WO2017185359A1 - 无人机的喷洒控制方法和无人机 - Google Patents

无人机的喷洒控制方法和无人机 Download PDF

Info

Publication number
WO2017185359A1
WO2017185359A1 PCT/CN2016/080784 CN2016080784W WO2017185359A1 WO 2017185359 A1 WO2017185359 A1 WO 2017185359A1 CN 2016080784 W CN2016080784 W CN 2016080784W WO 2017185359 A1 WO2017185359 A1 WO 2017185359A1
Authority
WO
WIPO (PCT)
Prior art keywords
drone
flow rate
spray
flight
speed
Prior art date
Application number
PCT/CN2016/080784
Other languages
English (en)
French (fr)
Inventor
吴旭民
冯壮
闫光
孙久之
敖继渊
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201910184654.7A priority Critical patent/CN109782808B/zh
Priority to CN201680002635.2A priority patent/CN106714554B/zh
Priority to PCT/CN2016/080784 priority patent/WO2017185359A1/zh
Publication of WO2017185359A1 publication Critical patent/WO2017185359A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M7/00Special adaptations or arrangements of liquid-spraying apparatus for purposes covered by this subclass
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M7/00Special adaptations or arrangements of liquid-spraying apparatus for purposes covered by this subclass
    • A01M7/0089Regulating or controlling systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D1/00Dropping, ejecting, releasing, or receiving articles, liquids, or the like, in flight
    • B64D1/16Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting
    • B64D1/18Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting by spraying, e.g. insecticides

Definitions

  • the invention relates to the field of drones, in particular to a spray control method for a drone and a drone.
  • UAV-based work tools provide an efficient and convenient way to modernize agriculture.
  • the spraying operation of the drone is usually performed by the controller to set the flying speed and the spraying flow rate.
  • the drone is often not sprayed on the crop in a certain area.
  • the drug has been used up; or the drone has completed work on a certain area in advance, but there is still a large amount of drug remaining; or the drug is not sprayed evenly.
  • the present invention provides a method for solving the setting speed and spray flow rate of a controller in the prior art. If the flight speed and the spray flow rate are not properly set, the drone is often not yet available. The crops in a certain area have been sprayed, and the drugs have been used up; or the drones have completed the work in a certain area ahead of time, but there is still a large amount of drug remaining; or the drug is not sprayed evenly.
  • a first aspect of the present invention provides a spray control method for a drone, comprising:
  • the spray flow rate is calculated according to the total amount of material that the drone needs to spray, the selected flight speed, and the obtained flight distance;
  • the flight speed is calculated based on the total amount of material that the drone needs to spray, the selected spray flow rate, and the flight distance obtained.
  • a second aspect of the invention provides a drone comprising:
  • processors working individually or in concert, the processor is used to:
  • the spray flow rate is calculated according to the total amount of material that the drone needs to spray, the selected flight speed, and the obtained flight distance;
  • the flight speed is calculated based on the total amount of material that the drone needs to spray, the selected spray flow rate, and the flight distance obtained.
  • the spray control method and the drone of the drone provided by the invention can calculate the matching spray flow rate according to the total amount of the material, the flight distance and the flight speed, or calculate the matching flight speed according to the total amount of the substance, the flight distance and the spray flow rate. Therefore, it can be ensured that spraying at the spraying flow rate and the flying speed can spray the material and spray evenly, thereby avoiding the operator's simultaneous setting of the flying speed and the spraying speed, which is easily caused by the flying speed and the spraying flow rate being inappropriate.
  • the drone has not yet sprayed the crops in a certain area, and the drugs have been used up; or the drones have completed operations in a certain area ahead of time, but the drugs still have a lot of remaining problems.
  • the spray control method of the unmanned aerial vehicle provided by the present invention further includes:
  • the unmanned aerial vehicle provided by the present invention is further configured to:
  • the spray control method and the drone of the drone provided by the invention can adaptively adjust the spray speed when adjusting the flight speed, or adaptively adjust the flight speed when adjusting the spray speed, thereby making the drone Spray evenly.
  • FIG. 1 is a schematic flow chart of a spray control method of a drone according to a first embodiment of the present invention
  • FIG. 1A is a schematic diagram of a flight path provided in a spray control method for a drone according to a first embodiment of the present invention
  • FIG. 2 is a schematic flow chart of a spray control method for a drone according to a second embodiment of the present invention
  • FIG. 3 is a schematic flow chart of a spray control method of a drone according to a third embodiment of the present invention.
  • FIG. 5 is a schematic flow chart of a spray control method of a drone according to a fifth embodiment of the present invention.
  • FIG. 6 is a schematic flow chart of a spray control method of a drone according to Embodiment 6 of the present invention.
  • FIG. 6A is a schematic view showing a relationship between a spray angle, a lateral distance, and a spray height according to Embodiment 6 of the present invention.
  • FIG. 6B is a schematic view showing a relationship between a spray angle, a lateral distance, and a spray height according to Embodiment 6 of the present invention.
  • FIG. 7 is a schematic structural diagram of a drone according to Embodiment 8 of the present invention.
  • Embodiment 8 is a schematic structural diagram of a drone provided in Embodiment 9 of the present invention.
  • FIG. 9 is a schematic structural diagram of a drone provided in Embodiment 10 of the present invention.
  • Computer readable storage media includes, but is not limited to, volatile memory, nonvolatile memory, magnetic and optical storage devices (such as disk drives, magnetic tape, CD (Compact Disc), DVD (Digital Versatile Disc or Digital Video Disc), etc.) Or other media that are now known or later developed to store code and/or data.
  • the methods and processes described in the Detailed Description section of the invention may be embodied as code and/or data, which may be stored in a computer readable storage medium as described above.
  • a computer system reads and executes code and/or data stored on a computer readable storage medium, the computer system performs the methods and processes embodied as data structures and code and stored in a computer readable storage medium.
  • modules or devices may include, but are not limited to, application specific integrated circuit (ASIC) chips, field programmable gate arrays (FPGAs), dedicated or shared processors that execute particular software modules or a piece of code at specific times, and/or are now known Or other programmable logic devices developed in the future.
  • ASIC application specific integrated circuit
  • FPGA field programmable gate arrays
  • the hardware modules or devices When activated, they perform the methods and processes included therein.
  • FIG. 1 is a schematic flow chart of a spray control method for a drone according to a first embodiment of the present invention. As shown in FIG. 1 , the spray control method of the drone performs a spray operation on a specific area of the ground, including:
  • step 101 the flight distance of the drone from the spray start point to the end point of the specific area is obtained.
  • the flight distance can be obtained by a Global Positioning System (GPS).
  • GPS Global Positioning System
  • the GPS coordinates of the spray start point and the spray end point can be determined by GPS, and the flight distance from the start point to the end point of the spray can be obtained.
  • the flight distance may also be pre-stored.
  • the flight path may be preset in the drone, and the flight route includes: a spray start point, a spray end point, a lateral distance to be sprayed by the drone unit time, and a longitudinal distance to be sprayed in the unit cycle of the drone. .
  • the drone further acquires the flight distance from the start point to the end point of the spray according to the preset flight route.
  • FIG. 1A is a schematic diagram of a flight path provided in a spray control method for a drone according to a first embodiment of the present invention. It should be noted that FIG. 1A merely exemplarily shows a flight route, but the flight route is not With this limitation, the present embodiment will be explained with reference to FIG. 1A for the lateral distance and the longitudinal distance.
  • point A is the spraying starting point
  • point B is the spraying end point
  • the vector direction of the line connecting point A and point B is defined as a horizontal direction
  • the vector direction perpendicular to the line direction of point A and point B is defined as a longitudinal direction.
  • the line connecting point A and point D is the longitudinal distance, that is, the distance the drone flies in the longitudinal direction in one cycle.
  • the lateral distance refers to the distance that the drone needs to cover in the lateral direction when flying in the longitudinal direction, that is, the lateral distance.
  • L is the unit time of the drone.
  • the lateral distance to be sprayed may be determined according to the flight route when the drone is sprayed, or the drone may pre-entuce the lateral distance and the longitudinal distance, the spray start point, and the spray end point according to the operator, and plan the flight route.
  • the unit period refers to the distance that the UAV flies along the longitudinal direction in a cycle when the UAV is sprayed on a periodic trajectory.
  • points A to C are one cycle
  • points C to B are one cycle.
  • the longitudinal distance refers to the distance between point A and point D.
  • step 102 one of the following two parameters is selected: the flight speed of the drone and the spray flow rate of the drone.
  • a specific method for selecting parameters is: determining a selected parameter by receiving a mode selection instruction, wherein the mode selection instruction includes the selected parameter information.
  • step 1031 if the spray flow rate is selected, the flight speed is calculated according to the total amount of materials that the drone needs to spray, the selected spray flow rate, and the flight distance.
  • the flight speed is calculated based on the total amount of the material, the flight distance, and the selected spray flow rate. As long as it is guaranteed that the material is used up and sprayed evenly within the flight distance.
  • the drone is controlled to spray at the set spray speed and the calculated flight speed.
  • step 1032 if the flight speed is selected, the spray flow rate is calculated according to the total amount of material that the drone needs to spray, the selected flight speed, and the flight distance. Specifically, for example, if the total amount of substances to be sprayed is the total amount of all materials carried by the drone, the spray flow rate is calculated according to the total amount of materials to be sprayed, the flight distance, and the selected flight speed, as long as the flight distance is guaranteed. The substance is used up and sprayed evenly.
  • the total amount of substances to be sprayed does not have to be equal to the total amount of all materials carried by the drone, and may be any value set by the user in advance, for example, 1/2 of the total amount of the materials carried by the drone or 2/3 and so on.
  • the total amount of material to be sprayed is equal to the total amount of material carried by the drone, which is preferable because the flight can reduce the ineffective load of the drone and maximize the utilization of the flying power energy (such as battery power).
  • the embodiments of the present invention are described by taking the total amount of substances to be sprayed equal to the total amount of materials carried by the drone as an example, but this does not mean that the present invention excludes the total amount of other substances that need to be sprayed. An embodiment that is less than the total amount of material carried by the drone. After the spray flow rate is calculated, the drone is controlled to spray at the selected flight speed and the calculated spray flow rate.
  • the total amount of material to be sprayed may be pre-stored.
  • the total amount of material to be sprayed may be pre-stored. For example, if the drone can only be installed with one type and a fixed number of spray assemblies, the total amount of material can be pre-stored.
  • the total amount of material that needs to be sprayed can also be input by the user, for example, through the display.
  • the total amount of substances to be sprayed can be determined by automatically obtaining the total amount of substances carried by the drone. For example, by installing a corresponding weight sensor, the processor can automatically acquire the unmanned when the spray assembly is mounted on the drone. Information on the total amount of material carried by the machine.
  • the automatic acquisition of the total amount of the material carried by the drone is not limited to the use of the gravity sensor. In this embodiment, only an example is given, but it is not limited thereto.
  • the total amount of substances to be sprayed can be determined according to the total amount of all materials carried by the drone.
  • the drone can calculate the matching spray flow rate according to the total amount of the material, the flight distance and the flight speed, or calculate the matching flight speed according to the total amount of the substance, the flight distance and the spray flow rate. Therefore, it can be ensured that spraying at the spraying flow rate and the flying speed can spray the material and spray evenly, thereby avoiding the operator's simultaneous setting of the flying speed and the spraying speed, which is easily caused by the flying speed and the spraying flow rate being inappropriate.
  • the drone has not yet sprayed the crops in a certain area, and the drugs have been used up; or the drones have completed operations in a certain area ahead of time, but the drugs still have a lot of remaining problems.
  • step 1031 on the basis of the first embodiment shown in FIG. 2 is a schematic flow chart of a spray control method for a drone according to a second embodiment of the present invention.
  • the spray control method specifically, if a spray flow rate is selected, according to the unmanned
  • the total amount of material that needs to be sprayed (the total amount of materials referred to in the following examples), the selected spray flow rate, and the flight distance to calculate the flight speed, including:
  • step 10311 the selected spray flow rate is obtained.
  • the selected spray flow rate may be preset and stored in the processor of the drone.
  • the type of the spray component can be automatically matched. Specifically, the type information of the spray component installed on the drone can be obtained, and the selected spray flow rate can be further determined according to the corresponding relationship between the type information of the spray component and the spray flow rate. .
  • the drone can be provided with a sensor at a corresponding spray assembly installation location to obtain type information of the spray assembly.
  • each spray component installation is provided with a sensor, each sensor has its one-to-one corresponding identifier, and the sensor detects the installation information of the spray component corresponding to the sensor, and when the sensor recognizes that the spray component is installed to the unmanned On-board, the processor sends its own identification, and the processor identifies which type of spray assembly is installed by identifying the identification information sent by the sensor and based on the correspondence between the pre-stored identification information and the spray component signal.
  • the type of the sensor is not limited, and may be, for example, a gravity sensor, an optical sensor, a pressure sensor, a liquid flow rate sensor, or the like.
  • the selected spray flow rate may also be from the flow rate input member.
  • the operator triggers the flow rate input member, and the flow rate input member issues an input command. After receiving the input command, the selected spray flow rate is determined according to the input command.
  • the flow rate input member may be one or more.
  • the processor can identify the spray flow rate corresponding to the trigger time by detecting the time when the flow rate input member is triggered.
  • each flow rate input member can emit a corresponding spray flow rate.
  • the flow rate input member can be four, correspondingly, the spray flow rate corresponding to the first flow rate input member is 30 ml/sec, the second flow rate input member corresponds to the spray flow rate of 40 ml/sec, and the third flow rate input The corresponding spray flow rate is 50 ml/sec, and the fourth flow rate input member corresponds to a spray flow rate of 60 ml/sec.
  • the number of milliliters in this embodiment is merely an exemplary number, but is not limited thereto.
  • the flow rate input member may be disposed on the drone or on the remote controller of the drone.
  • the flow rate input member includes: one or more of a gear position switch, a knob switch, a potentiometer, a linear switch, and a touch display screen.
  • the selected spray flow rate is derived from any of the following three methods: pre-stored, automatically corresponding to the type of spray assembly, issued by the flow rate input member.
  • step 10322 the spraying time is obtained according to the selected spraying flow rate and the total amount of the substance.
  • the spraying time can be determined by dividing the total amount of the substance by the selected spraying flow rate.
  • the first flight speed is calculated based on the flight distance and the spray time.
  • the flight distance can be divided by the spray time to determine the first flight speed.
  • the first flight speed is taken as the current flight speed.
  • the drone can be controlled to spray at the current flight speed and the selected spray flow rate.
  • the method determines the first flight speed determined by the total amount of material and the flight distance and the selected spray flow rate, thereby ensuring that the substance can be sprayed at the selected spray flow rate and the first flight speed when the spray end point is reached, and Spray evenly.
  • the drone can calculate the matched first flight speed according to the total amount of the material, the flight distance and the spray flow rate, thereby ensuring the selected spray flow rate and the first flight speed. Spraying underneath can spray the material and spray it evenly, which can prevent the drone from spraying the crop in a certain area due to the fact that the operator can set the flight speed and the spray flow rate. Finished, and the drug has been used up; or the drone has completed work on a certain area ahead of time, but the drug has a lot of remaining problems.
  • step 1032 on the basis of the first embodiment shown in FIG. 3 is a schematic flow chart of a spray control method for a drone according to a third embodiment of the present invention.
  • the spray control method if a flight speed is selected, the total amount of substances to be sprayed according to the drone is selected.
  • the spray rate is calculated by the amount, the selected flight speed and the flight distance, including:
  • step 10321 the selected flight speed is obtained.
  • the selected flight speed is derived from any of the following three methods: pre-stored or issued by the speed input.
  • the speed input member may be multiple, and each speed input member may send a corresponding flight speed information.
  • the speed input component comprises: one or more of a gear position switch, a knob switch, a potentiometer, a linear switch, and a touch display.
  • the speed input can be set on the drone or on the remote of the drone.
  • the spraying time can be determined by dividing the flight distance by the selected flight speed.
  • a first spray flow rate is calculated based on the total amount of the substance and the spray time.
  • the first spray flow rate is determined by dividing the total amount of material by the spray time.
  • the first spray rate is used as the current spray flow rate.
  • the drone can be controlled to spray at the current spray flow rate and the selected flight speed.
  • the first spray flow rate determined by the method it is ensured that the substance can be sprayed and uniformly sprayed at the selected flight speed and the first spray flow rate when the spray end point is reached.
  • the selected parameter when the flight speed of the drone or the spray flow rate of the drone is selected, the selected parameter may be determined by the receiving mode selection command.
  • the selected instruction includes the selected parameter information. That is, the drone can include two mode selections, one is the mode of calculating the spray flow rate in step 1031, and the other is the mode of calculating the flight speed in step 1032.
  • the drone can have both the flow rate input and the speed input.
  • the drone can calculate the matched first spray speed according to the total amount of the material, the flight distance and the selected flight speed, thereby ensuring the first spray flow rate and the selected flight. Spraying at a speed to spray the material and evenly spraying it, thereby avoiding the fact that the drone is not suitable for the flight area and the spray flow rate, and the drone is not suitable for a certain area.
  • the spray is finished, and the drug has been used up; or the drone has completed the work in a certain area ahead of time, but the drug has a lot of remaining problems.
  • the spray control method of the drone includes:
  • step 401 the flight distance of the drone from the spray start point to the end point of the specific area is obtained.
  • step 402 one of the following two parameters is selected: the flight speed of the drone and the spray flow rate of the drone.
  • step 4031 if the spray flow rate is selected, the flight speed is calculated according to the total amount of materials to be sprayed by the drone, the selected spray flow rate, and the flight distance.
  • Step 4041 adjusting the flight speed of the drone during the flight, and automatically adjusting the spray flow rate of the drone.
  • adjusting the flight speed of the drone during the flight can be automatically adjusted for the drone to adjust the spray flow rate.
  • the drone can obtain the current wind speed information in real time, and automatically adjust the flight speed according to the current wind speed, further The spray flow rate is automatically adjusted according to the flight speed.
  • the flight speed can be adjusted by receiving a speed input command, thereby adjusting the spray speed.
  • adjusting the flight speed by adjusting the speed command and adjusting the spraying speed may include the following two embodiments.
  • Step 40411 Receive a speed input command, where the speed input command includes information of the second flight speed.
  • Step 40412 Adjust the flight speed of the drone during the flight according to the information of the second flight speed.
  • the flight speed of the current drone is obtained, and if the current flight speed is equal to the second flight speed, the current flight speed is maintained. If the current flight speed is not equal to the second flight speed, the drone is controlled to fly at the second flight speed.
  • step 40412 and step 40413, step 40414, step 40415, and step 40416 is not limited, that is, step 40412 may be performed before or after the steps. Of course, it can also be executed at the same time.
  • step 40413 the remaining flight distance to be sprayed and the total amount of remaining materials are obtained.
  • the remaining flight distance to be sprayed refers to the flight distance from the start point to the end point of the spray minus the distance of the sprayed distance, that is, the remaining flight distance to be sprayed.
  • the total amount of remaining material refers to The value of the total amount of material minus the amount of material that has been sprayed is the total amount of remaining material.
  • the total amount of remaining material is the total amount of the substance.
  • Step 40414 Determine a remaining spray time according to the remaining flight distance to be sprayed and the second flight speed.
  • the remaining spray time is determined by dividing the flight distance to be sprayed by the second flight speed.
  • a second spray flow rate is determined based on the total amount of remaining material and the remaining spray time.
  • the second spray flow rate is determined according to the total amount of remaining material divided by the remaining spray time.
  • the current spray flow rate is obtained, and the current spray flow rate is adjusted to the second spray flow rate.
  • the substance can be sprayed at the second flight speed and the second spray flow rate at the end of the spraying end, and uniformly sprayed.
  • Step 40418 Adjust the flight speed of the drone during the flight according to the speed input command, and determine the percentage increase or decrease of the flight speed of the drone.
  • the speed input command may include a percentage of the speed increase and decrease of the drone, so that the percentage of the drone speed increase and decrease may be directly obtained according to the speed input command, and further, the current flight speed may be obtained, according to the current flight speed and
  • the percentage of flight speed increase or decrease adjusts the flight speed of the drone during flight. For example, if the current flight speed is 5 m/s and the percentage increase or decrease is 20%, adjust the drone's flight speed to 6 m/s.
  • the speed input command includes the flight speed of the drone to be adjusted
  • the current flight speed can be acquired, and the drone can be adjusted to the flight speed to be adjusted.
  • the percentage of the flight speed increase or decrease of the drone can be determined according to the flight speed to be adjusted and the current flight speed.
  • step 40419 the percentage increase or decrease of the spray flow rate is linearly adjusted according to the percentage of the increase or decrease of the flight speed.
  • Step 40420 Obtain a current spray flow rate, and adjust a current spray flow rate according to a percentage increase or decrease of the spray flow rate, wherein the increase or decrease of the spray flow rate is proportional to the increase or decrease of the speed of the drone.
  • the flying speed is increased, that is, when the time of staying at the unit distance becomes shorter, in order to ensure that the mass of the substance sprayed to the unit distance before the speed adjustment is not much different, Correspondingly increasing the spraying flow rate; and when the flying speed is decreased, that is, when the time of staying at the unit distance becomes longer, the corresponding control spraying flow rate is also reduced, that is, the current spraying can be linearly adjusted according to the percentage increase or decrease of the spraying flow rate. Flow rate.
  • the percentage increase or decrease of the flight speed is equal to the percentage increase or decrease of the spray flow rate, and the increase or decrease of the spray flow rate and the increase or decrease of the flight speed of the drone are positive. ratio. That is, if the flight speed is increased by 20%, the corresponding spray flow rate is also increased by 20%.
  • first embodiment and the second embodiment in this embodiment need to be executed after step 4031 or step 4032. But specifically, the second embodiment can be executed after the first embodiment. Alternatively, the second embodiment can also be performed prior to the first embodiment. Alternatively, only one of the two implementations can be executed.
  • the speed input command may be sent through the speed input member, and the speed input member may be the same as the speed input member in the second embodiment and the third embodiment.
  • the speed input member may be the same as the speed input member in the second embodiment and the third embodiment.
  • the spray flow rate can be adjusted correspondingly to achieve uniform spraying.
  • the spray control method of the drone includes:
  • step 501 the flight distance of the drone from the spray start point to the end point of the specific area is obtained.
  • step 502 one of the following two parameters is selected: the flying speed of the drone and the spraying speed of the drone.
  • step 5031 if the spray flow rate is selected, the flight speed is calculated according to the total amount of materials to be sprayed by the drone, the selected spray flow rate, and the flight distance.
  • step 5032 if the flight speed is selected, the spray flow rate is calculated according to the total amount of material that the drone needs to spray, the selected flight speed, and the flight distance.
  • step 5041 the spraying flow rate of the drone during the flight is adjusted, and the flying speed of the drone is automatically adjusted.
  • adjusting the spraying flow rate of the drone during the flight can be automatically adjusted for the drone, or the flight speed can be adjusted by receiving the flow rate input command.
  • the flow rate can be adjusted by receiving the flow rate command, and the flight speed can be automatically adjusted by the following two embodiments.
  • Step 50411 Receive a flow rate input command, where the flow rate input command includes information of a third spray flow rate.
  • Step 50412 Adjust the spray flow rate of the drone during the flight according to the information of the third spray flow rate.
  • the current spray flow rate is obtained. If the current spray flow rate is equal to the third spray flow rate, the current spray flow rate is kept unchanged; if the current spray flow rate is not equal to the third spray flow rate, the drone is controlled. Spray at three spray rates.
  • step 50513 the remaining flight distance to be sprayed and the total amount of remaining materials are obtained.
  • the remaining spray time is determined by dividing the total amount of remaining material by the third spray flow rate.
  • a third flight speed is determined based on the remaining flight distance to be sprayed and the remaining spray time.
  • the remaining flight distance to be sprayed is divided by the remaining spray time to determine the third flight speed.
  • Step 50416 adjusting the current flight speed according to the third flight speed.
  • the current flight speed is obtained, and the current flight speed is adjusted to the third flight speed.
  • the material can be sprayed and uniformly sprayed at the third flight speed and the third spray flow rate when the spray end point is reached.
  • Step 50417 receiving a flow rate input command.
  • Step 50418 Adjust the spray flow rate of the drone during the flight according to the flow rate input command, and determine the percentage of the spray flow rate increase and decrease.
  • the flow rate input command may include a percentage of the flow rate increase and decrease, so that the percentage of the spray flow rate increase and decrease may be directly obtained according to the flow rate input command. Further, the drone may be adjusted according to the current spray flow rate and the percentage of the spray flow rate increase or decrease. Spray flow rate during flight. For example, if the current spray flow rate is 50 ml/sec and the spray flow rate increase or decrease is 20%, adjust the drone's flight speed to 60 ml/sec.
  • the percentage of the drone spray speed increase or decrease may be determined according to the current spray speed and the spray speed to be adjusted.
  • the percentage increase or decrease of the flight speed is linearly adjusted according to the percentage of the increase or decrease of the flow rate.
  • Step 50420 Acquire a current flight speed, and adjust a current flight speed according to a percentage increase or decrease of the flight speed, wherein the increase or decrease of the flight speed is proportional to the increase or decrease of the spray flow rate.
  • the spraying flow rate of the drone is increased, if the flying speed of the drone is not adjusted, that is, the flying speed remains unchanged, since the spraying speed of the drone becomes large.
  • the mass of the sprayed material sprayed to the unit distance is bound to increase, and the difference in the amount of the substance sprayed to the unit distance becomes larger than that before the spray flow rate adjustment, that is, specific to the ground. In the area, the sprayed material is not uniform.
  • the spraying flow rate is increased, that is, the flow rate corresponding to the unit length per unit time is increased, in order to ensure that the substance is sprayed to the unit distance before the adjustment of the spraying flow rate.
  • the difference in the amount of spray is not large, and the flight speed is correspondingly increased; and when the spray speed is decreased, the corresponding control flight speed is also reduced, that is, the percentage increase or decrease of the flight speed can be linearly adjusted according to the percentage increase or decrease of the flow rate.
  • the percentage of increase or decrease of the spray flow rate is equal to the percentage increase or decrease of the spray flow rate, and the increase or decrease of the flight speed is positively proportional to the increase or decrease of the spray flow rate. ratio.
  • first embodiment and the second embodiment in this embodiment need to be executed after step 5031 or step 5032.
  • the second embodiment may be performed after the first embodiment.
  • the second embodiment can also be performed prior to the first embodiment.
  • only one of the two implementations can be executed.
  • the flow rate input command may be sent through the flow rate input member, and the flow rate input member may be the same as the flow rate input member in the second embodiment and the third embodiment.
  • the flow rate input member may be the same as the flow rate input member in the second embodiment and the third embodiment.
  • FIG. 6 is a schematic flow chart of a spray control method for a drone according to a sixth embodiment of the present invention. As shown in FIG. 6, the method includes:
  • Step 601 Obtain a flight distance of the drone from the start point to the end point of the spray in the specific area.
  • step 602 one of the following two parameters is selected: the flight speed of the drone and the spray flow rate of the drone.
  • step 6031 if the spray flow rate is selected, the flight speed is calculated according to the total amount of materials to be sprayed by the drone, the selected spray flow rate, and the flight distance.
  • step 6032 if the flight speed is selected, the spray flow rate is calculated according to the total amount of materials to be sprayed by the drone, the selected flight speed, and the flight distance.
  • step 601, step 602, step 6031, and step 6032 refer to step 101, step 102, step 1031, and step 1032 in the first embodiment.
  • step 101, step 102, step 1031, and step 1032 in the first embodiment.
  • step 102, step 1031, and step 1032 in the first embodiment.
  • steps in the execution process in other embodiments may be referred to. I will not repeat them here.
  • Step 604 controlling the drone to fly at the altitude to be flying.
  • the altitude to be flyed may be preset.
  • the altitude to be fired may be from a height input.
  • the altitude to be moved may be input by an operator through a height input key.
  • the height to be flight is automatically corresponding according to the type of the spray component, including:
  • Step 6041 Obtain type information of the spray component installed on the drone.
  • Step 6042 Determine a spray angle according to a correspondence relationship between the type information of the spray assembly stored in advance and the spray angle.
  • FIG. 6A is a schematic diagram showing the relationship between the spray angle, the lateral distance, and the spray height according to Embodiment 6 of the present invention.
  • U is the spray angle of the nozzle in the spray assembly
  • R1 is the spray radius that can be covered by the nozzle unit time of the spray angle U.
  • A is the starting point of the spraying
  • point B is the spraying end point.
  • the description of the spraying route can be referred to in FIG. 1A in the embodiment.
  • the drone can detect the installation information of the spray assembly, and obtain the type information of the spray assembly according to the installation information, and then determine the spray angle U of the corresponding nozzle according to the type information.
  • Step 6043 Obtain a lateral distance that the drone needs to spray in a unit time.
  • the lateral distance to be sprayed per unit time may be preset or may be input by a user. In the present embodiment, the description will be made with the lateral distance being R1.
  • the altitude to be determined is determined based on the lateral distance and the spray angle.
  • the flight height H to be determined can be determined by the lateral distance R1 and the spray angle U.
  • the flying height H can be determined by dividing the lateral distance R1 by the spray angle U, and it is of course also possible to determine a more precise flight altitude by taking more parameters.
  • the type information of the spray assembly may include the number of nozzles and the nozzle spray angle, and the spray radius of each nozzle may be determined according to the number of nozzles and the spray angle.
  • FIG. 6B is a schematic view showing the relationship between another spray angle, a lateral distance, and a spray height according to Embodiment 6 of the present invention.
  • Fig. 6B illustrates the nozzle as two, as shown in Fig. 6B, L is the lateral distance, and U is the spray angle of the nozzle.
  • R2 is the spray radius that can be covered by the nozzle with a spray angle of U at a height of H per unit time.
  • the spray radius R2 of each nozzle can be determined by the lateral distance L and the number of nozzles, ie 2 nozzles, by dividing L by 2, and further, can be determined according to the spray radius R2 and the spray angle U of each nozzle.
  • Spray height H can be determined according to the spray radius R2 and the spray angle U of each nozzle.
  • the to-be-flying height is automatically corresponding according to the type of the spray assembly. Specifically, the corresponding flight height can be determined according to the spray angle, thereby ensuring that the lateral distance is determined under the conditions of spraying. Process uniformity.
  • the number of nozzles is an even number and is symmetrically arranged, so that uniformity of spraying can be better ensured.
  • the altitude to be determined determined in step 6044 is the altitude to be flying calculated based on the altitude of the starting point of the spraying, for example, 50 meters, if not Considering the altitude information, the drone always keeps flying at a height of 50 meters from the reference zero point. If the spray angle is determined, if the position of the drone's flight corresponds to an altitude 10 meters higher than the reference zero point, if not The corresponding adjustment of the flying height of the man-machine will affect the spraying radius, that is, the spraying area that can be covered by the unit time. Therefore, optionally, after the step 6044, the method may further include:
  • Step 6051 acquire location information of the flight of the drone, altitude information corresponding to the location information, and altitude information of the current flight of the drone.
  • Step 6052 Update the to-be-flying height according to the altitude information corresponding to the location information and the altitude information of the current flight of the drone.
  • the drone when the drone is in flight, before flying to a position 10 meters above the altitude of the reference zero point, it can be controlled accordingly that the flying height of the drone is higher than the current flying height in the next time period. Meters, thereby avoiding the effects of changes in altitude on the spray area covered by the spray.
  • the above-described measurement of the altitude of the drone can be performed using a device such as a barometer or a laser range finder mounted thereon.
  • the spray control method of the drone provided in this embodiment may further include:
  • the spray control method of the drone provided by the embodiment can ensure the spray uniformity of the drone during the spraying process by controlling the yaw angle of the drone while controlling the drone to take off. .
  • One application scenario of locking the yaw angle of the drone is that the drone controls the drone to take off in the corresponding mode by receiving the mode selection command, and simultaneously locks the yaw angle of the drone.
  • the operator needs to change the yaw angle of the drone, it is necessary to issue an instruction to exit the mode. After exiting the mode, the drone can be controlled to perform the yaw operation, thereby avoiding misoperation of the drone. The resulting yaw angle changes.
  • the method may further include: detecting a flight state of the drone, determining whether the drone is In an abnormal state, if the result is yes, an alarm is issued to prompt the user if they need to return immediately.
  • the flight status includes any one or more of the power information of the drone, the remaining dose information, and the power information of the remote controller.
  • the corresponding abnormal state is that the power of the drone is lower than a preset threshold
  • the corresponding abnormal state is that the remaining drug amount is lower than a preset threshold
  • the corresponding abnormal state is that the power of the remote controller is lower than a preset threshold.
  • the corresponding abnormal state is that the drone is judged to be in an abnormal state as long as one of the parameter information is lower than the preset threshold.
  • the corresponding abnormal state is that the power information of the drone and/or the remaining dose information is lower than a preset threshold.
  • the flight state of the drone is detected, and it is determined whether the drone is in an abnormal state. If the result is YES, an alarm may be issued, so that the user may be prompted to immediately Returning to the air, it can prevent the drone from being in an abnormal state, such as a crash when the battery is low, the unmanned aerial vehicle caused by the low power of the remote control, and the power waste caused by the hovering after the pesticide is sprayed.
  • an abnormal state such as a crash when the battery is low, the unmanned aerial vehicle caused by the low power of the remote control, and the power waste caused by the hovering after the pesticide is sprayed.
  • FIG. 7 is a schematic structural diagram of the unmanned aerial vehicle according to the eighth embodiment of the present invention.
  • Man-machine includes:
  • the processor 81 is configured to: obtain the flight distance of the drone from the start point to the end point of the specific area in the specific area, and select one of the following two parameters: The flight speed of the drone and the spray flow rate of the drone.
  • the spray flow rate is calculated according to the total amount of material to be sprayed by the drone, the selected flight speed and the flight distance. Specifically, the spray flow rate is calculated according to the total amount of the substance, the flight distance, and the selected flight speed, as long as the material is used and the spray is evenly distributed within the flight distance.
  • the processor 81 controls the drone at the selected flight speed. And spraying at the calculated spray flow rate.
  • the flight speed is calculated based on the total amount of material that the drone needs to spray, the selected spray flow rate, and the flight distance.
  • the flight speed is calculated based on the total amount of the material, the flight distance, and the selected spray flow rate. As long as it is guaranteed that the material is used up and sprayed evenly within the flight distance.
  • the drone After the processor 81 calculates the flight speed, the drone is controlled to spray at the set spray speed and the calculated flight speed.
  • the UAV further includes a GPS positioning module 80.
  • the positioning module 80 is in communication with the processor 81, and the flying distance from the spraying start point to the spraying end point can be obtained by using a GPS.
  • the GPS coordinates of the spray start point and the spray end point can be determined by GPS, and the flight distance from the start point to the end point of the spray can be obtained.
  • the flight distance may also be pre-stored in the processor 81.
  • a flight route may be preset in the processor 81, and the flight route includes: a spray start point, a spray end point, a lateral distance to be sprayed by the drone unit time, and a longitudinal direction to be sprayed in the unit cycle of the drone. distance.
  • the processor 81 further acquires the flight distance from the start point to the end point of the spray according to a preset flight route.
  • the processor 81 receives the mode selection instruction, and the mode selection instruction includes the selected parameter information, where the processor 81 selects the flight speed of the drone and the spray speed of the drone. Further, the processor 81 determines the selected parameter according to the selected parameter information.
  • the total amount of substances to be sprayed does not have to be equal to the total amount of all materials carried by the drone, and may be any value set by the user in advance, for example, 1/2 of the total amount of the materials carried by the drone or 2/3 and so on.
  • the total amount of material to be sprayed is equal to the total amount of material carried by the drone, which is preferable because the flight can reduce the ineffective load of the drone and maximize the utilization of the flying power energy (such as battery power).
  • the embodiments of the present invention are described by taking the total amount of substances to be sprayed equal to the total amount of materials carried by the drone as an example, but this does not mean that the present invention excludes the total amount of other substances that need to be sprayed. An embodiment that is less than the total amount of material carried by the drone.
  • the total amount of material to be sprayed may be pre-stored in the processor 81.
  • the total amount of the substance may be pre-stored in the In the processor 81.
  • the total amount of material that needs to be sprayed can also be input by the user, and then received by the processor 81.
  • the operator can input the total amount of the substance through the display screen and receive it by the processor.
  • the processor 81 automatically acquires the total amount of material carried by the drone to determine the total amount of material that needs to be sprayed. For example, by installing a corresponding weight sensor, when the spray assembly is mounted to the drone, the processor 81 can automatically obtain information on the total amount of material carried by the drone.
  • the automatic acquisition of the total amount of the material is not limited to the use of the gravity sensor. In this embodiment, only an example is given, but it is not limited thereto. On this basis, the total amount of substances to be sprayed can be determined according to the total amount of all materials carried by the drone.
  • the total amount of the substance to be sprayed can be determined as the total amount of the substance according to the total amount of all the substances. 1/2 of the total amount can be.
  • the substance to be sprayed may be any one or more of a solid, a liquid, and a gas.
  • the sprayed substance may be a liquid form pesticide or water, a solid form seed, a gas form pesticide, or the like.
  • the sprayed material can also be any one of two or three kinds of solid, liquid, and gaseous substances.
  • the processor 81 can calculate the matching spray flow rate according to the total amount of the substance, the flight distance and the flight speed, or calculate the matching flight speed according to the total amount of the material, the flight distance and the spray flow rate, thereby ensuring Spraying at the spray flow rate and the flight speed can spray the material and spray evenly, thereby avoiding the drone that the operator can set the flight speed and the spray flow rate easily due to the flight speed and the spray flow rate being unsuitable.
  • FIG. 8 is a schematic structural diagram of a drone provided in Embodiment 9 of the present invention. As shown in FIG. 8, the drone provided in this embodiment may further include at least one Flow rate input member 82.
  • the processor 81 selects the spray flow rate
  • the processor 81 is specifically used according to the total amount of the substance to be sprayed by the drone (the total amount of the substance referred to in the following embodiment), the selected spray flow rate, and the flight distance. ??? obtaining the selected spraying flow rate, obtaining the spraying time according to the selected spraying flow rate and the total amount of the material, and calculating the first flying speed according to the flying distance and the spraying time, at the first flying speed Degree as the current flight speed.
  • the spray flow rate selected by the processor 81 may be pre-stored in the processor 81.
  • the processor 81 may automatically correspond to the type of the spray assembly. Specifically, the processor 81 can further determine the selected spray flow rate according to the correspondence between the type information of the pre-stored spray component and the spray flow rate by acquiring the type information of the spray component installed on the drone.
  • the drone can be provided with a sensor at a corresponding spray assembly installation location to obtain type information of the spray assembly.
  • each spray component installation is provided with a sensor, each sensor has its one-to-one corresponding identifier, and the sensor detects the installation information of the spray component corresponding to the sensor, and when the sensor recognizes that the spray component is installed to the unmanned On-board, the processor 81 transmits its own identification, and the processor 81 identifies which type of spray assembly is installed by identifying the identification information transmitted by the sensor and based on the correspondence between the pre-stored identification information and the spray component signal.
  • the type of the sensor is not limited, and may be, for example, a gravity sensor, an optical sensor, a pressure sensor, a liquid flow rate sensor, or the like.
  • the drone further includes at least one flow rate input member 82.
  • the selected spray flow rate obtained by processor 81 may also be from flow rate input member 82.
  • the operator triggers the flow rate input member 82, and the flow rate input member 82 issues an input command.
  • the processor 81 receives the input command, it determines the selected spray flow rate based on the input command.
  • the flow rate input member 82 may be one or more. Wherein, when the flow rate input member 82 is one, that is, when the selected spray flow rate is emitted through a flow rate input member 82, the processor 81 can identify the spray flow rate corresponding to the trigger time by detecting the time when the flow rate input member 82 is triggered.
  • each flow rate input member 82 can emit a corresponding spray flow rate.
  • the flow rate input member can be four, correspondingly, the spray flow rate corresponding to the first flow rate input member is 30 ml/sec, the second flow rate input member corresponds to the spray flow rate of 40 ml/sec, and the third flow rate input The corresponding spray flow rate is 50 ml/sec, and the fourth flow rate input member corresponds to a spray flow rate of 60 ml/sec.
  • the number of milliliters in this embodiment is merely an exemplary number, but is not limited thereto.
  • the flow rate input member 82 can be disposed on the drone or on the remote controller of the drone.
  • the flow rate input member 82 includes any one or more of a gear position switch, a knob switch, a potentiometer, a linear switch, and a touch display screen.
  • the processor 81 can calculate the matching first flight speed according to the total amount of the material, the flight distance and the spray flow rate, thereby ensuring that the spraying can be performed at the selected spray flow rate and the first flight speed.
  • the material is sprayed and evenly sprayed, so that the drone can be prevented from simultaneously setting the flight speed and the spray flow rate, and the flying speed and the spray flow rate are not suitable, and the drone has not sprayed the crop in a certain area, and the medicine is not sprayed.
  • the light has been used; or the drone has completed work on a certain area ahead of time, but the drug has a lot of remaining problems.
  • FIG. 9 is a schematic structural diagram of a drone according to Embodiment 10 of the present invention.
  • the UAV includes: one or more processors 81, a flow rate input member 82, and a speed input member 83.
  • the processor 81 selects the flight speed
  • the processor 81 is specifically configured to: obtain the selected flight speed according to the selected flight speed according to the total amount of the material to be sprayed by the drone, the selected flight speed, and the flight distance.
  • the spraying speed and the flying distance are used to obtain the spraying time; the first spraying flow rate is calculated according to the total amount of the substance and the spraying time, and the first spraying speed is used as the current spraying flow rate.
  • the selected spraying speed obtained by the processor 81 may be pre-stored in the processor 81;
  • the drone further includes: a speed input member 83 for issuing a selected spray speed, the speed input member 83 is communicatively coupled to the processor 81, and the processor 81 is specifically obtained according to the selected flight speed issued by the speed input member 83.
  • the selected spray speed is specifically obtained according to the selected flight speed issued by the speed input member 83.
  • the processor 81 is further configured to receive a speed input command issued by the speed input member.
  • each speed input member can transmit information of a corresponding flight speed.
  • the speed input member 83 includes any one or more of a gear position switch, a knob switch, a potentiometer, a linear switch, and a touch display screen.
  • the speed input member 83 is provided on the drone or on the remote controller of the drone.
  • the processor 81 can calculate the matched first spraying speed according to the total amount of the material, the flying distance, and the selected flying speed, thereby ensuring that the first spraying flow rate and the selected arrival flying speed are performed.
  • Spraying can spray the material and spray it evenly, which can prevent the drone from spraying the spray of a certain area due to the fact that the operator can set the flight speed and the spray flow rate easily caused by the flight speed and the spray flow rate.
  • the drug has been used up; or the drone has completed work on a certain area ahead of time, but the drug has a lot of remaining problems.
  • the processor 81 is further configured to adjust the flight speed of the drone during the flight, and the spray flow rate of the drone is automatically adjusted; or It is used to adjust the spraying flow rate of the drone during flight, and the flight speed of the drone is automatically adjusted.
  • the processor 81 can perform the following two specific embodiments when performing "adjusting the flight speed of the drone during flight, and automatically adjusting the spray flow rate of the drone":
  • the processor 81 receives a speed input command including information of the second flight speed.
  • the processor 81 adjusts the flight speed of the drone during flight according to the information of the second flight speed. Specifically, the processor 81 acquires the flight speed of the current drone, and if the current flight speed is equal to the second flight speed, the current flight speed is maintained unchanged. If the current flight speed is not equal to the second flight speed, the drone is controlled to fly at the second flight speed.
  • the processor 81 obtains the remaining flight distance to be sprayed and the total amount of remaining materials, determines the remaining spraying time according to the remaining flight distance to be sprayed and the second flight speed, and determines the second according to the total amount of remaining materials and the remaining spraying time. Spray flow rate.
  • the processor 81 determines the remaining spray time by dividing the flight distance to be sprayed by the second flight speed.
  • the second spray flow rate is determined according to the total amount of remaining material divided by the remaining spray time, the current spray flow rate is obtained, and the current spray flow rate is adjusted to be the second spray flow rate.
  • the substance can be sprayed at the second flight speed and the second spray flow rate at the end of the spraying end, and uniformly sprayed.
  • the processor 81 receives the speed input command, adjusts the flight speed of the drone during flight according to the speed input command, and determines the percentage of the drone speed increase and decrease. Further, the processor 81 linearly adjusts the percentage increase or decrease of the spray flow rate according to the percentage increase or decrease of the flight speed, obtains the current spray flow rate, and adjusts the current spray flow rate according to the percentage increase or decrease of the spray flow rate, wherein the spray flow rate increases or decreases. It is proportional to the increase or decrease of the speed of the drone. .
  • the speed input command may include a percentage of the drone speed increase and decrease, so the processor 81 may directly obtain the percentage of the drone speed increase and decrease according to the speed input command. Further, the processor 81 obtains the current flight speed.
  • the flight speed of the drone during flight is adjusted according to the current flight speed and the percentage increase or decrease of the flight speed. For example, if the processor 81 determines that the current flight speed is 5 m/s, the speed increases or decreases. The percentage is increased by 20%, and the processor 81 adjusts the flying speed of the drone to 6 m/s.
  • the speed input command includes the flight speed of the drone to be adjusted, and the processor 81 adjusts the drone to the flight speed to be adjusted after acquiring the current flight speed. Further, the processor 81 can determine the percentage increase or decrease of the flight speed of the drone according to the flight speed to be adjusted and the current flight speed.
  • the processor 81 increases the spray flow rate correspondingly; and when the flight speed decreases, that is, when the time of staying at the unit distance becomes longer, the corresponding control spray flow rate of the processor 81 also decreases, that is, the percentage of increase or decrease according to the spray flow rate. Linearly adjust the current spray flow rate.
  • the processor 81 can make the percentage of increase or decrease of the flight speed equal to the percentage increase or decrease of the spray flow rate, and increase or decrease the spray flow rate and fly the drone.
  • the increase or decrease in speed is proportional. That is, if the flight speed is increased by 20%, the corresponding spray flow rate is also increased by 20%.
  • the speed input command can be issued via the speed input member 83.
  • the speed input member 83 can be the same as the speed input member 83 in the above-mentioned embodiment 9 and the tenth embodiment. For details, refer to the above-mentioned embodiment 9 and the embodiment 10, and details are not described herein again.
  • the processor 81 can adjust the spray flow rate accordingly to achieve uniform spraying.
  • the processor 81 is configured to receive a flow rate input command, and the flow rate input command includes information of a third spray flow rate. Further, the processor 81 adjusts the drone during the flight according to the information of the third spray flow rate. The spray flow rate in.
  • the processor 81 obtains the current spray flow rate, and if the current spray flow rate is equal to the third spray flow rate, the current spray flow rate is kept unchanged; if the current spray flow rate is not equal to the third spray flow rate, the control is not controlled. The machine was sprayed at a third spray flow rate.
  • the processor 81 further acquires the remaining flight distance to be sprayed and the total amount of remaining materials, determines the remaining spraying time according to the total amount of remaining materials and the third spraying flow rate, and determines the third flight according to the remaining flying distance to be sprayed and the remaining spraying time.
  • Speed adjust the current flight speed according to the third flight speed.
  • the material can be sprayed and uniformly sprayed at the third flight speed and the third spray flow rate when the spray end point is reached.
  • the processor 81 is configured to receive a flow rate input command, adjust a spray flow rate of the drone during the flight according to the flow rate input command, and determine a percentage of the increase or decrease of the spray flow rate. Further, the processor 81 linearly adjusts the percentage increase or decrease of the flight speed according to the percentage increase or decrease of the flow rate, acquires the current flight speed, and adjusts the current flight speed according to the increase or decrease of the flight speed, wherein the increase or decrease of the flight speed is The increase or decrease of the spray flow rate is proportional. .
  • the flow rate input command includes a spray speed to be adjusted by the drone, and the processor 81 can determine the percentage increase or decrease of the drone spray speed according to the current spray speed and the spray speed to be adjusted.
  • the spraying flow rate of the drone is increased, if the flying speed of the drone is not adjusted, that is, the flying speed remains unchanged, since the spraying speed of the drone becomes large.
  • the mass of the sprayed material sprayed to the unit distance is bound to increase, and the difference in the amount of the substance sprayed to the unit distance becomes larger than that before the spray flow rate adjustment, that is, specific to the ground. In the area, the sprayed material is not uniform.
  • the spraying flow rate is increased, that is, the flow rate per unit length is increased per unit time, in order to ensure that compared with before the spraying flow rate adjustment,
  • the spray amount of the substance sprayed to the unit distance is not much different, and the corresponding control of the processor 81 increases the flight speed; and when the spray speed is decreased, the corresponding control flight speed of the processor 81 is also decreased, that is, the flow rate can be increased according to the flow rate.
  • the percentage of decrease linearly adjusts the percentage increase or decrease of flight speed.
  • the processor 81 can adjust the percentage of increase or decrease of the spray flow rate to be equal to the percentage increase or decrease of the spray flow rate, and increase or decrease the flight speed and the spray.
  • the increase or decrease of the flow rate is proportional.
  • the flow rate input command may be sent through the flow rate input member 82.
  • the flow rate input member 82 may be the same as the flow rate input member 82 in the above-mentioned Embodiment 9 and Embodiment 10.
  • the flow rate input member 82 may be the same as the flow rate input member 82 in the above-mentioned Embodiment 9 and Embodiment 10.
  • the processor 81 can adjust the flight speed accordingly to achieve uniform spraying.
  • This embodiment further explains the flying height of the unmanned aerial vehicle based on the above-mentioned Embodiment 8 to Embodiment 12.
  • the processor 81 is also used to control the drone to fly at the altitude to be flying.
  • the flying height affects the area covered by the spray per unit time. Therefore, preferably, the height to be moved is automatically determined by the processor 81 according to the type of the spray assembly. Corresponding to the obtained.
  • the to-be-flying height is automatically obtained by the processor 81 according to the type of the spray component.
  • the processor 81 acquires the type information of the spray component installed on the drone, and according to the pre-stored type information of the spray component and the spray angle. Corresponding relationship determines the spray angle, obtains the lateral distance to be sprayed by the drone unit time, and determines the flight height according to the lateral distance and the spray angle.
  • the lateral distance to be sprayed per unit time may be preset or may be input by a user.
  • the number of nozzles is an even number and is symmetrically arranged, so that uniformity of spraying can be better ensured.
  • the processor 81 is further configured to acquire location information of the flight of the drone, altitude information corresponding to the location information, and altitude information of the current flight of the drone, and altitude information and the drone according to the location information.
  • the altitude information of the current flight updates the altitude to be flying.
  • the processor 81 can correspondingly control the flying height of the drone in the next time period than the current flight.
  • the height is 10 meters high, thus avoiding the influence of altitude changes on the spray area covered by the spray.
  • the above-described measurement of the altitude of the drone can be performed using a device such as a barometer or a laser range finder mounted thereon.
  • the spray assembly is directional when installed, that is, once the direction of the drone changes, for example, if the operator mistakenly changes the yaw angle of the drone, the substance is changed. Distribution when spraying to the ground.
  • the processor 81 is further configured to lock the yaw angle of the drone when the drone is controlled to take off, so that the drone maintains a fixed angle between the nose and the fuselage during the flight. To make the spray even.
  • the processor 81 can lock the yaw angle of the drone while controlling the drone to take off, thereby ensuring the spray uniformity of the drone during the spraying process to a certain extent. And can avoid the yaw angle change caused by mishandling the drone.
  • the processor 81 is further configured to: detect a flight state of the drone, determine whether the drone is in an abnormal state, and if the result is YES, issue an alarm to prompt the user whether to return immediately.
  • the flight status includes any one or more of the power information of the drone, the remaining dose information, and the power information of the remote controller.
  • the processor 81 detects that the flight state of the drone is the power information of the drone, the corresponding abnormal state is that the power of the drone is lower than a preset threshold;
  • the processor 81 detects that the flight state of the drone is the remaining dose information of the drone, the corresponding abnormal state is that the remaining drug amount is lower than a preset threshold;
  • the processor 81 detects that the flight state of the drone is the power information of the remote controller of the drone, the corresponding abnormal state is that the power of the remote controller is lower than a preset threshold.
  • the corresponding abnormal state is that the drone is determined to be abnormal as long as one of the parameter information is lower than the preset threshold. status. For example, when the flight status includes the power information of the drone and the remaining dose information, the corresponding abnormal state is that the power information of the drone and/or the remaining dose information is lower than a preset threshold.
  • the processor 81 can detect the flight state of the drone, determine whether the drone is in an abnormal state, and if the result is YES, an alarm can be issued, so that the user can be prompted whether it is needed. Returning immediately, it can prevent the drone caused by the drone in the abnormal state, such as the crash when the battery is low, the uncontrolled drone caused by the low power of the remote control, and the power waste caused by the hovering after the pesticide is sprayed. One or more questions.
  • the related apparatus and method disclosed may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be another division manner for example, multiple units or components may be used. Combinations can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Engineering & Computer Science (AREA)
  • Insects & Arthropods (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Catching Or Destruction (AREA)

Abstract

一种无人机的喷洒控制方法,包括:获得无人机在特定区域的喷洒起点至终点的飞行距离;选取下述两个参数的其中之一:无人机的飞行速度和无人机的喷洒流速;若选取的是飞行速度,则根据无人机需要喷洒的物质总量、选取的飞行速度和飞行距离计算喷洒流速;若选取的是喷洒流速,则根据无人机需要喷洒的物质总量、选取的喷洒流速和所述飞行距离计算飞行速度。本发明提供的无人机的喷洒控制方法可以避免操控者同时设置飞行速度和喷洒流速容易造成的飞行速度和喷洒流速不合适所造成的无人机还没有对某一区域的作物喷洒完毕,而药物已经用光;或者无人机提前完成对某一区域的作业,但药物还有大量剩余的问题。

Description

无人机的喷洒控制方法和无人机 技术领域
本发明涉及无人机领域,尤其涉及无人机的喷洒控制方法和无人机。
背景技术
近年来,农业现代化以及精准农业不断向前发展,农用机械的发展为农业现代化提供了极大便利。基于无人飞机的作业工具为农业现代化提供了高效、便捷的作业方法。
现有技术中无人机的喷洒作业,通常是操控者来设置飞行速度和喷洒流速,但是若飞行速度和喷洒流速设置的不合适,常常造成无人机还没有对某一区域的作物喷洒完毕,而药物已经用光;或者无人机提前完成对某一区域的作业,但药物还有大量剩余;或者药物喷洒不够均匀等问题。
发明内容
针对现有技术中的上述缺陷,本发明提供一种方法用于解决现有技术中操控者来设置飞行速度和喷洒流速,若飞行速度和喷洒流速设置的不合适,常常造成无人机还没有对某一区域的作物喷洒完毕,而药物已经用光;或者无人机提前完成对某一区域的作业,但药物还有大量剩余;或者药物喷洒不够均匀等问题。
本发明的第一个方面是提供一种无人机的喷洒控制方法,包括:
获得无人机在特定区域的喷洒起点至终点的飞行距离;
选取下述两个参数的其中之一:无人机的飞行速度和无人机的喷洒流速;
若选取的是飞行速度,则根据无人机需要喷洒的物质总量、选取的飞行速度和获得的飞行距离计算喷洒流速;
若选取的是喷洒流速,则根据无人机需要喷洒的物质总量、选取的喷洒流速和获得的飞行距离计算飞行速度。
本发明的第二个方面提供一种无人机,包括:
一个或者多个处理器,单独的或者协同的工作,所述处理器用于:
获得无人机在特定区域的喷洒起点至终点的飞行距离;
选取下述两个参数的其中之一:无人机的飞行速度和无人机的喷洒流速;
若选取的是飞行速度,则根据无人机需要喷洒的物质总量、选取的飞行速度和获得的飞行距离计算喷洒流速;
若选取的是喷洒流速,则根据无人机需要喷洒的物质总量、选取的喷洒流速和获得的飞行距离计算飞行速度。
本发明提供的无人机的喷洒控制方法和无人机,可以根据物质总量、飞行距离和飞行速度计算匹配的喷洒流速,或者根据物质总量、飞行距离和喷洒流速来计算匹配的飞行速度,从而可以保证在该喷洒流速和该飞行速度下进行喷洒可以将物质喷洒完毕,并且均匀喷洒,进而可以避免操控者同时设置飞行速度和喷洒流速容易造成的飞行速度和喷洒流速不合适所造成的无人机还没有对某一区域的作物喷洒完毕,而药物已经用光;或者无人机提前完成对某一区域的作业,但药物还有大量剩余的问题。
此外,在上述第一个方面的基础上,本发明提供的无人机的喷洒控制方法,还包括:
调整无人机在飞行过程中的飞行速度,无人机的喷洒流速自动调整;
或者,调整无人机在飞行过程中的喷洒流速,无人机的飞行速度自动调整。
在上述第二个方面的基础上,本发明提供的无人机,处理器还用于:
调整无人机在飞行过程中的飞行速度,无人机的喷洒流速自动调整;
或者,调整无人机在飞行过程中的喷洒流速,无人机的飞行速度自动调整。
本发明提供的无人机的喷洒控制方法和无人机,可以在调整飞行速度时,自适应的调整喷洒速度,或者在调整喷洒速度时,自适应的调整飞行速度,从而使得无人机的喷洒均匀。
附图说明
图1为本发明实施例一提供的无人机的喷洒控制方法的流程示意图;
图1A为本发明实施例一提供的无人机的喷洒控制方法中提供的一种飞行路线的示意图
图2为本发明实施例二提供的无人机的喷洒控制方法的流程示意图;
图3为本发明实施例三提供的无人机的喷洒控制方法的流程示意图;
图4为本发明实施例四提供的无人机的喷洒控制方法的流程示意图;
图5为本发明实施例五提供的无人机的喷洒控制方法的流程示意图;
图6为本发明实施例六提供的无人机的喷洒控制方法的流程示意图;
图6A为本发明实施例六提供的喷洒角度、横向距离以及喷洒高度之间的关系示意图;
图6B为本发明实施例六提供的又一喷洒角度、横向距离以及喷洒高度之间的关系示意图;
图7为本发明实施例八提供的无人机的结构示意图;
图8为本发明实施例九提供的无人机的结构示意图;
图9为本发明实施例十提供的无人机的结构示意图。
具体实施方式
下面结合附图,对本发明的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
以下描述的给出是为了使本领域任何技术人员都能够制造并使用所述实施例,并且是在特定应用及其需求的背景下提供的。对所公开实施例的各种修改对本领域技术人员来说将是很显然的,而且,在不背离所给出的本公开内容的主旨与范围的情况下,这里所定义的一般性原理可以应用到其它实施例及应用。因而,本发明不限于所示出的实施例,而是符合与这里所公开的原理和特征一致的最广范围。
本发明的具体实施方式部分中所描述的数据结构和代码一般存储在计算机可读存储介质上,所述存储介质可以是能够存储由计算机系统使用的代码和/或数据的任何设备或介质。计算机可读存储介质包括但不限于:易失性存储器、非易失性存储器、磁和光存储设备(诸如盘驱动器、磁带、CD(光盘)、DVD(数字多功能盘或数字视频盘)等)、或者现在已知或今后开发的能够存储代码和/或数据的其它介质。
本发明的具体实施方式部分中所描述的方法和过程可以体现为代码和/或数据,这些代码和/或数据可以存储在如上所述的计算机可读存储介质中。 当计算机系统读取并执行存储在计算机可读存储介质上的代码和/或数据时,计算机系统执行体现为数据结构和代码并且存储在计算机可读存储介质中的方法和过程。
此外,这里所描述的方法和过程可以包含在硬件模块或装置中。这些模块或装置可以包括但不限于:专用集成电路(ASIC)芯片、现场可编程门阵列(FPGA)、在特定时刻执行特定软件模块或一段代码的专用或共享处理器、和/或现在已知或今后开发的其它可编程逻辑器件。当所述硬件模块或装置被激活时,它们执行包括在其中的方法和过程。
实施例一
图1为本发明实施例一提供的无人机的喷洒控制方法的流程示意图,如图1所示,该无人机的喷洒控制方法,对地面的特定区域进行喷洒作业,包括:
步骤101,获得无人机在特定区域的喷洒起点至终点的飞行距离。
其中,该飞行距离可以通过全球定位系统GPS(Global Positioning System,简称GPS)获取。例如可以通过GPS,确定喷洒起点和喷洒终点的GPS坐标,进而获取喷洒起点至终点的飞行距离。
或者,该飞行距离也可以是预先存储的。例如,根据该特定区域,无人机中可以预先设置有飞行路线,飞行路线中包括:喷洒起点、喷洒终点、无人机单位时间需喷洒的横向距离和无人机单位周期内需喷洒的纵向距离。无人机进而根据预设的飞行路线获取喷洒起点至终点的飞行距离。
图1A为本发明实施例一提供的无人机的喷洒控制方法中提供的一种飞行路线的示意图,需要说明的是,图1A只是示例性的给出一种飞行路线,但是飞行路线并不以此为限制,本实施例以图1A为例,对于横向距离和纵向距离加以解释说明。
其中,A点为喷洒起点,B点为喷洒终点,其中,A点和B点的连线的矢量方向定义为横向,与A点和B点连线方向垂直的矢量方向定义为纵向。在图1A中,A点与D点的连线为纵向距离,即无人机在一个周期中沿着纵向方向飞行的距离。横向距离指的是当沿着纵向方向飞行时,无人机单位时间在横向方向上所需要覆盖的距离,即为横向距离,在图1A中,示例性的给出了当无人机沿着AD连线的纵向方向飞行时,L即为无人机单位时间需 要喷洒的横向距离。其中,横向距离可以根据无人机喷洒时的飞行路线进行确定,或者,无人机可以根据操作者预先输入横向距离和纵向距离以及喷洒起点、喷洒终点,规划飞行路线。
另外,单位周期指的是无人机以周期性的轨迹进行喷洒时,一个周期中沿着纵向方向飞行的距离,图中A点至C点为一个周期,C点至B点为一个周期,那么纵向距离指的是A点与D点之间的距离。
步骤102,选取下述两个参数的其中之一:无人机的飞行速度和无人机的喷洒流速。
一种具体的选取参数的方式为:通过接收模式选择指令,确定选取的参数,其中,模式选择指令中包括选取的参数信息。
步骤1031,若选取的是喷洒流速,则根据无人机需要喷洒的物质总量、选取的喷洒流速和飞行距离计算飞行速度。
具体的,根据物质总量、飞行距离以及选取的喷洒流速计算飞行速度。只要保证在该飞行距离内,物质被用光且被喷洒均匀即可。
在计算得到飞行速度之后,则控制无人机在设定的喷洒速度和计算得到的飞行速度下进行喷洒。
步骤1032,若选取的是飞行速度,则根据无人机需要喷洒的物质总量、选取的飞行速度和飞行距离计算喷洒流速。具体的,例如,如果需要喷洒的物质总量是无人机携带的全部物质总量,则根据需要喷洒的物质总量、飞行距离以及选取的飞行速度计算喷洒流速,只要保证在该飞行距离内,物质被用光且被喷洒均匀即可。
需要说明的是,需要喷洒的物质总量不必一定等于无人机携带的全部物质总量,可以是用户提前设定的任意数值,比如:无人机携带的全部物质总量的1/2或2/3等。但是,需要喷洒的物质总量等于无人机携带的全部物质总量为优选方案,因为这种飞行可以降低无人机的无效负载,达到飞行动力能源(比如:电池电量)利用的最大化。为避免赘述,本发明中的实施例均以需要喷洒的物质总量等于无人机携带的全部物质总量为例来叙述,但这并不意味着本发明排除了其它需要喷洒的物质总量小于无人机携带的全部物质总量的实施方案。在计算得到喷洒流速之后,则控制无人机在选取的飞行速度以及计算得到的喷洒流速下进行喷洒。
可选的,需要喷洒的物质总量可以是预先存储的,举例来说,若无人机只能安装一种类型和固定数量的喷洒组件,那么物质总量可以预先存储。
当然,需要喷洒的物质总量也可以通过用户输入,例如,可以通过显示屏进行输入。
或者,也可以通过自动获取无人机携带的物质总量确定需要喷洒的物质总量,例如可以通过安装相应的重量传感器,当喷洒组件被安装至无人机上时,处理器可以自动获取无人机携带的物质总量的信息。当然,自动获取无人机携带的物质总量并不仅仅限于采用重力传感器的方式,本实施例中仅仅是给出一种示例,但并不以此为限制。在此基础上,可以根据无人机携带的全部物质总量确定需要喷洒的物质总量。举例来说,若用户提前设定的了需要喷洒的物质总量为无人机携带的全部物质总量的1/2,则可以根据全部物质总量确定待喷洒的物质总量只要为全部物质总量的1/2即可。需要说明的是,需要喷洒的物质可以为固体、液体、气体中的任意一种或多种形态,例如,喷洒的物质可以为液体形态的农药或者水、固体形态的种子、气体形态的农药等。当然,喷洒的物质也可以为固态、液态、气态任意两种或三种混合的物质。
本实施例提供的无人机的喷洒控制方法,无人机可以根据物质总量、飞行距离和飞行速度计算匹配的喷洒流速,或者根据物质总量、飞行距离和喷洒流速来计算匹配的飞行速度,从而可以保证在该喷洒流速和该飞行速度下进行喷洒可以将物质喷洒完毕,并且均匀喷洒,进而可以避免操控者同时设置飞行速度和喷洒流速容易造成的飞行速度和喷洒流速不合适所造成的无人机还没有对某一区域的作物喷洒完毕,而药物已经用光;或者无人机提前完成对某一区域的作业,但药物还有大量剩余的问题。
实施例二
本实施例在图1所示的实施例一的基础上,对步骤1031做进一步的解释说明。图2为本发明实施例二提供的无人机的喷洒控制方法的流程示意图,如图2所示,在该喷洒控制方法中,具体的,若选取的是喷洒流速,则根据所述无人机需要喷洒的物质总量(下述实施例中简称物质总量)、选取的喷洒流速和所述飞行距离计算飞行速度,包括:
步骤10311,获取选取的喷洒流速。
具体的,选取的喷洒流速可以是预设设置并存储在无人机的处理器中的。
或者,可以根据喷洒组件的类型自动对应,具体的,可以通过获取无人机上安装的喷洒组件的类型信息,进一步的根据预先存储的喷洒组件的类型信息与喷洒流速的对应关系确定选取的喷洒流速。
举例来说,无人机可以在相应的喷洒组件安装位置处设置有传感器,来获取喷洒组件的类型信息。例如,每一个喷洒组件安装处都设置有传感器,每个传感器都有其一一对应的标识,通过传感器检测与该传感器对应的喷洒组件的安装信息,当传感器识别到有喷洒组件安装至无人机上时,则向处理器发送自身的标识,处理器通过识别传感器发送的标识信息,以及根据预存的标识信息与喷洒组件信号的对应关系来识别何种类型的喷洒组件被安装。其中,传感器的类型并不加以限定,例如,可以为重力传感器,也可以为光学传感器、压力传感器、液体流速传感器等。
可选的,选取的喷洒流速也可以是流速输入件发出的。例如,一种应用场景为,操作者触发流速输入件,进而流速输入件发出输入指令,当接收该输入指令后,根据该输入指令确定选取喷洒流速。
其中,可选的,流速输入件可以为一个也可以为多个。其中,当流速输入件为一个时,即选取的喷洒流速是通过一个流速输入件发出时,处理器可以通过检测流速输入件被触发的时间来识别与触发时间对应的喷洒流速。
若流速输入件为多个时,每个流速输入件可发出相应的喷洒流速。例如流速输入件可以为4个,相应的,可以第一个流速输入件对应的喷洒流速时30毫升/秒,第二个流速输入件对应的喷洒流速为40毫升/秒,第三个流速输入件对应的喷洒流速为50毫升/秒,第四个流速输入件对应的喷洒流速为60毫升/秒。其中,需要说明的,本实施例中的毫升数只是示例性的数字,但并不以此为限制。
其中,流速输入件可以设置在无人机上或设置在无人机的遥控器上。
另外,流速输入件包括:档位开关、旋钮开关、电位器、直线开关、触摸显示屏中的任意一个或多个。
综上,选取的喷洒流速来自于以下三种方式的任意一种:预先存储的、根据喷洒组件的类型自动对应的、由流速输入件发出的。
步骤10322,根据选取的喷洒流速和物质总量获取喷洒时间。
具体的,通过物质总量除以选取的喷洒流速可以确定喷洒时间。
步骤10333,根据飞行距离和喷洒时间计算第一飞行速度。
进一步的,飞行距离除以喷洒时间可以确定第一飞行速度。
步骤10334,以第一飞行速度作为当前的飞行速度。
进一步的,可以控制无人机在当前的飞行速度和选取的喷洒流速下进行喷洒。
该方法由于通过物质总量和飞行距离以及选取的喷洒流速来确定的第一飞行速度,因此,可以保证在选取的喷洒流速和第一飞行速度下在到达喷洒终点时可以将物质喷洒完毕,并且均匀喷洒。
本实施例提供的无人机的喷洒控制方法,无人机可以根据根据物质总量、飞行距离和喷洒流速来计算匹配的第一飞行速度,从而可以保证在选取的喷洒流速和第一飞行速度下进行喷洒可以将物质喷洒完毕,并且均匀喷洒,进而可以避免操控者同时设置飞行速度和喷洒流速容易造成的飞行速度和喷洒流速不合适所造成的无人机还没有对某一区域的作物喷洒完毕,而药物已经用光;或者无人机提前完成对某一区域的作业,但药物还有大量剩余的问题。
实施例三
本实施例在图1所示的实施例一的基础上,对步骤1032做进一步的解释说明。图3为本发明实施例三提供的无人机的喷洒控制方法的流程示意图,如图3所示,该喷洒控制方法中,若选取的是飞行速度,则根据无人机需要喷洒的物质总量、选取的飞行速度和飞行距离计算喷洒流速,包括:
步骤10321,获取选取的飞行速度。
选取的飞行速度来自于以下三种方式的任意一种:预先存储的、或者由速度输入件发出的。
其中,若选取的飞行速度是通过速度输入件发出的,可选的,速度输入件可以为多个,每个速度输入件可发出相应的飞行速度的信息。
当然,速度输入件也可以为一个,当速度输入件为一个时,即选取的飞行速度是通过一个流速输入件发出时,处理器可以通过检测速度输入件被触发的时间来识别与触发时间对应的飞行速度。
可选的,速度输入件包括:档位开关、旋钮开关、电位器、直线开关、触摸显示屏中的任意一个或多个。
速度输入件可以设置在无人机上,或者设置在无人机的遥控器上。
步骤10322,根据选取的飞行速度和飞行距离获取喷洒时间。
具体的,通过飞行距离除以选取的飞行速度可以确定喷洒时间。
步骤10333,根据物质总量和喷洒时间计算第一喷洒流速。
进一步的,通过物质总量除以喷洒时间确定第一喷洒流速。
步骤10334,以第一喷洒速度作为当前的喷洒流速。
进一步的,可以控制无人机在当前的喷洒流速和选取的飞行速度下进行喷洒。
根据该方法确定的第一喷洒流速,可以保证在选取的飞行速度和第一喷洒流速下在到达喷洒终点时可以将物质喷洒完毕,并且均匀喷洒。
在上述实施例一至实施例三的基础上,需要说明的是,在步骤102中,选取无人机的飞行速度或者无人机的喷洒流速时,可以通过接收模式选择指令确定选取的参数,模式选择指令中包括选取的参数信息。即该无人机可以包括两种模式选择,一种是步骤1031中的计算喷洒流速的模式,一种是步骤1032中的计算飞行速度的模式。
当无人机具备上述两种模式时,则无人机可以同时具有流速输入件和速度输入件。
本实施例提供的无人机的喷洒控制方法,无人机可以根据物质总量、飞行距离和选取的飞行速度来计算匹配的第一喷洒速度,从而可以保证在第一喷洒流速和选取的飞行速度下进行喷洒从而将物质喷洒完毕,并且均匀喷洒,进而可以避免操控者同时设置飞行速度和喷洒流速容易造成的飞行速度和喷洒流速不合适所造成的无人机还没有对某一区域的作物喷洒完毕,而药物已经用光;或者无人机提前完成对某一区域的作业,但药物还有大量剩余的问题。
实施例四
图4为本发明实施例四提供的无人机的喷洒控制方法的流程示意图,如图4所示,在图1所示的实施例的基础上,该无人机的喷洒控制方法包括:
步骤401,获得无人机在特定区域的喷洒起点至终点的飞行距离。
步骤402,选取下述两个参数的其中之一:无人机的飞行速度和无人机的喷洒流速。
步骤4031,若选取的是喷洒流速,则根据所述无人机需要喷洒的物质总量、选取的喷洒流速和飞行距离计算飞行速度。
步骤4032,若选取的是飞行速度,则根据无人机需要喷洒的物质总量、选取的飞行速度和飞行距离计算喷洒流速。
其中,步骤401、步骤402、步骤4031和步骤4032具体的实施方式可以参照实施例一至实施例三中步骤101、步骤102、步骤1031和步骤1032,在此不再赘述。
步骤4041,调整无人机在飞行过程中的飞行速度,无人机的喷洒流速自动调整。
其中,调整无人机在飞行过程中的飞行速度可以为无人机自动调整,进而来调节喷洒流速,例如,无人机可以实时获取当前的风速信息,根据当前的风速自动调整飞行速度,进一步的,根据飞行速度自动调整喷洒流速。
或者,也可以通过接收速度输入指令来调节飞行速度,进而调节喷洒速度。
其中,通过接收速度指令来调节飞行速度进而调节喷洒速度可以包括以下两种实施方式。
第一种实施方式包括:
步骤40411,接收速度输入指令,速度输入指令中包括第二飞行速度的信息。
步骤40412,根据第二飞行速度的信息调整无人机在飞行过程中的飞行速度。
具体的,获取当前无人机的飞行速度,若当前的飞行速度与第二飞行速度相等,则保持当前的飞行速度不变。若当前的飞行速度与第二飞行速度不相等,则控制无人机在第二飞行速度下飞行。
需要说明的是,步骤40412与步骤40413、步骤40414、步骤40415、步骤40416的执行先后顺序不加以限定,即步骤40412可以在该些步骤之前执行,也可以在该些步骤之后执行。当然,也可以同时执行。
步骤40413,获取剩余待喷洒的飞行距离和剩余物质总量。
其中,剩余待喷洒的飞行距离指的是,喷洒起点至终点的飞行距离减去已经喷洒的距离的值,即为剩余待喷洒的飞行距离。剩余物质总量指的是, 物质总量减去已经喷洒的物质的量的值,即为剩余物质总量。
当然,若还未进行喷洒,则在一种极端的条件下,剩余待喷洒的飞行距离与喷洒起点至终点的飞行距离,剩余物质总量即为物质总量。
步骤40414,根据剩余待喷洒的飞行距离和第二飞行速度确定剩余喷洒时间。
具体的,通过剩余待喷洒的飞行距离除以第二飞行速度确定剩余喷洒时间。
步骤40415,根据剩余物质总量和剩余喷洒时间确定第二喷洒流速。
具体的,根据剩余物质总量除以剩余喷洒时间确定第二喷洒流速。
步骤40416,根据第二喷洒流速调整当前的喷洒流速。
具体的,获取当前的喷洒流速,调整当前的喷洒流速为第二喷洒流速。
根据该实施方式确定的第二喷洒流速,可以保证在第二飞行速度和第二喷洒流速下在到达喷洒终点时可以将物质喷洒完毕,并且均匀喷洒。
第二种实施方式包括:
步骤40417,接收速度输入指令。
步骤40418,根据速度输入指令调整无人机在飞行过程中的飞行速度,并确定无人机飞行速度增减的百分比。
其中,速度输入指令中可以包括无人机速度增减的百分比,因而可以直接根据速度输入指令得到无人机速度增减的百分比,进一步的,可以获取当前的飞行速度,根据当前的飞行速度和飞行速度增减的百分比调整无人机在飞行过程中的飞行速度。举例来说,若当前的飞行速度为5米/秒,速度增减的百分比为增加20%,则调整无人机的飞行速度为6米/秒。
或者,速度输入指令中包括无人机待调整的飞行速度,则可以获取当前的飞行速度,将无人机调整至待调整的飞行速度即可。进一步的,可以根据待调整的飞行速度和当前的飞行速度确定无人机飞行速度增减的百分比。
步骤40419,根据飞行速度增减的百分比线性调整喷洒流速的增减百分比。
步骤40420,获取当前的喷洒流速,根据喷洒流速的增减百分比调整当前的喷洒流速,其中,所述喷洒流速的增减与所述无人机速度的增减呈正比例关系。
在现有技术中,举例来说,当调整无人机的飞行速度增大时,若不调整喷洒流速,喷头的喷洒流速不变,由于无人机的飞行速度变大,相当于停留在单位距离的时间变短,则喷洒至单位距离的被喷洒的物质质量与速度调整前相比,势必变小,从而导致速度调整前和速度调整后,喷洒物质不均匀。
本实施例中,为了实现喷洒均匀,优选的,当飞行速度增加时,即相当于停留在单位距离的时间变短时,为了保证与速度调整前喷洒至单位距离的物质的质量相差不大,则相应的增加喷洒流速;而当飞行速度减小时,即停留在单位距离的时间变长时,则相应的控制喷洒流速也减小,即可以根据喷洒流速的增减百分比线性的调整当前的喷洒流速。
优选的,为了进一步的保证在飞行距离内将需要喷洒的物质喷洒完毕,飞行速度增减的百分比与喷洒流速的增减百分比相等,并且喷洒流速的增减与无人机飞行速度的增减呈正比例关系。即若飞行速度增加20%时,相应的喷洒流速也增加20%。
其中需要说明的是,本实施例中的上述第一种实施方式和第二种实施方式均需要在步骤4031或者步骤4032之后执行。但是具体的,第二种实施方式可以在第一种实施方式之后被执行。或者,第二种实施方式也可以在第一种实施方式之前执行。或者,两种实施方式也可以只有一种被执行。
另外,在上述两种实施方式中,速度输入指令可以通过速度输入件发出,速度输入件可以与上述实施例二和实施例三中的速度输入件相同,具体请参照上述实施例二和实施例三,在此不再赘述。
本实施例中提供的无人机的喷洒控制方法,当无人机在飞行的过程中调整飞行速度时,可以相应的调整喷洒流速,实现喷洒均匀。
实施例五
图5为本发明实施例五提供的无人机的喷洒控制方法的流程示意图,如图5所示,在图1所示的实施例的基础上,该无人机的喷洒控制方法包括:
步骤501,获得无人机在特定区域的喷洒起点至终点的飞行距离。
步骤502,选取下述两个参数的其中之一:无人机的飞行速度和无人机的喷洒流速。
步骤5031,若选取的是喷洒流速,则根据所述无人机需要喷洒的物质总量、选取的喷洒流速和飞行距离计算飞行速度。
步骤5032,若选取的是飞行速度,则根据无人机需要喷洒的物质总量、选取的飞行速度和飞行距离计算喷洒流速。
其中,步骤501、步骤502、步骤5031和步骤5032具体的实施方式可以参照实施例一至实施例三中的步骤101、步骤102、步骤1031和步骤1032,在此不再赘述。
步骤5041,调整无人机在飞行过程中的喷洒流速,无人机的飞行速度自动调整。
其中,调整无人机在飞行过程中的喷洒流速可以为无人机自动调整,或者,也可以通过接收流速输入指令来调节飞行速度。
其中,通过接收流速指令来调节喷洒流速,进而自动调整飞行速度可以通过以下两种实施方式进行实现。
第一种实施方式:
步骤50411,接收流速输入指令,流速输入指令中包括第三喷洒流速的信息。
步骤50412,根据第三喷洒流速的信息调整无人机在飞行过程中的喷洒流速。
具体的,获取当前的喷洒流速,若当前的喷洒流速与第三喷洒流速相等,则保持当前的喷洒流速不变;若当前的喷洒流速与第三喷洒流速不相等,则控制无人机在第三喷洒流速下喷洒。
步骤50413,获取剩余待喷洒的飞行距离和剩余物质总量。
步骤50414,根据剩余物质总量和第三喷洒流速确定剩余喷洒时间。
具体的,通过剩余物质总量除以第三喷洒流速确定剩余喷洒时间。
步骤50415,根据剩余待喷洒的飞行距离和剩余喷洒时间确定第三飞行速度。
具体的,剩余待喷洒的飞行距离除以剩余喷洒时间确定第三飞行速度。
步骤50416,根据第三飞行速度调整当前的飞行速度。
具体的,获取当前的飞行速度,调整当前的飞行速度为第三飞行速度。
根据该实施方式确定的第三飞行速度,可以保证在第三飞行速度和第三喷洒流速下在到达喷洒终点时可以将物质喷洒完毕,并且均匀喷洒。
第二种实施方式:
步骤50417,接收流速输入指令。
步骤50418,根据所述流速输入指令调整无人机在飞行过程中的喷洒流速,并确定喷洒流速增减的百分比。
其中,流速输入指令中可以包括流速增减的百分比,因而可以直接根据流速输入指令得到喷洒流速增减的百分比,进一步的,可以根据当前的喷洒流速和喷洒流速增减的百分比调整无人机在飞行过程中的喷洒流速。举例来说,若当前的喷洒流速为50毫升/秒,喷洒流速增减的百分比为增加20%,则调整无人机的飞行速度为60毫升/秒。
或者,流速输入指令中包括无人机待调整的喷洒速度,则可以根据当前的喷洒速度和待调整的喷洒速度确定无人机喷洒速度增减的百分比。
步骤50419,根据流速增减的百分比线性调整飞行速度的增减百分比。
步骤50420,获取当前的飞行速度,根据飞行速度的增减百分比调整当前的飞行速度,其中,所述飞行速度的增减与所述喷洒流速的增减呈正比。
在现有技术中,举例来说,若调整无人机的喷洒流速增大时,若不调整无人机的飞行速度,即飞行速度保持不变,由于无人机的喷洒流速变大,相当于停留在单位距离同样时间的条件下,喷洒至单位距离的被喷洒的物质质量势必增大,与喷洒流速调整前相比,喷洒至单位距离的物质的量差异变大,即对于地面的特定区域来说,喷洒的物质不均匀。
本实施例中,为了实现喷洒均匀,优选的,当喷洒流速增加时,即相当于单位时间内喷洒至单位长度的流量增大,为了保证与喷洒流速调整前相比,喷洒至单位距离的物质的喷洒量差异不大,则相应的增大飞行速度;而当喷洒速度减小时,则相应的控制飞行速度也减小,即可以根据流速增减的百分比线性调整飞行速度的增减百分比。
优选的,为了进一步的保证在飞行距离内将需要喷洒的物质喷洒完毕,喷洒流速的增减的百分比与喷洒流速的增减百分比相等,并且飞行速度的增减与所述喷洒流速的增减呈正比。
其中需要说明的是,本实施例中的上述第一种实施方式和第二种实施方式均需要在步骤5031或者步骤5032之后执行。可选的,第二种实施方式可以在第一种实施方式之后被执行。或者,第二种实施方式也可以在第一种实施方式之前执行。或者,两种实施方式也可以只有一种被执行。
另外,在上述两种实施方式中,流速输入指令可以通过流速输入件发出,流速输入件可以与上述实施例二和实施例三中的流速输入件相同,具体请参照上述实施例二和实施例三,在此不再赘述。
本实施例中提供的无人机的喷洒控制方法,当无人机在飞行的过程中调整喷洒流速时,可以相应的调整飞行速度,实现喷洒均匀。
实施例六
在上述实施例一至实施例五的基础上,本实施例对无人机在进行喷洒时的飞行高度做进一步的解释说明。图6为本发明实施例六提供的无人机的喷洒控制方法的流程示意图,如图6所示,该方法包括:
步骤601,获得无人机在特定区域的喷洒起点至终点的飞行距离。
步骤602,选取下述两个参数的其中之一:无人机的飞行速度和无人机的喷洒流速。
步骤6031,若选取的是喷洒流速,则根据所述无人机需要喷洒的物质总量、选取的喷洒流速和飞行距离计算飞行速度。
步骤6032,若选取的是飞行速度,则根据无人机需要喷洒的物质总量、选取的飞行速度和飞行距离计算喷洒流速。
其中,步骤601、步骤602、步骤6031、步骤6032具体的实施方式可以参照实施例一中步骤101、步骤102、步骤1031,步骤1032,当然,也可以参照其他实施例中执行过程相同的步骤,在此不再赘述。
步骤604,控制无人机在待飞行高度下飞行。
其中,待飞行高度可以是预先设置的。
或者,待飞行高度可以是高度输入件发出的。举例来说,待飞行高度可以是操作者通过高度输入键输入的。
或者,考虑到喷洒组件在喷洒时,若采用具有一定喷洒角度的喷嘴时,则飞行高度会影响单位时间喷洒覆盖的面积,因此,优选的,待飞行高度是根据喷洒组件的类型自动对应的。
具体的,待飞行高度是根据喷洒组件的类型自动对应的包括:
步骤6041,获取无人机上安装的喷洒组件的类型信息。
步骤6042,根据预先存储的喷洒组件的类型信息与喷洒角度的对应关系确定喷洒角度。
其中,图6A为本发明实施例六提供的喷洒角度、横向距离以及喷洒高度之间的关系示意图。在图6A中,U为喷洒组件中喷嘴的喷洒角度,R1为喷洒角度为U的喷嘴单位时间所能覆盖的喷洒半径。其中,A为喷洒起点,B点为喷洒终点,具体的可以参照实施例中的图1A对喷洒路线的描述。
无人机可以检测喷洒组件的安装信息,并根据安装信息获取喷洒组件的类型信息,进而根据该类型信息确定对应喷嘴的喷洒角度U。
步骤6043,获取无人机单位时间需喷洒的横向距离。
其中,单位时间需喷洒的横向距离可以是预先设置的,也可以是用户输入的。在本实施例中,以横向距离为R1进行说明。
步骤6044,根据横向距离和喷洒角度确定待飞行高度。
具体的,根据数学关系,可以通过横向距离R1和喷洒角度U确定待飞行高度H。例如,可以通过横向距离R1除以喷洒角度U近似的确定飞行高度H,当然也可以通过获取更多的参数来确定更为精确的待飞行高度。
当喷洒组件的喷嘴数量为多个时,喷洒组件的类型信息中可以包括喷嘴的数量和喷嘴喷洒角度,根据喷嘴的数量和喷洒角度,可以确定每个喷嘴的喷洒半径。
图6B为本发明实施例六提供的又一喷洒角度、横向距离以及喷洒高度之间的关系示意图。图6B以喷嘴为两个进行说明,如图6B所示,L为横向距离,U为喷嘴的喷洒角度。R2为喷洒角度为U的喷嘴在高度为H时单位时间所能覆盖的喷洒半径。
举例来说,可以通过横向距离L和喷嘴的数量,即2个喷嘴,通过L除以2确定每个喷嘴的喷洒半径R2,进一步的,可以根据每个喷嘴的喷洒半径R2和喷洒角度U确定喷洒高度H。
本实施例中提供的喷洒控制方法中,待飞行高度是根据喷洒组件的类型自动对应的,具体的,可以根据喷洒角度来确定对应的待飞行高度,从而可以保证横向距离确定的条件下,喷洒过程的均匀性。
优选的,喷嘴数量为偶数个,且对称设置,从而可以更好的保证喷洒的均匀性。
在上述实施方式的基础上,举例来说,若步骤6044中确定的待飞行高度是以喷洒起点的海拔为基准零点而计算出的待飞行高度,例如为50米,若不 考虑海拔信息,则无人机一直保持与基准零点距离50米的高度飞行,在喷洒角度确定的情况下,若此时无人机飞行的位置对应的海拔比基准零点高10米,若不对无人机的飞行高度进行相应的调整,则会影响喷洒半径,即影响单位时间所能覆盖的喷洒面积。因此,可选的,在上述步骤6044之后,还可以包括:
步骤6051,获取无人机飞行的位置信息、位置信息对应的海拔信息以及无人机当前飞行的海拔信息。
步骤6052,根据位置信息对应的海拔信息和无人机当前飞行的海拔信息更新待飞行高度。
举例来说,当无人机在飞行过程中,在飞行到比基准零点海拔高10米的位置之前,则可以相应的控制在下一时间段内无人机的飞行高度比当前的飞行高度高10米,从而避免海拔的变化对喷洒覆盖的喷洒面积的影响。
上述无人机海拔高度的测量可以使用搭载于其上的气压计、激光测距仪等设备进行。
实施例七
在上述实施例一至实施例六的基础上,若喷洒组件在安装时具有方向性,也就是说,一旦无人机的方向改变,例如,操作者误操作改变了无人机的偏航角,则会改变物质喷洒至地面时的分布。为了避免上述影响,本实施例提供的无人机的喷洒控制方法还可以包括:
在控制无人机起飞时,锁定无人机的偏航角,以使无人机在飞行过程中机头和机身保持固定角度,以使喷洒均匀。
本实施例提供的无人机的喷洒控制方法,通过在控制无人机起飞的同时,锁定无人机的偏航角,从而可以在一定程度上保证无人机在喷洒过程中的喷洒均匀性。
上述锁定无人机的偏航角的一种应用场景为,无人机通过接收模式选择指令,在相应的模式下,控制无人机起飞,同时锁定无人机的偏航角。当操作者需要改变无人机的偏航角时,则需要发出退出该模式的指令,在退出该模式后,才可以控制无人机进行偏航的操作,这样可以避免误操作无人机所导致的偏航角变化。
可选的,该方法还可以包括:检测无人机的飞行状态,判断无人机是否 处于异常状态,若结果为是,则发出警报,以提示用户是否需要立即返航。
其中,飞行状态包括无人机的电量信息、剩余药量信息、遥控器的电量信息中的任意一种或多种。
相应的,当检测无人机的飞行状态为无人机的电量信息时,则相对应的异常状态为无人机的电量低于预设阈值;
当检测无人机的飞行状态为无人机的剩余药量信息时,则相对应的异常状态为剩余药量低于预设阈值;
当检测无人机的飞行状态为无人机的遥控器的电量信息时,则相对应的异常状态为遥控器的电量低于预设阈值。
当检测无人机的飞行状态包括两种以上的信息时,则相对应的异常状态为只要有其中的一个参数信息低于预设阈值则判断无人机处于异常状态。例如,当飞行状态包括无人机的电量信息和剩余药量信息时,则相对应的异常状态为无人机的电量信息和/或剩余药量信息低于预设阈值。
本实施例所提供的无人机喷洒控制方法中,检测无人机的飞行状态,判断所述无人机是否处于异常状态,若结果为是时,可以发出警报,从而可以提示用户是否需要立即返航,可以防止无人机在异常状态下导致的例如低电量时的坠机、遥控器低电量而导致的无人机不受控、农药喷洒完毕后处于悬停状态而导致的电力浪费中的一个或者多个问题。
实施例八
本实施例提供一种无人机,用于执行上述实施例一至实施例七的喷洒控制方法,图7为本发明实施例八提供的无人机的结构示意图,如图7所示,该无人机包括:
一个或者多个处理器81,单独的或者协同的工作,处理器81用于:获得无人机在特定区域的喷洒起点至终点的飞行距离,选取下述两个参数的其中之一:所述无人机的飞行速度和所述无人机的喷洒流速。
其中,若处理器81选取的是飞行速度,则根据无人机需要喷洒的物质总量、选取的飞行速度和飞行距离计算喷洒流速。具体的,根据物质总量、飞行距离以及选取的飞行速度计算喷洒流速,只要保证在该飞行距离内,物质被用光且被喷洒均匀即可。
处理器81在计算得到喷洒流速之后,则控制无人机在选取的飞行速度以 及计算得到的喷洒流速下进行喷洒。
若处理器81选取的是喷洒流速,则根据无人机需要喷洒的物质总量、选取的喷洒流速和飞行距离计算飞行速度。
具体的,根据物质总量、飞行距离以及选取的喷洒流速计算飞行速度。只要保证在该飞行距离内,物质被用光且被喷洒均匀即可。
在处理器81计算得到飞行速度之后,则控制无人机在设定的喷洒速度和计算得到的飞行速度下进行喷洒。
其中,可选的,该无人机还包括GPS定位模块80,定位模块80与处理器81通讯连接,喷洒起点至喷洒终点的飞行距离可以通过GPS获取。例如,可以通过GPS,确定喷洒起点和喷洒终点的GPS坐标,进而获取喷洒起点至终点的飞行距离。
或者,该飞行距离也可以是预先存储在处理器81中的。例如,根据该特定区域,可以在处理器81中预先设置有飞行路线,飞行路线中包括:喷洒起点、喷洒终点、无人机单位时间需喷洒的横向距离和无人机单位周期内需喷洒的纵向距离。处理器81进一步的进而根据预设的飞行路线获取喷洒起点至终点的飞行距离。
其中,处理器81在具体选取无人机的飞行速度和无人机的喷洒速度时,一种可选的实施方式为,处理器81接受模式选择指令,模式选择指令中包括选取的参数信息,进一步的,处理器81根据选取的参数信息确定选取的参数。
需要说明的是,需要喷洒的物质总量不必一定等于无人机携带的全部物质总量,可以是用户提前设定的任意数值,比如:无人机携带的全部物质总量的1/2或2/3等。但是,需要喷洒的物质总量等于无人机携带的全部物质总量为优选方案,因为这种飞行可以降低无人机的无效负载,达到飞行动力能源(比如:电池电量)利用的最大化。为避免赘述,本发明中的实施例均以需要喷洒的物质总量等于无人机携带的全部物质总量为例来叙述,但这并不意味着本发明排除了其它需要喷洒的物质总量小于无人机携带的全部物质总量的实施方案。
可选的,需要喷洒的物质总量可以是预先存储在处理器81中的,举例来说,若无人机只能安装一种类型和固定数量的喷洒组件,那么物质总量可以预先存储在处理器81中。
当然,需要喷洒的物质总量也可以通过用户输入,进而被处理器81接收,例如,操作者可以通过显示屏输入物质总量,进而被处理器接收。
或者,处理器81自动获取无人机携带的物质总量,进而来确定需要喷洒的物质总量。例如可以通过安装相应的重量传感器,当喷洒组件被安装至无人机上时,处理器81可以自动获取无人机携带的物质总量的信息。当然,自动获取物质总量并不仅仅限于采用重力传感器的方式,本实施例中仅仅是给出一种示例,但并不以此为限制。在此基础上,可以根据无人机携带的全部物质总量确定需要喷洒的物质总量。举例来说,若用户提前设定的了需要喷洒的物质总量为无人机携带的全部物质总量的1/2,则可以根据全部物质总量确定待喷洒的物质总量只要为全部物质总量的1/2即可。
需要说明的是,需要喷洒的物质可以为固体、液体、气体中的任意一种或多种形态,例如,喷洒的物质可以为液体形态的农药或者水、固体形态的种子、气体形态的农药等。当然,喷洒的物质也可以为固态、液态、气态任意两种或三种混合的物质。
本实施例提供的无人机,处理器81可以根据物质总量、飞行距离和飞行速度计算匹配的喷洒流速,或者根据物质总量、飞行距离和喷洒流速来计算匹配的飞行速度,从而可以保证在该喷洒流速和该飞行速度下进行喷洒可以将物质喷洒完毕,并且均匀喷洒,进而可以避免操控者同时设置飞行速度和喷洒流速容易造成的飞行速度和喷洒流速不合适所造成的无人机还没有对某一区域的作物喷洒完毕,而药物已经用光的问题;或者无人机提前完成对某一区域的作业,但药物还有大量剩余的问题。
实施例九
在上述实施例八的基础上,对上述实施例中的无人机做进一步的解释说明。在图7的所示的无人机的基础上,图8为本发明实施例九提供的无人机的结构示意图,如图8所示,本实施例提供的无人机还可以包括至少一个的流速输入件82。
当处理器81选取的是喷洒流速,则根据无人机需要喷洒的物质总量(下述实施例中简称物质总量)、选取的喷洒流速和飞行距离计算飞行速度时,处理器81具体用于:获取选取的喷洒流速,根据选取的喷洒流速和物质总量获取喷洒时间,根据飞行距离和喷洒时间计算第一飞行速度,以第一飞行速 度作为当前的飞行速度。
其中,处理器81选取的喷洒流速可以是预先存储在处理器81中的。
或则,处理器81也可以根据喷洒组件的类型自动对应。具体的,处理器81可以通过获取无人机上安装的喷洒组件的类型信息,进一步的根据预先存储的喷洒组件的类型信息与喷洒流速的对应关系确定选取的喷洒流速。
举例来说,无人机可以在相应的喷洒组件安装位置处设置有传感器,来获取喷洒组件的类型信息。例如,每一个喷洒组件安装处都设置有传感器,每个传感器都有其一一对应的标识,通过传感器检测与该传感器对应的喷洒组件的安装信息,当传感器识别到有喷洒组件安装至无人机上时,则向处理器81发送自身的标识,处理器81通过识别传感器发送的标识信息,以及根据预存的标识信息与喷洒组件信号的对应关系来识别何种类型的喷洒组件被安装。其中,传感器的类型并不加以限定,例如,可以为重力传感器,也可以为光学传感器、压力传感器、液体流速传感器等。
可选的,无人机还包括至少一个流速输入件82。处理器81获取的选取的喷洒流速也可以是流速输入件82发出的。例如,一种应用场景为,操作者触发流速输入件82,进而流速输入件82发出输入指令,当处理器81接收该输入指令后,根据该输入指令确定选取喷洒流速。
可选的,流速输入件82可以为一个也可以为多个。其中,当流速输入件82为一个时,即选取的喷洒流速是通过一个流速输入件82发出时,处理器81可以通过检测流速输入件82被触发的时间来识别与触发时间对应的喷洒流速。
若流速输入件82为多个时,每个流速输入件82可发出相应的喷洒流速。例如流速输入件可以为4个,相应的,可以第一个流速输入件对应的喷洒流速时30毫升/秒,第二个流速输入件对应的喷洒流速为40毫升/秒,第三个流速输入件对应的喷洒流速为50毫升/秒,第四个流速输入件对应的喷洒流速为60毫升/秒。其中,需要说明的,本实施例中的毫升数只是示例性的数字,但并不以此为限制。
其中,流速输入件82可以设置在无人机上或设置在无人机的遥控器上。
另外,流速输入件82包括:档位开关、旋钮开关、电位器、直线开关、触摸显示屏中的任意一个或多个。
本实施例提供的无人机,处理器81可以根据根据物质总量、飞行距离和喷洒流速来计算匹配的第一飞行速度,从而可以保证在选取的喷洒流速和第一飞行速度下进行喷洒可以将物质喷洒完毕,并且均匀喷洒,进而可以避免操控者同时设置飞行速度和喷洒流速容易造成的飞行速度和喷洒流速不合适所造成的无人机还没有对某一区域的作物喷洒完毕,而药物已经用光;或者无人机提前完成对某一区域的作业,但药物还有大量剩余的问题。
实施例十
在上述实施例八的基础上,对上述实施例中的无人机做进一步的解释说明。图9为本发明实施例十提供的无人机的结构示意图,如图9所示,该无人机包括:一个或多个处理器81、流速输入件82和速度输入件83。
当处理器81选取的是飞行速度,则根据无人机需要喷洒的物质总量、选取的飞行速度和飞行距离计算喷洒流速时,处理器81具体用于:获取选取的飞行速度,根据选取的飞行速度和飞行距离获取喷洒时间;根据物质总量和喷洒时间计算第一喷洒流速,并以第一喷洒速度作为当前的喷洒流速。
可选的,处理器81获取的选取的喷洒速度可以是预先存储在处理器81中的;
或者,所述无人机还包括:用于发出选取的喷洒速度的速度输入件83,速度输入件83与处理器81通讯连接,处理器81具体是根据速度输入件83发出的选取飞行速度获取选取的喷洒速度。
处理器81还用于接收速度输入件发出的速度输入指令。
速度输入件83为多个,每个速度输入件可发出相应的飞行速度的信息。
速度输入件83包括:档位开关、旋钮开关、电位器、直线开关、触摸显示屏中的任意一个或多个。
速度输入件83设置在无人机上或设置在所述无人机的遥控器上。
本实施例提供的无人机,处理器81可以根据根据物质总量、飞行距离和选取的飞行速度来计算匹配的第一喷洒速度,从而可以保证在第一喷洒流速和选取到达飞行速度下进行喷洒可以将物质喷洒完毕,并且均匀喷洒,进而可以避免操控者同时设置飞行速度和喷洒流速容易造成的飞行速度和喷洒流速不合适所造成的无人机还没有对某一区域的作物喷洒完毕,而药物已经用光;或者无人机提前完成对某一区域的作业,但药物还有大量剩余的问题。
实施例十一
在上述实施例八至实施例十的基础上,如图7至图9所示,处理器81还用于调整无人机在飞行过程中的飞行速度,无人机的喷洒流速自动调整;或者,用于调整无人机在飞行过程中的喷洒流速,无人机的飞行速度自动调整。
处理器81在执行“调整无人机在飞行过程中的飞行速度,无人机的喷洒流速自动调整”时,可以有如下两种具体的实施例方式:
第一种实施方式:
处理器81接收速度输入指令,速度输入指令中包括第二飞行速度的信息。
进一步的,处理器81根据第二飞行速度的信息调整无人机在飞行过程中的飞行速度。具体的,处理器81获取当前无人机的飞行速度,若当前的飞行速度与第二飞行速度相等,则保持当前的飞行速度不变。若当前的飞行速度与第二飞行速度不相等,则控制无人机在第二飞行速度下飞行。
在此基础上,处理器81获取剩余待喷洒的飞行距离和剩余物质总量,根据剩余待喷洒的飞行距离和第二飞行速度确定剩余喷洒时间,根据剩余物质总量和剩余喷洒时间确定第二喷洒流速。
具体的,处理器81通过剩余待喷洒的飞行距离除以第二飞行速度确定剩余喷洒时间。根据剩余物质总量除以剩余喷洒时间确定第二喷洒流速,获取当前的喷洒流速,调整当前的喷洒流速为第二喷洒流速。
根据该实施方式确定的第二喷洒流速,可以保证在第二飞行速度和第二喷洒流速下在到达喷洒终点时可以将物质喷洒完毕,并且均匀喷洒。
第二种实施方式:
处理器81接收速度输入指令,根据速度输入指令调整无人机在飞行过程中的飞行速度,并确定无人机速度增减的百分比。进一步的,处理器81根据飞行速度增减的百分比线性调整喷洒流速的增减百分比,获取当前的喷洒流速,根据喷洒流速的增减百分比调整当前的喷洒流速,其中,所述喷洒流速的增减与所述无人机速度的增减呈正比例关系。。具体的,速度输入指令中可以包括无人机速度增减的百分比,因而处理器81可以直接根据速度输入指令得到无人机速度增减的百分比,进一步的,处理器81获取当前的飞行速度,根据当前的飞行速度和飞行速度增减的百分比调整无人机在飞行过程中的飞行速度。举例来说,若处理器81确定当前的飞行速度为5米/秒,速度增减 的百分比为增加20%,则处理器81调整无人机的飞行速度为6米/秒。或者,速度输入指令中包括无人机待调整的飞行速度,则处理器81在获取当前的飞行速度后,将无人机调整至待调整的飞行速度即可。进一步的,处理器81可以根据待调整的飞行速度和当前的飞行速度确定无人机飞行速度增减的百分比。
在现有技术中,举例来说,当调整无人机的飞行速度增大时,若不调整喷洒流速,喷头的喷洒流速不变,由于无人机的飞行速度变大,相当于停留在单位距离的时间变短,则喷洒至单位距离的被喷洒的物质质量与速度调整前相比,势必变小,从而导致速度调整前和速度调整后,喷洒物质不均匀。
本实施例中,为了实现喷洒均匀,优选的,当飞行速度增加时,即相当于停留在单位距离的时间变短时,为了保证与速度调整前喷洒至单位距离的物质的质量相差不大,则处理器81相应的增加喷洒流速;而当飞行速度减小时,即停留在单位距离的时间变长时,则处理器81相应的控制喷洒流速也减小,即可以根据喷洒流速的增减百分比线性的调整当前的喷洒流速。
优选的,为了进一步的保证在飞行距离内将需要喷洒的物质喷洒完毕,处理器81可以使得飞行速度增减的百分比与喷洒流速的增减百分比相等,并且喷洒流速的增减与无人机飞行速度的增减呈正比例关系。即若飞行速度增加20%时,相应的喷洒流速也增加20%。
另外,在上述两种实施方式中,速度输入指令可以通过速度输入件83发出。速度输入件83可以与上述实施例九和实施例十中的速度输入件83相同,具体请参照上述实施例九和实施例十,在此不再赘述。
本实施例中提供的无人机,当无人机在飞行的过程中调整飞行速度时,处理器81可以相应的调整喷洒流速,实现喷洒均匀。
实施例十二
在上述实施例八至实施例十的基础上,如图7或图8所示,处理器81在执行“用于调整无人机在飞行过程中的喷洒流速,无人机的飞行速度自动调整”时,可以有如下两种具体的实施例方式:
第一种实施方式:
处理器81用于接收流速输入指令,流速输入指令中包括第三喷洒流速的信息。进一步的,处理器81根据第三喷洒流速的信息调整无人机在飞行过程 中的喷洒流速。
具体的,处理器81获取当前的喷洒流速,若当前的喷洒流速与第三喷洒流速相等,则保持当前的喷洒流速不变;若当前的喷洒流速与第三喷洒流速不相等,则控制无人机在第三喷洒流速下喷洒。
进一步的,处理器81还获取剩余待喷洒的飞行距离和剩余物质总量,根据剩余物质总量和第三喷洒流速确定剩余喷洒时间,根据剩余待喷洒的飞行距离和剩余喷洒时间确定第三飞行速度,根据第三飞行速度调整当前的飞行速度。
根据该实施方式确定的第三飞行速度,可以保证在第三飞行速度和第三喷洒流速下在到达喷洒终点时可以将物质喷洒完毕,并且均匀喷洒。
第二种实施方式:
处理器81用于接收流速输入指令,根据所述流速输入指令调整无人机在飞行过程中的喷洒流速,并确定喷洒流速增减的百分比。进一步的,处理器81根据流速增减的百分比线性调整飞行速度的增减百分比,获取当前的飞行速度,根据飞行速度的增减百分比调整当前的飞行速度,其中,所述飞行速度的增减与所述喷洒流速的增减呈正比。。
具体的,流速输入指令中可以包括流速增减的百分比,因而处理器81可以直接根据流速输入指令得到喷洒流速增减的百分比,进一步的,处理器81可以根据当前的喷洒流速和喷洒流速增减的百分比调整无人机在飞行过程中的喷洒流速。举例来说,若当前的喷洒流速为50毫升/秒,处理器81确定喷洒流速增减的百分比为增加20%,则调整无人机的飞行速度为60毫升/秒。
或者,流速输入指令中包括无人机待调整的喷洒速度,则处理器81可以根据当前的喷洒速度和待调整的喷洒速度确定无人机喷洒速度增减的百分比。
在现有技术中,举例来说,若调整无人机的喷洒流速增大时,若不调整无人机的飞行速度,即飞行速度保持不变,由于无人机的喷洒流速变大,相当于停留在单位距离同样时间的条件下,喷洒至单位距离的被喷洒的物质质量势必增大,与喷洒流速调整前相比,喷洒至单位距离的物质的量差异变大,即对于地面的特定区域来说,喷洒的物质不均匀。
本实施例中,为了实现喷洒均匀,优选的,当喷洒流速增加时,即相当于单位时间内喷洒至单位长度的流量增大,为了保证与喷洒流速调整前相比, 喷洒至单位距离的物质的喷洒量差异不大,则处理器81相应的控制增大飞行速度;而当喷洒速度减小时,则处理器81相应的控制飞行速度也减小,即可以根据流速增减的百分比线性调整飞行速度的增减百分比。
优选的,为了进一步的保证在飞行距离内将需要喷洒的物质喷洒完毕,处理器81可以调节喷洒流速的增减的百分比与喷洒流速的增减百分比相等,并且飞行速度的增减与所述喷洒流速的增减呈正比。
另外,在上述两种实施方式中,流速输入指令可以通过流速输入件82发出,流速输入件82可以与上述实施例九和实施例十中的流速输入件82相同,具体请参照上述实施例九和实施例十,在此不再赘述。
本实施例中提供的无人机,当无人机在飞行的过程中调整喷洒流速时,处理器81可以相应的调整飞行速度,实现喷洒均匀。
实施例十三
本实施例在上述实施例八至实施十二的基础上,对无人机的飞行高度做进一步的解释说明。如图7至图9所示,处理器81还用于控制无人机在待飞行高度下飞行。
其中,待飞行高度可以是预先设置在处理器81中的,或者,待飞行高度可以是高度输入件发出的。举例来说,待飞行高度可以是操作者通过高度输入键输入的。
或者,考虑到喷洒组件在喷洒时,若采用具有一定喷洒角度的喷嘴时,则飞行高度会影响单位时间喷洒覆盖的面积,因此,优选的,待飞行高度是处理器81根据喷洒组件的类型自动对应获取的。
具体的,待飞行高度是处理器81根据喷洒组件的类型自动对应获取的包括:处理器81获取无人机上安装的喷洒组件的类型信息,并根据预先存储的喷洒组件的类型信息与喷洒角度的对应关系确定喷洒角度,获取无人机单位时间需喷洒的横向距离,根据横向距离和喷洒角度确定待飞行高度。
其中,单位时间需喷洒的横向距离可以是预先设置的,也可以是用户输入的。
本实施例中提供的无人机中,待飞行高度是处理器81根据喷洒组件的类型自动对应的,具体的,可以根据喷洒角度来确定对应的待飞行高度,从而可以保证横向距离确定的条件下,喷洒过程的均匀性。
优选的,喷嘴数量为偶数个,且对称设置,从而可以更好的保证喷洒的均匀性。
在上述实施方式的基础上,处理器81还用于获取无人机飞行的位置信息、位置信息对应的海拔信息以及无人机当前飞行的海拔信息,根据位置信息对应的海拔信息和无人机当前飞行的海拔信息更新待飞行高度。
举例来说,当无人机在飞行过程中,在飞行到比基准零点海拔高10米的位置之前,则处理器81可以相应的控制在下一时间段内无人机的飞行高度比当前的飞行高度高10米,从而避免海拔的变化对喷洒覆盖的喷洒面积的影响。
上述无人机海拔高度的测量可以使用搭载于其上的气压计、激光测距仪等设备进行。
在上述实施例的基础上,若喷洒组件在安装时具有方向性,也就是说,一旦无人机的方向改变,例如,操作者误操作改变了无人机的偏航角,则会改变物质喷洒至地面时的分布。为了避免上述影响,可选的,处理器81还用于在控制无人机起飞时,锁定无人机的偏航角,以使无人机在飞行过程中机头和机身保持固定角度,以使喷洒均匀。
本实施例提供的无人机中,处理器81可以在控制无人机起飞的同时,锁定无人机的偏航角,从而可以在一定程度上保证无人机在喷洒过程中的喷洒均匀性,并可以避免误操作无人机所导致的偏航角变化。
可选的,处理器81还用于:检测无人机的飞行状态,判断无人机是否处于异常状态,若结果为是,则发出警报,以提示用户是否需要立即返航。
其中,飞行状态包括无人机的电量信息、剩余药量信息、遥控器的电量信息中的任意一种或多种。
相应的,当处理器81检测无人机的飞行状态为无人机的电量信息时,则相对应的异常状态为无人机的电量低于预设阈值;
当处理器81检测无人机的飞行状态为无人机的剩余药量信息时,则相对应的异常状态为剩余药量低于预设阈值;
当处理器81检测无人机的飞行状态为无人机的遥控器的电量信息时,则相对应的异常状态为遥控器的电量低于预设阈值。
当处理器81检测无人机的飞行状态包括两种以上的信息时,则相对应的异常状态为只要有其中的一个参数信息低于预设阈值则判断无人机处于异常 状态。例如,当飞行状态包括无人机的电量信息和剩余药量信息时,则相对应的异常状态为无人机的电量信息和/或剩余药量信息低于预设阈值。
本实施例所提供的无人机中,处理器81可以检测无人机的飞行状态,判断所述无人机是否处于异常状态,若结果为是时,可以发出警报,从而可以提示用户是否需要立即返航,可以防止无人机在异常状态下导致的例如低电量时的坠机、遥控器低电量而导致的无人机不受控、农药喷洒完毕后处于悬停状态而导致的电力浪费中的一个或者多个问题。
在本发明所提供的几个实施例中,应该理解到,所揭露的相关装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得计算机处理器(processor)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁盘或者光盘等各种可以存储程序代码的介质。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (62)

  1. 一种无人机的喷洒控制方法,对地面的特定区域进行喷洒作业,其特征在于,包括:
    获得所述无人机在所述特定区域的喷洒起点至终点的飞行距离;
    选取下述两个参数的其中之一:所述无人机的飞行速度和所述无人机的喷洒流速;
    若选取的是飞行速度,则根据所述无人机需要喷洒的物质总量、选取的飞行速度和所述飞行距离计算喷洒流速;
    若选取的是喷洒流速,则根据所述无人机需要喷洒的物质总量、选取的喷洒流速和所述飞行距离计算飞行速度。
  2. 根据权利要求1所述的无人机的喷洒控制方法,其特征在于,还包括:
    调整所述无人机在飞行过程中的飞行速度,所述无人机的喷洒流速自动调整;
    或者,调整所述无人机在飞行过程中的喷洒流速,所述无人机的飞行速度自动调整。
  3. 根据权利要求1所述的方法,其特征在于,若选取的是喷洒流速,则根据无人机需要喷洒的物质总量、选取的喷洒流速和飞行距离计算飞行速度,包括:
    获取选取的喷洒流速;
    根据所述选取的喷洒流速和所述物质总量获取喷洒时间;
    根据所述飞行距离和所述喷洒时间计算第一飞行速度;
    以所述第一飞行速度作为当前的飞行速度。
  4. 根据权利要求1所述的方法,其特征在于,若选取的是飞行速度,则根据无人机需要喷洒的物质总量、选取的飞行速度和飞行距离计算喷洒流速,包括:
    获取选取的飞行速度;
    根据所述选取的飞行速度和所述飞行距离获取喷洒时间;
    根据所述物质总量和所述喷洒时间计算第一喷洒流速;
    以所述第一喷洒速度作为当前的喷洒流速。
  5. 根据权利要求2所述的方法,其特征在于,当调整无人机在飞行过程 中的飞行速度时,无人机的喷洒流速自动调整包括:
    接收速度输入指令,所述速度输入指令中包括第二飞行速度的信息;
    根据所述第二飞行速度的信息调整无人机在飞行过程中的飞行速度;
    获取剩余待喷洒的飞行距离和剩余物质总量;
    根据所述剩余待喷洒的飞行距离和所述第二飞行速度确定剩余喷洒时间;
    根据所述剩余物质总量和所述剩余喷洒时间确定第二喷洒流速;
    根据所述第二喷洒流速调整当前的喷洒流速。
  6. 根据权利要求2所述的方法,其特征在于,当调整无人机在飞行过程中的飞行速度时,无人机的喷洒流速自动调整包括:
    接收速度输入指令;
    根据所述速度输入指令调整无人机在飞行过程中的飞行速度,并确定无人机飞行速度增减的百分比;
    根据所述飞行速度增减的百分比线性调整喷洒流速的增减百分比;
    获取当前的喷洒流速,根据所述喷洒流速的增减百分比调整当前的喷洒流速,其中,所述喷洒流速的增减与所述无人机飞行速度的增减呈正比例关系。
  7. 根据权利要求2所述的方法,其特征在于,当调整无人机在飞行过程中的喷洒流速时,无人机的飞行速度自动调整包括:
    接收流速输入指令,所述流速输入指令中包括第三喷洒流速的信息;
    根据所述第三喷洒流速的信息调整无人机在飞行过程中的喷洒流速;
    获取剩余待喷洒的飞行距离和剩余物质总量;
    根据所述剩余物质总量和第三喷洒流速确定剩余喷洒时间;
    根据所述剩余待喷洒的飞行距离和剩余喷洒时间确定第三飞行速度;
    根据所述第三飞行速度调整当前的飞行速度。
  8. 根据权利要求2所述的方法,其特征在于,当调整无人机在飞行过程中的喷洒流速时,无人机的飞行速度自动调整包括:
    接收流速输入指令;
    根据所述流速输入指令调整无人机在飞行过程中的喷洒流速,并确定喷洒流速增减的百分比;
    根据所述流速增减的百分比线性调整飞行速度的增减百分比;
    获取当前的飞行速度,根据飞行速度的增减百分比调整当前的飞行速度,其中,所述飞行速度的增减与所述喷洒流速的增减呈正比例关系。
  9. 根据权利要求3所述的方法,其特征在于,所述选取的喷洒流速来自于以下三种方式的任意一种:预先存储的、根据喷洒组件的类型自动对应的、由流速输入件发出的。
  10. 根据权利要求9所述的方法,其特征在于,所述选取的喷洒流速是根据喷洒组件的类型自动对应的包括:
    获取无人机上安装的喷洒组件的类型信息;
    根据预先存储的喷洒组件的类型信息与喷洒流速的对应关系确定选取的喷洒流速。
  11. 根据权利要求7或8所述的方法,其特征在于,所述流速输入指令是通过流速输入件发出的。
  12. 根据权利要求9或11所述的方法,其特征在于,所述流速输入件为多个,每个流速输入件可发出相应的喷洒流速。
  13. 根据权利要求9或11所述的方法,其特征在于,所述流速输入件包括:档位开关、旋钮开关、电位器、直线开关、触摸显示屏中的任意一个或多个。
  14. 根据权利要求9或11所述的方法,其特征在于,所述流速输入件设置在无人机上或设置在所述无人机的遥控器上。
  15. 根据权利要求4所述的方法,其特征在于,所述选取的飞行速度来自于以下方式的任意一种:预先存储的、或者由速度输入件发出的。
  16. 根据权利要求5或6所述的方法,其特征在于,所述速度输入指令是通过速度输入件发出的。
  17. 根据权利要求4或16所述的方法,其特征在于,所述速度输入件为多个,每个速度输入件可发出相应的飞行速度的信息。
  18. 根据权利要求17所述的方法,其特征在于,所述速度输入件包括:档位开关、旋钮开关、电位器、直线开关、触摸显示屏中的任意一个或多个。
  19. 根据权利要求17所述的方法,所述速度输入件设置在无人机上或设置在所述无人机的遥控器上。
  20. 根据权利要求1所述的方法,其特征在于,所述喷洒起点至终点的 飞行距离是通过全球定位系统GPS获取的。
  21. 根据权利要求1所述的方法,其特征在于,所述喷洒起点至终点的飞行距离是预先存储的。
  22. 根据权利要求21所述的方法,其特征在于,所述喷洒起点至终点的飞行距离是根据预设的飞行路线确定的,所述飞行路线中包括:喷洒起点、喷洒终点、无人机单位时间需喷洒的横向距离和无人机单位周期内需喷洒的纵向距离。
  23. 根据权利要求1-22任一项所述的方法,其特征在于,还包括:
    控制无人机在待飞行高度下飞行。
  24. 根据权利要求23所述的方法,其特征在于,所述待飞行高度是预设的或者是高度输入件发出的,或者是根据喷洒组件的类型自动对应的。
  25. 根据权利要求23所述的方法,其特征在于,所述待飞行高度是根据喷洒组件的类型自动对应的包括:
    获取无人机上安装的喷洒组件的类型信息;
    根据预先存储的喷洒组件的类型信息与喷洒角度的对应关系确定喷洒角度;
    获取无人机单位时间需喷洒的横向距离;
    根据所述横向距离和所述喷洒角度确定待飞行高度。
  26. 根据权利要求23所述的方法,其特征在于,还包括:
    获取无人机飞行的位置信息、所述位置信息对应的海拔信息以及无人机当前飞行的海拔信息;
    根据所述位置信息对应的海拔信息和无人机当前飞行的海拔信息更新所述待飞行高度。
  27. 根据权利要求1所述的方法,其特征在于,还包括:
    在控制所述无人机起飞时,锁定无人机的偏航角,以使无人机喷洒均匀。
  28. 根据权利要求1所述的方法,其特征在于,还包括:
    检测无人机的飞行状态,判断所述无人机是否处于异常状态,若结果为是,则发出警报,以提示用户是否需要立即返航。
  29. 根据权利要求28所述的方法,其特征在于,所述飞行状态包括无人机的电量信息、剩余药量信息、遥控器的电量信息中的任意一种或多种。
  30. 根据权利要求1所述的方法,其特征在于,还包括:获取无人机需要喷洒的物质总量,所述物质总量是预先存储、用户输入的或者自动获取中的任意一种。
  31. 据权利要求1所述的方法,其特征在于,所述需要喷洒的物质总量为无人机携带的物质的总量。
  32. 一种无人机,其特征在于,包括:
    一个或者多个处理器,单独的或者协同的工作,所述处理器用于:
    获得所述无人机在所述特定区域的喷洒起点至终点的飞行距离;
    选取下述两个参数的其中之一:所述无人机的飞行速度和所述无人机的喷洒流速;
    若选取的是飞行速度,则根据所述无人机需要喷洒的物质总量、选取的飞行速度和所述飞行距离计算喷洒流速;
    若选取的是喷洒流速,则根据所述无人机需要喷洒的物质总量、选取的喷洒流速和所述飞行距离计算飞行速度。
  33. 根据权利要求32所述的无人机,其特征在于,所述处理器还用于调整所述无人机在飞行过程中的飞行速度,所述无人机的喷洒流速自动调整;
    或者,调整所述无人机在飞行过程中的喷洒流速,所述无人机的飞行速度自动调整。
  34. 根据权利要求32所述的无人机,其特征在于,所述处理器具体用于:
    获取选取的喷洒流速;
    根据所述选取的喷洒流速和所述物质总量获取喷洒时间;
    根据所述飞行距离和所述喷洒时间计算第一飞行速度;
    以所述第一飞行速度作为当前的飞行速度。
  35. 根据权利要求32所述的无人机,其特征在于,所述处理器具体用于:
    获取选取的飞行速度;
    根据所述选取的飞行速度和所述飞行距离获取喷洒时间;
    根据所述物质总量和所述喷洒时间计算第一喷洒流速;
    以所述第一喷洒速度作为当前的喷洒流速。
  36. 根据权利要求33所述的无人机,其特征在于,所述处理器具体用于:
    接收速度输入指令,所述速度输入指令中包括第二飞行速度的信息;
    根据所述第二飞行速度的信息调整无人机在飞行过程中的飞行速度;
    获取剩余待喷洒的飞行距离和剩余物质总量;
    根据所述剩余待喷洒的飞行距离和所述第二飞行速度确定剩余喷洒时间;
    根据所述剩余物质总量和所述剩余喷洒时间确定第二喷洒流速;
    根据所述第二喷洒流速调整当前的喷洒流速。
  37. 根据权利要求33所述的无人机,其特征在于,所述处理器具体用于:
    接收速度输入指令;
    根据速度输入指令调整无人机在飞行过程中的飞行速度,并确定无人机飞行速度增减的百分比;
    根据所述飞行速度增减的百分比线性调整喷洒流速的增减百分比;
    获取当前的喷洒流速,根据所述喷洒流速的增减百分比调整当前的喷洒流速,其中,所述喷洒流速的增减与所述无人机飞行速度的增减呈正比例关系。
  38. 根据权利要求33所述的无人机,其特征在于,所述处理器具体用于:
    接收流速输入指令,所述流速输入指令中包括第三喷洒流速的信息;
    根据所述第三喷洒流速的信息调整无人机在飞行过程中的喷洒流速;
    获取剩余待喷洒的飞行距离和剩余物质总量;
    根据所述剩余物质总量和第三喷洒流速确定剩余喷洒时间;
    根据所述剩余待喷洒的飞行距离和剩余喷洒时间确定第三飞行速度;
    根据所述第三飞行速度调整当前的飞行速度。
  39. 根据权利要求33所述的无人机,其特征在于,所述处理器具体用于:
    接收流速输入指令;
    根据所述流速输入指令调整无人机在飞行过程中的喷洒流速,并确定喷洒流速增减的百分比;
    根据所述流速增减的百分比线性调整飞行速度的增减百分比;
    获取当前的飞行速度,根据飞行速度的增减百分比调整当前的飞行速度,其中,所述飞行速度的增减与所述喷洒流速的增减呈正比例关系。
  40. 根据权利要求34所述的无人机,其特征在于,所述处理器具体是根据喷洒组件的类型自动对应获取选取的喷洒流速的;
    或者所述处理器获取的选取的喷洒流速是预先存储的;
    或者,所述无人机还包括:
    用于发出选取的喷洒流速的流速输入件,所述流速输入件与所述处理器通讯连接,所述处理器具体是通过接收所述流速输入件发出的选取的喷洒流速获取的选取的喷洒流速。
  41. 根据权利要求40所述的无人机,其特征在于,所述处理器具体用于获取无人机上安装的喷洒组件的类型信息;
    根据预先存储的喷洒组件的类型信息与喷洒流速的对应关系确定初始喷洒流速。
  42. 根据权利要求38或39所述的无人机,其特征在于,所述处理器接收的流速输入指令是流速输入件发出的。
  43. 根据权利要求40或42所述的无人机,其特征在于,所述流速输入件为多个,每个流速输入件可发出相应的喷洒流速。
  44. 根据权利要求43所述的无人机,其特征在于,所述流速输入件包括:档位开关、旋钮开关、电位器、直线开关、触摸显示屏中的任意一个或多个。
  45. 根据权利要求40或42所述的无人机,其特征在于,所述流速输入件设置在无人机上或设置在所述无人机的遥控器上。
  46. 根据权利要求32所述的无人机,其特征在于,所述处理器获取的选取的飞行速度是预先存储的;
    或者,所述无人机还包括:用于发出选取的飞行速度的速度输入件,所述速度输入件与所述处理器通讯连接,所述处理器具体是根据速度输入件发出的选取的飞行速度获取的选取的飞行速度。
  47. 根据权利要求36或37所述的无人机,其特征在于,所述处理器还用于接收速度输入件发出的速度输入指令。
  48. 根据权利要求35或47所述的无人机,其特征在于,所述速度输入件为多个,每个速度输入件可发出相应的飞行速度的信息。
  49. 根据权利要求35或47所述的无人机,其特征在于,所述速度输入件包括:档位开关、旋钮开关、电位器、直线开关、触摸显示屏中的任意一个或多个。
  50. 根据权利要求35或47所述的无人机,其特征在于,所述速度输入件设置在无人机上或设置在所述无人机的遥控器上。
  51. 根据权利要求32所述的无人机,其特征在于,还包括:GPS定位模块,用于获取所述喷洒起点至终点的飞行距离。
  52. 根据权利要求32所述的无人机,其特征在于,所述处理器具体获取的是预先存储的喷洒起点至终点的飞行距离。
  53. 根据权利要求52所述的无人机,其特征在于,所述处理器用于根据预设的飞行路线确定所述喷洒起点至终点的飞行距离,其中,所述飞行路线中包括:喷洒起点、喷洒终点、无人机单位时间需喷洒的横向距离和无人机单位周期内需喷洒的纵向距离。
  54. 根据权利要求32-53任一项所述的无人机,其特征在于,所述处理器还用于:
    控制所述无人机在待飞行高度下飞行。
  55. 根据权利要求54所述的无人机,其特征在于,还包括:用于输入待飞行高度的高度输入件,所述高度输入件设置在无人机上或设置在所述无人机的遥控器上。
  56. 根据权利要求54所述的无人机,其特征在于,所述处理器具体还用于:
    获取无人机上安装的喷洒组件的类型信息;
    根据预先存储的喷洒组件的类型信息与喷洒角度的对应关系确定喷洒角度;
    获取无人机单位时间需喷洒的横向距离;
    根据所述横向距离和所述喷洒角度确定待飞行高度。
  57. 根据权利要求54所述的无人机,其特征在于,所述处理器还用于:
    获取无人机飞行的位置信息、所述位置信息对应的海拔信息以及无人机当前飞行的海拔信息;
    根据所述位置信息对应的海拔信息和无人机当前飞行的海拔信息更新所示待飞行高度。
  58. 根据权利要求32所述的无人机,其特征在于,所述处理器还用于:
    在控制所述无人机起飞时,锁定无人机的偏航角,以使无人机喷洒均匀。
  59. 根据权利要求32或57或58任一项所述的无人机,其特征在于,所述处理器还用于:
    检测无人机的飞行状态,判断所述无人机是否处于异常状态,若结果为是,则发出警报,以提示用户是否需要立即返航。
  60. 根据权利要求59所述的无人机,其特征在于,所述处理器检测的飞行状态可以包括:无人机的电量信息、剩余药量信息、遥控器的电量信息中的任意一种或多种。
  61. 根据权利要求32所述的无人机,其特征在于,所述处理器还用于:获取无人机需要喷洒的物质总量,所述物质总量是预先存储、用户输入的或者自动获取中的任意一种。
  62. 根据权利要求32所述的无人机,其特征在于,所述处理器获取的需要喷洒的物质总量为无人机携带的物质的总量。
PCT/CN2016/080784 2016-04-29 2016-04-29 无人机的喷洒控制方法和无人机 WO2017185359A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201910184654.7A CN109782808B (zh) 2016-04-29 2016-04-29 无人机的喷洒控制方法和无人机
CN201680002635.2A CN106714554B (zh) 2016-04-29 2016-04-29 无人机的喷洒控制方法和无人机
PCT/CN2016/080784 WO2017185359A1 (zh) 2016-04-29 2016-04-29 无人机的喷洒控制方法和无人机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/080784 WO2017185359A1 (zh) 2016-04-29 2016-04-29 无人机的喷洒控制方法和无人机

Publications (1)

Publication Number Publication Date
WO2017185359A1 true WO2017185359A1 (zh) 2017-11-02

Family

ID=58906751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/080784 WO2017185359A1 (zh) 2016-04-29 2016-04-29 无人机的喷洒控制方法和无人机

Country Status (2)

Country Link
CN (2) CN109782808B (zh)
WO (1) WO2017185359A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109631834A (zh) * 2018-12-19 2019-04-16 北京农业智能装备技术研究中心 一种航空施药系统及方法
CN110816833A (zh) * 2019-11-08 2020-02-21 广东工业大学 一种无人机的飞行插秧系统及插秧方法
CN110832425A (zh) * 2018-10-31 2020-02-21 深圳市大疆创新科技有限公司 控制方法、设备、测绘无人机和喷洒无人机
CN111273693A (zh) * 2020-02-27 2020-06-12 辽宁壮龙无人机科技有限公司 一种植保无人机作业的控制方法及系统
CN111295332A (zh) * 2018-12-28 2020-06-16 深圳市大疆软件科技有限公司 农业植保无人机的控制方法、农业植保无人机和计算机可读存储介质
WO2020220195A1 (zh) * 2019-04-29 2020-11-05 深圳市大疆创新科技有限公司 无人机的控制方法、设备、喷洒系统、无人机及存储介质
CN112273038A (zh) * 2020-10-21 2021-01-29 塔里木大学 一种促苗壮苗的棉花种植方法
CN112783206A (zh) * 2020-12-31 2021-05-11 广州极飞科技股份有限公司 喷洒控制方法、装置、飞行器及存储介质

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109961466A (zh) * 2017-12-14 2019-07-02 翔升(上海)电子技术有限公司 牧场动物监控方法和系统
CN109153452B (zh) * 2017-12-18 2023-04-04 深圳市大疆创新科技有限公司 播撒装置及其控制方法、以及植保无人机
CN108388271B (zh) * 2018-03-27 2021-02-23 甘肃省农业科学院植物保护研究所 基于服务器终端的无人机喷药系统
CN108812589B (zh) * 2018-03-27 2021-02-02 李治勇 基于无人机的农药供给设备
CN110573982B (zh) * 2018-03-28 2022-09-23 深圳市大疆软件科技有限公司 一种植保无人机作业的控制方法和控制装置
WO2019183899A1 (zh) * 2018-03-29 2019-10-03 深圳市大疆软件科技有限公司 一种自主作业载体的控制方法、控制系统及控制端
CN112384441B (zh) * 2018-06-04 2024-03-19 株式会社尼罗沃克 无人机系统
CN109221060A (zh) * 2018-09-14 2019-01-18 广州市华科尔科技股份有限公司 一种植保无人机喷淋组件及喷淋方法
CN110799419B (zh) * 2018-11-19 2024-03-15 深圳市大疆创新科技有限公司 无人机的控制方法、箱体及无人机
CN111344225B (zh) * 2018-12-04 2023-10-13 深圳市大疆软件科技有限公司 农业植保无人机和农业植保无人机的控制方法
JP7293070B2 (ja) * 2019-09-25 2023-06-19 株式会社クボタ 散布支援システム
WO2021056409A1 (zh) * 2019-09-27 2021-04-01 深圳市大疆创新科技有限公司 无人机的喷洒控制方法、无人机和存储介质
CN112105461A (zh) * 2019-11-05 2020-12-18 深圳市大疆创新科技有限公司 一种控制方法、控制设备、可移动平台及控制系统
CN112859906B (zh) * 2019-11-28 2024-04-30 广州极飞科技股份有限公司 撒播控制方法、撒播控制装置、无人机和存储介质
WO2021237481A1 (zh) * 2020-05-26 2021-12-02 深圳市大疆创新科技有限公司 无人飞行器的控制方法和设备
CN112783205B (zh) * 2020-12-31 2024-04-12 广州极飞科技股份有限公司 药物喷洒方法及装置、处理器及无人装置
CN112835381B (zh) * 2020-12-31 2022-12-27 广州极飞科技股份有限公司 喷洒物携带分析方法、装置、喷洒作业系统及电子设备
CN112892944A (zh) * 2021-01-21 2021-06-04 江苏科技大学 适用于变曲率外板的无人机智能喷涂装置及动态调整方法
CN114253307A (zh) * 2021-12-22 2022-03-29 广州极飞科技股份有限公司 喷撒量控制方法、装置、电子设备及存储介质
CN114326809A (zh) * 2021-12-29 2022-04-12 广州极飞科技股份有限公司 返航点确定方法、装置、电子设备及可读存储介质
CN116797106B (zh) * 2023-08-29 2023-11-14 山东孟子居生态农业股份有限公司 一种植保无人机作业效果评价系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090090982A (ko) * 2008-02-21 2009-08-26 야마하하쓰도키 가부시키가이샤 무인 헬리콥터
CN101963806A (zh) * 2010-10-15 2011-02-02 农业部南京农业机械化研究所 基于gps导航的无人机施药作业自动控制系统及方法
WO2011152702A1 (en) * 2010-06-04 2011-12-08 Universiti Malaysia Perlis A flying apparatus for aerial agricultural application
JP2012126216A (ja) * 2010-12-14 2012-07-05 New Delta Industrial Co Ltd 薬剤散布装置
CN102591302A (zh) * 2012-03-05 2012-07-18 无锡汉和航空技术有限公司 一种无人机喷洒农药的作业方法
CN102687711A (zh) * 2012-06-05 2012-09-26 南京林业大学 静电喷雾式无人直升机施药系统
CN104041477A (zh) * 2014-06-23 2014-09-17 湖南金骏农业科技有限公司 一种遥控飞行植保机喷药系统
CN204279954U (zh) * 2014-11-18 2015-04-22 浙江大学 一种变量喷洒农药的无人机
CN204859395U (zh) * 2015-07-08 2015-12-09 常州华奥航空科技有限公司 大面积农业作业无人机

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5950921A (en) * 1997-12-19 1999-09-14 Rockwell International Corporation Agricultural liquid injection product application process and apparatus
US7225063B2 (en) * 2001-09-20 2007-05-29 Keith R Tart Aircraft control system
US9226490B2 (en) * 2007-02-12 2016-01-05 Topcon Precision Agriculture Pty Ltd. Agricultural spraying equipment boom level control system
CN101587332A (zh) * 2009-04-15 2009-11-25 西北农林科技大学 一种车载式变量施药机控制系统及其控制方法
CN201522628U (zh) * 2009-11-10 2010-07-07 农业部南京农业机械化研究所 基于单片机的智能超低空施药控制系统
CN103803083A (zh) * 2014-01-17 2014-05-21 浙江大学 一种基于gps的无人机喷药装置及其喷药方法
CN204499226U (zh) * 2015-02-15 2015-07-29 新疆天山羽人农业航空科技有限公司 一种遥控植保机
CN204719813U (zh) * 2015-05-15 2015-10-21 济南大学 一种基于悬挂链输送机的农田智能喷药机器人
CN105446356A (zh) * 2015-12-17 2016-03-30 小米科技有限责任公司 无人机控制方法及装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090090982A (ko) * 2008-02-21 2009-08-26 야마하하쓰도키 가부시키가이샤 무인 헬리콥터
WO2011152702A1 (en) * 2010-06-04 2011-12-08 Universiti Malaysia Perlis A flying apparatus for aerial agricultural application
CN101963806A (zh) * 2010-10-15 2011-02-02 农业部南京农业机械化研究所 基于gps导航的无人机施药作业自动控制系统及方法
JP2012126216A (ja) * 2010-12-14 2012-07-05 New Delta Industrial Co Ltd 薬剤散布装置
CN102591302A (zh) * 2012-03-05 2012-07-18 无锡汉和航空技术有限公司 一种无人机喷洒农药的作业方法
CN102687711A (zh) * 2012-06-05 2012-09-26 南京林业大学 静电喷雾式无人直升机施药系统
CN104041477A (zh) * 2014-06-23 2014-09-17 湖南金骏农业科技有限公司 一种遥控飞行植保机喷药系统
CN204279954U (zh) * 2014-11-18 2015-04-22 浙江大学 一种变量喷洒农药的无人机
CN204859395U (zh) * 2015-07-08 2015-12-09 常州华奥航空科技有限公司 大面积农业作业无人机

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110832425B (zh) * 2018-10-31 2021-10-01 深圳市大疆创新科技有限公司 控制方法、设备、测绘无人机和喷洒无人机
CN110832425A (zh) * 2018-10-31 2020-02-21 深圳市大疆创新科技有限公司 控制方法、设备、测绘无人机和喷洒无人机
WO2020087384A1 (zh) * 2018-10-31 2020-05-07 深圳市大疆创新科技有限公司 控制方法、设备、测绘无人机和喷洒无人机
CN109631834B (zh) * 2018-12-19 2022-07-01 北京农业智能装备技术研究中心 一种航空施药系统及方法
CN109631834A (zh) * 2018-12-19 2019-04-16 北京农业智能装备技术研究中心 一种航空施药系统及方法
CN111295332B (zh) * 2018-12-28 2024-03-15 深圳市大疆软件科技有限公司 农业植保无人机的控制方法、农业植保无人机和计算机可读存储介质
CN111295332A (zh) * 2018-12-28 2020-06-16 深圳市大疆软件科技有限公司 农业植保无人机的控制方法、农业植保无人机和计算机可读存储介质
WO2020220195A1 (zh) * 2019-04-29 2020-11-05 深圳市大疆创新科技有限公司 无人机的控制方法、设备、喷洒系统、无人机及存储介质
CN110816833B (zh) * 2019-11-08 2022-09-13 广东工业大学 一种无人机的飞行插秧系统及插秧方法
CN110816833A (zh) * 2019-11-08 2020-02-21 广东工业大学 一种无人机的飞行插秧系统及插秧方法
CN111273693A (zh) * 2020-02-27 2020-06-12 辽宁壮龙无人机科技有限公司 一种植保无人机作业的控制方法及系统
CN111273693B (zh) * 2020-02-27 2023-11-03 辽宁壮龙无人机科技有限公司 一种植保无人机作业的控制方法及系统
CN112273038A (zh) * 2020-10-21 2021-01-29 塔里木大学 一种促苗壮苗的棉花种植方法
CN112783206A (zh) * 2020-12-31 2021-05-11 广州极飞科技股份有限公司 喷洒控制方法、装置、飞行器及存储介质

Also Published As

Publication number Publication date
CN109782808A (zh) 2019-05-21
CN106714554A (zh) 2017-05-24
CN109782808B (zh) 2021-08-24
CN106714554B (zh) 2019-04-09

Similar Documents

Publication Publication Date Title
WO2017185359A1 (zh) 无人机的喷洒控制方法和无人机
US20240160209A1 (en) Aerial operation support and real-time management
EP3557362B1 (en) Unmanned aerial vehicle operating method and device
JP6962720B2 (ja) 飛行制御方法、情報処理装置、プログラム及び記録媒体
JP6882505B2 (ja) 無人機の飛行を制御するための方法及び装置
CN104670496B (zh) 一种六轴式农药喷雾飞行装置及控制方法
JP2017144811A (ja) 無人飛行体による薬剤散布方法、および、プログラム
US20210094688A1 (en) Managing a fleet of spraying aerial vehicles
CN208110387U (zh) 一种室内视觉导航无人机集群飞行控制系统
CN109353521A (zh) 一种精准喷洒的无人机系统及其控制方法
JP7217894B2 (ja) 作業計画装置、作業計画装置の制御方法、および、その制御プログラム、ならびにドローン
KR20200019510A (ko) 산림형 드론 방제 시스템
WO2020133241A1 (zh) 农业植保无人机的控制方法、农业植保无人机和计算机可读存储介质
CN113939452A (zh) 一种喷洒控制方法及装置
WO2020209255A1 (ja) ドローンシステム、ドローン、管制装置、ドローンシステムの制御方法、および、ドローンシステム制御プログラム
WO2020133242A1 (zh) 农业植保无人机的控制方法、农业植保无人机和计算机可读存储介质
JP2022036356A (ja) ドローンシステム
KR102339375B1 (ko) 약제 분사용 무인 비행체 및 그 제어방법
WO2020153369A1 (ja) ドローンシステム、ドローンシステムの制御方法、および動作決定装置
CN108227732A (zh) 一种无人机飞行姿态测定系统
JP7085772B2 (ja) ドローンシステム、ドローンシステムの制御方法、および、ドローンシステム制御プログラム
EP4230036A1 (en) Targeted treatment of specific weed species with multiple treatment devices
EP4358712A1 (en) Targeted treatment of specific weed species with multiple treatment devices
WO2018053754A1 (zh) 一种基于飞行器的功能控制方法及装置
JP2022088441A (ja) ドローン操縦機、および、操縦用プログラム

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16899870

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16899870

Country of ref document: EP

Kind code of ref document: A1