WO2021088683A1 - 电池自放电周期调整方法及无人飞行器 - Google Patents

电池自放电周期调整方法及无人飞行器 Download PDF

Info

Publication number
WO2021088683A1
WO2021088683A1 PCT/CN2020/124058 CN2020124058W WO2021088683A1 WO 2021088683 A1 WO2021088683 A1 WO 2021088683A1 CN 2020124058 W CN2020124058 W CN 2020124058W WO 2021088683 A1 WO2021088683 A1 WO 2021088683A1
Authority
WO
WIPO (PCT)
Prior art keywords
indication information
information
high temperature
self
unmanned aerial
Prior art date
Application number
PCT/CN2020/124058
Other languages
English (en)
French (fr)
Inventor
秦威
Original Assignee
深圳市道通智能航空技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通智能航空技术股份有限公司 filed Critical 深圳市道通智能航空技术股份有限公司
Publication of WO2021088683A1 publication Critical patent/WO2021088683A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/24Aircraft characterised by the type or position of power plants using steam or spring force
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4257Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/488Cells or batteries combined with indicating means for external visualization of the condition, e.g. by change of colour or of light density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/10Air crafts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4278Systems for data transfer from batteries, e.g. transfer of battery parameters to a controller, data transferred between battery controller and main controller
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the invention relates to the technical field of unmanned aerial vehicles, in particular to a method for adjusting the self-discharge period of batteries and an unmanned aerial vehicle.
  • Unmanned aerial vehicles With the continuous development of unmanned aerial vehicle aerial photography technology, more and more consumer-grade unmanned aerial vehicles are also being produced and developed. Unmanned aerial vehicles are gradually becoming more and more popular. There are many ways to control unmanned aerial vehicles, such as remote control, mobile phone, computer and other mobile terminals.
  • the discharge rate of the unmanned aerial vehicle batteries is generally higher.
  • a higher discharge rate also means a higher lithium ion concentration. Due to the more active chemical properties of lithium, a higher concentration of lithium batteries stored at high temperatures, high and low power for a long time will cause battery swelling and capacity degradation. , And even lead to safety accidents such as fire. Therefore, general battery manufacturers do not recommend that the battery be stored at a higher temperature or power.
  • the self-discharge cycle of the battery generally adopts a fixed cycle strategy, but this strategy lacks geographical considerations and cannot intelligently adjust the self-discharge cycle. As a result, it is impossible to effectively avoid damage to the battery caused by the change of geographic location.
  • embodiments of the present invention provide a method for adjusting the battery self-discharge cycle and the unmanned aerial vehicle that simplify the shutdown process of the unmanned aerial vehicle and improve the user experience.
  • the self-discharge period of the battery module is adjusted.
  • the generating temperature indication information according to the geographic location information includes:
  • the generated temperature indication information is high temperature indication information
  • the generated temperature indication information is normal indication information.
  • the adjusting the self-discharge period of the battery module according to the temperature indication information includes:
  • the generated temperature indication information is the high temperature indication information, acquiring high temperature data information within a preset historical time period of the battery module;
  • the self-discharge period of the battery module is adjusted.
  • the adjusting the self-discharge period of the battery module according to the high temperature data information includes:
  • the method further includes:
  • the battery module is in communication connection with the unmanned aerial vehicle
  • the method further includes:
  • the high temperature indication information is sent to the battery module, so that when the battery module receives the high temperature indication information, the high temperature accumulation information corresponding to the historical time period is obtained.
  • the method further includes:
  • the high temperature warning information is sent to the remote control device to warn the user to pay attention to the storage and use specifications.
  • a battery self-discharge cycle adjustment device includes: a geographic location information acquisition module for acquiring geographic location information of the unmanned aerial vehicle;
  • a temperature indication information generating module configured to generate temperature indication information according to the geographic location information
  • the self-discharge period adjustment module is configured to adjust the self-discharge period of the battery module according to the temperature indication information.
  • the warning module is used to generate high temperature warning information and send the high temperature warning information to a remote control device to warn the user to pay attention to storage and usage specifications.
  • an unmanned aerial vehicle includes:
  • An arm connected to the fuselage
  • the power device is arranged on the arm and is used to provide power for the unmanned aerial vehicle to fly;
  • the group can be used to perform the battery self-discharge cycle adjustment method as described above.
  • the method for providing battery self-discharge cycle adjustment can first obtain the geographic location information of the unmanned aerial vehicle, and then generate temperature indication information based on the geographic location information, and then adjust the battery according to the temperature indication information.
  • the self-discharge cycle of the module is to realize the adjustment of the self-discharge cycle of the battery module of the UAV in combination with the geographical location information, effectively avoiding the damage to the battery caused by the change of the geographical location information.
  • FIG. 1 is a schematic diagram of an application environment of an embodiment of the present invention
  • FIG. 2 is a schematic flowchart of a method for adjusting a battery self-discharge period according to one embodiment of the present invention
  • Fig. 3 is a schematic diagram of the flow of S20 in Fig. 2;
  • Fig. 4 is a schematic diagram of the flow of S30 in Fig. 2;
  • FIG. 5 is a schematic flowchart of one embodiment of S32 in FIG. 4;
  • FIG. 6 is a schematic flowchart of another embodiment of S32 in FIG. 4;
  • FIG. 7 is a schematic flowchart of a method for adjusting a battery self-discharge period according to another embodiment of the present invention.
  • FIG. 8 is a structural block diagram of a battery self-discharge cycle adjustment device provided by one of the embodiments of the present invention.
  • Fig. 9 is a structural block diagram of an unmanned aerial vehicle provided by one of the embodiments of the present invention.
  • the discharge rate of the drone battery is generally higher.
  • a higher discharge rate also means a higher lithium ion concentration. Due to the more active chemical properties of lithium, a higher concentration of lithium batteries stored at high temperatures, high and low power for a long time will cause battery swelling and capacity degradation. , And even lead to safety accidents such as fire.
  • the embodiments of the present invention provide a battery self-discharge cycle adjustment method and an unmanned aerial vehicle.
  • the battery self-discharge cycle adjustment method applied to the unmanned aerial vehicle first obtains the geographic location information of the unmanned aerial vehicle, and then according to the geographic location.
  • the following examples illustrate the application environment of the battery self-discharge cycle adjustment method.
  • FIG. 1 is a schematic diagram of an application environment of an aircraft-free control method provided by an embodiment of the present invention; as shown in FIG. 1, the application scenario includes an unmanned aerial vehicle 10, an infrared wireless network 20, a remote control device 30 and a user 40.
  • the user 40 can use the remote control device 30 to control the UAV 10 through the infrared wireless network.
  • the unmanned aerial vehicle 10 may be an unmanned aerial vehicle driven by any type of power, including but not limited to a rotary-wing unmanned aerial vehicle, a fixed-wing unmanned aerial vehicle, an umbrella-wing unmanned aerial vehicle, a flapping-wing unmanned aerial vehicle, and a helicopter model.
  • the unmanned aerial vehicle 10 may have a corresponding volume or power according to actual needs, so as to provide load capacity, flight speed, and flight range that can meet the needs of use.
  • One or more functional modules may be added to the unmanned aerial vehicle 10 to enable the unmanned aerial vehicle 10 to realize corresponding functions.
  • the UAV 10 is provided with a battery module, a positioning device, and an infrared emitting device.
  • the battery module can provide power for the UAV 10.
  • the battery module includes a voltage conversion module, a voltage detection module, a current detection module, a temperature detection module, an IO input and output module, a CPU control module, a communication module, a power display module, and an interface circuit.
  • the voltage conversion module realizes the conversion of the battery input voltage into the 5V and 3.3V voltages required by the board; the voltage detection module uses a balanced plug to connect to the battery to realize the measurement of the single voltage value and the total voltage value; the battery power output line
  • the current detection module can be connected to convert the collected current value into a voltage value and send it to the CPU interface for AD collection; the temperature detection module can realize temperature collection by connecting 1 to 8 platinum resistance sensors; the communication module is used for
  • the connection between the board and peripherals can support CAN, RS232, and RS485 interfaces.
  • the CPU control module is connected with the voltage detection module, the current detection module and the temperature detection module through the interface circuit to realize the collection of voltage, current, and temperature.
  • the positioning device may be a GPS positioning system or a Beidou satellite navigation system, or other positioning systems, which are not limited here, and the positioning device is used to obtain real-time geographic location information of the unmanned aerial vehicle.
  • the infrared emission device is used to send infrared access information and receive infrared control instructions issued by the remote control device. For example, when the remote control device issues an infrared control instruction, the infrared emission device receives the infrared control instruction, and then makes The unmanned aerial vehicle 10 controls the activation state of the unmanned aerial vehicle 10 according to the infrared control command. After the battery module is connected to the UAV 10, the infrared emitting device can send the infrared access information obtained from the access information of the battery module to the remote control device 30.
  • the unmanned aerial vehicle 10 includes at least one flight control module, which serves as the control core for the flight and data transmission of the unmanned aerial vehicle 10, and has the ability to monitor, calculate, and manipulate the flight and mission of the unmanned aerial vehicle.
  • the flight control module can also modulate the binary digital signal into an infrared signal in the form of a corresponding light pulse or demodulate the infrared signal in the form of an optical pulse into a binary digital signal.
  • the remote control device 30 may be any type of smart device used to establish a communication connection with the UAV 10, such as a mobile phone, a tablet computer, a notebook computer, or other mobile control terminals.
  • the remote control device 30 is equipped with an infrared receiving device for receiving infrared access information and sending infrared control instructions for controlling the unmanned aerial vehicle.
  • the remote control device 30 may be used to receive infrared access information generated by the UAV 10 when the battery module is normally connected to the UAV.
  • the remote control device 30 can send infrared control instructions generated according to the control instructions of the user 40 to the UAV 10 to control the activation state of the UAV 10.
  • the remote control device 30 can also be equipped with an image transmission module for controlling positioning images, pan-tilt shooting images, and aiming images return.
  • the image transmission module can also modulate a binary digital signal into an infrared signal in the form of a corresponding optical pulse or demodulate the infrared signal in the form of an optical pulse into a binary digital signal.
  • the remote control device 30 may also be equipped with one or more different user 40 interaction devices to collect instructions from the user 40 or display and feedback information to the user 40.
  • buttons, display screens, touch screens, speakers, and remote control joysticks are examples of interactive devices.
  • the remote control device 30 may be equipped with a touch screen, through which the user 40 receives remote control instructions for the UAV 10.
  • the unmanned aerial vehicle 10 and the remote control device 30 can also be integrated with the existing image visual processing technology to further provide more intelligent services.
  • the unmanned aerial vehicle 10 may use a dual-lens camera to collect images, and the remote control device 30 may analyze the images, so as to realize the gesture control of the unmanned aerial vehicle 10 by the user 40.
  • FIG. 2 is an embodiment of a method for adjusting a battery self-discharge period according to an embodiment of the present invention. This method can be performed by the unmanned aerial vehicle in FIG. 1.
  • the method may include but is not limited to the following steps:
  • the UAV is provided with a battery module, and the battery module is the power source of the UAV 10.
  • the battery module is normally connected to the UAV 10, the battery module The UAV 10 can be powered normally.
  • a precise positioning system is provided to obtain the geographic location information.
  • the precise positioning system includes: a GPS positioning system, an INS positioning system, and a central processing unit; the GPS positioning system includes a ground reference station and Airborne GPS receiver; ground reference station includes the first dual-frequency GPS antenna, GPS reference component, ground control station and data link UHF transmitting antenna.
  • the principle is that the ground reference station is placed at a known location on the ground, and the ground control station controls the GPS
  • the reference component simultaneously collects two carrier phase observations (observing the GPS data of the satellite) through the dual-frequency GPS antenna, then modulates it to the carrier of the data link UHF transmitting antenna, and then transmits it through the data link UHF transmitting antenna (sent to the data link) UHF receiver).
  • the airborne GPS receiver includes a second dual-frequency GPS antenna, a dual-frequency GPS receiver, a data link UHF receiving antenna, a data link UHF receiver, and a GPS positioning processor.
  • the principle is that the dual-frequency GPS receiver simultaneously observes the GPS satellites through the second dual-frequency GPS antenna, and collects the position carrier phase observations including the flight path of the unmanned aerial vehicle.
  • the data link UHF receiver receives the airborne UHF.
  • the antenna receives the signal transmitted by the UHF transmitting antenna of the ground reference station data link, and demodulates it to obtain the reference carrier phase observations containing the position information of the ground reference station.
  • the data link completes the data link UHF transmitting antenna of the ground reference station and the UHF transmitting antenna.
  • the GPS positioning processor uses OTF (on the flying, solving the ambiguity in motion) technology, through the carrier phase observation of the position information of the ground reference station and the position carrier phase observation of the UAV flight path of the dual-frequency receiver To solve the ambiguity of the whole week, the 3D position data with centimeter-level positioning accuracy is finally obtained.
  • the INS positioning system obtains the initial position data through the flight management system, and the INS component calculates the 3D position data of the current UAV position based on the initial position data, gyroscope and acceleration sensor information.
  • the central processing unit continuously extracts the position information parameters obtained by the GPS positioning system and the INS positioning system, performs data fusion processing on these parameters, and finally obtains the 3D position data of the current position, and transmits the fused position data to the flight management system for storage records , To revise the INS positioning system at regular intervals to synchronize the INS and GPS data.
  • the central processor uses the position data obtained by the INS positioning system as the final three-dimensional coordinate data, and does not perform fusion processing on the position information parameters of GPS and INS; otherwise, it uses INS
  • the three-dimensional coordinate data of the unmanned aerial vehicle after the fusion of the positioning system and the GPS positioning system is used as the final three-dimensional coordinate data of the unmanned aerial vehicle, and the three-dimensional coordinate data is the geographic location information.
  • the temperature indication information includes high temperature indication information and normal indication information
  • the temperature indication information can be generated by determining whether the geographic location information is located in a high-temperature latitude and longitude area.
  • the generated temperature indication information is high temperature indication information.
  • the generated temperature indication information is normal indication information.
  • the high-temperature latitude and longitude regions can be divided according to actual needs. It can be understood that countries or regions with lower latitudes have higher environmental temperatures, and countries or regions with higher latitudes have lower environmental temperatures. countries or regions are regarded as high temperature latitude and longitude regions.
  • the current self-discharge period of the battery module is adjusted to a preset high-temperature self-discharge period.
  • the generated temperature indication information is the normal indication information, the current self-discharge period is maintained unchanged.
  • the embodiment of the present invention provides a method for adjusting the battery self-discharge cycle.
  • the method first obtains the geographic location information of the unmanned aerial vehicle, and then generates temperature indication information according to the geographic location information, and then adjusts the battery module according to the temperature indication information.
  • the self-discharge cycle of the UAV can be adjusted in combination with the geographical location information to adjust the self-discharge cycle of the battery module of the UAV, effectively avoiding the damage to the battery caused by the change of the geographical location information.
  • S20 includes the following steps:
  • S21 Determine whether the geographic location information is located in a high-temperature latitude and longitude area.
  • the geographic location information can be acquired through the Global Positioning System (GPS), and can also be acquired through the above-mentioned precise positioning system, and the geographic position information is the three-dimensional coordinate data acquired by the global positioning system or the above-mentioned precise positioning system.
  • GPS Global Positioning System
  • a country or region with a relatively low latitude can be used as the high-temperature latitude and longitude area by itself according to actual conditions.
  • the generated temperature indication information is high temperature indication information.
  • the generated temperature indication information is high temperature indication information.
  • the generated temperature indication information is normal indication information.
  • the generated temperature indication information is normal indication information.
  • the UAV is further provided with a storage device, and the storage device stores the generated high temperature indication information or the normal indication information.
  • the storage device may be flash memory, hard disk memory, micro multimedia card memory, card memory (for example, SD or XD memory), random access memory (RAM), static random access memory (SRAM), Readable memory (ROM), electrically erasable programmable read-only memory (EEPROM), programmable read-only memory (PROM), magnetic memory, magnetic disks and optical disks.
  • flash memory for example, SD or XD memory
  • card memory for example, SD or XD memory
  • RAM random access memory
  • SRAM static random access memory
  • ROM Readable memory
  • EEPROM electrically erasable programmable read-only memory
  • PROM programmable read-only memory
  • magnetic memory magnetic disks and optical disks.
  • S30 includes the following steps:
  • the preset historical time period is a period of time in the past, which can be set according to actual needs.
  • the preset historical time period may be set to the past week, the past two weeks, the past 30 days, and so on.
  • the high temperature data information includes temperature data corresponding to each time point.
  • the generated temperature indication information is the high temperature indication information
  • S32 Adjust the self-discharge period of the battery module according to the high temperature data information.
  • the high temperature data information first obtain the high temperature cumulative time in the preset historical time period, and then determine whether the high temperature cumulative time is greater than the preset time threshold; if so, adjust the current self-discharge period to the preset High temperature self-discharge cycle. If not, the current self-discharge period is maintained unchanged, so as to realize the adjustment of the self-discharge period of the battery module according to the high temperature data information.
  • S32 further includes the following steps:
  • S321 Obtain the accumulated high temperature time in the preset historical time period according to the high temperature data information.
  • the high temperature data information includes temperature data corresponding to each time point, and then the accumulated high temperature time in the preset historical time period is obtained by statistics.
  • the multiple temperature data in the high temperature data information are sequentially compared with the preset high temperature number. If the adjacent temperature data are all greater than the preset high temperature number, the time length corresponding to the adjacent temperature data will be calculated. Adding the lengths of time to obtain the accumulated high temperature time.
  • the temperature data corresponding to time point T1 is 75°C
  • the temperature data corresponding to time point T2 is 85°C
  • the temperature data corresponding to time point T3 is 95°C
  • the temperature data corresponding to time point T4 is 105°C
  • the temperature data corresponding to time point T5 is 105°C.
  • the temperature data corresponding to the time point T6 is 120°C
  • the temperature data corresponding to the time point T7 is 90°C. If the preset high temperature number is 90°C, set the time point T1, time point T2, time point T3, time point T4, The temperature data corresponding to time point T5, time point T6, and time point T7 are compared with the preset high temperature number 90°C.
  • S322 Determine whether the accumulated high temperature time is greater than a preset time threshold.
  • the calculated high temperature accumulated time T is compared with a preset time threshold, and then it is judged whether the high temperature accumulated time is greater than the preset time threshold.
  • the battery module of the UAV is provided with a discharging module
  • the discharging module may be a power consumption circuit composed of a power resistor or a power transistor, etc.
  • the discharge module adjusts the current self-discharge period to a preset high-temperature self-discharge period, wherein the preset high-temperature self-discharge period is less than the current self-discharge period,
  • the current self-discharge cycle is once a week.
  • the preset high temperature self-discharge cycle is shortened to once every two days or once every three days.
  • the method described before S321 further includes the following steps:
  • S325 Determine whether the ambient temperature information exceeds preset temperature information.
  • the method further includes the following steps:
  • the generated temperature indication information is high temperature indication information
  • the high temperature accumulation information corresponding to the segment After the generated temperature indication information is high temperature indication information, send the high temperature indication information to the battery module so that the battery module obtains the historical time when receiving the high temperature indication information
  • the high temperature accumulation information corresponding to the segment After the generated temperature indication information is high temperature indication information, send the high temperature indication information to the battery module so that the battery module obtains the historical time when receiving the high temperature indication information
  • the high temperature accumulation information corresponding to the segment is high temperature indication information
  • the battery module is communicatively connected with the unmanned aerial vehicle.
  • the communication connection may be a wireless communication network used to establish a data transmission channel between two nodes based on any type of data transmission principle, such as a Bluetooth network, a WiFi network, a wireless cellular network, or a combination thereof located in different signal frequency bands.
  • the battery module includes a microprocessor and a discharging device. After receiving the high temperature indication information, the microprocessor acquires the high temperature accumulation information corresponding to the historical time period. The discharging device can adjust the self-discharge period of the battery module according to the temperature indication information.
  • the method further includes the following steps:
  • the temperature indication information is high temperature indication information
  • it indicates that the UAV is in a high-temperature latitude and longitude area, and thus high-temperature warning information is generated and sent to the remote control device to warn the user to pay attention to the storage and use specifications.
  • the high temperature warning information may be "The current geographic environment is not suitable for frequent use of UAVs, please control the number of uses" or "The current geographic environment changes. After the UAVs are used, store them in a cool place", etc. .
  • the embodiments of the present application provide a battery self-discharge cycle adjustment device 70, which is applied to an unmanned aerial vehicle.
  • the battery self-discharge cycle adjustment device 70 includes a geographic location information acquisition module 71, a temperature indication information generation module 72, and a self-discharge cycle adjustment module 73.
  • the geographic location information obtaining module 71 is used to obtain geographic location information of the unmanned aerial vehicle.
  • the temperature indication information generating module 72 is configured to generate temperature indication information according to the geographic location information.
  • the self-discharge period adjustment module 73 is configured to adjust the self-discharge period of the battery module according to the temperature indication information.
  • the information adjusts the self-discharge cycle of the battery module of the UAV, effectively avoiding the damage to the battery caused by the change of geographic location information.
  • the battery self-discharge cycle adjustment device further includes the warning module 74.
  • the warning module 74 is used to generate high temperature warning information and send the high temperature warning information to the remote control device to warn the user to pay attention to the storage and use specifications.
  • FIG. 9 is a schematic structural diagram of an unmanned aerial vehicle 10 provided by an embodiment of the present application.
  • the unmanned aerial vehicle 10 may be any type of unmanned vehicle and can perform the battery self-discharge cycle adjustment method provided in the above-mentioned corresponding method embodiment. , Or, run the battery self-discharge cycle adjustment device 70 provided by the above-mentioned corresponding device embodiment.
  • the unmanned aerial vehicle includes: a fuselage, an arm, a power unit, an infrared transmitting device, a flight control module 110, a memory 120, and a communication module 130.
  • the arm is connected to the fuselage;
  • the power device is provided on the arm for providing flight power to the unmanned aerial vehicle;
  • the infrared emitting device is provided in the fuselage for Send infrared access information and receive infrared control instructions from the remote control device;
  • the flight control module has the ability to monitor, calculate and manipulate the flight and mission of the unmanned aerial vehicle, and includes a set of equipment for controlling the launch and recovery of the unmanned aerial vehicle.
  • the flight control module can also modulate the binary digital signal into an infrared signal in the form of a corresponding light pulse or demodulate the infrared signal in the form of an optical pulse into a binary digital signal.
  • the flight control module 110, the memory 120, and the communication module 130 establish a communication connection between any two through a bus.
  • the flight control module 110 can be of any type and has one or more processing cores. It can perform single-threaded or multi-threaded operations, and is used to parse instructions to perform operations such as obtaining data, performing logical operation functions, and issuing operation processing results.
  • the memory 120 can be used to store non-transitory software programs, non-transitory computer-executable programs and modules, such as the program corresponding to the battery self-discharge cycle adjustment method in the embodiment of the present invention Instructions/modules (for example, the geographic location information acquisition module 71, the temperature indication information generation module 72, the self-discharge cycle adjustment module 73, and the warning module 74 shown in FIG. 8).
  • the flight control module 110 executes various functional applications and data processing of the battery self-discharge cycle adjustment device 70 by running the non-transient software programs, instructions, and modules stored in the memory 120, that is, the implementation of any of the foregoing method embodiments Battery self-discharge cycle adjustment method.
  • the memory 120 may include a storage program area and a storage data area.
  • the storage program area may store an operating system and an application program required by at least one function; the storage data area may store data created according to the use of the battery self-discharge cycle adjustment device 70 Wait.
  • the memory 120 may include a high-speed random access memory, and may also include a non-transitory memory, such as at least one magnetic disk storage device, a flash memory device, or other non-transitory solid-state storage devices.
  • the storage 120 may optionally include storage remotely provided with respect to the flight control module 110, and these remote storages may be connected to the UAV 10 via a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • the memory 120 stores instructions that can be executed by the at least one flight control module 110; the at least one flight control module 110 is used to execute the instructions to implement the battery self-discharge cycle adjustment in any of the foregoing method embodiments
  • the method for example, executes the method steps 10, 20, 30, etc. described above, to realize the functions of the modules 71-74 in FIG. 8.
  • the communication module 130 is a functional module used to establish a communication connection and provide a physical channel.
  • the communication module 130 may be any type of wireless or wired communication module 130, including but not limited to a WiFi module or a Bluetooth module.
  • the embodiment of the present invention also provides a non-transitory computer-readable storage medium, the non-transitory computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are controlled by one or more flight controllers.
  • the execution of the module 110 for example, executed by one of the flight control modules 110 in FIG. 9, can cause the one or more flight control modules 110 to execute the battery self-discharge cycle adjustment method in any of the above method embodiments, for example, execute the above The described method steps 10, 20, 30, etc. realize the functions of the modules 71-74 in FIG. 8.
  • the device embodiments described above are merely illustrative.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network units. Some or all of the modules can be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each implementation manner can be implemented by means of software plus a general hardware platform, and of course, it can also be implemented by hardware.
  • a person of ordinary skill in the art can understand that all or part of the processes in the methods of the foregoing embodiments can be implemented by instructing relevant hardware by a computer program in a computer program product.
  • the computer program can be stored in a non-transitory computer.
  • the computer program includes program instructions, and when the program instructions are executed by a related device, the related device can execute the flow of the foregoing method embodiments.
  • the storage medium may be a magnetic disk, an optical disc, a read-only memory (Read-Only Memory, ROM), or a random access memory (Random Access Memory, RAM), etc.
  • the above-mentioned products can implement the battery self-discharge cycle adjustment method provided by the embodiment of the present invention, and have the corresponding functional modules and beneficial effects for executing the battery self-discharge cycle adjustment method.
  • the battery self-discharge cycle adjustment method provided in the embodiment of the present invention.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Sustainable Energy (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Sustainable Development (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种电池自放电周期调整方法及无人飞行器(10),应用于无人飞行器(10)的电池自放电周期调整方法包括:首先获取无人飞行器(10)的地理位置信息(S10),然后根据地理位置信息,生成温度指示信息(S20),进而根据温度指示信息,调整电池模组的自放电周期(S30),以实现结合地理位置信息对无人飞行器的电池模组进行自放电周期的调节,有效避免了地理位置信息的变化对电池带来的损坏。

Description

电池自放电周期调整方法及无人飞行器
本申请要求于2019年11月07日提交中国专利局、申请号为201911082016.0、申请名称为“电池自放电周期调整方法及无人飞行器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
【技术领域】
本发明涉及无人飞行器技术领域,尤其涉及一种电池自放电周期调整方法及无人飞行器。
【背景技术】
随着无人飞行器航拍技术的不断发展,越来越多的消费级无人飞行器也正在生产研制。无人飞行器也逐步日趋普及。操控无人飞行器的方式很较多,比如通过遥控器、手机、电脑等移动终端操控。
目前无人飞行器领域由于对电池的动力要求较高,所以无人飞行器电池的放电倍率一般也较高。然而,较高的放电倍率也意味着较高的锂离子浓度,由于锂元素的化学性质比较活泼,较高浓度的锂电池在高温,高、低电量下长时间存储会导致电池鼓胀、容量衰减,甚至导致起火等安全事故。所以一般电池厂商都不建议电池以较高的温度或电量存储。然而一些纬度比较低的国家或地区在使用无人飞行器的时候,由于环境温度比较高,一般情况下很难让用户自己控制存储温度,但是电池却可以主动放电降低电池存储的电压,以避免高压存储而给电池带来损坏。
在实现本发明的过程中,发明人发现相关技术至少存在以下问题:目前针对电池的自放电周期一般采用固定周期的策略,但是该策略缺少对地理位置的考虑,无法智能的调节自放电周期,导致无法有效避免地理位置的变化对电池带来的损坏。
【发明内容】
为了解决上述技术问题,本发明实施例提供一种简化无人飞行器的关机过程,提高用户体验的电池自放电周期调整方法及无人飞行器。
为解决上述技术问题,本发明实施例提供以下技术方案:一种电池自放电周期调整方法,应用于无人飞行器,所述无人飞行器包括电池模组,所述方法包括:获取所述无人飞行器的地理位置信息;
根据所述地理位置信息,生成温度指示信息;
根据所述温度指示信息,调整所述电池模组的自放电周期。
可选地,所述根据所述地理位置信息,生成温度指示信息,包括:
判断所述地理位置信息是否位于高温经纬度区域;
若是,生成的所述温度指示信息为高温指示信息;
若否,生成的所述温度指示信息为正常指示信息。
可选地,所述根据所述温度指示信息,调整所述电池模组的自放电周期,包括:
当生成的所述温度指示信息为所述高温指示信息时,获取所述电池模组的预设历史时间段内的高温数据信息;
根据所述高温数据信息,调整所述电池模组的自放电周期。
可选地,所述根据所述高温数据信息,调整所述电池模组的自放电周期,包括:
根据所述高温数据信息,得到所述预设历史时间段内的高温累计时间;
判断所述高温累计时间是否大于预设时间阈值;
若是,将当前自放电周期调整至预设高温自放电周期。
可选地,所述生成的所述温度指示信息为高温指示信息之后,所述方法还包括:
获取所述无人飞行器的周围温度信息;
判断所述周围温度信息是否超过预设温度信息;
若是,则获取所述电池模组的预设历史时间段内的高温数据信息。
可选地,所述电池模组与所述无人飞行器通信连接;
所述生成的所述温度指示信息为高温指示信息之后,所述方法还包括:
将所述高温指示信息发送至所述电池模组,以使所述电池模组当接收到所述高温指示信息时,获取所述历史时间段对应的所述高温累计信息。
可选地,所述生成的所述温度指示信息为高温指示信息之后,所述方法还包括:
生成高温警示信息;
将所述高温警示信息发送至遥控装置,以警示用户注意存储和使用规范。
为解决上述技术问题,本发明实施例还提供以下技术方案:一种电池自放电周期调整装置。所述电池自放电周期调整装置包括:地理位置信息获取模块,用于获取所述无人飞行器的地理位置信息;
温度指示信息生成模块,用于根据所述地理位置信息,生成温度指示信息;
自放电周期调整模块,用于根据所述温度指示信息,调整所述电池模组的自放电周期。
可选地,所述警示模块用于生成高温警示信息并将所述高温警示信息发送至遥控装置,以警示用户注意存储和使用规范。
为解决上述技术问题,本发明实施例还提供以下技术方案:一种无人飞行器。所述无人飞行器包括:
机身;
机臂,与所述机身相连;
动力装置,设于所述机臂,用于给所述无人飞行器提供飞行的动力;
飞控模组;以及
与所述飞控模组通信连接的存储器;其中,所述存储器存储有可被所述飞控模组执行的指令,所述指令被所述飞控模组执行,以使所述飞控模组能够用于执行如上所述的电池自放电周期调整方法。
与现有技术相比较,本发明实施例的提供电池自放电周期调整方法可以通过首先获取无人飞行器的地理位置信息,然后根据地理位置信息,生成温度指示信息,进而根据温度指示信息,调整电池模组的自放电周期,以实现结合地理位置信息对无人飞行器的电池模组进行自放电周期的调节,有效避免了地理位置信息的变化对电池带来的损坏。
【附图说明】
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些 示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1为本发明实施例的应用环境示意图;
图2为本发明其中一实施例提供的电池自放电周期调整方法的流程示意图;
图3是图2中S20的流程示意图;
图4是图2中S30的流程示意图;
图5是图4中S32其中一实施例的流程示意图;
图6是图4中S32另一实施例的流程示意图;
图7是本发明另一实施例提供的电池自放电周期调整方法的流程示意图;
图8为本发明其中一实施例提供的电池自放电周期调整装置的结构框图;
图9为本发明其中一实施例提供的无人飞行器的结构框图。
【具体实施方式】
为了便于理解本发明,下面结合附图和具体实施例,对本发明进行更详细的说明。需要说明的是,当元件被表述“固定于”另一个元件,它可以直接在另一个元件上、或者其间可以存在一个或多个居中的元件。当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。本说明书所使用的术语“上”、“下”、“内”、“外”、“底部”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本说明书中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是用于限制本发明。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
此外,下面所描述的本发明不同实施例中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
目前无人机领域由于对电池的动力要求较高,所以无人机电池的放电倍率一般也较高。然而,较高的放电倍率也意味着较高的锂离子浓度,由于锂元素的化学性质比较活泼,较高浓度的锂电池在高温,高、低电量下长时间存储会导致电池鼓胀、容量衰减,甚至导致起火等安全事故。基于此本发明实施例提供了一种电池自放电周期调整方法及无人飞行器,其中,应用于无人飞行器的电池自放电周期调整方法通过首先获取无人飞行器的地理位置信息,然后根据地理位置信息,生成温度指示信息,进而根据温度指示信息,调整电池模组的自放电周期,以实现结合地理位置信息对无人飞行器的电池模组进行自放电周期的调节,有效避免了地理位置信息的变化对电池带来的损坏。
以下举例说明所述电池自放电周期调整方法的应用环境。
图1是本发明实施例提供的无飞行器的控制方法的应用环境的示意图;如图1所示,所述应用场景包括无人飞行器10、红外无线网路20、遥控装置30及用户40。用户40可利用遥控装置30通过所述红外无线网络控制无人飞行器10。
无人飞行器10可以是以任何类型的动力驱动的无人飞行载具,包括但不限于旋翼无人飞行器、固定翼无人飞行器、伞翼无人飞行器、扑翼无人飞行器以及直升机模型等。
该无人飞行器10可以根据实际情况的需要,具备相应的体积或者动力,从而提供能够满足使用需要的载重能力、飞行速度以及飞行续航里程等。无人飞行器10上还可以添加有一种或者多种功能模块,令无人飞行器10能够实现相应的功能。
例如,在本实施例中,该无人飞行器10设置有电池模组、定位装置及红外发射装置。
当所述电池模组接入所述无人飞行器10后,所述电池模组可为所述无人飞行器10提供电源。在本实施例中,所述电池模组包括电压转换模块、电压 检测模块、电流检测模块、温度检测模块、IO输入与输出模块、CPU控制模块、通讯模块、电量显示模块及接口电路。其中电压转换模块实现将电池输入电压转换为板卡所需要的5V和3.3V电压;电压检测模块采用均衡插头与电池连接,实现对单体电压值和总电压值得测量;将电池的电源输出线接入电流检测模块,可以实现将采集到的电流值转换为电压值,送入CPU接口进行AD采集;温度检测模块通过外接1~8路铂电阻传感器,可以实现温度的采集;通讯模块用于板卡和外设的连接,可以支持CAN、RS232、RS485接口。CPU控制模块通过接口电路与电压检测模块、电流检测模块温度检测模块进行连接,实现对电压、电流、温度的采集。
所述定位装置可为GPS定位系统或北斗卫星导航系统,也可为其他定位系统,在此不进行限制,所述定位装置用于获取无人飞行器的实时的地理位置信息。
所述红外发射装置用于发送红外接入信息并接收遥控装置发出的红外控制指令,例如,当所述遥控装置发出红外控制指令时,所述红外发射装置接收到所述红外控制指令,进而使所述无人飞行器10根据所述红外控制指令控制所述无人飞行器10的启动状态。当所述电池模组接入所述无人飞行器10后,所述红外发射装置可将根据由电池模组的接入信息得到的红外接入信息,发送至所述遥控装置30。
无人飞行器10上包含至少一个飞控模组,作为无人飞行器10飞行和数据传输等的控制核心,具有对无人飞行器飞行和任务进行监控、运算和操纵的能力,在本实施例中,所述飞控模组还可将二进制数字信号调制成相应的光脉冲的形式的红外信号或将光脉冲的形式红外信号解调为二进制数字信号。遥控装置30可以是任何类型,用以与无人飞行器10建立通信连接的智能装置,例如手机、平板电脑、笔记本电脑或者其他移动操控终端等。
该遥控装置30装配有红外接收装置,所述红外接收装置用于接收红外接入信息并发送用于控制无人飞行器的红外控制指令。例如,所述遥控装置30可用于接收所述无人飞行器10当所述电池模组正常接入所述无人飞行器时生成的红外接入信息。所述遥控装置30同时可根据用户40的控制指令生成的 红外控制指令发送至所述无人飞行器10,以控制所述无人飞行器10的启动状态。该遥控装置30还可以装配有用于控制定位画面、云台拍摄画面及瞄准画面回传的图传模组。在本实施例中,所述图传模组还可将二进制数字信号调制成相应的光脉冲的形式的红外信号或将光脉冲的形式红外信号解调为二进制数字信号。
该遥控装置30还可以装配有一种或者多种不同的用户40交互装置,用以采集用户40指令或者向用户40展示和反馈信息。
这些交互装置包括但不限于:按键、显示屏、触摸屏、扬声器以及遥控操作杆。例如,遥控装置30可以装配有触控显示屏,通过该触控显示屏接收用户40对无人飞行器10的遥控指令。
在一些实施例中,无人飞行器10与遥控装置30之间还可以融合现有的图像视觉处理技术,进一步的提供更智能化的服务。例如无人飞行器10可以通过双光相机采集图像的方式,由遥控装置30对图像进行解析,从而实现用户40对于无人飞行器10的手势控制。
图2为本发明实施例提供的一种电池自放电周期调整方法的实施例。该方法可以由图1中的无人飞行器执行。
具体地,请参阅图2,该方法可以包括但不限于如下步骤:
S10、获取所述无人飞行器的地理位置信息。
具体地,所述无人飞行器设置有电池模组,所述电池模组是无人飞行器10的动力来源,当所述电池模组正常接入所述无人飞行器10时,所述电池模组可为所述无人飞行器10正常供电。
具体地,在本实施例中,提供一种精确定位系统来获取所述地理位置信息,所述精确定位系统包括:GPS定位系统、INS定位系统以及中央处理器;GPS定位系统包括地面基准站以及机载GPS接收机;地面基准站包括第一双频GPS天线、GPS基准组件、地面控制站和数据链UHF发射天线,其原理是地面基准站置于地面一已知位置,地面控制站控制GPS基准组件通过双频GPS天线同时采集到两个载波相位观测量(观测卫星的GPS数据),然后调制 到数据链UHF发射天线的载波上,再通过数据链UHF发射天线发射出去(发给数据链UHF接收机)。机载GPS接收机包括第二双频GPS天线、双频GPS接收机、数据链UHF接收天线、数据链UHF接收机以及GPS定位处理器。其原理是双频GPS接收机通过第二双频GPS天线对GPS卫星分别同时进行观测,并分别采集包括无人飞行器飞行路径的位置载波相位观测量,同时数据链UHF接收机通过机载UHF接收天线接收由地面基准站数据链UHF发射天线发射的信号,解调得到包含地面基准站位置信息的基准载波相位观测量,数据链完成地面基准站的数据链UHF发射天线和无人飞行器上的的数据链UHF接收天线之间的数据传输。GPS定位处理器利用OTF(on the flying,运动中求解整周模糊度)技术,通过包括地面基准站位置信息的载波相位观测量和双频接收机的无人飞行器飞行路径的位置载波相位观测量来求解整周模糊度,最后得出厘米级定位精度的3维位置数据。INS定位系统通过飞行管理系统得到起始位置数据,INS组件根据起始位置数据、陀螺仪和加速度传感器信息计算得到当前无人飞行器位置的3维位置数据。中央处理器不断提取GPS定位系统和INS定位系统获取的位置信息参数,将这些参数进行数据融合处理,最终得到当前位置的3维位置数据,并将融合后的位置数据传输给飞行管理系统存储记录,以定时对INS定位系统进行修正,使INS和GPS的数据同步。当GPS定位系统接收到的卫星数量为4颗以下时,中央处理器采用INS定位系统得到的位置数据作为最终的三维坐标数据,而不对GPS和INS的位置信息参数进行融合处理;否则,采用INS定位系统与GPS定位系统融合后的无人飞行器的三维坐标数据作为最终的无人飞行器三维坐标数据,所述三维坐标数据即为所述地理位置信息。
S20、根据所述地理位置信息,生成温度指示信息。
其中,所述温度指示信息包括高温指示信息和正常指示信息
具体地,在获取到的所述地理位置信息后,可通过判断所述地理位置信息是否位于高温经纬度区域,以生成所述温度指示信息。
例如,当所述地理位置信息位于高温经纬度区域时,生成的温度指示信 息为高温指示信息。当所述地理位置信息未位于高温经纬度区域时,生成的温度指示信息为正常指示信息。
其中,所述高温经纬度区域可根据实际需要进行划分,可以理解的是,纬度比较低的国家或地区环境温度比较高,纬度比较高的国家或地区环境温度比较低,因此可将纬度比较低的国家或地区作为高温经纬度区域。
S30、根据所述温度指示信息,调整所述电池模组的自放电周期。
具体地,当生成的所述温度指示信息为所述高温指示信息时,将所述电池模组的当前自放电周期调整至预设高温自放电周期。当生成的所述温度指示信息为所述正常指示信息时,则维持当前的自放电周期不变。
本发明实施例提供了一种电池自放电周期调整方法,所述方法通过首先获取无人飞行器的地理位置信息,然后根据地理位置信息,生成温度指示信息,进而根据温度指示信息,调整电池模组的自放电周期,以实现结合地理位置信息对无人飞行器的电池模组进行自放电周期的调节,有效避免了地理位置信息的变化对电池带来的损坏。
为了更好的所述根据所述地理位置信息,生成温度指示信息,在一些实施例中,请参阅图3,S20包括如下步骤:
S21、判断所述地理位置信息是否位于高温经纬度区域。
其中,地理位置信息可通过全球定位系统(GPS)来获取,也可通过上述精确定位系统来获取,所述地理位置信息为全球定位系统或上述精确定位系统获取的三维坐标数据。
具体地,可根据实际情况,自行将纬度比较低的国家或地区作为所述高温经纬度区域。
S22、若是,生成的所述温度指示信息为高温指示信息。
具体地,若所述地理位置信息位于所述高温经纬度区域,则生成的所述温度指示信息为高温指示信息。
S23、若否,生成的所述温度指示信息为正常指示信息。
具体地,若所述地理位置信息未位于所述高温经纬度区域,则生成的所述温度指示信息为正常指示信息。
进一步地,所述无人飞行器还设置有存储装置,所述存储装置将生成的 所述高温指示信息或所述正常指示信息进行存储。
其中,所述所述存储装置可为闪存型存储器、硬盘型存储器、微型多媒体卡型存储器、卡式存储器(例如,SD或XD存储器)、随机存储器(RAM)、静态随机存储器(SRAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、可编程只读存储器(PROM)、磁存储器、磁盘和光盘。
为了更好的根据所述温度指示信息,调整所述电池模组的自放电周期,在一些实施例中,请参阅图4,S30包括如下步骤:
S31:当生成的所述温度指示信息为所述高温指示信息时,获取所述电池模组的预设历史时间段内的高温数据信息。
其中,所述预设历史时间段为过去的一段时间,可根据实际需要进行设置,例如,可将所述预设历史时间段设置为过去一周、过去两周或过去一个30天等等。
其中,所述高温数据信息包括每个时间点对应的温度数据。
具体地,当生成的所述温度指示信息为所述高温指示信息时,获取所述电池模组的过去一周、过去两周或过去一个30天内的每个时间点对应的温度数据。
S32:根据所述高温数据信息,调整所述电池模组的自放电周期。
具体地,根据所述高温数据信息,首先得到所述预设历史时间段内的高温累计时间,然后判断所述高温累计时间是否大于预设时间阈值;若是,将当前自放电周期调整至预设高温自放电周期。若否,则维持当前的自放电周期不变,以此实现根据所述高温数据信息,调整所述电池模组的自放电周期。
为了更好的根据所述高温数据信息,调整所述电池模组的自放电周期,在一些实施例中,请参阅图5,S32还包括如下步骤:
S321:根据所述高温数据信息,得到所述预设历史时间段内的高温累计时间。
具体地,所述高温数据信息包括每个时间点对应的温度数据,进而统计得到预设历史时间段内的高温累计时间。
具体地,将高温数据信息中的多个温度数据依次与预设高温度数作比较,若相邻的温度数据均大于所述预设高温度数,计算相邻的温度数据对应的时 间长度,将多个所述时间长度相加,则得到所述高温累计时间。
举例说明,时间点T1对应的温度数据75℃,时间点T2对应的温度数据85℃,时间点T3对应的温度数据95℃,时间点T4对应的温度数据105℃,时间点T5对应的温度数据115℃,时间点T6对应的温度数据120℃,时间点T7对应的温度数据90℃,若预设高温度数为90℃,分别将时间点T1、时间点T2、时间点T3、时间点T4、时间点T5、时间点T6及时间点T7对应的温度数据与预设高温度数90℃作比较,若相邻的温度数据均大于所述预设高温度数,计算相邻的温度数据对应的时间长度T4-T3、T5-T4、T6-T5及T7-T6,然后将多个时间长度相加得到所述高温累计时间T=(T4-T3)+(T5-T4)(T6-T5)+(T7-T6)。
S322:判断所述高温累计时间是否大于预设时间阈值。
具体地,将计算得到的所述高温累计时间T与预设时间阈值作比较,进而判读所述高温累计时间是否大于预设时间阈值。
S323:若是,将当前自放电周期调整至预设高温自放电周期。
具体地,所述无人飞行器的电池模组中设置有放电模块,所述放电模块,可以是功率电阻或功率三极管等组成的耗电电路,
具体地,若所述高温累计时间大于预设时间阈值,则所述放电模块将当前自放电周期调整至预设高温自放电周期,其中,所述预设高温自放电周期小于当前自放电周期,举例说明,当前自放电周期为一周放电一次。预设高温自放电周期缩短为两天一次或三天一次。
为了更好的根据所述高温数据信息,调整所述电池模组的自放电周期,在一些实施例中,请参阅图6,S321之前所述方法还包括如下步骤:
S324、获取所述无人飞行器的周围温度信息。
S325、判断所述周围温度信息是否超过预设温度信息。
S326、若是,则获取所述电池模组的预设历史时间段内的高温数据信息。
为了更好的根据所述高温数据信息,调整所述电池模组的自放电周期,在一些实施例中,所述方法还包括如下步骤:
在生成的所述温度指示信息为高温指示信息之后,将所述高温指示信息发送至所述电池模组,以使所述电池模组当接收到所述高温指示信息时,获 取所述历史时间段对应的所述高温累计信息。
具体地,所述电池模组与所述无人飞行器通信连接。所述通信连接可以是基于任何类型的数据传输原理,用于建立两个节点之间的数据传输信道的无线通信网络,例如位于不同信号频段的蓝牙网络、WiFi网络、无线蜂窝网络或者其结合。
所述电池模组包括微处理器和放电装置,所述微处理器接收到所述高温指示信息后,获取所述历史时间段对应的所述高温累计信息。所述放电装置可根据所述温度指示信息,调整所述电池模组的自放电周期。
为了更好的避免地理位置的变化对电池带来的损坏,在一些实施例中,请参阅图7,所述方法还包括如下步骤:
S40、在生成的所述温度指示信息为高温指示信息之后,生成高温警示信息。
S50、将所述高温警示信息发送至遥控装置,以警示用户注意存储和使用规范。
具体地,当所述温度指示信息为高温指示信息,则表明无人飞行器正处于高温经纬度地区,因而生成高温警示信息并将其发送至遥控装置,以警示用户注意存储和使用规范。例如,所述高温警示信息可为“当前地理环境不适合频繁使用无人飞行器,请控制使用次数”或“当前地理环境发生变化,当无人飞行器使用完毕后,放置于阴凉处存储”等等。
需要说明的是,在上述各个实施例中,上述各步骤之间并不必然存在一定的先后顺序,本领域普通技术人员,根据本申请实施例的描述可以理解,不同实施例中,上述各步骤可以有不同的执行顺序,亦即,可以并行执行,亦可以交换执行等等。
作为本申请实施例的另一方面,本申请实施例提供一种电池自放电周期调整装置70,所述电池自放电周期调整装置应用于无人飞行器。请参阅图8,该电池自放电周期调整装置70包括:地理位置信息获取模块71、温度指示信息生成模块72以及自放电周期调整模块73。
所述地理位置信息获取模块71,用于获取所述无人飞行器的地理位置信息。
所述温度指示信息生成模块72,用于根据所述地理位置信息,生成温度指示信息。
所述自放电周期调整模块73,用于根据所述温度指示信息,调整所述电池模组的自放电周期。
因此,在本实施例中,通过首先获取无人飞行器的地理位置信息,然后根据地理位置信息,生成温度指示信息,进而根据温度指示信息,调整电池模组的自放电周期,以实现结合地理位置信息对无人飞行器的电池模组进行自放电周期的调节,有效避免了地理位置信息的变化对电池带来的损坏。
在一些实施例中,所述电池自放电周期调整装置还包括所述警示模块74。
所述警示模块74用于生成高温警示信息并将所述高温警示信息发送至遥控装置,以警示用户注意存储和使用规范。
图9是本申请实施例提供的一种无人飞行器10的结构示意图,该无人飞行器10可以是任意类型的无人载具,能够执行上述相应的方法实施例提供的电池自放电周期调整方法,或者,运行上述相应的装置实施例提供的电池自放电周期调整装置70。所述无人飞行器包括:机身、机臂、动力装置、红外发射装置、飞控模组110、存储器120及通信模块130。
所述机臂与所述机身相连;所述动力装置设于所述机臂,用于给所述无人飞行器提供飞行的动力;所述红外发射装置设于所述机身内,用于发送红外接入信息并接收遥控装置发出的红外控制指令;
所述飞控模组具有对无人飞行器飞行和任务进行监控、运算和操纵的能力,包含对无人飞行器发射和回收控制的一组设备。所述飞控模组还可将二进制数字信号调制成相应的光脉冲的形式的红外信号或将光脉冲的形式红外信号解调为二进制数字信号。
所述飞控模组110、存储器120以及通信模块130之间通过总线的方式,建立任意两者之间的通信连接。
飞控模组110可以为任何类型,具备一个或者多个处理核心的飞控模组110。其可以执行单线程或者多线程的操作,用于解析指令以执行获取数据、执行逻辑运算功能以及下发运算处理结果等操作。
存储器120作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序、非暂态性计算机可执行程序以及模块,如本发明实施例中的电池自 放电周期调整方法对应的程序指令/模块(例如,附图8所示的地理位置信息获取模块71、温度指示信息生成模块72以及自放电周期调整模块73、警示模块74)。飞控模组110通过运行存储在存储器120中的非暂态软件程序、指令以及模块,从而执行电池自放电周期调整装置70的各种功能应用以及数据处理,即实现上述任一方法实施例中电池自放电周期调整方法。
存储器120可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据电池自放电周期调整装置70的使用所创建的数据等。此外,存储器120可以包括高速随机存取存储器,还可以包括非暂态存储器,例如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。在一些实施例中,存储器120可选包括相对于飞控模组110远程设置的存储器,这些远程存储器可以通过网络连接至无人飞行器10。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
所述存储器120存储有可被所述至少一个飞控模组110执行的指令;所述至少一个飞控模组110用于执行所述指令,以实现上述任意方法实施例中电池自放电周期调整方法,例如,执行以上描述的方法步骤10、20、30等等,实现图8中的模块71-74的功能。
通信模块130是用于建立通信连接,提供物理信道的功能模块。通信模块130以是任何类型的无线或者有线通信模块130,包括但不限于WiFi模块或者蓝牙模块等。
进一步地,本发明实施例还提供了一种非暂态计算机可读存储介质,所述非暂态计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被一个或多个飞控模组110执行,例如,被图9中的一个飞控模组110执行,可使得上述一个或多个飞控模组110执行上述任意方法实施例中电池自放电周期调整方法,例如,执行以上描述的方法步骤10、20、30等等,实现图8中的模块71-74的功能。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例 方案的目的。
通过以上的实施方式的描述,本领域普通技术人员可以清楚地了解到各实施方式可借助软件加通用硬件平台的方式来实现,当然也可以通过硬件。本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程是可以通过计算机程序产品中的计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非暂态计算机可读取存储介质中,该计算机程序包括程序指令,当所述程序指令被相关设备执行时,可使相关设备执行上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
上述产品可执行本发明实施例所提供的电池自放电周期调整方法,具备执行电池自放电周期调整方法相应的功能模块和有益效果。未在本实施例中详尽描述的技术细节,可参见本发明实施例所提供的电池自放电周期调整方法。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其 限制;在本发明的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本发明的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种电池自放电周期调整方法,应用于无人飞行器,所述无人飞行器包括电池模组,其特征在于,包括:
    获取所述无人飞行器的地理位置信息;
    根据所述地理位置信息,生成温度指示信息;
    根据所述温度指示信息,调整所述电池模组的自放电周期。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述地理位置信息,生成温度指示信息,包括:
    判断所述地理位置信息是否位于高温经纬度区域;
    若是,生成的所述温度指示信息为高温指示信息;
    若否,生成的所述温度指示信息为正常指示信息。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述温度指示信息,调整所述电池模组的自放电周期,包括:
    当生成的所述温度指示信息为所述高温指示信息时,获取所述电池模组的预设历史时间段内的高温数据信息;
    根据所述高温数据信息,调整所述电池模组的自放电周期。
  4. 根据权利要求3所述的方法,其特征在于,所述根据所述高温数据信息,调整所述电池模组的自放电周期,包括:
    根据所述高温数据信息,得到所述预设历史时间段内的高温累计时间;
    判断所述高温累计时间是否大于预设时间阈值;
    若是,将当前自放电周期调整至预设高温自放电周期。
  5. 根据权利要求4的所述的方法,其特征在于,所述生成的所述温度指示信息为高温指示信息之后,所述方法还包括:
    获取所述无人飞行器的周围温度信息;
    判断所述周围温度信息是否超过预设温度信息;
    若是,则获取所述电池模组的预设历史时间段内的高温数据信息。
  6. 根据权利要求3-5任一项所述的方法,其特征在于,所述电池模组与所述无人飞行器通信连接;
    所述生成的所述温度指示信息为高温指示信息之后,所述方法还包括:
    将所述高温指示信息发送至所述电池模组,以使所述电池模组当接收到所述高温指示信息时,获取所述历史时间段对应的所述高温累计信息。
  7. 根据权利要求3-5任一项所述的方法,其特征在于,
    所述生成的所述温度指示信息为高温指示信息之后,所述方法还包括:
    生成高温警示信息;
    将所述高温警示信息发送至遥控装置。
  8. 一种电池自放电周期调整装置,其特征在于,包括:
    地理位置信息获取模块,用于获取所述无人飞行器的地理位置信息;
    温度指示信息生成模块,用于根据所述地理位置信息,生成温度指示信息;
    自放电周期调整模块,用于根据所述温度指示信息,调整所述电池模组的自放电周期。
  9. 根据权利要求8的所述的装置,其特征在于,还包括高温警示模块,
    所述警示模块用于生成高温警示信息并将所述高温警示信息发送至遥控装置。
  10. 一种无人飞行器,其特征在于,包括:
    机身;
    机臂,与所述机身相连;
    动力装置,设于所述机臂,用于给所述无人飞行器提供飞行的动力;
    飞控模组;以及
    与所述飞控模组通信连接的存储器;其中,所述存储器存储有可被所述飞控模组执行的指令,所述指令被所述飞控模组执行,以使所述飞控模组能够用于执行如权利要求1-7中任一项所述的电池自放电周期调整方法。
PCT/CN2020/124058 2019-11-07 2020-10-27 电池自放电周期调整方法及无人飞行器 WO2021088683A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911082016.0A CN110690514B (zh) 2019-11-07 2019-11-07 电池自放电周期调整方法及无人飞行器
CN201911082016.0 2019-11-07

Publications (1)

Publication Number Publication Date
WO2021088683A1 true WO2021088683A1 (zh) 2021-05-14

Family

ID=69115639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/124058 WO2021088683A1 (zh) 2019-11-07 2020-10-27 电池自放电周期调整方法及无人飞行器

Country Status (2)

Country Link
CN (1) CN110690514B (zh)
WO (1) WO2021088683A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114379420A (zh) * 2022-03-22 2022-04-22 临工集团济南重机有限公司 一种电池保温控制方法、装置、设备和存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110690514B (zh) * 2019-11-07 2021-10-22 深圳市道通智能航空技术股份有限公司 电池自放电周期调整方法及无人飞行器
CN112234264A (zh) * 2020-08-21 2021-01-15 深圳市道通智能航空技术有限公司 一种无人机电池的监管方法及其装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206790140U (zh) * 2017-03-31 2017-12-22 深圳市大疆创新科技有限公司 电池放电控制系统及智能电池
US20180205242A1 (en) * 2016-02-12 2018-07-19 Capacitor Sciences Incorporated Capacitor based power system and unmanned vehicle with the capacitor based power system thereof
CN108511854A (zh) * 2018-03-21 2018-09-07 深圳市道通智能航空技术有限公司 无人机电池温度的控制方法、装置及无人机
CN110690514A (zh) * 2019-11-07 2020-01-14 深圳市道通智能航空技术有限公司 电池自放电周期调整方法及无人飞行器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205646948U (zh) * 2016-05-31 2016-10-12 深圳市泰迅数码有限公司 一种给无人机电池保护性放电的装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180205242A1 (en) * 2016-02-12 2018-07-19 Capacitor Sciences Incorporated Capacitor based power system and unmanned vehicle with the capacitor based power system thereof
CN206790140U (zh) * 2017-03-31 2017-12-22 深圳市大疆创新科技有限公司 电池放电控制系统及智能电池
CN108511854A (zh) * 2018-03-21 2018-09-07 深圳市道通智能航空技术有限公司 无人机电池温度的控制方法、装置及无人机
CN110690514A (zh) * 2019-11-07 2020-01-14 深圳市道通智能航空技术有限公司 电池自放电周期调整方法及无人飞行器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114379420A (zh) * 2022-03-22 2022-04-22 临工集团济南重机有限公司 一种电池保温控制方法、装置、设备和存储介质

Also Published As

Publication number Publication date
CN110690514A (zh) 2020-01-14
CN110690514B (zh) 2021-10-22

Similar Documents

Publication Publication Date Title
WO2021088683A1 (zh) 电池自放电周期调整方法及无人飞行器
US11776413B2 (en) Aerial vehicle flight control method and device thereof
US10126126B2 (en) Autonomous mission action alteration
CN108496130B (zh) 飞行控制方法、设备、控制终端及其控制方法、无人机
WO2019113727A1 (zh) 无人飞行器返航方法、装置、存储介质和无人飞行器
CN106406343B (zh) 无人飞行器的控制方法、装置和系统
US11798426B2 (en) Autonomous mission action alteration
US20200064869A1 (en) Perpetual unmanned aerial vehicle surveillance
WO2021088684A1 (zh) 全向避障方法及无人飞行器
CN102156481A (zh) 无人飞行器的智能追踪控制方法及系统
WO2018090493A1 (zh) 无人机
WO2021088699A1 (zh) 无人飞行器的控制方法、无人飞行器及遥控装置
TW201838360A (zh) 航空機器人飛行器天線切換
CN110597287A (zh) 一种多功能便携无人机地面站
CN113238571A (zh) 一种无人机监控系统、方法、装置及存储介质
US11620913B2 (en) Movable object application framework
CN110278717A (zh) 控制飞行器飞行的方法及设备
CN111061298A (zh) 飞行控制方法及装置、无人机
WO2018053754A1 (zh) 一种基于飞行器的功能控制方法及装置
KR102387642B1 (ko) 드론 기반의 항공 사진 측량 장치 및 방법
CN110705011B (zh) 一种低空遥感和地面传感的双重采样仿真系统
CN110708473B (zh) 高动态范围图像曝光控制方法、航拍相机及无人飞行器
CN113741497A (zh) 云台方向的控制方法、装置及终端
TWI656422B (zh) 無人機控制方法及其系統
US11785185B2 (en) Systems and methods for validating imagery collected via unmanned aerial vehicles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20885418

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20885418

Country of ref document: EP

Kind code of ref document: A1