WO2017183416A1 - 車両用挙動制御装置 - Google Patents

車両用挙動制御装置 Download PDF

Info

Publication number
WO2017183416A1
WO2017183416A1 PCT/JP2017/013459 JP2017013459W WO2017183416A1 WO 2017183416 A1 WO2017183416 A1 WO 2017183416A1 JP 2017013459 W JP2017013459 W JP 2017013459W WO 2017183416 A1 WO2017183416 A1 WO 2017183416A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
deceleration
steering
behavior
jerk
Prior art date
Application number
PCT/JP2017/013459
Other languages
English (en)
French (fr)
Inventor
透 吉岡
大輔 梅津
修 砂原
康典 高原
正基 千葉
Original Assignee
マツダ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マツダ株式会社 filed Critical マツダ株式会社
Priority to EP17785758.8A priority Critical patent/EP3418146A4/en
Priority to US16/084,982 priority patent/US10793136B2/en
Priority to CN201780016213.5A priority patent/CN108883762B/zh
Publication of WO2017183416A1 publication Critical patent/WO2017183416A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/02Control of vehicle driving stability
    • B60W30/045Improving turning performance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/20Conjoint control of vehicle sub-units of different type or different function including control of steering systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/02Control of vehicle driving stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/02Control of vehicle driving stability
    • B60W30/025Control of vehicle driving stability related to comfort of drivers or passengers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/101Side slip angle of tyre
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/20Steering systems
    • B60W2510/205Steering speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed
    • B60W2720/106Longitudinal acceleration

Definitions

  • the present invention relates to a vehicle behavior control device, and more particularly to a vehicle behavior control device that controls the behavior of a vehicle whose front wheels are steered.
  • devices that control the behavior of a vehicle in a safe direction when the behavior of the vehicle becomes unstable due to slip or the like are known. Specifically, it is known to detect that understeer or oversteer behavior has occurred in the vehicle during cornering of the vehicle, and to impart appropriate deceleration to the wheels to suppress them. ing.
  • An object of the present invention is to provide a vehicle behavior control device capable of controlling the behavior of a vehicle so as to improve the stability of the vehicle posture and the ride comfort.
  • a vehicle behavior control device is a vehicle behavior control device that controls the behavior of a vehicle in which a front wheel is steered, a steering speed acquisition unit that acquires the steering speed of the vehicle, And a deceleration jerk generating means for generating a deceleration jerk backward in the front-rear direction of the vehicle when the steering speed exceeds a predetermined threshold value greater than zero.
  • the deceleration jerk generating means generates the deceleration jerk backward in the longitudinal direction of the vehicle when the steering speed becomes equal to or greater than the threshold value.
  • the deceleration jerk can be generated almost simultaneously with the occurrence of the lateral jerk at a timing earlier than that of the deceleration jerk by only.
  • the deceleration jerk is generated immediately in response to the steering operation and the deceleration is increased to increase the vertical load on the front wheels, and the vehicle has good responsiveness and linear feeling with respect to the steering operation by the driver.
  • the vehicle's behavior can be controlled so that the deceleration also rises following the rise of the lateral acceleration at the beginning of the turn, and the lateral acceleration and deceleration maintain a linear relationship and transition.
  • the behavior of the vehicle can be controlled so as to improve the stability and ride comfort of the vehicle posture.
  • the deceleration jerk generating means generates the deceleration jerk by starting to reduce the driving force of the vehicle when the steering speed becomes equal to or higher than the threshold value.
  • the deceleration jerk can be generated with high responsiveness after the start of the steering operation by the driver, and the vehicle behavior is controlled with better responsiveness to the steering operation by the driver. And the behavior of the vehicle can be controlled to further improve the stability of the vehicle posture and the ride comfort.
  • the deceleration jerk generating means generates the deceleration jerk so that the peak of the deceleration jerk appears before the peak of the jerk in the vehicle width direction when the steering speed becomes equal to or greater than the threshold value.
  • the vertical load on the front wheels is increased by generating a deceleration jerk immediately in response to the steering operation and increasing the deceleration at the beginning of the turning of the vehicle, which is more effective against the steering operation by the driver.
  • the behavior of the vehicle can be controlled with good responsiveness, and the behavior of the vehicle can be controlled to improve the stability of the vehicle posture and the ride comfort.
  • the vehicle behavior control apparatus of the present invention it is possible to improve the responsiveness and linearity of the vehicle behavior with respect to the steering operation without causing the driver to feel a strong control intervention, and to improve the stability and riding comfort of the vehicle posture.
  • the behavior of the vehicle can be controlled.
  • FIG. 1 is a block diagram showing an overall configuration of a vehicle equipped with a vehicle behavior control apparatus according to an embodiment of the present invention.
  • 1 is a block diagram showing an electrical configuration of a vehicle behavior control apparatus according to an embodiment of the present invention. It is a flowchart of the engine control process which controls the engine by the vehicle behavior control apparatus by embodiment of this invention. It is a flowchart of the torque reduction amount determination process in which the vehicle behavior control apparatus by embodiment of this invention determines a torque reduction amount. It is the map which showed the relationship between the target additional deceleration and the steering speed which the behavior control apparatus for vehicles by embodiment of this invention determines.
  • chart (a) is a time chart showing a time change of parameters relating to engine control when a vehicle equipped with a vehicle behavior control apparatus according to an embodiment of the present invention turns, and chart (a) schematically shows a vehicle turning right.
  • the chart (b) is a diagram showing a change in the steering angle of a vehicle that makes a right turn
  • the chart (c) is a diagram and chart showing a change in the steering speed of a vehicle that makes a right turn.
  • chart (d) is a diagram showing the value of the torque reduction flag set based on the steering speed
  • chart (e) is a diagram showing the change in the additional deceleration determined based on the steering speed and the torque reduction flag
  • chart (f) Is a diagram showing a change in the torque reduction amount determined based on the additional deceleration
  • chart (g) is a diagram showing a change in the final target torque determined based on the basic target torque and the torque reduction amount. It is a diagram which shows the change of the longitudinal acceleration and lateral acceleration when the vehicle carrying the vehicle behavior control apparatus by embodiment of this invention turns. It is a diagram which shows the change of the longitudinal acceleration and lateral acceleration when the vehicle carrying the vehicle behavior control apparatus by embodiment of this invention turns.
  • FIG. 1 It is a diagram which shows the measurement result of a vehicle behavior when making the vehicle carrying the vehicle behavior control apparatus by embodiment of this invention perform turning driving
  • the chart (b) is a diagram showing the change of the lateral jerk generated in the vehicle, the chart (c) is a diagram showing the value of the torque reduction flag set based on the steering speed, and the chart (d) is for driving the front wheels.
  • a diagram showing a change in driving torque to be applied, and chart (e) is a diagram showing a change in front and rear jerk generated in the vehicle.
  • FIG. 6 is a diagram showing how lateral acceleration and longitudinal acceleration are generated when turning a vehicle equipped with a vehicle behavior control apparatus according to an embodiment of the present invention and a vehicle not equipped with the vehicle. is there. It is the diagram which showed how rolling and pitching generate
  • FIG. 6 is a diagram showing how the vertical load of the front wheels changes when turning is performed on each of the vehicle equipped with the vehicle behavior control device according to the embodiment of the present invention and the vehicle not equipped with the vehicle behavior control device.
  • FIG. 5 is a diagram showing a vertical load change of the front inner ring due to left and right load movement.
  • FIG. 6 is a diagram showing how the vertical load of the front wheels changes when turning is performed on each of the vehicle equipped with the vehicle behavior control device according to the embodiment of the present invention and the vehicle not equipped with the vehicle behavior control device.
  • FIG. 4 is a diagram showing a change in vertical load on the front wheels due to vehicle deceleration.
  • FIG. 1 is a block diagram showing the overall configuration of a vehicle equipped with a vehicle behavior control apparatus according to an embodiment of the present invention.
  • reference numeral 1 denotes a vehicle equipped with the vehicle behavior control apparatus according to the present embodiment.
  • An engine 4 that drives drive wheels (left and right front wheels 2 in the example of FIG. 1) is mounted at the front of the vehicle body.
  • the engine 4 is an internal combustion engine such as a gasoline engine or a diesel engine.
  • the vehicle 1 also includes a steering angle sensor 8 that detects the rotation angle of the steering wheel 6, an accelerator opening sensor 10 that detects the opening of the accelerator pedal (accelerator opening), and a vehicle speed sensor 12 that detects the vehicle speed. .
  • a steering angle sensor 8 that detects the rotation angle of the steering wheel 6
  • an accelerator opening sensor 10 that detects the opening of the accelerator pedal (accelerator opening)
  • a vehicle speed sensor 12 that detects the vehicle speed.
  • PCM Power-train Control Module
  • FIG. 2 is a block diagram showing an electrical configuration of the vehicle behavior control apparatus according to the embodiment of the present invention.
  • the PCM 14 according to the embodiment of the present invention, based on the detection signals output from the various sensors that detect the operating state of the engine 4 in addition to the detection signals of the sensors 8 to 12 described above, A control signal is output to control the turbocharger, variable valve mechanism, ignition device, fuel injection valve, EGR device, and the like.
  • the PCM 14 is based on a basic target torque determination unit 16 that determines a basic target torque based on the driving state of the vehicle 1 including the operation of the accelerator pedal, and an amount related to jerk in the vehicle width direction of the vehicle 1 (lateral jerk related amount).
  • a torque reduction amount determination unit 18 that determines a torque reduction amount for adding deceleration to the vehicle 1, a final target torque determination unit 20 that determines a final target torque based on the basic target torque and the torque reduction amount, and a final target An engine control unit 22 for controlling the engine 4 to output torque.
  • the torque reduction amount determination unit 18 will be described using the steering speed of the vehicle 1 as the lateral jerk-related amount.
  • Each component of the PCM 14 includes a CPU, various programs that are interpreted and executed on the CPU (including a basic control program such as an OS and an application program that is activated on the OS to realize a specific function), a program, It is configured by a computer having an internal memory such as a ROM or RAM for storing various data.
  • the PCM 14 corresponds to the vehicle behavior control device of the present invention, and functions as a steering speed acquisition unit and a deceleration jerk generation unit.
  • FIG. 3 is a flowchart of an engine control process in which the vehicle behavior control apparatus according to the embodiment of the present invention controls the engine 4.
  • FIG. 4 shows the torque reduction amount determined by the vehicle behavior control apparatus according to the embodiment of the present invention.
  • FIG. 5 is a map showing the relationship between the target additional deceleration and the steering speed determined by the vehicle behavior control apparatus according to the embodiment of the present invention.
  • the engine control process of FIG. 3 is started and executed repeatedly when the ignition of the vehicle 1 is turned on and the vehicle behavior control device is turned on.
  • the PCM 14 acquires various types of information regarding the driving state of the vehicle 1. Specifically, the PCM 14 detects the steering angle detected by the steering angle sensor 8, the accelerator opening detected by the accelerator opening sensor 10, the vehicle speed detected by the vehicle speed sensor 12, and the gear currently set for the transmission of the vehicle 1.
  • the detection signals output by the various sensors described above, including the steps and the like, are acquired as information related to the driving state.
  • step S2 the basic target torque determination unit 16 of the PCM 14 sets a target acceleration based on the driving state of the vehicle 1 including the operation of the accelerator pedal acquired in step S1. Specifically, the basic target torque determination unit 16 determines the current vehicle speed and gear from the acceleration characteristic maps (created in advance and stored in a memory or the like) defined for various vehicle speeds and various gear stages. The acceleration characteristic map corresponding to the step is selected, and the target acceleration corresponding to the current accelerator opening is determined with reference to the selected acceleration characteristic map.
  • the acceleration characteristic maps created in advance and stored in a memory or the like
  • step S3 the basic target torque determining unit 16 determines the basic target torque of the engine 4 for realizing the target acceleration determined in step S2.
  • the basic target torque determination unit 16 determines the basic target torque within the range of torque that the engine 4 can output based on the current vehicle speed, gear stage, road surface gradient, road surface ⁇ , and the like.
  • step S4 the torque reduction amount determination unit 18 determines the torque reduction amount for adding a deceleration to the vehicle 1 based on the steering operation. Execute. The torque reduction amount determination process will be described with reference to FIG.
  • step S21 the torque reduction amount determination unit 18 calculates a steering speed based on the steering angle acquired in step S1.
  • step S22 the torque reduction amount determination unit 18 determines whether or not the steering speed is greater than a predetermined threshold value T S1 . As a result, if the steering speed is greater than the threshold value T S1 , the process proceeds to step S23, where the torque reduction amount determination unit 18 satisfies a condition for reducing the output torque of the engine 4 in order to add deceleration to the vehicle 1.
  • a torque reduction flag indicating whether or not to be set is set to True (true value) indicating a state in which a condition for reducing torque is satisfied.
  • step S24 the torque reduction amount determination unit 18 acquires the target additional deceleration based on the steering speed.
  • This target additional deceleration is a deceleration to be applied to the vehicle 1 in accordance with the steering operation in order to accurately realize the vehicle behavior intended by the driver.
  • the torque reduction amount determination unit 18 acquires the target additional deceleration corresponding to the steering speed calculated in step S21 based on the relationship between the target additional deceleration and the steering speed shown in the map of FIG. .
  • the horizontal axis in FIG. 5 indicates the steering speed, and the vertical axis indicates the target additional deceleration.
  • the corresponding target additional deceleration is zero. That is, when the steering speed is equal to or less than the threshold value T S1 , the PCM 14 stops the control (specifically, reduction of the output torque of the engine 4) for adding deceleration to the vehicle 1 based on the steering operation.
  • the target additional deceleration corresponding to this steering speed gradually approaches the predetermined upper limit value D max as the steering speed increases. That is, as the steering speed increases, the target additional deceleration increases, and the increase rate of the increase amount decreases.
  • This upper limit value D max is set to such a deceleration that the driver does not feel that there is a control intervention even if a deceleration is added to the vehicle 1 according to the steering operation (for example, 0.5 m / s 2 ⁇ 0). .05G).
  • the target additional deceleration is maintained at the upper limit value D max .
  • step S25 the torque reduction amount determination unit 18 determines the additional deceleration in the current process in a range where the rate of change of the additional deceleration is equal to or less than a threshold value Rmax (for example, 0.5 m / s 3 ). Specifically, when the change rate from the additional deceleration determined in the previous process to the target additional deceleration acquired in step S24 of the current process is equal to or less than Rmax, the torque reduction amount determination unit 18 determines in step S24. The acquired target additional deceleration is determined as the additional deceleration in the current process.
  • a threshold value Rmax for example, 0.5 m / s 3
  • the torque reduction amount determination unit 18 adds the value determined in the previous process.
  • a value changed by the rate of change Rmax from the acceleration to the deceleration is determined as the additional deceleration in the current process.
  • step S26 the torque reduction amount determination unit 18 determines the torque reduction amount based on the current additional deceleration determined in step S25. Specifically, the torque reduction amount determination unit 18 determines the torque reduction amount required to realize the current additional deceleration based on the current vehicle speed, gear stage, road surface gradient, etc. acquired in step S1. To do.
  • step S22 if the steering speed is not greater than the threshold value T S1 (is equal to or less than the threshold value T S1 ), the process proceeds to step S27, where the torque reduction amount determination unit 18 adds the deceleration to the vehicle 1 in order to add the deceleration.
  • the torque reduction flag indicating whether or not the condition for reducing the output torque is satisfied is set to False (false value) indicating that the condition for reducing the torque is not satisfied.
  • step S26 or S27 the torque reduction amount determination unit 18 ends the torque reduction amount determination processing and returns to the main routine.
  • step S5 the final target torque determination unit 20 performs the process of step S4 from the basic target torque determined in step S3.
  • the final target torque is determined by subtracting the torque reduction amount determined in the torque reduction amount determination process.
  • step S6 the engine control unit 22 controls the engine 4 to output the final target torque set in step S5.
  • the engine control unit 22 performs various state quantities (for example, air filling amount, fuel, etc.) required to realize the final target torque based on the final target torque set in step S5 and the engine speed.
  • state quantities for example, air filling amount, fuel, etc.
  • the injection amount, the intake air temperature, the oxygen concentration, etc.) are determined, and each actuator that drives each component of the engine 4 is controlled based on the state quantities.
  • the engine control unit 22 sets a limit value or a limit range according to the state quantity, and sets a control amount for each actuator such that the state value complies with the limit value or the limit range. To do.
  • the PCM 14 ends the engine control process.
  • FIG. 6 is a time chart showing changes over time in parameters related to engine control when the vehicle 1 equipped with the vehicle behavior control apparatus according to the embodiment of the present invention turns.
  • the chart (a) in FIG. 6 is a plan view schematically showing the vehicle 1 that makes a right turn. As shown in the chart (a) of FIG. 6, the vehicle 1 starts turning right from the position A and continues turning right from the position B to the position C with a constant steering angle.
  • the chart (b) in FIG. 6 is a diagram showing changes in the steering angle of the vehicle 1 that turns right as shown in the chart (a) in FIG. 6.
  • the horizontal axis represents time
  • the vertical axis represents the steering angle.
  • rightward steering is started at the position A, and the rightward steering angle is gradually increased by performing the steering addition operation, and the rightward steering angle at the position B. Is the maximum. Thereafter, the steering angle is kept constant up to position C (steering holding).
  • the chart (c) in FIG. 6 is a diagram showing a change in the steering speed of the vehicle 1 that turns right as shown in the chart (a) in FIG. 6.
  • the horizontal axis indicates time
  • the vertical axis indicates the steering speed.
  • the steering speed of the vehicle 1 is expressed by time differentiation of the steering angle of the vehicle 1. That is, as shown in the chart (c) of FIG. 6, when rightward steering is started at the position A, a rightward steering speed is generated, and the steering speed is kept substantially constant between the position A and the position B. It is. Thereafter, the rightward steering speed decreases, and when the rightward steering angle becomes maximum at the position B, the steering speed becomes zero. Further, the steering speed remains zero while the rightward steering angle is maintained from position B to position C.
  • the chart (d) of FIG. 6 is a diagram showing the true / false values of the torque reduction flag set based on the steering speed.
  • the horizontal axis indicates time, and the vertical axis indicates the true / false value of the torque reduction flag.
  • the torque reduction flag is set to False before the rightward steering is started at the position A.
  • the torque reduction flag changes from False to True when the steering speed exceeds the threshold value T S1 .
  • T S1 the threshold value
  • the steering speed decreases.
  • the torque reduction flag changes from True to False.
  • the chart (e) in FIG. 6 is a diagram showing changes in the additional deceleration determined based on the steering speed and the torque reduction flag.
  • the horizontal axis indicates time, and the vertical axis indicates additional deceleration.
  • the torque reduction amount determination unit 18 is based on the steering speed in step S24. Get target additional deceleration.
  • the torque reduction amount determination unit 18 determines the additional deceleration in each processing cycle in a range where the increase rate of the additional deceleration is equal to or less than the threshold value Rmax.
  • the additional deceleration starts to increase when the torque reduction flag is switched from False to True, and is kept substantially constant between the position A and the position B, and then steered. It decreases with the decrease in speed, and becomes 0 when the torque reduction flag is switched from True to False.
  • the chart (f) in FIG. 6 is a diagram showing a change in the torque reduction amount determined based on the additional deceleration shown in the chart (e) in FIG.
  • the horizontal axis represents time
  • the vertical axis represents the torque reduction amount.
  • the torque reduction amount determination unit 18 determines the torque reduction amount necessary for realizing the additional deceleration based on parameters such as the current vehicle speed, gear stage, road surface gradient, and the like. Therefore, when these parameters are constant, the torque reduction amount is determined so as to change similarly to the change of the additional deceleration shown in the chart (e) of FIG.
  • a chart (g) in FIG. 6 is a diagram showing a change in the final target torque determined based on the basic target torque and the torque reduction amount.
  • the horizontal axis indicates time, and the vertical axis indicates torque.
  • the broken line in the chart (g) of FIG. 6 indicates the basic target torque, and the solid line indicates the final target torque.
  • the final target torque determination unit 20 subtracts the torque reduction amount determined in the torque reduction amount determination process in step S ⁇ b> 4 from the basic target torque determined in step S ⁇ b> 3. Determine the target torque. That is, as shown in the chart (g) of FIG.
  • FIG. 7A shows a longitudinal acceleration from when a vehicle equipped with the vehicle behavior control apparatus according to the embodiment of the present invention starts straight turning to right turning and steady circular turning as shown in the chart (a) of FIG.
  • FIG. 7B is a diagram showing a change in lateral acceleration
  • FIG. 7B is an enlarged diagram of a minute acceleration region (that is, an initial turning) in FIG. 7A.
  • FIG. 7A shows a longitudinal acceleration from when a vehicle equipped with the vehicle behavior control apparatus according to the embodiment of the present invention starts straight turning to right turning and steady circular turning as shown in the chart (a) of FIG.
  • FIG. 7B is a diagram showing a change in lateral acceleration
  • FIG. 7B is an enlarged diagram of a minute acceleration region (that is, an initial turning) in FIG. 7A.
  • the horizontal axis indicates the lateral acceleration (acceleration to the right in the vehicle width direction is positive), and the vertical axis indicates the longitudinal acceleration (acceleration in the traveling direction is positive and deceleration is negative).
  • the solid line indicates changes in longitudinal acceleration and lateral acceleration in a vehicle equipped with the vehicle behavior control apparatus according to the embodiment of the present invention
  • the alternate long and short dash line indicates conventional vehicle motion as described in Patent Document 1. Changes in longitudinal acceleration and lateral acceleration in a vehicle equipped with a control device are shown, and broken lines show changes in longitudinal acceleration and lateral acceleration when control by these control devices is not performed.
  • the acceleration obtained by combining the lateral acceleration and the longitudinal acceleration is left when the driver only performs steering for turning. Deceleration is increased / decreased according to the increase in lateral acceleration so as to draw a circular arc around. That is, in order to realize a vehicle motion that draws a counterclockwise arc while maintaining a constant value of the composite acceleration as performed by an expert driver, the control device reduces the same amount of lateral acceleration that occurs in the vehicle as the driver steers. After generating the speed, decrease the deceleration. The magnitude of the deceleration generated by the control may reach 0.5G so that the driver can feel that the combined acceleration is changing at a constant value.
  • This deceleration of 0.5G is a deceleration caused by a strong emergency braking operation, for example, when a passenger standing on the bus falls down, and a driver who has not performed a deceleration operation has a strong control intervention. You will feel the feeling.
  • the deceleration generated by the control of the vehicle behavior control apparatus is about 0.001 G to 0.01 G, and 0.05 G (target additional deceleration at maximum).
  • the upper limit value D max ) is limited.
  • the deceleration of 0.05G is the deceleration generated during turning when the control by the control device is not performed, as indicated by the broken line in FIG. 7A (that is, the deceleration caused by the cornering drag generated by the frictional force between the road surface and the wheel). ). Therefore, the driver does not notice that the control for adding the deceleration is being performed.
  • the PCM 14 of the present embodiment reduces the output torque of the engine 4 when the steering speed becomes equal to or higher than the threshold value T S1 and the torque reduction flag is set to True at the initial turning of the vehicle.
  • the deceleration is rapidly increased in a region where the lateral acceleration is small.
  • the deceleration quickly rises compared to the case where the control for adding the deceleration is not performed. Therefore, the cornering force can be increased by immediately increasing the vertical load of the front wheels when the driver starts the steering operation, and the response and linearity of the vehicle behavior to the steering operation can be improved.
  • a vehicle equipped with a vehicle behavior control device according to the form was run at a constant vehicle speed from a straight corner to a steady circular turn, and various parameters related to the vehicle behavior at that time were measured.
  • FIG. 8 is a diagram showing measurement results of vehicle behavior when a vehicle equipped with the vehicle behavior control apparatus according to the present embodiment is turned.
  • Chart (a) of FIG. 8 is a steering angle of the vehicle.
  • FIG. 8B is a diagram showing changes in lateral jerk generated in the vehicle
  • FIG. 8C is a diagram showing torque reduction flag values set based on the steering speed.
  • 8 is a diagram showing a change in driving torque for driving the front wheels
  • a chart (e) in FIG. 8 is a diagram showing a change in front and rear jerk generated in the vehicle.
  • the solid line indicates the result of the vehicle on which the vehicle behavior control device of the present embodiment is mounted
  • the broken line indicates the conventional case in which the vehicle behavior control device is not mounted. The results for the vehicle are shown.
  • the drive torque reduction is started immediately.
  • the deceleration jerk is generated almost simultaneously with the occurrence of the lateral jerk at a timing earlier than the deceleration jerk by only the cornering drag, and the peak of the deceleration jerk appears before the peak of the lateral jerk. I have to. Therefore, the vertical load on the front wheels can be immediately increased when a lateral jerk occurs, and the behavior of the vehicle can be controlled with good responsiveness to the steering operation by the driver.
  • FIG. 9 is a diagram showing how the lateral acceleration and the longitudinal acceleration are generated in the above-mentioned turning traveling.
  • the horizontal axis indicates the acceleration in the vehicle width direction (lateral acceleration)
  • the vertical axis indicates the acceleration in the front-rear direction (longitudinal acceleration).
  • the acceleration (deceleration) in the deceleration direction is represented by a negative value.
  • the deceleration jerk is generated later than the lateral jerk when the steering angle starts to increase. Therefore, as indicated by a broken line in FIG. 9, when the lateral acceleration rises (0 to 0.1 G), the deceleration does not increase and the lateral acceleration increases (that is, the cornering force increases), the cornering drag increases. Accordingly, the deceleration increases.
  • the driving force of the vehicle is started to be reduced at a timing earlier than the deceleration jerk only by the cornering drag. Since the deceleration jerk is generated almost simultaneously with the occurrence of the lateral jerk so that the peak of the deceleration jerk appears before the peak of the lateral jerk, as shown by the solid line in FIG. Following 1G), the deceleration also rises, and the lateral acceleration and the deceleration transition while maintaining a linear relationship. Therefore, not only can the behavior of the vehicle be controlled with good responsiveness to the steering operation by the driver, but also the behavior of the vehicle can be controlled to improve the stability of the vehicle posture and the ride comfort.
  • FIG. 10 is a diagram showing how rolling and pitching occur in the above-mentioned turning traveling.
  • the horizontal axis indicates the roll angle
  • the vertical axis indicates the pitch angle.
  • the pitch angle in the direction in which the front portion of the vehicle sinks is represented by a negative value.
  • load movement occurs in the vehicle width direction in accordance with the increase in the lateral acceleration and the roll angle increases, whereas the pitch angle is independent of the increase in roll angle. Up and down.
  • a deceleration jerk is generated almost simultaneously with the occurrence of a lateral jerk by starting to reduce the driving force of the vehicle when the steering speed becomes equal to or higher than the threshold value T S1.
  • the pitch angle is increased in the direction in which the front portion of the vehicle sinks in synchronization with the increase of the roll angle.
  • FIG. 11 is a schematic diagram showing the vehicle posture by the amount of expansion and contraction of the suspension of each wheel
  • FIG. 11A is a diagram showing the vehicle posture when parallel rolling occurs
  • FIG. 11B is the vehicle when diagonal rolls occur. It is a figure which shows an attitude
  • load movement occurs in the vehicle width direction of the vehicle in accordance with an increase in lateral acceleration, while a roll angle increases.
  • the pitch angle rises and falls regardless of the increase in roll angle. Therefore, in the initial stage of turning, only a roll angle increases, and thus a parallel roll posture as shown in FIG. 11A occurs, and then a forward tilt posture or a rearward tilt posture occurs due to pitching that occurs regardless of the roll angle.
  • the driving force reduction of the vehicle is started to synchronize with the increase of the roll angle. Since the pitch angle is increased in the direction in which the part sinks, the rolling roll and the pitching in which the front part of the vehicle sinks are generated in the initial stage of the turn so that the diagonal roll posture as shown in FIG. Arise.
  • the vehicle behavior control apparatus according to the present invention rapidly increases the driving force reduction amount in a region where the lateral acceleration at the initial stage of turning is very small, so that the vehicle posture is a diagonal roll when the driver starts the steering operation. Creates an opportunity to smoothly transition to posture. As a result, the cornering force of the front wheels can be increased to improve the response of the turning behavior, and the driver can accurately recognize that the turning behavior will occur and continue from now on.
  • FIG. 12 is a diagram showing how the vertical load on the front wheels changes during the above-mentioned turning
  • FIG. 12A is a diagram showing changes in the vertical load on the front inner wheels due to left and right load movements
  • FIG. It is a diagram which shows the vertical load change of the front wheel by deceleration of a vehicle.
  • the deceleration does not increase at the rise of the lateral acceleration.
  • the lateral load increase of the front wheels increases linearly as the lateral acceleration increases.
  • the amount of change in the vertical load on the front wheels due to deceleration increases due to an increase in deceleration according to an increase in cornering drag.
  • the vehicle driving force reduction is started, so that the deceleration follows the rising of the lateral acceleration. Since the rise and the lateral acceleration and the deceleration change while maintaining a linear relationship, as shown by the solid line in FIG. 12, the amount of movement of the load on the left and right of the front wheels increases linearly as the lateral acceleration increases. As a result, the longitudinal load shift due to deceleration occurs from the rise of the lateral acceleration (0 to 0.1 G), and the vertical load change amount of the front wheels increases.
  • the vertical load of the front wheel can be increased so as to suppress the decrease in the vertical load of the front inner wheel due to the left and right load movement at the initial turning of the vehicle, and the cornering force of the front wheel can be increased to improve the response of the turning behavior.
  • the torque reduction amount determination unit 22 acquires the target additional deceleration based on the steering speed and determines the torque reduction amount based on the target additional deceleration, but other than the operation of the accelerator pedal.
  • the torque reduction amount may be determined based on the driving state of the vehicle 1 (steering angle, lateral acceleration, yaw rate, slip ratio, etc.).
  • the torque reduction amount determination unit 22 acquires the target additional deceleration based on the lateral acceleration input from the acceleration sensor and the lateral jerk obtained by time differentiation of the lateral acceleration so as to determine the torque reduction amount. It may be.
  • the PCM 14 reduces the output torque of the engine 4 according to the target additional deceleration, thereby causing the vehicle 1 to generate a deceleration jerk that is rearward in the front-rear direction, and the front portion of the vehicle sinks.
  • the pitch angle is increased in the direction and the vertical load on the front wheels is increased.
  • an active engine mount that supports the engine 4 so as to move up and down and an active suspension that can control the operation and characteristics of the suspension generate a deceleration jerk.
  • the pitch angle may be increased in the direction in which the front portion of the vehicle sinks, and the vertical load on the front wheels may be increased.
  • the vehicle 1 equipped with the vehicle behavior control device is equipped with the engine 4 that drives the drive wheels.
  • the motor that drives the drive wheels with electric power supplied from a battery or a capacitor.
  • the vehicle behavior control apparatus according to the present invention can also be applied to a vehicle equipped with a vehicle.
  • the PCM 16 performs control to reduce the motor torque in accordance with the steering speed of the vehicle 1.
  • the PCM 16 starts reducing the output torque of the engine 4 when the torque reduction flag is set to True indicating that the condition for reducing the output torque of the engine 4 is satisfied based on the lateral jerk related amount.
  • the output torque of the engine 4 is immediately reduced to increase the vertical load of the front wheels, and the behavior of the vehicle 1 is controlled with good response to the steering operation by the driver. This makes it possible to improve the response and linearity of the vehicle behavior to the steering operation without causing the driver to feel a strong sense of control intervention.
  • a minute correction rudder is not necessary, so that the stability and ride comfort of the vehicle posture can be improved.
  • the PCM 16 sets the torque reduction flag to True when the lateral jerk-related amount exceeds a predetermined threshold value. Therefore, when the lateral jerk-related amount is less than or equal to the threshold value, the vehicle 1 The vehicle behavior can be controlled so that the driver's intended behavior can be accurately realized without causing the driver to feel uncomfortable about the vehicle behavior when traveling straight.
  • the driving force can be immediately reduced in response to the start of the steering operation by the driver, and thereby a better response to the steering operation by the driver. Therefore, the behavior of the vehicle 1 can be controlled.
  • the PCM 16 when the steering speed becomes equal to or higher than the threshold value T S1 , the PCM 16 generates a backward deceleration jerk in the front-rear direction of the vehicle 1.
  • the deceleration jerk can be generated almost simultaneously with the occurrence of the lateral jerk.
  • a deceleration jerk is immediately generated in response to the steering operation to increase the deceleration, thereby increasing the vertical load on the front wheels 2, and good response and linear feeling to the steering operation by the driver.
  • the vehicle 1 can control the behavior of the vehicle 1, and the deceleration also rises following the rise of the lateral acceleration at the beginning of the turn, so that the lateral acceleration and the deceleration keep a linear relationship and change.
  • the behavior can be controlled, and the behavior of the vehicle 1 can be controlled so as to improve the stability of the vehicle posture and the ride comfort.
  • the PCM 16 since the PCM 16 generates a deceleration jerk by starting to reduce the output torque of the engine 4 when the steering speed becomes equal to or higher than the threshold value T S1 , after the steering operation by the driver is started, the deceleration jerk is highly responsive.
  • the behavior of the vehicle 1 can be controlled with better responsiveness to the steering operation by the driver, and the stability and riding comfort of the vehicle posture can be further improved. Can be controlled.
  • the PCM 16 since the PCM 16 generates the deceleration jerk so that the peak of the deceleration jerk appears before the peak of the lateral jerk when the steering speed becomes equal to or higher than the threshold value T S1 , immediately in response to the steering operation at the initial turning of the vehicle 1.
  • the vertical load of the front wheel 2 is increased, and the behavior of the vehicle 1 can be controlled with better responsiveness to the steering operation by the driver, and the vehicle posture is stabilized.
  • the behavior of the vehicle 1 can be controlled so as to improve the feeling and ride comfort.
  • the PCM 16 increases the pitch angle in the direction in which the front portion of the vehicle 1 sinks when the steering speed becomes equal to or greater than the threshold value T S1 , the vehicle 1 when the rolling operation occurs after the start of the steering operation by the driver. Pitching in which the front part of the vehicle 1 sinks can be generated, thereby causing a diagonal roll posture in the early turning of the vehicle 1 and increasing the cornering force of the front wheel 2 to improve the response of the turning behavior.
  • the driver can accurately recognize that the turning behavior is generated and continued. Therefore, it is possible to control the behavior of the vehicle 1 with good responsiveness and linear feeling with respect to the steering operation by the driver, and to control the behavior of the vehicle 1 so as to improve the sense of stability and riding comfort of the vehicle posture. Can do.
  • the PCM 16 increases the pitch angle in the direction in which the front portion of the vehicle 1 sinks by starting to reduce the output torque of the engine 4 when the steering speed becomes equal to or higher than the threshold value T S1 .
  • the pitch angle can be increased with high responsiveness by causing the vehicle 1 to decelerate by reducing the driving force, and the behavior of the vehicle 1 is controlled with better responsiveness to the steering operation by the driver.
  • the behavior of the vehicle 1 can be controlled so that the stability of the vehicle posture and the ride comfort are further improved.
  • the PCM 16 increases the pitch angle in the direction in which the front portion of the vehicle 1 sinks in synchronization with the increase in the roll angle of the vehicle 1 when the steering speed becomes equal to or greater than the threshold value T S1. In this way, the diagonal roll posture can be reliably generated, and thereby the behavior of the vehicle 1 can be controlled with good responsiveness to the steering operation by the driver, and the stability and riding comfort of the vehicle posture are also improved. Thus, the behavior of the vehicle 1 can be controlled.
  • the PCM 16 increases the vertical load of the front wheel 2 when the steering speed becomes equal to or greater than the threshold value T S1 , the lateral load movement amount of the front wheel 2 is increased according to the increase of the lateral acceleration after the start of the steering operation by the driver.
  • the vertical load of the front wheel 2 can be increased, thereby increasing the vertical load of the front wheel 2 so as to suppress the decrease in the vertical load of the front inner wheel due to the left and right load movement at the initial turning of the vehicle 1.
  • the cornering force 2 can be increased to improve the response of the turning behavior. Thereby, the responsiveness of the vehicle behavior to the steering operation and the linear feeling can be improved without causing the driver to feel a strong control intervention.
  • a minute correction rudder is not necessary, so that the stability and ride comfort of the vehicle posture can be improved.
  • the PCM 16 increases the vertical load of the front wheel 2 by starting to reduce the driving force of the vehicle 1 when the steering speed becomes equal to or higher than the threshold T S1 , the driving force is reduced after the steering operation by the driver is started.
  • the vehicle 1 By causing the vehicle 1 to decelerate, it is possible to increase the vertical load of the front wheel 2 with high responsiveness, so that the front wheel 2 can be restrained from reducing the vertical load of the front inner wheel due to left and right load movement at the beginning of turning.
  • the vertical load can be increased quickly, and the cornering force of the front wheels can be increased to improve the response of the turning behavior.
  • the PCM 16 increases the vertical load of the front wheel 2 in synchronization with the left-right load movement of the front wheel 2 when the steering speed becomes equal to or greater than the threshold value T S1 .
  • the vertical load of the front wheel 2 can be increased so as to reliably suppress the decrease in the vertical load, and thereby the cornering force of the front wheel 2 can be reliably increased and the response of the turning behavior can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

強い制御介入感をドライバに覚えさせることなく、ステアリング操作に対する車両挙動の応答性やリニア感を向上できると共に、車両姿勢の安定感や乗り心地も向上するように車両の挙動を制御することができる、車両用挙動制御装置を提供する。車両用挙動制御装置は、前輪(2)が操舵される車両(1)の挙動を制御する車両用挙動制御装置において、車両の操舵速度を取得し、操舵速度が0より大きい所定の閾値TS1以上になったとき、車両の前後方向後向きの減速ジャークを発生させるPCM(14)を有する。

Description

車両用挙動制御装置
 本発明は、車両用挙動制御装置に係わり、特に、前輪が操舵される車両の挙動を制御する車両用挙動制御装置に関する。
 従来、スリップ等により車両の挙動が不安定になった場合に安全方向に車両の挙動を制御するもの(横滑り防止装置等)が知られている。具体的には、車両のコーナリング時等に、車両にアンダーステアやオーバーステアの挙動が生じたことを検出し、それらを抑制するように車輪に適切な減速度を付与するようにしたものが知られている。
 一方、上述したような車両の挙動が不安定になるような走行状態における安全性向上のための制御とは異なり、日常運転領域から稼動するハンドル操作に連係した加減速を自動的に行い、限界運転領域で横滑りを低減させるようにした車両運動制御装置が知られている(例えば、特許文献1参照)。
特許第5193885号明細書
 しかしながら、上記の特許文献1に記載された技術のように、加減速を制御装置からの指示により自動的に制御すると、ドライバの意図に必ずしも一致しない加減速が行われることになり、ドライバは強い制御介入感を覚えることになる。一方で、制御介入感を抑制するために制御ゲインを下げると、加減速制御による効果も低減してしまう。
 また、特許文献1に記載されたような従来技術は、ドライバが旋回のための操舵をするだけで、エキスパートドライバと同様の車両運動を実現することに主眼を置いており、必ずしも通常のステアリング操作に対する車両挙動の応答性やリニア感の向上が得られるものではない。
 本発明は、上述した従来技術の問題点を解決するためになされたものであり、強い制御介入感をドライバに覚えさせることなく、ステアリング操作に対する車両挙動の応答性やリニア感を向上できると共に、車両姿勢の安定感や乗り心地も向上するように車両の挙動を制御することができる、車両用挙動制御装置を提供することを目的とする。
 上記の目的を達成するために、本発明の車両用挙動制御装置は、前輪が操舵される車両の挙動を制御する車両用挙動制御装置において、車両の操舵速度を取得する操舵速度取得手段と、操舵速度が0より大きい所定の閾値以上になったとき、車両の前後方向後向きの減速ジャークを発生させる減速ジャーク発生手段とを有することを特徴とする。
 このように構成された本発明においては、減速ジャーク発生手段は、操舵速度が閾値以上になったとき、車両の前後方向後向きの減速ジャークを発生させるので、ドライバによるステアリング操作の開始後、コーナリングドラッグのみによる減速ジャークよりも早いタイミングで、横ジャークの発生とほぼ同時に減速ジャークを発生させることができる。これにより、車両の旋回初期においてステアリング操作に応じて直ちに減速ジャークを発生させ減速度を増大させることにより前輪の垂直荷重を増大させ、ドライバによるステアリング操作に対して良好な応答性・リニア感で車両の挙動を制御することができるとともに、旋回初期の横加速度の立ち上がりに追随して減速度も立ち上がり、横加速度と減速度とがリニアな関係を維持して遷移するように車両の挙動を制御することができ、車両姿勢の安定感や乗り心地も向上するように車両の挙動を制御することができる。
 また、本発明において、好ましくは、減速ジャーク発生手段は、操舵速度が閾値以上になったとき車両の駆動力低減を開始することにより、減速ジャークを発生させる。
 このように構成された本発明においては、ドライバによるステアリング操作の開始後、高い応答性で減速ジャークを発生させることができ、ドライバによるステアリング操作に対してより良好な応答性で車両の挙動を制御することができるとともに、車両姿勢の安定感や乗り心地も一層向上するように車両の挙動を制御することができる。
 また、本発明において、好ましくは、減速ジャーク発生手段は、操舵速度が閾値以上になったとき、減速ジャークのピークが車両の車幅方向におけるジャークのピーク以前に現れるように減速ジャークを発生させる。
 このように構成された本発明においては、車両の旋回初期においてステアリング操作に応じて直ちに減速ジャークを発生させ減速度を増大させることにより前輪の垂直荷重を増大させ、ドライバによるステアリング操作に対してより良好な応答性で車両の挙動を制御することができるとともに、車両姿勢の安定感や乗り心地も向上するように車両の挙動を制御することができる。
 本発明による車両用挙動制御装置によれば、強い制御介入感をドライバに覚えさせることなく、ステアリング操作に対する車両挙動の応答性やリニア感を向上できると共に、車両姿勢の安定感や乗り心地も向上するように車両の挙動を制御することができる。
本発明の実施形態による車両用挙動制御装置を搭載した車両の全体構成を示すブロック図である。 本発明の実施形態による車両用挙動制御装置の電気的構成を示すブロック図である。 本発明の実施形態による車両用挙動制御装置がエンジンを制御するエンジン制御処理のフローチャートである。 本発明の実施形態による車両用挙動制御装置がトルク低減量を決定するトルク低減量決定処理のフローチャートである。 本発明の実施形態による車両用挙動制御装置が決定する目標付加減速度と操舵速度との関係を示したマップである。 本発明の実施形態による車両用挙動制御装置を搭載した車両が旋回を行う場合における、エンジン制御に関するパラメータの時間変化を示したタイムチャートであり、チャート(a)は右旋回を行う車両を概略的に示す平面図、チャート(b)は右旋回を行う車両の操舵角の変化を示す線図、チャート(c)は右旋回を行う車両の操舵速度の変化を示す線図、チャート(d)は操舵速度に基づき設定されたトルク低減フラグの値を示す線図、チャート(e)は操舵速度及びトルク低減フラグに基づき決定された付加減速度の変化を示す線図、チャート(f)は付加減速度に基づいて決定されたトルク低減量の変化を示す線図、チャート(g)は基本目標トルクとトルク低減量とに基づき決定された最終目標トルクの変化を示す線図である。 本発明の実施形態による車両用挙動制御装置を搭載した車両が旋回を行ったときの前後加速度及び横加速度の変化を示す線図である。 本発明の実施形態による車両用挙動制御装置を搭載した車両が旋回を行ったときの前後加速度及び横加速度の変化を示す線図である。 本発明の実施形態による車両用挙動制御装置を搭載した車両に旋回走行を行わせたときの車両挙動の測定結果を示す線図であり、チャート(a)は車両の操舵角の変化を示す線図、チャート(b)は車両に発生した横ジャークの変化を示す線図、チャート(c)は操舵速度に基づき設定されたトルク低減フラグの値を示す線図、チャート(d)は前輪を駆動させる駆動トルクの変化を示す線図、チャート(e)は車両に発生した前後ジャークの変化を示す線図である。 本発明の実施形態による車両用挙動制御装置を搭載した車両と搭載していない車両のそれぞれに旋回走行を行わせたとき、横加速度と前後加速度がどのように発生するかを示した線図である。 本発明の実施形態による車両用挙動制御装置を搭載した車両と搭載していない車両のそれぞれに旋回走行を行わせたとき、ローリングとピッチングがどのように発生するかを示した線図である。 各輪のサスペンションの伸縮量により車両姿勢を示した概略図であり、平行なローリングが生じたときの車両姿勢を示す図である。 各輪のサスペンションの伸縮量により車両姿勢を示した概略図であり、ダイアゴナルロールが生じたときの車両姿勢を示す図である。 本発明の実施形態による車両用挙動制御装置を搭載した車両と搭載していない車両のそれぞれに旋回走行を行わせたとき、前輪の垂直荷重がどのように変化するかを示した線図であり、左右の荷重移動による前内輪の垂直荷重変化を示す線図である。 本発明の実施形態による車両用挙動制御装置を搭載した車両と搭載していない車両のそれぞれに旋回走行を行わせたとき、前輪の垂直荷重がどのように変化するかを示した線図であり、車両の減速による前輪の垂直荷重変化を示す線図である。
 以下、添付図面を参照して、本発明の実施形態による車両用挙動制御装置を説明する。
 まず、図1により、本発明の実施形態による車両用挙動制御装置を搭載した車両について説明する。図1は、本発明の実施形態による車両用挙動制御装置を搭載した車両の全体構成を示すブロック図である。
 図1において、符号1は、本実施形態による車両用挙動制御装置を搭載した車両を示す。車両1の車体前部には、駆動輪(図1の例では左右の前輪2)を駆動するエンジン4が搭載されている。エンジン4は、ガソリンエンジンやディーゼルエンジンなどの内燃エンジンである。
 また、車両1は、ステアリングホイール6の回転角度を検出する操舵角センサ8、アクセルペダルの開度(アクセル開度)を検出するアクセル開度センサ10、及び、車速を検出する車速センサ12を有する。これらの各センサは、それぞれの検出値をPCM(Power-train Control Module)14に出力する。
 次に、図2により、本発明の実施形態による車両用挙動制御装置の電気的構成を説明する。図2は、本発明の実施形態による車両用挙動制御装置の電気的構成を示すブロック図である。
 本発明の実施形態によるPCM14は、上述したセンサ8~12の検出信号の他、エンジン4の運転状態を検出する各種センサが出力した検出信号に基づいて、エンジン4の各部(例えば、スロットルバルブ、ターボ過給機、可変バルブ機構、点火装置、燃料噴射弁、EGR装置等)に対する制御を行うべく、制御信号を出力する。
 PCM14は、アクセルペダルの操作を含む車両1の運転状態に基づき基本目標トルクを決定する基本目標トルク決定部16と、車両1の車幅方向におけるジャークに関連する量(横ジャーク関連量)に基づき車両1に減速度を付加するためのトルク低減量を決定するトルク低減量決定部18と、基本目標トルクとトルク低減量とに基づき最終目標トルクを決定する最終目標トルク決定部20と、最終目標トルクを出力させるようにエンジン4を制御するエンジン制御部22とを有する。本実施形態では、トルク低減量決定部18は、横ジャーク関連量として車両1の操舵速度を用いる場合を説明する。
 これらのPCM14の各構成要素は、CPU、当該CPU上で解釈実行される各種のプログラム(OSなどの基本制御プログラムや、OS上で起動され特定機能を実現するアプリケーションプログラムを含む)、及びプログラムや各種のデータを記憶するためのROMやRAMの如き内部メモリを備えるコンピュータにより構成される。
 詳細は後述するが、PCM14は本発明における車両用挙動制御装置に相当し、操舵速度取得手段、減速ジャーク発生手段として機能する。
 次に、図3乃至図5により、車両用挙動制御装置が行う処理について説明する。
 図3は、本発明の実施形態による車両用挙動制御装置がエンジン4を制御するエンジン制御処理のフローチャートであり、図4は、本発明の実施形態による車両用挙動制御装置がトルク低減量を決定するトルク低減量決定処理のフローチャートであり、図5は、本発明の実施形態による車両用挙動制御装置が決定する目標付加減速度と操舵速度との関係を示したマップである。
 図3のエンジン制御処理は、車両1のイグニッションがオンにされ、車両用挙動制御装置に電源が投入された場合に起動され、繰り返し実行される。
 エンジン制御処理が開始されると、図3に示すように、ステップS1において、PCM14は車両1の運転状態に関する各種情報を取得する。具体的には、PCM14は、操舵角センサ8が検出した操舵角、アクセル開度センサ10が検出したアクセル開度、車速センサ12が検出した車速、車両1の変速機に現在設定されているギヤ段等を含む、上述した各種センサが出力した検出信号を運転状態に関する情報として取得する。
 次に、ステップS2において、PCM14の基本目標トルク決定部16は、ステップS1において取得されたアクセルペダルの操作を含む車両1の運転状態に基づき、目標加速度を設定する。具体的には、基本目標トルク決定部16は、種々の車速及び種々のギヤ段について規定された加速度特性マップ(予め作成されてメモリなどに記憶されている)の中から、現在の車速及びギヤ段に対応する加速度特性マップを選択し、選択した加速度特性マップを参照して現在のアクセル開度に対応する目標加速度を決定する。
 次に、ステップS3において、基本目標トルク決定部16は、ステップS2において決定した目標加速度を実現するためのエンジン4の基本目標トルクを決定する。この場合、基本目標トルク決定部16は、現在の車速、ギヤ段、路面勾配、路面μなどに基づき、エンジン4が出力可能なトルクの範囲内で、基本目標トルクを決定する。
 また、ステップS2及びS3の処理と並行して、ステップS4において、トルク低減量決定部18は、ステアリング操作に基づき車両1に減速度を付加するためのトルク低減量を決定するトルク低減量決定処理を実行する。このトルク低減量決定処理について、図4を参照して説明する。
 図4に示すように、トルク低減量決定処理が開始されると、ステップS21において、トルク低減量決定部18は、ステップS1において取得した操舵角に基づき操舵速度を算出する。
 次に、ステップS22において、トルク低減量決定部18は、操舵速度が所定の閾値TS1より大きいか否かを判定する。
 その結果、操舵速度が閾値TS1より大きい場合、ステップS23に進み、トルク低減量決定部18は、車両1に減速度を付加するためにエンジン4の出力トルクを低減させる条件が満たされているか否かを示すトルク低減フラグを、トルクを低減させる条件が満たされている状態を示すTrue(真値)に設定する。
 次に、ステップS24において、トルク低減量決定部18は、操舵速度に基づき目標付加減速度を取得する。この目標付加減速度は、ドライバの意図した車両挙動を正確に実現するために、ステアリング操作に応じて車両1に付加すべき減速度である。
 具体的には、トルク低減量決定部18は、図5のマップに示した目標付加減速度と操舵速度との関係に基づき、ステップS21において算出した操舵速度に対応する目標付加減速度を取得する。
 図5における横軸は操舵速度を示し、縦軸は目標付加減速度を示す。図5に示すように、操舵速度が閾値TS以下である場合、対応する目標付加減速度は0である。即ち、操舵速度が閾値TS1以下である場合、PCM14は、ステアリング操作に基づき車両1に減速度を付加するための制御(具体的にはエンジン4の出力トルクの低減)を停止する。
 一方、操舵速度が閾値TS1を超えている場合には、操舵速度が増大するに従って、この操舵速度に対応する目標付加減速度は、所定の上限値Dmaxに漸近する。即ち、操舵速度が増大するほど目標付加減速度は増大し、且つ、その増大量の増加割合は小さくなる。この上限値Dmaxは、ステアリング操作に応じて車両1に減速度を付加しても、制御介入があったとドライバが感じない程度の減速度に設定される(例えば0.5m/s2≒0.05G)。
 さらに、操舵速度が閾値TS1よりも大きい閾値TS2以上の場合には、目標付加減速度は上限値Dmaxに維持される。
 次に、ステップS25において、トルク低減量決定部18は、付加減速度の変化率が閾値Rmax(例えば0.5m/s3)以下となる範囲で今回の処理における付加減速度を決定する。
 具体的には、トルク低減量決定部18は、前回の処理において決定した付加減速度から今回の処理のステップS24において取得した目標付加減速度への変化率がRmax以下である場合、ステップS24において取得した目標付加減速度を今回の処理における付加減速度として決定する。
 一方、前回の処理において決定した付加減速度から今回の処理のステップS24において取得した目標付加減速度への変化率がRmaxより大きい場合、トルク低減量決定部18は、前回の処理において決定した付加減速度から今回の処理時まで変化率Rmaxにより変化させた値を今回の処理における付加減速度として決定する。
 次に、ステップS26において、トルク低減量決定部18は、ステップS25において決定した今回の付加減速度に基づき、トルク低減量を決定する。具体的には、トルク低減量決定部18は、今回の付加減速度を実現するために必要となるトルク低減量を、ステップS1において取得された現在の車速、ギヤ段、路面勾配等に基づき決定する。
 また、ステップS22において、操舵速度が閾値TS1より大きくない(閾値TS1以下である)場合、ステップS27に進み、トルク低減量決定部18は、車両1に減速度を付加するためにエンジン4の出力トルクを低減させる条件が満たされているか否かを示すトルク低減フラグを、トルクを低減させる条件が満たされていない状態を示すFalse(偽値)に設定する。
 ステップS26又はS27の後、トルク低減量決定部18はトルク低減量決定処理を終了し、メインルーチンに戻る。
 図3に戻り、ステップS2及びS3の処理及びステップS4のトルク低減量決定処理を行った後、ステップS5において、最終目標トルク決定部20は、ステップS3において決定した基本目標トルクから、ステップS4のトルク低減量決定処理において決定したトルク低減量を減算することにより、最終目標トルクを決定する。
 次に、ステップS6において、エンジン制御部22は、ステップS5において設定した最終目標トルクを出力させるようにエンジン4を制御する。具体的には、エンジン制御部22は、ステップS5において設定した最終目標トルクと、エンジン回転数とに基づき、最終目標トルクを実現するために必要となる各種状態量(例えば、空気充填量、燃料噴射量、吸気温度、酸素濃度等)を決定し、それらの状態量に基づき、エンジン4の各構成要素のそれぞれを駆動する各アクチュエータを制御する。この場合、エンジン制御部22は、状態量に応じた制限値や制限範囲を設定し、状態値が制限値や制限範囲による制限を遵守するような各アクチュエータの制御量を設定して制御を実行する。
 ステップS6の後、PCM14は、エンジン制御処理を終了する。
 次に、図6により、本発明の実施形態による車両用挙動制御装置のエンジン制御の例を説明する。図6は、本発明の実施形態による車両用挙動制御装置を搭載した車両1が旋回を行う場合における、エンジン制御に関するパラメータの時間変化を示したタイムチャートである。
 図6のチャート(a)は、右旋回を行う車両1を概略的に示す平面図である。この図6のチャート(a)に示すように、車両1は、位置Aから右旋回を開始し、位置Bから位置Cまで操舵角一定で右旋回を継続する。
 図6のチャート(b)は、図6のチャート(a)に示したように右旋回を行う車両1の操舵角の変化を示す線図である。図6のチャート(b)における横軸は時間を示し、縦軸は操舵角を示す。
 この図6のチャート(b)に示すように、位置Aにおいて右向きの操舵が開始され、ステアリングの切り足し操作が行われることにより右向きの操舵角が徐々に増大し、位置Bにおいて右向きの操舵角が最大となる。その後、位置Cまで操舵角が一定に保たれる(操舵保持)。
 図6のチャート(c)は、図6のチャート(a)に示したように右旋回を行う車両1の操舵速度の変化を示す線図である。図6のチャート(c)における横軸は時間を示し、縦軸は操舵速度を示す。
 車両1の操舵速度は、車両1の操舵角の時間微分により表される。即ち、図6のチャート(c)に示すように、位置Aにおいて右向きの操舵が開始された場合、右向きの操舵速度が生じ、位置Aと位置Bとの間において操舵速度がほぼ一定に保たれる。その後、右向きの操舵速度は減少し、位置Bにおいて右向きの操舵角が最大になると、操舵速度は0になる。更に、位置Bから位置Cまで右向きの操舵角が保持される間、操舵速度は0のままである。
 図6のチャート(d)は、操舵速度に基づき設定されたトルク低減フラグの真偽値を示す線図である。図6のチャート(d)における横軸は時間を示し、縦軸はトルク低減フラグの真偽値を示す。
 図6のチャート(d)に示すように、位置Aにおいて右向きの操舵が開始される前においては、トルク低減フラグはFalseに設定されている。そして、位置Aにおいて右向きの操舵が開始されると、操舵速度が閾値TS1を超えたときにトルク低減フラグはFalseからTrueに変化する。その後、位置Bに接近するにつれて操舵速度が低下し、閾値TS1以下になると、トルク低減フラグはTrueからFalseに変化する。
 図6のチャート(e)は、操舵速度及びトルク低減フラグに基づき決定された付加減速度の変化を示す線図である。図6のチャート(e)における横軸は時間を示し、縦軸は付加減速度を示す。
 図4を参照して説明したように、トルク低減量決定部18は、ステップS22において操舵速度が閾値TS1より大きい場合(すなわちトルク低減フラグがTrueである場合)、ステップS24において操舵速度に基づき目標付加減速度を取得する。続いて、ステップS25において、トルク低減量決定部18は、付加減速度の増大率が閾値Rmax以下となる範囲で各処理サイクルにおける付加減速度を決定する。
 図6のチャート(e)に示すように、付加減速度は、トルク低減フラグがFalseからTrueに切り替わったときから増大し始め、位置Aと位置Bとの間においてほぼ一定に保たれ、その後操舵速度の減少に応じて減少し、トルク低減フラグがTrueからFalseに切り替わったときに0になる。
 図6のチャート(f)は、図6のチャート(e)に示した付加減速度に基づき決定されたトルク低減量の変化を示す線図である。図6のチャート(f)における横軸は時間を示し、縦軸はトルク低減量を示す。
 上述したように、トルク低減量決定部18は、付加減速度を実現するために必要となるトルク低減量を、現在の車速、ギヤ段、路面勾配等のパラメータに基づき決定する。従って、これらのパラメータが一定である場合、トルク低減量は、図6のチャート(e)に示した付加減速度の変化と同様に変化するように決定される。
 図6のチャート(g)は基本目標トルクとトルク低減量とに基づき決定された最終目標トルクの変化を示す線図である。図6のチャート(g)における横軸は時間を示し、縦軸はトルクを示す。また、図6のチャート(g)における破線は基本目標トルクを示し、実線は最終目標トルクを示す。
 図3を参照して説明したように、最終目標トルク決定部20は、ステップS3において決定した基本目標トルクから、ステップS4のトルク低減量決定処理において決定したトルク低減量を減算することにより、最終目標トルクを決定する。
 すなわち、図6のチャート(g)に示すように、位置Aと位置Bとの間においてトルク低減フラグがTrueに設定されている間、最終目標トルクが基本目標トルクからトルク低減量の分だけ低減され、そのトルク低減に応じた減速度が車両1に生じるので、前輪2への荷重移動が生じる。その結果、前輪2と路面との間の摩擦力が増加し、前輪2のコーナリングフォースが増大する。
 次に、図7により、本発明の実施形態による車両用挙動制御装置の制御によって車両に生じる前後加速度及び横加速度の変化を説明する。図7Aは、本発明の実施形態による車両用挙動制御装置を搭載した車両が図6のチャート(a)に示したように直進から右旋回を開始し定常円旋回に至るまでの前後加速度及び横加速度の変化を示す線図であり、図7Bは、図7Aにおける微小加速度領域(すなわち旋回初期)を拡大した線図である。図7における横軸は横加速度(車幅方向右側への加速度が正)を示し、縦軸は前後加速度(進行方向の加速度が正、減速度が負)を示している。
 また、図7において、実線は本発明の実施形態による車両用挙動制御装置を搭載した車両における前後加速度及び横加速度の変化を示し、一点鎖線は特許文献1に記載されたような従来の車両運動制御装置を搭載した車両における前後加速度及び横加速度の変化を示し、破線はこれらの制御装置による制御を行わない場合の前後加速度及び横加速度の変化を示している。
 図7Aにおいて一点鎖線により示すように、特許文献1に記載されたような従来の車両運動制御装置では、ドライバが旋回のための操舵をするだけで、横加速度と前後加速度を合成した加速度が左回りの円弧を描くように、横加速度の増大に応じて減速度を増減させる。すなわち、エキスパートドライバが行うような、合成加速度が一定値を保って左回りの円弧を描く車両運動を実現するため、制御装置は、ドライバの操舵に応じて車両に生じる横加速度と同程度の減速度を発生させたのち、その減速度を減少させる。合成加速度が一定値を保って変化していることをドライバが感じられるよう、制御によって発生させる減速度の大きさは0.5Gに達することもある。この0.5Gという減速度は、例えばバスにおいて立っている乗客が倒れてしまうような、緊急時の強いブレーキ操作により生じる減速度であり、減速のための操作を行っていないドライバは強い制御介入感を覚えることになる。
 一方、図7Aにおいて実線により示すように、本発明の実施形態による車両用挙動制御装置の制御によって発生する減速度は、0.001G~0.01G程度、最大でも0.05G(目標付加減速度の上限値Dmax)に制限されている。この0.05Gという減速度は、図7Aにおいて破線により示した、制御装置による制御を行わない場合において旋回中に生じる減速度(すなわち路面と車輪との摩擦力により生じるコーナリングドラッグに起因する減速度)とほぼ同程度である。したがって、ドライバは、減速度を付加する制御が行われていることに気が付かない。
 特に、図7Bに拡大して示したように、本実施形態のPCM14は車両の旋回初期において操舵速度が閾値TS1以上になりトルク低減フラグがTrueに設定されたときにエンジン4の出力トルク低減を開始し、横加速度が微小な領域において減速度を急速に増大させる。これにより、減速度を付加する制御を行わない場合と比較して減速度が迅速に立ち上がる。したがって、ドライバがステアリング操作を開始したときに直ちに前輪の垂直荷重を増大させてコーナリングフォースを増大させることができ、ステアリング操作に対する車両挙動の応答性やリニア感を向上することができる。
 次に、図8乃至図12により、本発明の実施形態による車両用挙動制御装置を搭載した車両に旋回走行を行わせたときの車両挙動を説明する。
 本発明者らは、旋回初期の操舵入力に対し発生する横ジャークに応じてエンジン4の出力トルクを低減させることにより、車両の挙動がどのように変化するのかを評価するために、上述の実施形態による車両用挙動制御装置を搭載した車両に直進から定常円旋回に至る単一コーナーを一定車速で走行させ、そのときの車両挙動に関わる各種パラメータを測定した。
 図8は、本実施形態による車両用挙動制御装置を搭載した車両に旋回走行を行わせたときの車両挙動の測定結果を示す線図であり、図8のチャート(a)は車両の操舵角の変化を示す線図、図8のチャート(b)は車両に発生した横ジャークの変化を示す線図、図8のチャート(c)は操舵速度に基づき設定されたトルク低減フラグの値を示す線図、図8のチャート(d)は前輪を駆動させる駆動トルクの変化を示す線図、図8のチャート(e)は車両に発生した前後ジャークの変化を示す線図である。図8のチャート(d)及び図8のチャート(e)において、実線は本実施形態の車両用挙動制御装置を搭載した車両の結果を示し、破線は車両用挙動制御装置を搭載していない従来の車両の結果を示している。
 操舵角の増大に伴って前輪のスリップ角が増大すると、路面と前輪の接地面との間の摩擦力によりコーナリングフォースが発生する。これにより、図8のチャート(a)及び(b)に示すように、操舵角が増大し始めるのとほぼ同時に横ジャークが発生する。この横ジャークは、操舵角を時間微分した操舵速度とほぼ同じように変化する。
 そして、図8のチャート(c)に示すように、横ジャークが発生している間、すなわち操舵速度が発生している間は、トルク低減フラグがTrueに設定され、図8のチャート(d)に実線で示すように駆動トルクが低減される。このように、図6を参照して説明した通りに車両用挙動制御装置が作動していることが分かる。
 また、前輪2のスリップ角が増大すると、路面と前輪の接地面との間の摩擦力によりコーナリングドラッグも発生する。このコーナリングドラッグにより車両に減速度が生じるまでの間には、サスペンションのコンプライアンス要素等に起因して、僅かな遅れが存在する。したがって、本実施形態の車両用挙動制御装置を搭載していない車両では、図8のチャート(e)において破線により示すように、車両の前後方向後向きのジャーク(減速ジャーク)は、横ジャークよりも遅れて発生する。
 これに対し、本実施形態の車両用挙動制御装置を搭載した車両では、操舵速度が閾値TS1以上になりトルク低減フラグがTrueに設定されたとき直ちに駆動トルク低減を開始することにより、図8のチャート(e)において実線により示すように、コーナリングドラッグのみによる減速ジャークよりも早いタイミングで、横ジャークの発生とほぼ同時に減速ジャークを発生させ、減速ジャークのピークが横ジャークのピーク以前に現れるようにしている。したがって、横ジャークが生じたときに直ちに前輪の垂直荷重を増大させ、ドライバによるステアリング操作に対して良好な応答性で車両の挙動を制御することができる。
 図9は、上記の旋回走行において、横加速度と前後加速度がどのように発生するかを示した線図である。この図9において、横軸は車幅方向の加速度(横加速度)を示し、縦軸は前後方向の加速度(前後加速度)を示す。また、図9においては、減速方向の加速度(減速度)が負値で表されている。
 上述したように、本実施形態の車両用挙動制御装置を搭載していない車両では、操舵角が増大し始めたとき、減速ジャークは横ジャークよりも遅れて発生する。したがって、図9において破線により示すように、横加速度の立ち上がり(0~0.1G)において減速度が増大せず、横加速度が大きくなる(すなわちコーナリングフォースが大きくなる)と、コーナリングドラッグの増大に応じて減速度が増大している。
 一方、本実施形態の車両用挙動制御装置を搭載した車両では、操舵速度が閾値TS1以上になったとき車両の駆動力低減を開始することにより、コーナリングドラッグのみによる減速ジャークよりも早いタイミングで、横ジャークの発生とほぼ同時に減速ジャークを発生させ、減速ジャークのピークが横ジャークのピーク以前に現れるようにしているので、図9において実線により示すように、横加速度の立ち上がり(0~0.1G)に追随して減速度も立ち上がり、横加速度と減速度とがリニアな関係を維持して遷移している。したがって、ドライバによるステアリング操作に対して良好な応答性で車両の挙動を制御することができるだけでなく、車両姿勢の安定感や乗り心地も向上するように車両の挙動を制御することができる。
 図10は、上記の旋回走行において、ローリングとピッチングがどのように発生するかを示した線図である。この図10において横軸はロール角を示し、縦軸はピッチ角を示す。また、図10においては、車両の前部が沈み込む方向のピッチ角が負値で表されている。
 上述したように、本実施形態の車両用挙動制御装置を搭載していない車両では、操舵角が増大し始めたとき、減速ジャークは横ジャークよりも遅れて発生し、横加速度の立ち上がりにおいては減速度が増大しない。したがって、図10において破線により示すように、横加速度の増大に応じて車両の車幅方向に荷重移動が発生し、ロール角が増大するのに対し、ピッチ角はロール角の増大とは無関係に上下している。
 一方、本実施形態の車両用挙動制御装置を搭載した車両では、操舵速度が閾値TS1以上になったとき車両の駆動力低減を開始することにより、横ジャークの発生とほぼ同時に減速ジャークを発生させ、横加速度の立ち上がりに追随して減速度も立ち上がるようにすることで、ロール角の増大に同期して車両の前部が沈み込む方向にピッチ角を増大させるようにしている。
 図11は、各輪のサスペンションの伸縮量により車両姿勢を示した概略図であり、図11Aは平行なローリングが生じたときの車両姿勢を示す図、図11Bはダイアゴナルロールが生じたときの車両姿勢を示す図である。
 上述したように、本実施形態の車両用挙動制御装置を搭載していない車両では、横加速度の増大に応じて車両の車幅方向に荷重移動が発生し、ロール角が増大するのに対し、ピッチ角はロール角の増大とは無関係に上下している。したがって、旋回初期において、ロール角のみが増大することにより図11Aに示すような平行ロール姿勢が生じた後、ロール角とは無関係に生じるピッチングにより前傾姿勢あるいは後傾姿勢が生じる。
 一方、本実施形態の車両用挙動制御装置を搭載した車両では、操舵速度が閾値TS1以上になったとき車両の駆動力低減を開始することにより、ロール角の増大に同期して車両の前部が沈み込む方向にピッチ角を増大させるようにしているので、旋回初期において、ローリングと車両の前部が沈み込むピッチングとが同期して発生することにより図11Bに示すようなダイアゴナルロール姿勢が生じる。
 このように、本発明による車両用挙動制御装置は、旋回初期の横加速度が微小な領域において駆動力低減量を迅速に増大させることによって、ドライバがステアリング操作を開始したときに車両姿勢がダイアゴナルロール姿勢にスムーズに移行するきっかけを作っている。これにより、前輪のコーナリングフォースを増大させて旋回挙動の応答性を向上させるとともに、これから旋回挙動が発生・継続することをドライバに的確に認知させることができる。
 図12は、上記の旋回走行において前輪の垂直荷重がどのように変化するかを示した線図であり、図12Aは左右の荷重移動による前内輪の垂直荷重変化を示す線図、図12Bは車両の減速による前輪の垂直荷重変化を示す線図である。
 上述したように、本実施形態の車両用挙動制御装置を搭載していない車両では、操舵角が増大し始めたとき、横加速度の立ち上がりにおいて減速度が増大しないので、図12において破線で示すように、横加速度の増大に応じて前輪の左右荷重移動量がリニアに増大するのに対し、横加速度の立ち上がり(0~0.1G)においては減速による前後荷重移動が生じないので減速による前輪の垂直荷重変化は発生せず、横加速度が大きくなると、コーナリングドラッグの増大に応じた減速度の増大により、減速による前輪の垂直荷重変化量が増大している。
 一方、本実施形態の車両用挙動制御装置を搭載した車両では、操舵速度が閾値TS1以上になったとき車両の駆動力低減を開始することにより、横加速度の立ち上がりに追随して減速度も立ち上がり、横加速度と減速度とがリニアな関係を維持して遷移するので、図12において実線で示すように、横加速度の増大に応じて前輪の左右荷重移動量がリニアに増大するのに同期して、横加速度の立ち上がり(0~0.1G)から減速による前後荷重移動が生じて前輪の垂直荷重変化量が増大する。これにより、車両の旋回初期において左右荷重移動による前内輪の垂直荷重減少を抑制するように前輪の垂直荷重を増大させ、前輪のコーナリングフォースを増大させて旋回挙動の応答性を向上させることができる。
 次に、本発明の実施形態のさらなる変形例を説明する。
 上述した実施形態においては、トルク低減量決定部22は、操舵速度に基づき目標付加減速度を取得し、この目標付加減速度に基づいてトルク低減量を決定すると説明したが、アクセルペダルの操作以外の車両1の運転状態(操舵角、横加速度、ヨーレート、スリップ率等)に基づきトルク低減量を決定するようにしてもよい。
 例えば、トルク低減量決定部22は、加速度センサから入力された横加速度や、横加速度を時間微分することにより得られる横ジャークに基づき目標付加減速度を取得して、トルク低減量を決定するようにしてもよい。
 また、上述した実施形態においては、PCM14は、目標付加減速度に応じてエンジン4の出力トルクを低減させることにより、車両1に前後方向後向きの減速ジャークを発生させ、車両の前部が沈み込む方向にピッチ角を増大させると共に前輪の垂直荷重を増大させると説明したが、エンジン4を上下動可能に支持するアクティブエンジンマウントや、サスペンションの動作や特性を制御可能なアクティブサスペンションにより減速ジャークを発生させ、車両の前部が沈み込む方向にピッチ角を増大させると共に前輪の垂直荷重を増大させるようにしてもよい。
 また、上述した実施形態においては、車両用挙動制御装置を搭載した車両1は、駆動輪を駆動するエンジン4を搭載すると説明したが、バッテリやキャパシタから供給された電力により駆動輪を駆動するモータを搭載した車両についても、本発明による車両用挙動制御装置を適用することができる。この場合、PCM16は、車両1の操舵速度に応じてモータのトルクを低減させる制御を行う。
 次に、上述した本発明の実施形態及び本発明の実施形態の変形例による車両用挙動制御装置の効果を説明する。
 まず、PCM16は、横ジャーク関連量に基づき、トルク低減フラグがエンジン4の出力トルクを低減させる条件が満たされている状態を示すTrueに設定されたとき、エンジン4の出力トルク低減を開始するので、車両1に横ジャークが生じたときに直ちにエンジン4の出力トルクを低減することにより前輪の垂直荷重を増大させ、ドライバによるステアリング操作に対して良好な応答性で車両1の挙動を制御することができ、これにより、強い制御介入感をドライバに覚えさせることなく、ステアリング操作に対する車両挙動の応答性やリニア感を向上できる。また、ドライバの意図した挙動が正確に実現されることにより、微小な修正舵が不要となるので、車両姿勢の安定感や乗り心地も向上することができる。
 また、PCM16は、横ジャーク関連量が所定の閾値を超えた場合、トルク低減フラグをTrueに設定するので、横ジャーク関連量が閾値以下である場合には、微小なステアリング操作に対して車両1が過剰に反応することを抑制でき、これにより、直進時の車両挙動についてドライバに違和感を与えることなく、ドライバの意図した挙動を正確に実現するように車両の挙動を制御することができる。
 また、横ジャーク関連量は、車両1の操舵速度であるので、ドライバによるステアリング操作の開始に応じて直ちに駆動力を低減することができ、これにより、ドライバによるステアリング操作に対してより良好な応答性で車両1の挙動を制御することができる。
 また、PCM16は、操舵速度が閾値TS1以上になったとき、車両1の前後方向後向きの減速ジャークを発生させるので、ドライバによるステアリング操作の開始後、コーナリングドラッグのみによる減速ジャークよりも早いタイミングで、横ジャークの発生とほぼ同時に減速ジャークを発生させることができる。これにより、車両1の旋回初期においてステアリング操作に応じて直ちに減速ジャークを発生させ減速度を増大させることにより前輪2の垂直荷重を増大させ、ドライバによるステアリング操作に対して良好な応答性・リニア感で車両1の挙動を制御することができるとともに、旋回初期の横加速度の立ち上がりに追随して減速度も立ち上がり、横加速度と減速度とがリニアな関係を維持して遷移するように車両1の挙動を制御することができ、車両姿勢の安定感や乗り心地も向上するように車両1の挙動を制御することができる。
 また、PCM16は、操舵速度が閾値TS1以上になったときエンジン4の出力トルク低減を開始することにより、減速ジャークを発生させるので、ドライバによるステアリング操作の開始後、高い応答性で減速ジャークを発生させることができ、ドライバによるステアリング操作に対してより良好な応答性で車両1の挙動を制御することができるとともに、車両姿勢の安定感や乗り心地も一層向上するように車両1の挙動を制御することができる。
 また、PCM16は、操舵速度が閾値TS1以上になったとき、減速ジャークのピークが横ジャークのピーク以前に現れるように減速ジャークを発生させるので、車両1の旋回初期においてステアリング操作に応じて直ちに減速ジャークを発生させ減速度を増大させることにより前輪2の垂直荷重を増大させ、ドライバによるステアリング操作に対してより良好な応答性で車両1の挙動を制御することができるとともに、車両姿勢の安定感や乗り心地も向上するように車両1の挙動を制御することができる。
 また、PCM16は、操舵速度が閾値TS1以上になったとき、車両1の前部が沈み込む方向にピッチ角を増大させるので、ドライバによるステアリング操作の開始後、ローリングが発生したときに車両1の前部が沈み込むピッチングを発生させることができ、これにより、車両1の旋回初期においてダイアゴナルロール姿勢を生じさせ、前輪2のコーナリングフォースを増大させて旋回挙動の応答性を向上させるとともに、これから旋回挙動が発生・継続することをドライバに的確に認知させることができる。したがって、ドライバによるステアリング操作に対して良好な応答性・リニア感で車両1の挙動を制御することができるとともに、車両姿勢の安定感や乗り心地も向上するように車両1の挙動を制御することができる。
 また、PCM16は、操舵速度が閾値TS1以上になったときエンジン4の出力トルク低減を開始することにより、車両1の前部が沈み込む方向にピッチ角を増大させるので、ドライバによるステアリング操作の開始後、駆動力低減により車両1に減速度を生じさせることで高い応答性でピッチ角を増大させることができ、ドライバによるステアリング操作に対してより良好な応答性で車両1の挙動を制御することができるとともに、車両姿勢の安定感や乗り心地も一層向上するように車両1の挙動を制御することができる。
 また、PCM16は、操舵速度が閾値TS1以上になったとき、車両1のロール角の増大に同期して車両1の前部が沈み込む方向にピッチ角を増大させるので、車両1の旋回初期においてダイアゴナルロール姿勢を確実に生じさせることができ、これにより、ドライバによるステアリング操作に対して良好な応答性で車両1の挙動を制御することができるとともに、車両姿勢の安定感や乗り心地も向上するように車両1の挙動を制御することができる。
 また、PCM16は、操舵速度が閾値TS1以上になったとき、前輪2の垂直荷重を増大させるので、ドライバによるステアリング操作の開始後、横加速度の増大に応じて前輪2の左右荷重移動量が増大したときに前輪2の垂直荷重を増大させることができ、これにより、車両1の旋回初期において左右荷重移動による前内輪の垂直荷重減少を抑制するように前輪2の垂直荷重を増大させ、前輪2のコーナリングフォースを増大させて旋回挙動の応答性を向上させることができる。これにより、強い制御介入感をドライバに覚えさせることなく、ステアリング操作に対する車両挙動の応答性やリニア感を向上できる。また、ドライバの意図した挙動が正確に実現されることにより、微小な修正舵が不要となるので、車両姿勢の安定感や乗り心地も向上することができる。
 また、PCM16は、操舵速度が閾値TS1以上になったとき車両1の駆動力低減を開始することにより、前輪2の垂直荷重を増大させるので、ドライバによるステアリング操作の開始後、駆動力低減により車両1に減速度を生じさせることで高い応答性で前輪2の垂直荷重を増大させることができ、これにより、旋回初期において左右荷重移動による前内輪の垂直荷重減少を抑制するように前輪2の垂直荷重を迅速に増大させ、前輪のコーナリングフォースを増大させて旋回挙動の応答性を向上させることができる。
 また、PCM16は、操舵速度が閾値TS1以上になったとき、前輪2の左右荷重移動に同期して前輪2の垂直荷重を増大させるので、車両1の旋回初期において左右荷重移動による前内輪の垂直荷重減少を確実に抑制するように前輪2の垂直荷重を増大させることができ、これにより、前輪2のコーナリングフォースを確実に増大させて旋回挙動の応答性を向上させることができる。
 1 車両
 2 前輪
 4 エンジン
 6 ステアリングホイール
 8 操舵角センサ
 10 アクセル開度センサ
 12 車速センサ
 14 PCM
 16 基本目標トルク決定部
 18 トルク低減量決定部
 20 最終目標トルク決定部
 22 エンジン制御部

Claims (3)

  1.  前輪が操舵される車両の挙動を制御する車両用挙動制御装置において、
     上記車両の操舵速度を取得する操舵速度取得手段と、
     上記操舵速度が0より大きい所定の閾値以上になったとき、上記車両の前後方向後向きの減速ジャークを発生させる減速ジャーク発生手段と、
    を有することを特徴とする車両用挙動制御装置。
  2.  上記減速ジャーク発生手段は、上記操舵速度が上記閾値以上になったとき上記車両の駆動力低減を開始することにより、上記減速ジャークを発生させる、請求項1に記載の車両用挙動制御装置。
  3.  上記減速ジャーク発生手段は、上記操舵速度が上記閾値以上になったとき、上記減速ジャークのピークが上記車両の車幅方向におけるジャークのピーク以前に現れるように上記減速ジャークを発生させる、請求項1又は2に記載の車両用挙動制御装置。
PCT/JP2017/013459 2016-04-22 2017-03-30 車両用挙動制御装置 WO2017183416A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17785758.8A EP3418146A4 (en) 2016-04-22 2017-03-30 VEHICLE BEHAVIOR CONTROL DEVICE
US16/084,982 US10793136B2 (en) 2016-04-22 2017-03-30 Vehicle behavior control device
CN201780016213.5A CN108883762B (zh) 2016-04-22 2017-03-30 车辆用举动控制装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016086536A JP6179878B1 (ja) 2016-04-22 2016-04-22 車両用挙動制御装置
JP2016-086536 2016-04-22

Publications (1)

Publication Number Publication Date
WO2017183416A1 true WO2017183416A1 (ja) 2017-10-26

Family

ID=59604784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/013459 WO2017183416A1 (ja) 2016-04-22 2017-03-30 車両用挙動制御装置

Country Status (5)

Country Link
US (1) US10793136B2 (ja)
EP (1) EP3418146A4 (ja)
JP (1) JP6179878B1 (ja)
CN (1) CN108883762B (ja)
WO (1) WO2017183416A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6653085B2 (ja) 2017-09-29 2020-02-26 マツダ株式会社 車両の駆動力制御装置
JP7185219B2 (ja) * 2018-09-10 2022-12-07 マツダ株式会社 車両の制御方法、車両システム及び車両の制御装置
JP7185218B2 (ja) * 2018-09-10 2022-12-07 マツダ株式会社 車両の制御方法、車両システム及び車両の制御装置
JP7125232B2 (ja) * 2018-11-30 2022-08-24 トヨタ自動車株式会社 操舵判定装置及び自動運転システム
US11447112B2 (en) 2019-06-04 2022-09-20 Mazda Motor Corporation Vehicle attitude control system
JP7274103B2 (ja) * 2019-06-04 2023-05-16 マツダ株式会社 車両姿勢制御装置
JP2022125557A (ja) * 2021-02-17 2022-08-29 マツダ株式会社 車両の制御システム
CN113386793B (zh) * 2021-06-30 2022-06-03 重庆长安汽车股份有限公司 线性和非线性控制结合低速稳态控制系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005145143A (ja) * 2003-11-12 2005-06-09 Nissan Motor Co Ltd 車両用旋回走行制御装置
JP2007270704A (ja) * 2006-03-31 2007-10-18 Toyota Motor Corp 車両制御装置
JP2009120116A (ja) * 2007-11-16 2009-06-04 Hitachi Ltd 車両衝突回避支援装置
JP2010119204A (ja) * 2008-11-12 2010-05-27 Bridgestone Corp 電気自動車の車両制御装置
JP2011157067A (ja) * 2011-03-10 2011-08-18 Hitachi Automotive Systems Ltd 車両の運動制御装置
JP2013063733A (ja) * 2011-09-20 2013-04-11 Toyota Motor Corp 車両の制御装置
JP2013071524A (ja) * 2011-09-27 2013-04-22 Toyota Motor Corp 車両の制御装置
JP5193885B2 (ja) 2009-01-13 2013-05-08 日立オートモティブシステムズ株式会社 車両の運動制御装置
JP2013256149A (ja) * 2012-06-11 2013-12-26 Hitachi Automotive Systems Ltd 車両の走行制御装置
JP2017067000A (ja) * 2015-09-30 2017-04-06 マツダ株式会社 エンジンの制御装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3784436B2 (ja) * 1995-11-20 2006-06-14 本田技研工業株式会社 車両の制動力制御装置
JP3827837B2 (ja) * 1997-11-19 2006-09-27 富士重工業株式会社 車両運動制御装置
JP4069886B2 (ja) * 2004-03-15 2008-04-02 トヨタ自動車株式会社 車輌の挙動制御装置
US8744689B2 (en) * 2007-07-26 2014-06-03 Hitachi, Ltd. Drive controlling apparatus for a vehicle
EP2808215B1 (en) * 2012-01-25 2016-07-27 Nissan Motor Co., Ltd Vehicle control system and vehicle control method
CN104105628B (zh) * 2012-01-25 2016-08-24 日产自动车株式会社 车辆的控制装置和车辆的控制方法
JP2015003686A (ja) * 2013-06-24 2015-01-08 三菱自動車工業株式会社 車両安定装置
JP6416574B2 (ja) * 2014-09-29 2018-10-31 日立オートモティブシステムズ株式会社 車両の制御方法、車両制御システム、車両制御装置、および制御プログラム
JP2016150591A (ja) * 2015-02-16 2016-08-22 富士通テン株式会社 車両制御装置、車両制御システム、および、車両制御方法
PL3408001T3 (pl) * 2016-01-30 2020-11-02 Elwema Automotive Gmbh Przemysłowa instalacja czyszcząca z układem filtrów i odpowiednim sposobem

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005145143A (ja) * 2003-11-12 2005-06-09 Nissan Motor Co Ltd 車両用旋回走行制御装置
JP2007270704A (ja) * 2006-03-31 2007-10-18 Toyota Motor Corp 車両制御装置
JP2009120116A (ja) * 2007-11-16 2009-06-04 Hitachi Ltd 車両衝突回避支援装置
JP2010119204A (ja) * 2008-11-12 2010-05-27 Bridgestone Corp 電気自動車の車両制御装置
JP5193885B2 (ja) 2009-01-13 2013-05-08 日立オートモティブシステムズ株式会社 車両の運動制御装置
JP2011157067A (ja) * 2011-03-10 2011-08-18 Hitachi Automotive Systems Ltd 車両の運動制御装置
JP2013063733A (ja) * 2011-09-20 2013-04-11 Toyota Motor Corp 車両の制御装置
JP2013071524A (ja) * 2011-09-27 2013-04-22 Toyota Motor Corp 車両の制御装置
JP2013256149A (ja) * 2012-06-11 2013-12-26 Hitachi Automotive Systems Ltd 車両の走行制御装置
JP2017067000A (ja) * 2015-09-30 2017-04-06 マツダ株式会社 エンジンの制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3418146A4

Also Published As

Publication number Publication date
CN108883762A (zh) 2018-11-23
US20190084552A1 (en) 2019-03-21
US10793136B2 (en) 2020-10-06
CN108883762B (zh) 2021-08-03
JP6179878B1 (ja) 2017-08-16
JP2017193317A (ja) 2017-10-26
EP3418146A4 (en) 2019-05-22
EP3418146A1 (en) 2018-12-26

Similar Documents

Publication Publication Date Title
JP6202479B1 (ja) 車両用挙動制御装置
JP6179878B1 (ja) 車両用挙動制御装置
JP6202478B1 (ja) 車両用挙動制御装置
JP6202480B1 (ja) 車両用挙動制御装置
US10266173B2 (en) Vehicle behavior control device
US10569765B2 (en) Vehicle behavior control device
JP6521491B1 (ja) 車両の制御装置
JP6388259B2 (ja) 車両用挙動制御装置
JP7038972B2 (ja) 車両の制御方法、車両システム及び車両の制御装置
JP2019006288A (ja) 車両用挙動制御装置
WO2019026380A1 (ja) 車両の制御装置
JP2019123313A (ja) 車両の制御装置
JP6683186B2 (ja) 車両の制御装置
JP2019098912A (ja) 車両の制御装置
JP6388258B2 (ja) 車両用挙動制御装置
JP2019093846A (ja) 車両の制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017785758

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017785758

Country of ref document: EP

Effective date: 20180917

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17785758

Country of ref document: EP

Kind code of ref document: A1