WO2017183679A1 - 回路遮断器の接触子装置、およびこの接触子装置を用いた回路遮断器 - Google Patents

回路遮断器の接触子装置、およびこの接触子装置を用いた回路遮断器 Download PDF

Info

Publication number
WO2017183679A1
WO2017183679A1 PCT/JP2017/015829 JP2017015829W WO2017183679A1 WO 2017183679 A1 WO2017183679 A1 WO 2017183679A1 JP 2017015829 W JP2017015829 W JP 2017015829W WO 2017183679 A1 WO2017183679 A1 WO 2017183679A1
Authority
WO
WIPO (PCT)
Prior art keywords
contact
arc
movable
circuit breaker
fixed
Prior art date
Application number
PCT/JP2017/015829
Other languages
English (en)
French (fr)
Inventor
央 佐々木
慎司 鳥羽
翔 田中
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2017548312A priority Critical patent/JP6246448B1/ja
Priority to EP17786016.0A priority patent/EP3447782B1/en
Priority to AU2017253327A priority patent/AU2017253327B2/en
Publication of WO2017183679A1 publication Critical patent/WO2017183679A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/30Means for extinguishing or preventing arc between current-carrying parts
    • H01H9/38Auxiliary contacts on to which the arc is transferred from the main contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/30Means for extinguishing or preventing arc between current-carrying parts
    • H01H9/34Stationary parts for restricting or subdividing the arc, e.g. barrier plate
    • H01H9/346Details concerning the arc formation chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/30Means for extinguishing or preventing arc between current-carrying parts
    • H01H9/46Means for extinguishing or preventing arc between current-carrying parts using arcing horns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H73/00Protective overload circuit-breaking switches in which excess current opens the contacts by automatic release of mechanical energy stored by previous operation of a hand reset mechanism
    • H01H73/02Details
    • H01H73/18Means for extinguishing or suppressing arc

Definitions

  • the present invention relates to a contact device for a DC high-speed circuit breaker used as, for example, a protective breaker in a railway substation, and in particular, by quickly transferring an arc generated between the contacts to an arc chute,
  • the present invention relates to a contact device capable of reducing time.
  • a conventional circuit breaker extinguishes an arc generated by the release of a fixed contact having a fixed contact, a movable contact having a movable contact that can be moved toward and away from the fixed contact.
  • a pair of arc runners that have an arc chute and are arranged adjacent to the fixed contact and the movable contact respectively to transfer the arc from each contact, and are connected to both arc runners to make the arc chute while extending the arc. It has an arc horn.
  • Patent Document 1 an arc runner and arc horn on a stationary contact side, and an arc runner and arc on a movable contact side
  • a horn can be formed integrally to reduce the number of resistance points as much as possible to achieve stable current interruption.
  • the shield plate on both side surfaces of the arc contact is provided with a tapered groove whose cross-sectional area gradually increases toward the arc extinguishing chamber upper direction, and the arc gas is supplied in the upper direction of the arc extinguishing chamber.
  • the air nozzle of the conventional DC high speed circuit breaker is manufactured by plastic processing of a metal circular tube.
  • the piston in the air cylinder is driven in the compression direction in conjunction with the operation of the main contactor at the time of opening, so that the compressed air is blown out from the air nozzle toward the arc.
  • the current is surely interrupted (see, for example, Patent Document 3).
  • the time for commutating the arc generated between the main contacts to the arc horn is shortened, and the arc gas flow near the main contact is directed toward the upper arc chute.
  • the ratio of the air blown out from the air nozzle to the side or the lower side of the arc space around the air nozzle and the contactor is high, and sufficient arc gas flow in the upward arc chute direction is obtained. I could not.
  • the big air cylinder which can ensure the predetermined amount of blowing air is needed, and there also existed a problem that a circuit breaker became large sized.
  • the first method is a means to improve the electromagnetic driving force in the arc runner direction of the arc generated between the contacts at the time of opening, thereby quickly transferring the arc to the arc runner and arc chute and shortening the commutation time. is there. Since the arc is a discharge phenomenon in the air and current flows, it receives a Lorentz force in the outer product direction of the arc current direction and the magnetic flux direction by a magnetic field from the outside. The arc that has received the Lorentz force moves in the direction in which the force works, starts discharge at the destination arc runner, shifts to arc chute, and then extinguishes.
  • the second method is a method for improving the gas flow from the contactor to the arc runner. Since the arc is hot, it has the property of melting and vaporizing surrounding structures such as electrodes during the generation of the arc. Therefore, when an arc is generated by opening the contact during energization, the pressure between the contacts is increased by melting the contact, and a gas flow is generated at the upper end of the arc chute and the mold opening covering the contact. . The gas flow in the arc chute direction can be enhanced by closing the flow path of the opening from the contact to the part other than the arc chute. However, since the force acting on the arc is mainly an electromagnetic driving force and an external force caused by gas flow, a complicated and expensive device is required to control the magnitude and direction of these forces.
  • the third method is a method of shortening the distance from the movable contactor to the movable arc runner.
  • the end of the arc generated between the contacts moves to the upper end of the contact piece, and shifts to the arc runner when the spatial distance between the contact piece and the arc runner becomes short. Therefore, it can be said that the shorter the distance from the movable contact to the movable arc runner, the more effective in shortening the commutation time.
  • As a method of shortening the distance there is a method of increasing the opening speed by extending the upper end portion of the movable contact. However, in this case, there is a problem that the apparatus becomes large due to an increase in opening operation force.
  • the present invention has been made to solve the problems of the prior art and all of the first to third methods described above, and the arc commutation time can be quickly transferred to the arc runner with a simple configuration. It is an object of the present invention to provide a contactor device for a circuit breaker that can shorten the length of the circuit breaker. Another object of the present invention is to provide a contactor device for a circuit breaker that can be reduced in size while ensuring a breaking performance when a small current is interrupted or when a large current is interrupted.
  • a contact device for a circuit breaker includes a main contact provided on a fixed side and a movable side, an arc contact provided on a fixed side and a movable side, and the fixed main contact and the movable side.
  • An arc generation chamber composed of a main contact, the fixed-side arc contact and the movable-side arc contact is surrounded by an insulating wall at least on the side and bottom, leaving an opening in the direction toward the arc-extinguishing chamber. It is characterized by that.
  • the arc generating chamber composed of both the main contacts and the both arc contacts is surrounded by the insulating wall at least on the side surface and the bottom surface, leaving an opening in the direction toward the arc extinguishing chamber. Therefore, the gas flow path from the arc contactor to the arc runner can be formed with high efficiency with little loss due to gas leakage, thereby increasing the external force due to gas flow and moving the arc to the arc runner Is promoted and the commutation time can be shortened.
  • the DC high-speed circuit breaker provided with an air nozzle that blows air toward the space between the fixed-side contact and the movable-side contact, compared with the conventional air nozzle type DC high-speed circuit breaker,
  • the air supply device for attachment can be downsized and air can be efficiently blown onto the arc. Therefore, it is possible to reduce the size while securing the interruption performance at the time of interruption of small current or large current. Can be realized.
  • FIG. 4 is a cross-sectional view taken along the direction AA in FIG. 3.
  • FIG. 4 is a cross-sectional view seen in the BB direction of FIG. 3.
  • FIG. 5 is a side sectional view as seen in the CC direction of FIG. 4, illustrating an image of sealing an arc generation chamber.
  • FIG. 8 is a side view of FIG. 7.
  • FIG. 8 is a front view of FIG. 7.
  • FIG. 8 is a rear view of FIG. 7.
  • FIG. 8 is a side sectional view as seen in the DD direction of FIG. 7.
  • FIG. 8 is a side cross-sectional view as seen in the DD direction of FIG. 7, showing the cross-sectional positions of the air holes.
  • It is the top view seen in the E direction of FIG.
  • FIG. 13 is a cross-sectional view seen in the FF direction of FIG. It is sectional drawing seen in the GG direction of FIG. It is sectional drawing seen in the HH direction of FIG. It is sectional drawing seen in the JJ direction of FIG.
  • FIG. 10 is a part development view for explaining assembly of the movable contact according to the fourth embodiment.
  • FIG. 10 is a part development view for explaining assembly of the stationary contact according to the fourth embodiment.
  • FIG. 6 is an enlarged plan view showing a main part of a movable contact according to a fourth embodiment. It is a perspective view which shows the structure of the contactor mold of Embodiment 4, and a shielding board. It is a perspective view which shows a movable side arc contact and an arc contact guide among the structures of the movable contact shown in FIG.
  • Embodiment 1 of the present invention will be described with reference to FIGS. 1 to 17.
  • the same or equivalent members and parts will be described with the same reference numerals.
  • 1 and 2 show the overall configuration of a DC high-speed circuit breaker according to Embodiment 1 for carrying out the present invention.
  • 1 is a side sectional view showing a contact closed state (operating state) in a DC high-speed circuit breaker according to Embodiment 1 of the present invention.
  • FIG. 2 is a side sectional view showing a state in which the contact in the DC high-speed circuit breaker according to Embodiment 1 of the present invention is in a breaking operation (during a breaking operation).
  • the DC high speed circuit breaker 101 is arranged in the lower part of the arc extinguishing chamber 102 in which the arc extinguishing space is formed and in the lower side in the normal operation state (contact closed state).
  • a fixed-side contact 105 connected to the upper conductor 103 and a movable-side contact 107 attached to one end of a mover 106 connected to the lower conductor 104 via a flexible conductor 106a.
  • the electric current is passed between the upper conductor 103 and the lower conductor 104 through the movable element 106 through contact with each other.
  • the fixed contact 105 and the movable contact 107 are arranged so as to be housed inside the arc extinguishing chamber 102 lower part. Further, an arc contact that generates an arc K at the time of interruption is disposed above the fixed side contact 105 and the movable side contact 107. This arc contact is formed by the fixed side arc contact 108 and the movable side arc contact 109. It is configured.
  • the mover 106 is rotatably supported by a rotating shaft 110 and is connected to an operation mechanism unit 111, and is movable to bring the DC high speed circuit breaker 101 from the open state in FIG.
  • the operation mechanism 111 is rotated counterclockwise around the rotation shaft 110 as a rotation fulcrum, and the fixed side contact 105 and the movable side shown in FIG.
  • the contact 107 is driven to the closed position.
  • a latch 112 is engaged with the other end of the movable element 106 at the closed position of the fixed contact 105 and the movable contact 107, and holds the movable element 106 in this closed position (operating position).
  • Reference numeral 113 denotes a tripping spring, which is mounted between the movable element 106 and the frame 114. Energy is stored by rotating the movable element 106 counterclockwise, and the fixed contact 105 and the movable side are connected. In the closed position (operating state) of the contact 107, the movable element 106 is urged to rotate in the clockwise direction (that is, in the blocking direction).
  • 115 is an overcurrent detector that operates when the current flowing through the lower conductor 104 exceeds a predetermined value.
  • a latch release mechanism 116 is driven by the operation of the overcurrent detector 115 and operates to release the engagement between the latch 112 and the other end of the movable element 106.
  • Reference numeral 117 denotes an insulating air nozzle attached to the lower part of the arc extinguishing chamber 102.
  • the air nozzle 117 is a member molded in a block shape with a solid insulator such as epoxy or polyester, and has a vent hole 117a penetrating through the inside. Details of the structure of the air nozzle 117 will be described later.
  • Reference numeral 118 denotes an air cylinder which incorporates a piston 120 driven by a drive link 119 connected to the mover 106.
  • the piston 120 slides in the left-right direction and is compressed by sliding in the right direction.
  • the air pressurized by the compression operation is passed through the air supply pipe 121 and the air hole 117 a of the air nozzle 117. To send to.
  • the fixed-side arc contact 108 and the movable-side arc contact 109 are configured to be opened with a little delay after the opening operation of the fixed-side main contact 105 and the movable-side main contact 107 in the opening operation.
  • the arc K is generated between the fixed side arc contact 108 and the movable side arc contact 109. In this way, the arc K is prevented from occurring between the fixed main contact 105 and the movable main contact 107 so that the fixed contact 105 and the movable contact 107 are not melted by the heat of the arc K. To protect.
  • An arc horn for commutating the generated arc K is arranged above the fixed side arc contact 108 and the movable side arc contact 109 in order to guide the generated arc K to the upper part in the arc extinguishing chamber 102.
  • the arc horn is composed of a fixed side arc horn 122 and a movable side arc horn 123.
  • the fixed-side arc horn 122 and the movable-side arc horn 123 are arranged at one end of the fixed-side arc contact 108 and the movable-side arc contact 109, respectively.
  • the other end of the movable-side arc contactor 109 is disposed so as to be directed obliquely upward so as to be separated from each other in the front-rear direction of the arc extinguishing chamber 102.
  • a grid 124 made of a thin plate-like magnetic body is provided along the extending direction of the fixed side arc horn 122 and the movable side arc horn 123 (that is, the longitudinal direction of the arc extinguishing chamber 102).
  • a plurality of grid assemblies 125 arranged are arranged.
  • the arc K reaches the grid assembly 125 and uses the electrode drop voltage generated by the presence of the grid 124 and the arc voltage increased by extending the length of the arc K to limit the arc current and cut off. I have to.
  • An exhaust port 126 for exhausting the arc gas to the outside of the arc extinguishing chamber 102 is provided on the upper side of the grid assembly 125.
  • FIG. 2 is a side sectional view showing a state in which the contact in the DC high speed circuit breaker 101 according to the first embodiment of the present invention is in a breaking operation (during a breaking operation).
  • a breaking operation for example, when a large current exceeding a predetermined current value flows due to an accident or the like in an operating state, the overcurrent detector 115 detects the large current and releases the engagement between the latch 112 and the mover 106 via the latch release mechanism 116. To do.
  • the movable element 106 is driven in the clockwise direction (breaking direction) with the rotation shaft 110 as a fulcrum by the trip spring 113, so that the fixed side main contact 105 and the movable side main contact 107 are first separated, and then the fixed side.
  • the arc contact 108 and the movable side arc contact 109 are separated to generate an arc K.
  • the piston 120 inside the air cylinder 118 is driven in the right direction in FIG. 2 via the drive link 119 connected to the mover 106 as the mover 106 rotates clockwise (cut-off direction). Is done. Air compressed by this operation is sent to the air nozzle 117 via the air supply pipe 121, passes through the air hole 117 a in the air nozzle 117, and is generated between the fixed side arc contact 108 and the movable side arc contact 109. An air flow is directed toward the arc K from below to above. By this air flow, the arc K is driven upward and moves to the fixed-side arc horn 122 and the movable-side arc horn 123.
  • FIG. 3 shows a configuration of the breaking unit 130 which is the heart of the DC high speed circuit breaker.
  • the interruption unit 130 includes a lower part of the arc extinguishing chamber 102, a fixed contact 105, a fixed arc contact 108, a movable element 106, a movable contact 107, a movable arc contact 109, an air nozzle 117, a fixed arc horn 122, a movable The side arc horn 123 is used.
  • the cut-off portion 130 is characterized by a fixed-side arc horn 122, a movable side, except for an upper opening 132 (a space between the fixed-side arc horn 122 and the movable-side arc horn 123) that communicates with the inside of the upper arc-extinguishing chamber 102.
  • the arc generation chamber 131 is configured in such a manner that the inside is isolated from the surroundings by being surrounded by the side arc horn 123 and the insulating wall, and the arc K generated in the arc generation chamber 131 is directed upward from below. Then, air is blown and the arc K is driven into the upper arc extinguishing chamber 102 from the upper opening 132.
  • FIG. 3 the space surrounded by the lower air nozzle 117, the right movable arc horn 123, the left fixed main contact 105, the fixed arc contact 108, and the fixed arc horn 122 is a blocking portion 130.
  • FIG. 4 shows the structure viewed in the AA direction of FIG.
  • Movable elements 106 are arranged vertically passing through the movable element through-holes 117c of the air nozzle 117, and the lower part of the arc extinguishing chamber 102 is disposed on both sides of the upper part of the air nozzle 117 so as to sandwich both sides of the movable element 106.
  • An insulating side wall 102a is disposed.
  • the clearance between the inner wall of the mover through-hole 117c of the air nozzle 117 and both sides of the mover 106 is set to the minimum necessary size, and the lower side wall 102a of the arc extinguishing chamber 102 and both sides of the mover 106 are separated.
  • the gap between them is the minimum necessary size.
  • a long and narrow space in the longitudinal direction on the front side of the mover 106 constitutes the arc generation chamber 131.
  • the air flow leaking downward from the gap between the mover through-hole 117c of the air nozzle 117 and the mover 106 is limited to a slight amount. I can do it.
  • FIG. 5 shows the structure seen in the BB direction of FIG.
  • a fixed contact 105 and a fixed arc contact 108 are arranged at the upper end of the mover through-hole 117 c of the air nozzle 117, and the fixed contact 105 and the fixed arc contact are arranged on both upper sides of the air nozzle 117.
  • Side walls 102a of the arc extinguishing chamber 102 are disposed so as to sandwich both sides of the child 108.
  • the gap between the side wall 102a of the arc extinguishing chamber 102 and the mover 106 is set to the minimum necessary size.
  • FIG. 6 corresponds to the configuration of FIG. 3 and is a diagram for explaining an image of the sealed structure excluding the upper opening 132 in the arc generation chamber 131 of the sealed structure.
  • FIG. 7 is a plan view showing an air nozzle 117 having an insulating block shape.
  • 117a is a vent hole penetrating through the inside
  • 117b is a nozzle through which air from the vent hole 117a blows (that is, an air outlet)
  • 117c is a mover penetrating through which the mover 106 is disposed through the air nozzle 117. It is a hole.
  • 117 d is a flat portion on the upper surface of the air nozzle 117, and the flat portion 117 d constitutes the bottom wall of the arc generating chamber 131.
  • the nozzle 117b has an elongated opening on the surface of the flat portion 117d in a direction perpendicular to the longitudinal axis of the air nozzle 117 (corresponding to the sectional line DD).
  • the shape of the elongated opening may be an oval, an oblong rectangle, or a polygonal elongated hole with a polygonal end.
  • Reference numeral 117e denotes a side wall holding portion, which is a longitudinal axis of the air nozzle 117 (corresponding to a sectional line DD) so as to protrude on both sides of the flat portion 117d and upward from the flat portion 117d. Are arranged parallel to each other.
  • a lower portion of the side wall 102a of the arc extinguishing chamber 102 is disposed between the two side wall holding portions 117e, and the side wall holding portion 117e It arrange
  • FIG. 8 is a side view of FIG. 7, and the shapes of the vent hole 117a and the mover through hole 117c in the air nozzle are indicated by broken lines.
  • the vent hole 117a has an opening at the left end, and the nozzle 117b is arranged at the other end upward.
  • the mover through-hole 117c minimizes the gap between the mover 106 and the inner wall of the mover through-hole 117c even when the mover 106 rotates clockwise around the rotating shaft 110 in the blocking operation.
  • the movable element 106 moves in the blocking direction and falls down on the inclined side instead of vertically.
  • FIG. 9 is a front view of FIG. 8 and shows a vent hole 117a.
  • FIG. 10 is a rear view of FIG.
  • FIG. 11 is a cross-sectional view taken along the line DD of FIG. 7 and shows the positions and shapes of the air holes 117a and the mover through holes 117c in the air nozzle 117, as in FIG.
  • FIG. 13 is a view seen in the direction of arrow E in FIG. 12, and shows that the nozzle 117 b is opened upward and is arranged in a long hole shape elongated in the width direction of the arc generation chamber 131.
  • FIGS. 14 to 17 show changes in the cross-sectional shape of the vent hole 117a penetrating the inside of the air nozzle 118.
  • the vent hole 117a has a circular connection portion with the air supply pipe 121, and the cross-sectional shape is continuously and smoothly changed from a circular shape to an elongated shape before reaching the long hole-shaped nozzle 117b. It is shown that.
  • the shape of the arc generation chamber 131 elongated in the width direction at the position of the nozzle 117b at the final stage, it becomes possible to blow air uniformly over the entire width of the extended arc K, and the arc K is directed upward. It becomes possible to drive efficiently. Further, as shown in FIG.
  • the air nozzle 117 that forms the bottom surface of the arc generation chamber 131 is configured by a solid insulator block that does not include a conductive material.
  • the DC high-speed circuit breaker 101 can be downsized.
  • the arc generation chamber 131 is configured in a form isolated from the surroundings by surrounding the fixed side arc horn 122 and the movable side arc horn 123 with an insulator except for the upper opening 132 communicating with the upper arc extinguishing chamber 102.
  • the arc generation chamber 131 is configured in a form isolated from the surroundings by surrounding the fixed side arc horn 122 and the movable side arc horn 123 with an insulator except for the upper opening 132 communicating with the upper arc extinguishing chamber 102.
  • the nozzle 117b is disposed below the fixed-side arc contact 108, and further toward the space between the fixed-side arc contact 108 and the movable-side arc contact 109 at the blocking position. Since the air is opened obliquely upward, the air is blown in the N direction indicated by the arrow, that is, obliquely upward, so that the movable-side arc contact located at the cutoff position from the fixed-side arc contact 108 in the cutoff operation.
  • the arc K can be efficiently blown toward the arc extinguishing chamber 102 with respect to the entire length of the arc K extended to 109.
  • the main energization is performed by the fixed-side main contact 105 and the movable-side main contact 107, and the stationary-side arc contact 108 that opens later than the fixed-side contact 105 and the movable-side contact 107 during the interruption operation.
  • the description has been made by controlling and interrupting the arc K generated between the movable side arc contacts 109, two types of contacts are not necessarily required, and the arc K between the fixed side contact 105 and the movable side contact 107 is not necessarily required. May be generated.
  • Embodiment 2 FIG.
  • the air nozzle 117 is provided with a blowout port (nozzle 117b) below the fixed side contact 105 and the movable side contact 107, and the width of the nozzle 117b is air.
  • the width of the nozzle 117b is narrower than that of the first hole 117c of the air nozzle 117, as shown in FIG. And it becomes possible to blow air more efficiently with respect to the full width of the arc K generated between the movable side arc contacts 109, and it becomes possible to further improve the interruption performance.
  • the arc generation chamber 131 includes the fixed main contact 105, the fixed arc contact 108, the fixed arc horn 122, the movable arc horn 123, the side wall 102a of the arc extinguishing chamber 102, and air.
  • the nozzle 117 was configured.
  • the insulating material on the bottom surface is carried by the air nozzle 117 of the insulating block
  • the insulating material on the side portion is carried by the insulating side plate 102a
  • each end portion in the operation direction of the mover 106 is respectively arranged on the movable side arc horn.
  • the fixed-side main contact 105, the fixed-side arc contactor 108, and the fixed-side arc horn 122 constitute a side wall of the arc generation chamber 131.
  • each end portion in the operation direction of the mover 106 is also surrounded by the insulating walls 133 and 134.
  • the structure of the interrupting unit 130 that is, the lower part of the arc extinguishing chamber 102, the fixed contact 105, the fixed arc contact 108, the mover 106, the movable contact 107, the movable arc contact 109, the air
  • the nozzle 117, the fixed-side arc horn 122, and the movable-side arc horn 123 can be surrounded more reliably, and the drive to the arc extinguishing chamber 102 by blowing air to the arc K can be performed more efficiently.
  • the blocking performance is improved.
  • FIG. 20 to 22 are schematic configuration diagrams for explaining the operation change from the closed state to the open state of the contact device according to another embodiment of the present invention and the driving force acting on the arc K at the time of opening. .
  • the same or corresponding parts as those in the first to third embodiments are indicated by the same reference numerals.
  • the movable side main contactor 4 and the fixed side main contactor 5 are provided, and the movable side main contactor 4 is provided with the movable side arc contactor 109 and the movable side main contact piece 13a on the surface.
  • a fixed side arc contact 108 disposed opposite to the movable side arc contact 109 and the movable side main contact piece 13 a (to the movable side contact 107 of the first embodiment). And a fixed main contact piece 13b (corresponding to the fixed contact 105 in the first embodiment).
  • the movable main contact 4 is rotated by an operation mechanism (not shown) around the rotation shaft 110.
  • the positional relationship between the movable main contact 4 and the fixed main contact 5 is opposite to that described in the first to third embodiments.
  • the movable-side arc contact 109 is provided so as to be covered with the cover 3a
  • the fixed-side arc contact 108 is provided so as to be covered with the cover 3b.
  • the periphery of the contact is configured to be covered with a contact mold 7, and a shielding plate 6 described later is provided below the fixed main contact 5.
  • the arc K generated when the circuit breaker in an energized state is opened is from the contacts 109 and 108 as indicated by the solid arrow F to the arc chute (arc extinguishing chamber) 102.
  • FIG. 22 is a perspective view for schematically explaining the electromagnetic driving force acting on the arc K having the arc contact piece 10a as an ignition point.
  • the arc contact piece 10a is provided so that the cross-sectional area in the energizing direction becomes small. That is, the thickness of the arc contact piece 10a is made smaller than the conductors of other conductive paths.
  • the magnetic path of current generation flowing through the arc contact piece 10a is reduced, and the magnetic flux density penetrating the arc K is increased. Therefore, the electromagnetic driving force acting on the arc K is increased, and the arc commutation time is shortened by separating the arc sticking between the contacts.
  • the contact device of this example achieves an increase in driving force in the arc chute direction of the arc with a simple structure without the need for external magnetic flux application or gas inflow, and the commutation time.
  • the cut-off time can be reduced by shortening the length.
  • FIGS. 21 to 24 are diagrams showing the structure of the contact device of the circuit breaker according to the fourth embodiment.
  • FIG. 21 is a side view showing a contact device in which the circuit breaker is in a closed state.
  • the contact device includes a movable main contact 4 for supplying a steady current flowing from the main circuit conductor 103, and a fixed main contact.
  • An arc contact 108, a contact mold 7 and a shielding plate 6 provided so that gas caused by the arc is guided to the arc chute 102, and arc runners 9a and 9b for transferring the arc to the arc chute 102 are provided.
  • the top view which looked at the contactor apparatus from the upper direction in FIG. 25 is shown.
  • the contact mold 7 has a box shape having an opening in the direction of the arc chute 102 and is made of an insulator. Further, the shielding plate 6 is provided at the lower part of the stationary main contact 5 of the box-shaped contact mold 7. The shielding plate 6 may be provided so as to be detachable from the contact mold 7.
  • FIG. 26 is a perspective view when the shield plate 6 is detachably provided on the contact mold 7.
  • FIG. 26A is a state in which the shield plate 6 is accommodated in the contact mold 7, and FIG. The state before attaching the shielding board 6 is shown.
  • FIG. 23 is a component development view for explaining the movable contact device.
  • the movable contact device includes a movable main contact 4 to which a main contact piece 13a for energizing a steady current is joined, and a contact for transmitting operating force to the movable main contact 4.
  • the guide 14, the contact pressure spring 15 for applying a contact pressure load to the movable side arc contact 109, and the movable side arc contact 109 operate following the movable contact after the movable side main contact 4 is opened.
  • Arc contact guide 16 for transmitting power for the operation, and a stopper bolt for adjusting a wipe when the movable side arc contact 109 is operated following the movable side main contact 4 provided on the arc contact guide 16.
  • FIG. 27 shows a state in which the movable-side arc contact 109 and the arc contact guide 16 are assembled.
  • the arc contact piece 10a of the movable side arc contact 109 has a small cross-sectional area in the energization direction and extends in the arc runner direction.
  • the movable-side arc contact 109 is provided so that the parts can be easily replaced even if wear due to the arc occurs.
  • FIG. 24 is a part development view for explaining the stationary contact.
  • the stationary contact device includes a stationary main contact 5 to which a main contact piece 13b for energizing a steady current is joined, a main circuit conductor 103 for energizing a circuit current, and a contact piece.
  • the fixed side arc contact 108 having 10b, the cover 3b for controlling the gas flow in the vicinity of the fixed side arc contact 108 in the direction of the arc extinguishing chamber 102, and the fixed side arc contact 108 to the fixed side main contact 5
  • a bolt 21 for fastening is provided.
  • the fixed-side arc contact 108 is provided so that the parts can be easily replaced even if the arc wears out.
  • the movable main contact 4 opens around the rotating shaft 110. This is done by moving in the direction of the pole position.
  • the contact guide 14 collides with a stopper bolt 17 provided on the arc contact guide 16, and operates as a unit so that the arc contact becomes the main contact. It opens later than the child.
  • the distance that the arc contact is delayed from the main contact, that is, the wipe amount of the arc contact is adjusted by the gap between the stopper bolt 17 and the arc contact guide 16, and can be easily adjusted by controlling the protrusion of the stopper bolt 17. It is configured as possible.
  • the contact device in the fourth embodiment has an arc contact, the main contact is hardly melted by the arc at the time of opening. Therefore, the main contact piece is preferably pure silver having high current-carrying performance, and then an alloy containing silver is preferable. On the other hand, since the arc contact piece does not need a current-carrying performance with respect to a steady current and needs durability against arc damage due to an arc, a metal having a high melting point, specifically, an alloy containing tungsten is preferable.
  • the structure having the arc contact has been described. However, by providing a structure equivalent to the arc contact on a part of the main contact piece, a structure having no arc contact can be configured. Thus, the same effect as in the fourth embodiment is obtained.
  • the structure of the movable-side arc contact piece 10a having a reduced cross-sectional area and extending in the arc runner direction, and the covers 3a and 3b provided on the contact and the fixed-side contact Even if the shielding plate 6 provided in the lower part is provided independently, there is an effect of increasing the external force acting on the arc, and the commutation time is shortened. Further, within the scope of the present invention, the present invention can be combined with some or all of the embodiments, and each embodiment can be appropriately modified or omitted.

Abstract

【課題】簡単な構成で装置を大型化することなく、アークに働く外力増加の効果があり、転流時間の短縮が実現される構成を得る。 【解決手段】固定側及び可動側に設けられた主接触子と、固定側及び可動側に設けられたアーク接触子と、消弧室の側壁とから構成されるアーク発生室を、前記消弧室に向かう方向への開放口を残して、少なくとも側面及び底面を絶縁壁で囲うようにした。

Description

回路遮断器の接触子装置、およびこの接触子装置を用いた回路遮断器
 この発明は、例えば電鉄変電所の保護遮断器などとして使用する直流高速度回路遮断器の接触子装置に関するもので、特に接触子間に発生したアークを速やかにアークシュートに移行させることで、遮断時間を短縮可能とした接触子装置に関する。
 回路遮断器を含む電気回路に事故電流が生じた場合、事故電流による被害を軽減させるためには、事故電流の遮断時間を短縮させることが必要である。遮断時間を短縮するためには、接触子間に発生したアークを速やかにアークシュート(消弧室)内に移行させることで限流開始の時間を早め、遮断時間を短縮することが必要である。
 従来の回路遮断器は、固定接点を有する固定接触子と、上記固定接触子に対して接離自在な可動接点を有する可動接触子と、両接触子間の解放によって生じたアークを消弧するアークシュートを有し、更に、固定接点と可動接点とに夫々隣接配置されてアークを各接点から移行させる一対のアークランナと、両アークランナに夫々連設されてアークを伸長させながらアークシュートに移行させるアークホーンを備えている。
 このような基本構成からなる回路遮断器において、遮断性能の改善の要求は大きく、例えば特許文献1に示すように、固定接触子側のアークランナとアークホーン、及び、可動接触子側のアークランナとアークホーンは一体に形成して抵抗となる箇所をできるだけ少なくして、安定した電流遮断が実現できるとする提案がある。
また、特許文献2のように、アーク接触子両側面の遮蔽板に消弧室上部方向に向かうにつれ断面積が徐々に大きくなるテーパ状の溝を設けて、消弧室の上部方向にアークガスを流れ易くして、アークガスの下方向への流出を抑えて地絡、再点弧を防止するようにしたものがある。
 一方、直流高速度遮断器は事故電流による大電流遮断性能だけではなく、小電流遮断性能も確保することが重要であり、その両立を実現させる必要がある。直流高速度遮断器において、遮断電流が小さくなると自己の遮断電流による電磁力が小さくなるためアークの駆動力が弱くなり、遮断が困難となる。このため、接触子間に発生するアークに対して空気ノズルから強制的に空気を吹付け、アークをアークシュート内へと導く必要がある。空気を吹付けることでアークをアークホーンに転流させてアークを引き伸ばすことでアーク抵抗を高め、アーク時間の短縮を図っている。
 従来の直流高速度遮断器の空気ノズルは金属製の円管を塑性加工して製作している。空気ノズルから空気の吹出しは、開極時に主接触子の動作と連動させて、空気シリンダ内のピストンを圧縮方向に駆動し、これにより圧縮された空気が空気ノズルからアークに向って吹出して小電流を確実に遮断するようにしている(例えば、特許文献3参照)。
特開2014-216078号公報 特開2015-130277号公報 実開平2-18237号公報
 ところで、上記特許文献1の回路遮断器の接触子装置では、転流を高速化する構造をとっておらず、遮断時間の短縮のための処置がなされていなかった。また、当該接触子構造において転流の高速化を行うためには、外部からの磁束印加や開極速度の増加が必要であり、装置全体が大型化する問題があった。
 また、特許文献2の回路遮断器の接触子装置では、遮蔽板の形状を工夫することで、上部方向へのアークガスの流れを促進する構造であるが、アークのアークランナ方向への電磁駆動力を向上させることで、転流時間を短縮する点については、触れられていない。
 更に、特許文献3の空気ノズルを使用する装置では、空気ノズルが金属製のため、遮断時にこの空気ノズルから発生した鉄粉のような導電率の高い異物が生じる可能性があり、これらの異物が空気ノズルと接触子周りのアーク空間内に混入すると、通電部が導電体である空気ノズルを介して極間での短絡あるいは大地への地絡を生じる恐れがあった。このため、これを防止するために、金属製の空気ノズルと充電部となる主接触子との間に所定の絶縁距離を確保する必要があり、消弧装置が大型化するという問題があった。
 また、大電流遮断性能を向上させるためには、主接触子間で発生したアークをアークホーンへと転流させる時間を短縮させ、主接触子付近のアークガス流動を上方のアークシュートの方向に向かうように誘導する必要があるが、空気ノズルから吹出す空気が空気ノズルと接触子周りのアーク空間の側方あるいは下方へ漏れる割合も高く、上方のアークシュート方向へ向かうアークガス流動を十分に得ることができなかった。このため、特に小電流遮断性能を持たせるために、所定の吹出し空気量を確保できる大きな空気シリンダが必要となり、遮断器が大型になるという問題もあった。
 遮断時間を短縮させるための手法について全体的に考察してみると、次の3つの手法があげられる。
 第一の手法は、開極時に接触子間に発生するアークのアークランナ方向への電磁駆動力を向上させることで、アークを速やかにアークランナおよびアークシュートに移行させ、転流時間を短縮させる手段である。アークは気中での放電現象であり、電流が流れているため、外部からの磁界によりアークの電流方向と磁束方向との外積方向にローレンツ力を受ける。ローレンツ力を受けたアークは、力のはたらく方向に移動し、移動先のアークランナにて放電を開始し、アークシュートへと移行した後に消弧へと至る。これまで、接触子間のアークに磁束を与える方法として、接触子近傍に永久磁石や主回路電流生起の電磁石等を設ける手法が取られてきたが、装置が複雑化する問題があった。
 第二の手法は、接触子からアークランナへのガス流動を向上させる手法である。アークは高温であるため、アークの発生中に電極を始めとする周囲の構造物を溶融させ気化させる性質を持つ。ゆえに、通電中に接触子が開離してアークが発生すると、接触子を溶融させることで接触子間の圧力が高くなり、アークシュート上端および接触子を覆うモールドの開口部へとガス流動が生じる。接触子からアークシュート以外への開口部の流路を塞ぐことで、アークシュート方向へのガス流動を高めることが可能となる。しかし、アークに働く力は主に電磁駆動力とガス流動による外力であるため、これらの力の大きさと方向を制御するためには、複雑、高価な装置を必要としていた。
 第三の手法は、可動接触子から可動側のアークランナまでの距離を短くする手法である。接触子間で発生したアークの端部は、接触子片の上端まで移動し、接触子片とアークランナの空間距離が短くなった場合にアークランナへと移行する。ゆえに、可動接触子から可動側のアークランナまでの距離は短い方が転流時間短縮に効果的といえる。当該距離を短くする手法として、可動接触子の上端部を延長させ開極速度を増加させる手法が存在するが、この場合、開極操作力の増加により装置が大型化する問題があった。
 この発明は、従来技術及び上記第一から第三の方法全ての問題点を解決するためになされたものであり、簡単な構成で接触子間アークを速やかにアークランナヘ移行させてアークの転流時間を短縮することが可能な回路遮断器の接触子装置を提供することを目的とするものである。
 この発明は、また、小電流遮断時あるいは大電流遮断時における遮断性能を確保しながらも、小型化が可能な回路遮断器の接触子装置を提供することを目的とする。
 この発明に係る回路遮断器の接触子装置は、固定側及び可動側に設けられた主接触子と、固定側及び可動側に設けられたアーク接触子と、前記固定側主接触子と可動側主接触子、前記固定側アーク接触子と前記可動側アーク接触子から構成されるアーク発生室を、前記消弧室に向かう方向への開放口を残して、少なくとも側面及び底面を絶縁壁で囲ったことを特徴とする。
 この発明によれば、上記両主接触子と上記両アーク接触子とから構成されるアーク発生室を、消弧室に向かう方向への開放口を残して、少なくとも側面及び底面を絶縁壁で囲った構成としたので、アーク接触子からアークランナまでのガス流路をガス漏れによる損失が少ない高効率なもので形成でき、これにより、ガス流動による外力を増大させることで、アークのアークランナへの移動が促進され、転流時間の短縮を実現できるものである。
 更に、上記固定側接点と上記可動側接点との間の空間に向って空気を吹き付ける空気ノズルを備えた直流高速度遮断器においては、従来の空気ノズル式直流高速度遮断器に比べて、吹付け用空気供給装置の小型化が可能になると共に、アークに効率良く空気を吹付けることが可能となるため、小電流遮断時あるいは大電流遮断時における遮断性能を確保しながらも、小型化を実現することができる。
本発明の実施の形態1を示す直流高速度遮断器の側断面図で、閉極状態における図である。 本発明の実施の形態1を示す直流高速度遮断器の側断面図で、開極状態における図である。 図2の開極状態における遮断部の拡大構造を示す側断面図である。 図3のA-A方向に見た断面図である。 図3のB-B方向に見た断面図である。 図4のC-C方向に見た側断面図であり、アーク発生室の密閉のイメージを説明する図である。 この発明の実施の形態1の空気ノズルを示す平面図である。 図7の側面図である。 図7の正面図である。 図7の後面図である。 図7のD-D方向に見た側断面図である。 図7のD-D方向に見た側断面図であり、通気孔の各断面位置を示す図である。 図12のE方向に見た平面図である。 図12のF-F方向に見た断面図である。 図12のG-G方向に見た断面図である。 図12のH-H方向に見た断面図である。 図12のJ-J方向に見た断面図である。 この発明の実施の形態2の空気ノズルを示す平面図である。 この発明の実施の形態3の遮断部の構造を示す側断面図である。 本発明の実施の形態4を示す接触子装置の側面図で、開極状態におけるアークに働くガス流動を説明する図である。 本発明の実施の形態4を示す接触子装置の側面図で、閉極状態における図である。 本発明に係るアーク接触子のアークに働く電磁駆動力を説明するための斜視図である。 実施の形態4の可動側接触子の組立を説明するための部品展開図である。 実施の形態4の固定側接触子の組立を説明するための部品展開図である。 実施の形態4の可動接触子の要部を拡大して示した平面図である。 実施の形態4の接触子モールド及び遮蔽板の構成を示す斜視図である。 図23に示す可動接触子の構成のうち、可動側アーク接触子とアーク接触子ガイドを示す斜視図である。
実施の形態1.
 以下、この発明の実施の形態1を図1から図17に基づいて説明するが、各図において、同一または相当部材、部位については同一符号を付して説明する。
図1及び図2は、この発明を実施するための実施の形態1における直流高速度遮断器の全体構成を示すものである。図1は、この発明の実施の形態1に係わる直流高速度遮断器における接点閉合状態(運転状態)を示す側断面図である。図2はこの発明の実施の形態1に係わる直流高速度遮断器における接点が開離動作中(遮断動作中)の状態を示す側断面図である。
 まず、図1、図2により直流高速度遮断器の構成について説明する。図1において、直流高速度遮断器101は、通常の運転状態(接点閉合状態)においては、消弧空間が形成された消弧室102の下部に配置された上部導体103とその下側に配置された下部導体104との間を、上部導体103に接続された固定側接点105と下部導体104に可撓導体106aを介して接続した可動子106の一端に装着された可動側接点107とを接触させ、可動子106を介して上部導体103と下部導体104の間に電流を通電するように構成している。
 固定側接点105及び可動側接点107は消弧室102下部の内側に収納されるように配置されている。また、固定側接点105及び可動側接点107の上部には遮断時にアークKが発生するアーク接触子が配置されており、このアーク接触子は固定側アーク接触子108と可動側アーク接触子109によって構成されている。
 また、前記可動子106は回転軸110により回動可能に支持され、また操作機構部111に連結されており、直流高速度遮断器101を図2の開極状態から運転状態にするために可動側接点107を固定側接点105方向に向けて動作させる時には、前記操作機構部111によって前記回転軸110を回動支点として反時計方向に回動され、図1に示す固定側接点105と可動側接点107の閉合位置まで駆動される。112はラッチであり、固定側接点105と可動側接点107の閉合位置において前記可動子106の他端と係合して、前記可動子106をこの閉合位置(運転位置)に保持する。113は引外しばねであり、前記可動子106とフレーム114との間に装着されており、前記可動子106の反時計方向への回動によりエネルギーが蓄勢され、固定側接点105と可動側接点107の閉合位置(運転状態)において、前記可動子106を時計方向(すなわち遮断方向)に向けて回動するように付勢する。
 また、115は過電流検出器であり、下部導体104に流れる電流が所定値を超えた場合に動作する。116はラッチ解除機構であり、前記過電流検出器115の動作により駆動されて、前記ラッチ112と前記可動子106の他端との係合を解除するように動作する。117は消弧室102の下部に装着された絶縁物製の空気ノズルである。空気ノズル117は、エポキシあるいはポリエステル等の固体絶縁物にてブロック状に成形した部材であり、内部を貫通した通気孔117aを有している。この空気ノズル117の構造の詳細は後述する。118は空気シリンダであり、前記可動子106と連結された駆動リンク119により駆動されるピストン120を内蔵している。図1においてピストン120は左右方向にスライド動作をし、右方向へのスライドにて圧縮動作となり、この圧縮動作にて加圧された空気を送気管121を介して前記空気ノズル117の通気孔117aに送るようにしている。
 固定側アーク接触子108と可動側アーク接触子109は、開極動作において、固定側主接点105及び可動側主接点107の開離動作の後に、少し遅れて開離するように構成しており、アークKは固定側アーク接触子108と可動側アーク接触子109の間に発生する。このようにして、アークKが固定側主接点105及び可動側主接点107の間で発生することを防止することで、固定側接点105及び可動側接点107がアークKの熱によって溶損しないように保護している。
 固定側アーク接触子108と可動側アーク接触子109の上部には、発生したアークKを消弧室102内の上部へと導くために、発生したアークKを転流させるためのアークホーンが配置されており、アークホーンは固定側アークホーン122と可動側アークホーン123によって構成されている。固定側アークホーン122と可動側アークホーン123は、固定側アーク接触子108と可動側アーク接触子109に各一端を配置し、消弧室102の上方に向うに従って、固定側アーク接触子108と可動側アーク接触子109の各他端が消弧室102の前後方向に向かって互いに離れるように、斜め上方に向うように配置している。
 また、消弧室102の上側には、前記固定側アークホーン122及び前記可動側アークホーン123の延長方向(すなわち消弧室102の前後方向)に沿って薄板状の磁性体からなるグリッド124を複数配列したグリッド集合体125を配置している。アークKがグリッド集合体125に到達し、このグリッド124の存在によって発生する電極降下電圧及びアークKの長さを延長することによって高まるアーク電圧を利用して、アーク電流を限流して遮断するようにしている。また、グリッド集合体125の上部側にはアークガスを消弧室102の外部へ排気するための排気口126を設けている。
 図2はこの発明の実施の形態1に係わる直流高速度遮断器101における接点が開離動作中(遮断動作中)の状態を示す側断面図である。例えば、運転状態において事故などにより所定の電流値以上の大電流が流れると、過電流検出器115が大電流を検知し、ラッチ解除機構116を介してラッチ112と可動子106の係合を解除する。その結果、引外しばね113によって可動子106が回転軸110を支点として時計方向(遮断方向)に駆動されるため、まず固定側主接点105と可動側主接点107が開離し、次いで、固定側アーク接触子108と可動側アーク接触子109が開離しアークKが発生する。
 前記可動子106が時計方向(遮断方向)へ回動するのに伴い、前記可動子106に連結された駆動リンク119を介して空気シリンダ118の内部のピストン120が、図2において右方向に駆動される。この動作によって圧縮された空気が送気管121を介して空気ノズル117に送気され、空気ノズル117内の通気孔117aを通り、固定側アーク接触子108と可動側アーク接触子109間に生じたアークKに向って下方から上方に向う空気流を吹き付ける。この空気流により、アークKは上方に駆動されて固定側アークホーン122及び可動側アークホーン123に移行する。
 次いで、図3から図6にてアークKへ空気の吹付けを行う構造について説明する。図3に直流高速度遮断器の心臓部である遮断部130の構成を示す。遮断部130は、消弧室102の下部、固定側接点105、固定アーク接触子108、可動子106、可動側接点107、可動側アーク接触子109、空気ノズル117、固定側アークホーン122、可動側アークホーン123にて構成している。
この遮断部130の特徴は、上部の消弧室102内と連通する上部開放口132(固定側アークホーン122と可動側アークホーン123の間の空間)を除いて、固定側アークホーン122、可動側アークホーン123、及び絶縁壁とによって囲うことで、その内部が周囲から隔離された形でアーク発生室131を構成し、アーク発生室131内で発生したアークKに対して下部から上方に向けて空気を吹き付けて、上部開放口132からアークKを上部の消弧室102内に駆動するように構成した点にある。
 図3においては、下部の空気ノズル117と、右側の可動側アークホーン123と、左側の固定側主接点105、固定アーク接触子108と固定側アークホーン122とで囲まれた空間が遮断部130を構成する。
 また、図4は図3のA-A方向に見た構造を示す。空気ノズル117の可動子貫通孔117c内を上下方向に貫通して可動子106が配置されており、空気ノズル117の上部両側には可動子106の両側を挟むように消弧室102の下部の絶縁物製の側壁102aが配置されている。
 上記空気ノズル117の可動子貫通孔117cの内壁と可動子106の両側との間の隙間は必要最小限の寸法としており、また消弧室102の下部の側壁102aと可動子106の両側との間の隙間も必要最小限の寸法としている。図4において、可動子106の手前側の縦方向に長くかつ狭い空間がアーク発生室131を構成する。このようにアーク発生室131の少なくとも側面及び底面を絶縁壁で囲う構成としたため、空気ノズル117の可動子貫通孔117cと可動子106間の隙間から下方に漏れる空気流は、わずかな量に制限することが出来る。
 また、図5は図3のB-B方向に見た構造を示す。図において空気ノズル117の可動子貫通孔117cの上端の位置に固定側接点105及び固定側アーク接触子108が配置されており、空気ノズル117の上部両側には固定側接点105及び固定側アーク接触子108の両側を挟むように消弧室102の側壁102aが配置されている。消弧室102の側壁102aと可動子106との間の隙間は必要最小限の寸法としている。図5において、固定側主接点105及び固定側アーク接触子108の手前側の狭い空間が、上記図4の説明と同様に、アーク発生室131を構成する。
 また、図6は、図3の構成に対応するもので、密閉構造のアーク発生室131における、上部開放口132を除いた密閉構造のイメージを説明する図である。
 次に、図7から図11にて空気ノズル117の構造を説明する。図7は絶縁ブロック状の空気ノズル117を示す平面図である。図において、117aは内部を貫通した通気孔、117bは通気口117aからの空気が吹き出すノズル(すなわち空気吹出口)、117cは可動子106が空気ノズル117を貫通して配置するための可動子貫通孔である。
117dは、空気ノズル117の上面の平坦部であり、この平坦部117dが前記アーク発生室131の底面壁を構成する。ノズル117bは、前記空気ノズル117の長さ方向の軸線(断面線D-Dに対応)に直交する方向に向けて、前記平坦部117dの表面に細長い開口を有している。この細長い開口の形状は、長円形、長矩形、あるいは端部が多角形をした多角形状の長孔であってもよい。
 また、117eは側壁保持部であり、前記平坦部117dの両側に、かつ前記平坦部117dから上方に突出するように、前記空気ノズル117の長さ方向の軸線(断面線D-Dに対応)に沿って平行に配置している。前記平坦部117dの上面に前記消弧室102を載置することで前記2つの側壁保持部117eの間に前記消弧室102の側壁102aの下部が配置され、前記側壁保持部117eは、前記突出部117dの内側にて沿って配置され、前記消弧室102の側壁102aの下部を所定位置に保持する。 
 図8は図7の側面図であり、空気ノズル内の通気孔117a及び可動子貫通孔117cの形状を破線で示す。通気孔117aは左側端に開口を有し、他端は上方に向けてノズル117bを配置している。また、可動子貫通孔117cは、遮断動作において可動子106が回転軸110を支点に時計方向に回動しても、可動子106と可動子貫通孔117cの内壁との間の隙間が最少になるように、可動子106が図2に示すように遮断方向に動作して倒れる側を垂直ではなく斜面形状にしている。   
図9は図8の正面図であり、通気孔117aを示している。また、図10は図8の後面図である。また、図11は図7のD-D断面図であり、図8と同様に、空気ノズル117内における通気孔117a及び可動子貫通孔117cの位置及び形状を示している。
 次に、図12から図17にて空気ノズル117の内部を貫通した通気孔117aの構造を説明する。図13は図12の矢印Eの方向に見た図であり、ノズル117bが上方に向って開口し、またアーク発生室131の幅方向に細長く伸びた長孔形状に配置されていることを示している。
 また、図14から図17は、空気ノズル118の内部を貫通した通気孔117aの断面形状の変化を示すものであり、図12における、断面F-F(図14)、断面G-G(図15)、断面H-H(図16)、断面J-J(図17)の各形状を示している。
 このようにして、通気孔117aは、送気管121との接続部は円形であり、長孔形状のノズル117bに至るまでに、断面形状を円形から細長形状まで連続して滑らかに変化させていることを示している。最終段階のノズル117bの位置で、アーク発生室131の幅方向に細長い形状とすることで、伸びたアークKの全幅に対してむらのない空気吹付けが可能となり、アークKを上方に向けて効率よく駆動することが可能になる。
さらに、図18に示すように、ノズル117bをアーク発生室131の幅方向と同程度に広げることで、伸びたアークKの全幅に対して確実な空気吹付けが可能となり、アークKを上方に向けて更に効率よく駆動することが可能になる。
 以上のように、この実施の形態1の構成によれば、アーク発生室131の底面を構成する空気ノズル117を導電性の材料を含まない固体絶縁物のブロックで構成したので、空気ノズル117と直流高速度遮断器の充電部との間は、例えば充電部と大地間に必要な絶縁距離を確保することが不要となるため、直流高速度遮断器101を小型化することが可能となる。
 また、上部の消弧室102に連通する上部開放口132を除き、固定側アークホーン122及び可動側アークホーン123を絶縁物によって囲うことで、周囲から隔離された形でアーク発生室131を構成できるので、側部あるいは下部方向への空気などのガス漏洩を大幅に低減することが可能となり、吹付け用空気供給装置の小型化が可能となる。さらに、アーク発生室131内のアークKを上方へ駆動するための効率が向上するため、直流高速度遮断器101を大型化することなく遮断性能を向上させることが可能になるという効果が得られる。
 また、図3に示すように、ノズル117bを固定側アーク接触子108の下方に配置し、さらに固定側アーク接触子108と遮断位置にある可動側アーク接触子109との間の空間に向って斜め上方に向って開口させているので、空気は矢印のN方向、すなわち斜め上方に吹出すことになり、これにより、遮断動作において固定側アーク接触子108から遮断位置にある可動側アーク接触子109まで引き延ばされたアークKの全長に対して、アークKを消弧室102側に向って効率よく吹き飛ばすことが可能となる。
 なお、上記の説明では、主たる通電は固定側主接点105と可動側主接点107で行い、遮断動作時には固定側接点105と可動側接点107よりも遅れて開離する固定側アーク接触子108と可動側アーク接触子109間に発生するアークKを制御して遮断するもので説明したが、必ずしも2種類の接触子が必要というわけではなく、固定側接点105と可動側接点107にてアークKを発生させるものであってもよい。
実施の形態2.
 なお、実施の形態1では、図3、図7に示すように、空気ノズル117の吹き出し口(ノズル117b)を、固定側接点105及び可動側接点107の下方に設け、ノズル117bの幅は空気ノズル117の可動子貫通孔117cよりも狭くしているが、図18に示すように、ノズル117bの幅を空気ノズル117の第一孔117cよりも広くすることで、前記固定側アーク接触子108及び前記可動側アーク接触子109間に生じるアークKの全幅に対してより効率よく空気を吹き付けることが可能となり、遮断性能をさらに向上させることが可能となる。
実施の形態3.
 また、実施の形態1、2では、アーク発生室131は、固定側主接点105、固定側アーク接触子108、固定側アークホーン122、可動側アークホーン123、消弧室102の側壁102a、空気ノズル117で構成していた。すなわち、底面の絶縁物は絶縁製ブロックの空気ノズル117が、側部の絶縁物は絶縁製の側板102aが担っており、可動子106の動作方向の各端部は、それぞれ、可動側アークホーン123と、固定側主接点105と固定側アーク接触子108と固定側アークホーン122の組合体がアーク発生室131の側壁を構成していた。
 これに対し、実施の形態3では図19に示すように、可動子106の動作方向の各端部も絶縁壁133、134で囲うようにした。このような構成により、遮断部130の構成体、すなわち、消弧室102の下部、固定側接点105、固定アーク接触子108、可動子106、可動側接点107、可動側アーク接触子109、空気ノズル117、固定側アークホーン122、可動側アークホーン123をより確実に囲うことが可能となり、アークKへの空気吹付けによる消弧室102への駆動をより効率的に行うことが可能となり、遮断性能が向上する。
実施の形態4.
 図20~図22は本発明の他の実施例を示す接触子装置の閉極状態から開極状態へ至る動作変化並びに開極時にアークKに働く駆動力を説明するための概略構成図である。なお、上記実施の形態1~3と同一部分あるいは相当部分には同一符号で示している。本実施例では、可動側主接触子4と固定側主接触子5とを有し、可動側主接触子4の表面に可動側アーク接触子109と可動側主接触片13aとを備え、固定側主接触子5の表面には、上記可動側アーク接触子109と対向して配置された固定側アーク接触子108と、上記可動側主接触片13a(実施の形態1の可動側接点107に相当)と対向して配置された固定側主接触片13b(実施の形態1の固定側接点105に相当)とを備えている。そして上記可動側主接触子4は回転軸110を中心に図示しない操作機構部により回動される。
 本実施の形態4では、可動側主接触子4と固定側主接触子5の位置関係が上記実施の形態1~3で説明したものと逆になっている。
 図20のように、可動側アーク接触子109をカバー3aで覆うように設け、固定側アーク接触子108をカバー3bで覆うように設ける。接触子の周辺は接触子モールド7により覆われるように構成され、また、固定側主接触子5の下部に後で説明する遮蔽板6を設ける。このような構造において、通電状態にある回路遮断器が開極した際に発生するアークKは、実線の矢線Fで示されるような接触子109、108からアークシュート(消弧室)102へと向かうガス流動力を受ける。
 また、破線の矢線で示されるような接触子109、108からアークシュート102以外へと向かうガス流動力は、カバー3a、カバー3bおよび遮蔽板6により抑制される。アークシュート102へと向かうガス流動力により、アークKがアークシュート102に設けられたアークランナ9a、9bに移動する時間が短縮されることで、アークの転流時間が短縮される。
 図22はアーク接触子片10aを発弧点とするアークKに働く電磁駆動力について概略説明する斜視図である。アーク接触子片10aは通電方向の断面積が小さくなるように設けられている。つまり、アーク接触子片10aの太さは他の導電路の導体よりも小さくしている。このような構成にすることにより、アーク接触子片10aに流れる電流生起の磁気経路が小さくなることで、アークKを貫く磁束密度が大きくなる。従って、アークKに働く電磁駆動力が大きくなり、接触子間のアーク膠着を引き離すことでアークの転流時間が短縮される。
 また、接触子片10aの頂部をアークランナ9aの近くに延長することで、開極直後の可動側アーク接触子109とアークランナ9aの距離が短縮され、アークの転流時間が短縮される。
 以上のように、本実施例の接触子装置は、外部からの磁束印加やガス流入を必要とせずに、簡易的な構造でアークのアークシュート方向への駆動力増加を達成し、転流時間の短縮による遮断時間の低減を実現するものである。
 図21~図24は実施の形態4による回路遮断器の接触子装置の構造を示す図である。
 図21は回路遮断器が閉極状態の接触子装置を示した側面図であり、接触子装置は、主回路導体103から流れる定常電流を通電するための可動側主接触子4、固定側主接触子5と、これら主接触子4、5よりも遅れて開極することでアークの発弧点となり主接触子4、5のアークによる溶損を防止する可動側アーク接触子109、固定側アーク接触子108と、アークによるガスがアークシュート102に導かれるように設けられた接触子モールド7および遮蔽板6と、アークをアークシュート102に移行させるためのアークランナ9a、9bが設けられている なお、図25に接触子装置を上方から見た平面図を示している。
 接触子モールド7は、アークシュート102の方向に向けた開口を有する箱状の形状で、絶縁物から構成されている。また、遮蔽板6は、箱状の接触子モールド7の固定側主接触子5の下部に設けられている。この遮蔽板6は接触子モールド7に対して着脱可能に設けても良い。図26は接触子モールド7に遮蔽板6を着脱自在に設けた場合の斜視図であり、図26(a)は遮蔽板6が接触子モールド7に収容された状態、図26(b)は遮蔽板6を取り付ける前の状態を示している。
 図23は可動側接触装置を説明するための部品展開図である。図23において、可動側接触子装置は定常電流を通電させるための主接触子片13aが接合された可動側主接触子4と、可動側主接触子4に操作力を伝達するための接触子ガイド14と、可動側アーク接触子109に接圧荷重を与えるための接圧ばね15と、可動側アーク接触子109が可動側主接触子4の開極後に可動接触子に追従して動作するための動力を伝達するアーク接触子ガイド16と、アーク接触子ガイド16に設けられ可動側アーク接触子109が可動側主接触子4に追従して動作する際のワイプを調整するためのストッパーボルト17と、可動側主接触子4および可動側アーク接触子109の回転動作の中心軸となる回転軸110と可動側アーク接触子109近傍のガス流動を消弧室102方向に制御するためのカバー3aと、可動側アーク接触子109をアーク接触子ガイド16に固定するためのピン20と、可動側アーク接触子109の通電電流を可動側主接触子4に通電させるためのシャント19が設けられている。図27は可動側アーク接触子109とアーク接触子ガイド16とを組み立てた状態を示している。
 可動側アーク接触子109のアーク接触子片10aは、図22でも示されるように通電方向の断面積が小さくなっており、かつ、アークランナ方向へと延長させている。可動側アーク接触子109はアークによる損耗が発生しても、容易に部品交換が可能なように設けられている。
 図24は固定側接触子を説明するための部品展開図である。
 図24において、固定側接触子装置は定常電流を通電させるための主接触子片13bが接合された固定側主接触子5と、回路電流を通電させるための主回路導体103と、接触子片10bを有する固定側アーク接触子108と、固定側アーク接触子108近傍のガス流動を消弧室102方向に制御するためのカバー3bと、固定側アーク接触子108を固定側主接触子5に締結するためのボルト21が設けられている。固定側アーク接触子108はアークによる損耗が発生しても、容易に部品交換が可能なように設けられている。
 図20の開極動作は、可動側主接触子4に締結された接触子ガイド14が操作機構部からの開極荷重を受けることで、可動側主接触子4が回転軸110を中心に開極位置方向へと移動することで行われる。可動側主接触子4の開極動作の最中に、接触子ガイド14がアーク接触子ガイド16に設けられたストッパーボルト17に衝突し、一体となって動作することでアーク接触子が主接触子より遅れて開極する。
 アーク接触子が主接触子より遅れる距離、すなわち、アーク接触子のワイプ量は、ストッパーボルト17とアーク接触子ガイド16との間隙により調整され、ストッパーボルト17の出代の制御により容易に調整が可能なように構成されている。
 この実施の形態4における接触子装置はアーク接触子を有しているため、開極時のアークによる主接触子の溶損が殆ど発生しない。したがって、主接触子片は高い通電性能を有する純銀が好ましく、次いで銀を含む合金が好ましい。一方、アーク接触子片は定常電流に対する通電性能が必要なく、アークによる溶損への耐久性を要するため、融点の高い金属、具体的にはタングステンを含む合金が好ましい。
 また、上記実施の形態4では、アーク接触子を有する構造について説明したが、主接触子片の一部にアーク接触子と同等の構造を設けることで、アーク接触子を有しない構造でも構成可能であり、上記実施の形態4と同様の効果がある。
 なお、上記実施の形態4の説明のとおり、可動側アーク接触子片10aの断面積を小さくしアークランナ方向に延長する構造、及び接触子に設けたカバー3a、3b、及び、固定側接触子の下部に設けた遮蔽板6は、それぞれ独立に設けてもアークに働く外力増加の効果があり、転流時間の短縮が実現される。
 また、本発明は、その発明の範囲内において、各実施の形態の一部または全部を組合わせたり、各実施の形態を適宜、変形、省略することが可能である。
3a 可動側アーク接触子のカバー、3b 固定側アーク接触子のカバー、
4 可動側主接触子、5 固定側主接触子、6 遮蔽板、
7 接触子モールド、9a、9b アークランナ、
10a、10b アーク接触子片、K アーク、
13a、13b 主接触子片、14 接触子ガイド、
15 接圧ばね、16 アーク接触子ガイド、17 ストッパーボルト、
19 ピン、20 シャント、21 ボルト、 
101 直流高速度遮断器、102 消弧室、102a 側壁
103 上部導体、104 下部導体、105 固定側接点、
106 可動子、106a 可撓導体、107 可動側接点、
108 固定側アーク接触子、109 可動側アーク接触子、
110 回転軸、111 操作機構部、112 ラッチ、
113 引外しばね、114 フレーム、115 過電流検出器、
116 ラッチ解除機構、117 空気ノズル、117a 通気孔、
117b ノズル(空気吹出口)、117c 可動子貫通孔、
117d 平坦部(底面壁)、117e 側壁保持部、
118 空気シリンダ、119 駆動リンク、120 ピストン、
121 送気管、122 固定側アークホーン、
123 可動側アークホーン、124 グリッド、
125 グリッド集合体、126 排気口、
130 遮断部、131 アーク発生室、132 上部開放口、
133、134  絶縁壁

Claims (19)

  1.  主回路導体と接続された固定側主接触子と、上記固定側主接触子の一部に有する固定側接点に接離する可動側接点を有する可動側主接触子と、上記固定側主接触子と上記可動側主接触子の上部に配置された消弧室と、上記固定側接点および可動側接点の上部にそれぞれ設けられ、遮断時に両者間にアークが発生する固定側アーク接触子および可動側アーク接触子と、前記可動側主接触子および可動側アーク接触子を開閉駆動する操作機構部と、を備えた回路遮断器において、前記固定側主接触子と可動側主接触子、及び前記固定側アーク接触子と可動側アーク接触子から構成されるアーク発生室を、前記消弧室に向かう方向への開放口を残して、少なくともその側面及び底面を絶縁壁で囲ったことを特徴とする回路遮断器の接触子装置。
  2.  前記アーク発生室は前記開放口を残して前記絶縁壁で取り囲んだことを特徴とする請求項1に記載の回路遮断器の接触子装置。
  3.  前記アーク発生室の側面の前記絶縁壁は、前記消弧室の側壁であることを特徴とする請求項1または請求項2に記載の回路遮断器の接触子装置。
  4.  前記アーク発生室の前記開放口に向けて下方から空気を吹き付ける空気吹出口を有する空気ノズルを配置したことを特徴とする請求項1から請求項3のいずれか1項に記載の回路遮断器の接触子装置。
  5.  前記アーク発生室の底面の前記絶縁壁は、前記固定側接点と可動側接点との間の空間に向けて空気を吹き付ける空気吹出口を有する絶縁ブロック状の空気ノズルであることを特徴とする請求項1または請求項2に記載の回路遮断器の接触子装置。
  6.  前記可動側アーク接触子のアーク接触子片の通電断面積を、他の導電路の導体よりも小さくしたことを特徴とする請求項1または請求項2に記載の回路遮断器の接触子装置。
  7.  前記アーク発生室を取り囲む絶縁壁は箱状の接触子モールドで構成されたことを特徴とする請求項2に記載の回路遮断器の接触子装置。
  8.  前記接触子モールドの固定側主接触子の下部に遮蔽板を設けたことを特徴とする請求項7に記載の回路遮断器の接触子装置。
  9.  前記遮蔽板を前記接触子モールドに着脱自在に設けたことを特徴とする請求項8に記載の回路遮断器の接触子装置。
  10.  前記主回路導体と前記接触子モールドの上面に平面部を形成し、前記固定側アーク接触子及び可動側アーク接触子の開閉部を上記平面部の直下付近に配置するとともに、上記平面部の上面に接して、あるいは上方近傍にアークランナを配置したことを特徴とする請求項7から請求項9のいずれか1項に記載の回路遮断器の接触子装置。
  11.  前記固定側アーク接触子及び可動側アーク接触子の両側を絶縁物製のカバーで覆ったことを特徴とする請求項1、請求項2、請求項6、請求項8、請求項9のいずれか1項に記載の回路遮断器の接触子装置。
  12.  前記可動側主接触子を接触子ガイドで支持したことを特徴とする請求項1または請求項2に記載の回路遮断器の接触子装置。
  13.  前記可動側アーク接触子をアーク接触子ガイドで支持したことを特徴とする請求項1又は請求項2に記載の回路遮断器の接触子装置。
  14.  前記空気ノズルの空気吹出口は、前記アーク発生室の側面両側の前記絶縁壁の方向に延在して形成されていることを特徴とする請求項4または請求項5に記載の回路遮断器の接触子装置。
  15.  前記空気ノズルの通気孔の断面が、前記空気ノズルと送気管との接続部の円形孔から前記空気吹出口の長孔まで連続して変化することを特徴とする請求項5に記載の回路遮断器の接触子装置。
  16.  前記空気ノズルの吹出口の長孔は前記アーク発生室の幅方向と同程度あるいはそれ以上に形成したことを特徴とする請求項4、請求項5、請求項14および請求項15のいずれか1項に記載の回路遮断器の接触子装置。
  17.  前記固定側主接触子は、前記固定側接点あるいは固定側アーク接触子のいずれか一方で構成されていることを特徴とする請求項1または請求項2に記載の回路遮断器の接触子装置。
  18.  前記可動側主接触子は、前記可動側接点あるいは可動側アーク接触子のいずれか一方、で構成されていることを特徴とする請求項1または請求項2に記載の回路遮断器の接触子装置。
  19.  請求項1から請求項18のいずれか1項に記載の接触子装置を備えた回路遮断器。
PCT/JP2017/015829 2016-04-22 2017-04-20 回路遮断器の接触子装置、およびこの接触子装置を用いた回路遮断器 WO2017183679A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017548312A JP6246448B1 (ja) 2016-04-22 2017-04-20 回路遮断器の接触子装置、およびこの接触子装置を用いた回路遮断器
EP17786016.0A EP3447782B1 (en) 2016-04-22 2017-04-20 Contactor device for circuit breaker and circuit breaker using same contactor device
AU2017253327A AU2017253327B2 (en) 2016-04-22 2017-04-20 Contactor device for circuit breaker and circuit breaker using same contactor device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-085668 2016-04-22
JP2016085668 2016-04-22
JP2016252259 2016-12-27
JP2016-252259 2016-12-27

Publications (1)

Publication Number Publication Date
WO2017183679A1 true WO2017183679A1 (ja) 2017-10-26

Family

ID=60116114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015829 WO2017183679A1 (ja) 2016-04-22 2017-04-20 回路遮断器の接触子装置、およびこの接触子装置を用いた回路遮断器

Country Status (4)

Country Link
EP (1) EP3447782B1 (ja)
JP (1) JP6246448B1 (ja)
AU (1) AU2017253327B2 (ja)
WO (1) WO2017183679A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109285732A (zh) * 2018-11-30 2019-01-29 武汉长海电气科技开发有限公司 直流接触器及其触头结构
CN110416031A (zh) * 2019-08-19 2019-11-05 德力西电气有限公司 四断点接触器
TWI695399B (zh) * 2018-08-07 2020-06-01 日商三菱電機股份有限公司 斷路器
WO2021005889A1 (ja) * 2019-07-11 2021-01-14 三菱電機株式会社 気中回路遮断器
WO2022029931A1 (ja) * 2020-08-05 2022-02-10 三菱電機株式会社 直流遮断器
WO2023053169A1 (ja) * 2021-09-28 2023-04-06 三菱電機株式会社 気中遮断器
WO2023127045A1 (ja) * 2021-12-27 2023-07-06 三菱電機株式会社 開閉装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020230684A1 (ja) * 2019-05-16 2020-11-19 三菱電機株式会社 過電流引外し装置およびこれを用いた回路遮断器
CN110047716B (zh) * 2019-05-28 2020-09-25 西一电气有限公司 一种高压电气用断路器触头灭弧装置
CN111579984A (zh) * 2020-07-07 2020-08-25 国网冀北电力有限公司检修分公司 一种断路器动作速度的试验方法及装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS523464B1 (ja) * 1969-05-24 1977-01-28
JPS6282536U (ja) * 1985-11-12 1987-05-26
JPH0218237U (ja) 1988-07-22 1990-02-06
JPH07320624A (ja) * 1994-05-24 1995-12-08 Fuji Electric Co Ltd 回路遮断器の消弧装置
JPH10269923A (ja) * 1997-03-25 1998-10-09 Mitsubishi Electric Corp 限流装置
EP0955659A2 (en) * 1998-05-07 1999-11-10 Eaton Corporation Electrical switching apparatus with contact finger guide
JP2014216078A (ja) 2013-04-23 2014-11-17 東洋電機製造株式会社 回路遮断器
JP2015130277A (ja) 2014-01-08 2015-07-16 三菱電機株式会社 直流高速度遮断器
JP2015170537A (ja) * 2014-03-10 2015-09-28 三菱電機株式会社 開閉装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA680263A (en) * 1959-03-10 1964-02-18 Delevoy Victor Circuit interrupter
KR100552413B1 (ko) * 2002-01-31 2006-02-16 미쓰비시덴키 가부시키가이샤 기중차단기
JP2018092862A (ja) * 2016-12-07 2018-06-14 富士電機株式会社 回路遮断器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS523464B1 (ja) * 1969-05-24 1977-01-28
JPS6282536U (ja) * 1985-11-12 1987-05-26
JPH0218237U (ja) 1988-07-22 1990-02-06
JPH07320624A (ja) * 1994-05-24 1995-12-08 Fuji Electric Co Ltd 回路遮断器の消弧装置
JPH10269923A (ja) * 1997-03-25 1998-10-09 Mitsubishi Electric Corp 限流装置
EP0955659A2 (en) * 1998-05-07 1999-11-10 Eaton Corporation Electrical switching apparatus with contact finger guide
JP2014216078A (ja) 2013-04-23 2014-11-17 東洋電機製造株式会社 回路遮断器
JP2015130277A (ja) 2014-01-08 2015-07-16 三菱電機株式会社 直流高速度遮断器
JP2015170537A (ja) * 2014-03-10 2015-09-28 三菱電機株式会社 開閉装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3447782A4

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI695399B (zh) * 2018-08-07 2020-06-01 日商三菱電機股份有限公司 斷路器
CN109285732A (zh) * 2018-11-30 2019-01-29 武汉长海电气科技开发有限公司 直流接触器及其触头结构
CN109285732B (zh) * 2018-11-30 2024-02-13 武汉长海电气科技开发有限公司 直流接触器及其触头结构
WO2021005889A1 (ja) * 2019-07-11 2021-01-14 三菱電機株式会社 気中回路遮断器
JPWO2021005889A1 (ja) * 2019-07-11 2021-12-23 三菱電機株式会社 気中回路遮断器
JP7150178B2 (ja) 2019-07-11 2022-10-07 三菱電機株式会社 気中回路遮断器
CN110416031A (zh) * 2019-08-19 2019-11-05 德力西电气有限公司 四断点接触器
WO2022029931A1 (ja) * 2020-08-05 2022-02-10 三菱電機株式会社 直流遮断器
JP7330385B2 (ja) 2020-08-05 2023-08-21 三菱電機株式会社 直流遮断器
WO2023053169A1 (ja) * 2021-09-28 2023-04-06 三菱電機株式会社 気中遮断器
JP7462850B2 (ja) 2021-09-28 2024-04-05 三菱電機株式会社 気中遮断器
WO2023127045A1 (ja) * 2021-12-27 2023-07-06 三菱電機株式会社 開閉装置

Also Published As

Publication number Publication date
JP6246448B1 (ja) 2017-12-13
JPWO2017183679A1 (ja) 2018-04-26
EP3447782B1 (en) 2023-06-28
EP3447782A4 (en) 2019-03-20
EP3447782A1 (en) 2019-02-27
AU2017253327A1 (en) 2018-08-09
AU2017253327B2 (en) 2019-06-20

Similar Documents

Publication Publication Date Title
JP6246448B1 (ja) 回路遮断器の接触子装置、およびこの接触子装置を用いた回路遮断器
EP2197009B1 (en) Contact bridge with blow magnets
CN201540838U (zh) 电气开关装置及其电弧隔板组件和电弧罩组件
JP5992603B2 (ja) 開閉装置
CN107359068B (zh) 一种具有复合灭弧性能的塑壳断路器
CN106486319B (zh) 过电流保护组件
CN112543985A (zh) 开关装置和用于操作开关装置的方法
KR101052645B1 (ko) 아크 차폐장치를 갖는 배선용차단기
EP3242306B1 (en) Circuit interrupteur with arc suppression
US3978300A (en) Low-voltage circuit-breaker having small contact separation and small gap between cooperating parallel-arranged arcing-rails
CN107342178B (zh) 一种高分断小型断路器
CN107393780B (zh) 一种分断能力强的小型断路器
CN107393777B (zh) 一种具有高分断性能的塑壳断路器
KR20120040092A (ko) 회로차단기
JP6005085B2 (ja) 開閉装置
US9530593B1 (en) Electromagnetically assisted arc quench with pivoting permanent magnet
KR100798340B1 (ko) 한류기능을 구비한 배선용 차단기
WO2015186245A1 (ja) 開閉装置
JP2007207720A (ja) 回路遮断器
JP2022049539A (ja) 回路遮断器
KR20120041098A (ko) 회로 차단기
KR20100052328A (ko) 가스 압과 자기력을 함께 이용한 트립 장치를 갖는 배선용 차단기
KR880000702B1 (ko) 회로 차단기
JPH0471134A (ja) 回路遮断器
CN114649153A (zh) 一种开关

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017548312

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017253327

Country of ref document: AU

Date of ref document: 20170420

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017786016

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017786016

Country of ref document: EP

Effective date: 20181122

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17786016

Country of ref document: EP

Kind code of ref document: A1