WO2019151001A1 - 基板の処理方法、半導体装置の製造方法、基板処理用キット - Google Patents

基板の処理方法、半導体装置の製造方法、基板処理用キット Download PDF

Info

Publication number
WO2019151001A1
WO2019151001A1 PCT/JP2019/001575 JP2019001575W WO2019151001A1 WO 2019151001 A1 WO2019151001 A1 WO 2019151001A1 JP 2019001575 W JP2019001575 W JP 2019001575W WO 2019151001 A1 WO2019151001 A1 WO 2019151001A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
solution
transition metal
acid
hydrogen peroxide
Prior art date
Application number
PCT/JP2019/001575
Other languages
English (en)
French (fr)
Inventor
智威 高橋
宣明 杉村
関 裕之
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2019569007A priority Critical patent/JP6992095B2/ja
Publication of WO2019151001A1 publication Critical patent/WO2019151001A1/ja
Priority to US16/939,163 priority patent/US11239093B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/0206Cleaning during device manufacture during, before or after processing of insulating layers
    • H01L21/02063Cleaning during device manufacture during, before or after processing of insulating layers the processing being the formation of vias or contact holes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • C09K13/04Etching, surface-brightening or pickling compositions containing an inorganic acid
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • C09K13/12Etching, surface-brightening or pickling compositions containing heavy metal salts in an amount of at least 50% of the non-solvent components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/02068Cleaning during device manufacture during, before or after processing of conductive layers, e.g. polysilicon or amorphous silicon layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/02068Cleaning during device manufacture during, before or after processing of conductive layers, e.g. polysilicon or amorphous silicon layers
    • H01L21/02074Cleaning during device manufacture during, before or after processing of conductive layers, e.g. polysilicon or amorphous silicon layers the processing being a planarization of conductive layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02082Cleaning product to be cleaned
    • H01L21/02087Cleaning of wafer edges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02082Cleaning product to be cleaned
    • H01L21/0209Cleaning of wafer backside
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32134Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by liquid etching only

Definitions

  • the present invention relates to a substrate processing method, a semiconductor device manufacturing method, and a substrate processing kit.
  • Patent Document 1 includes “(a) cerium (IV) ammonium nitrate and (b) one or more acids selected from the group consisting of nitric acid, perchloric acid and acetic acid, and (a) component A method for using a ruthenium or ruthenium oxide removing liquid, wherein ruthenium or ruthenium oxide adhering to the silicon substrate is removed using a removing liquid containing 5 to 35% by mass of (b) and 1 to 30% by mass of component (b).
  • Item 1) is disclosed.
  • this invention makes it a subject to provide the processing method of a board
  • Another object of the present invention is to provide a semiconductor device manufacturing method including the substrate processing method and a substrate processing kit applicable to the substrate processing method.
  • the present inventor has removed the transition metal-containing material on the substrate using a chemical solution containing a cerium compound or the like, and the substrate using a specific rinse solution
  • the present inventors have found that the above problems can be solved and completed the present invention. That is, the present inventors have found that the above problem can be solved by the following configuration.
  • a cerium compound A chemical solution comprising at least one pH adjuster selected from the group consisting of nitric acid, perchloric acid, ammonia, and sulfuric acid, Step A for removing the transition metal-containing material on the substrate using the substrate having the transition metal-containing material, Selected from the group consisting of a solution containing hydrogen peroxide, and an acidic aqueous solution other than hydrofluoric acid, nitric acid, perchloric acid aqueous solution, oxalic acid aqueous solution, and a mixed aqueous solution thereof that does not contain hydrogen peroxide. And a step B of rinsing the substrate obtained in the step A using one or more rinse solutions.
  • the solution containing hydrogen peroxide is a hydrogen peroxide solution, a mixed solution of hydrofluoric acid and hydrogen peroxide solution, a mixed solution of sulfuric acid and hydrogen peroxide solution, a mixed solution of ammonia water and hydrogen peroxide solution, and The method for treating a substrate according to any one of [1] to [4], wherein the substrate is a solution selected from the group consisting of a mixed solution of hydrochloric acid and hydrogen peroxide.
  • Acidic aqueous solutions other than the hydrofluoric acid, nitric acid, perchloric acid aqueous solution, oxalic acid aqueous solution, and mixed aqueous solutions thereof that do not contain hydrogen peroxide are sulfuric acid, phosphoric acid, carbon dioxide water, ozone water,
  • the rinsing liquid is a mixed liquid of sulfuric acid and hydrogen peroxide water, and the temperature is 90 to 250 ° C., or The rinsing liquid is one or more solutions selected from the group consisting of a solution containing hydrogen peroxide other than a mixed solution of sulfuric acid and hydrogen peroxide solution, and the acidic aqueous solution, and the temperature is 15 to The method for treating a substrate according to any one of [1] to [14], wherein the substrate is a solution at 70 ° C.
  • the transition metal-containing material is at least one selected from the group consisting of Ru, Ti, Ta, Co, Cr, Hf, Os, Pt, Ni, Mn, Cu, Zr, Mo, La, W, and Ir.
  • the step A includes a step A1 of recess-etching the transition metal-containing wiring disposed on the substrate using the chemical solution, and the transition metal-containing portion at the outer edge of the substrate on which the transition metal-containing film is disposed using the chemical solution.
  • Step A2 for removing the film Step A3 for removing the transition metal-containing material adhering to the back surface of the substrate on which the transition metal-containing film is disposed using the chemical solution, Transition metal on the substrate after dry etching using the chemical solution Any one of [1] to [17], which is a step A4 for removing inclusions, or a step A5 for removing transition metal inclusions on the substrate after chemical mechanical polishing using the chemical solution.
  • Step A2 for removing the film Step A3 for removing the transition metal-containing material adhering to the back surface of the substrate on which the transition metal-containing film is disposed using the chemical solution, Transition metal on the substrate after dry etching using the chemical solution Any one of [1] to [17], which is a step A4 for removing inclusions, or a step A5 for removing transition metal inclusions on the substrate after chemical mechanical polishing using the chemical solution.
  • the step A is the step A1, After the step A1, a mixed solution of hydrofluoric acid and hydrogen peroxide solution, a mixed solution of sulfuric acid and hydrogen peroxide solution, a mixed solution of ammonia water and hydrogen peroxide solution, and hydrochloric acid and hydrogen peroxide
  • [1] A method for manufacturing a semiconductor device, comprising the substrate processing method according to any one of [20].
  • Cerium (IV) ammonium nitrate A chemical solution comprising one or more pH adjusters selected from the group consisting of nitric acid, perchloric acid, ammonia, and sulfuric acid, and Selected from the group consisting of a solution containing hydrogen peroxide, and an acidic aqueous solution other than hydrofluoric acid, nitric acid, perchloric acid aqueous solution, oxalic acid aqueous solution, and a mixed aqueous solution thereof that does not contain hydrogen peroxide.
  • a substrate processing kit having one or more rinse solutions.
  • substrate which can remove the transition metal containing material on a board
  • exposure in the present specification includes not only exposure with a mercury lamp, deep ultraviolet rays typified by an excimer laser, X-rays, EUV (Extreme Ultraviolet) light, but also an electron beam, and Drawing with particle beams such as ion beams is also included in the exposure.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • pH is a value measured with a pH meter (HI 99131N (product number), Hanna Instruments Japan Co., Ltd.) at room temperature (25 ° C.).
  • the dry etching residue is a by-product generated by performing dry etching (for example, plasma etching), for example, an organic residue derived from a photoresist, a Si-containing residue, and a metal. Containing residue (for example, transition metal-containing residue).
  • the substrate processing method of the present invention includes Step A and Step B.
  • Step A uses a chemical solution containing a cerium compound and a pH adjuster on a substrate having a transition metal-containing material to remove the transition metal-containing material on the substrate.
  • the pH adjuster is one or more selected from the group consisting of nitric acid, perchloric acid, ammonia, and sulfuric acid.
  • step B after step A, the substrate obtained in step A is rinsed using a rinse solution.
  • the rinse liquid is one or more selected from the group consisting of a solution containing hydrogen peroxide and an acidic aqueous solution.
  • the acidic aqueous solution is neither hydrofluoric acid, nitric acid, perchloric acid aqueous solution, oxalic acid aqueous solution, or a mixed aqueous solution thereof.
  • the acidic aqueous solution does not contain hydrogen peroxide.
  • a chemical solution containing a cerium compound and a predetermined pH adjuster can remove transition metal-containing materials on the substrate with high efficiency, but cerium tends to remain on the surface of the substrate.
  • the cerium was difficult to remove.
  • the present inventors have found that cerium remaining on the surface of the substrate can be easily removed by using a predetermined rinse liquid as described above. Although this mechanism is not necessarily clear, the present inventors have found that the components contained in a predetermined rinsing liquid and cerium present on the surface of the substrate can form a salt having high solubility in the rinsing liquid. I think it is easy to remove.
  • the chemical solution according to the method of the present invention contains a cerium compound.
  • a cerium compound is a compound containing cerium.
  • the cerium compound is preferably water-soluble.
  • the water-soluble cerium compound here means, for example, a cerium compound that can be dissolved in 50 g or more in 1 L (25 ° C.) of pure water (pH 7.0).
  • a cerium compound does not melt
  • cerium compound examples include cerium nitrate salts (such as cerium (IV) ammonium nitrate and cerium (III) nitrate), cerium sulfate salts (cerium (IV) ammonium sulfate, cerium (III) sulfate, and cerium (IV) sulfate). Etc.), cerium oxide, and cerium hydroxide. These compounds may be hydrates.
  • the cerium compound is preferably at least one selected from the group consisting of cerium nitrate salts and cerium sulfate salts, and 1 selected from the group consisting of cerium (IV) ammonium nitrate and cerium (IV) ammonium sulfate. More preferably, it is a seed or more, and further preferably cerium (IV) ammonium nitrate.
  • the content of the cerium compound in the chemical solution is preferably 3% by mass or more, and more preferably 5% by mass or more with respect to the total mass of the chemical solution.
  • the content of the cerium compound in the chemical is relative to the total mass of the chemical, 40 mass% or less is preferable and 30 mass% or less is more preferable.
  • the content of the cerium compound in the chemical solution is preferably 3 to 40% by mass, for example, with respect to the total mass of the chemical solution. More preferable is 30% by mass.
  • the chemical solution according to the present invention includes a pH adjuster.
  • the pH adjuster contained in the chemical solution is one or more pH adjusters selected from the group consisting of nitric acid, perchloric acid, ammonia, and sulfuric acid.
  • the pH adjuster preferably contains nitric acid.
  • the chemical solution according to the present invention preferably contains nitric acid.
  • the preferable content of the pH adjusting agent varies depending on the pH to be set, the type of the pH adjusting agent to be used, the content of the cerium compound in the chemical solution, and the like.
  • the content of nitric acid in the chemical solution when the pH adjuster is nitric acid is, for example, 0.5% with respect to the total mass of the chemical solution. % By mass or more is preferable, and 1% by mass or more is more preferable.
  • the content of nitric acid in the chemical solution when the pH adjuster is nitric acid is, for example, 40% by mass or less with respect to the total mass of the chemical solution. Preferably, 30 mass% or less is more preferable.
  • the content of nitric acid here is HNO relative to the total mass of the chemical solution, regardless of the form of nitric acid added to the chemical solution (for example, pure nitric acid or aqueous nitric acid).
  • a content of 3 is intended.
  • the pH adjuster is perchloric acid
  • the content of perchloric acid in the chemical liquid is, for example, preferably 0.5% by mass or more and more preferably 1% by mass or more with respect to the total mass of the chemical liquid. preferable.
  • the pH adjuster is perchloric acid
  • the content of perchloric acid in the chemical solution is preferably 20% by mass or less, and more preferably 10% by mass or less, with respect to the total mass of the chemical solution.
  • the content of perchloric acid here is a chemical solution regardless of the form of perchloric acid added to the chemical solution (for example, it may be added with pure perchloric acid or with aqueous perchloric acid).
  • the content of HClO 4 with respect to the total mass of is intended.
  • the pH adjuster is ammonia, it is converted as a state in which 28% by mass ammonia water is added to the chemical solution, and the content of the 28% by mass ammonia water is, for example, 0.5% with respect to the total mass of the chemical solution.
  • the chemical solution contains an amount of ammonia that is at least% by mass (more preferably at least 1% by mass).
  • the pH adjuster is ammonia
  • it is converted as a state in which 28% by mass ammonia water is added to the chemical solution, and the content of the 28% by mass ammonia water is, for example, It is preferable that the chemical solution contains ammonia in an amount of 20% by mass or less (more preferably 15% by mass or less).
  • ammonia there is no restriction
  • medical solution You may add in the form of aqueous ammonia, and you may dissolve gaseous ammonia in a chemical
  • the content of sulfuric acid in the chemical liquid is, for example, preferably 1% by mass or more and more preferably 5% by mass or more with respect to the total mass of the chemical liquid.
  • the content of sulfuric acid in the chemical solution is preferably 25% by mass or less, and more preferably 15% by mass or less, with respect to the total mass of the chemical solution.
  • the content of sulfuric acid here is H 2 SO relative to the total mass of the chemical regardless of the form of sulfuric acid added to the chemical (for example, pure sulfuric acid or aqueous sulfuric acid). A content of 4 is intended.
  • the chemical solution may contain a solvent.
  • the solvent include water and organic solvents, and water is preferable.
  • water an inevitable trace mixing component may be included. Among them, water subjected to purification treatment such as distilled water, ion-exchanged water, or ultrapure water is preferable, and ultrapure water used for semiconductor manufacturing is more preferable.
  • the concentration of water in the chemical solution is not particularly limited, but is preferably 30% by mass or more.
  • the upper limit is not particularly limited, but is preferably 99.9% by mass or less, and more preferably 92% by mass or less.
  • the chemical solution according to the present invention may contain other components other than those described above.
  • a well-known component is mentioned.
  • it is described in paragraphs 0026 of JP2014-93407A, described in paragraphs 0024-0027 of JP2013-55087A, and described in paragraphs 0024-0027 of JP2013-12614A.
  • Each surfactant is mentioned.
  • the pH of the chemical solution according to the present invention is not particularly limited, and is often 10.0 or less. Among these, less than 8.0 is preferable, and ⁇ 1.0 to 4.0 is more preferable. That is, when the chemical solution contains a pH adjuster, the content of the pH adjuster is preferably such that the pH of the chemical solution falls within the above range with respect to the total mass of the chemical solution.
  • the method for producing the chemical solution according to the present invention is not particularly limited, and examples thereof include a method in which a predetermined raw material is sufficiently mixed using a stirrer such as a mixing mixer. Moreover, as a manufacturing method, the method of mixing after preparing beforehand to preset pH, or the method of adjusting to preset pH after mixing is also mentioned. Furthermore, it is also possible to use a method in which a concentrated solution is produced and diluted to a predetermined concentration at the time of use. Moreover, it can also be used by adjusting the concentrated solution to a set pH after dilution. A predetermined amount of pure water for dilution can be added to the concentrate, and a predetermined amount of concentrate can be added to the pure water for dilution.
  • the chemical solution according to the present invention is used to remove the transition metal-containing material on the substrate.
  • “on the substrate” includes, for example, all of the front and back surfaces, the side surfaces, and the inside of the groove of the substrate.
  • the transition metal-containing material on the substrate includes not only the case where the transition metal-containing material is directly on the surface of the substrate, but also the case where the transition metal-containing material is present on the substrate via another layer.
  • Transition metals contained in the transition metal-containing material are, for example, Ru (ruthenium), Ti (titanium), Ta (tantalum), Co (cobalt), Cr (chromium), Hf (hafnium), Os (osmium), Pt ( Metal M selected from platinum), Ni (nickel), Mn (manganese), Cu (copper), Zr (zirconium), Mo (molybdenum), La (lanthanum), W (tungsten), and Ir (iridium) Is mentioned. That is, the transition metal-containing material is preferably a metal M-containing material. Among these, the transition metal-containing material is preferably a Ru-containing material.
  • the chemical solution according to the present invention is more preferably used for removing Ru-containing materials.
  • the content of Ru atoms in the Ru-containing material is preferably 10% by mass or more, more preferably 30% by mass or more, and still more preferably 50% by mass or more with respect to the total mass of the Ru-containing material.
  • the upper limit is not particularly limited, but may be 100% by mass.
  • the transition metal content only needs to be a substance containing a transition metal (transition metal atom), for example, a simple substance of a transition metal, an alloy containing a transition metal, an oxide of a transition metal, a nitride of a transition metal, and Examples thereof include oxynitrides of transition metals.
  • the transition metal-containing material is preferably Ru alone, Ru alloy, Ru oxide, Ru nitride, or Ru oxynitride.
  • the transition metal-containing material may be a mixture containing two or more of these compounds.
  • the oxide, nitride, and oxynitride may be a composite oxide, composite nitride, or composite oxynitride containing a transition metal.
  • the content of transition metal atoms in the transition metal-containing material is preferably 10% by mass or more, more preferably 30% by mass or more, and still more preferably 50% by mass or more with respect to the total mass of the transition metal-containing material.
  • the upper limit is 100% by mass because the transition metal-containing material may be the transition metal itself.
  • the object to be processed is a substrate having a transition metal-containing material. That is, the workpiece includes at least a substrate and a transition metal-containing material on the substrate.
  • the type of substrate is not particularly limited, but a semiconductor substrate is preferable.
  • the substrate includes a semiconductor wafer, a glass substrate for photomask, a glass substrate for liquid crystal display, a glass substrate for plasma display, a substrate for FED (Field Emission Display), a substrate for optical disk, a substrate for magnetic disk, and a magneto-optical disk.
  • Various substrates such as a substrate can be mentioned. Examples of the material constituting the semiconductor substrate include Group III-V compounds such as silicon, silicon germanium, and GaAs, or any combination thereof.
  • the kind of the transition metal-containing material on the substrate is as described above.
  • the form of the transition metal-containing material on the substrate is not particularly limited.
  • the form arranged in the form of a film (transition metal-containing film), the form arranged in the form of a wiring (transition metal-containing wiring), and the form of particles Any of the arranged forms may be used.
  • Ru is preferable as the transition metal
  • the object to be processed includes a substrate and an object to be processed having a Ru-containing film, a Ru-containing wiring, or a particulate Ru-containing substance arranged on the substrate. preferable.
  • the particulate transition metal-containing material is used as a residue.
  • a substrate on which the transition metal-containing material is attached as a residue after CMP (chemical mechanical polishing) is applied to the transition metal-containing film.
  • the thickness of the transition metal-containing film is not particularly limited and may be appropriately selected depending on the application. For example, the thickness is preferably 50 nm or less, more preferably 20 nm or less, and still more preferably 10 nm or less.
  • the transition metal-containing film may be disposed only on one main surface of the substrate, or may be disposed on both main surfaces.
  • the transition metal-containing film may be disposed on the entire main surface of the substrate or may be disposed on a part of the main surface of the substrate.
  • substrate may have various layers and / or structures as desired other than a transition metal containing material.
  • the substrate may have a metal wiring, a gate electrode, a source electrode, a drain electrode, an insulating layer, a ferromagnetic layer, and / or a nonmagnetic layer.
  • the substrate may have interconnected features such as exposed integrated circuit structures, such as metal wiring and dielectric materials. Examples of metals and alloys used in the interconnection mechanism include aluminum, copper aluminum alloys, copper, titanium, tantalum, cobalt, silicon, titanium nitride, tantalum nitride, and tungsten.
  • the substrate may have a layer of silicon oxide, silicon nitride, silicon carbide, and / or carbon-doped silicon oxide.
  • the size, thickness, shape, layer structure and the like of the substrate are not particularly limited and can be appropriately selected as desired.
  • the object to be processed used in the processing method of the present invention has a transition metal-containing material on the substrate.
  • substrate which has a transition metal containing material is not restrict
  • the transition metal-containing film can be formed on the substrate by a sputtering method, a chemical vapor deposition (CVD) method, a molecular beam epitaxy (MBE) method, or the like.
  • CVD chemical vapor deposition
  • MBE molecular beam epitaxy
  • the transition metal-containing film when a transition metal-containing film is formed by a sputtering method, a CVD method, or the like, the transition metal-containing material also adheres to the back surface (the surface opposite to the transition metal-containing film side) of the substrate having the transition metal-containing film. There is a case.
  • the above method may be performed through a predetermined mask to form a transition metal-containing wiring on the substrate.
  • the substrate may be further subjected to different processes or treatments, and then used as an object to be processed in the processing method of the present invention.
  • a substrate having a transition metal-containing film or a transition metal-containing wiring may be subjected to dry etching to produce a substrate having a dry etching residue containing a transition metal.
  • a substrate having a transition metal-containing material or a transition metal-containing wiring may be subjected to CMP to manufacture a substrate having a transition metal-containing material.
  • the method of the present invention includes the step A of removing the transition metal-containing material on the substrate by using the above-described chemical solution for the object to be processed (substrate having the transition metal-containing material).
  • the method of the present invention is preferably used particularly when the transition metal-containing material contains a Ru-containing material.
  • the chemical solution used in step A is as described above.
  • the substrate having the transition metal-containing material, which is the object to be processed in step A is also as described above.
  • a method of bringing a chemical solution into contact with a substrate having a transition metal-containing material that is an object to be processed can be mentioned.
  • the method of contacting is not particularly limited, and for example, a method of immersing an object to be processed in a chemical solution stored in a tank, a method of spraying a chemical solution on a substrate, a method of flowing a chemical solution on a substrate, or any combination thereof Can be mentioned.
  • a method of immersing a substrate having a transition metal-containing material that is an object to be processed in a chemical solution is preferable.
  • a mechanical stirring method may be used in order to further improve the cleaning ability of the chemical solution.
  • the mechanical stirring method include a method of circulating a chemical solution on a substrate, a method of flowing or spraying a chemical solution on a substrate, and a method of stirring a chemical solution with ultrasonic waves or megasonic.
  • the processing time of the process A can be adjusted according to the method of bringing the chemical solution into contact with the substrate, the temperature of the chemical solution, and the like.
  • the treatment time contact time between the chemical solution and the object to be treated
  • the temperature of the chemical solution during the treatment is not particularly limited, but the lower limit is preferably 20 ° C or higher, and more preferably 35 ° C or higher.
  • 75 degreeC or less is preferable and the upper limit of the said temperature has more preferable 60 degreeC or less.
  • Step A2 for removing the transition metal-containing film Step A3 for removing the transition metal-containing material adhering to the back surface of the substrate on which the transition metal-containing film is disposed using a chemical solution
  • a step A4 for removing the metal-containing material or a step A5 for removing the transition metal-containing material on the substrate after the chemical mechanical polishing treatment using a chemical solution is used.
  • the process A is the process A2 or the process A3.
  • the processing method of the present invention used for each of the above processes will be described.
  • FIG. 1 is a schematic diagram of an upper portion of a cross section showing an example of a substrate (hereinafter also referred to as “wiring substrate”) having a transition metal-containing wiring that is an object to be processed in the recess etching process of step A1.
  • a wiring board 10a shown in FIG. 1 includes a substrate (not shown), an insulating film 12 having a groove disposed on the substrate, a barrier metal layer 14 disposed along the inner wall of the groove, and a transition filled in the groove.
  • Metal-containing wiring 16 16.
  • the substrate and the transition metal-containing wiring in the wiring substrate are as described above.
  • Ru containing wiring (wiring containing Ru) is preferable.
  • the Ru-containing wiring preferably includes a simple substance of Ru, an alloy of Ru, an oxide of Ru, a nitride of Ru, or an oxynitride of Ru.
  • the material constituting the barrier metal layer in the wiring substrate is not particularly limited, and examples thereof include TiN and TaN.
  • the embodiment has been described in which the wiring board has a barrier metal layer. However, the wiring board may have no barrier metal layer.
  • the method for manufacturing the wiring board is not particularly limited.
  • the step of forming an insulating film on the substrate, the step of forming a groove in the insulating film, the step of forming a barrier metal layer on the insulating film, and the groove A method including a step of forming a transition metal-containing film so as to be filled and a step of planarizing the transition metal-containing film.
  • step A1 by using the above-described chemical solution, a recess etching process is performed on the transition metal-containing wiring in the wiring board to remove a part of the upper transition metal-containing wiring and form a recess. it can. More specifically, when the step A1 is performed, as shown in the wiring board 10b of FIG. 2, a part of the barrier metal layer 14 and the transition metal-containing wiring 16 is removed, and the recess 18 is formed.
  • step A1 a method of bringing a chemical solution into contact with a wiring board can be mentioned.
  • the method for contacting the chemical solution with the wiring board is as described above.
  • the preferred range of the contact time between the chemical solution and the wiring board and the temperature of the chemical solution are as described above.
  • a step Ab for processing the substrate obtained in the step A1 may be performed using a predetermined solution (hereinafter, also referred to as “specific solution”) as necessary.
  • a predetermined solution hereinafter, also referred to as “specific solution”.
  • the specific solution is preferably a solution that is poorly soluble in the transition metal-containing wiring and excellent in solubility in the substance constituting the barrier metal layer.
  • Specific solutions include a mixed liquid of hydrofluoric acid and hydrogen peroxide (FPM), a mixed liquid of sulfuric acid and hydrogen peroxide (SPM), a mixed liquid of ammonia and hydrogen peroxide (APM), and And a solution selected from the group consisting of a mixed solution (HPM) of hydrochloric acid and hydrogen peroxide solution.
  • FPM hydrofluoric acid and hydrogen peroxide
  • SPM sulfuric acid and hydrogen peroxide
  • API mixed liquid of ammonia and hydrogen peroxide
  • HPM mixed solution selected from the group consisting of a mixed solution (HPM) of hydrochloric acid and hydrogen peroxide solution.
  • composition ratios are as follows: hydrofluoric acid is 49% by mass hydrofluoric acid, sulfuric acid is 98% by mass sulfuric acid, ammonia water is 28% by mass ammonia water, hydrochloric acid is 37% by mass hydrochloric acid, and hydrogen peroxide water is 31% by mass.
  • the composition ratio in the case of% hydrogen peroxide solution is intended.
  • the method of treating the substrate obtained in step A1 with the specific solution is preferably a method of bringing the specific solution into contact with the substrate obtained in step A1.
  • the method for bringing the specific solution into contact with the substrate obtained in step A1 is not particularly limited, and examples thereof include the same method as that for bringing the chemical solution into contact with the substrate.
  • the contact time between the specific solution and the substrate obtained in the step A1 is preferably 0.25 to 10 minutes, and more preferably 0.5 to 5 minutes.
  • Step A1 and step Ab may be performed alternately. In the case where the steps are alternately performed, it is preferable that Step A1 and Step Ab are performed 1 to 10 times, respectively.
  • Step A includes a step A2 of removing the transition metal-containing film on the outer edge portion of the substrate on which the transition metal-containing film is disposed using a chemical solution.
  • FIG. 3 is a schematic diagram (top view) showing an example of a substrate on which a transition metal-containing film that is the object to be processed in step A2 is arranged.
  • the workpiece 20 of step A2 shown in FIG. 3 is a laminate having a substrate 22 and a transition metal-containing film 24 disposed on the main surface on one side of the substrate 22 (the entire region surrounded by a solid line). .
  • the transition metal-containing film 24 located at the outer edge portion 26 (region outside the broken line) of the workpiece 20 is removed.
  • the substrate and the transition metal-containing film in the object to be processed are as described above.
  • a Ru-containing film (a film containing Ru) is preferable.
  • the Ru-containing film preferably includes a simple substance of Ru, an alloy of Ru, an oxide of Ru, a nitride of Ru, or an oxynitride of Ru.
  • process A2 is not restrict
  • the substrate processing apparatus and the substrate described in JP2010-267690A, JP2008-80288A, JP2006-1000036A, and JP2002-299305A The treatment method can be preferably applied.
  • the method of contacting the chemical solution with the object to be processed is as described above.
  • the preferred range of the contact time between the chemical solution and the object to be processed and the temperature of the chemical solution are as described above.
  • process A3 which removes the transition metal content which adheres to the back of the substrate by which the transition metal content film was arranged using chemicals is mentioned.
  • the object to be processed in step A3 include the object to be processed used in step A2.
  • the transition metal-containing film is formed by sputtering, CVD, or the like. In that case, a transition metal containing material may adhere on the surface (back surface) on the opposite side to the transition metal containing film side of the substrate.
  • step A3 is performed.
  • step A3 is not particularly limited, and examples thereof include a method of spraying a chemical solution so that the chemical solution contacts only the back surface of the substrate.
  • the method of contacting the chemical solution with the object to be processed is as described above.
  • the preferred range of the contact time between the chemical solution and the object to be processed and the temperature of the chemical solution are as described above.
  • Step A includes step A4 of removing the transition metal-containing material on the substrate after dry etching using a chemical solution.
  • FIG. 4 the schematic diagram which shows an example of the to-be-processed object of process A4 is shown. 4 includes a transition metal-containing film 34, an etching stop layer 36, an interlayer insulating film 38, and a metal hard mask 40 in this order on a substrate 32, and is subjected to a dry etching process and the like to be in a predetermined position. A hole 42 through which the transition metal-containing film 34 is exposed is formed.
  • the 4 includes the substrate 32, the transition metal-containing film 34, the etching stopper layer 36, the interlayer insulating film 38, and the metal hard mask 40 in this order. It is a laminate including a hole 42 penetrating from the surface to the surface of the transition metal-containing film 34 at the position of the opening.
  • the inner wall 44 of the hole 42 is composed of a cross-sectional wall 44 a made up of the etching stop layer 36, the interlayer insulating film 38 and the metal hard mask 40, and a bottom wall 44 b made up of the exposed transition metal-containing film 34. Is attached.
  • the dry etching residue includes a transition metal-containing material.
  • a Ru-containing film (a film containing Ru) is preferable.
  • the Ru-containing film preferably includes a simple substance of Ru, an alloy of Ru, an oxide of Ru, a nitride of Ru, or an oxynitride of Ru.
  • a Ru-containing material is preferable.
  • the Ru-containing material preferably contains a simple substance of Ru, an alloy of Ru, an oxide of Ru, a nitride of Ru, or an oxynitride of Ru.
  • a known material is selected as the interlayer insulating film and the metal hard mask. Note that although FIG. 4 illustrates a mode using a metal hard mask, a resist mask formed using a known photoresist material may be used.
  • step A4 a method of bringing a chemical solution into contact with the object to be processed can be mentioned.
  • the method for contacting the chemical solution with the wiring board is as described above.
  • the preferred range of the contact time between the chemical solution and the wiring board and the temperature of the chemical solution are as described above.
  • Step A includes step A5 of removing a transition metal-containing material on a substrate after chemical mechanical polishing (CMP) using a chemical solution.
  • CMP technology has been introduced into manufacturing processes such as planarization of insulating films, planarization of connection holes, and damascene wiring.
  • the substrate after CMP may be contaminated with a large amount of particles used for abrasive particles, metal impurities, and the like. Therefore, it is necessary to remove these contaminants and clean them before entering the next processing stage. Therefore, by performing step A5, it is possible to remove the transition metal-containing material that occurs when the object to be processed by CMP has a transition metal-containing wiring or a transition metal-containing film and adheres to the substrate.
  • a substrate having a transition metal-containing material after CMP can be used.
  • a Ru-containing material is preferable.
  • the Ru-containing material preferably contains a simple substance of Ru, an alloy of Ru, an oxide of Ru, a nitride of Ru, or an oxynitride of Ru.
  • step A5 a method of bringing a chemical solution into contact with the object to be processed can be mentioned.
  • the method for contacting the chemical solution with the wiring board is as described above.
  • the preferred range of the contact time between the chemical solution and the wiring board and the temperature of the chemical solution are as described above.
  • step A measure one or more of the pH of the chemical in the tank holding the chemical, the cerium compound content, and the nitric acid content, and depending on the measurement results
  • step C of adjusting the formulation of the chemical solution by adding water, a cerium compound, or nitric acid.
  • the target range of the formulation prepared in Step C is preferably within a range that satisfies the above-mentioned preferable conditions as a chemical solution.
  • an ion chromatographic method As a method for measuring the content of nitric acid and / or cerium compound in the chemical solution, an ion chromatographic method can be mentioned.
  • Specific examples of the apparatus include Dionex ICS-2100 manufactured by Thermo Fisher.
  • Step B of the method of the present invention is a step of rinsing the substrate obtained in Step A using a predetermined rinsing liquid after Step A.
  • rinsing liquid according to the present invention examples include a solution containing hydrogen peroxide, hydrofluoric acid, nitric acid, perchloric acid aqueous solution, oxalic acid aqueous solution, and a mixed aqueous solution thereof (for example, a mixed aqueous solution of hydrofluoric acid and nitric acid).
  • a mixed aqueous solution thereof for example, a mixed aqueous solution of hydrofluoric acid and nitric acid.
  • the solution containing hydrogen peroxide examples include hydrogen peroxide solution, a mixed solution of hydrofluoric acid and hydrogen peroxide solution (FPM), a mixed solution of sulfuric acid and hydrogen peroxide solution (SPM), ammonia water and hydrogen peroxide.
  • a mixed solution (APM) with water or a mixed solution (HPM) of hydrochloric acid and hydrogen peroxide is preferable.
  • the content of H 2 O 2 with respect to the total mass of the hydrogen peroxide solution is preferably 0.5 to 31% by mass, and more preferably 3 to 15% by mass.
  • the preferable conditions as FPM, SPM, APM, and HPM are the same as the preferable conditions as FPM, SPM, APM, and HPM used as the above-mentioned specific solution, for example.
  • the acidic aqueous solution is neither hydrofluoric acid, nitric acid, perchloric acid aqueous solution, oxalic acid aqueous solution, or a mixed aqueous solution thereof, and is a solution that does not contain hydrogen peroxide.
  • the mixed aqueous solution is intended to be an aqueous solution in which components other than water (H 2 O) are substantially only compounds selected from the group consisting of hydrofluoric acid, nitric acid, perchloric acid, and oxalic acid.
  • an aqueous solution containing 0.01% by mass or more of the above compound and a compound other than water with respect to the total content of the compound selected from the group consisting of hydrofluoric acid, nitric acid, perchloric acid, and oxalic acid Does not fall under the above mixed aqueous solution.
  • aqueous solution containing 1% by mass or more, more preferably 10% by mass or more, and still more preferably 30% by mass or more, which does not contain hydrogen peroxide can be used as a rinsing liquid.
  • hydrogen peroxide is not included substantially means that hydrogen peroxide is not included.
  • the content of hydrogen peroxide is 100 mass ppm or less (preferably, with respect to the total mass of the acidic aqueous solution). 1 mass ppm or less).
  • the acidic aqueous solution is, for example, an aqueous solution having a pH of less than 7.0, and preferably has a pH of 0.0 to 4.0.
  • Sulfuric acid preferably 1 to 10% by mass sulfuric acid
  • phosphoric acid preferably 0.1 to 20% by mass phosphoric acid, more preferably 5 to 15% by mass phosphoric acid
  • carbon dioxide water preferably 10 to 60% by mass
  • ozone water preferably 10-60 mass ppm ozone water
  • hydrogen water preferably 10-20 mass ppm hydrogen water
  • citric acid aqueous solution preferably 0.01-10 mass% citric acid aqueous solution.
  • Periodic acid aqueous solution preferably 0.5 to 10% by weight periodic acid aqueous solution.
  • Periodic acid includes, for example, orthoperiodic acid and metaperiodic acid), hypochlorous acid aqueous solution (preferably 1 ⁇ 10 mass% hypochlorous acid aqueous solution) or aqua regia (preferably "2.6: 1.4" to "3.4: 0.10" as a volume ratio of "37 mass% hydrochloric acid: 60 mass% nitric acid”). 6 ” Water) is preferred. Note that hydrofluoric acid, nitric acid, sulfuric acid, and phosphoric acid are each intended to be in a liquid state, and may be an aqueous solution in which each chemical species is dissolved in water.
  • Carbon dioxide water, ozone water, and hydrogen water are intended to be aqueous solutions in which CO 2 , O 3 , and H 2 are dissolved in water, respectively. These rinse solutions may be mixed and used within a range not impairing the purpose of the rinse step.
  • a method of bringing the rinse liquid into contact with the substrate obtained in the process A, which is an object to be processed can be mentioned.
  • the substrate is immersed in a rinsing liquid placed in a tank, the method of spraying the rinsing liquid on the substrate, the method of flowing the rinsing liquid on the substrate, or any combination thereof.
  • the treatment time is not particularly limited, but is, for example, 5 seconds to 5 minutes.
  • the temperature of the rinsing liquid during the treatment is not particularly limited, but when a mixed liquid of sulfuric acid and hydrogen peroxide is used as the rinsing liquid, the temperature is preferably 90 to 250 ° C. In the case of using at least one solution selected from the group consisting of the above-mentioned hydrogen peroxide solution other than SPM and the above acidic aqueous solution as the rinsing liquid, the temperature is preferably 15 to 70 ° C., and 20 to 60 ° C. Is more preferable.
  • the rinse treatment may be performed a plurality of times, and a plurality of types of rinse solutions may be used.
  • the method of the drying treatment is not particularly limited, but spin drying, flow of a drying gas on the substrate, substrate heating means such as heating with a hot plate or an infrared lamp, IPA (isopropyl alcohol) vapor drying, Marangoni drying, rotagoni drying, or And combinations thereof.
  • the drying time varies depending on the specific method used, but is usually about 30 seconds to several minutes.
  • the method of the present invention may be performed in combination before or after other steps performed on the substrate. While carrying out the method of the present invention, it may be incorporated into other steps, or the treatment method of the present invention may be incorporated into other steps.
  • Other processes include, for example, metal wiring, gate structure, source structure, drain structure, insulating layer, ferromagnetic layer, and / or nonmagnetic layer forming process (layer formation, etching, chemical mechanical polishing, modification) Etc.), a resist formation process, an exposure process and a removal process, a heat treatment process, a cleaning process, an inspection process, and the like.
  • the method of the present invention it may be performed in the back-end process (BEOL: Back end of the line) or in the front-end process (FEOL: Front end of the line). It is preferable to perform it in the front-end process from the viewpoint that it can be exhibited.
  • BEOL Back end of the line
  • FEOL Front end of the line
  • the present invention also includes a method for manufacturing a semiconductor device.
  • the semiconductor device manufacturing method of the present invention is a semiconductor device manufacturing method including the substrate processing method described above.
  • the present invention also includes an invention of a substrate processing kit.
  • the above-mentioned substrate processing kit is a kit having the above-described chemical solution that uses cerium (IV) ammonium nitrate as a cerium compound and the above-described rinse solution, and is used in the above-described substrate processing method. Is preferred.
  • the substrate processed using the substrate processing kit is preferably used for manufacturing a semiconductor device.
  • Cerium compound cerium (IV) ammonium nitrate (Wako Pure Chemical Industries)
  • CAS cerium (IV) ammonium sulfate (manufactured by Wako Pure Chemical Industries)
  • Nitric acid 60% by mass nitric acid (manufactured by Wako Pure Chemical Industries)
  • -Perchloric acid 60 mass% perchloric acid aqueous solution (manufactured by Wako Pure Chemical Industries)
  • Ammonia 28% by mass ammonia water (manufactured by Wako Pure Chemical Industries)
  • Sulfuric acid 95% by mass sulfuric acid (Wako Pure Chemical Industries)
  • the substrate was taken out from the rinse liquid, and immediately, water was sprayed onto the substrate at a flow rate of 1.5 L / min for 1 minute, and finally nitrogen gas was sprayed onto the substrate at a flow rate of 50 L / min.
  • Table 1 shows the rinse solutions used in each example or comparative example.
  • hydrogen peroxide water, phosphoric acid, citric acid aqueous solution, sulfuric acid, orthoperiodic acid aqueous solution, hypochlorous acid aqueous solution, and hydrofluoric acid are H 2 O 2 , H with respect to the total mass of the rinsing liquid.
  • the contents of PO 4 , citric acid, H 2 SO 4 , orthoperiodic acid, HClO, and HF are the values described in the “Content” column (mass percentage (mass%)).
  • Ozone water, carbon dioxide water, and hydrogen water mean aqueous solutions in which ozone, CO 2 , and H 2 are dissolved in water by 50 mass ppm, 30 mass ppm, and 15 mass ppm, respectively.
  • the rinsing liquid used in Comparative Example 3 is an aqueous solution containing 0.5% by mass of hydrofluoric acid (HF) and 5% by mass of nitric acid (HNO 3 ) with respect to the entire rinsing liquid.
  • ⁇ Inhibition of cerium residue (cerium content)> The surface of the recon wafer is measured using ESCA (Electron Spectroscopy for Chemical Analysis, apparatus name: PHI Quantera SXMTM) on the dried substrate, and the cerium content (atom%) of the silicon wafer surface is calculated. Inhibitory properties were evaluated. The smaller the value of cerium content, the better the suppression of cerium residue on the surface of the substrate.
  • the cerium content (atom%) is a percentage of the number of cerium atoms with respect to the total number of atoms in the measurement region. Further, the lower limit value of the detection limit in the measurement method used here is 0.1 atom%.
  • the “treatment temperature” column indicates the temperature of the chemical solution when used in the test.
  • the “content” column of “pH adjuster” indicates the content (% by mass) of HNO 3 with respect to the total mass of the chemical solution when nitric acid is used as the pH adjuster.
  • the case of using the perchlorate shows the content of HClO 4 with respect to the total mass of the liquid chemical (mass%).
  • medical solution is shown.
  • sulfuric acid the content (% by mass) of H 2 SO 4 with respect to the total mass of the chemical solution is shown.
  • the description of “no detection” in the column of “cerium content” means that the cerium content was less than the lower limit (0.1 atom%) of the detection limit of the instrument.
  • the transition metal-containing material on the substrate can be removed with high efficiency while suppressing the cerium residue on the surface of the substrate after the treatment.
  • the content of nitric acid with respect to the total mass of the chemical solution was 1% by mass or more, it was confirmed that the inhibitory property of cerium residue was more excellent (comparison of Examples 25 and 27, etc.).
  • Wiring board 10b before wiring recess etching process Wiring board 12 after wiring recess etching process 12 Interlayer insulating film 14 Barrier metal layer 16 Transition metal containing wiring 18 Recess 20, 30 Object 22 Substrate 24 Transition metal containing film 26 Outer edge Part 32 Substrate 34 Transition metal-containing film 36 Etching stop layer 38 Interlayer insulating film 40 Metal hard mask 42 Hole 44 Inner wall 44a Cross section wall 44b Bottom wall 46 Dry etching residue

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Weting (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

本発明は、処理後の基板の表面におけるセリウム残留を抑制しつつ、高効率で基板上の遷移金属含有物を除去できる、基板の処理方法を提供する。また、上記基板の処理方法を含む半導体装置の製造方法、及び、上記基板の処理方法に適用できる基板処理用キットを提供する。本発明の基板の処理方法は、セリウム化合物と、硝酸、過塩素酸、アンモニア、及び、硫酸からなる群から選択される1以上のpH調整剤とを含む薬液を、遷移金属含有物を有する基板に対して用いて、上記基板上の上記遷移金属含有物を除去する工程Aと、上記工程Aの後、過酸化水素を含む溶液、並びに、フッ酸、硝酸、過塩素酸水溶液、シュウ酸水溶液、及び、これらの混合水溶液以外の酸性水溶液であって過酸化水素を含まない酸性水溶液からなる群から選択される1以上のリンス液を用いて、上記工程Aで得られた上記基板に対してリンス処理を行う工程Bと、を有する。

Description

基板の処理方法、半導体装置の製造方法、基板処理用キット
 本発明は基板の処理方法、半導体装置の製造方法、及び、基板処理用キットに関する。
 半導体製品の微細化が進む中で、半導体装置の製造プロセス中における、基板上の不要な遷移金属含有物を除去する工程を、高効率に実施する需要が高まっている。
 特許文献1には、「(a)硝酸セリウム(IV)アンモニウムと、(b)硝酸、過塩素酸及び酢酸からなる群より選択される一または二以上の酸とを含有し、(a)成分が5~35質量%、(b)成分が1~30質量%である除去液を用いて、シリコン基板に付着したルテニウム又は酸化ルテニウムを除去する、ルテニウム又は酸化ルテニウム除去液の使用方法。(請求項1)」が開示されている。
特許4510979号
 近年、基板上に存在する不純物が、基板を用いて製造される半導体装置の性能に悪影響を与える問題が指摘されており、基板の表面における不純物の存在量を抑制することが求められている。
 本発明者らが、特許文献1に開示された方法を用いた遷移金属含有物の除去処理について検討したところ、処理後の基板の表面に不純物として残存するセリウムの量が多すぎる傾向が確認された。
 そこで、本発明は、処理後の基板の表面におけるセリウム残留を抑制しつつ、高効率で基板上の遷移金属含有物を除去できる、基板の処理方法を提供することを課題とする。
 また、本発明は、上記基板の処理方法を含む半導体装置の製造方法、及び、上記基板の処理方法に適用できる基板処理用キットを提供することを課題とする。
 本発明者は、上記課題を達成すべく鋭意検討した結果、セリウム化合物等を含む薬液を用いた基板上の遷移金属含有物を除去する工程Aと、特定のリンス液を用いて基板に対してリンス処理を行う工程Bとを有する方法によれば、上記課題を解決できることを見出し、本発明を完成させた。
 すなわち、以下の構成により上記課題を解決することができることを見出した。
 〔1〕
 セリウム化合物と、
 硝酸、過塩素酸、アンモニア、及び、硫酸からなる群から選択される1以上のpH調整剤とを含む薬液を、
 遷移金属含有物を有する基板に対して用いて、上記基板上の上記遷移金属含有物を除去する工程Aと、
 過酸化水素を含む溶液、並びに、フッ酸、硝酸、過塩素酸水溶液、シュウ酸水溶液、及び、これらの混合水溶液以外の酸性水溶液であって過酸化水素を含まない酸性水溶液からなる群から選択される1以上のリンス液を用いて、上記工程Aで得られた上記基板に対してリンス処理を行う工程Bと、を有する、基板の処理方法。
 〔2〕
 上記セリウム化合物が、硝酸セリウム塩類及び硫酸セリウム塩類からなる群から選択される1種以上である、〔1〕に記載の基板の処理方法。
 〔3〕
 上記セリウム化合物が、硝酸セリウム(IV)アンモニウム及び硫酸セリウム(IV)アンモニウムからなる群から選択される1種以上である、〔1〕又は〔2〕に記載の基板の処理方法。
 〔4〕
 上記セリウム化合物が、硝酸セリウム(IV)アンモニウムである、〔1〕~〔3〕のいずれかに記載の基板の処理方法。
 〔5〕
 上記過酸化水素を含む溶液が、過酸化水素水、フッ酸と過酸化水素水との混合液、硫酸と過酸化水素水との混合液、アンモニア水と過酸化水素水との混合液、及び、塩酸と過酸化水素水との混合液からなる群から選択される溶液である、〔1〕~〔4〕のいずれかに記載の基板の処理方法。
 〔6〕
 上記フッ酸、硝酸、過塩素酸水溶液、シュウ酸水溶液、及び、これらの混合水溶液以外の酸性水溶液であって過酸化水素を含まない酸性水溶液が、硫酸、リン酸、二酸化炭素水、オゾン水、水素水、クエン酸水溶液、過ヨウ素酸水溶液、次亜塩素酸水溶液、及び、王水からなる群から選択される酸性水溶液である、〔1〕~〔5〕のいずれかに記載の基板の処理方法。
 〔7〕
 上記薬液のpHが、-1.0~4.0である、〔1〕~〔6〕のいずれかに記載の基板の処理方法。
 〔8〕
 上記薬液の全質量に対する、上記セリウム化合物の含有量が、5質量%以上である、〔1〕~〔7〕のいずれかに記載の基板の処理方法。
 〔9〕
 上記薬液の全質量に対する、上記セリウム化合物の含有量が、30質量%以下である、〔1〕~〔8〕のいずれかに記載の基板の処理方法。
 〔10〕
 上記pH調整剤が、硝酸を含む、〔1〕~〔9〕のいずれかに記載の基板の処理方法。
 〔11〕
 上記薬液の全質量に対する、上記硝酸の含有量が、1質量%以上である、〔10〕に記載の基板の処理方法。
 〔12〕
 上記薬液の全質量に対する、上記硝酸の含有量が、30質量%以下である、〔10〕又は〔11〕に記載の基板の処理方法。
 〔13〕
 上記薬液の温度が、35℃以上である、〔1〕~〔12〕のいずれかに記載の基板の処理方法。
 〔14〕
 上記薬液の温度が、60℃以下である、〔1〕~〔13〕のいずれかに記載の基板の処理方法。
 〔15〕
 上記リンス液が、硫酸と過酸化水素水との混合液であり、その温度が90~250℃であるか、または、
 上記リンス液が、硫酸と過酸化水素水との混合液以外の上記過酸化水素を含む溶液、及び、上記酸性水溶液からなる群から選択される1以上の溶液であって、その温度が15~70℃である溶液である、〔1〕~〔14〕のいずれかに記載の基板の処理方法。
 〔16〕
 上記遷移金属含有物が、Ru、Ti、Ta、Co、Cr、Hf、Os、Pt、Ni、Mn、Cu、Zr、Mo、La、W、及び、Irからなる群から選択される少なくとも1種を含む、〔1〕~〔15〕のいずれかに記載の基板の処理方法。
 〔17〕
 上記遷移金属含有物が、Ru含有物を含む、〔16〕に記載の基板の処理方法。
 〔18〕
 上記工程Aが、上記薬液を用いて基板上に配置された遷移金属含有配線をリセスエッチング処理する工程A1、上記薬液を用いて遷移金属含有膜が配置された基板の外縁部の上記遷移金属含有膜を除去する工程A2、上記薬液を用いて遷移金属含有膜が配置された基板の裏面に付着する遷移金属含有物を除去する工程A3、上記薬液を用いてドライエッチング後の基板上の遷移金属含有物を除去する工程A4、又は、上記薬液を用いて化学的機械的研磨処理後の基板上の遷移金属含有物を除去する工程A5である、〔1〕~〔17〕のいずれかに記載の基板の処理方法。
 〔19〕
 上記工程Aが、上記工程A1であり、
 上記工程A1の後、更に、フッ酸と過酸化水素水との混合液、硫酸と過酸化水素水との混合液、アンモニア水と過酸化水素水との混合液、及び、塩酸と過酸化水素水との混合液からなる群から選択される溶液を用いて、上記工程A1で得られた上記基板を処理する工程Abをさら有する、〔18〕に記載の基板の処理方法。
 〔20〕
 上記工程A1と上記工程Abとを交互に繰り返し行う、〔19〕に記載の基板の処理方法。
 〔21〕
 〔1〕~〔20〕のいずれかに記載の基板の処理方法を含む、半導体装置の製造方法。
 〔22〕
 硝酸セリウム(IV)アンモニウムと、
 硝酸、過塩素酸、アンモニア、及び、硫酸からなる群から選択される1以上のpH調整剤とを含む薬液、及び、
 過酸化水素を含む溶液、並びに、フッ酸、硝酸、過塩素酸水溶液、シュウ酸水溶液、及び、これらの混合水溶液以外の酸性水溶液であって過酸化水素を含まない酸性水溶液からなる群から選択される1以上のリンス液を有する、基板処理用キット。
 本発明によれば、処理後の基板の表面におけるセリウム残留を抑制しつつ、高効率で基板上の遷移金属含有物を除去できる、基板の処理方法を提供できる。
 また、本発明によれば、上記基板の処理方法を含む半導体装置の製造方法、及び、上記基板の処理方法に適用できる基板処理用キットを提供できる。
工程A1で用いられる被処理物の一例を示す断面上部の模式図である。 工程A1を実施した後の被処理物の一例を示す断面上部の模式図である。 工程A2で用いられる被処理物の一例を示す模式図である。 工程A4で用いられる被処理物の一例を示す断面模式図である。
 以下、本発明について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に制限されるものではない。
 本明細書中における「露光」とは、特に断らない限り、水銀灯、エキシマレーザーに代表される遠紫外線、X線、及び、EUV(Extreme ultraviolet)光などによる露光のみならず、電子線、及び、イオンビーム等の粒子線による描画も露光に含める。
 本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本明細書において、pHは、室温(25℃)において、pH計(HI 99131N(品番)、ハンナ インスツルメンツ・ジャパン(株))で測定した値である。
 本明細書においてドライエッチング残渣とは、ドライエッチング(例えば、プラズマエッチング)を行うことで生じた副生成物のことであり、例えば、フォトレジスト由来の有機物残渣物、Si含有残渣物、及び、金属含有残渣物(例えば、遷移金属含有残渣物)などをいう。
[基板の処理方法]
 本発明の基板の処理方法(以下、単に「本発明の方法」ともいう)は、工程Aと工程Bとを有する。
 工程Aは、セリウム化合物とpH調整剤とを含む薬液を、遷移金属含有物を有する基板に対して用いて、基板上の遷移金属含有物を除去する。
 上記pH調整剤は、硝酸、過塩素酸、アンモニア、及び、硫酸からなる群から選択される1つ以上である。
 工程Bは、工程Aの後、リンス液を用いて、工程Aで得られた上記基板に対してリンス処理を行う。
 リンス液は、過酸化水素を含む溶液、及び、酸性水溶液からなる群から選択される1以上である。
 ただし、上記酸性水溶液は、フッ酸、硝酸、過塩素酸水溶液、シュウ酸水溶液、及び、これらの混合水溶液のいずれでもない。また、上記酸性水溶液は、過酸化水素を含まない。
 セリウム化合物と所定のpH調整剤とを含む薬液は、基板上の遷移金属含有物を高効率で除去できる反面、基板の表面上に、セリウムが残留しやすく、更に、このように基板上に残留したセリウムは、除去が困難であった。本発明者らは、上述したような所定のリンス液を用いれば、基板の表面上に残留したセリウムが容易に除去されることを見出した。このメカニズムは必ずしも定かではないが、本発明者らは、所定のリンス液に含まれる成分と基板の表面上に存在するセリウムとが、リンス液への溶解度が高い塩を形成できることが、セリウムの除去を容易にしていると考えている。
≪工程A≫
 本発明の方法が有する工程Aは、薬液を、遷移金属含有物を有する基板に対して用いて、上記基板上の上記遷移金属含有物を除去する。
<薬液>
(セリウム化合物)
 本発明の方法に係る薬液は、セリウム化合物を含む。
 セリウム化合物は、セリウムを含む化合物である。
 セリウム化合物は水溶性であるのが好ましい。なお、ここでいう水溶性であるセリウム化合物とは、例えば、純水(pH7.0)1L(25℃)に50g以上溶解し得るセリウム化合物を意図する。また、セリウム化合物が純水に対しては、1L(25℃)に50g以上溶解しないとしても、後述するpH調整剤を含む水に対して、1L(25℃)に50g以上溶解できるのが好ましい。
 セリウム化合物としては、例えば、硝酸セリウム塩類(硝酸セリウム(IV)アンモニウム及び硝酸セリウム(III)など)、硫酸セリウム塩類(硫酸セリウム(IV)アンモニウム、硫酸セリウム(III)、及び、硫酸セリウム(IV)など)、酸化セリウム、並びに、水酸化セリウムが挙げられる。また、これらの化合物は、水和物であってもよい。
 中でも、セリウム化合物は、硝酸セリウム塩類及び硫酸セリウム塩類からなる群から選択される1種以上であるのが好ましく、硝酸セリウム(IV)アンモニウム及び硫酸セリウム(IV)アンモニウムからなる群から選択される1種以上であるのがより好ましく、硝酸セリウム(IV)アンモニウムであるのが更に好ましい。
 遷移金属含有物の除去効率がより優れる点から、薬液中の、セリウム化合物の含有量は、薬液の全質量に対して、3質量%以上が好ましく、5質量%以上がより好ましい。
 また、基板の表面におけるセリウム残留の抑制性(以下、単に「セリウム残留抑制性」ともいう)のより優れる点からは、薬液中の、セリウム化合物の含有量は、薬液の全質量に対して、40質量%以下が好ましく、30質量%以下がより好ましい。
 遷移金属含有物の除去効率とセリウム残留抑制性がバランス良く優れる点からは、薬液中の、セリウム化合物の含有量は、薬液の全質量に対して、例えば、3~40質量%が好ましく、5~30質量%がより好ましい。
(pH調整剤)
 本発明に係る薬液は、pH調整剤を含む。薬液に含まれるpH調整剤は、硝酸、過塩素酸、アンモニア、及び、硫酸からなる群から選択される1以上のpH調整剤である。
 pH調整剤は、硝酸を含むのが好ましい。言い換えると、本発明に係る薬液は、硝酸を含むのが好ましい。
 pH調整剤の好ましい含有量は、設定しようとするpH、使用するpH調整剤の種類、及び、薬液中のセリウム化合物の含有量等によっても変動する。
 その上であえて例を挙げると、セリウム残留抑制性がより優れる点から、pH調整剤が硝酸である場合における薬液中の硝酸の含有量は、薬液の全質量に対して、例えば、0.5質量%以上が好ましく、1質量%以上がより好ましい。
 同様に、遷移金属含有物の除去効率がより優れる点からは、pH調整剤が硝酸である場合における薬液中の硝酸の含有量は、薬液の全質量に対して、例えば、40質量%以下が好ましく、30質量%以下がより好ましい。
 なお、ここでいう硝酸の含有量は、薬液に対する硝酸の添加形態(例えば、純硝酸で添加しても、水溶液状の硝酸で添加してもよい)に関わらず、薬液の全質量に対する、HNOの含有量を意図する。
 同様に、pH調整剤が過塩素酸である場合における薬液中の過塩素酸の含有量は、薬液の全質量に対して、例えば、0.5質量%以上が好ましく、1質量%以上がより好ましい。pH調整剤が過塩素酸である場合における薬液中の過塩素酸の含有量は、薬液の全質量に対して、例えば、20質量%以下が好ましく、10質量%以下がより好ましい。ここでいう過塩素酸の含有量は、薬液に対する過塩素酸の添加形態(例えば、純過塩素酸で添加しても、水溶液状の過塩素酸で添加してもよい)に関わらず、薬液の全質量に対する、HClOの含有量を意図する。
 pH調整剤がアンモニアである場合、薬液中に28質量%アンモニア水が添加された状態として換算し、上記28質量%アンモニア水の含有量が、薬液の全質量に対して、例えば、0.5質量%以上(より好ましくは1質量%以上)となる量のアンモニアが薬液に含まれているのが好ましい。同様に、pH調整剤がアンモニアである場合、薬液中に28質量%アンモニア水が添加された状態として換算し、上記28質量%アンモニア水の含有量が、薬液の全質量に対して、例えば、20質量%以下(より好ましくは15質量%以下)となる量のアンモニアが薬液に含まれているのが好ましい。なお、薬液へのアンモニアの添加形態に制限はなく、アンモニア水の形態で添加してもよいし、ガス状のアンモニアを薬液に溶解させて添加してもよい。
 pH調整剤が硫酸である場合における薬液中の硫酸の含有量は、薬液の全質量に対して、例えば、1質量%以上が好ましく、5質量%以上がより好ましい。pH調整剤が硫酸である場合における薬液中の硫酸の含有量は、薬液の全質量に対して、例えば、25質量%以下が好ましく、15質量%以下がより好ましい。ここでいう硫酸の含有量は、薬液に対する硫酸の添加形態(例えば、純硫酸で添加しても、水溶液状の硫酸で添加してもよい)に関わらず、薬液の全質量に対する、HSOの含有量を意図する。
(溶媒)
 薬液は、溶媒を含んでいてもよい。
 溶媒としては、水、及び、有機溶媒が挙げられ、水が好ましい。
 水としては、不可避的な微量混合成分を含んでいてもよい。中でも、蒸留水、イオン交換水、又は、超純水といった浄化処理を施された水が好ましく、半導体製造に使用される超純水がより好ましい。
 薬液中の水の濃度は、特に制限されないが、30質量%以上が好ましい。また、上限値は、特に制限はないが、99.9質量%以下が好ましく、92質量%以下がより好ましい。
 本発明に係る薬液は、上述した以外の他の成分を含んでいてもよい。
 他の成分としては、特に制限はなく、公知の成分が挙げられる。例えば、特開2014-93407号公報の段落0026等に記載、特開2013-55087号公報の段落0024~0027等に記載、及び、特開2013-12614号公報の段落0024~0027等に記載の各界面活性剤が挙げられる。
 また、特開2014-107434号公報の段落0017~0038、特開2014-103179号公報の段落0033~0047、及び、特開2014-93407号公報の段落0017~0049等に開示の各添加剤(防食剤等)が挙げられる。
 本発明に係る薬液のpHは特に制限されず、10.0以下の場合が多い。
 なかでも、8.0未満が好ましく、-1.0~4.0がより好ましい。
 つまり、薬液がpH調整剤を含む場合、pH調整剤の含有量は、薬液全質量に対して、薬液のpHが上記範囲になるような量が好ましい。
 本発明に係る薬液の製造方法は特に制限されず、例えば、所定の原料を混合ミキサー等の攪拌機を用いて十分に混合する方法が挙げられる。
 また、製造方法としては、設定pHに予め調製しておいてから混合する方法、又は、混合後に設定pHに調製する方法も挙げられる。更に、濃縮液を製造して、使用時に希釈して所定の濃度へと調整する方法を用いることもできる。また、濃縮液を希釈後設定pHに調整して用いることもできる。また、濃縮液に対して設定量の希釈用の純水を添加することもでき、また希釈用の純水に所定量の濃縮液を添加することもできる。
<被処理物>
 本発明に係る薬液は、基板上の遷移金属含有物を除去するのに用いられる。
 なお、本明細書における「基板上」とは、例えば、基板の表裏、側面、及び、溝内等のいずれも含む。また、基板上の遷移金属含有物とは、基板の表面上に直接遷移金属含有物がある場合のみならず、基板上に他の層を介して遷移金属含有物がある場合も含む。
 遷移金属含有物に含まれる遷移金属は、例えば、Ru(ルテニウム)、Ti(チタン)、Ta(タンタル)、Co(コバルト)、Cr(クロム)、Hf(ハフニウム)、Os(オスミウム)、Pt(白金)、Ni(ニッケル)、Mn(マンガン)、Cu(銅)、Zr(ジルコニウム)、Mo(モリブデン)、La(ランタン)、W(タングステン)、及び、Ir(イリジウム)から選択される金属Mが挙げられる。
 つまり、遷移金属含有物としては、金属M含有物が好ましい。
 中でも、遷移金属含有物はRu含有物であるのが好ましい。つまり、本発明に係る薬液は、Ru含有物を除去するのに用いられるのがより好ましい。
 Ru含有物中のRu原子の含有量は、Ru含有物全質量に対して、10質量%以上が好ましく、30質量%以上がより好ましく、50質量%以上が更に好ましい。上限は特に制限されないが、100質量%が挙げられる。
 遷移金属含有物は、遷移金属(遷移金属原子)を含む物質でありさえすればよく、例えば、遷移金属の単体、遷移金属を含む合金、遷移金属の酸化物、遷移金属の窒化物、及び、遷移金属の酸窒化物が挙げられる。中でも、遷移金属含有物としては、Ruの単体、Ruの合金、Ruの酸化物、Ruの窒化物、又は、Ruの酸窒化物が好ましい。
 また、遷移金属含有物は、これらの化合物のうちの2種以上を含む混合物でもよい。
 なお、上記酸化物、窒化物、及び、酸窒化物は、遷移金属を含む、複合酸化物、複合窒化物、及び、複合酸窒化物でもよい。
 遷移金属含有物中の遷移金属原子の含有量は、遷移金属含有物全質量に対して、10質量%以上が好ましく、30質量%以上がより好ましく、50質量%以上が更に好ましい。上限は、遷移金属含有物が遷移金属そのものであってもよいことから、100質量%である。
 被処理物は、遷移金属含有物を有する基板である。つまり、被処理物は、基板と、基板上にある遷移金属含有物とを少なくとも含む。
 基板の種類は特に制限はないが、半導体基板が好ましい。
 上記基板には、半導体ウエハ、フォトマスク用ガラス基板、液晶表示用ガラス基板、プラズマ表示用ガラス基板、FED(Field Emission Display)用基板、光ディスク用基板、磁気ディスク用基板、及び、光磁気ディスク用基板などの各種基板が挙げられる。
 半導体基板を構成する材料としては、ケイ素、ケイ素ゲルマニウム、及び、GaAsなどの第III-V族化合物、又は、それらの任意の組合せが挙げられる。
 基板上の遷移金属含有物の種類は、上述した通りである。
 基板上の遷移金属含有物の形態は特に制限されず、例えば、膜状に配置された形態(遷移金属含有膜)、配線状に配置された形態(遷移金属含有配線)、及び、粒子状に配置された形態のいずれであってもよい。上述したように、遷移金属としてはRuが好ましく、被処理物としては、基板と、基板上に配置されたRu含有膜、Ru含有配線、又は粒子状のRu含有物とを有する被処理物が好ましい。
 なお、遷移金属含有物が粒子状に配置された形態としては、例えば、後述するように、遷移金属含有膜を有する基板に対してドライエッチングを施した後に、残渣として粒子状の遷移金属含有物が付着している基板、及び、遷移金属含有膜に対してCMP(chemical mechanical polishing、化学的機械的研磨処理)を施した後に、残渣として粒子状の遷移金属含有物が付着している基板が挙げられる。
 遷移金属含有膜の厚みは特に制限されず、用途に応じて適宜選択すればよく、例えば、50nm以下が好ましく、20nm以下がより好ましく、10nm以下が更に好ましい。
 遷移金属含有膜は、基板の片側の主面上にのみに配置されていてもよいし、両側の主面上に配置されていてもよい。また、遷移金属含有膜は、基板の主面全面に配置されていてもよいし、基板の主面の一部に配置されていてもよい。
 また、上記基板は、遷移金属含有物以外に、所望に応じた種々の層、及び/又は、構造を有していてもよい。例えば、基板は、金属配線、ゲート電極、ソース電極、ドレイン電極、絶縁層、強磁性層、及び/又は、非磁性層等を有していてもよい。
 基板は、曝露された集積回路構造、例えば金属配線及び誘電材料などの相互接続機構を有していてもよい。相互接続機構に使用する金属及び合金としては、例えば、アルミニウム、銅アルミニウム合金、銅、チタン、タンタル、コバルト、ケイ素、窒化チタン、窒化タンタル、及び、タングステンが挙げられる。基板は、酸化ケイ素、窒化ケイ素、炭化ケイ素、及び/又は、炭素ドープ酸化ケイ素の層を有していてもよい。
 基板の大きさ、厚さ、形状、及び、層構造等は、特に制限はなく、所望に応じ適宜選択できる。
 本発明の処理方法に用いる被処理物は、上述したように、基板上に遷移金属含有物を有する。
 遷移金属含有物を有する基板の製造方法は、特に制限されない。例えば、スパッタリング法、化学気相成長(CVD:Chemical Vapor Deposition)法、分子線エピタキシー(MBE:Molecular Beam Epitaxy)法等で、基板上に遷移金属含有膜を形成できる。なお、スパッタリング法及びCVD法等により遷移金属含有膜を形成した場合、遷移金属含有膜を有する基板の裏面(遷移金属含有膜側とは反対側の表面)にも、遷移金属含有物が付着する場合がある。
 また、所定のマスクを介して上記方法を実施して、基板上に遷移金属含有配線を形成してもよい。
 また、基板上に遷移金属含有膜又は遷移金属含有配線を形成した後、更にこの基板を異なる工程又は処理に供してから、本発明の処理方法の被処理物として用いてもよい。
 例えば、遷移金属含有膜又は遷移金属含有配線を有する基板をドライエッチングに供して、遷移金属を含むドライエッチング残渣を有する基板を製造してもよい。また、遷移金属含有膜又は遷移金属含有配線を有する基板をCMPに供して、遷移金属含有物を有する基板を製造してもよい。
<薬液の適用方法>
 本発明の方法は、上述した薬液を、被処理物(遷移金属含有物を有する基板)に対して用いて、基板上の遷移金属含有物を除去する工程Aを有する。
 上述したように、特に、遷移金属含有物がRu含有物を含む場合に、本発明の方法が好適に用いられる。
 工程Aで用いられる薬液は、上述した通りである。
 また、工程Aの被処理物である、遷移金属含有物を有する基板に関しても、上述した通りである。
 工程Aの具体的な方法としては、薬液と、被処理物である遷移金属含有物を有する基板とを接触させる方法が挙げられる。
 接触させる方法は特に制限されず、例えば、タンクに入れた薬液中に被処理物を浸漬する方法、基板上に薬液を噴霧する方法、基板上に薬液を流す方法、又はそれらの任意の組み合わせが挙げられる。中でも、被処理物である遷移金属含有物を有する基板を薬液に浸漬する方法が好ましい。
 更に、薬液の洗浄能力をより増進するために、機械式撹拌方法を用いてもよい。
 機械式撹拌方法としては、例えば、基板上で薬液を循環させる方法、基板上で薬液を流過又は噴霧させる方法、及び、超音波又はメガソニックにて薬液を撹拌する方法等が挙げられる。
 工程Aの処理時間は、基板に薬液を接触させる方法及び薬液の温度等に応じて調整することができる。処理時間(薬液と被処理物との接触時間)は特に制限されないが、0.25~10分が好ましく、0.5~2分がより好ましい。
 処理の際の薬液の温度は特に制限されないが、下限は20℃以上が好ましく、35℃以上がより好ましい。また、上記温度の上限は、75℃以下が好ましく、60℃以下がより好ましい。
 工程Aの具体的な好適態様としては、薬液を用いて基板上に配置された遷移金属含有配線をリセスエッチング処理する工程A1、薬液を用いて遷移金属含有膜が配置された基板の外縁部の遷移金属含有膜を除去する工程A2、薬液を用いて遷移金属含有膜が配置された基板の裏面に付着する遷移金属含有物を除去する工程A3、薬液を用いてドライエッチング後の基板上の遷移金属含有物を除去する工程A4、又は、薬液を用いて化学的機械的研磨処理後の基板上の遷移金属含有物を除去する工程A5が挙げられる。
 中でも、工程Aは、工程A2又は工程A3であるのがより好ましい。
 以下、上記各処理に用いられる本発明の処理方法について説明する。
<工程A1>
 工程Aとしては、薬液を用いて基板上に配置された遷移金属含有配線をリセスエッチング処理する工程A1が挙げられる。
 図1に、工程A1のリセスエッチング処理の被処理物である遷移金属含有配線を有する基板(以後、「配線基板」ともいう)の一例を示す断面上部の模式図を示す。
 図1に示す配線基板10aは、図示しない基板と、基板上に配置された溝を有する絶縁膜12と、溝の内壁に沿って配置されたバリアメタル層14と、溝内部に充填された遷移金属含有配線16とを有する。
 配線基板中の基板及び遷移金属含有配線は、上述した通りである。
 遷移金属含有配線としては、Ru含有配線(Ruを含む配線)が好ましい。Ru含有配線は、Ruの単体、Ruの合金、Ruの酸化物、Ruの窒化物、又は、Ruの酸窒化物を含むことが好ましい。
 配線基板中のバリアメタル層を構成する材料は特に制限されず、例えば、TiN及びTaNが挙げられる。
 なお、図1においては、配線基板がバリアメタル層を有する態様について述べたが、バリアメタル層を有さない配線基板であってもよい。
 配線基板の製造方法は特に制限されず、例えば、基板上に絶縁膜を形成する工程と、上記絶縁膜に溝を形成する工程と、絶縁膜上にバリアメタル層を形成する工程と、上記溝を充填するように遷移金属含有膜を形成する工程と、遷移金属含有膜に対して平坦化処理を施す工程と、を含む方法が挙げられる。
 工程A1においては、上述した薬液を用いて、配線基板中の遷移金属含有配線に対してリセスエッチング処理を行うことで、上遷移金属含有配線の一部を除去して、凹部を形成することができる。
 より具体的には、工程A1を実施すると、図2の配線基板10bに示すように、バリアメタル層14及び遷移金属含有配線16の一部が除去されて、凹部18が形成される。
 工程A1の具体的な方法としては、薬液と、配線基板とを接触させる方法が挙げられる。
 薬液と配線基板との接触方法は、上述した通りである。
 薬液と配線基板との接触時間及び薬液の温度の好適範囲は、上述した通りである。
 なお、工程A1の後に、必要に応じて、所定の溶液(以後、「特定溶液」ともいう)を用いて、工程A1で得られた基板を処理する工程Abを実施してもよい。
 特に、上述したように、基板上にバリアメタル層が配置されている場合、遷移金属含有配線を構成する成分とバリアメタル層を構成する成分とでは、その種類によって本発明の薬液に対する溶解性が異なる場合がある。そのような場合、バリアメタル層に対してより溶解性が優れる溶液を用いて、遷移金属含有配線とバリアメタル層との溶解の程度を調整するのが好ましい。
 このような点から、特定溶液は、遷移金属含有配線に対する溶解性が乏しく、バリアメタル層を構成する物質に対して溶解性が優れる溶液が好ましい。
 特定溶液としては、フッ酸と過酸化水素水との混合液(FPM)、硫酸と過酸化水素水との混合液(SPM)、アンモニア水と過酸化水素水との混合液(APM)、及び、塩酸と過酸化水素水との混合液(HPM)からなる群から選択される溶液が挙げられる。
 FPMの組成は、例えば、「フッ酸:過酸化水素水:水=1:1:1」~「フッ酸:過酸化水素水:水=1:1:200」の範囲内(体積比)が好ましい。
 SPMの組成は、例えば、「硫酸:過酸化水素水:水=3:1:0」~「硫酸:過酸化水素水:水=1:1:10」の範囲内(体積比)が好ましい。
 APMの組成は、例えば、「アンモニア水:過酸化水素水:水=1:1:1」~「アンモニア水:過酸化水素水:水=1:1:30」の範囲内(体積比)が好ましい。
 HPMの組成は、例えば、「塩酸:過酸化水素水:水=1:1:1」~「塩酸:過酸化水素水:水=1:1:30」の範囲内(体積比)が好ましい。
 なお、これらの好ましい組成比の記載は、フッ酸は49質量%フッ酸、硫酸は98質量%硫酸、アンモニア水は28質量%アンモニア水、塩酸は37質量%塩酸、過酸化水素水は31質量%過酸化水素水である場合における組成比を意図する。
 工程Abにおいて、特定溶液を用いて、工程A1で得られた基板を処理する方法としては、特定溶液と工程A1で得られた基板とを接触させる方法が好ましい。
 特定溶液と工程A1で得られた基板とを接触させる方法は特に制限されず、例えば、薬液を基板に接触させるのと同様の方法が挙げられる。
 特定溶液と工程A1で得られた基板との接触時間は、例えば、0.25~10分が好ましく、0.5~5分がより好ましい。
 工程A1と工程Abとを交互に実施してもよい。
 交互に行う場合は、工程A1及び工程Abはそれぞれ1~10回実施されることが好ましい。
<工程A2>
 工程Aとしては、薬液を用いて遷移金属含有膜が配置された基板の外縁部の遷移金属含有膜を除去する工程A2が挙げられる。
 図3に、工程A2の被処理物である遷移金属含有膜が配置された基板の一例を示す模式図(上面図)を示す。
 図3に示す、工程A2の被処理物20は、基板22と、基板22の片側の主面上(実線で囲まれた全域)に配置された遷移金属含有膜24とを有する積層体である。後述するように、工程A2では、被処理物20の外縁部26(破線の外側の領域)に位置する遷移金属含有膜24が除去される。
 被処理物中の基板及び遷移金属含有膜は、上述した通りである。
 なお、遷移金属含有膜としては、Ru含有膜(Ruを含む膜)が好ましい。Ru含有膜は、Ruの単体、Ruの合金、Ruの酸化物、Ruの窒化物、又は、Ruの酸窒化物を含むことが好ましい。
 工程A2の具体的な方法は特に制限されないが、例えば、上記基板の外縁部の遷移金属含有膜にのみ薬液が接触するように、ノズルから薬液を供給する方法が挙げられる。
 工程A2の処理の際には、特開2010-267690号公報、特開2008-80288号公報、特開2006-100368号公報、及び、特開2002-299305号公報に記載の基板処理装置及び基板処理方法を好ましく適用できる。
 薬液と被処理物との接触方法は、上述した通りである。
 薬液と被処理物との接触時間及び薬液の温度の好適範囲は、上述した通りである。
<工程A3>
 工程Aとしては、薬液を用いて遷移金属含有膜が配置された基板の裏面に付着する遷移金属含有物を除去する工程A3が挙げられる。
 工程A3の被処理物としては、工程A2で用いられた被処理物が挙げられる。工程A2で用いられる、基板と、基板の片側の主面上に遷移金属含有膜が配置された被処理物を形成する際には、スパッタリング及びCVD等で遷移金属含有膜を形成される。その際、基板の遷移金属含有膜側とは反対側の表面上(裏面上)には、遷移金属含有物が付着する場合がある。このような被処理物中の遷移金属含有物を除去するために、工程A3が実施される。
 工程A3の具体的な方法は特に制限されないが、例えば、上記基板の裏面にのみ薬液が接触するように、薬液を吹き付ける方法が挙げられる。
 薬液と被処理物との接触方法は、上述した通りである。
 薬液と被処理物との接触時間及び薬液の温度の好適範囲は、上述した通りである。
<工程A4>
 工程Aとしては、薬液を用いてドライエッチング後の基板上の遷移金属含有物を除去する工程A4が挙げられる。
 図4に、工程A4の被処理物の一例を示す模式図を示す。
 図4に示す被処理物30は、基板32上に、遷移金属含有膜34、エッチング停止層36、層間絶縁膜38、メタルハードマスク40をこの順に備え、ドライエッチング工程等を経たことで所定位置に遷移金属含有膜34が露出するホール42が形成されている。つまり、図4に示す被処理物は、基板32と、遷移金属含有膜34と、エッチング停止層36と、層間絶縁膜38と、メタルハードマスク40とをこの順で備え、メタルハードマスク40の開口部の位置において、その表面から遷移金属含有膜34の表面まで貫通するホール42を備える積層物である。ホール42の内壁44は、エッチング停止層36、層間絶縁膜38及びメタルハードマスク40からなる断面壁44aと、露出された遷移金属含有膜34からなる底壁44bとで構成され、ドライエッチング残渣46が付着している。
 ドライエッチング残渣は、遷移金属含有物を含む。
 遷移金属含有膜としては、Ru含有膜(Ruを含む膜)が好ましい。Ru含有膜は、Ruの単体、Ruの合金、Ruの酸化物、Ruの窒化物、又は、Ruの酸窒化物を含むことが好ましい。
 遷移金属含有物としては、Ru含有物が好ましい。Ru含有物は、Ruの単体、Ruの合金、Ruの酸化物、Ruの窒化物、又は、Ruの酸窒化物を含むことが好ましい。
 層間絶縁膜及びメタルハードマスクとしては、公知の材料が選択される。
 なお、図4においては、メタルハードマスクを用いる態様について述べたが、公知のフォトレジスト材料を用いて形成されるレジストマスクを用いてもよい。
 工程A4の具体的な方法としては、薬液と、上記被処理物とを接触させる方法が挙げられる。
 薬液と配線基板との接触方法は、上述した通りである。
 薬液と配線基板との接触時間及び薬液の温度の好適範囲は、上述した通りである。
<工程A5>
 工程Aとしては、薬液を用いて化学的機械的研磨処理(CMP:chemical mechanical polishing)後の基板上の遷移金属含有物を除去する工程A5が挙げられる。
 絶縁膜の平坦化、接続孔の平坦化、及び、ダマシン配線等の製造工程にCMP技術が導入されている。CMP後の基板は、多量に研磨粒子に用いられる粒子及び金属不純物等により汚染される場合がある。そのため、次の加工段階に入る前にこれらの汚染物を除去し、洗浄する必要がある。そこで、工程A5を実施することにより、CMPの被処理物が遷移金属含有配線又は遷移金属含有膜を有する場合に発生して基板上に付着する遷移金属含有物を除去できる。
 工程A5の被処理物は、上述したように、CMP後の、遷移金属含有物を有する基板が挙げられる。
 遷移金属含有物としては、Ru含有物が好ましい。Ru含有物は、Ruの単体、Ruの合金、Ruの酸化物、Ruの窒化物、又は、Ruの酸窒化物を含むことが好ましい。
 工程A5の具体的な方法としては、薬液と、上記被処理物とを接触させる方法が挙げられる。
 薬液と配線基板との接触方法は、上述した通りである。
 薬液と配線基板との接触時間及び薬液の温度の好適範囲は、上述した通りである。
 また、工程Aの前、後、又は、実施中に、薬液を保持するタンク中の薬液のpH、セリウム化合物の含有量、及び、硝酸の含有量の1つ以上を測定し、測定結果に応じて、水、セリウム化合物、又は、硝酸を添加して薬液の配合を調整する工程Cを有するのも好ましい。
 工程Cにおいて調製される配合の目標範囲は、上述した薬液としての好ましい条件を満たす範囲内であるのが好ましい。
 薬液中の硝酸及び/又はセリウム化合物の含有量を測定する方法としては、イオンクロマトグラフ法が挙げられる。具体的な装置としては、例えば、サーモフィッシャー社のDionex ICS-2100が挙げられる。
≪工程B≫
 本発明の方法が有する工程Bは、上記工程Aの後、所定のリンス液を用いて、工程Aで得られた基板に対してリンス処理を行う工程である。
 基板の表面上に付着している薬液に由来するセリウムを、工程Bによって除去することで、以降の、半導体装置の製造プロセス及び/又は最終製品である半導体装置に悪影響を与えることを回避できる。
<リンス液>
 本発明に係るリンス液としては、過酸化水素を含む溶液、並びに、フッ酸、硝酸、過塩素酸水溶液、シュウ酸水溶液、及び、これらの混合水溶液(例えば、フッ酸と硝酸との混合水溶液)以外の酸性水溶液であって過酸化水素を含まない酸性水溶液からなる群から選択される1以上のリンス液が挙げられる。
 上記過酸化水素を含む溶液としては、過酸化水素水、フッ酸と過酸化水素水との混合液(FPM)、硫酸と過酸化水素水との混合液(SPM)、アンモニア水と過酸化水素水との混合液(APM)、又は、塩酸と過酸化水素水との混合液(HPM)が好ましい。
 上記過酸化水素水における、過酸化水素水の全質量に対するHの含有量は、0.5~31質量%が好ましく、3~15質量%がより好ましい。
 FPM、SPM、APM、及び、HPMとして好ましい条件は、例えば、上述の特定溶液として使用される、FPM、SPM、APM、及び、HPMとしての好ましい条件と同様である。
 上記酸性水溶液は、フッ酸、硝酸、過塩素酸水溶液、シュウ酸水溶液、及び、これらの混合水溶液のいずれでもなく、かつ、過酸化水素を含まない溶液である。
 上記混合水溶液は、水(HO)以外の成分が、実質的に、フッ酸、硝酸、過塩素酸、及び、シュウ酸からなる群から選択される化合物のみである水溶液を意図する。例えば、フッ酸、硝酸、過塩素酸、及び、シュウ酸からなる群から選択される化合物の合計含有量に対して、上記化合物及び水のいずれでもない化合物を、0.01質量%以上含む水溶液は、上記混合水溶液には該当しない。
 言い換えると、フッ酸、硝酸、過塩素酸、及び、シュウ酸からなる群から選択される化合物の合計含有量に対して、上記化合物及び水のいずれでもない化合物を、0.01質量%以上(好ましくは1質量%以上、より好ましくは10質量%以上、更に好ましくは30質量%以上)含む水溶液であって、過酸化水素を含まない水溶液は、リンス液として使用できる。
 ここで、過酸化水素を含まないとは実質的に過酸化水素を含まないことをいい、例えば、酸性水溶液の全質量に対して過酸化水素の含有量が、100質量ppm以下(好ましくは、1質量ppm以下)である場合をいう。
 上記酸性水溶液は、例えば、pHが7.0未満の水溶液であり、pHが、0.0~4.0であるのが好ましい。
 硫酸(好ましくは1~10質量%硫酸)、リン酸(好ましくは0.1~20質量%リン酸、より好ましくは5~15質量%リン酸)、二酸化炭素水(好ましくは10~60質量ppm二酸化炭素水)、オゾン水(好ましくは10~60質量ppmオゾン水)、水素水(好ましくは10~20質量ppm水素水)、クエン酸水溶液(好ましくは0.01~10質量%クエン酸水溶液)、過ヨウ素酸水溶液(好ましくは0.5~10質量%過ヨウ素酸水溶液。過ヨウ素酸は、例えば、オルト過ヨウ素酸及びメタ過ヨウ素酸が挙げられる)、次亜塩素酸水溶液(好ましくは1~10質量%次亜塩素酸水溶液)、又は、王水(好ましくは「37質量%塩酸:60質量%硝酸」の体積比として「2.6:1.4」~「3.4:0.6」の配合に相当する王水)が好ましい。
 なお、フッ酸、硝酸、硫酸、及び、リン酸は、それぞれ、液体状態であることを意図し、それぞれの化学種が水に溶解した水溶液であってもよい。
 二酸化炭素水、オゾン水、及び、水素水は、それぞれ、CO、O、及び、Hを水に溶解させた水溶液を意図する。
 リンス工程の目的を損なわない範囲で、これらのリンス液を混合して使用してもよい。
<薬液の適用方法>
 工程Bの具体的な方法としては、リンス液と、被処理物である工程Aで得られた基板とを接触させる方法が挙げられる。
 接触させる方法としては、タンクに入れたリンス液中に基板を浸漬する方法、基板上にリンス液を噴霧する方法、基板上にリンス液を流す方法、又はそれらの任意の組み合わせた方法で実施される。
 処理時間(リンス液と被処理物との接触時間)は特に制限されないが、例えば、5秒~5分間である。
 処理の際のリンス液の温度は特に制限されないが、リンス液として、硫酸と過酸化水素水との混合液を用いる場合、その温度は90~250℃が好ましい。リンス液として、SPM以外の上記過酸化水素を含む溶液、及び、上記酸性水溶液からなる群から選択される1以上の溶液を使用する場合、その温度は15~70℃が好ましく、20~60℃がより好ましい。
 リンス処理は複数回行ってもよく、複数種類のリンス液を使用してもよい。
 また、工程Bの後に、必要に応じて、乾燥処理を実施する工程Dを有していてもよい。乾燥処理の方法は特に制限されないが、スピン乾燥、基板上での乾燥ガスの流動、基板の加熱手段例えばホットプレート又は赤外線ランプによる加熱、IPA(イソプロピルアルコール)蒸気乾燥、マランゴニ乾燥、ロタゴニ乾燥、又は、それらの組合せが挙げられる。
 乾燥時間は、用いる特定の方法に応じて変わるが、通例は30秒~数分程度である。
 本発明の方法は、基板について行われるその他の工程の前又は後に組み合わせて実施してもよい。本発明の方法を実施する中にその他の工程に組み込んでもよいし、その他の工程の中に本発明の処理方法を組み込んで実施してもよい。
 その他の工程としては、例えば、金属配線、ゲート構造、ソース構造、ドレイン構造、絶縁層、強磁性層及び/又は非磁性層等の各構造の形成工程(層形成、エッチング、化学機械研磨、変成等)、レジストの形成工程、露光工程及び除去工程、熱処理工程、洗浄工程、並びに、検査工程等が挙げられる。
 本発明の方法において、バックエンドプロセス(BEOL:Back end of the line)中で行っても、フロントエンドプロセス(FEOL:Front end of the line)中で行ってもよいが、本発明の効果をより発揮できる観点から、フロントエンドプロセス中で行うことが好ましい。
[半導体装置の製造方法]
 本発明は、半導体装置の製造方法も含む。
 本発明の半導体装置の製造方法は、上述した基板の処理方法を含む半導体装置の製造方法である。
[基板処理用キット]
 本発明は、基板処理用キットの発明も含む。
 上記基板処理用キットは、上述した薬液であってセリウム化合物として硝酸セリウム(IV)アンモニウムを使用する薬液と、上述したリンス液とを有するキットであり、上述したような基板の処理方法に用いられるのが好ましい。上記基板処理用キットを用いて処理された基板は、半導体装置の製造に供されるのが好ましい。
 以下に実施例に基づいて本発明を更に詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、及び、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更できる。したがって、本発明の範囲は以下に示す実施例により制限的に解釈されるべきものではない。実施例で使用する化合物その他の材料は、特に断らない限り、半導体グレードの材料である。
[薬液]
 下記表1に記載の配合で各試験に適用する薬液をそれぞれ調製した。
 以下に、表1中に記載した、薬液の調製に用いた成分を示す。
(セリウム化合物)
・CAN:硝酸セリウム(IV)アンモニウム(和光純薬工業製)
・CAS:硫酸セリウム(IV)アンモニウム(和光純薬工業製)
(pH調整剤)
・硝酸:60質量%硝酸(和光純薬工業製)
・過塩素酸:60質量%過塩素酸水溶液(和光純薬工業製)
・アンモニア:28質量%アンモニア水(和光純薬工業製)
・硫酸:95質量%硫酸(和光純薬工業製)
・水:超純水
[試験]
<工程A>
 基板(シリコンウエハ(直径:12インチ))の一方の表面上に、CVD(Chemical Vapor Deposition)法によりルテニウム層を形成した基板をそれぞれ準備した。ルテニウム層の厚さは15nmとした。
 得られた基板を、薬液を満たした容器に入れ、薬液を撹拌してルテニウム層の除去処理を実施した。
<工程B>
 基板上のルテニウム層が消失した後、同じ基板を、リンス液を満たした容器に入れ、0.5分間リンス液を撹拌した。リンス液の温度は25℃とした。ただし、リンス液としてSPMを使用する場合は、リンス液(SPM)の温度は160℃とした。
 その後、リンス液から基板を取り出し、直ちに、1.5L/minの流速で1分間水を基板に吹き付け、最後に、基板に、窒素ガスを50L/minの流速で吹き付けた。
(リンス液)
 各実施例又は比較例で使用したリンス液を表1に示す。
 なお、表1において、過酸化水素水、リン酸、クエン酸水溶液、硫酸、オルト過ヨウ素酸水溶液、次亜塩素酸水溶液、及び、フッ酸は、リンス液全質量に対する、H、HPO、クエン酸、HSO、オルト過ヨウ素酸、HClO、及び、HFの含有量が、それぞれ「含有量」の欄に記載した値(質量百分率(質量%))になるように、各化合物を水に溶解させた水溶液を意味する。
 オゾン水、二酸化炭素水、及び、水素水は、それぞれ水に、オゾン、CO、及び、Hを、50質量ppm、30質量ppm、及び、15質量ppm溶解させた水溶液を意味する。
 SPMは、98質量%硫酸:31質量%過酸化水素水=3:1(体積比)の配合で得られた混合液を意味する。
 FPMは、49質量%フッ酸:31質量%過酸化水素水:水=1:1:5(体積比)の配合で得られた混合液を意味する。
 APMは、28質量%アンモニア水溶液:31質量%過酸化水素水:水=1:1:5(体積比)の配合で得られた混合液を意味する。
 HPMは、37質量%塩酸水溶液:31質量%過酸化水素水:水=1:1:5(体積比)の配合で得られた混合液を意味する。
 王水は、37質量%塩酸:60質量%硝酸=3:1(体積比)の配合で得られた王水であることを意味する。
 比較例3において使用したリンス液は、リンス液全体に対して、フッ酸(HF)を0.5質量%含み、かつ、硝酸(HNO)を5質量%含む水溶液である。
[評価]
<除去効率>
 ルテニウム層が消失するまでに要した時間(除去所要時間)を測定し、下記基準に当てはめて薬液の溶解能を評価した。
 なお、除去所要時間が短いほど、ルテニウムの除去効率が優れる。
 A:除去所要時間≦30秒
 B:30秒<除去所要時間≦60秒
 C:60秒<除去所要時間
<セリウム残留の抑制性(セリウム含有量)>
 乾燥後の基板に対して、リコンウエハ表面をESCA(Electron Spectroscopy for Chemical Analysis、装置名: PHI Quantera SXMTM)を用いて測定し、シリコンウエハ表面のセリウム含有量(atom%)を算出し、セリウム残留の抑制性を評価した。セリウム含有量の値が小さいほど、基板の表面におけるセリウム残留の抑制性に優れる。
 なお、セリウム含有量(atom%)とは、測定領域中における全原子の数に対する、セリウム原子の数の百分率である。
 また、ここで使用した測定方法における、検出限界の下限値は0.1atom%である。
[結果]
 結果を表1に示す。
 なお、表1中、「処理温度」の欄は、試験に用いた際の薬液の温度を示す。
 「pH調整剤」の「含有量」の欄は、pH調整剤として硝酸を使用した場合については、薬液の全質量に対するHNOの含有量(質量%)を示す。過塩素酸を使用した場合については、薬液の全質量に対するHClOの含有量(質量%)を示す。アンモニアを使用した場合については、薬液の全質量に対する28質量%アンモニア水の含有量(質量%)を示す。硫酸を使用した場合については、薬液の全質量に対するHSOの含有量(質量%)を示す。
 「セリウム含有量」の欄における、「検出なし」との記載は、セリウム含有量が、機器の検出限界の下限値(0.1atom%)未満であったことを意味する。
Figure JPOXMLDOC01-appb-T000001
 本発明の方法によれば、処理後の基板の表面におけるセリウム残留を抑制しつつ、高効率で基板上の遷移金属含有物を除去できることが確認された。
 薬液の全質量に対する、硝酸の含有量が、1質量%以上である場合、セリウム残留の抑制性がより優れることが確認された(実施例25と27の比較等)。
 リンス液として、3質量%以上の過酸化水素水、5質量%以上のリン酸、SPM、FPM,APM,HPM、オルト過ヨウ素酸水溶液、又は、王水を使用する場合、セリウム残留の抑制性がより優れることが確認された(実施例1~5、7~8、12~15、19、21等の結果)。
 薬液の温度が、35~60℃である場合、除去効率がより優れることが確認された(実施例27、29、及び、30の結果)。
 なお、比較例2及び3は、それぞれ、特許文献1(特許4510979号)の、実施例4における表10の、NO.1及びNO.4の試験に相当する。
10a 配線のリセスエッチング処理前の配線基板
10b 配線のリセスエッチング処理後の配線基板
12 層間絶縁膜
14 バリアメタル層
16 遷移金属含有配線
18 凹部
20,30 被処理物
22 基板
24 遷移金属含有膜
26 外縁部
32 基板
34 遷移金属含有膜
36 エッチング停止層
38 層間絶縁膜
40 メタルハードマスク
42 ホール
44 内壁
44a 断面壁
44b 底壁
46 ドライエッチング残渣

Claims (22)

  1.  セリウム化合物と、
     硝酸、過塩素酸、アンモニア、及び、硫酸からなる群から選択される1以上のpH調整剤とを含む薬液を、
     遷移金属含有物を有する基板に対して用いて、前記基板上の前記遷移金属含有物を除去する工程Aと、
     過酸化水素を含む溶液、並びに、フッ酸、硝酸、過塩素酸水溶液、シュウ酸水溶液、及び、これらの混合水溶液以外の酸性水溶液であって過酸化水素を含まない酸性水溶液からなる群から選択される1以上のリンス液を用いて、前記工程Aで得られた前記基板に対してリンス処理を行う工程Bと、を有する、基板の処理方法。
  2.  前記セリウム化合物が、硝酸セリウム塩類及び硫酸セリウム塩類からなる群から選択される1種以上である、請求項1に記載の基板の処理方法。
  3.  前記セリウム化合物が、硝酸セリウム(IV)アンモニウム及び硫酸セリウム(IV)アンモニウムからなる群から選択される1種以上である、請求項1又は2に記載の基板の処理方法。
  4.  前記セリウム化合物が、硝酸セリウム(IV)アンモニウムである、請求項1~3のいずれか1項に記載の基板の処理方法。
  5.  前記過酸化水素を含む溶液が、過酸化水素水、フッ酸と過酸化水素水との混合液、硫酸と過酸化水素水との混合液、アンモニア水と過酸化水素水との混合液、及び、塩酸と過酸化水素水との混合液からなる群から選択される溶液である、請求項1~4のいずれか1項に記載の基板の処理方法。
  6.  前記フッ酸、硝酸、過塩素酸水溶液、シュウ酸水溶液、及び、これらの混合水溶液以外の酸性水溶液であって過酸化水素を含まない酸性水溶液が、硫酸、リン酸、二酸化炭素水、オゾン水、水素水、クエン酸水溶液、過ヨウ素酸水溶液、次亜塩素酸水溶液、及び、王水からなる群から選択される酸性水溶液である、請求項1~5のいずれか1項に記載の基板の処理方法。
  7.  前記薬液のpHが、-1.0~4.0である、請求項1~6のいずれか1項に記載の基板の処理方法。
  8.  前記薬液の全質量に対する、前記セリウム化合物の含有量が、5質量%以上である、請求項1~7のいずれか1項に記載の基板の処理方法。
  9.  前記薬液の全質量に対する、前記セリウム化合物の含有量が、30質量%以下である、請求項1~8のいずれか1項に記載の基板の処理方法。
  10.  前記pH調整剤が、硝酸を含む、請求項1~9のいずれか1項に記載の基板の処理方法。
  11.  前記薬液の全質量に対する、前記硝酸の含有量が、1質量%以上である、請求項10に記載の基板の処理方法。
  12.  前記薬液の全質量に対する、前記硝酸の含有量が、30質量%以下である、請求項10又は11に記載の基板の処理方法。
  13.  前記薬液の温度が、35℃以上である、請求項1~12のいずれか1項に記載の基板の処理方法。
  14.  前記薬液の温度が、60℃以下である、請求項1~13のいずれか1項に記載の基板の処理方法。
  15.  前記リンス液が、硫酸と過酸化水素水との混合液であり、その温度が90~250℃であるか、または、
     前記リンス液が、硫酸と過酸化水素水との混合液以外の前記過酸化水素を含む溶液、及び、前記酸性水溶液からなる群から選択される1以上の溶液であって、その温度が15~70℃である溶液である、請求項1~14のいずれか1項に記載の基板の処理方法。
  16.  前記遷移金属含有物が、Ru、Ti、Ta、Co、Cr、Hf、Os、Pt、Ni、Mn、Cu、Zr、Mo、La、W、及び、Irからなる群から選択される少なくとも1種を含む、請求項1~15のいずれか1項に記載の基板の処理方法。
  17.  前記遷移金属含有物が、Ru含有物を含む、請求項16に記載の基板の処理方法。
  18.  前記工程Aが、前記薬液を用いて基板上に配置された遷移金属含有配線をリセスエッチング処理する工程A1、前記薬液を用いて遷移金属含有膜が配置された基板の外縁部の前記遷移金属含有膜を除去する工程A2、前記薬液を用いて遷移金属含有膜が配置された基板の裏面に付着する遷移金属含有物を除去する工程A3、前記薬液を用いてドライエッチング後の基板上の遷移金属含有物を除去する工程A4、又は、前記薬液を用いて化学的機械的研磨処理後の基板上の遷移金属含有物を除去する工程A5である、請求項1~17のいずれか1項に記載の基板の処理方法。
  19.  前記工程Aが、前記工程A1であり、
     前記工程A1の後、更に、フッ酸と過酸化水素水との混合液、硫酸と過酸化水素水との混合液、アンモニア水と過酸化水素水との混合液、及び、塩酸と過酸化水素水との混合液からなる群から選択される溶液を用いて、前記工程A1で得られた前記基板を処理する工程Abをさら有する、請求項18に記載の基板の処理方法。
  20.  前記工程A1と前記工程Abとを交互に繰り返し行う、請求項19に記載の基板の処理方法。
  21.  請求項1~20のいずれか1項に記載の基板の処理方法を含む、半導体装置の製造方法。
  22.  硝酸セリウム(IV)アンモニウムと、
     硝酸、過塩素酸、アンモニア、及び、硫酸からなる群から選択される1以上のpH調整剤とを含む薬液、及び、
     過酸化水素を含む溶液、並びに、フッ酸、硝酸、過塩素酸水溶液、シュウ酸水溶液、及び、これらの混合水溶液以外の酸性水溶液であって過酸化水素を含まない酸性水溶液からなる群から選択される1以上のリンス液を有する、基板処理用キット。
PCT/JP2019/001575 2018-02-05 2019-01-21 基板の処理方法、半導体装置の製造方法、基板処理用キット WO2019151001A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019569007A JP6992095B2 (ja) 2018-02-05 2019-01-21 基板の処理方法、半導体装置の製造方法、基板処理用キット
US16/939,163 US11239093B2 (en) 2018-02-05 2020-07-27 Method for treating substrate, method for manufacturing semiconductor device, and kit for treating substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-018290 2018-02-05
JP2018018290 2018-02-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/939,163 Continuation US11239093B2 (en) 2018-02-05 2020-07-27 Method for treating substrate, method for manufacturing semiconductor device, and kit for treating substrate

Publications (1)

Publication Number Publication Date
WO2019151001A1 true WO2019151001A1 (ja) 2019-08-08

Family

ID=67479772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/001575 WO2019151001A1 (ja) 2018-02-05 2019-01-21 基板の処理方法、半導体装置の製造方法、基板処理用キット

Country Status (4)

Country Link
US (1) US11239093B2 (ja)
JP (1) JP6992095B2 (ja)
TW (1) TWI790345B (ja)
WO (1) WO2019151001A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022264869A1 (ja) 2021-06-14 2022-12-22 富士フイルム株式会社 洗浄組成物、半導体基板の洗浄方法、および、半導体素子の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117174573B (zh) * 2023-11-03 2024-02-09 山东有研艾斯半导体材料有限公司 一种去除晶圆表面铝金属膜的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000260746A (ja) * 1999-03-10 2000-09-22 Seiko Epson Corp 金属膜の形成方法および液晶装置の製造方法
JP2001234373A (ja) * 2000-02-23 2001-08-31 Nec Corp ルテニウム系金属の除去液及びその使用方法
JP2007321186A (ja) * 2006-05-31 2007-12-13 Mitsubishi Chemicals Corp エッチング方法
JP2013513824A (ja) * 2009-12-11 2013-04-22 アドバンスド テクノロジー マテリアルズ,インコーポレイテッド マスキング材料の除去

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6143192A (en) * 1998-09-03 2000-11-07 Micron Technology, Inc. Ruthenium and ruthenium dioxide removal method and material
US8367555B2 (en) 2009-12-11 2013-02-05 International Business Machines Corporation Removal of masking material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000260746A (ja) * 1999-03-10 2000-09-22 Seiko Epson Corp 金属膜の形成方法および液晶装置の製造方法
JP2001234373A (ja) * 2000-02-23 2001-08-31 Nec Corp ルテニウム系金属の除去液及びその使用方法
JP2007321186A (ja) * 2006-05-31 2007-12-13 Mitsubishi Chemicals Corp エッチング方法
JP2013513824A (ja) * 2009-12-11 2013-04-22 アドバンスド テクノロジー マテリアルズ,インコーポレイテッド マスキング材料の除去

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022264869A1 (ja) 2021-06-14 2022-12-22 富士フイルム株式会社 洗浄組成物、半導体基板の洗浄方法、および、半導体素子の製造方法

Also Published As

Publication number Publication date
TW201936996A (zh) 2019-09-16
US11239093B2 (en) 2022-02-01
JPWO2019151001A1 (ja) 2021-01-14
US20200357657A1 (en) 2020-11-12
JP6992095B2 (ja) 2022-01-13
TWI790345B (zh) 2023-01-21

Similar Documents

Publication Publication Date Title
KR102541313B1 (ko) 약액, 기판의 처리 방법
KR102501870B1 (ko) 약액, 약액의 제조 방법, 기판의 처리 방법
JP7513665B2 (ja) 薬液、基板の処理方法
KR102683037B1 (ko) 약액, 기판의 처리 방법
KR20210062564A (ko) 에칭액, 에칭액의 제조 방법, 피처리체의 처리 방법, 및 루테늄 함유 배선의 제조 방법
US11239093B2 (en) Method for treating substrate, method for manufacturing semiconductor device, and kit for treating substrate
WO2022049973A1 (ja) 組成物、基板の処理方法
JP7405872B2 (ja) 組成物、基板の処理方法
JP6895577B2 (ja) エッチング液、エッチング液の製造方法、被処理体の処理方法、及びルテニウム含有配線の製造方法
JP7553577B2 (ja) 組成物、基板の処理方法
WO2021039701A1 (ja) 処理液
CN114364779B (zh) 处理液、被处理物的处理方法
JP7011098B1 (ja) 洗浄組成物、半導体基板の洗浄方法、および、半導体素子の製造方法
WO2023157655A1 (ja) 組成物、化合物、樹脂、基板の処理方法、半導体デバイスの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19747533

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019569007

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19747533

Country of ref document: EP

Kind code of ref document: A1