WO2018053754A1 - 一种基于飞行器的功能控制方法及装置 - Google Patents

一种基于飞行器的功能控制方法及装置 Download PDF

Info

Publication number
WO2018053754A1
WO2018053754A1 PCT/CN2016/099724 CN2016099724W WO2018053754A1 WO 2018053754 A1 WO2018053754 A1 WO 2018053754A1 CN 2016099724 W CN2016099724 W CN 2016099724W WO 2018053754 A1 WO2018053754 A1 WO 2018053754A1
Authority
WO
WIPO (PCT)
Prior art keywords
flight
parameter
aircraft
time
control condition
Prior art date
Application number
PCT/CN2016/099724
Other languages
English (en)
French (fr)
Inventor
彭昭亮
陈超彬
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN202110545522.XA priority Critical patent/CN113148163A/zh
Priority to CN201680013426.8A priority patent/CN107624096B/zh
Priority to PCT/CN2016/099724 priority patent/WO2018053754A1/zh
Publication of WO2018053754A1 publication Critical patent/WO2018053754A1/zh
Priority to US16/356,839 priority patent/US11034450B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0004Transmission of traffic-related information to or from an aircraft
    • G08G5/0013Transmission of traffic-related information to or from an aircraft with a ground station
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0017Arrangements for implementing traffic-related aircraft activities, e.g. arrangements for generating, displaying, acquiring or managing traffic information
    • G08G5/0021Arrangements for implementing traffic-related aircraft activities, e.g. arrangements for generating, displaying, acquiring or managing traffic information located in the aircraft
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/0052Navigation or guidance aids for a single aircraft for cruising
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/0069Navigation or guidance aids for a single aircraft specially adapted for an unmanned aircraft
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/42Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for mass transport vehicles, e.g. buses, trains or aircraft
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/10UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/10UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]
    • B64U2201/104UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS] using satellite radio beacon positioning systems, e.g. GPS
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/20Remote controls

Definitions

  • the present invention relates to the field of flight control technologies, and in particular, to an aircraft-based function control method and apparatus.
  • drones have been well applied in more and more industries. With the application of drones in different industries, drones are required to perform more operations and achieve more functions, such as photographing operations, pesticide spraying operations, and the like. How to control the corresponding operating modules (such as cameras) mounted on the drone so that the drone can better realize the corresponding functions has become a research hotspot.
  • Embodiments of the present invention provide an aircraft-based function control method and apparatus, which can automatically implement automatic control of a work module mounted on a drone.
  • an embodiment of the present invention provides an aircraft-based function control method, including:
  • flight parameters of the aircraft during flight the flight parameters being selected parameters for controlling operation of a work module disposed on the aircraft, the flight parameters including flight time parameters and/or flight distance parameters;
  • the flight parameters are analyzed according to preset control conditions
  • the flight parameter conforms to the control condition comprising: the time of flight parameter satisfies a time requirement included in the control condition, and/or the flight distance parameter satisfies a distance requirement included in the control condition.
  • an aircraft-based function control apparatus including:
  • An acquisition module configured to acquire flight parameters of the aircraft during flight, where the flight parameters are selected Determining parameters for controlling operation of a work module disposed on the aircraft, the flight parameters including flight time parameters and/or flight distance parameters;
  • a processing module configured to analyze the flight parameter according to a preset control condition; if the analysis result is that the flight parameter meets the control condition, controlling the operation module to work; wherein the flight parameter meets the control condition includes: The time of flight parameter satisfies the time requirement included in the control condition, and/or the flight distance parameter satisfies the distance requirement included in the control condition.
  • the embodiment of the invention can perform work control on the working module of the camera, the spraying device and the like mounted on the aircraft according to the flight parameters of the aircraft and the control conditions configured according to the user requirements, and can realize automatic control such as timing and distance, and meets the requirements.
  • FIG. 1 is a schematic structural view of a flight system according to an embodiment of the present invention.
  • FIG. 2 is a schematic flow chart of an aircraft-based function control method according to an embodiment of the present invention.
  • FIG. 3 is a schematic flow chart of another aircraft-based function control method according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of an aircraft-based function control device according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural view of an aircraft according to an embodiment of the present invention.
  • the Unmanned Aerial Vehicle can be remotely controlled by the user, flying to the destination area, and performing special tasks.
  • the camera can be mounted on the UAV. Through the camera, the user can monitor the target area and effectively apply it to disaster relief and geological monitoring. Test and other scenarios.
  • the UAV can also be equipped with a tank body for accommodating mixed liquids such as pesticides and water, and a spray device composed of a spray mechanism, so as to be applied in the agricultural field, satisfying the user's automation and intelligent demand for scenes such as pesticide spraying, and effectively improving the spraying. effectiveness.
  • the user can configure control conditions regarding time and/or distance, so that the drone that is mounted by the working module of the camera, the spraying device, etc. can control the working module regularly and/or at a fixed distance, and control the camera.
  • the working modules that can be mounted on the aircraft include a plurality of types, and may include a radar device, an infrared device, and the like in addition to the camera and the spraying device, and may include a firepower system and the like in the military field.
  • FIG. 1 it is a schematic structural diagram of a flight system according to an embodiment of the present invention, which includes a remote controller 101 and a drone 102.
  • the drone 102 has a working module 103 mounted thereon.
  • the remote controller 101 can be implemented by a smart terminal, which includes a terminal with a wireless transmission function, such as a smart phone or a tablet computer, on which the corresponding application APP can be configured.
  • the installed user can intuitively complete the configuration of the time and distance requirements in the control conditions. Specifically, an edit template of different time requirement parameters and distance requirement parameters may be imported as needed to determine the configuration of parameters such as time interval and distance interval, and the preset processing of the control conditions may be completed in advance.
  • the function module can be functionally controlled according to the flight condition of the aircraft.
  • the corresponding processing of the function control is implemented in the aircraft.
  • the remote controller 101 transmits the determined control condition to the drone.
  • the operation module such as a camera or a spray device mounted on the aircraft is controlled by a module such as a flight controller of the aircraft or a processor that can directly control the work module disposed on the aircraft.
  • the aircraft is stored in the controller of the aircraft upon receipt of the control conditions.
  • the aircraft can collect its own flight parameters in real time if it receives a takeoff command to begin the mission. Acquiring flight parameters is selectively collected based on demand parameters in the control conditions.
  • the aircraft collects the time interval and duration value after the takeoff, and the time interval or duration can be collected by a timer, ie: The timer starts counting after the aircraft takes off or after the preset time after takeoff. If it is a time interval, the timer counts down, for example, the time interval is 10 In minutes, the countdown starts from 10 minutes to determine the time interval. If it is the duration, the timer performs a positive timing to determine the duration of 5 minutes, the duration of 15 minutes, and even the length of 1 hour.
  • a timer ie: The timer starts counting after the aircraft takes off or after the preset time after takeoff. If it is a time interval, the timer counts down, for example, the time interval is 10 In minutes, the countdown starts from 10 minutes to determine the time interval. If it is the duration, the timer performs a positive timing to determine the duration of 5 minutes, the duration of 15 minutes, and even the length of 1 hour.
  • the control operation module After acquiring the flight duration, if the acquired flight duration value is related to the duration value configured in the control condition (completely equal or approximately equal), the control operation module starts to work, for example, the control camera starts to take a photo or pre- Set a video of the duration to control the spray device to spray the pesticide for a preset period of time. After the time interval is acquired, if the acquired time interval value is related to the interval value configured in the control condition (completely equal or approximately equal), the control job module starts to work.
  • the GPS Global Positioning System
  • RTK Real-time kinematic
  • the length information of the flight route that is, the distance between two waypoints on the route, or the horizontal distance between two waypoints, etc.
  • the altitude of the flight and other parameters.
  • the control job module After the length information is acquired, if the acquired length information is related to the length information included in the control condition (completely equal or approximately equal), the control job module starts working, for example, controlling the camera to start taking a photo or preset The video of the duration, the spray device is controlled to spray the pesticide for a preset period of time.
  • the control job module After the flight height information is acquired, if the acquired flight height information is related to the altitude information included in the control condition (completely equal or approximately equal), the control job module starts to work.
  • the corresponding processing of the function control can be implemented in a smart terminal as a remote controller.
  • the smart terminal acquires, in real time, flight parameters such as the duration value, the time interval, the flight length information, and the flight altitude of the aircraft after takeoff from the aircraft.
  • the acquired flight parameters are analyzed according to preset control conditions. If the flight parameters meet the preset control conditions, a control signal is generated and sent to the operation module mounted on the aircraft (either directly to the operation module or forwarded by the aircraft) Give the job module), thus controlling the job module to start working.
  • the remote controller needs to interact with the aircraft, acquire flight parameters, and need to generate a control module for control.
  • Control instructions via wireless The mode of transmission sends control commands to the job module.
  • Corresponding processing for performing function control in the remote controller can be referred to the above description of the corresponding processing for performing function control in the aircraft.
  • the method in the embodiment of the present invention may be performed by an aircraft or by an intelligent terminal.
  • the aircraft may be a UAV with a smart flight function such as a quadrotor or a six-rotor.
  • the smart terminal may be a terminal with a wireless transmission function such as a smart phone, a tablet computer, or a smart wearable device.
  • the method of the embodiment of the invention comprises the following steps.
  • Flight parameters of the aircraft during flight are selected parameters for controlling operation of a work module disposed on the aircraft, the flight parameters including flight time parameters and/or flight distances parameter.
  • the flight parameters to be acquired are selected according to the demand parameters in the control conditions.
  • the flight parameters may include flight time parameters such as the flight duration value and the time interval value after the aircraft takes off, or may include: the flight route after the aircraft takes off.
  • Flight distance parameters such as length information and altitude information.
  • the control condition is configured in advance according to the time or distance input by the user.
  • the control condition may be determining whether the time parameter in the flight parameter is equal to the time input by the user. If they are equal, the control module is controlled to meet the control condition to achieve the purpose of timing the operation of the operation module.
  • the control condition may be determining whether the distance parameter in the flight parameter is related to the distance input by the user, and if relevant, satisfying the control condition to control the working module to achieve the purpose of the distance control operation module operation.
  • the aircraft-based function control method can be separately applied to a certain target segment on the executed flight path of the aircraft, and the target segment can be executed by the aircraft. Part or all of the flight segments on the flight path.
  • the user can select a certain segment or a plurality of routes as the target segment, and when detecting that the aircraft enters the target segment flight, the S201 is executed.
  • a certain pan/tilt angle can be configured.
  • the control job module starts working, it will also The working module works in the configuration angle by controlling the movement of the gimbal.
  • the UAV determines the control conditions, determines the working angle, and the working time parameters according to various parameters configured by the user.
  • the operation module parameters, etc. in order to finally control the work module to work to complete the mission.
  • the operation module parameter refers to a parameter when the operation module is working.
  • the operation module parameters include sensitivity, shutter, aperture, and the like, and for the spray device, the nozzle flow rate, the nozzle working pressure, and the like are related. parameter.
  • the embodiment of the present invention further provides a computer storage medium, where the program instruction is stored in the computer storage medium, and the program includes a method corresponding to the embodiment in FIG. 2 when executed.
  • the embodiment of the invention can perform work control on the working module of the camera, the spraying device and the like mounted on the aircraft according to the flight parameters of the aircraft and the control conditions configured according to the user requirements, and can realize automatic control such as timing and distance, and meets the requirements.
  • FIG. 3 it is a schematic flowchart of another aircraft-based function control method according to an embodiment of the present invention.
  • the method in the embodiment of the present invention may be performed by an aircraft or by an intelligent terminal.
  • the aircraft may be a UAV with a smart flight function such as a quadrotor or a six-rotor.
  • the smart terminal may be a terminal with a wireless transmission function such as a smart phone, a tablet computer, or a smart wearable device.
  • the method of the embodiment of the invention comprises the following steps.
  • S301 Acquire a surveying parameter, where the surveying parameters include: a flying height, or a job coverage.
  • the mapping parameters mainly refer to the operation requirements of the user for the working module on the aircraft.
  • the job coverage mainly reflects the monitoring or spraying coverage of the area through which the entire flight process passes.
  • S302 Determine a time requirement and/or a distance requirement of the job according to the acquired mapping parameters, and preset a control condition according to the determined time requirement and/or distance requirement. The higher the flight altitude and the lower the job coverage, the longer the time requirement parameters and/or distance requirement parameters determined for configuring the control conditions.
  • the control parameter may also be received at the same time or at any time when the S301 acquires the surveying parameter; the control parameter includes: a working angle for adjusting the working module in the working process, a working duration parameter, and a working module parameter. Any one or more of them.
  • the control parameter may be received from the user interface after the user directly configures on the user interface.
  • the working angle may refer to a shooting angle of the camera, or a spraying angle of the spraying device, etc.
  • the working time may refer to a length of time after the camera starts shooting, or a spraying time after the spraying device starts spraying.
  • the block parameters are mainly the device parameters of the camera or the spray device, which may be related parameters such as white balance, aperture, shutter, etc. of the camera, or may be the nozzle flow of the spray device itself, the working pressure of the nozzle, and the like.
  • S302 After the aircraft receives the preset flight path, detect whether the aircraft starts to execute the selected target flight segment in the preset flight path.
  • the user may separately configure the function control mode to be performed on each route, and the user specifies a part of the segment from the entire route configured for the aircraft as the target segment, and the user targets the target.
  • the segments are configured to determine the functional control modes to be performed on the target segments, for example, performing a timed photographing of the first target segment (configurable timing time), and performing a distance photographing of the second segment (configurable) Timing distance).
  • some target segments can also be configured to be inactive.
  • S303 Acquire flight parameters of the aircraft during flight, the flight parameters being parameters selected for controlling a work module disposed on the aircraft, the flight parameters including flight time parameters and/or flight distances parameter.
  • the obtained time-of-flight parameter includes: a flight duration value obtained after the aircraft is taken off after the take-off is detected, and the time-of-flight parameter satisfies the time requirement included in the control condition, that is, a flight duration value and The duration value configured in the control condition is related.
  • the acquired time-of-flight parameter includes: a time interval value calculated after the aircraft takes off, the time-of-flight parameter satisfying a time requirement included in the control condition, the time interval value and the control condition
  • the interval value configured in the middle is related.
  • the acquired flight distance parameter includes: length information of the flighted route calculated after detecting the takeoff of the aircraft, where the flight distance parameter satisfies a distance requirement included in the control condition,
  • the calculated length information is related to the length information included in the control condition.
  • the obtained flight distance parameter includes: the flying height information calculated after detecting the takeoff of the aircraft, the distance parameter satisfying the distance requirement included in the control condition is: the calculated flying height The information is related to the height information included in the control condition.
  • the embodiment of the present invention further provides a computer storage medium, where the program instruction is stored in the computer storage medium, and the program includes the method in the embodiment corresponding to FIG.
  • the embodiment of the invention can perform work control on the working module of the camera, the spraying device and the like mounted on the aircraft according to the flight parameters of the aircraft and the control conditions configured according to the user requirements, and can realize automatic control such as timing and distance, and meets the requirements.
  • the function control operation of the operation module can be performed only on part or all of the flight segments on the route according to the needs of the user, so that the aircraft-based work control is more intelligent.
  • FIG. 4 is a schematic structural diagram of an aircraft-based function control apparatus according to an embodiment of the present invention.
  • the apparatus of the embodiment of the present invention may be applied to an aircraft or an intelligent terminal.
  • the apparatus includes the following modules.
  • An acquisition module 401 configured to acquire flight parameters of an aircraft during flight, the flight parameters being selected parameters for controlling operation of a work module disposed on the aircraft, the flight parameters including flight time parameters and And a flight distance parameter;
  • the processing module 402 is configured to analyze the flight parameter according to a preset control condition; if the analysis result is that the flight parameter meets the control condition, controlling the operation module to work; wherein
  • the flight parameters comply with the control conditions including that the time of flight parameter satisfies the time requirement included in the control condition, and/or the flight distance parameter satisfies the distance requirement included in the control condition.
  • the apparatus of the embodiment of the present invention may further include: a detecting module 403, configured to detect, after the aircraft receives the preset flight path, whether the aircraft starts to execute in the preset flight path. The selected target segment; if the detection result is yes, the acquisition module 401 is notified.
  • a detecting module 403 configured to detect, after the aircraft receives the preset flight path, whether the aircraft starts to execute in the preset flight path. The selected target segment; if the detection result is yes, the acquisition module 401 is notified.
  • the apparatus of the embodiment of the present invention may further include: a configuration module 404, configured to receive the configured control parameter; the control parameter includes: a working angle for adjusting the working module in the working process, Any one or more of the job duration parameters and the job module parameters.
  • the acquired time-of-flight parameter comprises: a flight duration value obtained after the aircraft is detected to take off, and the time-of-flight parameter satisfies the time requirement included in the control condition: the flight duration The value is related to the duration value configured in the control condition.
  • the acquired time-of-flight parameter comprises: a time interval value calculated after the aircraft takes off, and the time-of-flight parameter satisfies a time requirement included in the control condition, which is: a time interval value and a The interval value configured in the control condition is related.
  • the obtained flight distance parameter includes: length information of the flighted route calculated after detecting the takeoff of the aircraft, wherein the flight distance parameter satisfies a distance requirement included in the control condition
  • the calculated length information is related to the length information included in the control condition.
  • the acquired flight distance parameter comprises: flying height information calculated after detecting the takeoff of the aircraft, wherein the flight distance parameter satisfies a distance requirement included in the control condition means: the calculating The obtained flight height information is related to the altitude information included in the control condition.
  • the apparatus of the embodiment of the present invention may further include: a job configuration module 405, configured to acquire a surveying parameter, where the surveying parameter includes: a flying height, or a job coverage rate; and determining the operation according to the acquired surveying and mapping parameters Time requirements and/or distance requirements, and preset control conditions based on determined time requirements and/or distance requirements.
  • a job configuration module 405 configured to acquire a surveying parameter, where the surveying parameter includes: a flying height, or a job coverage rate; and determining the operation according to the acquired surveying and mapping parameters Time requirements and/or distance requirements, and preset control conditions based on determined time requirements and/or distance requirements.
  • the embodiment of the invention can perform work control on the working module of the camera, the spraying device and the like mounted on the aircraft according to the flight parameters of the aircraft and the control conditions configured according to the user requirements, and can realize automatic control such as timing and distance, and meets the requirements.
  • the function control operation of the operation module can be performed only on part or all of the flight segments on the route according to the needs of the user, so that the aircraft-based work control is more intelligent.
  • FIG. 5 is a schematic structural diagram of an aircraft according to an embodiment of the present invention.
  • the aircraft of the embodiment of the present invention includes a rotor, a power supply, a landing gear, and the like. Further, in the embodiment of the present invention, the aircraft Also included are a communication interface 501, a controller 502, and a memory 503. The communication interface 501, the controller 502, and the memory 503 are connected to each other.
  • the communication interface 501 is connected to a remote controller at the ground end for receiving data from the ground end.
  • the received data may include: a flight control command to the aircraft, various parameters configured by the user through the remote controller, and each generated by the remote controller. Control conditions, control logic, etc.
  • the memory 503 may include a volatile memory, such as a random-access memory (RAM); the memory 503 may also include a non-volatile memory, such as a flash. A flash memory or the like; the memory 503 may also include a combination of the above types of memories.
  • RAM random-access memory
  • flash non-volatile memory
  • the controller 502 can be a central processing unit (CPU).
  • the processor may further include a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD) or a combination thereof.
  • the PLD may be a complex programmable logic device (CPLD) or a field-programmable gate array (FPGA).
  • the memory 503 is further configured to store program instructions.
  • the controller 502 can invoke the program instructions to implement an aircraft based function control method as shown in the embodiments of Figures 2 and 3 of the present application.
  • the controller 502 invokes program instructions stored in the memory 503 for acquiring flight parameters of the aircraft during flight, the flight parameters being selected for controlling operations set on the aircraft a parameter for the module to work, the flight parameter includes a time of flight parameter and/or a flight distance parameter; the flight parameter is analyzed according to a preset control condition; if the analysis result is that the flight parameter meets the control condition, the control station The operating module operates; wherein the flight parameter conforms to the control condition comprising: the time of flight parameter satisfies a time requirement included in the control condition, and/or the flight distance parameter satisfies a distance requirement included in the control condition.
  • controller 502 is further configured to: after the aircraft receives the preset flight path, detect whether the aircraft starts to execute the selected target segment in the preset flight path; If the result of the test is yes, then the flight parameters of the acquiring aircraft during flight are performed.
  • controller 502 is further configured to receive the configured control parameter, where the control parameter includes: a working angle for adjusting the working module during the working process, a working duration parameter, and a working module parameter. Any one or more of them.
  • the acquired time-of-flight parameter comprises: a flight duration value obtained after the aircraft is detected to take off, and the time-of-flight parameter satisfies the time requirement included in the control condition: the flight duration The value is related to the duration value configured in the control condition.
  • the acquired time-of-flight parameter comprises: a time interval value calculated after the aircraft takes off, and the time-of-flight parameter satisfies a time requirement included in the control condition, which is: a time interval value and a The interval value configured in the control condition is related.
  • the acquired flight distance parameter comprises: detecting that the aircraft takes off The calculated length information of the flighted route, wherein the flight distance parameter satisfies the distance requirement included in the control condition means that the calculated length information is related to the length information included in the control condition.
  • the acquired flight distance parameter comprises: flying height information calculated after detecting the takeoff of the aircraft, wherein the flight distance parameter satisfies a distance requirement included in the control condition means: the calculating The obtained flight height information is related to the altitude information included in the control condition.
  • controller 502 is further configured to acquire a surveying parameter, where the surveying parameter includes: a flying height, or a job coverage rate; determining a time requirement and/or a distance requirement of the job according to the acquired surveying parameters, and according to Determined time requirements and/or distance requirements preset control conditions.
  • the surveying parameter includes: a flying height, or a job coverage rate; determining a time requirement and/or a distance requirement of the job according to the acquired surveying parameters, and according to Determined time requirements and/or distance requirements preset control conditions.
  • controller 502 of the device for a specific implementation of the controller 502 of the device in the embodiment of the present invention, reference may be made to the specific description of the related content in the embodiment corresponding to FIG. 1 to FIG. 3, and details are not described herein.
  • the embodiment of the invention can perform work control on the working module of the camera, the spraying device and the like mounted on the aircraft according to the flight parameters of the aircraft and the control conditions configured according to the user requirements, and can realize automatic control such as timing and distance, and meets the requirements.
  • the function control operation of the operation module can be performed only on part or all of the flight segments on the route according to the needs of the user, so that the aircraft-based work control is more intelligent.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory RAM.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种基于飞行器的功能控制方法及装置,其中,方法包括:获取飞行器在飞行过程中的飞行参数(S201),飞行参数为选定的用于控制设置在飞行器上的作业模块(103)进行工作的参数,飞行参数包括飞行时间参数和/或飞行距离参数;根据预设的控制条件对飞行参数进行分析(S202);若分析结果为飞行参数符合控制条件,则控制作业模块(103)工作(S203);其中,飞行参数符合控制条件包括:飞行时间参数满足控制条件中包括的时间需求,和/或飞行距离参数满足控制条件中包括的距离需求。能够对挂载在飞行器上的摄像机、喷洒装置等作业模块(103)进行工作控制,可以实现定时、定距等自动控制,满足了用户对摄影、喷洒等作业的自动化、智能化需求。

Description

一种基于飞行器的功能控制方法及装置
本专利文件披露的内容包含受版权保护的材料。该版权为版权所有人所有。版权所有人不反对任何人复制专利与商标局的官方记录和档案中所存在的该专利文件或该专利披露。
技术领域
本发明涉及飞行控制技术领域,尤其涉及一种基于飞行器的功能控制方法及装置。
背景技术
随着无人机技术的发展,无人机已经在越来越多的行业上得到了很好的应用。随着无人机在不同行业的应用,需要无人机执行更多的作业,实现更多的功能,例如:拍照作业、农药喷洒作业等等。如何对相应的挂载在无人机上的作业模块(诸如摄像机等)进行控制以便于无人机能够更好地实现相应功能成为研究的热点。
发明内容
本发明实施例提供了一种基于飞行器的功能控制方法及装置,可自动实现对挂载在无人机上的作业模块进行自动控制。
一方面,本发明实施例提供了一种基于飞行器的功能控制方法,包括:
获取飞行器在飞行过程中的飞行参数,所述飞行参数为选定的用于控制设置在所述飞行器上的作业模块进行工作的参数,所述飞行参数包括飞行时间参数和/或飞行距离参数;
根据预设的控制条件对所述飞行参数进行分析;
若分析结果为所述飞行参数符合控制条件,则控制所述作业模块工作;
其中,所述飞行参数符合控制条件包括:飞行时间参数满足所述控制条件中包括的时间需求,和/或飞行距离参数满足所述控制条件中包括的距离需求。
另一方面,本发明实施例还提供了一种基于飞行器的功能控制装置,包括:
获取模块,用于获取飞行器在飞行过程中的飞行参数,所述飞行参数为选 定的用于控制设置在所述飞行器上的作业模块进行工作的参数,所述飞行参数包括飞行时间参数和/或飞行距离参数;
处理模块,用于根据预设的控制条件对所述飞行参数进行分析;若分析结果为所述飞行参数符合控制条件,则控制所述作业模块工作;其中,所述飞行参数符合控制条件包括:飞行时间参数满足所述控制条件中包括的时间需求,和/或飞行距离参数满足所述控制条件中包括的距离需求。
本发明实施例能够根据飞行器的飞行参数和基于用户需求配置的控制条件,对挂载在所述飞行器上的摄像机、喷洒装置等作业模块进行工作控制,可以实现定时、定距等自动控制,满足了用户对摄影、喷洒等作业的自动化、智能化需求。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例的一种飞行系统的结构示意图;
图2是本发明实施例的一种基于飞行器的功能控制方法的流程示意图;
图3是本发明实施例的另一种基于飞行器的功能控制方法的流程示意图;
图4是本发明实施例的一种基于飞行器的功能控制装置的结构示意图;
图5是本发明实施例一种飞行器的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
无人机(Unmanned Aerial Vehicle,简称UAV)可以由用户远程遥控控制,飞行到目的区域,执行特殊任务。在民用领域,UAV上可以挂载摄像机,通过摄像机,用户可以实现对目的区域进行监控,有效应用在抢险救灾、地质监 测等场景下。UAV上还可以挂载包括用于容纳农药、水等混合液体的箱体以及喷洒机构构成的喷洒装置,从而应用在农业领域,满足用户对农药喷洒等场景的自动化、智能化需求,有效提高喷洒效率。
在本发明实施例中,用户可以配置关于时间和/或距离的控制条件,使得挂载由摄像机、喷洒装置等作业模块的无人机能够定时和/或定距对作业模块进行控制,控制摄像机定时和/或定距拍摄影像,控制喷洒装置定时和/或定距喷洒农药等功能。当然,能够挂载在飞行器上的作业模块包括多种,除了包括所述的摄像机、喷洒装置外,还可以包括雷达装置、红外装置等,在军事领域还可以包括火力系统等。
如图1所示,为本发明实施例的一种飞行系统的结构示意图,包括遥控器101、无人机102,无人机102上挂载有作业模块103。遥控器101可以通过智能终端来实现,该智能终端包括智能手机、平板电脑等带无线传输功能的终端,在这些终端上可以配置相应的应用APP。通过安装的APP用户可以直观地完成控制条件中关于时间需求、距离需求的配置。具体可以根据需要导入不同的时间需求参数、距离需求参数的编辑模板,以确定出时间间隔、距离间隔等参数的配置,进而预先完成控制条件的预设处理。
在完成了控制条件的预设处理后。即可根据飞行器的飞行情况,对作业模块进行功能控制。在本发明实施例中,为了更好地满足自动化、智能化需求,功能控制的相应处理在飞行器中实现。用户在遥控器101上完成时间间隔、或距离间隔等需求参数的配置并确定出控制条件后,遥控器101将确定出的控制条件发送给所述无人机。由飞行器的飞行控制器等模块、或者飞行器上配置的能够直接控制作业模块的处理器等,对挂载在飞行器上的摄像机、喷洒装置等作业模块进行控制。
所述飞行器在接收到控制条件后,会存储到飞行器的控制器中。如果接收到起飞指令开始执行任务的时候,飞行器可以实时收集自身的飞行参数。根据所述控制条件中的需求参数,选择性地收集获取飞行参数。
具体的,如果控制条件中的需求参数为时间需求参数,例如时间间隔、时长,那么飞行器就收集获取起飞后的时间间隔、时长值,可以通过一个计时器来收集时间间隔或时长,即:在飞行器起飞后或者起飞后的预设时长内,计时器开始计时,如果是时间间隔,计时器则进行倒数计时,例如时间间隔为10 分钟,则从10分钟开始倒数计时,以确定时间间隔,如果是时长,则计时器进行正向计时,以确定出5分钟的时长、15分钟的时长甚至1个小时的时长等。
在获取到飞行时长后,如果获取到的飞行时长值与所述控制条件中配置的时长值相关(完全相等或者两者近似相等),则控制作业模块开始工作,例如控制摄像机开始拍摄照片或预设时长的视频,控制喷洒装置再预设时长内喷洒农药。在获取到时间间隔后,如果获取到的时间间隔值与所述控制条件中配置的间隔值相关(完全相等或者两者近似相等),则控制作业模块开始工作。
而如果控制条件中的需求参数为是距离需求参数,则可以通过GPS(Global Positioning System,全球定位系统)/RTK(Real-time kinematic,实时差分定位)、用于测量高度的传感器来收集获取已飞行的航线的长度信息(也就是航线上两个航点的距离,或者两个航点之间的水平距离等),已飞行的高度等参数。
在获取到长度信息后,如果获取到的长度信息与所述控制条件中包括的长度信息相关(完全相等或者两者近似相等),则控制作业模块开始工作,例如控制摄像机开始拍摄照片或预设时长的视频,控制喷洒装置再预设时长内喷洒农药。在获取到飞行高度信息后,如果获取到的飞行高度信息与所述控制条件中包括的高度信息相关(完全相等或者两者近似相等),则控制作业模块开始工作。
需要说明的是,后续提及的相同主要是指相等或者近似相等,以在一定程度上消除误差的影响。
进一步地,在其他实施例中,功能控制的相应处理可以在作为遥控器的智能终端中实现。具体的,智能终端在根据用户输入的信息完成控制条件的预置后,从飞行器实时获取所述飞行器起飞后的时长值、时间间隔、飞行长度信息以及飞行高度等飞行参数。根据预置的控制条件对获取到飞行参数进行分析,如果飞行参数满足预设的控制条件,则生成控制信号发送给挂载在所述飞行器上的作业模块(直接发送给作业模块或者通过飞行器转发给作业模块),从而控制作业模块开始工作。具体的,在遥控器中进行功能控制的相应处理与在飞行器中进行功能控制的相应处理的主要不同之处在于,遥控器需要与飞行器进行交互,获取飞行参数,并需要生成用于控制作业模块的控制指令,通过无线 传输的方式向作业模块发送控制指令。在遥控器中进行功能控制的相应处理可参考上述的关于在飞行器中进行功能控制的相应处理的描述。
具体请参见图2,是本发明实施例的一种基于飞行器的功能控制方法的流程示意图,本发明实施例的所述方法可以由在飞行器来执行,也可以由智能终端来执行,具体的,所述飞行器可以为四旋翼、六旋翼等带智能飞行功能的无人机,所述智能终端可以为智能手机、平板电脑、智能可穿戴设备等带无线传输功能的终端。本发明实施例的所述方法包括如下步骤。
S201:获取飞行器在飞行过程中的飞行参数,所述飞行参数为选定的用于控制设置在所述飞行器上的作业模块进行工作的参数,所述飞行参数包括飞行时间参数和/或飞行距离参数。所要获取的飞行参数根据控制条件中的需求参数进行选择,具体的,飞行参数可以包括飞行器起飞后的飞行时长值、时间间隔值等飞行时间参数,或者可以包括:飞行器起飞后的已飞行航线的长度信息、高度信息等飞行距离参数。
S202:根据预设的控制条件对所述飞行参数进行分析。分析主要是指将获取到的飞行参数与控制条件中的需求参数进行比较。所述控制条件是预先根据用户输入的时间或者距离来配置的。所述控制条件可以为判断飞行参数中的时间参数与用户输入的时间是否相等,如果相等,则满足控制条件对作业模块进行控制,以达到定时控制作业模块作业的目的。所述控制条件可以为判断飞行参数中的距离参数与用户输入的距离是否相关,如果相关,则满足控制条件对作业模块进行控制,以达到定距控制作业模块作业的目的。
S203:若分析结果为所述飞行参数符合控制条件,则控制所述作业模块工作;其中,所述飞行参数符合控制条件包括:飞行时间参数满足所述控制条件中包括的时间需求,和/或飞行距离参数满足所述控制条件中包括的距离需求。
为了更好的满足用户定制化的需求,将基于飞行器的功能控制方法可以单独应用到飞行器的所执行的飞行航线上某段目标航段中,所述目标航段可以为所述飞行器所执行的飞行航线上的部分或全部航段。通过一用户界面,用户可以选择某一段或多段航线作为目标航段,在检测到飞行器进入到目标航段飞行时,即执行所述S201。进一步地,为了让用户在拍照或喷洒的时候可以朝向不同的角度,还提供用户界面对用于挂载固定作业模块的云台角度(作业角度)进行配置,可以配置一定的云台角度,当控制作业模块开始工作时,同时也会 通过控制云台运动等方式,使作业模块在配置的角度上工作。
通过提供API接口和用户界面,可以配置本发明实施例中涉及到的各种参数,无人机在飞行过程中会根据用户配置的各种参数,确定控制条件、确定作业角度、作业时长参数、以及作业模块参数等,以便最终控制作业模块工作以完成飞行任务。所述的作业模块参数是指作业模块具体工作时的参数,例如,对于摄像机,作业模块参数包括感光度、快门、光圈等相关参数,而对于喷洒装置,则包括喷头流量,喷头工作压力等相关参数。
具体的,本发明实施例还提供了一种计算机存储介质,该计算机存储介质中存储有程序指令,所述程序执行时包括如图2所对应实施例的方法。
本发明实施例能够根据飞行器的飞行参数和基于用户需求配置的控制条件,对挂载在所述飞行器上的摄像机、喷洒装置等作业模块进行工作控制,可以实现定时、定距等自动控制,满足了用户对摄影、喷洒等作业的自动化、智能化需求。
再请参见图3,是本发明实施例的另一种基于飞行器的功能控制方法的流程示意图,本发明实施例的所述方法可以由在飞行器来执行,也可以由智能终端来执行,具体的,所述飞行器可以为四旋翼、六旋翼等带智能飞行功能的无人机,所述智能终端可以为智能手机、平板电脑、智能可穿戴设备等带无线传输功能的终端。本发明实施例的所述方法包括如下步骤。
S301:获取测绘参数,所述测绘参数包括:飞行高度、或作业覆盖率。所述测绘参数主要是指用户本次对飞行器上的作业模块的作业需求。所述作业覆盖率主要体现了对整个飞行过程所经过的区域的监控或喷洒覆盖情况。
S302:根据获取的测绘参数确定作业的时间需求和/或距离需求,并根据确定的时间需求和/或距离需求预设控制条件。飞行高度越高、作业覆盖率越低,则确定的用于配置控制条件的时间需求参数和/或距离需求参数就越长。
在所述S301获取测绘参数的同时或任意时间,还可以接收配置的控制参数;所述控制参数包括:用于调节所述作业模块在工作过程中的作业角度、作业时长参数、以及作业模块参数中的任意一种或多种。所述控制参数可以是用户在用户界面上直接配置后,从该用户界面上接收得到的。作业角度可以是指摄像机的拍摄角度、或者喷洒装置的喷洒角度等,所述作业时长可以是指摄像机开始拍摄后拍摄的时长,或者喷洒装置开始喷洒后的喷洒时长。所述作业模 块参数则主要是指针对摄像机或喷洒装置的设备参数,可以为摄像机的白平衡、光圈、快门等相关参数,或者可以为喷洒装置本身的喷头流量,喷头工作压力等相关参数。
S302:在所述飞行器接收到预设的飞行航线后,检测所述飞行器是否开始执行所述预设的飞行航线中被选中的目标航段。在所述飞行器执行航线模式时,可以让用户单独配置每段航线所要执行的功能控制方式,用户从对所述飞行器配置的整条航线中指定出一部分航段作为目标航段,用户对这些目标航段进行配置,分别确定这些目标航段所要执行的功能控制方式,例如,对第一个目标航段执行定时拍照(可配置定时时间),对第二个航段执行定距拍照(可配置定时距离)。当然,也可以对某些目标航段配置为无动作。
S303:获取飞行器在飞行过程中的飞行参数,所述飞行参数为选定的用于控制设置在所述飞行器上的作业模块进行工作的参数,所述飞行参数包括飞行时间参数和/或飞行距离参数。
S304:根据预设的控制条件对所述飞行参数进行分析。
S305:若分析结果为所述飞行参数符合控制条件,则控制所述作业模块工作;其中,所述飞行参数符合控制条件包括:飞行时间参数满足所述控制条件中包括的时间需求,和/或飞行距离参数满足所述控制条件中包括的距离需求。
具体的,获取的所述飞行时间参数包括:在检测到所述飞行器起飞后开始计时得到的飞行时长值,所述飞行时间参数满足所述控制条件中包括的时间需求是指:飞行时长值与所述控制条件中配置的时长值相关。
或者,获取的所述飞行时间参数包括:在所述飞行器起飞后计算得到的时间间隔值,所述飞行时间参数满足所述控制条件中包括的时间需求是指:时间间隔值与所述控制条件中配置的间隔值相关。
或者,获取的所述飞行距离参数包括:在检测到所述飞行器起飞后计算得到的已飞行的航线的长度信息,所述飞行距离参数满足所述控制条件中包括的距离需求是指:所述计算得到的长度信息与所述控制条件中包括的长度信息相关。
或者,获取的所述飞行距离参数包括:在检测到所述飞行器起飞后计算得到的飞行高度信息,所述飞行距离参数满足所述控制条件中包括的距离需求是指:所述计算得到飞行高度信息与所述控制条件中包括的高度信息相关。
具体的,本发明实施例还提供了一种计算机存储介质,该计算机存储介质中存储有程序指令,所述程序执行时包括如图3所对应实施例的方法。
本发明实施例能够根据飞行器的飞行参数和基于用户需求配置的控制条件,对挂载在所述飞行器上的摄像机、喷洒装置等作业模块进行工作控制,可以实现定时、定距等自动控制,满足了用户对摄影、喷洒等作业的自动化、智能化需求。并且可以根据用户需要,仅对航线上的部分或者全部航段执行作业模块的功能控制操作,使得基于飞行器的作业控制更加智能化。
下面再对本发明实施例的一种基于飞行器的功能控制装置进行详细描述。
请参见图4,是本发明实施例的一种基于飞行器的功能控制装置的结构示意图,本发明实施例的所述装置可以应用在飞行器或者智能终端中,具体的,所述装置包括如下模块。
获取模块401,用于获取飞行器在飞行过程中的飞行参数,所述飞行参数为选定的用于控制设置在所述飞行器上的作业模块进行工作的参数,所述飞行参数包括飞行时间参数和/或飞行距离参数;处理模块402,用于根据预设的控制条件对所述飞行参数进行分析;若分析结果为所述飞行参数符合控制条件,则控制所述作业模块工作;其中,所述飞行参数符合控制条件包括:飞行时间参数满足所述控制条件中包括的时间需求,和/或飞行距离参数满足所述控制条件中包括的距离需求。
进一步可选地,本发明实施例的所述装置还可包括:检测模块403,用于在所述飞行器接收到预设飞行航线后,检测所述飞行器是否开始执行所述预设的飞行航线中被选中的目标航段;若检测结果为是,则通知所述获取模块401。
进一步可选地,本发明实施例的所述装置还可以包括:配置模块404,用于接收配置的控制参数;所述控制参数包括:用于调节所述作业模块在工作过程中的作业角度、作业时长参数、以及作业模块参数中的任意一种或多种。
进一步可选地,获取的所述飞行时间参数包括:在检测到所述飞行器起飞后开始计时得到的飞行时长值,所述飞行时间参数满足所述控制条件中包括的时间需求是指:飞行时长值与所述控制条件中配置的时长值相关。
进一步可选地,获取的所述飞行时间参数包括:在所述飞行器起飞后计算得到的时间间隔值,所述飞行时间参数满足所述控制条件中包括的时间需求是指:时间间隔值与所述控制条件中配置的间隔值相关。
进一步可选地,获取的所述飞行距离参数包括:在检测到所述飞行器起飞后计算得到的已飞行的航线的长度信息,所述飞行距离参数满足所述控制条件中包括的距离需求是指:所述计算得到的长度信息与所述控制条件中包括的长度信息相关。
进一步可选地,获取的所述飞行距离参数包括:在检测到所述飞行器起飞后计算得到的飞行高度信息,所述飞行距离参数满足所述控制条件中包括的距离需求是指:所述计算得到飞行高度信息与所述控制条件中包括的高度信息相关。
进一步可选地,本发明实施例的所述装置还可以包括:作业配置模块405,用于获取测绘参数,所述测绘参数包括:飞行高度、或作业覆盖率;根据获取的测绘参数确定作业的时间需求和/或距离需求,并根据确定的时间需求和/或距离需求预设控制条件。
可以理解的是,本发明实施例中所述装置的各个模块的具体实现可参考图1至图3所对应实施例中相关内容的具体描述,再在此不赘述。
本发明实施例能够根据飞行器的飞行参数和基于用户需求配置的控制条件,对挂载在所述飞行器上的摄像机、喷洒装置等作业模块进行工作控制,可以实现定时、定距等自动控制,满足了用户对摄影、喷洒等作业的自动化、智能化需求。并且可以根据用户需要,仅对航线上的部分或者全部航段执行作业模块的功能控制操作,使得基于飞行器的作业控制更加智能化。
再请参见图5,是本发明实施例一种飞行器的结构示意图,本发明实施例的所述飞行器包括旋翼、供电电源、起落架等部件,进一步地,在本发明实施例中,所述飞行器还包括:通信接口501、控制器502以及存储器503。所述通信接口501、控制器502以及存储器503之间数据相连。
所述通信接口501与地面端的遥控器相连,用于接收来自地面端的数据,接收的这些数据可以包括:对飞行器的飞行控制指令,用户通过遥控器配置的各种参数,以及遥控器生成的各种控制条件、控制逻辑等。
所述存储器503可以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,简称RAM);存储器503也可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory)等;存储器503还可以包括上述种类的存储器的组合。
所述控制器502可以为一个中央处理器(central processing unit,简称CPU)。所述处理器还可以进一步包括硬件芯片。硬件芯片可以是专用集成电路(application-specific integrated circuit,简称ASIC),可编程逻辑器件(programmable logic device,简称PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,简称CPLD),现场可编程逻辑门阵列(field-programmable gate array,简称FPGA)等。
可选地,所述存储器503还用于存储程序指令。所述控制器502可以调用所述程序指令,实现如本申请图2和3实施例中所示的基于飞行器的功能控制方法。
具体的,所述控制器502调用所述存储器503中存储的程序指令,用于获取飞行器在飞行过程中的飞行参数,所述飞行参数为选定的用于控制设置在所述飞行器上的作业模块进行工作的参数,所述飞行参数包括飞行时间参数和/或飞行距离参数;根据预设的控制条件对所述飞行参数进行分析;若分析结果为所述飞行参数符合控制条件,则控制所述作业模块工作;其中,所述飞行参数符合控制条件包括:飞行时间参数满足所述控制条件中包括的时间需求,和/或飞行距离参数满足所述控制条件中包括的距离需求。
进一步可选地,所述控制器502,还用于在所述飞行器接收到预设的飞行航线后,检测所述飞行器是否开始执行所述预设的飞行航线中被选中的目标航段;若检测结果为是,则执行所述获取飞行器在飞行过程中的飞行参数。
进一步可选地,所述控制器502,还用于接收配置的控制参数;所述控制参数包括:用于调节所述作业模块在工作过程中的作业角度、作业时长参数、以及作业模块参数中的任意一种或多种。
进一步可选地,获取的所述飞行时间参数包括:在检测到所述飞行器起飞后开始计时得到的飞行时长值,所述飞行时间参数满足所述控制条件中包括的时间需求是指:飞行时长值与所述控制条件中配置的时长值相关。
进一步可选地,获取的所述飞行时间参数包括:在所述飞行器起飞后计算得到的时间间隔值,所述飞行时间参数满足所述控制条件中包括的时间需求是指:时间间隔值与所述控制条件中配置的间隔值相关。
进一步可选地,获取的所述飞行距离参数包括:在检测到所述飞行器起飞 后计算得到的已飞行的航线的长度信息,所述飞行距离参数满足所述控制条件中包括的距离需求是指:所述计算得到的长度信息与所述控制条件中包括的长度信息相关。
进一步可选地,获取的所述飞行距离参数包括:在检测到所述飞行器起飞后计算得到的飞行高度信息,所述飞行距离参数满足所述控制条件中包括的距离需求是指:所述计算得到飞行高度信息与所述控制条件中包括的高度信息相关。
进一步可选地,所述控制器502,还用于获取测绘参数,所述测绘参数包括:飞行高度、或作业覆盖率;根据获取的测绘参数确定作业的时间需求和/或距离需求,并根据确定的时间需求和/或距离需求预设控制条件。
本发明实施例中所述装置的控制器502的具体实现可参考图1至图3所对应实施例相关内容的具体描述,在此不赘述。
本发明实施例能够根据飞行器的飞行参数和基于用户需求配置的控制条件,对挂载在所述飞行器上的摄像机、喷洒装置等作业模块进行工作控制,可以实现定时、定距等自动控制,满足了用户对摄影、喷洒等作业的自动化、智能化需求。并且可以根据用户需要,仅对航线上的部分或者全部航段执行作业模块的功能控制操作,使得基于飞行器的作业控制更加智能化。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体RAM等。
以上所揭露的仅为本发明较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims (16)

  1. 一种基于飞行器的功能控制方法,其特征在于,包括:
    获取飞行器在飞行过程中的飞行参数,所述飞行参数为选定的用于控制设置在所述飞行器上的作业模块进行工作的参数,所述飞行参数包括飞行时间参数和/或飞行距离参数;
    根据预设的控制条件对所述飞行参数进行分析;
    若分析结果为所述飞行参数符合控制条件,则控制所述作业模块工作;
    其中,所述飞行参数符合控制条件包括:飞行时间参数满足所述控制条件中包括的时间需求,和/或飞行距离参数满足所述控制条件中包括的距离需求。
  2. 如权利要求1所述的方法,其特征在于,所述获取飞行器在飞行过程中的飞行参数之前,还包括:
    在所述飞行器接收到预设的飞行航线后,检测所述飞行器是否开始执行所述预设的飞行航线中被选中的目标航段;
    若检测结果为是,则执行所述获取飞行器在飞行过程中的飞行参数。
  3. 如权利要求1所述的方法,其特征在于,还包括:
    接收配置的控制参数;
    所述控制参数包括:用于调节所述作业模块在工作过程中的作业角度参数、作业时长参数、以及作业模块参数中的任意一种或多种。
  4. 如权利要求1-3任一项所述的方法,其特征在于,获取的所述飞行时间参数包括:在检测到所述飞行器起飞后开始计时得到的飞行时长值,所述飞行时间参数满足所述控制条件中包括的时间需求是指:飞行时长值与所述控制条件中配置的时长值相关。
  5. 如权利要求1-3任一项所述的方法,其特征在于,获取的所述飞行时间参数包括:在所述飞行器起飞后计算得到的时间间隔值,所述飞行时间参数满足所述控制条件中包括的时间需求是指:时间间隔值与所述控制条件中配置 的间隔值相关。
  6. 如权利要求1-3任一项所述的方法,其特征在于,获取的所述飞行距离参数包括:在检测到所述飞行器起飞后计算得到的已飞行的航线的长度信息,所述飞行距离参数满足所述控制条件中包括的距离需求是指:所述计算得到的长度信息与所述控制条件中包括的长度信息相关。
  7. 如权利要求1-3任一项所述的方法,其特征在于,获取的所述飞行距离参数包括:在检测到所述飞行器起飞后计算得到的飞行高度信息,所述飞行距离参数满足所述控制条件中包括的距离需求是指:所述计算得到飞行高度信息与所述控制条件中包括的高度信息相关。
  8. 如权利要求1-7任一项所述的方法,其特征在于,还包括:
    获取测绘参数,所述测绘参数包括:飞行高度、或作业覆盖率;
    根据获取的测绘参数确定作业的时间需求和/或距离需求,并根据确定的时间需求和/或距离需求预设控制条件。
  9. 一种基于飞行器的功能控制装置,其特征在于,包括:
    获取模块,用于获取飞行器在飞行过程中的飞行参数,所述飞行参数为选定的用于控制设置在所述飞行器上的作业模块进行工作的参数,所述飞行参数包括飞行时间参数和/或飞行距离参数;
    处理模块,用于根据预设的控制条件对所述飞行参数进行分析;若分析结果为所述飞行参数符合控制条件,则控制所述作业模块工作;其中,所述飞行参数符合控制条件包括:飞行时间参数满足所述控制条件中包括的时间需求,和/或飞行距离参数满足所述控制条件中包括的距离需求。
  10. 如权利要求9所述的装置,其特征在于,还包括:
    检测模块,用于在所述飞行器接收到预设的飞行航线后,检测所述飞行器是否开始执行所述预设的飞行航线中被选中的目标航段;若检测结果为是,则通知所述获取模块。
  11. 如权利要求9所述的装置,其特征在于,还包括:
    配置模块,用于接收配置的控制参数;所述控制参数包括:用于调节所述作业模块在工作过程中的作业角度、作业时长参数、以及作业模块参数中的任意一种或多种。
  12. 如权利要求9-11任一项所述的装置,其特征在于,获取的所述飞行时间参数包括:在检测到所述飞行器起飞后开始计时得到的飞行时长值,所述飞行时间参数满足所述控制条件中包括的时间需求是指:飞行时长值与所述控制条件中配置的时长值相关。
  13. 如权利要求9-11任一项所述的装置,其特征在于,获取的所述飞行时间参数包括:在所述飞行器起飞后计算得到的时间间隔值,所述飞行时间参数满足所述控制条件中包括的时间需求是指:时间间隔值与所述控制条件中配置的间隔值相关。
  14. 如权利要求9-11任一项所述的装置,其特征在于,获取的所述飞行距离参数包括:在检测到所述飞行器起飞后计算得到的已飞行的航线的长度信息,所述飞行距离参数满足所述控制条件中包括的距离需求是指:所述计算得到的长度信息与所述控制条件中包括的长度信息相关。
  15. 如权利要求9-11任一项所述的装置,其特征在于,获取的所述飞行距离参数包括:在检测到所述飞行器起飞后计算得到的飞行高度信息,所述飞行距离参数满足所述控制条件中包括的距离需求是指:所述计算得到飞行高度信息与所述控制条件中包括的高度信息相关。
  16. 如权利要求9-15任一项所述的装置,其特征在于,还包括:
    作业配置模块,用于获取测绘参数,所述测绘参数包括:飞行高度、或作业覆盖率;根据获取的测绘参数确定作业的时间需求和/或距离需求,并根据确定的时间需求和/或距离需求预设控制条件。
PCT/CN2016/099724 2016-09-22 2016-09-22 一种基于飞行器的功能控制方法及装置 WO2018053754A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202110545522.XA CN113148163A (zh) 2016-09-22 2016-09-22 一种基于飞行器的功能控制方法及装置
CN201680013426.8A CN107624096B (zh) 2016-09-22 2016-09-22 一种基于飞行器的功能控制方法及装置
PCT/CN2016/099724 WO2018053754A1 (zh) 2016-09-22 2016-09-22 一种基于飞行器的功能控制方法及装置
US16/356,839 US11034450B2 (en) 2016-09-22 2019-03-18 Aircraft-based function control method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/099724 WO2018053754A1 (zh) 2016-09-22 2016-09-22 一种基于飞行器的功能控制方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/356,839 Continuation US11034450B2 (en) 2016-09-22 2019-03-18 Aircraft-based function control method and device

Publications (1)

Publication Number Publication Date
WO2018053754A1 true WO2018053754A1 (zh) 2018-03-29

Family

ID=61087967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/099724 WO2018053754A1 (zh) 2016-09-22 2016-09-22 一种基于飞行器的功能控制方法及装置

Country Status (3)

Country Link
US (1) US11034450B2 (zh)
CN (2) CN113148163A (zh)
WO (1) WO2018053754A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110069073A (zh) * 2018-11-30 2019-07-30 广州极飞科技有限公司 作业控制方法、装置及植保系统
CN112124637B (zh) * 2020-08-31 2022-05-31 上海宇航系统工程研究所 一种半主动旋翼式再入返回装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130162822A1 (en) * 2011-12-27 2013-06-27 Hon Hai Precision Industry Co., Ltd. Computing device and method for controlling unmanned aerial vehicle to capture images
CN104301614A (zh) * 2014-10-17 2015-01-21 北京智谷睿拓技术服务有限公司 运动摄影过程中拍摄的方法和装置
CN105182992A (zh) * 2015-06-30 2015-12-23 深圳一电科技有限公司 无人机的控制方法、装置
CN105487551A (zh) * 2016-01-07 2016-04-13 谭圆圆 一种基于无人机的喷剂喷洒控制方法和控制装置
CN105606073A (zh) * 2016-01-11 2016-05-25 谭圆圆 无人飞行器处理系统及其飞行状态数据处理方法
US20160232794A1 (en) * 2015-02-07 2016-08-11 Usman Hafeez System and method for placement of sensors through use of unmanned aerial vehicles
CN105867416A (zh) * 2016-04-20 2016-08-17 北京博瑞爱飞科技发展有限公司 无人机的飞行控制方法、装置和无人机
CN205507548U (zh) * 2016-01-20 2016-08-24 谭圆圆 一种无人飞行器的控制设备
CN105905302A (zh) * 2016-06-02 2016-08-31 中国农业大学 一种植保无人机智能施药系统及控制方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103455036B (zh) * 2012-06-05 2018-04-27 国家电网公司 一种场景空中巡视方法和飞行器
JP6431395B2 (ja) * 2015-02-07 2018-11-28 ヤンマー株式会社 空中散布装置
CN104670496B (zh) * 2015-03-11 2016-08-17 西南大学 一种六轴式农药喷雾飞行装置及控制方法
CN105120136A (zh) * 2015-09-01 2015-12-02 杨珊珊 基于无人飞行器的拍摄装置及其拍摄处理方法
CN105366059A (zh) * 2015-12-09 2016-03-02 深圳飞马机器人科技有限公司 一种固定翼无人机的定点伞降方法
CN205455559U (zh) * 2016-01-29 2016-08-17 广东飞翔达科技有限公司 一种自动喷洒式农业无人机

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130162822A1 (en) * 2011-12-27 2013-06-27 Hon Hai Precision Industry Co., Ltd. Computing device and method for controlling unmanned aerial vehicle to capture images
CN104301614A (zh) * 2014-10-17 2015-01-21 北京智谷睿拓技术服务有限公司 运动摄影过程中拍摄的方法和装置
US20160232794A1 (en) * 2015-02-07 2016-08-11 Usman Hafeez System and method for placement of sensors through use of unmanned aerial vehicles
CN105182992A (zh) * 2015-06-30 2015-12-23 深圳一电科技有限公司 无人机的控制方法、装置
CN105487551A (zh) * 2016-01-07 2016-04-13 谭圆圆 一种基于无人机的喷剂喷洒控制方法和控制装置
CN105606073A (zh) * 2016-01-11 2016-05-25 谭圆圆 无人飞行器处理系统及其飞行状态数据处理方法
CN205507548U (zh) * 2016-01-20 2016-08-24 谭圆圆 一种无人飞行器的控制设备
CN105867416A (zh) * 2016-04-20 2016-08-17 北京博瑞爱飞科技发展有限公司 无人机的飞行控制方法、装置和无人机
CN105905302A (zh) * 2016-06-02 2016-08-31 中国农业大学 一种植保无人机智能施药系统及控制方法

Also Published As

Publication number Publication date
CN107624096B (zh) 2021-06-08
CN113148163A (zh) 2021-07-23
CN107624096A (zh) 2018-01-23
US11034450B2 (en) 2021-06-15
US20190212756A1 (en) 2019-07-11

Similar Documents

Publication Publication Date Title
US11776413B2 (en) Aerial vehicle flight control method and device thereof
US10126126B2 (en) Autonomous mission action alteration
US20230236611A1 (en) Unmanned Aerial Vehicle Sensor Activation and Correlation System
US9557738B2 (en) Return path configuration for remote controlled aerial vehicle
US11798426B2 (en) Autonomous mission action alteration
CN108496130B (zh) 飞行控制方法、设备、控制终端及其控制方法、无人机
EP4012529A1 (en) System and method for data recording and analysis
WO2021088683A1 (zh) 电池自放电周期调整方法及无人飞行器
KR102195787B1 (ko) 비행경로 일괄 편집 및 시간 동기화를 통한 군집 드론의 자율 비행 방법
US11034450B2 (en) Aircraft-based function control method and device
TWI587899B (zh) UAV system
WO2019140695A1 (zh) 控制飞行器飞行的方法及设备
JP2018182703A (ja) 災害時における情報伝達方法
KR20210064841A (ko) 지적 측량 드론 및 이를 이용한 지적 측량 방법
KR102219954B1 (ko) 드론 통합관제서버 및 이를 포함하는 통합관제시스템
US11785185B2 (en) Systems and methods for validating imagery collected via unmanned aerial vehicles
JP7319420B2 (ja) 処理システム、無人で飛行可能な航空機、及び粉塵状態推定方法
JP6832473B1 (ja) 処理システム、無人で飛行可能な航空機、及び粉塵状態推定方法
Acuna Using unmanned aerial vehicles for wireless localization in search and rescue
Han et al. Programmable multispectral imager development as light weight payload for low cost fixed wing unmanned aerial vehicles
JP2023076166A (ja) 探索装置、自律探索システム、監視装置、探索方法、およびプログラム
KR20230080729A (ko) 산림조사를 수행하기 위해 무인 비행체의 비행을 위한 경로를 결정하고 무인 비행체를 제어하는 방법 및 장치와, 대상지에 대한 정합 이미지 생성 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16916493

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16916493

Country of ref document: EP

Kind code of ref document: A1