better solvent resistance.
  • the filtration apparatus 105 may further contain an organic impurity adsorption filter. It does not restrict
  • an organic impurity adsorption filter has an organic skeleton capable of interacting with organic impurities on the surface in terms of improving the adsorption performance of organic impurities (in other words, the surface by an organic skeleton capable of interacting with organic impurities. Is preferably modified).
  • Examples of the organic skeleton capable of interacting with the organic impurities include a chemical structure that can react with the organic impurities and trap the organic impurities in the organic impurity adsorption filter. More specifically, when n-long chain alkyl alcohol (structural isomer when 1-long chain alkyl alcohol is used as the organic solvent) is included as the organic impurity, the organic skeleton includes an alkyl group. . When dibutylhydroxytoluene (BHT) is included as an organic impurity, the organic skeleton includes a phenyl group.
  • BHT dibutylhydroxytoluene
  • Examples of the base material (material) constituting the organic impurity adsorption filter include cellulose, diatomaceous earth, nylon, polyethylene, polypropylene, polystyrene, and fluororesin that support activated carbon.
  • the organic impurity adsorption filter a filter in which activated carbon described in JP-A-2002-273123 and JP-A-2013-150979 is fixed to a nonwoven fabric can be used.
  • a physical adsorption method can be applied in addition to the above-described chemical adsorption (adsorption using an organic impurity adsorption filter having an organic substance skeleton capable of interacting with organic impurities on the surface).
  • a filter having a pore size of 3 nm or more is used as the “particle removal filter”, and a filter having a pore size of less than 3 nm is used as the “organic impurity adsorption filter”.
  • filters may be combined when using filters.
  • Examples of the method of combining different filters include a method of combining the first filter and the second filter as described above. At that time, the filtering by the first filter may be performed only once or may be performed twice or more. When filtering two or more times by combining different filters, the filters may be of the same type or of different types, but of different types. It is preferable.
  • the first filter and the second filter are preferably different in at least one of the hole diameter and the constituent material. It is preferable that the second and subsequent pore diameters are the same or smaller than the first filtering pore diameter.
  • the pore diameter here can refer to the nominal value of the filter manufacturer.
  • P-nylon filter (pore size 0.02 ⁇ m, critical surface tension 77 mN / m) made of polyamide; (manufactured by Nippon Pole Co., Ltd.), “PE / clean filter (pore size 0.02 ⁇ m)” made of high-density polyethylene; (Manufactured by Nippon Pole Co., Ltd.) and “PE / clean filter (pore diameter 0.01 ⁇ m)” made by high-density polyethylene (made by Nippon Pole Co., Ltd.) can also be used.
  • the purification apparatus is previously cleaned with a cleaning liquid in terms of further reducing foreign matters in the object to be processed.
  • the cleaning liquid is supplied from the supply port 102 of the tank 101.
  • the supply amount of the cleaning liquid is not particularly limited, an amount that can sufficiently clean the liquid contact portion of the tank 101 is preferable, and the volume of the cleaning liquid supplied is preferably 30% by volume or more with respect to the capacity of the tank 101.
  • the valve 103 may be closed or open. However, when supplying the cleaning liquid from the supply port 102, the valve 103 is closed because the tank 101 can be easily cleaned. It is preferable.
  • the cleaning liquid supplied to the tank 101 may be immediately transferred through the purifier, or may be transferred through the purifier (for example, through the supply line 109) after cleaning the tank 101.
  • the method for cleaning the inside of the tank 101 using the cleaning liquid is not particularly limited, and examples thereof include a method for cleaning by rotating a stirring blade (not shown) provided in the tank 101.
  • the time for cleaning the tank with the cleaning liquid is not particularly limited, and may be appropriately selected according to the material of the liquid contact portion of the tank 101, the possibility of contamination, and the like. Generally, about 0.1 second to 48 hours is preferable.
  • the cleaning liquid after cleaning may be discharged from a discharge port (not shown) provided at the bottom of the tank.
  • a method of cleaning the supply pipe 109 of the purification apparatus 100 using the cleaning liquid is not particularly limited, but the valve 103 and the valve 106 are opened, the valve 107 is closed, the pump 104 is operated, and the cleaning liquid is cleaned. Is preferably circulated in the purifier through the supply line 109 and the circulation line 110 (hereinafter also referred to as “circulation washing”).
  • circulation washing preferably circulated in the purifier through the supply line 109 and the circulation line 110
  • the purification device includes a filtration device
  • a circulation cleaning is more preferable as the cleaning method.
  • An example of circulating cleaning will be described with reference to FIG.
  • the cleaning liquid supplied from the tank 101 via the valve 103 into the purification apparatus returns to the tank 101 again (through the filtration apparatus 105, the circulation line 110, and the valve 106) through the supply line 109 (circulation). To do).
  • the cleaning liquid is filtered by the filtration device 105, and particles and the like dissolved and dispersed in the cleaning liquid are removed, so that the cleaning effect can be further enhanced.
  • the valve 103 and the valve 107 are opened, the valve 106 is closed, the pump 104 is operated, and the cleaning liquid supplied from the supply port 102 of the tank 101 into the purifier is supplied.
  • a method of flowing into the filtration device 105 through the valve 103 and the pump 104, and then discharging the cleaning solution out of the purification device through the valve 107 without circulating (hereinafter referred to as “batch cleaning” in this specification). May also be used.
  • the cleaning liquid may be intermittently supplied into the purifier or may be continuously supplied into the purifier.
  • filtering in the fourth step, it is also preferable to filter the hydrogen peroxide composition by the following method in addition to the above-described method.
  • filtering by the following method may be performed.
  • the filter can be used without particular limitation as long as it has been conventionally used for filtration.
  • fluorine resins such as polytetrafluoroethylene (PTFE) and tetrafluoroethylene perfluoroalkyl vinyl ether copolymer (PFA), polyamide resins such as nylon, and polyolefin resins such as polyethylene and polypropylene (PP) (high density) , And other high molecular weight filters).
  • PTFE polytetrafluoroethylene
  • PFA tetrafluoroethylene perfluoroalkyl vinyl ether copolymer
  • polyamide resins such as nylon
  • polyolefin resins such as polyethylene and polypropylene (PP) (high density)
  • PP polypropylene
  • materials selected from the group consisting of fluororesins such as polyethylene, polypropylene (including high density polypropylene), PTFE and PTA, and polyamide resins such as nylon are preferable, and among them, PTFE and P
  • a fluororesin filter is more preferable. By using a filter formed of these materials, it is possible to effectively remove highly polar foreign substances that are likely to cause defects in semiconductor substrates (residue defects and particle defects), and to reduce the amount of the specific metal component of the present invention. It can be reduced efficiently.
  • the critical surface tension of the filter is preferably 70 mN / m or more, more preferably 95 mN / m or less, and further preferably 75 mN / m or more and 85 mN / m or less.
  • the value of critical surface tension is a manufacturer's nominal value.
  • the pore diameter of the filter is preferably about 2 to 20 nm, and more preferably 2 to 15 nm. By setting it within this range, it becomes possible to reliably remove fine foreign matters such as impurities or aggregates contained in the hydrogen peroxide composition while suppressing clogging of filtration, and the specific metal component of the present invention can be removed. The amount can be reduced efficiently.
  • the filtering by the first filter may be performed only once or may be performed twice or more.
  • the second and subsequent pore diameters are the same or smaller than the pore diameter of the first filtering.
  • the pore diameter here can refer to the nominal value of the filter manufacturer. As a commercially available filter, it can select from the various filters which Nippon Pole Co., Ltd., Advantech Toyo Co., Ltd., Japan Integris Co., Ltd. (former Japan Microlith Co., Ltd.), KITZ micro filter, etc. provide, for example.
  • P-nylon filter (pore size 0.02 ⁇ m, critical surface tension 77 mN / m)” made of polyamide; (manufactured by Nippon Pole Co., Ltd.), “PE / clean filter (pore size 0.02 ⁇ m)” made of high-density polyethylene; (Manufactured by Nippon Pole Co., Ltd.) and “PE / clean filter (pore diameter 0.01 ⁇ m)” made by high-density polyethylene (made by Nippon Pole Co., Ltd.) can also be used.
  • the second filter a filter formed of the same material or the like as the first filter described above can be used.
  • the pore size of the second filter is preferably about 1 to 10 nm.
  • the filtering step is preferably performed at room temperature (25 ° C.) or lower. More preferably, it is 23 degrees C or less, and 20 degrees C or less is still more preferable. Moreover, it is preferably 0 ° C. or higher, more preferably 5 ° C. or higher, and further preferably 10 ° C. or higher.
  • particulate foreign matters and impurities can be removed, but at the above temperature, the amount of the particulate foreign matter and / or impurities dissolved in the hydrogen peroxide composition is reduced. It will be removed efficiently by filtering.
  • the hydrogen peroxide composition contains a metal component containing a specific atom selected from the group consisting of Ni, Pt, Pd, Cr, Ti and Al in excess of the desired amount of the present application, the filtration can be performed at the above temperature.
  • the hydrogen peroxide composition includes a metal component containing a specific atom selected from the group consisting of Ni, Pt, Pd, Cr, Ti, and Al, most of the metal component is a particle. It is thought that it exists in a sex colloidal state. When filtering at the above temperature, some of the colloidal floating metal components aggregate, so this aggregate can be efficiently removed by filtering, making it easier to adjust to the desired amount in this application. Conceivable.
  • the filter used before filtering the hydrogen peroxide composition it is preferable to treat the filter used before filtering the hydrogen peroxide composition.
  • the liquid used in this treatment is not particularly limited, but the metal content is preferably less than 0.001 mass ppt (parts per trillion).
  • other organic solvents are purified.
  • the purification step of the hydrogen peroxide composition in the fourth step is preferably performed by combining the above purification methods.
  • the composition of this invention highly purified to the grade which can be used for semiconductor device manufacture can be obtained.
  • the composition of the present invention is as described above.
  • the acid contained in the composition of the present invention may be an acid such as phthalic acids by-produced in the process of synthesizing hydrogen peroxide by the anthraquinone method, and in the fourth step or the fourth step. It may be added separately later. From the viewpoint of further improving the purity of the composition and the effects of the present invention, it is preferable to add an acid component (preferably phosphoric acid or a phosphoric acid derivative) to the composition in the fourth step. It is more preferable to carry out a further purification step after adding.
  • an acid component preferably phosphoric acid or a phosphoric acid derivative
  • ⁇ Quantitative method> Various quantifications of water or a solvent, a raw material component, or an acid component or an anthraquinone compound contained in the composition of the present invention can be analyzed by an ion chromatography method.
  • various quantifications of Fe component or metal component contained in water or solvent, raw material component, or the composition of the present invention can be carried out by ICP-MS method (inductively coupled plasma mass spectrometry, measuring device, for example, horizontal (Analytical Systems, Agilent 7500cs type can be used).
  • ICP-MS method inductively coupled plasma mass spectrometry, measuring device, for example, horizontal (Analytical Systems, Agilent 7500cs type can be used.
  • the total mass of metal atoms that is, the total mass of metal ions (ionic metal) and metal particles (nonionic metal) (also referred to as “total metal amount”) is quantified.
  • the amount of metal atoms present in the solution was determined using metal ions (ionic metals) and metal particles ( Non-ionic metals) can be measured separately.
  • the metal particle (nonionic metal) is a component that does not dissolve in the solution and exists as a solid.
  • the amount of metal atoms contained in a semiconductor manufacturing treatment liquid or the like is usually analyzed by an ICP-MS method or the like, and depending on conventional methods such as the ICP-MS method, ions derived from metal atoms.
  • the total mass of metal atoms that is, the total mass of ionic metal and particulate metal (nonionic metal) (hereinafter referred to as “total metal amount”, etc.) cannot be distinguished from ionic metal and metal particles (nonionic metal) Also quantified as).
  • Metal atoms contained as impurities in a semiconductor manufacturing treatment liquid are one of the factors that cause defects in fine patterns and fine semiconductor elements. For this reason, it was thought that the smaller the amount of metal atoms contained in the semiconductor manufacturing treatment solution, the better. However, the present inventor has found that the amount of metal atoms contained in the treatment liquid does not necessarily correlate with the defect occurrence rate, and the defect occurrence rate varies.
  • the inventor of the present invention has made it possible to identify and quantify by measurement using the SNP-ICP-MS method, an ionic metal derived from a metal atom and a metal particle (non-ion) contained in a processing solution for semiconductor production.
  • the amount of metal particles (nonionic metal) is extremely influenced by the occurrence of defects, and that there is a correlation between the amount of metal particles (nonionic metal) and the occurrence of defects. .
  • Agilent 8800 triple quadrupole ICP-MS inductively coupled plasma mass spectrometry, for semiconductor analysis, option # 200
  • Agilent Technologies, Inc. was used and described in the examples. It can be measured by the method.
  • NexION 350S manufactured by PerkinElmer Co., and Agilent 8900 manufactured by Agilent Technologies are also included.
  • the content of Fe particles (nonionic metal) as measured by the SNP-ICP-MS method is the total mass of the composition from the viewpoint of improving defect performance and ensuring stability over time. On the other hand, it is preferably 0.01 mass ppt to 0.1 mass ppb.
  • the composition of the present invention contains a metal component containing a specific atom selected from the group consisting of Ni, Pt, Pd, Cr, Ti, and Al, and the metal component contains metal particles (nonionic metal).
  • the content of the metal particles in the composition of the present invention is 0.01% with respect to the total mass of the composition for each specific atom.
  • the mass is preferably from ppt to 100 mass ppt, more preferably from 0.01 mass ppt to 50 mass ppt, and still more preferably from 0.01 mass ppt to 10 mass ppt. That is, when the composition of the present invention contains, for example, only Pt particles, the Pt particles are in the numerical range described above.
  • composition of the present invention includes, for example, Pt particles and Ni particles
  • each of the Pt particles and the Ni particles falls within the numerical range described above.
  • the content of the metal particles is a value measured by the SNP-ICP-MS method described above.
  • Preparation, composition analysis, and measurement including preparation of the composition of the present invention, opening and / or washing of the container, filling of the composition, etc. are preferably performed in a clean room.
  • the clean room preferably meets the 14644-1 clean room criteria. It is preferable to satisfy any of ISO (International Organization for Standardization) class 1, ISO class 2, ISO class 3, and ISO class 4, more preferably ISO class 1 and ISO class 2, and ISO class 1 Further preferred.
  • ISO International Organization for Standardization
  • a gas chromatograph mass spectrometer (product name “GCMS-2020”, manufactured by Shimadzu Corporation) may be used to measure the content of organic impurities.
  • GCMS-2020 gas chromatograph mass spectrometer
  • Py-QTOF / MS Pyrolyzer Quadrupole Time-of-Flight Mass Spectrometry
  • Py-IT / MS Pyrolyzer Ion Trap Mass Spectrometry
  • Py-Sector / MS Pyrolyzer Magnetic Field Mass Spectrometry
  • Py-FTICR / MS Pyrolyzer Fourier Transform Ion Cyclotron Mass Spectrometry
  • Py-Q / MS Pyrolyzer Quadrupole Mass Spectrometry
  • the structure may be identified from the decomposition product and the concentration may be quantified by a technique such as Py-IT-TOF / MS (Pyrolyzer ion trap time-of-flight mass spectrometry).
  • the composition of this invention does not contain a coarse particle substantially.
  • the coarse particles contained in the composition of the present invention are particles such as dust, dust, organic solids or inorganic solids contained as impurities in the raw material, and dust and dust brought in as contaminants during the preparation of the composition. These are particles such as organic solids or inorganic solids, which finally exist as particles without being dissolved in the composition of the present invention.
  • the amount of coarse particles present in the composition of the present invention can be measured in the liquid phase using a commercially available measuring apparatus in a light scattering type in-liquid particle measurement method using a laser as a light source.
  • the composition of this invention is good also as a kit which adds another raw material separately.
  • a solvent such as water and an organic solvent
  • other compounds can be mixed and used depending on the application.
  • the solvent that can be used in this case is such that each content of the Fe component or the metal component contained in the solvent is within a specific value range in the composition of the present invention described above. Within the same range, the desired effect of the present invention can be obtained remarkably even with the kit and the concentrated solution.
  • the composition of the present invention is preferably used for semiconductor device production.
  • the composition of the present invention can be used in any process for manufacturing a semiconductor device. Specifically, in a semiconductor device manufacturing process including a lithography process, an etching process, an ion implantation process, a peeling process, and the like.
  • a treatment liquid for treating an organic substance or an inorganic substance is used as a treatment liquid for treating an organic substance or an inorganic substance, and specifically, it is suitably used as a cleaning liquid, a removing liquid or a stripping liquid.
  • composition of the present invention is used for the production of semiconductor devices, it is not particularly limited.
  • hydrochloric acid for the purpose of removing inorganic metal ions on the silicon substrate, and treated by chemical treatment called SC-2 (Standard Clean 2).
  • SC-2 Standard Clean 2
  • it is suitably used for removing metal ions from a silicon substrate.
  • ammonia for the purpose of removing particles on the silicon substrate, and is preferably used for removing silicon particles from the silicon substrate by chemical treatment called SC-1 (Standard Clean 1).
  • SC-1 Standard Clean 1
  • sulfuric acid for the purpose of removing the resist on a board
  • the removal of the resist here includes removal of the resist film, etching residue, antireflection film, and ashing residue.
  • the etching residue means a residue generated when the resist is etched
  • the ashing residue means a residue generated when the resist is ashed.
  • composition of this invention can be used conveniently also for uses other than the object for semiconductor manufacture.
  • it can also be used as a cleaning liquid, stripping liquid or removing liquid for polyimide, sensor resist, lens resist, or the like.
  • it can be used also for the above-mentioned other cleaning applications, and can be suitably used for cleaning containers, piping, substrates (for example, wafers or glass) and the like.
  • raw materials of organic peroxides or inorganic peroxides can also be used in various applications such as raw materials for food and medicine, etc .;
  • composition container has a storage container and the composition of the present invention housed in the storage container, and the region of the storage container that comes into contact with the composition is mainly non-metallic. It is made of a material used as a component. Here, the main component is intended to constitute 80% by mass or more of a region where a predetermined component contacts.
  • the storage container as long as the region in contact with the composition of the present invention is formed of a non-metal-based material, the form is not particularly limited, and the container is filled, stored, transported, and Can be used.
  • a container having a high cleanliness in the container and little impurity elution is preferable for semiconductor applications.
  • containers examples include, but are not limited to, “Clean Bottle” series manufactured by Aicero Chemical Co., Ltd., “Pure Bottle” manufactured by Kodama Resin Co., Ltd., and the like.
  • the region of the container that comes into contact with the composition of the present invention for example, the inner wall of the accommodating portion or the flow path of the composition of the present invention is formed of a non-metal-based material, and is excessive with respect to the container.
  • HDPE high density polyethylene
  • PFA tetrafluoroethylene perfluoroalkyl vinyl ether copolymer
  • PTFE polytetrafluoroethylene
  • the region in contact with the composition of the present invention is a polyethylene resin, polypropylene resin, or polyethylene-polypropylene.
  • the container in which the region in contact with the composition of the present invention is a fluororesin include a FluoroPure PFA composite drum manufactured by Entegris.
  • Containers can also be used. These containers are preferably cleaned inside the container before filling. Although the liquid used for this washing
  • organic solvents may be purified so that the metal content is in the above range, the composition itself of the present invention or a diluted product thereof, or the present
  • the desired effect of the present invention can be remarkably obtained by further purifying the composition of the invention and using a liquid in which metal components, impurities or coarse particles are further reduced for washing.
  • the composition of the present invention may be transported and stored by bottling into a container such as a gallon bottle or a coated bottle after production.
  • the gallon bottle may be one using a glass material or the other.
  • the inside of the container may be replaced with an inert gas (such as nitrogen or argon) having a purity of 99.99995 volume% or more for the purpose of preventing changes in the components in the composition during storage. Good.
  • an inert gas such as nitrogen or argon
  • a gas having a low moisture content is preferable.
  • the temperature is not particularly limited, but the temperature may be controlled in the range of ⁇ 20 ° C. to 20 ° C. in order to prevent alteration.
  • Each raw material and each catalyst used in each of the examples shown below are those purified in advance by distillation, ion exchange, filtration, etc., using a high purity grade having a purity of 99% or more.
  • the ultrapure water used in the examples was purified by the method described in Japanese Patent Application Laid-Open No. 2007-254168, and measured for each atom of Na, Ca, and Fe by the usual ICP-MS method described later.
  • the content rate was less than 10 mass ppt.
  • compositions of Examples and Comparative Examples were all performed in a clean room satisfying ISO class 2 or lower. Moreover, about the container to be used, it was used after washing
  • the measurement below the detection limit in the normal measurement is performed by concentrating to 1/100 in terms of volume, The content was calculated in terms of the concentration of the composition before concentration.
  • a hydrogen peroxide composition was prepared by performing the following first to fourth steps.
  • First step Raw material purification step
  • 2-ethylanthraquinone as a raw material was passed through a cation exchange resin packed in a column, and the process was repeated until the concentration of metal ions contained in the raw material reached 1 ppm by mass. Thereafter, 2-ethylanthraquinone was isolated.
  • the aqueous hydrogen peroxide solution was purified with a cation exchange resin.
  • a cation exchange resin a strongly acidic cation exchange resin having a sulfonic acid group (—SO 3 H) as an ion exchange group was used.
  • the metal ion concentration contained in the hydrogen peroxide solution in the steps so far has been about 1 mass ppb.
  • the obtained hydrogen peroxide aqueous solution was filtered using a PTFE (polytetrafluoroethylene) filter having an average pore size of 0.001 to 0.01 ⁇ m or less to further reduce the metal atom concentration.
  • phosphoric acid was added to the aqueous hydrogen peroxide solution.
  • the aqueous hydrogen peroxide solution was brought into contact with the mixed bed of anion exchange resin and cation exchange resin. This confirmed that the metal ion concentration in the aqueous hydrogen peroxide solution was on the order of ppt.
  • ICP-MS analysis In ICP-MS analysis (not SNP-ICP-MS analysis, it means normal ICP-MS analysis), except that the analysis software is replaced with analysis software as an ICP-MS analyzer described later.
  • the concentration of each atom was measured by the same method as the SNP-ICP-MS analysis.
  • the amount of Fe particles is measured by SNP-ICP-MS analysis described later, and the amount of Fe ions is determined from the amount of Fe component (total metal amount) measured by ICP-MS analysis. It can be calculated by subtracting the amount of Fe particles measured by ICP-MS analysis.
  • PFA is a copolymer of tetrafluoroethylene and perfluoroalkyl vinyl ether
  • quartz cyclone spray chamber a quartz cyclone spray chamber
  • quartz 1 mm inner diameter torch injector a quartz 1 mm inner diameter torch injector
  • the liquid to be measured was sucked at about 0.2 mL / min.
  • the oxygen addition amount was 0.1 L / min, the plasma output was 1600 W, and cell purge with ammonia gas was performed.
  • the time resolution was 50 us.
  • the content of Fe particles was measured using the following analysis software attached to the manufacturer.
  • the sample introduction system used a quartz torch, a coaxial PFA (perfluoroalkoxyalkane) nebulizer (for self-priming), and a platinum interface cone.
  • the measurement parameters for the cool plasma conditions are as follows.
  • the acid or anthraquinone compound in the composition was measured by the following method. Measurement was performed by liquid chromatography (ion exchange chromatography mass spectrometry) using an ion exchange resin as a stationary phase and an aqueous electrolyte solution as a mobile phase (eluent). Ion chromatography mass spectrometry (IC-MS) is a technique in which a mass spectrometer is connected as an IC detector.
  • the mass spectrometer separates according to the mass / charge number (m / z)
  • an electrospray ionization method (ESI) was used for the ionization method
  • a tandem mass spectrometer was used for the mass spectrometer. Furthermore, the separated molecular ions were cleaved with a collision cell, and the generated product ions (reflecting the structure of the molecular ions) were detected.
  • (Decomposition rate) [(hydrogen peroxide amount of hydrogen peroxide composition immediately after preparation) ⁇ (remaining hydrogen peroxide content of hydrogen peroxide composition after storage over time)] / (hydrogen peroxide composition immediately after preparation) Amount of hydrogen peroxide) x 100
  • the evaluation criteria are as follows. In the following criteria, if the evaluation is “D” or higher, the practical requirement for storage stability is satisfied, and “C” or higher is preferable.
  • A Decomposition rate of hydrogen peroxide is less than 5%
  • B Decomposition rate of hydrogen peroxide is 5% or more and less than 10%
  • C Decomposition rate of hydrogen peroxide is 10% or more and less than 20%
  • D Decomposition rate of hydrogen peroxide is 20% or more and less than 30%
  • E Decomposition rate of hydrogen peroxide is 30% or more
  • the oxidation potential (oxidation power) of the hydrogen peroxide composition was determined by an electrochemical method. Using a hydrogen electrode as a reference electrode, OCP (Open Circuit Potential) at that time was determined. The evaluation criteria are as follows. "A”: Oxidizing power of 1.8 mV or more "B”: Oxidizing power of 1.6 mV or more and less than 1.8 mV "C”: Oxidizing power of less than 1.6 mV
  • defects The number of particles having a diameter of 32 nm or more (hereinafter referred to as “defects”) present on the surface of the silicon oxide film substrate having a diameter of 300 mm was measured by a wafer surface inspection apparatus (SP-5; manufactured by KLA Tencor). Next, this silicon oxide film substrate was set in a spin discharge device, and while rotating, the obtained hydrogen peroxide composition was discharged onto the surface of the silicon oxide film substrate at a flow rate of 1.5 L / min. Then, the rinse process was performed and it dried.
  • the number of defects existing on the surface of the silicon oxide film substrate was again measured using the above apparatus (SP-5), and the difference from the initial value was defined as the number of defects.
  • Table 1 shows the results of evaluating the number of defects obtained based on the following criteria. In the following criteria, if the evaluation is “C” or higher, the defect suppressing ability required as a semiconductor device manufacturing treatment liquid is achieved. “A”: the number of defects is 0 or more and 50 or less “B”: the number of defects is more than 50 and less than 100 “C”: the number of defects is more than 100 and less than 500 “D”: the number of defects is more than 500 and less than 1000 “E”: Over 1000 defects
  • 10 ⁇ (-1) intends "10 to the -1 power” (0.1).
  • 10 ⁇ 1 intends "10 to the first power” (10).
  • “acid” includes phthalic acid derivatives produced as a decomposition product of anthraquinone in addition to phosphoric acid added in the fourth step.
  • the total metal amount is meant.
  • Table 2 shows the composition of the metal components in Table 1, and specifically shows metal ions (ionic metals) and metal particles (nonionic metals) separately.
  • the metal particles (nonionic metals) are various metal particles measured by “SNP-ICP-MS”.
  • the content of the Fe component is 0.1 mass ppt to 1 mass ppb (preferably 0. 1 mass ppt to 800 mass ppt, more preferably 0.1 mass ppt to 500 mass ppt) is excellent in storage stability and has little influence on defects when applied to a semiconductor device manufacturing process. It was confirmed that the effects can be achieved at an excellent level and that the oxidizing power is also excellent.
  • the acid content is 0.01 mass ppb to 1000 mass ppb (preferably 0.05 mass with respect to the total mass of the composition).
  • ppb to 800 mass ppb, more preferably 0.05 mass ppb to 500 mass ppb) has excellent storage stability and has less effect on the effects of defects on the semiconductor substrate when applied to a semiconductor device manufacturing process. It was confirmed that both can be achieved at an excellent level.
  • Example 1 when an anthraquinone compound is contained, the content of the anthraquinone compound is 0.01 mass ppb to 1000 mass ppb (preferably with respect to the total mass of the composition). (0.05 mass ppb to 800 mass ppb, more preferably 0.05 mass ppb to 500 mass ppb), it was further confirmed that the effect of defects on the semiconductor substrate was small when applied to the semiconductor device manufacturing process. It was.
  • Example 12 when a metal component containing a specific atom selected from the group consisting of Ni, Pt, Pd, Cr, Ti, and Al is contained from the comparison of Example 1, Example 12, and Example 13, the inclusion of the metal component
  • the amount is 0.01 mass ppt to 1 mass ppb (preferably 0.01 mass ppt to 800 mass ppt, more preferably 0.01 mass ppt to 500 mass ppt) with respect to the total amount of the composition for each specific atom. ), It was further confirmed that the defect influence on the semiconductor substrate was small when applied to the semiconductor device manufacturing process.
  • the storage stability is excellent, and when applied to the semiconductor device manufacturing process In addition, it was confirmed that the defect influence on the semiconductor substrate was small and the oxidation power was also excellent.
  • the metal component containing a specific metal atom selected from the group consisting of Ni atom, Pt atom, Pd atom, Cr atom, Ti atom and Al atom contains metal particles
  • the inclusion of metal particles The amount is independently 0.01 mass ppt to 500 mass ppt (preferably 0.01 mass ppt to 100 mass ppt, more preferably 0.01 mass ppt to 50 mass ppt) with respect to the total amount of the composition.
  • the defect influence on the semiconductor substrate was small when applied to the semiconductor device manufacturing process.
  • Examples A1 to A3 Measurement of SNP-ICP-MS after placing the hydrogen peroxide composition of Example 1 in a storage container having the region in contact with the hydrogen peroxide composition as the component shown in Table 3 below and storing it at 25 ° C. for one month. And the defect performance was evaluated.
  • the SNP-ICP-MS and the defect performance evaluation and measurement method are the same as those in the first embodiment. The results are shown in Table 3.
  • the concentration of each metal component shown in the column of Examples A1 to A3 in Table 3 below means the concentration after storage.
  • the measurement target in “SNP-ICP-MS” is Fe particles.
  • the contact angle with the container was measured with a contact angle meter DM-901 (manufactured by Kyowa Interface Chemical Co., Ltd.).
  • PFA represents a tetrafluoroethylene perfluoroalkyl vinyl ether copolymer
  • PTFE represents polytetrafluoroethylene
  • the hydrogen peroxide composition is stored in a storage container in which the region in contact with the hydrogen peroxide composition is formed of a non-metal-based material, so that the defect performance can be improved even after long-term storage. It was confirmed to be excellent.
  • Examples B1 to B7 Hydrogen peroxide solution
  • Examples B1 to B7 used the hydrogen peroxide composition of Example 1.
  • the concentration of hydrogen peroxide in the hydrogen peroxide composition of Example 1 was Only the hydrogen peroxide concentration (mass%) described in Table 4 was used.
  • sulfuric acid water (sulfuric acid concentration (mass%): listed in Table 4) are mixed ratios (mass ratio) shown in Table 4 )
  • a resist peeling test was performed under the conditions shown in Table 4 below. The resists to be tested are shown below.
  • Test wafer A 10 ⁇ m PMER P-CA1000PM (a positive resist made by TOK) was formed on a silicon wafer, and the peeling ability for this resist layer was evaluated under the following conditions. -Chemical solution volume: 200 ml. ⁇ Wafer size: 3cm ⁇ 3cm ⁇ Processing method: Immerse wafer in chemical solution ⁇ Processing time 1 min.
  • resist peelability it determined based on the following evaluation criteria. “A”: 100% resist removability was visually observed. “B”: The resist removability of 90% to less than 100% was visually observed. “C”: The resist removability of less than 90% was visually observed.
  • Examples C1 to C5, Comparative Example 3 Hydrogen peroxide solution
  • Examples C1 to C3 used the hydrogen peroxide composition of Example 1.
  • the hydrogen peroxide concentration (mass%) described in 5 was used) and ammonia water (ammonia concentration (mass%): listed in Table 5) at a mixing ratio (mass ratio) shown in Table 5.
  • a particle removal test on the Si substrate was performed under the following conditions.
  • the ammonia water used in this example is high-purity ammonia water that has been confirmed to have a total metal concentration of 10 mass ppt or less.
  • the hydrogen peroxide composition used in Comparative Example 3 is the hydrogen peroxide composition of Comparative Example 2 in Table 1.
  • the hydrogen peroxide composition and ammonia water were mixed and then heated to the “treatment temperature”, and then used for the particle removal treatment.
  • the particle removability was determined based on the following evaluation criteria. “A”: the total number of particles is 50 or less “B”: the total number of particles is more than 50 to 100 or less “C”: the total number of particles is more than 100 to 200 or less “D”: the total number of particles is 200 More than
  • Examples D1 to D6, Comparative Example 4 Hydrogen peroxide solution
  • Examples D1 to D6 used the hydrogen peroxide composition of Example 1.
  • the hydrogen peroxide concentration (mass%) described in 6 was used) and hydrochloric acid water (hydrochloric acid concentration (mass%): listed in Table 6) at the mixing ratio (mass ratio) shown in Table 6.
  • a metal removal test on the Si substrate was performed under the following conditions.
  • the hydrochloric acid water used in this example is high-purity hydrochloric acid water that has been confirmed to have a total metal concentration of 10 mass ppt or less.
  • the hydrogen peroxide composition used in Comparative Example 4 is the hydrogen peroxide composition of Comparative Example 2 in Table 1.
  • the hydrogen peroxide composition and ammonia water were mixed and then heated to the “treatment temperature”, and then used as a metal ion removal treatment liquid.
  • metal ion removal property it determined based on the following evaluation criteria. “A”: 20 or less metal ion components “B”: 20 to 30 metal ion components “C”: 30 to 50 metal ion components “D”: 50 metal ion components More than
  • Examples E1 to E4 >> The filtration test shown in Table 7 below is performed on the reference solution (pre-purification solution corresponding to “before treatment” in Table 7), and the total metal concentration of various metals (Fe component, Pt component) after filtration. The amount of Fe particles measured by SNP-ICP-MS was confirmed.
  • the reference solution was prepared by changing the method for preparing the hydrogen peroxide composition of Example 1 so that a hydrogen peroxide composition having the composition “before treatment” shown in Table 7 below was obtained. .
  • each composition described means the composition refine
  • Example E1 this means that the hydrogen peroxide composition before treatment was filtered with nylon (pore diameter 5 nm) shown in Table 7, and as a result, the content of (B) anthraquinone compound was 0.1. It means that (mass ppb), (C) acid concentration was 0.1 mass ppb, (D) Fe component concentration was 31 mass ppt, and (E) Pt component concentration was refined to 8 mass ppt. The results are shown in Table 7.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Detergent Compositions (AREA)

Abstract

本発明の課題は、半導体デバイス製造に用いることができる、過酸化水素を含む組成物であって、保存安定性に優れ、且つ、半導体基板への欠陥影響が少ない組成物を提供することである。また、本発明の他の課題は、上記過酸化水素を含む組成物の製造方法、及び、上記組成物を保管した組成物収容体を提供することである。 本発明の組成物は、過酸化水素と、酸と、Fe成分と、を含み、 上記Fe成分の含有量が、上記酸の含有量に対して質量比で10-5~10である。

Description

組成物、組成物収容体、組成物の製造方法
 本発明は、過酸化水素を含む組成物及びその製造方法、並びに、組成物収容体に関する。
 半導体デバイスの製造工程には、半導体シリコンウエハの洗浄工程、リソグラフィ工程、エッチング工程、イオン注入工程又は剥離工程等の様々な工程が含まれている。そこでは、各工程の終了後、あるいは次の工程に移る前に、処理液を用いて不要な有機物及び無機物を処理する工程が含まれることが一般的である。
 この処理液として、過酸化水素を含む処理液が用いられることがある。
 過酸化水素は、一般的に、アントラキノン類化合物を原料としていわゆるアントラキノン法により合成されている(例えば、特許文献1参照)。
 ところで、半導体デバイスの製造工程に用いられる処理液は、高純度であることが求められている。ここでいう「高純度」とは、不純物として含まれる金属成分又はパーティクル(粒子)の各濃度が低いことを意味する。
 処理液中に金属成分の不純物(例えば、金属イオン又は金属粒子)が混入していると、加工処理の際に、対象材料に金属が拡散するマイグレーションと言う現象を引き起こす。マイグレーションは電気信号の伝達を阻害しショート等の不良の原因になる。また、それだけでなく、金属の不純物はその金属自体を核として粗大なパーティクルとなり、処理後に半導体基板上に残渣として残る場合がある。残渣は、リソ性能を悪化させるほか、欠陥を生じる原因となり、微細なレジストパターン又は半導体素子の形成に悪影響を与え得る。
特開2014-108903号公報
 本発明者らは、特許文献1に記載されるようなアントラキノン法により製造された過酸化水素水を用いて半導体デバイス製造への適用性について検討していたところ、過酸化水素水の保存安定性を改善する余地があることを知見するに至った。この保存安定性が低い原因として、溶剤由来又は原料由来等で混入したFe成分が、酸性領域において触媒的に反応して過酸化水素をヒドロキシラジカル化してしまい(いわゆるフェントン反応)、この結果、過酸化水素が分解することが考えられた。
 一方で、上記のFe成分を酸等の金属吸着剤を用いて金属吸着体(例えば、酸が多座構造である場合にはキレート錯体)とした場合、フェントン反応は抑制されることが知られている。本発明者らは、Fe成分と金属吸着剤である酸とを用いて過酸化水素水の保存安定性を改良しようとしていたところ、Fe成分が酸に対して少なすぎる場合には、過酸化水素水が半導体デバイス製造用途に要求される高純度性を満たさなくなる場合があることを知見した。つまり、上記過酸化水素水を用いて半導体基板を洗浄した際、半導体基板上に付着するパーティクル数(「欠陥数」ともいう。)が増加し、半導体デバイス製造工程に適用できない場合があることを知るに至った。特に、この問題は、半導体デバイスの高集積化及び微細化(例えば、30nmノード以下)に伴ってより顕著になる。さらに近年では、10nmノード以下の半導体デバイスの製造も検討されているが、この問題はさらに顕著になってきている。
 そこで、本発明は、半導体デバイス製造に用いることができる、過酸化水素を含む組成物であって、保存安定性に優れ、且つ、半導体基板への欠陥影響が少ない組成物を提供することを課題とする。
 また、本発明は、上記過酸化水素を含む組成物の製造方法、及び、上記組成物を保管した組成物収容体を提供することも課題とする。
 本発明者らは、上記課題を達成すべく鋭意検討した結果、過酸化水素を含有し、且つ、Fe成分と金属吸着剤である酸とが特定比率に制御された組成物によれば上記課題を解決できることを見出し、本発明を完成させた。
 すなわち、以下の構成により上記目的を達成することができることを見出した。
 (1) 過酸化水素と、酸と、Fe成分と、を含み、
 上記Fe成分の含有量が、上記酸の含有量に対して質量比で10-5~10である、過酸化水素組成物。
 (2) 更に、アントラキノン類化合物を含む、(1)に記載の組成物。
 (3) 上記アントラキノン類化合物の含有量が、組成物全質量に対して0.01質量ppb~1000質量ppbである、(1)又は(2)に記載の組成物。
 (4) 上記酸の含有量が、組成物全質量に対して0.01質量ppb~1000質量ppbである、(1)~(3)のいずれかに記載の組成物。
 (5) 上記Fe成分の総含有量が、組成物全質量に対して0.1質量ppt~1質量ppbである、(1)~(4)のいずれかに記載の組成物。
 (6) 上記Fe成分中に含まれるFe粒子の含有量が、組成物全質量に対して0.01質量ppt~0.1質量ppbである、(1)~(5)のいずれかに記載の組成物。
 (7) 更に、Ni、Pt、Pd、Cr、Ti及びAlからなる群より選ばれる特定原子を含む金属成分を少なくとも1種以上含み、
 上記金属成分の含有量が、各特定原子ごとにそれぞれ、組成物全質量に対して0.01質量ppt~10質量ppbである、(1)~(6)のいずれかに記載の組成物。
 (8) 更に、Ni、Pt、Pd及びAlからなる群より選ばれる特定原子を含む金属成分を少なくとも1種以上含み、
 上記金属成分の含有量が、組成物全質量に対して0.01質量ppt~1質量ppbである、(1)~(6)のいずれかに記載の組成物。
 (9) 上記アントラキノン類化合物が、アルキルアントラキノン及びアルキルテトラヒドロアントラキノンからなる群から選ばれる少なくとも1種以上である、(2)~(8)のいずれかに記載の組成物。
 (10) 上記アルキルアントラキノンが、エチルアントラキノン又はアミルアントラキノンであり、上記アルキルテトラヒドロアントラキノンが、エチルテトラヒドロアントラキノン又はアミルテトラヒドロアントラキノンである、(9)に記載の組成物。
 (11) 上記酸が、リン酸、及び、リン酸誘導体からなる群から選択される1種である、(1)~(10)のいずれかに記載の組成物。
 (12) 半導体基板の処理液として用いられる、(1)~(11)のいずれかに記載の組成物。
 (13) 保管容器と、上記保管容器内に収容された、(1)~(12)のいずれかに記載の組成物と、を有する組成物収容体であり、
 上記保管容器の上記組成物と接触する領域が非金属を主成分とする材料により形成されている、組成物収容体。
 (14) 上記非金属を主成分とする材料が、高密度ポリエチレン、テトラフルオロエチレンパーフルオロアルキルビニルエーテル共重合体、及び、ポリテトラフルオロエチレンからなる群から選ばれるいずれか1種である、(13)に記載の組成物収容体。
 (15) 上記非金属を主成分とする材料の水との接触角が60~120°である、(13)又は(14)に記載の組成物収容体。
 (16) (1)~(12)のいずれかに記載の組成物の製造方法であり、
 溶剤、及び、アントラキノン類化合物を含む原料成分から選ばれるいずれか1種以上を精製する原料精製工程と、
 上記アントラキノン類化合物を触媒の存在下で還元してアントラヒドロキノン類化合物
を合成し、更に上記アントラヒドロキノン類化合物を酸化して過酸化水素を合成する、過酸化水素合成工程と、
 得られた過酸化水素を抽出することにより反応系から取り出す、過酸化水素分離工程と、
 反応系から分離された過酸化水素を含む過酸化水素組成物を更に精製する、過酸化水素組成物精製工程と、を有する、組成物の製造方法。
 本発明によれば、半導体デバイス製造に用いることができる、過酸化水素を含む組成物であって、保存安定性に優れ、且つ、半導体基板への欠陥影響が抑制された組成物を提供することができる。
 また、本発明によれば、上記過酸化水素を含む組成物の製造方法、及び、上記組成物を保管した組成物収容体を提供することができる。
 なお、本発明によれば、特に、近年の超微細パターン(例えば、10nmノード以下)の半導体デバイス形成においても欠陥の発生を抑制でき、保存安定性に優れた処理液を提供すること及びその組成物を収容する収容体を提供することができる。
本発明の組成物の製造方法において使用し得る精製装置の一形態を表す概略図である。 本発明の組成物の製造方法において使用し得る精製装置の他の形態を表す概略図である。
 以下、本発明について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本明細書における基(原子群)の表記において、置換及び無置換を記していない表記は、本発明の効果を損ねない範囲で、置換基を有さないものと共に置換基を有するものをも包含するものである。例えば、「アルキル基」とは、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含するものである。このことは、各化合物についても同義である。
 また、本明細書において「準備」というときには、特定の材料を合成ないし調合等して備えることのほか、購入等により所定の物を調達することを含む意味である。
 また、本明細書において、「ppm」は「parts-per-million(10-6)」を意味し、「ppb」は「parts-per-billion(10-9)」を意味し、「ppt」は「parts-per-trillion(10-12)」を意味する。
 また、本明細書において「半導体基板」とは、半導体デバイス製造に用いられる基板であれば特に限定されず、例えば、シリコン基板(Si基板)、シリコン酸化膜基板(SiO基板)、窒化シリコン基板(SiN基板)等が挙げられる。また、基板は、ウェハのみではなくそこに回路構造が施された基板構造体全体を含むものであってもよい。
〔組成物〕
 本発明の組成物は、
 過酸化水素と、酸と、Fe成分と、を含み、
 上記Fe成分の含有量が、上記酸の含有量に対して質量比で10-5~10である。
 本発明の組成物は、上記の構成とすることで、保存安定性に優れ、且つ、半導体デバイス製造工程に適用した際に半導体基板への欠陥影響が少ない。つまり、本発明の組成物は、経時保存後においても、過酸化水素の分解率が小さい。また、例えば、本発明の組成物を処理液として半導体デバイス製造工程に適用した場合、処理対象の半導体基板は、パーティクルの付着が少ない(言い換えると、欠陥数が少ない)ため、半導体基板の歩留りの低下を抑制することができる。
 これは、詳細には明らかではないが、以下のように推測される。
 本発明の組成物は、半導体デバイス製造工程に適用可能なように、濾過又はイオン交換等により、液中に含まれる微量の有機汚染物、金属汚染物、及び、油脂等の不純物を除去精製されたものであることが望ましい。本発明の組成物は、調製の際にこの除去精製を過剰に行うものの、上述の不純物を完全に除去するのではなく、少なくともFe成分を微量な程度残存させておくことを特徴としている。なお、Fe成分は、溶剤又はアントラキノンを含む原料成分に一定程度存在しており、これらの溶剤又は原料を通じて組成物中に混入すると考えられる。本明細書において、Fe成分には、Fe原子がイオン状態のもの、及び、Fe原子が非イオン状態のものが含まれ、例えば、Feイオン、及び、Feの金属粒子(Fe粒子)の形態が含まれる。つまり、Fe成分とは、組成物中に含まれる全てのFe原子由来の成分(Feイオン、Fe粒子)を意味し、Fe成分の含有量とは総メタル量(総Fe原子量)を意味する。
 なお、本発明の組成物の調製過程では、Fe成分を上記所定の数値範囲の下限未満に精製除去した後、Fe成分を所定の数値範囲となるように添加する形態であってもよい。
 また、上述の不純物除去精製は、過酸化水素を合成する過程で使用される溶剤又は原料成分に対して実施してもよく、過酸化水素を合成後に過酸化水素を含有する組成物に対して実施してもよい。
 上述した通り、本発明の組成物中、酸は金属吸着剤としても機能すると考えられる。Fe成分は、特に酸性領域においてフェントン反応により過酸化水素を分解するものの(pHが高いほど分解速度が速くなる)、酸が金属吸着剤としてFe成分を錯体化することによりフェントン反応を抑制することが可能となる。Fe成分の含有量が、酸の含有量に対して質量比で10を超えるとフェントン反応の抑制が困難となり、組成物の保存安定性が不十分となる。一方、Fe成分の含有量が酸の含有量に対して質量比で10-5未満であると、液中にコロイド粒子が形成され、半導体基板上に付着する欠陥数増加の原因となる。組成物中、Fe成分の含有量が、上記酸の含有量に対して質量比で10-5~10である場合には、保存安定性に優れ、且つ、半導体デバイス製造工程に適用した際に半導体基板への欠陥影響が少ない。
 また、本発明の組成物中、上記Fe成分の総含有量は、組成物全質量に対して0.1質量ppt~1質量ppbであることが好ましい。組成物中に含まれる上記Fe成分の総含有量を上記範囲とすることで、本発明の効果が更に一層優れるものとなる。この理由は定かではないが、上記Fe成分の総含有量が低濃度領域である場合、易溶性の錯イオンを形成していないかぎり、通常はその大部分がFeの水和物が縮合した水酸化物コロイドとなって分散していると推測される。Fe成分の総含有量が0.1質量ppt以上であれば、正コロイドとしての作用が弱く、シリコン面より負のゼータ電位がやや高い酸化膜へ吸着しにくくなるので、半導体基板への欠陥影響が現れにくくなる。
 また、Fe成分の総含有量が組成物全質量に対して0.1質量ppt以上である場合には、組成物の酸化力が優れることも確認している。この理由は定かではないが、Fe成分の総含有量が組成物全質量に対して0.1質量ppt以上であれば、反応活性種であるヒドロキシラジカルの量が系中に適切な量で存在するためであると考えられる。言い換えると、Fe成分の総含有量が組成物全質量に対して0.1質量ppt未満の場合には、反応活性種であるヒドロキシラジカルの量が系中に少なすぎ、酸化力が小さくなる傾向がある。
 一方、上記Fe成分の総含有量が組成物全質量に対して1質量ppb以下であれば、Fe成分がパーティクルとならず、半導体デバイス製造工程に適用した際に半導体基板への欠陥が増えることがない。
 本発明の組成物中、酸の含有量は、組成物全質量に対して0.01質量ppb~1000質量ppbであることが好ましい。酸の含有量が組成物全質量に対して0.01質量ppb未満であると、相対的に組成物中におけるFe成分の含有量が多くなりすぎる場合がある。酸の含有量が組成物全質量に対して0.01質量ppb以上であると、Fe成分の含有量が適切な範囲に調整されるため、保存安定性により優れる、又は、液中でFe成分が核となってパーティクルを形成することがなく、半導体デバイス製造工程に適用した際に半導体基板への欠陥を抑制することができる。
 一方、酸の含有量が組成物全質量に対して1000質量ppbを超えると、相対的に組成物中におけるFe成分の含有量が少なくなりすぎる場合がある。酸の含有量が組成物全質量に対して1000質量ppb以下であれば、液中にコロイド粒子が形成されにくく、半導体デバイス製造工程に適用した際に半導体基板への欠陥を抑制することができる。
 また、過酸化水素は、通常、アントラキノン法により合成される。アントラキノン法により合成されて得られた過酸化水素を含む組成物中には、微量であるが一定程度の原料由来の不純物(例えば、アントラキノン類化合物、又は、アントラキノンを還元してアントラヒドロキノンを合成する工程において用いられ得る触媒由来の、Ni、Pt、Pd及びAlからなる群より選ばれる原子を含む金属成分)が残存する場合が多い。これらの不純物は、通常では除去されることが望まれるが、本発明においては完全に除去するのではなく、少なくとも組成物に微量な程度残存させておくことが好ましい。
 本発明の組成物中、アントラキノン類化合物の含有量は、組成物全質量に対して0.01質量ppb~1000質量ppbであることが好ましい。アントラキノン類化合物の含有量が組成物全質量に対して0.01質量ppb以上であれば、欠陥性能の改良に効果がある。一方、アントラキノン類化合物の含有量が組成物全質量に対して1000質量ppb以下であれば、半導体デバイス製造工程に適用した際に半導体基板への欠陥影響が少ない。
 また、本発明の組成物は、Ni、Pt、Pd、Cr、Ti及びAlからなる群より選ばれる原子(以下、「特定原子」ともいう。)を含む金属成分を含有していてもよい。
 上記金属成分の含有量は、各特定原子ごとにそれぞれ、組成物全質量に対して0.01質量ppt~10質量ppbであることが好ましい。
 ここで金属成分には、特定原子がイオン状態のもの、及び、特定原子が非イオン状態のものが含まれ、例えば、特定金属イオン、及び、特定金属粒子(非イオン性金属)の形態が含まれる。つまり、本発明の組成物が例えばPt成分のみを含む場合、Pt成分には組成物中に含まれる全てのPt原子由来の成分(Ptイオン、Pt粒子)が含まれ、Pt成分の含有量とはPtの総メタル量(総Pt原子量)(総メタル量とは上述した通りである。)を意味する。また、「上記金属成分の含有量は、各特定原子ごとにそれぞれ、組成物全質量に対して0.01質量ppt~10質量ppbである」とは、本発明の組成物が例えばPt成分及びNi成分の2種を含む場合、各特定原子ごとにそれぞれ(言い換えると、Pt成分の含有量及びNi成分の含有量のいずれもが)、組成物全質量に対して0.01質量ppt~10質量ppbとなる意味である。
 Ni、Pt、Pd、Cr、Ti及びAlからなる群より選ばれる特定原子を含む金属成分の含有量が、各特定原子ごとにそれぞれ、組成物全質量に対して0.01質量ppb以上であれば、組成物の酸化力がより優れる。一方、Ni、Pt、Pd、Cr、Ti及びAlからなる群より選ばれる特定原子を含む金属成分の含有量が、各特定原子ごとにそれぞれ、組成物全質量に対して1000質量ppb以下(好ましくは10質量ppb以下)であれば、半導体デバイス製造工程に適用した際に半導体基板への欠陥影響が少ない。
 なお、アントラキノン法により合成されて得られた過酸化水素を含む組成物中には、上述した通り、アントラキノンを還元してアントラヒドロキノンを合成する工程において用いられ得る触媒由来のNi原子、Pt原子、Pd原子及び/又はAl原子を含む金属成分が多く含まれ得る。また、上記以外の他の原料成分由来の金属成分も混入する場合が多い。これら金属成分の中でも、特にNi、Pt、Pd、Cr、Ti及びAlからなる群より選ばれる原子を含有する金属成分の含有量を上記範囲とすることで、上記効果が得られることを確認している。
 また、本発明の組成物中、Ni、Pt、Pd及びAlからなる群より選ばれる原子(以下、「特定原子」ともいう。)を含む金属成分の含有量は、組成物全質量に対して0.01質量ppt~1質量ppbであることが好ましい。ここで金属成分には、特定原子がイオン状態のもの、及び、特定原子が非イオン状態のものが含まれ、例えば、特定金属イオン、及び、特定金属粒子(非イオン性金属)の形態が含まれる。つまり、本発明の組成物が例えばPt成分のみを含む場合、Pt成分には組成物中に含まれる全てのPt原子由来の成分(Ptイオン、Pt粒子)が含まれ、Pt成分の含有量とはPtの総メタル量(総Pt原子量)(総メタル量とは上述した通りである。)を意味する。Ni、Pt、Pd及びAlからなる群より選ばれる特定原子を含む金属成分の含有量が組成物全質量に対して0.01質量ppb以上であれば、組成物の酸化力がより優れる。一方、Ni、Pt、Pd及びAlからなる群より選ばれる特定原子を含む金属成分の含有量が組成物全質量に対して1000質量ppb以下(好ましくは1質量ppb以下)であれば、半導体デバイス製造工程に適用した際に半導体基板への欠陥影響が少ない。
 なお、アントラキノン法により合成されて得られた過酸化水素を含む組成物中には、上述した通り、アントラキノンを還元してアントラヒドロキノンを合成する工程において用いられ得る触媒由来のNi原子、Pt原子、Pd原子及び/又はAl原子を含む金属成分が多く含まれ得る。このNi、Pt、Pd、及びAlからなる群より選ばれる原子を含有する金属成分の含有量を上記範囲とすることで、上記効果が得られることを確認している。
 以下、本発明の組成物の各成分について更に詳述する。
 <過酸化水素>
 本発明の組成物中、過酸化水素の含有量は0.001~70質量%であることが好ましく、10~60質量%であることがより好ましく、15~60質量%であることが更に好ましい。
 <酸>
 本発明の組成物は、酸を含有する。なお、ここでいう「酸」には過酸化水素は含まれない。
 酸としては、液中に存在する金属イオンを吸着(吸着の形態としては、イオン結合又は配位結合が挙げられる。)できれば特に限定されないが、水溶性酸性化合物であることが好ましい。
 水溶性酸性化合物としては、水に溶解して酸性を示す解離可能な官能基を有すれば特に制限はなく、有機化合物であっても、無機化合物であってもよい。またここでいう水溶性とは、25℃において水100gに5g以上溶解することである。
 水溶性酸性化合物及びその塩としては、例えば、無機酸(例えば、塩酸、硫酸、リン酸及び硝酸等)等の酸性化合物、カルボン酸誘導体、スルホン酸誘導体、及び、リン酸誘導体等が挙げられる。また、これらの酸性官能基が塩を形成した化合物であってもよい。
 なかでも、上記水溶性酸性化合物としては、不純物を効果的にキレート化し除去できる観点から、リン酸誘導体又はリン酸であることが好ましい。
 リン酸誘導体としては、例えば、ピロリン酸及びポリリン酸が挙げられる。
 また水溶性酸性化合物と塩を形成するカチオンとしては、アルカリ金属、アルカリ土類金属、四級アルキル化合物(例えば、水酸化テトラメチルアンモニウム(TMAH)、水酸化テトラエチルアンモニウム(TEAH)、水酸化テトラプロピルアンモニウム(TPAH)、及び、水酸化テトラブチルアンモニウム(TBAH)等)等が挙げられる。上記塩を形成するカチオンは、1種であっても2種以上の組合せであってもよい。
 また、水溶性酸性化合物としては、上述のもの以外に、いわゆるキレート剤を用いてもよい。キレート剤としては、特に限定されないが、ポリアミノポリカルボン酸であることが好ましい。
 ポリアミノポリカルボン酸は、複数のアミノ基及び複数のカルボン酸基を有する化合物であり、例えば、モノ-又はポリアルキレンポリアミンポリカルボン酸、ポリアミノアルカンポリカルボン酸、ポリアミノアルカノールポリカルボン酸、及び、ヒドロキシアルキルエーテルポリアミンポリカルボン酸が挙げられる。
 好適なポリアミノポリカルボン酸キレート剤としては、例えば、ブチレンジアミン四酢酸、ジエチレントリアミン五酢酸(DTPA)、エチレンジアミンテトラプロピオン酸、トリエチレンテトラミン六酢酸、1,3-ジアミノ-2-ヒドロキシプロパン-N,N,N’,N’-四酢酸、プロピレンジアミン四酢酸、エチレンジアミン四酢酸(EDTA)、トランス-1,2-ジアミノシクロヘキサン四酢酸、エチレンジアミン二酢酸、エチレンジアミンジプロピオン酸、1,6-ヘキサメチレン-ジアミン-N,N,N’,N’-四酢酸、N,N-ビス(2-ヒドロキシベンジル)エチレンジアミン-N,N-二酢酸、ジアミノプロパン四酢酸、1,4,7,10-テトラアザシクロドデカン-四酢酸、ジアミノプロパノール四酢酸、及び、(ヒドロキシエチル)エチレンジアミン三酢酸が挙げられる。なかでも、ジエチレントリアミン五酢酸(DTPA)、エチレンジアミン四酢酸(EDTA)、又は、トランス-1,2-ジアミノシクロヘキサン四酢酸が好ましい。
 本発明の組成物中、酸は、単独、又は2種以上を組み合わせて配合できる。
 酸の含有量は、上述した通り、組成物全質量に対して0.01質量ppb~1000質量ppbであることが好ましい。本発明の効果をより一層優れたものとする観点からは、0.05質量ppb~800質量ppbであることがより好ましく、0.05質量ppb~500質量ppbであることが更に好ましい。
 <Fe成分>
 本発明の組成物は、Fe成分を含有する。
 上述した通り、本発明の組成物中、Fe成分の含有量は、酸の含有量に対して質量比で10-5~10である。本発明の効果をより一層優れたものとする観点からは、Fe成分の含有量は、酸の含有量に対して質量比で10-3~10-1であることが好ましい。
 また、上述した通り、本発明の組成物中、上記Fe成分の含有量は、組成物全質量に対して0.1質量ppt~1質量ppbであることが好ましい。本発明の効果をより一層優れたものとする観点からは、0.1質量ppt~800質量pptであることがより好ましく、0.1質量ppt~500質量pptであることが更に好ましい。なお、ここでの含有量はFe原子の総メタル量を意図する。
 <水>
 本発明の組成物は、溶剤として水を含有してもよい。
 水の含有量は、特に限定されないが、組成物全質量に対して、1~99.999質量%であればよい。
 水としては、半導体デバイス製造に使用される超純水が好ましい。
 水としては、特に、無機陰イオン及び金属イオン等を低減させた水であることが好ましく、なかでもFe、Co、Na、K、Ca、Cu、Mg、Mn、Li、Al、Cr、Ni、及び、Znの金属原子由来のイオン濃度が低減されているものがより好ましく、本発明の組成物の調液に用いる際に、pptオーダー若しくはそれ以下(一形態において、金属含有率が0.001質量ppt未満)に調整されているものが更に好ましい。調整の方法としては、ろ過膜若しくはイオン交換膜を用いた精製、又は、蒸留による精製が好ましい。調整の方法としては、例えば、特開2011-110515号公報段落[0074]から[0084]に記載の方法、特開2007―254168号公報に記載の方法が挙げられる。
 なお、本発明の実施形態に使用される水は、上記のようにして得られる水であることが好ましい。本発明の組成物を半導体製造用処理液として用いる場合、本発明の所望の効果が顕著に得られる観点から、上述した水は、本発明の組成物のみでなく収容容器の洗浄、後述するキットの調液にも用いられることがより好ましい。また、上述した水は、本発明の組成物の製造工程、本発明の組成物の成分測定、及び本発明の組成物の評価のための測定等にも用いられることが好ましい。
 <アントラキノン類化合物>
 本発明の組成物は、アントラキノン類化合物を含有していてもよい。
 アントラキノン類化合物としては、例えば、アントラキノン法による過酸化水素の合成過程で用いられるものが挙げられる。具体的には、アルキルアントラキノン及びアルキルテトラヒドロアントラキノンからなる群から選ばれる少なくとも1種以上であることが好ましい。
 アルキルアントラキノン及びアルキルテトラヒドロアントラキノンに含まれるアルキル基は、例えば、炭素数1~8であることが好ましく、炭素数1~5であることがより好ましい。アルキルアントラキノンとしては、なかでも、エチルアントラキノン又はアミルアントラキノンが好ましい。また、アルキルテトラヒドロアントラキノンとしては、なかでも、エチルテトラヒドロアントラキノン又はアミルテトラヒドロアントラキノンが好ましい。
 本発明の組成物中、アントラキノン類化合物は、単独、又は2種以上を組み合わせて配合できる。
 本発明の組成物がアントラキノン類化合物を含有する場合、その含有量は、上述した通り、組成物全質量に対して0.01質量ppb~1000質量ppbであることが好ましい。本発明の効果をより一層優れたものとする観点からは、0.05質量ppb~800質量ppbであることがより好ましく、0.05質量ppb~500質量ppbであることが更に好ましい。
 <Ni、Pt、Pd、Cr、Ti及びAlからなる群より選ばれる特定原子を含む金属成分>
 本発明の組成物は、Ni、Pt、Pd、Cr、Ti及びAlからなる群より選ばれる特定原子を含む金属成分を少なくとも1種以上含んでいてもよい。
 本発明の組成物がNi、Pt、Pd、Cr、Ti及びAlからなる群より選ばれる特定原子を含む金属成分を含有する場合、上記金属成分の含有量は、上述した通り、各特定原子ごとにそれぞれ、組成物全質量に対して0.01質量ppt~10質量ppbであることが好ましい。本発明の効果をより一層優れたものとする観点からは、0.01質量ppt~1質量ppbがより好ましく、0.01質量ppt~800質量pptであることが更に好ましく、0.01質量ppt~500質量pptであることが特に好ましい。
 <Ni、Pt、Pd及びAlからなる群より選ばれる特定原子を含む金属成分>
 本発明の組成物は、Ni、Pt、Pd及びAlからなる群より選ばれる特定原子を含む金属成分を少なくとも1種以上含んでいてもよい。
 本発明の組成物がNi、Pt、Pd及びAlからなる群より選ばれる特定原子を含む金属成分を含有する場合、その含有量は、上述した通り、組成物全質量に対して0.01質量ppt~1質量ppbであることが好ましい。本発明の効果をより一層優れたものとする観点からは、0.01質量ppt~800質量pptであることがより好ましく、0.01質量ppt~500質量pptであることが更に好ましい。
 本発明の組成物は、上述した成分のほか、本発明の効果を奏する範囲で、その他の添加剤を含有していてもよい。その他の添加剤としては、例えば、界面活性剤、消泡剤、pH調整剤、及びフッ化物等が挙げられる。
〔組成物の製造方法〕
 本発明の組成物の製造方法は、
 溶剤、及び、アントラキノン類化合物を含む原料成分から選ばれるいずれか1種以上を精製する原料精製工程(以下「第1工程」ともいう。)と、
 上記アントラキノン類化合物を触媒の存在下で還元してアントラヒドロキノン類化合物を合成し、更に上記アントラヒドロキノン類化合物を酸化して過酸化水素を合成する、過酸化水素合成工程(以下「第2工程」ともいう。)と、
 得られた過酸化水素を抽出することにより反応系から取り出す、過酸化水素分離工程(以下「第3工程」ともいう。)と、
 反応系から分離された過酸化水素を含む過酸化水素組成物を更に精製する、過酸化水素組成物精製工程(以下「第4工程」ともいう。)と、を有する。
 以下、第1工程~第4工程について詳述する。
(第1工程:原料精製工程)
 本発明の組成物の製造方法は、いわゆるアントラキノン法により、原料としてアントラキノン類化合物を用いて過酸化水素を合成する方法である。
 本第1工程では、溶剤、及び、アントラキノン類化合物を含む原料成分から選ばれるいずれか1種以上を事前に蒸留、イオン交換、及びろ過等によって精製する。精製の程度としては、例えば、原料の純度99%以上となるまで精製することが好ましく、純度99.9%以上となるまで精製することがより好ましい。このような高純度の原料を使用することが、本発明による顕著な効果を得るために重要である。
 第1工程でいう溶剤とは、第2工程で実施される過酸化水素の合成反応の際に使用される溶剤のほか、第3工程で過酸化水素の抽出溶剤として用いられる水、又は、上記組成物精製工程の終了までに任意で用いられる溶剤を含む。
 また、第1工程でいうアントラキノン類化合物を含む原料成分とは、上述したアルキルアントラキノン及びアルキルテトラヒドロアントラキノン等のアントラキノン類化合物の他、アントラキノン類化合物の還元触媒を含む。
 精製方法としては、特に限定されないが、イオン交換樹脂若しくはRO膜(Reverse Osmosis Membrane)等に通す方法、蒸留、及び、後述するフィルタリング等の方法が挙げられる。具体的には、例えば、逆浸透膜等に通液して1次精製を行った後、カチオン交換樹脂、アニオン交換樹脂、又は混床型イオン交換樹脂からなる精製装置に通液して2次精製を実施する方法等が挙げられる。
 なお、精製処理は、上述した公知の精製方法を複数組み合わせて、実施してもよい。
 また、精製処理は、複数回実施してもよい。
(第2工程:過酸化水素合成工程)
 本第2工程は、アントラキノン類化合物を原料とした公知の過酸化水素の合成方法を適用することができる。例えば、特開2014-108903号公報に記載の方法が挙げられる。
(第3工程:過酸化水素分離工程)
 本第3工程は、上述した第2工程で得られた過酸化水素を抽出して取り出す工程であり、公知の過酸化水素の抽出方法を適用することができる。例えば、特開2014-108903号公報に記載の方法が挙げられる。
 なお、抽出を行う際には、水を用いて過酸化水素を抽出することが好ましい。
 第3工程における「水」は、第1工程である原料精製工程を経て、Fe、Co、Na、K、Ca、Cu、Mg、Mn、Li、Al、Cr、Ni、及び、Znの金属原子由来のイオン濃度が低減されているものが好ましく、イオン交換水、又は、半導体デバイス製造に使用される超純水がより好ましい。
(第4工程:過酸化水素組成物精製工程)
 第4工程は、第3工程で得られた過酸化水素組成物(過酸化水素水)を精製する工程である。
 精製方法としては、特に限定されないが、イオン交換樹脂に通す方法、及び、減圧蒸留等の方法が挙げられる。
 イオン交換樹脂に通す方法としては、例えば、酸性カチオン交換樹脂を用いる方法のほか、アニオン交換樹脂とカチオン交換樹脂との混合床を用いる方法が挙げられる。
 また、過酸化水素水に対して後述するようなフィルタリングを実施してもよい。
 なお、精製処理は、上述した公知の精製方法を複数組み合わせて、実施してもよい。
 また、精製処理は、複数回実施してもよい。
<フィルタリング>
 フィルタとしては、従来からろ過用途等に用いられているものであれば特に限定されることなく用いることができる。例えば、ポリテトラフルオロエチレン(PTFE)及びテトラフルオロエチレンパーフルオロアルキルビニルエーテル共重合体(PFA)等のフッ素樹脂、ナイロン等のポリアミド系樹脂、並びに、ポリエチレン及びポリプロピレン(PP)等のポリオレフィン樹脂(高密度、超高分子量を含む)等によるフィルタが挙げられる。これら材料のなかでもポリエチレン、ポリプロピレン(高密度ポリプロピレンを含む)、PTFE及びPTA等のフッ素樹脂、並びに、ナイロン等のポリアミド系樹脂からなる群より選ばれる材料が好ましく、なかでも、ポリプロピレン(高密度ポリプロピレンを含む)及びナイロンのフィルタがより好ましい。これらの材料により形成されたフィルタを使用することで、半導体基板の欠陥(残渣欠陥やパーティクル欠陥)の原因となり易い極性の高い異物を効果的に除去できるほか、本願発明の特定金属成分の量を効率的に減らすことができる。
 フィルタの孔径は、一形態において、0.001~1.0μm程度が適しており、0.02~0.5μm程度が好ましく、0.01~0.1μm程度がより好ましい。この範囲とすることにより、ろ過詰まりを抑えつつ、被処理物(フィルタリングの対象となる液であり、例えば、第1工程で用いられる溶剤若しくは原料成分、及び、第3工程を経て得られる過酸化水素水)に含まれる不純物又は凝集物等、微細な異物を確実に除去することが可能となる。
 フィルタを使用する際、異なるフィルタを組み合わせてもよい。
 異なるフィルタを組み合わせて使用する場合には、例えば、第1のフィルタ及び第2のフィルタを用いた方法が挙げられる。その際、第1のフィルタでのフィルタリングは、1回のみでもよいし、2回以上行ってもよい。また、上述した範囲内で異なる孔径の第1のフィルタを組み合わせてもよい。ここでの孔径は、フィルタメーカーの公称値を参照できる。市販のフィルタとしては、例えば、日本ポール株式会社、アドバンテック東洋株式会社、日本インテグリス株式会社(旧日本マイクロリス株式会社)又は株式会社キッツマイクロフィルタ等が提供する各種フィルタの中から選択できる。
 第2のフィルタは、上述した第1のフィルタと同様の材料等で形成されたフィルタを使用できる。第2のフィルタの孔径は、一形態において、0.01~1.0μm程度が適しており、好ましくは0.1~0.5μm程度である。この範囲とすることにより、被処理物に成分粒子(例えば、後述するFe粒子)が含有されている場合には、この成分粒子を残存させたまま、被処理物に混入している異物を除去できる。
 また、使用されるフィルタは、被処理物をろ過する前に処理されることが好ましい。この処理に使用される液体は、特に限定されないが、金属含有率が0.001質量ppt未満であることが好ましく、上述した水の他、他の有機溶剤を精製して、金属含有量が上記の範囲にしたもの、若しくは本発明の組成物そのもの、本発明の組成物を希釈したもの、若しくは本発明の組成物に添加している化合物を含む液体であると、本発明における所望の効果が顕著に得られる。
 以下、被処理物の精製に好適に用い得る、フィルタを備えた精製装置について説明する。
・精製装置
 図1は精製装置の一形態を表す概略図である。精製装置100は、タンク101を備え、タンク101は被処理物を供給するための供給口102を備える。精製装置100は、ろ過装置105を備え、タンク101とろ過装置105とは、供給管路109で連結され、タンク101とろ過装置105との間を流体(被処理物)を移送できるようになっている。供給管路109には、弁103、及び、ポンプ104が配置されている。図1において、精製装置100は、タンク101と、ろ過装置105とを備えるが被処理物のフィルタリングに用い得る精製装置としては、これに制限されない。
 精製装置100において、供給口102から供給された流体は、弁103、及び、ポンプ104を経てろ過装置105に流入する。ろ過装置105から排出された流体は、循環管路110を経て、タンク101に収容される。
 精製装置100は、循環管路110に被処理物を排出する排出部111を備える。排出部111は、弁107と、容器108を備え、循環管路に設けられた弁106と、上記弁107の切り替えによって、被処理物を容器108に収容できるようになっている。また、弁107には切り替え可能な管路113が接続されており、この管路113を経て循環洗浄後の被処理物を精製装置100外へと排出することができる。循環洗浄後の被処理物には、パーティクル、及び、金属不純物等が含有されている場合があり、被処理物を装置外へ排出する管路113を備える精製装置100によれば、容器108の充填部分等を汚染することがなく、半導体基板の欠陥の原因となり易い異物を効果的に除去できる。
 更に、精製装置100は、循環管路110に、被処理物モニタリング部112を備える。図1において、精製装置100は、循環管路110に被処理物モニタリング部112を備えるが、被処理物のフィルタリングに用い得る精製装置としては、これに制限されない。被処理物モニタリング部112は、供給管路109に備えられていてもよいし、供給管路109と循環管路110に備えられていてもよい。なお、精製装置100において、被処理物モニタリング部112は、循環管路110中に直接備えられているが、被処理物のフィルタリングに用い得る精製装置としては、これに制限されない。被処理物モニタリング部は、管路中に備えられた図示しない流体の一時収容タンク(タンク101とは異なる。)に備えられていてもよい。
 図2は、被処理物のフィルタリングに用い得る精製装置の他の形態を表す概略図である。精製装置200は、タンク101と、ろ過装置105とを備え、更に、タンク101と管路202、管路204、及び、管路203で接続され、上記各管路を通じてタンク101との間で流体を移送できるように配置された蒸留塔201を備える。また、一方で、被処理物のフィルタリングに用い得る精製装置としては、ろ過装置105、及び/又は、蒸留塔201を必ずしも備えていなくてもよいし、一方で、更に、管路203で蒸留塔201と接続された反応容器等を備えていてもよい。なお、被処理物が過酸化水素水の場合には、蒸留塔201、及び、管路203で蒸留塔201と接続された反応容器等を備えていなくてもよい。
 精製装置200において、管路203を経て蒸留塔201に供給された流体は、蒸留塔201で蒸留される。蒸留された流体は管路202を経て、タンク101に収容される。供給管路109には、弁103、及び、弁206が備えられ、管路204に備えられた弁205との切り替えによって、タンク101から排出された流体を、ろ過装置105に流入できるようになっている。
 また、精製装置200においては、タンク101から排出された流体を再び蒸留塔201に流入することもできる。その場合、上記の弁103、弁206、及び、弁205の切り替えによって、管路204から、弁207、及び、管路203を経て流体が蒸留塔201に流入する。
 精製装置の接液部(接液部の定義については後述する。)の材料としては特に制限されないが、被処理物の異物をより低減できる点で、非金属材料、及び、電解研磨された金属材料からなる群から選択される少なくとも1種から形成されることが好ましい。なお、本明細書において、「接液部」とは、流体が接する可能性がある部位(例えば、タンク内面、及び、管路内面等)で、かつ、その表面から厚み100nmの領域を意図する。
 上記非金属材料としては、特に限定されないが、ポリエチレン樹脂、ポリプロピレン樹脂、及びポリエチレン-ポリプロピレン樹脂等のポリオレフィン樹脂、並びにパーフルオロ樹脂等のフッ素含有樹脂材料であることが好ましく、金属原子の溶出が少ない観点からフッ素含有樹脂であることが好ましい。
 フッ素含有樹脂としては、パーフルオロ樹脂等が挙げられ、四フッ化エチレン樹脂(PTFE)、四フッ化エチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、四フッ化エチレン-六フッ化プロピレン共重合樹脂(FEP)、四フッ化エチレン-エチレン共重合体樹脂(ETFE)、三フッ化塩化エチレン-エチレン共重合樹脂(ECTFE)、フッ化ビニリデン樹脂(PVDF)、三フッ化塩化エチレン共重合樹脂(PCTFE)、及びフッ化ビニル樹脂(PVF)等が挙げられる。
 なかでも、フッ素含有樹脂としては、四フッ化エチレン樹脂、四フッ化エチレン・
パーフルオロアルキルビニルエーテル共重合体、又は四フッ化エチレン-六フッ化プロピレン共重合樹脂が好ましい。
 上記金属材料としては、特に制限されず、公知の材料を用いることができる。
 金属材料としては、例えば、クロム及びニッケルの含有量の合計が金属材料全質量に対して25質量%超である金属材料が挙げられ、なかでも、30質量%以上が好ましい。金属材料におけるクロム及びニッケルの含有量の合計の上限値としては特に制限されないが、一般に90質量%以下が好ましい。
 金属材料としては例えば、ステンレス鋼、及びニッケル-クロム合金等が挙げられる。
 ステンレス鋼としては、特に制限されず、公知のステンレス鋼を用いることができる。なかでも、ニッケルを8質量%以上含有する合金が好ましく、ニッケルを8質量%以上含有するオーステナイト系ステンレス鋼がより好ましい。オーステナイト系ステンレス鋼としては、例えばSUS(Steel Use Stainless)304(Ni含有量8質量%、Cr含有量18質量%)、SUS304L(Ni含有量9質量%、Cr含有量18質量%)、SUS316(Ni含有量10質量%、Cr含有量16質量%)、及びSUS316L(Ni含有量12質量%、Cr含有量16質量%)等が挙げられる。
 ニッケル-クロム合金としては、特に制限されず、公知のニッケル-クロム合金を用いることができる。なかでも、ニッケル含有量が40~75質量%、クロム含有量が1~30質量%のニッケル-クロム合金が好ましい。
 ニッケル-クロム合金としては、例えば、ハステロイ(商品名、以下同じ。)、モネル(商品名、以下同じ)、及びインコネル(商品名、以下同じ)等が挙げられる。より具体的には、ハステロイC-276(Ni含有量63質量%、Cr含有量16質量%)、ハステロイ-C(Ni含有量60質量%、Cr含有量17質量%)、ハステロイC-22(Ni含有量61質量%、Cr含有量22質量%)等が挙げられる。
 また、ニッケル-クロム合金は、必要に応じて、上記した合金の他に、更に、ホウ素、ケイ素、タングステン、モリブデン、銅、及びコバルト等を含有していてもよい。
 金属材料を電解研磨する方法としては特に制限されず、公知の方法を用いることができる。例えば、特開2015-227501号公報の0011~0014段落、及び、特開2008-264929号公報の0036~0042段落等に記載された方法を用いることができる。
 金属材料は、電解研磨されることにより表面の不動態層におけるクロムの含有量が、母相のクロムの含有量よりも多くなっているものと推測される。そのため、接液部が電解研磨された金属材料から形成された蒸留塔からは、被処理物中に金属原子を含有する金属不純物が流出しにくいため、不純物含有量が低減された蒸留済みの被処理物を得ることができるものと推測される。
 なお、金属材料はバフ研磨されていてもよい。バフ研磨の方法は特に制限されず、公知の方法を用いることができる。バフ研磨の仕上げに用いられる研磨砥粒のサイズは特に制限されないが、金属材料の表面の凹凸がより小さくなりやすい点で、#400以下が好ましい。なお、バフ研磨は、電解研磨の前に行われることが好ましい。
 被処理物の異物をより低減できる点で、接液部は電解研磨されたステンレス鋼から形成されることが好ましい。特に、精製装置がタンクを備える場合、タンクの接液部が電解研磨されたステンレス鋼から形成されることがより好ましい。接液部におけるFeの含有量に対するCrの含有量の含有質量比(以下、「Cr/Fe」ともいう。)としては特に制限されないが、一般に、0.5~4が好ましく、なかでも、被処理物中に金属不純物、及び/又は、有機不純物がより溶出しにくい点で、0.5を超え、3.5未満がより好ましく、0.7以上、3.0以下がより好ましい。Cr/Feが0.5を超えると、タンク内からの金属溶出を抑えることができ、Cr/Feが3.5未満だとパーティクルの原因となる接液部のはがれ等が起きにくい。
 上記金属材料中のCr/Feを調整する方法としては特に制限されず、金属材料中のCr原子の含有量を調整する方法、及び、電解研磨により、研磨表面の不動態層におけるクロムの含有量が、母相のクロムの含有量よりも多くする方法等が挙げられる。
 金属材料は皮膜技術を適用されていても良い。
 皮膜技術には、金属被覆(各種メッキ)、無機被覆(各種化成処理、ガラス、コンクリート、及びセラミックス等)、及び有機被覆(さび止め油、塗料、ゴム、及びプラスチックス等)の3種に大別されている。
 好ましい皮膜技術としては、錆止め油、錆止め剤、腐食抑制剤、キレート化合物、可剥性プラスチック、又はライニング剤による表面処理が挙げられる。
 なかでも、各種のクロム酸塩、亜硝酸塩、ケイ酸塩、燐酸塩、オレイン酸、ダイマー酸、ナフテン酸等のカルボン酸、カルボン酸金属石鹸、スルホン酸塩、アミン塩、エステル(高級脂肪酸のグリセリンエステル、及び燐酸エステル等)等の腐食抑制剤、エチレンジアンテトラ酢酸、グルコン酸、ニトリロトリ酢酸、ヒドロキシエチルエチオレンジアミン三作酸、ジエチレントリアミン五作酸等のキレート化合物、又は、フッ素樹脂ライニングが好ましく、燐酸塩処理又はフッ素樹脂ライニングが特に好ましい。
 上記精製装置は、ろ過装置105を備えることにより、被処理物の異物をより低減できる。ろ過装置105が含有するろ過部材としては特に制限されないが、除粒子径が20nm以下のフィルタ、及び、金属イオン吸着フィルタからなる群から選択される少なくとも1種が好ましく、除粒子径が20nm以下のフィルタであり、且つ、金属イオン吸着フィルタであることがより好ましい。
 ・・除粒子径が20nm以下のフィルタ
 除粒子径が20nm以下のフィルタは、被処理物から、直径20nm以上の粒子を効率的に除去する機能を有する。
 なお、フィルタの除粒子径としては、1~15nmが好ましく、1~12nmがより好ましい。除粒子径が15nm以下だと、より微細な粒子を除去でき、除粒子径が1nm以上だと、ろ過効率が向上する。
 ここで、除粒子径とは、フィルタが除去可能な粒子の最小サイズを意味する。例えば、フィルタの除粒子径が20nmである場合には、直径20nm以上の粒子を除去可能である。
 フィルタの材質としては、例えば、6-ナイロン、及び6、6-ナイロン等のナイロン、ポリエチレン、ポリプロピレン、ポリスチレン、ポリイミド、ポリアミドイミド、並びに、フッ素樹脂等が挙げられる。ポリイミド、及び/又は、ポリアミドイミドは、カルボキシ基、塩型カルボキシ基及び-NH-結合からなる群より選択される少なくとも1つを有するものであってもよい。耐溶剤性については、フッ素樹脂、ポリイミド及び/又はポリアミドイミドが優れる。また、金属イオンを吸着する観点からは、6-ナイロン、及び6、6-ナイロン等のナイロンが特に好ましい。
 ろ過装置105は、上記フィルタを複数含有してもよい。ろ過装置105がフィルタを複数含有する場合、更に、他方のフィルタとしては、特に制限されないが、除粒子径が50nm以上のフィルタ(例えば、孔径が50nm以上の微粒子除去用の精密ろ過膜)が好ましい。被処理物中に、コロイド化した不純物、特に鉄又はアルミニウムのような金属原子を含有するコロイド化した不純物以外にも微粒子が存在する場合には、除粒子径が20nm以下であるフィルタ(例えば、孔径が20nm以下の精密ろ過膜)を用いてろ過する前に、除粒子径が50nm以上のフィルタ(例えば、孔径が50nm以上の微粒子除去用の精密ろ過膜)を用いて被精製物のろ過を実施することで、除粒子径が20nm以下であるフィルタ(例えば、孔径が20nm以下の精密ろ過膜)のろ過効率が向上し、粒子の除去性能がより向上する。
 ・・金属イオン吸着フィルタ
 上記ろ過装置105は、金属イオン吸着フィルタを含有することが好ましい。
 金属イオン吸着フィルタとしては特に制限されず、公知の金属イオン吸着フィルタが挙げられる。
 なかでも、金属イオン吸着フィルタとしては、イオン交換可能なフィルタが好ましい。ここで、吸着対象となる金属イオンは、特に制限されないが、例えば、Feイオン、Niイオン、Ptイオン、Pdイオン、Crイオン、Tiイオン及びAlイオンからなる群から選択される1種以上の金属のイオンが好ましく、Feイオン、Niイオン、Ptイオン、Pdイオン、Crイオン、Tiイオン及びAlイオンの全ての金属のイオンであることがより好ましい。
 金属イオン吸着フィルタは、金属イオンの吸着性能が向上するという観点から、表面に酸基を含有することが好ましい。酸基としては、スルホ基、及び、カルボキシ基等が挙げられる。
 金属イオン吸着フィルタを構成する基材(材質)としては、セルロース、ケイソウ土、ナイロン、ポリエチレン、ポリプロピレン、ポリスチレン、及び、フッ素樹脂等が挙げられる。金属イオンを吸着する効率の観点からは、ナイロンが特に好ましい。
 また、金属イオン吸着フィルタは、ポリイミド及び/又はポリアミドイミドを含有する材質で構成されていてもよい。上記金属イオン吸着フィルタとしては、例えば、特開2016―155121号公報(JP2016-155121)に記載されているポリイミド及び/又はポリアミドイミド多孔質膜が挙げられる。
 上記ポリイミド及び/又はポリアミドイミド多孔質膜は、カルボキシ基、塩型カルボキシ基、及び、-NH-結合からなる群より選択される少なくとも1つを含有するものであってもよい。金属イオン吸着フィルタが、フッ素樹脂、ポリイミド、及び/又は、ポリアミドイミドからなると、より優れた耐溶剤性を有する。
 ・・有機不純物吸着フィルタ
 ろ過装置105は、有機不純物吸着フィルタを更に含有してもよい。
 有機不純物吸着フィルタとしては特に制限されず、公知の有機不純物吸着フィルタが挙げられる。
 なかでも、有機不純物吸着フィルタとしては、有機不純物の吸着性能が向上する点で、有機不純物と相互作用可能な有機物骨格を表面に有すること(言い換えれば、有機不純物と相互作用可能な有機物骨格によって表面が修飾されていること)が好ましい。有機不純物と相互作用可能な有機物骨格としては、例えば、有機不純物と反応して有機不純物を有機不純物吸着フィルタに捕捉できるような化学構造が挙げられる。より具体的には、有機不純物としてn-長鎖アルキルアルコール(有機溶剤として1-長鎖アルキルアルコールを用いた場合の構造異性体)を含む場合には、有機物骨格としては、アルキル基が挙げられる。また、有機不純物としてジブチルヒドロキシトルエン(BHT)を含む場合には、有機物骨格としてはフェニル基が挙げられる。
 有機不純物吸着フィルタを構成する基材(材質)としては、活性炭を担持したセルロース、ケイソウ土、ナイロン、ポリエチレン、ポリプロピレン、ポリスチレン、及び、フッ素樹脂等が挙げられる。
 また、有機不純物吸着フィルタには、特開2002-273123号公報及び特開2013-150979号公報に記載の活性炭を不織布に固着したフィルタも使用できる。
 有機不純物吸着フィルタとしては、上記で示した化学吸着(有機不純物と相互作用可能な有機物骨格を表面に有する有機不純物吸着フィルタを用いた吸着)以外に、物理的な吸着方法も適用できる。
 例えば、有機不純物としてBHTを含む場合、BHTの構造は10オングストローム(=1nm)よりも大きい。そのため、孔径が1nmの有機不純物吸着フィルタを用いることで、BHTはフィルタの孔を通過できない。つまり、BHTは、フィルタによって物理的に捕捉されるので、被精製物中から除去される。このように、有機不純物の除去は、化学的な相互作用だけでなく物理的な除去方法を適用することでも可能である。ただし、この場合には、3nm以上の孔径のフィルタが「粒子除去フィルタ」として用いられ、3nm未満の孔径のフィルタが「有機不純物吸着フィルタ」として用いられる。
 繰り返しになるがフィルタを使用する際、異なるフィルタを組み合わせてもよい。異なるフィルタを組み合わせる方式としては、例えば、上述したような第1のフィルタ及び第2のフィルタの組み合わせる方法が挙げられる。その際、第1のフィルタでのフィルタリングは、1回のみでもよいし、2回以上行ってもよい。異なるフィルタを組み合わせて2回以上フィルタリングを行う場合には、各フィルタは、互いに同じ種類のものであってもよいし、互いに種類の異なるものであってもよいが、互いに種類の異なるものであることが好ましい。典型的には、第1のフィルタと第2フィルタとは、孔径及び構成素材のうちの少なくとも一方が異なっていることが好ましい。
 1回目のフィルタリングの孔径より2回目以降の孔径が同じ、又は、小さい方が好ましい。また、上述した範囲内で異なる孔径の第1のフィルタを組み合わせてもよい。ここでの孔径は、フィルタメーカーの公称値を参照できる。市販のフィルタとしては、例えば、日本ポール株式会社、アドバンテック東洋株式会社、日本インテグリス株式会社(旧日本マイクロリス株式会社)又は株式会社キッツマイクロフィルタ等が提供する各種フィルタの中から選択できる。また、ポリアミド製の「P-ナイロンフィルター(孔径0.02μm、臨界表面張力77mN/m)」;(日本ポール株式会社製)、高密度ポリエチレン製の「PE・クリーンフィルタ(孔径0.02μm)」;(日本ポール株式会社製)、及び高密度ポリエチレン製の「PE・クリーンフィルタ(孔径0.01μm)」;(日本ポール株式会社製)も使用することができる。
 被処理物の異物をより低減できる点で、精製装置は、洗浄液により予め洗浄されていることが好ましい。その方法は洗浄液をタンク101の供給口102から供給する。洗浄液の供給量としては特に制限されないが、タンク101の接液部を十分に洗浄できる程度の量が好ましく、供給する洗浄液の容量としては、タンク101の容量に対して30体積%以上が好ましい。洗浄液を供給口102から供給する際、弁103は閉じていても開いていてもいいが、タンク101をより洗浄しやすい点で、洗浄液を供給口102から供給する際には、弁103を閉じることが好ましい。
 タンク101に供給された洗浄液は、直ちに精製装置内を移送してもよいし、タンク101内を洗浄してから、精製装置内を(例えば、供給管路109を通じて)移送してもよい。洗浄液を用いてタンク101内を洗浄する方法としては特に制限されないが、例えば、タンク101が備える、図示しない撹拌翼を回転させて洗浄する方法が挙げられる。洗浄液を用いてタンクを洗浄する時間としては特に制限されず、タンク101の接液部の材料、及び、コンタミネーションの可能性等に応じて適宜選択すればよい。一般に、0.1秒~48時間程度が好ましい。なお、タンク101のみを洗浄する場合、例えば、タンク底部に設けられた図示しない排出口から、洗浄後の洗浄液を排出してもよい。
 洗浄液を用いて精製装置100の供給管路109等を洗浄する方法としては、特に制限されないが、弁103、及び、弁106を開き、弁107を閉じたうえで、ポンプ104を稼動し、洗浄液を供給管路109、及び、循環管路110を通じて精製装置内で循環させる方法(以下、「循環洗浄」ともいう。)が好ましい。上記のようにすることで、洗浄液を移送しながら、タンク101、ろ過装置105、及び、供給管路109等の接液部に付着した異物等を洗浄液により効率的に分散させ、及び/又は、より効率的に溶解させることができる。
 特に、精製装置がろ過装置を備える場合、洗浄方法としては、循環洗浄がより好ましい。循環洗浄の例を図1を用いて説明する。まず、タンク101から弁103を経て精製装置内へ供給された洗浄液は、供給管路109を通って(ろ過装置105、循環管路110、及び、弁106を経て)再びタンク101へ戻る(循環する)。このとき、洗浄液は、ろ過装置105でろ過され、洗浄液に溶解、及び、分散する粒子等が除去され、より洗浄効果を高めることができる。
 洗浄方法の他の形態としては、例えば、弁103、及び、弁107を開き、弁106を閉じたうえで、ポンプ104を稼動し、タンク101の供給口102から精製装置内に供給した洗浄液を、弁103、及び、ポンプ104を通じて、ろ過装置105に流入させ、その後、洗浄液を循環させずに弁107を経て精製装置外へと排出する方法(本明細書において、以下この方法を「バッチ洗浄」ともいう。)を用いてもよい。この場合、洗浄液は、上記のように、一定量を断続的に精製装置内に供給してもよいし、連続的に精製装置内に供給してもよい。
・第4工程でのフィルタリング
 第4工程にてフィルタリングを実施する場合には、上述の方法のほか、下記の方法により過酸化水素組成物のフィルタリングを実施することも好ましい。なお、第1工程においても、下記方法によるフィルタリングを実施してもよい。
 フィルタとしては、従来からろ過用途等に用いられているものであれば特に限定されることなく用いることができる。例えば、ポリテトラフルオロエチレン(PTFE)及びテトラフルオロエチレンパーフルオロアルキルビニルエーテル共重合体(PFA)等のフッ素樹脂、ナイロン等のポリアミド系樹脂、並びに、ポリエチレン及びポリプロピレン(PP)等のポリオレフィン樹脂(高密度、超高分子量を含む)等によるフィルタが挙げられる。これら材料のなかでもポリエチレン、ポリプロピレン(高密度ポリプロピレンを含む)、PTFE及びPTA等のフッ素樹脂、並びに、ナイロン等のポリアミド系樹脂からなる群より選ばれる材料が好ましく、なかでも、PTFE及びPTA等のフッ素樹脂のフィルタがより好ましい。これらの材料により形成されたフィルタを使用することで、半導体基板の欠陥(残渣欠陥やパーティクル欠陥)の原因となり易い極性の高い異物を効果的に除去できるほか、本願発明の特定金属成分の量を効率的に減らすことができる。
 フィルタの臨界表面張力としては、70mN/m以上が好ましく、95mN/m以下がより好ましく、75mN/m以上85mN/m以下が更に好ましい。尚、臨界表面張力の値は、製造メーカーの公称値である。臨界表面張力が上記範囲のフィルタを使用することで、半導体基板の欠陥(残渣欠陥及びパーティクル欠陥)の原因となり易い極性の高い異物を効果的に除去できるほか、本願発明の特定金属成分の量を効率的に減らすことができる。
 フィルタの孔径は、一形態において、2~20nm程度であることが好ましく、2~15nmであることがより好ましい。この範囲とすることにより、ろ過詰まりを抑えつつ、過酸化水素組成物中に含まれる不純物又は凝集物等、微細な異物を確実に除去することが可能となるほか、本願発明の特定金属成分の量を効率的に減らすことができる。
 フィルタを使用する際、異なるフィルタを組み合わせてもよい。その際、第1のフィルタでのフィルタリングは、1回のみでもよいし、2回以上行ってもよい。異なるフィルタを組み合わせて2回以上フィルタリングを行う場合は1回目のフィルタリングの孔径より2回目以降の孔径が同じ、又は、小さい方が好ましい。また、上述した範囲内で異なる孔径の第1のフィルタを組み合わせてもよい。ここでの孔径は、フィルタメーカーの公称値を参照できる。市販のフィルタとしては、例えば、日本ポール株式会社、アドバンテック東洋株式会社、日本インテグリス株式会社(旧日本マイクロリス株式会社)又は株式会社キッツマイクロフィルタ等が提供する各種フィルタの中から選択できる。また、ポリアミド製の「P-ナイロンフィルター(孔径0.02μm、臨界表面張力77mN/m)」;(日本ポール株式会社製)、高密度ポリエチレン製の「PE・クリーンフィルタ(孔径0.02μm)」;(日本ポール株式会社製)、及び高密度ポリエチレン製の「PE・クリーンフィルタ(孔径0.01μm)」;(日本ポール株式会社製)も使用することができる。
 第2のフィルタは、上述した第1のフィルタと同様の材料等で形成されたフィルタを使用できる。第2のフィルタの孔径は、1~10nm程度であることが好ましい。
 また、本発明においては、フィルタリングの工程は室温(25℃)以下で行うことが好ましい。より好ましくは23℃以下であり、20℃以下が更に好ましい。また、0℃以上であることが好ましく、5℃以上であることがより好ましく、10℃以上であることが更に好ましい。
 フィルタリングの工程では、粒子性の異物及び不純物が除去できるが、上記の温度であると、過酸化水素組成物中に溶解している上記粒子性の異物及び/又は不純物の量が少なくなるため、フィルタリングにより効率的に除去されるようになる。
 特に、過酸化水素組成物がNi、Pt、Pd、Cr、Ti及びAlからなる群より選ばれる特定原子を含む金属成分を本願所望の量を超えて含む場合、上記の温度で濾過することが好ましい。メカニズムは定かではないが、過酸化水素組成物中に、Ni、Pt、Pd、Cr、Ti及びAlからなる群より選ばれる特定原子を含む金属成分が含まれる場合、金属成分のその多くは粒子性のコロイド状態で存在していることが考えられる。上記の温度でフィルタリングすると、コロイド状に浮遊している金属成分が一部凝集するため、この凝集しているものが、フィルタリングにより効率的に除去され、本願所望の量に調整しやすくなることが考えられる。
 また、使用されるフィルタは、過酸化水素組成物を濾過する前に処理することが好ましい。この処理に使用される液体は、特に限定されないが、金属含有率が0.001質量ppt(parts per trillion)未満であることが好ましく、例えば、上述した水のほか、他の有機溶剤を精製して金属含有量を上記の範囲にしたもの、本発明の組成物そのもの(事前に調液したもの)若しくはこれを希釈したもの、又は、本発明の組成物を更に精製し、金属成分、不純物若しくは粗大粒子等をより低減させた液体が挙げられる。上述のような金属含有率が低減された液体でフィルタを前処理することで、本発明の所望の効果が顕著に得られる。
 第4工程での過酸化水素組成物の精製工程は、上記の各精製方法を組み合わせて実施することが好ましい。
 上記第1工程から第4工程を経ることで、半導体デバイス製造に用いることが可能な程度に高純度化された本発明の組成物を得ることができる。
 なお、本発明の組成物については、上述した通りである。また、本発明の組成物が含む酸は、アントラキノン法による過酸化水素の合成過程で副生成したフタル酸類等の酸であってもよく、また、上記第4工程において、又は、上記第4工程後に別途添加したものであってもよい。組成物の純度及び本発明の効果をより一層優れたものとする観点からは、第4工程において組成物に酸成分(好ましくはリン酸又はリン酸誘導体)を添加することが好ましく、この酸成分を添加した後に更に精製工程を行うことがより好ましい。
 <定量方法>
 また、水若しくは溶剤、原料成分、又は、本発明の組成物等に含まれる酸成分、又は、アントラキノン類化合物の各種定量は、イオンクロマトグラフィー法で分析することができる。
 また、水若しくは溶剤、原料成分、又は、本発明の組成物等に含まれるFe成分又は金属成分の各種定量は、ICP-MS法(誘導結合プラズマ質量分析法、測定装置としては、例えば、横河アナリティカルシステムズ製、Agilent 7500cs型を使用できる。)等で分析することができる。ICP-MS法では、金属原子の総質量、すなわち、金属イオン(イオン性金属)と金属粒子(非イオン性金属)の合計質量(「総メタル量」ともいう。)として定量される。
 また、最近開発されたSNP-ICP-MS(Single Nano Particle-Inductively Coupled Plasma-Mass Spectrometry)測定によれば、溶液中に存在する金属原子の量を、金属イオン(イオン性金属)と金属粒子(非イオン性金属)に分けて測定することが可能となった。ここで、金属粒子(非イオン性金属)とは、溶液中で溶解せず固体として存在している成分である。
 これまで、半導体製造用処理液等に含まれる金属原子の量は、ICP-MS法等により分析されるのが通常であり、ICP-MS法等の従来法によっては、金属原子に由来するイオン性金属と金属粒子(非イオン性金属)の識別ができないため、金属原子の総質量、すなわち、イオン性メタルと粒子性メタル(非イオン性メタル)の合計質量(以下、「総メタル量」等ともいう。)として定量される。
 半導体製造用処理液に不純物として含有される金属原子は、微細なパターン、及び、微細な半導体素子において欠陥を発生する要因の一つとなっている。このため、半導体製造用処理液中に含有される金属原子の量は少ないほどよいと考えられていた。しかしながら、本発明者は、処理液中に含有される金属原子の量と欠陥の発生率とが必ずしも相関せず、欠陥の発生率にばらつきがあることを見出していた。
 本発明者は、SNP-ICP-MS法を用いた測定により識別して定量することが可能となった半導体製造用処理液中に含有される金属原子由来のイオン性金属と金属粒子(非イオン性金属)の各々が欠陥に及ぼす影響について鋭意研究した。その結果、欠陥発生には金属粒子(非イオン性金属)量の影響が極めて大きく、金属粒子(非イオン性金属)量と欠陥発生との間には相関関係があることを見出したものである。SNP-ICP-MS法の装置としては例えば、アジレントテクノロジー社製、Agilent 8800 トリプル四重極ICP-MS(inductively coupled plasma mass spectrometry、半導体分析用、オプション#200)を用いて、実施例に記載した方法により測定することができる。上記の他に、PerkinElmer社製 NexION350Sのほか、アジレントテクノロジー社製、Agilent 8900も挙げられる。
 本発明の組成物において、SNP-ICP-MS法で測定したときのFe粒子(非イオン金属)の含有量は、欠陥性能の改良、及び経時安定性の確保の観点から、組成物全質量に対して、0.01質量ppt~0.1質量ppbであることが好ましい。
 また、本発明の組成物において、Ni、Pt、Pd、Cr、Ti及びAlからなる群より選ばれる特定原子を含む金属成分を含有し、上記金属成分が金属粒子(非イオン金属)を含有する場合には、欠陥性能の改良、及び経時安定性の確保の観点から、本発明の組成物における上記金属粒子の含有量は、各特定原子ごとにそれぞれ、組成物全質量に対して0.01質量ppt~100質量pptであることが好ましく、0.01質量ppt~50質量pptであることがより好ましく、0.01質量ppt~10質量pptであることが更に好ましい。つまり、本発明の組成物が例えばPt粒子のみを含む場合、Pt粒子が上述した数値範囲となる。一方、本発明の組成物が例えばPt粒子及びNi粒子を含む場合、Pt粒子及びNi粒子のそれぞれが上述した数値範囲となる。なお、上記金属粒子の含有量は、上述したSNP-ICP-MS法で測定される値である。
 本発明の組成物の調製、収容容器の開封及び/又は洗浄、組成物の充填等を含めた取り扱い、処理分析、及び測定は全てクリーンルームで行うことが好ましい。クリーンルームは、14644-1クリーンルーム基準を満たすことが好ましい。ISO(国際標準化機構)クラス1、ISOクラス2、ISOクラス3、ISOクラス4のいずれかを満たすことが好ましく、ISOクラス1、ISOクラス2を満たすことがより好ましく、ISOクラス1であることが更に好ましい。
<有機不純物>
 なお、有機不純物の含有量の測定には、ガスクロマトグラフ質量分析装置(製品名「GCMS-2020」、島津製作所社製)を用いる場合もある。また、特に制限されないが、有機不純物が高分子量化合物の場合には、Py-QTOF/MS(パイロライザー四重極飛行時間型質量分析)、Py-IT/MS(パイロライザーイオントラップ型質量分析)、Py-Sector/MS(パイロライザー磁場型質量分析)、Py-FTICR/MS(パイロライザーフーリエ変換イオンサイクロトロン型質量分析)、Py-Q/MS(パイロライザー四重極型質量分析)、及び、Py-IT-TOF/MS(パイロライザーイオントラップ飛行時間型質量分析)等の手法で分解物から構造の同定、及び濃度の定量をしてもよい。例えば、Py-QTOF/MSは島津製作所社製等の装置を用いることができる。
 <不純物及び粗大粒子>
 また、本発明の組成物は、粗大粒子を実質的に含まないことが好ましい。
 なお、本発明の組成物に含まれる粗大粒子とは、原料に不純物として含まれる塵、埃、有機固形物若しくは無機固形物等の粒子、組成物の調製中に汚染物として持ち込まれる塵、埃、有機固形物若しくは無機固形物等の粒子であり、最終的に本発明の組成物中で溶解せずに粒子として存在するものが該当する。本発明の組成物中に存在する粗大粒子の量は、レーザを光源とした光散乱式液中粒子測定方式における市販の測定装置を利用して液相で測定することができる。
 <キット及び濃縮液>
 本発明の組成物は、他の原料を別途添加するキットとしてもよい。この場合、使用の際に別途添加する他の原料として、水及び有機溶剤のような溶媒の他、用途に応じて他の化合物を混合して使用することができる。本発明の効果が顕著に得られる観点から、この際に使用され得る溶媒は、溶媒に含まれるFe成分又は金属成分の各含有率が、上述した本発明の組成物における特定の値の範囲と同じ範囲であると、キット及び濃縮液であっても本発明所望の効果が顕著に得られる。
<用途>
 本発明の組成物は、半導体デバイス製造に好ましく用いられる。本発明の組成物は、半導体デバイスを製造するためのいずれの工程にも用いることができ、具体的には、リソグラフィ工程、エッチング工程、イオン注入工程又は剥離工程等を含む半導体デバイスの製造工程において、各工程の終了後、あるいは次の工程に移る前に、有機物又は無機物を処理するための処理液として使用され、具体的には洗浄液、除去液又は剥離液等として好適に用いられる。
 本発明の組成物を半導体デバイス製造に用いる場合、特に限定されないが、例えば、シリコン基板上の無機金属イオンを除去する目的で塩酸と混合し、SC―2(Standard Clean 2)と呼ばれる薬液処理によりシリコン基板上から金属イオンの除去をするのに好適に用いられる。また、シリコン基板上のパーティクルを除去する目的でアンモニアと混合し、SC―1(Standard Clean 1)と呼ばれる薬液処理によりシリコン基板上からシリコンパーティクルの除去をするのに好適に用いられる。更には、基板上のレジストを除去する目的で硫酸と混合し、SPM(Sulfuric. Acid Hydrogen Peroxide Mixture)と呼ばれる薬液処理により半導体基板上からレジストの除去をするのに好適に用いられる。なお、ここでいうレジストの除去には、レジスト膜、エッチング残渣物、反射防止膜、及び、アッシング残渣物の除去も含まれる。エッチング残渣物とは、レジストをエッチング処理した際に発生する残渣物を意味し、アッシング残渣物とは、レジストをアッシング処理した際に発生する残渣物を意味する。
 また、本発明の組成物は、半導体製造用以外の他の用途でも好適に用いることができる。例えば、ポリイミド、センサー用レジスト又はレンズ用レジスト等の洗浄液、剥離液又は除去液としても使用することができる。
 また、上記の他の洗浄用途でも使用することができ、容器、配管又は基板(例えば、ウエハー又はガラス等)等の洗浄に好適に用いることができる。また、有機過酸化物若しくは無機過酸化物の原料;有機化合物の原料;エポキシ化合物の原料;紙、パルプ、及び木材等の漂白;繊維の原料;繊維の漂白;製錬工程における金属の酸化剤;食品及び医薬等の原料;製造設備若しくは容器の洗浄剤又は殺菌剤等;の各種用途にも使用できる。
〔組成物収容体〕
 本発明の組成物収容体は、保管容器と、上記保管容器内に収容された上述の本発明の組成物と、を有し、上記保管容器の上記組成物と接触する領域が非金属を主成分とする材料により形成されている。なお、ここで主成分とは、所定の成分が接触する領域の80質量%以上を構成していることを意図する。
 保管容器としては、本発明の組成物と接触する領域が非金属を主成分とする材料により形成されていれば、その形態は特に限定されず、任意の容器に充填して保管、運搬、そして使用することができる。容器としては、半導体用途向けに、容器内のクリーン度が高く、不純物の溶出が少ないものが好ましい。使用可能な容器としては、アイセロ化学(株)製の「クリーンボトル」シリーズ、コダマ樹脂工業(株)製の「ピュアボトル」等が挙げられるが、これらに限定されない。この容器の本発明の組成物と接触する領域、例えば、その収容部の内壁又は本発明の組成物の流路は、非金属を主成分とする材料により形成されており、容器との過剰な親和性に伴う容器からの溶出物汚染を防ぐ観点から、高密度ポリエチレン(HDPE)、テトラフルオロエチレンパーフルオロアルキルビニルエーテル共重合体(PFA)及びポリテトラフルオロエチレン(PTFE)からなる群から選ばれる材料から形成されていることが好ましい。なかでも、水との接触角が60~120°である、非金属を主成分とする材料で形成されていることがより好ましく、フッ素系樹脂(パーフルオロ樹脂)であることが更に好ましい。特に、上述のような本発明の組成物と接触する領域がフッ素系樹脂である保管容器を用いることで、本発明の組成物と接触する領域が、ポリエチレン樹脂、ポリプロピレン樹脂、又は、ポリエチレン-ポリプロピレン樹脂である保管容器を用いる場合と比べて、エチレン又はプロピレンのオリゴマーの溶出という不具合の発生を抑制できるため、好ましい。
 本発明の組成物と接触する領域がフッ素系樹脂である容器の具体例としては、例えば、Entegris社製 FluoroPurePFA複合ドラム等が挙げられる。また、特表平3-502677号公報の第4頁等、国際公開第2004/016526号パンフレットの第3頁等、国際公開第99/46309号パンフレットの第9及び16頁等、等に記載の容器も用いることができる。これらの容器は、充填前に容器内部を洗浄することが好ましい。この洗浄に使用される液体は、特に限定されないが、金属含有率が0.001質量ppt(parts per trillion)未満であることが好ましい。
 また、用途に応じて、例えば、上述した水のほか、他の有機溶剤を精製して金属含有量を上記の範囲にしたもの、本発明の組成物そのもの若しくはこれを希釈したもの、又は、本発明の組成物を更に精製し、金属成分、不純物若しくは粗大粒子等をより低減させた液体を洗浄に用いることにより、本発明の所望の効果が顕著に得られる。
 また、容器を洗浄する前に各種容器のふたを酸や有機溶媒で洗浄する等してふたに付着している異物の除去をすることで、ふたからの異物混入を防げるために好ましい。
 また、本発明の組成物は、製造後にガロン瓶又はコート瓶等の容器にボトリングし、輸送、保管されてもよい。ガロン瓶はガラス材料を使用したものであってもそれ以外であってもよい。
 本発明の組成物の保管時に、保管における組成物中の成分の変化を防ぐ目的で、容器内を純度99.99995体積%以上の不活性ガス(チッソ又はアルゴン等)で置換しておいてもよい。特に、含水率が少ないガスが好ましい。また、輸送又は保管に際しては、温度は特に限定されないが、変質を防ぐため、-20℃から20℃の範囲に温度制御してもよい。
 以下に実施例に基づいて本発明を更に詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。
 <原料等の精製>
 以下に示す各実施例で使用される各原料、各触媒は、純度99%以上の高純度グレードを用い、さらに事前に蒸留、イオン交換、及び、ろ過等によって精製したものである。
 実施例で使用した超純水は、特開2007―254168号公報に記載されている方法により精製を行い、後述する通常のICP-MS法による測定により、Na、Ca及びFeの各々の原子の含有率が10質量ppt未満とした。
 実施例及び比較例の組成物(以下、「過酸化水素組成物」とも称する)の調製、充填、保管及び分析測定は、全てISOクラス2以下を満たすレベルのクリーンルームで行った。また、使用する容器については、本発明の組成物で事前に洗浄した後に用いた。測定精度向上のため、金属成分の含有量の測定及び水の含有量の測定において、通常の測定で検出限界以下のものの測定については、体積換算で100分の1に濃縮して測定を行い、濃縮前の組成物の濃度に換算して含有量の算出を行なった。
<<実施例1>>
〔過酸化水素組成物の調製〕
 下記に示す第1工程~第4工程を実施することにより、過酸化水素組成物を調製した。(第1工程:原料精製工程)
 第1工程では、原料となる2-エチルアントラキノンをカラムに充填したカチオン交換樹脂に通し、原料中に含まれる金属イオン濃度が1質量ppmになるまで繰り返した。その後、2-エチルアントラキノンを単離した。
(第2工程:過酸化水素合成工程)
 2-エチルアントラキノンをベンゼンに溶解して得られた溶液に、Pt触媒を添加して懸濁液を得た。次いで、得られた懸濁液に水素を接触させることにより、2-エチルアントラキノンをPt触媒下で水素化して2-エチルアントラヒドロキノンを生成した。更に、得られた組成物をろ過することにより触媒を除去した。
 その後、得られた組成物に空気中の酸素を接触させて2-エチルアントラヒドロキノンを酸化することにより、2-エチルアントラキノン及び過酸化水素を生成した。
(第3工程:過酸化水素分離工程)
 上記第2工程で生成した過酸化水素を水で抽出して単離し、過酸化水素水溶液(過酸化水素組成物)を得た。
(第4工程:過酸化水素組成物精製工程)
 上記第3工程を実施した後、過酸化水素水溶液をカチオン交換樹脂で精製した。これにより、過酸化水素水溶液に含まれるアルミニウム、カルシウム、マグネシウム、ナトリウム等の原子を含む金属成分を除去した。カチオン交換樹脂には、スルホン酸基(-SOH)をイオン交換基とする強酸性カチオン交換樹脂を用いた。ここまでの工程で過酸化水素水溶液中に含まれる金属イオン濃度は1質量ppb程度であった。その後、平均孔径0.001~0.01μm以下のPTFE(ポリテトラフルオロエチレン)フィルタを用い、得られた過酸化水素水溶液を濾過し、更なる金属原子濃度の低減を行った。次いで、この過酸化水素水溶液にリン酸を添加した。その後、過酸化水素水溶液をアニオン交換樹脂とカチオン交換樹脂との混合床に接触させた。これにより、過酸化水素水溶液中の金属イオン濃度はpptオーダーであることを確認した。
〔評価〕
 次いで、得られた過酸化水素水溶液(過酸化水素組成物)に対し、下記に示す各種評価を実施した。
(組成物中のFe成分の測定)
 ICP-MS分析(SNP-ICP-MS分析ではない、通常のICP-MS分析を意味する)においては、分析ソフトウエアを後述するICP-MS分析装置としての分析ソフトウエアに代えた以外は、後述するSNP-ICP-MS分析と同様の手法により、各原子の濃度を測定した。
 なお、Fe成分において、Fe粒子の量は、後述するSNP-ICP-MS分析により測定され、Feイオンの量は、ICP-MS分析で測定されるFe成分の量(総メタル量)から、SNP-ICP-MS分析により測定されるFe粒子の量を差し引くことで算出することができる。
(SNP-ICP-MS(Single Nano Particle-Inductively Coupled Plasma-Mass Spectrometry)測定)
≪Fe粒子の含有率の測定≫
 Fe粒子の含有率については、Perkinelmer社製「Nexion350S」を用いて測定を行った。
 1)標準物質の準備
 標準物質は清浄なガラス容器内へ超純水を計量投入し、メディアン径50nmの測定対象金属粒子を10000個/mlの濃度となるように添加した後、超音波洗浄機で30分間処理した分散液を輸送効率測定用の標準物質として用いた。
 2)測定条件
 PFA製同軸型ネブライザ(なお、「PFA」とは、テトラフルオロエチレンとパーフルオロアルキルビニルエーテルの共重合体である。)、石英製サイクロン型スプレーチャンバ、石英製内径1mmトーチインジェクタを用い、測定対象液を約0.2mL/minで吸引した。酸素添加量は0.1L/min、プラズマ出力1600W、アンモニアガスによるセルパージを行った。時間分解能は50usにて解析を行った。
 3) Fe粒子の含有率は、メーカー付属の下記解析ソフトを用いて計測した。
 ・Fe粒子の含有率:ナノ粒子分析“SNP-ICP-MS”専用Syngistix ナノアプリケーションモジュール
 4) Fe原子の含有率は、メーカー付属の下記解析ソフトを用いて計測した(ICP-MS分析)。
Fe原子の含有率:Syngistix for ICP-MS ソフトウエア
(組成物中のその他の特定原子(Ni、Pt、Pd、Cr、Ti及びAl)由来の金属成分の測定)
 測定には、Agilent 8800 トリプル四重極ICP-MS(半導体分析用、オプション#200)を用いた。上記測定装置によれば、各測定試料中におけるイオン性金属と非イオン性金属とを分類し、それぞれの含有量を測定することができる。なお、イオン性金属の含有量と非イオン性金属の含有量の総和が、総メタル量に相当する。
・測定条件
 サンプル導入系は石英のトーチと同軸型PFA(パーフルオロアルコキシアルカン)ネブライザ(自吸用)、及び、白金インターフェースコーンを使用した。クールプラズマ条件の測定パラメータは以下のとおりである。
・RF(Radio Frequency)出力(W):600
・キャリアガス流量(L/min):0.7
・メークアップガス流量(L/min):1
・サンプリング深さ(mm):18
(組成物中の酸、アントラキノン類化合物の測定)
 組成物中の酸又はアントラキノン類化合物は、下記の方法により測定した。
 固定相にイオン交換樹脂、移動相(溶離液)に電解質の水溶液を使った液体クロマトグラフィー(イオン交換クロマトグラフィー質量分析法)で測定を行った。イオンクロマトグラフィー質量分析法(IC-MS)は、ICの検出器として質量分析計を接続した手法である。質量分析計では質量/電荷数(m/z)に応じて分離されるので、イオン化法にはエレクトロスプレーイオン化法(ESI)を、質量分析計にはタンデム質量分析計を用いた。さらに、分離された分子イオンをコリジョンセルで開裂させ、生成したプロダクトイオン(分子イオンの構造を反映)検出した。
(過酸化水素組成物の保存安定性評価)
 調製直後の過酸化水素組成物をヨウ化カリウムとチオ硫酸ナトリウムを用いた公知の方法で滴定し、調製直後の過酸化水素組成物の過酸化水素量を測定した。また、過酸化水素組成物を25℃で1週間静置して保存した後、上記と同様の方法により、過酸化水素組成物中の過酸化水素量(残存量)を求めた。
 次いで、下記式により分解率を算出し、保存安定性を評価した。
 (分解率)=〔(調製直後の過酸化水素組成物の過酸化水素量)-(経時保存後の過酸化水素組成物の過酸化水素の残存量)〕/(調製直後の過酸化水素組成物の過酸化水素量)×100
 評価基準は下記の通りである。下記基準において、評価が「D」以上であれば、保存安定性の実用上の要求を満たしており、「C」以上が好ましい。
 「A」:過酸化水素の分解率が5%未満
 「B」:過酸化水素の分解率が5%以上、10%未満
 「C」:過酸化水素の分解率が10%以上、20%未満
 「D」:過酸化水素の分解率が20%以上、30%未満
 「E」:過酸化水素の分解率が30%以上
(過酸化水素組成物の酸化力評価)
 過酸化水素組成物の酸化電位(酸化力)は電気化学的方法によって求めた。水素電極を参照電極とし、その時のOCP(Open Cirkit Potential)を求めた。
 評価基準は下記の通りである。
 「A」:酸化力が1.8mV以上
 「B」:酸化力1.6mV以上1.8mV未満
 「C」:酸化力1.6mV未満
(過酸化水素組成物の欠陥性能(半導体基板に付着した欠陥数の測定))
 ウェハ上表面検査装置(SP-5;KLA Tencor製)により、直径300mmのシリコン酸化膜基板表面に存在する直径32nm以上のパーティクル(以下、これを「欠陥」という。)数を計測した。次いで、このシリコン酸化膜基板をスピン吐出装置にセットし、回転させながら、同シリコン酸化膜基板の表面へ、得られた過酸化水素組成物を1.5L/minの流速で吐出した。その後、リンス処理を行い、乾燥した。得られた試料について、再び上記装置(SP-5)を用いてシリコン酸化膜基板表面に存在する欠陥数の計測を行い、初期値との差分を欠陥数とした。得られた欠陥数を下記基準に基づき評価した結果を表1に示す。下記基準において、評価が「C」以上であれば、半導体デバイス製造用処理液として要求される欠陥の抑制能を達成している。
 「A」:欠陥数が0以上50以下
 「B」:欠陥数が50超100以下
 「C」:欠陥数が100超500個以下
 「D」:欠陥数が500超1000個以下
 「E」:欠陥数が1000個超
<<実施例2~23、比較例1、比較例2>>
 下記表1に示す組成の過酸化水素組成物が得られるように、上記実施例1の過酸化水素組成物の調製方法及び使用材料を変更して、実施例2~23、比較例1及び比較例2の過酸化水素組成物を調製し、同様の評価を行った。結果を表1に示す。
 なお、表1において、例えば10^(-1)は、「10の-1乗」(0.1)を意図する。また、例えば、10^1は、「10の1乗」(10)を意図する。
 また、表1において「酸」には、第4工程で添加したリン酸のほか、アントラキノンの分解生成物として生成したフタル酸誘導体が含まれる。
 また、第1表中の(D)及び(E)欄の各種金属成分については、総メタル量を意味する。
 また、表2は、表1の金属成分の組成を表し、具体的には、金属イオン(イオン金属)と金属粒子(非イオン金属)とを分けて示したものである。なお、表2において、金属粒子(非イオン金属)は、「SNP-ICP-MS」により測定した各種金属粒子である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1の結果から、実施例の過酸化水素組成物によれば、保存安定性に優れ、且つ、半導体デバイス製造工程に適用した際に半導体基板への欠陥影響が少ないことが確認された。
 また、実施例1、実施例9、10、11及び比較例2の対比から、上記Fe成分の含有量は、組成物全質量に対して0.1質量ppt~1質量ppb(好ましくは0.1質量ppt~800質量ppt、より好ましくは0.1質量ppt~500質量ppt)であると、保存安定性に優れ、且つ、半導体デバイス製造工程に適用した際に半導体基板への欠陥影響が少ない効果を優れたレベルで両立できるとともに、更に、酸化力にも優れることが確認された。
 また、実施例1、実施例6、7、8及び比較例1の対比から、酸の含有量は、組成物全質量に対して0.01質量ppb~1000質量ppb(好ましくは0.05質量ppb~800質量ppb、より好ましくは0.05質量ppb~500質量ppb)であると、保存安定性に優れ、且つ、半導体デバイス製造工程に適用した際に半導体基板への欠陥影響が少ない効果を優れたレベルで両立できることが確認された。
 また、実施例1、実施例2~5の対比から、アントラキノン類化合物を含有する場合、アントラキノン類化合物の含有量は、組成物全質量に対して0.01質量ppb~1000質量ppb(好ましくは0.05質量ppb~800質量ppb、より好ましくは0.05質量ppb~500質量ppb)であると、更に、半導体デバイス製造工程に適用した際に半導体基板への欠陥影響が少ないことが確認された。
 また、実施例1、実施例12、実施例13の対比から、Ni、Pt、Pd、Cr、Ti及びAlからなる群より選ばれる特定原子を含む金属成分を含有する場合、上記金属成分の含有量が、各特定原子ごとにそれぞれ、組成物全量に対して0.01質量ppt~1質量ppb(好ましくは0.01質量ppt~800質量ppt、より好ましくは0.01質量ppt~500質量ppt)であると、更に、半導体デバイス製造工程に適用した際に半導体基板への欠陥影響が少ないことが確認された。
 また、実施例の結果から、Fe成分の含有量が、酸の含有量に対して質量比で10-3~10-1である場合、保存安定性に優れ、半導体デバイス製造工程に適用した際に半導体基板への欠陥影響が少なく、更に酸化力にも優れることが確認された。
 また、実施例の結果から、Ni原子、Pt原子、Pd原子、Cr原子、Ti原子及びAl原子からなる群より選ばれる特定金属原子を含む金属成分が金属粒子を含有する場合、金属粒子の含有量が、それぞれ独立して、組成物全量に対して0.01質量ppt~500質量ppt(好ましくは0.01質量ppt~100質量ppt、より好ましくは0.01質量ppt~50質量ppt)であると、更に、半導体デバイス製造工程に適用した際に半導体基板への欠陥影響が少ないことが確認された。
 一方、比較例の過酸化水素組成物では、保存安定性と、半導体基板への欠陥影響とを、両立できない結果となった。
 <<実施例A1~A3>>
 過酸化水素組成物と接触する領域を下記表3の成分とする保管容器中に実施例1の過酸化水素組成物を入れて25℃で1ヶ月間保管した後に、SNP-ICP-MSの測定及び欠陥性能の評価を行った。SNP-ICP-MS及び欠陥性能の評価測定方法は、実施例1と同様である。結果を表3に示す。なお、下記表3の実施例A1~A3欄において示す各金属成分の濃度は保管後における濃度を意味する。また、表3において「SNP-ICP-MS」における測定対象は、Fe粒子である。
 なお、容器との接触角は、接触角計DM-901(協和界面化学社製)により測定した。
 なお、表中、PFAは、テトラフルオロエチレンパーフルオロアルキルビニルエーテル共重合体を表し、PTFEは、ポリテトラフルオロエチレンを表す。
Figure JPOXMLDOC01-appb-T000003
 表3の結果から、過酸化水素組成物を、過酸化水素組成物と接触する領域が非金属を主成分とする材料で形成された保管容器に保存することで、長期保管後も欠陥性能に優れることが確認された。
 <<実施例B1~B7>>
 過酸化水素水(実施例B1~B7は、実施例1の過酸化水素組成物を使用した。実施例B5、B6及びB7では、実施例1の過酸化水素組成物において、過酸化水素の濃度のみ表4に記載する過酸化水素濃度(質量%)に変更したものを使用した。)と硫酸水(硫酸濃度(質量%):表4に記載)とを表4に示す混合比率(質量比)で混合し、下記表4に示す条件にてレジスト剥離試験を行った。以下に、試験対象のレジストを示す。
(レジスト剥離試験)
 試験ウエハ:シリコンウエハ上に、10μmのPMER P-CA1000PM(TOK製ポジ型レジスト)を製膜し、このレジスト層に対する剥離能力を下記条件にて評価した。
 ・薬液量:200ml.
 ・ウエハサイズ:3cm×3cm
 ・処理方法:ウエハを薬液に浸漬
 ・処理時間 1min.
 なお、表4において、実施例B1~B4については、硫酸水を事前に90℃まで加熱したのちに過酸化水素組成物と混合した。また、実施例B5~B7については、硫酸水を事前に65℃まで加熱したのちに過酸化水素組成物と混合した。いずれの実施例についても、過酸化水素組成物と硫酸水とを混合した後、さらに「処理温度」となるまで加熱を行った後、レジストの剥離試験に用いた。
 レジスト剥離性については、下記の評価基準に基づいて判定した。
 「A」:目視で100%のレジスト除去性を示した。
 「B」:目視で90%以上~100%未満のレジスト除去性を示した。
 「C」:目視で90%未満のレジスト除去性を示した。
Figure JPOXMLDOC01-appb-T000004
 上記表4の結果から、本発明の過酸化水素組成物はSPM処理に好ましく適用できることが確認された。
<<実施例C1~C5、比較例3>>
 過酸化水素水(実施例C1~C3は、実施例1の過酸化水素組成物を使用した。実施例C4~C5では、実施例1の過酸化水素組成物において、過酸化水素の濃度のみ表5に記載する過酸化水素濃度(質量%)に変更したものを使用した。)とアンモニア水(アンモニア濃度(質量%):表5に記載)とを表5に示す混合比率(質量比)で混合し、下記条件でSi基板上のパーティクル除去試験を行った。本実施例で使用したアンモニア水は全金属濃度が10質量ppt以下であることを確認した高純度アンモニア水である。なお、比較例3で用いた過酸化水素組成物は、表1中の比較例2の過酸化水素組成物である。
 なお、いずれの実施例についても、過酸化水素組成物とアンモニア水とを混合した後、「処理温度」となるまで加熱を行った後、パーティクル除去処理に用いた。
 ・パーティクル除去試験
 TEOS(テトラエチルオルトシリケート)基板上に各薬液を塗布し、その後UVison5(アプライドマテリアルズ社製)のブライトフィールドの測定モードで処理前後の欠陥数をカウントした。このカウントの内、欠陥分類評価EDAX(元素分析)を行い、Siを含有する欠陥数を総パーティクルとした。尚、測定前のTEOS基板上の総パーティクル数は200個であった。
 パーティクル除去性については、下記の評価基準に基づいて判定した。
 「A」:総パーティクル数が50個以下
 「B」:総パーティクル数が50個超~100個以下
 「C」:総パーティクル数が100個超~200個以下
 「D」:総パーティクル数が200個超
Figure JPOXMLDOC01-appb-T000005
 上記表5の結果から、本発明の過酸化水素組成物を用いてSC-1処理を実施すると、パーティクル除去性に優れることが確認された。
<<実施例D1~D6、比較例4>>
 過酸化水素水(実施例D1~D6は、実施例1の過酸化水素組成物を使用した。実施例D5~D6では、実施例1の過酸化水素組成物において、過酸化水素の濃度のみ表6に記載する過酸化水素濃度(質量%)に変更したものを使用した。)と塩酸水(塩酸濃度(質量%):表6に記載)とを表6に示す混合比率(質量比)で混合し、下記条件でSi基板上の金属除去試験を行った。
 本実施例で使用した塩酸水は全金属濃度が10質量ppt以下であることを確認した高純度塩酸水である。なお、比較例4で用いた過酸化水素組成物は、表1中の比較例2の過酸化水素組成物である。
 なお、いずれの実施例についても、過酸化水素組成物とアンモニア水とを混合した後、「処理温度」となるまで加熱を行った後、金属イオン除去処理液として用いた。
 ・金属イオン除去試験
 TEOS基板上に各薬液を塗布し、その後UVison5(アプライドマテリアルズ社製)のブライトフィールドの測定モードで処理前後の欠陥数をカウントした。このカウントの内、欠陥分類評価EDAX(元素分析)を行い、Siを除く金属原子を含有する欠陥数を総金属イオン成分数とした。尚、測定前のTEOS基板上の金属イオン成分数は50個であった。
 金属イオン除去性については、下記の評価基準に基づいて判定した。
 「A」:金属イオン成分が20個以下
 「B」:金属イオン成分が20個超~30個以下
 「C」:金属イオン成分が30個超~50個以下
 「D」:金属イオン成分が50個超
Figure JPOXMLDOC01-appb-T000006
 上記表6の結果から、本発明の過酸化水素組成物を用いてSC-2処理を実施すると、金属イオン除去性に優れることが確認された。
<<実施例E1~E4>>
 基準液(表7中の「処理前」に相当する精製前液である。)に対して下記表7に示すろ過試験を行い、ろ過後の各種金属(Fe成分、Pt成分)の総メタル濃度、及びSNP-ICP―MSで測定したFe粒子量を確認した。なお、基準液は、下記表7に示す「処理前」の組成の過酸化水素組成物が得られるように上記実施例1の過酸化水素組成物の調製方法を変更して調製したものである。また、各実施例において、記載される各組成は表7中に記載されるフィルタリング工程を経て精製された組成を意味する。つまり、例えば実施例E1では、処理前の過酸化水素組成物を表7に記載したナイロン(孔径5nm)でフィルタリングしたことを意味し、この結果(B)アントラキノン類化合物の含有量が0.1質量ppb、(C)酸濃度が0.1質量ppb、(D)Fe成分濃度が31質量ppt、(E)Pt成分濃度が8質量pptに精製されたことを意味する。結果を表7に示す。
Figure JPOXMLDOC01-appb-T000007
 上記表7の結果から、PTFE及びPTA等のフッ素系樹脂により形成されたフィルタを用いることで、金属成分の量を効率的に減らすことができることが確認された。
 100、200 製造装置
 101 タンク
 102 供給口
 103、106、107 弁
 104 ポンプ
 105 ろ過装置
 108 容器
 109 供給管路
 110 循環管路
 111 排出部
 112 洗浄液モニタリング部
 113 管路
 201 蒸留塔
 202、203、204 管路
 205、206、207 弁

Claims (16)

  1.  過酸化水素と、酸と、Fe成分と、を含み、
     前記Fe成分の含有量が、前記酸の含有量に対して質量比で10-5~10である、組成物。
  2.  更に、アントラキノン類化合物を含む、請求項1に記載の組成物。
  3.  前記アントラキノン類化合物の含有量が、組成物全質量に対して0.01質量ppb~1000質量ppbである、請求項1又は請求項2に記載の組成物。
  4.  前記酸の含有量が、組成物全質量に対して0.01質量ppb~1000質量ppbである、請求項1~3のいずれか1項に記載の組成物。
  5.  前記Fe成分の総含有量が、組成物全質量に対して0.1質量ppt~1質量ppbである、請求項1~4のいずれか1項に記載の組成物。
  6.  前記Fe成分中に含まれるFe粒子の含有量が、組成物全質量に対して0.01質量ppt~0.1質量ppbである、請求項1~5のいずれか1項に記載の組成物。
  7.  更に、Ni、Pt、Pd、Cr、Ti及びAlからなる群より選ばれる特定原子を含む金属成分を少なくとも1種以上含み、
     前記金属成分の含有量が、各特定原子ごとにそれぞれ、組成物全質量に対して0.01質量ppt~10質量ppbである、請求項1~6のいずれか1項に記載の組成物。
  8.  更に、Ni、Pt、Pd及びAlからなる群より選ばれる特定原子を含む金属成分を少なくとも1種以上含み、
     前記金属成分の含有量が、組成物全質量に対して0.01質量ppt~1質量ppbである、請求項1~6のいずれか1項に記載の組成物。
  9.  前記アントラキノン類化合物が、アルキルアントラキノン及びアルキルテトラヒドロアントラキノンからなる群から選ばれる少なくとも1種以上である、請求項2~8のいずれか1項に記載の組成物。
  10.  前記アルキルアントラキノンが、エチルアントラキノン又はアミルアントラキノンであり、前記アルキルテトラヒドロアントラキノンが、エチルテトラヒドロアントラキノン又はアミルテトラヒドロアントラキノンである、請求項9に記載の組成物。
  11.  前記酸が、リン酸、及び、リン酸誘導体からなる群から選択される1種である、請求項1~10のいずれか1項に記載の組成物。
  12.  半導体基板の処理液として用いられる、請求項1~11のいずれか1項に記載の組成物。
  13.  保管容器と、前記保管容器内に収容された、請求項1~12のいずれか1項に記載の組成物と、を有する組成物収容体であり、
     前記保管容器の前記組成物と接触する領域が非金属を主成分とする材料により形成されている、組成物収容体。
  14.  前記非金属を主成分とする材料が、高密度ポリエチレン、テトラフルオロエチレンパーフルオロアルキルビニルエーテル共重合体、及び、ポリテトラフルオロエチレンからなる群から選ばれるいずれか1種である、請求項13に記載の組成物収容体。
  15.  前記非金属を主成分とする材料の水との接触角が60~120°である、請求項13又は請求項14に記載の組成物収容体。
  16.  請求項1~12のいずれか1項に記載の組成物の製造方法であり、
     溶剤、及び、アントラキノン類化合物を含む原料成分から選ばれるいずれか1種以上を精製する原料精製工程と、
     前記アントラキノン類化合物を触媒の存在下で還元してアントラヒドロキノン類化合物を合成し、更に前記アントラヒドロキノン類化合物を酸化して過酸化水素を合成する、過酸化水素合成工程と、
     得られた過酸化水素を抽出することにより反応系から取り出す、過酸化水素分離工程と、
     反応系から分離された過酸化水素を含む過酸化水素組成物を更に精製する、過酸化水素組成物精製工程と、を有する、組成物の製造方法。
PCT/JP2017/016580 2016-04-28 2017-04-26 組成物、組成物収容体、組成物の製造方法 WO2017188325A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020187030546A KR102111305B1 (ko) 2016-04-28 2017-04-26 조성물, 조성물 수용체, 조성물의 제조 방법
CN201780025662.6A CN109075052B (zh) 2016-04-28 2017-04-26 组合物、组合物收容体及组合物的制造方法
JP2018514670A JP6646140B2 (ja) 2016-04-28 2017-04-26 組成物、組成物収容体、組成物の製造方法
US16/170,638 US11192786B2 (en) 2016-04-28 2018-10-25 Composition, composition reservoir, and method for producing composition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016092072 2016-04-28
JP2016-092072 2016-04-28
JP2017-086894 2017-04-26
JP2017086894 2017-04-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/170,638 Continuation US11192786B2 (en) 2016-04-28 2018-10-25 Composition, composition reservoir, and method for producing composition

Publications (1)

Publication Number Publication Date
WO2017188325A1 true WO2017188325A1 (ja) 2017-11-02

Family

ID=60159745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/016580 WO2017188325A1 (ja) 2016-04-28 2017-04-26 組成物、組成物収容体、組成物の製造方法

Country Status (5)

Country Link
US (1) US11192786B2 (ja)
JP (1) JP6646140B2 (ja)
KR (1) KR102111305B1 (ja)
TW (1) TWI714761B (ja)
WO (1) WO2017188325A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019172015A1 (ja) * 2018-03-06 2019-09-12 東洋スチレン株式会社 光学用スチレン系樹脂組成物及び光学部品

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102055154B1 (ko) * 2016-07-29 2019-12-12 후지필름 가부시키가이샤 처리액 및 기판 세정 방법
JP7141395B2 (ja) * 2016-12-01 2022-09-22 ラシルク,インコーポレイテッド ガス供給システムにおける過酸化水素の分解を抑制する方法、システム、および装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05259140A (ja) * 1992-03-11 1993-10-08 Mitsubishi Gas Chem Co Inc 半導体基板の洗浄液
JP2006505132A (ja) * 2002-11-05 2006-02-09 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング 半導体の表面処理およびそれに使用される混合物

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW263531B (ja) 1992-03-11 1995-11-21 Mitsubishi Gas Chemical Co
JP4736445B2 (ja) * 2004-02-09 2011-07-27 三菱化学株式会社 半導体デバイス用基板洗浄液及び洗浄方法
CN101189163B (zh) 2005-05-19 2010-05-19 三菱瓦斯化学株式会社 杀菌用过氧化氢水
CN102485642B (zh) * 2010-12-02 2015-10-07 上海化学试剂研究所 超高纯过氧化氢的生产方法
JP2012222023A (ja) * 2011-04-05 2012-11-12 Renesas Electronics Corp 半導体装置の製造方法
JP2014108903A (ja) 2012-11-30 2014-06-12 Mitsubishi Gas Chemical Co Inc 過酸化水素の製造方法
CN109970685A (zh) * 2013-10-02 2019-07-05 索尔维公司 用于制造纯化的过氧化氢水溶液的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05259140A (ja) * 1992-03-11 1993-10-08 Mitsubishi Gas Chem Co Inc 半導体基板の洗浄液
JP2006505132A (ja) * 2002-11-05 2006-02-09 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング 半導体の表面処理およびそれに使用される混合物

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019172015A1 (ja) * 2018-03-06 2019-09-12 東洋スチレン株式会社 光学用スチレン系樹脂組成物及び光学部品

Also Published As

Publication number Publication date
TWI714761B (zh) 2021-01-01
JPWO2017188325A1 (ja) 2019-02-28
US20190062159A1 (en) 2019-02-28
JP6646140B2 (ja) 2020-02-14
TW201807184A (zh) 2018-03-01
KR102111305B1 (ko) 2020-05-15
US11192786B2 (en) 2021-12-07
KR20180128940A (ko) 2018-12-04

Similar Documents

Publication Publication Date Title
TWI737798B (zh) 處理液、基板的清洗方法、半導體裝置的製造方法
KR102051346B1 (ko) 처리액, 기판 세정 방법 및 레지스트의 제거 방법
US11192786B2 (en) Composition, composition reservoir, and method for producing composition
KR102295991B1 (ko) 처리액, 키트, 기판의 세정 방법
TWI702285B (zh) 處理液、基板的洗淨方法及半導體元件的製造方法
WO2020195343A1 (ja) 洗浄液
KR101643124B1 (ko) 웨이퍼용 세정수 및 웨이퍼의 세정 방법
JP7509883B2 (ja) 半導体基板用洗浄液
CN114930505A (zh) 处理液、被处理物的处理方法
WO2019151001A1 (ja) 基板の処理方法、半導体装置の製造方法、基板処理用キット
CN109075052B (zh) 组合物、组合物收容体及组合物的制造方法
CN114364779B (zh) 处理液、被处理物的处理方法
JP7011098B1 (ja) 洗浄組成物、半導体基板の洗浄方法、および、半導体素子の製造方法
WO2021039701A1 (ja) 処理液
WO2023157655A1 (ja) 組成物、化合物、樹脂、基板の処理方法、半導体デバイスの製造方法
KR20240004681A (ko) 세정 조성물, 반도체 기판의 세정 방법, 반도체 소자의 제조 방법
KR20230043703A (ko) 약액, 처리 방법
WO2023248649A1 (ja) 処理液、基板の処理方法、半導体デバイスの製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018514670

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187030546

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17789607

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17789607

Country of ref document: EP

Kind code of ref document: A1