WO2017171229A1 - 공기입 타이어 - Google Patents

공기입 타이어 Download PDF

Info

Publication number
WO2017171229A1
WO2017171229A1 PCT/KR2017/001520 KR2017001520W WO2017171229A1 WO 2017171229 A1 WO2017171229 A1 WO 2017171229A1 KR 2017001520 W KR2017001520 W KR 2017001520W WO 2017171229 A1 WO2017171229 A1 WO 2017171229A1
Authority
WO
WIPO (PCT)
Prior art keywords
pneumatic tire
sound absorbing
absorbing member
thickness
tread
Prior art date
Application number
PCT/KR2017/001520
Other languages
English (en)
French (fr)
Inventor
이동민
나재봉
Original Assignee
넥센타이어 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 넥센타이어 주식회사 filed Critical 넥센타이어 주식회사
Priority to US16/088,636 priority Critical patent/US20190084358A1/en
Priority to EP17775654.1A priority patent/EP3437900B1/en
Priority to CN201780020729.7A priority patent/CN108883674B/zh
Publication of WO2017171229A1 publication Critical patent/WO2017171229A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C19/00Tyre parts or constructions not otherwise provided for
    • B60C19/002Noise damping elements provided in the tyre structure or attached thereto, e.g. in the tyre interior
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0306Patterns comprising block rows or discontinuous ribs
    • B60C11/0309Patterns comprising block rows or discontinuous ribs further characterised by the groove cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/11Tread patterns in which the raised area of the pattern consists only of isolated elements, e.g. blocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1204Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C19/00Tyre parts or constructions not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0341Circumferential grooves
    • B60C2011/0344Circumferential grooves provided at the equatorial plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0358Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1204Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe
    • B60C2011/1213Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe sinusoidal or zigzag at the tread surface

Definitions

  • Embodiments of the present invention relate to pneumatic tires.
  • Tires play an important role in the vehicle in contact with the ground in relation to driving and braking of the vehicle.
  • the noise of the vehicle can be classified into the noise generated by the vehicle body and the noise produced by the tire, and the noise generated by the tire is mainly caused by noise caused by cavity noise of the air generated inside the tire.
  • Embodiments of the present invention provide a pneumatic tire.
  • a pneumatic tire a tread having a groove; A pair of side walls respectively disposed at both ends of the tread; And a pair of edge portions adjacent to each of the pair of side walls, each having a first thickness, and a central portion located between the pair of edge portions and having a second thickness different from the first thickness,
  • a pneumatic tire including; a sound absorbing member disposed inside the pneumatic tire.
  • the first thickness may be smaller than the second thickness.
  • the minimum value of the second thickness may be 2 cm.
  • the sound absorbing member may include a first surface facing the tread and a second surface opposite to the first surface.
  • the second surface may include a curved surface.
  • the curved surface may have a predetermined curvature.
  • the sound absorbing member may be symmetrical with respect to the centerline of the tread.
  • the sound absorbing member may extend along the circumferential direction of the pneumatic tire, and the first and second ends of the sound absorbing member may be spaced apart from each other along the circumferential direction of the pneumatic tire.
  • the peak position of RF1H of the pneumatic tire may be disposed between the first stage and the second stage, wherein the peak position of RF1H of the pneumatic tire is a radial force variation.
  • the position of the pneumatic tire corresponding to the high-value point position of the Radial Force First Harmonic component of Variation.
  • the minimum value of the angle between the first end and the second end with respect to the center of the wheel rim of the pneumatic tire may be 10 degrees.
  • the adhesive layer disposed between the inner surface of the tread and the sound absorbing member; And a primer layer interposed between the adhesive layer and the inner surface of the tread.
  • the sound absorbing member may include an ether-based polyurethane foam.
  • the first width of the sound absorbing member may be about 55% to about 65% of the second width between the pair of sidewalls, and may be about 120mm to about 160mm.
  • the volume of the sound absorbing member may be about 5% to 25% of the volume of the inner space of the pneumatic tire.
  • Embodiments of the present invention can effectively reduce the noise caused by the resonance vibration of the air generated inside the pneumatic tire.
  • the scope of the present invention is not limited by these effects.
  • FIG. 1 is a perspective view showing a pneumatic tire according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along the line II-II of FIG. 1.
  • FIG. 3 is an enlarged cross-sectional view of part III of FIG. 2.
  • FIGS. 4 and 5 are respectively a perspective view showing the sound absorbing member in the pneumatic tire according to an embodiment of the present invention.
  • 6A is a perspective view of a grooved member according to another embodiment of the present invention.
  • FIG. 6B is a perspective view schematically showing a state in which the sound absorbing member of FIG. 6A is installed in a pneumatic tire.
  • FIG. 6C is a schematic side view of the pneumatic tire provided with the sound absorbing member of FIG. 6A.
  • FIG. 7 is a graph illustrating radial force variation (RFV) and radial first harmonic (RF1H) of the pneumatic tire of FIG. 6C.
  • FIG. 8 is a cross-sectional view illustrating the sound absorbing member illustrated in FIG. 2.
  • FIGS. 10 and 11 are cross-sectional views showing a sound absorbing member according to still another embodiment of the present invention.
  • a part such as a film, a region, a component, or the like is on or on another part, not only is it directly above the other part, but also another film, a region, a component, etc. is interposed therebetween. It also includes cases where there is.
  • FIG. 1 is a perspective view showing a pneumatic tire according to an embodiment of the present invention
  • Figure 2 is a cross-sectional view taken along the line II-II of Figure 1
  • Figure 3 is an enlarged cross-sectional view showing part III of FIG.
  • the pneumatic tire 1 includes a tread 110, a pair of sidewalls 120 connected from the tread 110, and a bead portion located below each of the sidewalls 120. 130, the belt layer 140 and the carcass layer 150 positioned below the tread 110, the inner liner 160 attached to the inner side of the carcass layer 150, and the tread 110. It may include a sound absorbing member 170 located inside.
  • the tread 110 is located on the outermost side of the pneumatic tire 1 and is made of a thick rubber layer to transmit the driving force and the braking force of the vehicle to the ground.
  • Tread patterns 114 and blocks 116 partitioned by the tread patterns 114 for steering stability, traction, and braking may be located on the surface of the tread 110.
  • the tread patterns 114 may include grooves for drainage and sipes for improving traction and braking force when driving on a wet road surface.
  • the groove may comprise a lateral groove between the circumferential groove and the circumferential groove that matches the running direction of the vehicle.
  • the sipe is formed in block 116 and may be a groove having a size smaller than the groove. The sipe absorbs moisture during driving on wet roads and breaks the water film, thereby increasing driving and braking force of the pneumatic tire 1.
  • the block 116 occupies most of the tread 110 and directly contacts the ground to transmit driving and braking force of the vehicle to the ground.
  • the side wall 120 extends downward from the end of the tread 110.
  • the side wall 120 is a side part of the pneumatic tire 1, which protects the carcass layer 150, provides lateral stability of the pneumatic tire 1, and increases the riding comfort by flexing.
  • the side wall 120 serves to transmit the torque of the engine received through the drive shaft to the tread (110).
  • the bead part 130 is provided at an end of the side wall 120 and serves to mount the pneumatic tire 1 to the rim 200.
  • the bead part 130 may include a bead core 132 and a bead filler 134.
  • the bead core 132 may be formed by twisting a plurality of rubber-coated steel wires, and the bead filler 134 may be rubber attached to the bead core.
  • the belt layer 140 is disposed under the tread 110, and reduces road surface shocks and protects the carcass layer 150 when the vehicle runs.
  • the belt layer 140 includes a first belt layer 141 and a second belt layer 143 overlapping each other.
  • the first belt layer 141 may be positioned on the second belt layer 143, and the width of the first belt layer 141 may be smaller than the width of the second belt layer 143.
  • a cap ply 145 may be further included between the tread 110 and the belt layer 140.
  • Cap ply 145 is a special code that is attached to the belt layer 140 can improve the performance when running.
  • the cap ply 145 may include, for example, polyester synthetic fibers.
  • the carcass layer 150 is disposed below the belt layer 140, forms a skeleton of the pneumatic tire 1, and withstands the load, impact, and the like that the pneumatic tire 1 receives and the pneumatic tire 1. Maintain the air pressure.
  • the carcass layer 150 may include a first carcass layer 151 and a second carcass layer 153 overlapping each other.
  • the first carcass layer 151 is turned up in the bead portion 130 and extends toward the tread 110. One end of the turned-up first carcass layer 151 may extend to cover the inner side of the side wall 120 to improve the rigidity of the side wall 120.
  • the second carcass layer 153 is positioned on the first carcass layer 151 and is turned up in the bead unit 130 and extends toward the tread 110, but the second carcass layer 153 is turned up.
  • One end may be shorter than one end of the first carcass layer 151 to cover the inside of the bead part 130.
  • the carcass layer 150 may be formed of a single layer.
  • the inner liner 160 is a layer for preventing air leakage of the pneumatic tire 1 instead of the tube, and may be formed of a rubber layer having excellent sealing property.
  • the inner liner 160 may be made of high density butyl rubber and the like, and may maintain the air pressure in the pneumatic tire 1.
  • the sound absorbing member 170 is disposed on the inner side of the tread 110, for example, the inner liner 160 so as to be positioned between the side walls 120.
  • the sound absorbing member 170 may reduce resonance resonance of air generated inside the pneumatic tire 1 to prevent the vibration from being transmitted to the inside of the vehicle.
  • the sound absorbing member 170 may have a structure that is substantially symmetrical with respect to the center line CL illustrated in FIG. 2.
  • the center line CL represents a line passing through the center of the tread.
  • the peak point (pp) of the sound absorbing member 170 may be substantially placed on the center line CL, but considering the installation error of the sound absorbing member 170, the highest point of the sound absorbing member 170 is the center line. It may be desirable to have a margin in the range of ⁇ 3 mm to the left and right relative to (CL). If the position of the sound absorbing member 170 is out of the above-described range, it may cause a pull due to conicity when the tire is running.
  • the first width W1 of the sound absorbing member 170 is smaller than the second width W2 between the side walls 120.
  • the second width W2 represents the largest width (distance) of the distances between the inner walls of the side walls 120.
  • the first width W1 is selected from about 55% to about 65% of the second width W2 and may be selected from about 120mm to about 160mm.
  • Both edges of the sound absorbing member 170 are spaced apart from the inner surface of the side wall 120 by a predetermined distance.
  • the separation distance d of each of the two edge portions of the sound absorbing member 170 spaced from the inner side surface of the side wall 120 is greater than about 17.5% of the second width W2, for example, about 17.5% to 22.5%. It can be selected in the range of. In particular, when the separation distance d is smaller than the lower limit of the above-mentioned range, the end of the sound absorbing member 170 is caused by the external force applied to the tire 1 itself while the tire 1 is traveling, and the inner side surface of the tire 1. From (eg exfoliation).
  • the sound absorbing member 170 may be coupled to the inner liner 160 by the adhesive member 180.
  • the first surface 171 of the sound absorbing member 170 is fixedly coupled to the inner liner 160 by the adhesive member 180, and the second surface 172 of the sound absorbing member 170 is formed of the pneumatic tire 1. Face inward.
  • the adhesive member 180 may include a double-sided adhesive layer 181 and a double-sided adhesive layer 181 and an inner liner interposed between the first surface 171 of the sound absorbing member 170 and the inner liner 160.
  • 160 may include a primer layer 183 interposed between.
  • the double-sided adhesive layer 181 may use an adhesive layer such as a double-sided tape.
  • the primer layer 183 is to improve the fixed bonding strength of the sound absorbing member 170 using the double-sided adhesive layer 181, and may include a polyurethane or rubber material.
  • FIGS. 4 and 5 are respectively a perspective view showing the sound absorbing member installed in the pneumatic tire according to an embodiment of the present invention.
  • the sound absorbing member 170 may be integrally formed to have an annular shape extending along the circumferential direction of the pneumatic tire 1 (see FIG. 1).
  • the plurality of sound absorbing members 170 may be spaced apart from each other along the circumferential direction of the pneumatic tire 1 (see FIG. 1).
  • FIG. 6A is a perspective view of a grooved member according to another embodiment of the present invention
  • FIG. 6B is a perspective view schematically illustrating a state in which the sound absorbing member of FIG. 6A is installed in a pneumatic tire
  • FIG. 6C is air in which the sound absorbing member of FIG. 6A is installed.
  • 7 is a schematic side view of a tire
  • FIG. 7 is a graph showing radial force variation (RFV) and radial force first harmonic (RF1H) of the pneumatic tire of FIG. 6C.
  • the first width W1 of the sound absorbing member 170 is in the range of about 55% to about 65% of the second width W2 as described with reference to FIG. 2, and about It may be selected from the range of 120mm to about 160mm, it may have a constant value without increasing or decreasing along the length (L) direction.
  • the length L of the sound absorbing member 170 may be selected from a range of 15 to 25 times the first width W1.
  • the length L of the sound absorbing member 170 may be selected from a range of 15 times to 20 times the first width W1.
  • one sound absorbing member 170 extends along the circumferential direction of the pneumatic tire 1, and the first end 170a of the sound absorbing member 170 along the circumferential direction and The second stage 170b is spaced apart from each other.
  • the sound absorbing member 170 is provided with an RF1H of the pneumatic tire 1 between the first end 170a and the second end 170b of the sound absorbing member 170. Is placed on the inner side of the pneumatic tire 1 so that a high-value point position (HPP) of.
  • HPP high-value point position
  • the highest point position HPP of RF1H of the pneumatic tire 1 is defined as follows.
  • RF1H radial force first harmonic
  • RV radial force variation
  • RF1H has a roughly sine waveform as shown in the graph in FIG.
  • the "highest point position (HPP) of RF1H" of the pneumatic tire 1 in this specification represents the position of the part corresponding to the high-value point of the RF1H waveform of the pneumatic tire 1. .
  • the high-value point of the sine waveform described above may have a deviation of about 10 °.
  • the highest point position HPP of RF1H is located between the first end 170a and the second end 170b, but the first end 170a and the second end are positioned.
  • Angle (theta) between 170b can be set to about 10 degrees or more.
  • the minimum value of the separation distance between the first end 170a and the second end 170b is an angle formed by the first end 170a and the second end 170b with respect to the center CO of the wheel rim.
  • corresponds to a distance of about 10 ° (however, the highest point position HPP of RF1H of the pneumatic tire 1 is located between the first end 170a and the second end 170b).
  • the peak position HPP of RF1H of the pneumatic tire 1 may be located at the center of the first end 170a and the second end 170b.
  • an angle between the first stage 170a and the highest point position HPP of RF1H based on the center CO of the wheel rim is about 5 ° or more
  • the second stage ( The angle between 170b) and the peak position (HPP) of RF1H may be about 5 ° or more.
  • FIG. 8 is a cross-sectional view showing the sound absorbing member shown in FIG.
  • the sound absorbing member 170 has a symmetrical shape with respect to the central portion 170c.
  • the peak (pp) of the central portion (170c) of the sound absorbing member 170 may be placed on the center line (CL) of the tread as described above with reference to FIG. Therefore, the center of mass can be located at the center of the pneumatic tire 1 (for example, the center line CL, see FIG. 2), and the mass distribution of the pneumatic tire 1 can not be directed to any particular position during travel.
  • the sound absorbing member 170 has a thickness that is not constant along the width direction of the pneumatic tire 1.
  • the sound absorbing member 170 has a thickness that decreases continuously (gradually) in a direction from the central portion 170c toward each of the pair of edge portions 170e.
  • the sound absorbing member 170 has a central portion 170c having a second thickness T2 larger than the first thickness T1 of the edge portion 170e, thereby efficiently distributing internal air vibration of the pneumatic tire 1.
  • the resonance vibration can be efficiently reduced.
  • the first thickness T1 of each of the edge portions 170e is smaller than the second thickness T2.
  • driving such as handling or cornering of a pneumatic tire is performed. There exists a problem of reducing the flexion of the edge part of the city pneumatic tire 1.
  • the noise reduction effect and the deterioration of the running performance of the pneumatic tire 1 are reduced. Prevention can be achieved at the same time.
  • the second thickness T2 of the central portion 170c may be greater than about 2.0 cm. As shown in FIG. 9, in order to obtain a noise reduction effect, it may be confirmed that the minimum value of the second thickness T2 of the central portion 170c is about 2.0 cm. Referring to FIG. 9, when the second thickness T2 of the central portion 170c is smaller than about 2.0 cm, the noise may increase rapidly.
  • the second surface 172 of the sound absorbing member 170 may include a curved surface.
  • the second surface 172 may have a constant curvature (or radius of curvature R).
  • the curved second surface 172 does not lower the flow of air in the tire, thereby sufficiently securing sound absorption and vibration characteristics.
  • the shape of the portion is the inside of the pneumatic tire 1. Influence on the flow and absorption of the cavity resonance sound of the space may lower the performance of sound absorption and vibration absorption of the pneumatic tire 1. Thus, it may be more desirable for the second surface 172 to have a curved surface.
  • the second surface 172 may have a radius of curvature R of about 150 mm to 250 mm.
  • the sound absorbing member 170 when the radius of curvature R of the second surface 172 is smaller than the lower limit described above.
  • the durability of the edge portion (170e) of the lower than the upper limit of the above-described upper limit substantially the sound-absorbing member 170 has a rectangular parallelepiped shape.
  • the sound absorbing member having a substantially rectangular parallelepiped shape also causes an increase in mass and volume, thereby lowering fuel economy of a vehicle equipped with a pneumatic tire.
  • a pneumatic tire having a sound absorbing member having a substantially rectangular parallelepiped shape may cause vibration caused by the shape of the internal cavity of the pneumatic tire, for example, vibration caused by the flow of fluid in the internal cavity. Can be.
  • the sound absorbing member 170 when provided with the sound absorbing member 170 according to the embodiments of the present invention, it is possible to minimize the possibility of the vibration caused by the shape of the internal cavity (Cavity) of the pneumatic tire (1).
  • the radius of curvature R of the second surface 172 may be about 200 mm.
  • the sound absorbing member 170 may include a polymer material having a density of about 10 kg / m 3 to 50 kg / m 3 . If the density is less than 10 kg / m 3 , the sound absorption rate is lowered, and if the density exceeds 50 kg / m 3 , the weight of the sound absorbing member 170 is increased, there is a problem that fatigue accumulates in the pneumatic tire (1). .
  • the volume of the sound absorbing member 170 may be selected within the range of about 5% to 25% of the volume V of the internal space of the pneumatic tire 1.
  • the volume V of the internal space of the pneumatic tire 1 represents the volume of the space between the pneumatic tire 1 and the rim 200 as shown in FIG.
  • the rotational resistance of the pneumatic tire 1 may be increased by increasing the weight of the sound absorbing member 170, and the uniformity may be lowered.
  • the sound absorbing member 170 may include a polymer material having a tear strength of about 0.1 kg / cm to 1.5 kg / cm and a tensile strength of about 1.0 kg / cm 2 to 2.5 kg / cm 2 .
  • the sound absorbing member 170 may include a polymer material having an elongation of about 100% to 300%.
  • Sound absorbing member 170 may be formed of an ether-based or ester-based polyurethane foam.
  • Ether-based polyurethane foam compared with the ester-based polyurethane foam, has the advantage of excellent chemical resistance, water resistance, cold resistance and dynamic fatigue characteristics.
  • FIG. 10 is a cross-sectional view showing a sound absorbing member according to another embodiment of the present invention.
  • the sound absorbing member 270 includes all the features of the sound absorbing member 170 described above, except that the second surface 272 does not have a curved surface.
  • the differences will be mainly described for convenience of description.
  • the second surface 272 of the sound absorbing member 270 includes a first sub surface 272a extending toward one edge portion 270e at the center portion 270c, and the other edge portion at the center portion 270c. And a second sub surface 272b extending toward 270e.
  • Each of the first and second sub-surfaces 272a and 272b may include a plane, and the internal angle ⁇ formed by the first and second sub-surfaces 272a and 272b may be an obtuse angle.
  • FIG. 11 is a cross-sectional view showing a sound absorbing member according to another embodiment of the present invention.
  • the sound absorbing member 370 includes the sound absorbing member described above, except that the second surface 372 has an uneven surface, and the thickness of the sound absorbing member 270 does not change continuously (progressively). It includes all of the features of (170, 270). Hereinafter, the differences will be mainly described for convenience of description.
  • the second surface 372 of the sound absorbing member 370 may include an uneven surface.
  • the second surface 372 may have irregularities having a stepped cross section, but the present invention is not limited thereto.
  • the unevenness of the second surface 372 may be variously modified, such as an embossed shape having a sawtooth or curved surface in cross section.
  • the sound absorbing member 370 may have a thickness that is discontinuously (stepwise) along a direction from the central portion 370c toward each of the pair of edge portions 370e.
  • the second surface 172 includes an angular portion, the inner space of the pneumatic tire 1 As described above, the performance of sound absorption and vibration absorption may be reduced by affecting the flow and absorption of the cavity resonance sound. Therefore, as shown in FIG. 8 described above, it may be preferable that the second surface 172 has a curved surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Tires In General (AREA)

Abstract

본 발명의 일 실시예는, 공기입 타이어로서, 그루브를 갖는 트레드;, 트레드의 양측 단부에 각각 배치된 한 쌍의 사이드 월들; 및 한 쌍의 사이드 월들 각각에 인접하며 각각 제1두께를 갖는 한 쌍의 가장자리부들, 및 한 쌍의 가장자리부들 사이에 위치하며 제1두께와 다른 제2두께를 갖는 중심부를 포함하고, 공기입 타이어의 내측에 배치되는 흡음부재;를 포함하는 것을 개시한다.

Description

공기입 타이어
본 발명의 실시예들은, 공기입 타이어에 관한 것이다.
타이어는 차량에 있어서 지면과 접촉하여 차량의 주행 및 제동과 관련하여 중요한 역할을 담당한다. 차량의 소음은 차체에 의한 소음과 타이어에 의한 소음으로 구별할 수 있으며, 타이어에 의해 발생하는 소음은, 타이어의 내측에서 발생하는 공기의 공명 진동(cavity noise)에 의한 소음이 주요 원인이다.
한국공개특허공보 2010-0106548호 (2010.10.01)
본 발명의 실시예들은 공기입 타이어를 제공한다.
본 발명의 일 실시예는, 공기입 타이어에 있어서, 그루브를 갖는 트레드; 상기 트레드의 양측 단부에 각각 배치된 한 쌍의 사이드 월들; 및 상기 한 쌍의 사이드 월들 각각에 인접하며 각각 제1두께를 갖는 한 쌍의 가장자리부들, 및 상기 한 쌍의 가장자리부들 사이에 위치하며 상기 제1두께와 다른 제2두께를 갖는 중심부를 포함하고, 상기 공기입 타이어의 내측에 배치되는 흡음부재;를 포함하는, 공기입 타이어를 개시한다.
본 실시예에 있어서, 상기 제1두께는 상기 제2두께 보다 작을 수 있다.
본 실시예에 있어서, 상기 제2두께의 최소값은 2cm 일 수 있다.
본 실시예에 있어서, 상기 흡음부재는 상기 트레드를 향하는 제1면, 및 상기 제1면의 반대편인 제2면을 포함할 수 있다.
본 실시예에 있어서, 상기 제2면은 곡면을 포함할 수 있다.
본 실시예에 있어서, 상기 곡면은 일정한 값의 곡률을 가질 수 있다.
본 실시예에 있어서, 상기 흡음부재는 상기 트레드의 중심선에 대하여 대칭일 수 있다.
본 실시예에 있어서, 상기 흡음부재는 상기 상기 공기입 타이어의 원주방향을 따라 연장되되, 상기 공기입 타이어의 원주방향을 따르는 상기 흡음부재의 제1단 및 제2단은 서로 이격될 수 있다.
본 실시예에 있어서, 상기 제1단과 상기 제2단 사이에 상기 공기입 타이어의 RF1H의 최고점 위치가 배치될 수 있으며, 여기서, 공기입 타이어의 RF1H의 최고점 위치는, 레이디얼 포스 베리에이션(Radial Force Variation)의 레이디얼 포스 제1하모닉(Radial Force First Harmonic)성분의 최고점(high-value point) 위치와 대응하는 상기 공기입 타이어의 위치(position)를 나타낸다.
본 실시예에 있어서, 상기 공기입 타이어의 휠 림의 중심에 대하여 상기 제1단과 상기 제2단 사이의 각도의 최소값은, 10°일 수 있다.
본 실시예에 있어서, 상기 트레드의 내측면과 상기 흡음부재 사이에 배치되는 접착층; 및 상기 접착층과 상기 트레드의 내측면 사이에 개재되는 프라이머층;을 더 포함할 수 있다.
본 실시예에 있어서, 상기 흡음부재는 에테르계 폴리우레탄 폼을 포함할 수 있다.
본 실시예에 있어서, 상기 흡음부재의 제1폭은, 상기 한 쌍의 사이드 월들 사이의 제2폭의 약 55 % 내지 약 65%이되, 약 120mm 내지 약 160mm일 수 있다.
본 실시예에 있어서, 상기 흡음부재의 체적은, 상기 공기입 타이어의 내부 공간의 체적의 약 5% 내지 25%일 수 있다.
전술한 것 외의 다른 측면, 특징, 이점이 이하의 도면, 특허청구범위 및 발명의 상세한 설명으로부터 명확해질 것이다.
본 발명의 실시예들은, 공기입 타이어의 내측에서 발생하는 공기의 공명 진동에 의한 소음을 효과적으로 저감할 수 있다. 물론 이러한 효과에 의해 본 발명의 범위가 한정되는 것은 아니다.
도 1은 본 발명의 일 실시예에 따른 공기입 타이어를 나타낸 사시도이다.
도 2는 도 1의 II-II선을 따라 취한 단면도이다.
도 3은 도 2의 III부분을 확대하여 나타낸 단면도이다.
도 4 및 도 5는 각각 본 발명의 일 실시예에 따른 공기입 타이어에서 흡음부재를 발췌하여 나타낸 사시도이다.
도 6a은 본 발명의 다른 실시예에 따른 흠읍부재의 사시도이다.
도 6b는 도 6a의 흡음부재가 공기입 타이어에 설치된 상태를 개략적으로 나타낸 사시도이다.
도 6c는 도 6a의 흡음부재가 설치된 공기입 타이어의 개략적인 측면도이다.
도 7은 도 6c의 공기입 타이어의 RFV(Radial Force Variation)와 RF1H(Radial First Harmonic)를 나타낸 그래프이다.
도 8은 도 2에 도시된 흡음부재를 발췌하여 나타낸 단면도이다.
도 9는 흡음부재의 중심부의 높이에 따른 소음을 나타낸 그래프이다.
도 10 및 도 11은 본 발명의 또 다른 실시예들에 따른 흡음부재를 나타낸 단면도이다.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 본 발명의 효과 및 특징, 그리고 그것들을 달성하는 방법은 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 다양한 형태로 구현될 수 있다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예들을 상세히 설명하기로 하며, 도면을 참조하여 설명할 때 동일하거나 대응하는 구성 요소는 동일한 도면부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.
이하의 실시예에서, 제1, 제2 등의 용어는 한정적인 의미가 아니라 하나의 구성 요소를 다른 구성 요소와 구별하는 목적으로 사용되었다.
이하의 실시예에서, 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
이하의 실시예에서, 포함하다 또는 가지다 등의 용어는 명세서상에 기재된 특징, 또는 구성요소가 존재함을 의미하는 것이고, 하나 이상의 다른 특징들 또는 구성요소가 부가될 가능성을 미리 배제하는 것은 아니다.
이하의 실시예에서, 막, 영역, 구성 요소 등의 부분이 다른 부분 위에 또는 상에 있다고 할 때, 다른 부분의 바로 위에 있는 경우뿐만 아니라, 그 중간에 다른 막, 영역, 구성 요소 등이 개재되어 있는 경우도 포함한다.
도면에서는 설명의 편의를 위하여 구성 요소들이 그 크기가 과장 또는 축소될 수 있다. 예컨대, 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로, 본 발명이 반드시 도시된 바에 한정되지 않는다.
어떤 실시예가 달리 구현 가능한 경우에 특정한 공정 순서는 설명되는 순서와 다르게 수행될 수도 있다. 예를 들어, 연속하여 설명되는 두 공정이 실질적으로 동시에 수행될 수도 있고, 설명되는 순서와 반대의 순서로 진행될 수 있다.
도 1은 본 발명의 일 실시예에 따른 공기입 타이어를 나타낸 사시도이고, 도 2는 도 1의 II-II선을 따라 취한 단면도이며, 도 3은 도 2의 III부분을 확대하여 나타낸 단면도이다.
도 1 내지 도 3을 참조하면, 공기입 타이어(1)는 트레드(110), 트레드(110)에서 연결된 한 쌍의 사이드 월(120)들, 사이드 월(120)들 각각의 하부에 위치한 비드부(130), 트레드(110)의 아래에 위치하는 벨트층(140)과 카카스층(150), 카카스층(150)의 내측면에 부착된 이너라이너(160), 및 트레드(110)의 내측에 위치하는 흡음부재(170)를 포함할 수 있다.
트레드(110)는, 공기입 타이어(1)의 가장 외측에 위치하고, 두꺼운 고무층으로 이루져 차량의 구동력 및 제동력을 지면에 전달한다. 트레드(110)의 표면에는 조종 안정성, 견인력, 제동성을 위한 트레드 패턴(114)들과 트레드 패턴(114)들에 의해 구획된 블록(116)들이 위치할 수 있다.
트레드 패턴(114)들은 젖은 노면에서의 주행 시 배수를 위한 그루브와 견인력 및 제동력을 향상시키기 위한 사이프를 포함할 수 있다. 그루브는 차량의 주행방향과 일치하는 원주방향 그루브와 원주방향 그루브 사이의 횡방향 그루브를 포함할 수 있다. 사이프는 블록(116)에 형성되며, 그루브보다 작은 크기를 가진 홈일 수 있다. 사이프는 젖은 노면에서의 주행시 수분을 흡수하여 수막을 끊는 역할을 함으로써, 공기입 타이어(1)의 구동력과 제동력을 증가시킬 수 있다.
블록(116)은 트레드(110)의 대부분을 차지하는 영역으로, 지면과 직접 접하여 차량의 구동력 및 제동력을 지면에 전달한다.
사이드 월(120)은 트레드(110)의 단부로부터 하방으로 연장되어 배치된다. 사이드 월(120)은 공기입 타이어(1)의 옆부분으로, 카카스층(150)을 보호하고, 공기입 타이어(1)의 측면 안정성을 제공하며, 굴신운동을 함으로써 승차감을 높일 수 있다. 또한, 사이드 월(120)은 드라이브 샤프트를 통해 받은 엔진의 토크를 트레드(110)에 전달하는 역할을 한다.
비드부(130)는 사이드 월(120)의 단부에 구비되며, 공기입 타이어(1)를 림(Rim, 200)에 장착시키는 역할을 한다. 비드부(130)는 비드 코어(132)와 비드 충전재(134)를 포함할 수 있다. 비드 코어(132)는 고무가 코팅된 강철 와이어를 복수 개 꼬아 형성될 수 있으며, 비드 충전재(134)는 비드 코어에 부착된 고무일 수 있다.
벨트층(140)은 트레드(110)의 아래에 배치되며, 차량의 주행시 노면 충격을 감소시키고 카카스층(150)을 보호한다. 일 실시예로, 벨트층(140)은 서로 중첩된 제1벨트층(141) 및 제2벨트층(143)을 포함한다. 제1벨트층(141)은 제2벨트층(143) 상에 위치하며, 제1벨트층(141)의 폭은 제2벨트층(143)의 폭 보다 작게 형성될 수 있다.
트레드(110)와 벨트층(140) 사이에는 캡 플라이(145)가 더 포함될 수 있다. 캡 플라이(145)는 벨트층(140) 위에 부착되는 특수코드지로 주행시 성능을 향상시킬 수 있다. 캡 플라이(145)는 일 예로 폴리에스테르 합성섬유를 포함하여 이루어질 수 있다.
카카스층(150)은 벨트층(140)의 아래에 배치되며, 공기입 타이어(1)의 골격을 형성하며, 공기입 타이어(1)가 받는 하중, 충격 등을 견디고 공기입 타이어(1)의 공기압을 유지시킨다. 일 실시예로, 카카스층(150)은 서로 중첩된 제1카카스층(151) 및 제2카카스층(153)을 포함할 수 있다. 제1카카스층(151)은 비드부(130)에서 턴업되어 트레드(110)를 향해 연장된다. 턴업된 제1카카스층(151)의 일 단부는 사이드 월(120)의 내측을 커버하도록 연장되어 사이드 월(120)의 강성을 향상시킬 수 있다. 제2카카스층(153)은 제1카카스층(151) 상에 위치하며, 비드부(130)에서 턴업되어 트레드(110)를 향해 연장되되, 턴업된 제2카카스층(153)의 일 단부는 제1카카스층(151)의 일 단부보다 짧게 형성되어 비드부(130)의 내측을 커버할 수 있다. 본 실시예에서는, 카카스층(150)이 2개의 카카스층으로 형성된 구조를 설명하였으나, 본 발명은 이에 한정되지 않는다. 또 다른 실시예로서, 카카스층(150)은 단일 층으로 형성될 수 있다.
이너라이너(160)는 튜브대신 공기입 타이어(1)의 공기 누출을 방지하는 층으로, 밀폐성이 우수한 고무층으로 이루어질 수 있다. 일 예로, 이너라이너(160)는 밀도가 높은 부틸고무 등으로 이루어질 수 있으며, 공기입 타이어(1) 내의 공기압을 유지시킬 수 있다.
흡음부재(170)는 사이드 월(120)들 사이에 위치하도록 트레드(110)의 내측, 예컨대 이너라이너(160) 상에 배치된다. 흡음부재(170)는 공기입 타이어(1)의 내측에서 발생하는 공기의 공명 진동을 저감시켜 진동이 차량의 내부로 전달되는 것을 방지할 수 있다.
흡음부재(170)는 도 2에 도시된 중심선(CL)을 기준으로 실질적으로 좌우 대칭인 구조를 가질 수 있다. 여기서, 중심선(CL)은 트레드의 중심을 지나는 선을 나타낸다. 이상적으로는 흡음부재(170)의 첨점(peak point, pp)은 실질적으로 중심선(CL) 상에 놓일 수 있으나, 흡음부재(170)의 설치 오차를 감안한다면, 흡음부재(170)의 최고점은 중심선(CL)에 대하여 좌우로 ±3 mm의 범위의 마진을 두고 배치되는 것이 바람직할 수 있다. 흡음부재(170)의 위치가 전술한 범위를 벗어나는 경우, 타이어의 주행시 코니시티(conicity)에 의한 쏠림을 유발할 수 있다.
흡음부재(170)의 제1폭(W1)은 사이드 월(120)들 사이의 제2폭(W2) 보다 작게 형성된다. 여기서, 제2폭(W2)은 사이드 월(120)들의 내측벽 사이의 거리 중 가장 큰 폭(거리)을 나타낸다. 제1폭(W1)은 제2폭(W2)의 약 55 % 내지 약 65%의 범위에서 선택되며, 약 120mm 내지 약 160mm의 범위에서 선택될 수 있다. 제1폭(W1)이 전술한 범위를 만족하도록 설정함으로써, 타이어(1)의 내측면으로부터의 박리없이 충분한 흡음 성능을 유지할 수 있다.
흡음부재(170)의 양 가장자리부, 즉 사이드 월(120)들 각각에 인접한 가장자리부들은 사이드 월(120)의 내측면으로부터 소정의 간격 이격된다. 사이드 월(120)의 내측면으로부터 이격된 흡음부재(170)의 양 가장자리부들 각각의 이격 거리(d)는, 제2폭(W2)의 약 17.5% 보다 큰 범위, 예컨대 약 17.5% 내지 22.5%의 범위에서 선택될 수 있다. 특히, 이격 거리(d)가 전술한 범위의 하한보다 작아지면, 타이어(1)의 주행 중 타이어(1) 자체에 가해지는 외력 등에 의해 흡음부재(170)의 단부가 타이어(1)의 내측면으로부터 분리(e.g. 박리)될 수 있다.
흡음부재(170)는 접착부재(180)에 의해 이너라이너(160)에 결합될 수 있다. 흡음부재(170)의 제1면(171)은 접착부재(180)에 의해 이너라이너(160)에 고정 결합되며, 흡음부재(170)의 제2면(172)은 공기입 타이어(1)의 내측을 향한다.
접착부재(180)는 도 3에 도시된 바와 같이 흡음부재(170)의 제1면(171)과 이너라이너(160) 사이에 개재되는 양면 접착층(181) 및 양면 접착층(181)과 이너라이너(160) 사이에 개재되는 프라이머층(183)을 포함할 수 있다.
양면 접착층(181)은 양면 테이프와 같은 접착층을 사용할 수 있다. 프라이머층(183)은 양면 접착층(181)을 이용한 흡음부재(170)의 고정 결합력을 향상시키기 위한 것으로, 폴리우레탄 또는 고무 소재를 포함할 수 있다.
도 4 및 도 5는 각각 본 발명의 일 실시예에 따른 공기입 타이어에 설치된 흡음부재를 발췌하여 나타낸 사시도이다.
도 4를 참조하면, 흡음부재(170)는 일체로 형성되어 공기입 타이어(1, 도 1참조)의 원주방향을 따라 연장된 환형의 형상을 가질 수 있다.
도 5를 참조하면, 다른 실시예에서, 복수개의 흡음부재(170)들이 공기입 타이어(1, 도 1참조)의 원주방향을 따라 서로 이격되게 배치될 수 있다.
도 6a은 본 발명의 다른 실시예에 따른 흠읍부재의 사시도이며, 도 6b는 도 6a의 흡음부재가 공기입 타이어에 설치된 상태를 개략적으로 나타낸 사시도이며, 도 6c는 도 6a의 흡음부재가 설치된 공기입 타이어의 개략적인 측면도이고, 도 7은 도 6c의 공기입 타이어의 RFV(Radial Force Variation)와 RF1H(Radial Force First Harmonic)를 나타낸 그래프이다.
도 6a 및 도 6b를 참조하면, 흡음부재(170)의 제1폭(W1)은 도 2를 참조하여 설명한 바와 같이 제2폭(W2)의 약 55 % 내지 약 65%의 범위에서, 그리고 약 120mm 내지 약 160mm의 범위에서 선택될 수 있으며, 길이(L) 방향을 따라 증감없이 일정한 값을 가질 수 있다. 흡음부재(170)의 길이(L)는 제1폭(W1)의 15배 내지 25배의 범위에서 선택될 수 있다. 예컨대, 흡음부재(170)의 길이(L)는 제1폭(W1)의 15배 내지 20배의 범위에서 선택될 수 있다.
도 6b 및 도 6c에 도시된 바와 같이, 하나의 흡음부재(170)는 공기입 타이어(1)의 원주방향을 따라 연장되되, 원주방향을 따라 흡음부재(170)의 제1단(170a) 및 제2단(170b)은 서로 이격되어 있다. 공기입 타이어(1)의 유니포미티를 만족시키기 위해, 흡음부재(170)는 흡음부재(170)의 제1단(170a)과 제2단(170b) 사이에 공기입 타이어(1)의 RF1H의 최고점 위치(high-value point position, HPP)가 놓이도록 공기입 타이어(1)의 내측면 상에 배치된다. 여기서, 공기입 타이어(1)의 RF1H의 최고점 위치(HPP)는 아래와 같이 정의된다.
휠 림(200, 도 2참조)의 중심(CO)을 기준으로 0°내지 360°의 범위에서 공기입 타이어(1)의 RFV(Radial Force Variation)의 RF1H(Radial Force First Harmonic)을 분석하였을 때, RF1H는 도 7에 그래프와 같이 대략 sine 파형(waveform)을 가진다. 본 명세서에서의 공기입 타이어(1)의 "RF1H의 최고점 위치(HPP)"는, 공기입 타이어(1) 중 RF1H 파형(waveform)의 최고점(high-value point)에 해당하는 부분의 위치를 나타낸다.
동일한 공기입 타이어(1)에 대하여 반복하여 RF1H 분석시, 전술한 sine 파형의 최고점(high-value point)은 약 10°의 편차를 가질 수 있다. 이와 같은 점을 고려하여, 제1단(170a)과 제2단(170b) 사이에는 도 6c에 도시된 바와 같이 RF1H의 최고점 위치(HPP)가 위치하되, 제1단(170a)과 제2단(170b) 사이의 각도(θ)는 약 10°이상이 되도록 설정할 수 있다. 바꾸어 말하면, 제1단(170a)과 제2단(170b) 사이의 이격 거리의 최소값은, 휠 림의 중심(CO)에 대하여 제1단(170a)과 제2단(170b)이 이루는 각도(θ)가 약 10°일 때의 거리에 해당한다 (단, 제1단(170a)과 제2단(170b) 사이에 공기입 타이어(1)의 RF1H의 최고점 위치(HPP)가 위치함). 제1단(170a)과 제2단(170b) 사이의 이격 거리를 전술한 범위를 내에서 설정함으로써, 흡음부재(170)를 포함하는 공기입 타이어(1)의 유니포미티 성능을 만족시킬 수 있다.
일부 실시예로, 공기입 타이어(1)의 RF1H의 최고점 위치(HPP)는 제1단(170a)과 제2단(170b)의 중심에 위치할 수 있다. 예컨대, 휠 림의 중심(CO)을 기준으로 제1단(170a)과 RF1H의 최고점 위치(HPP) 사이의 각은 약 5°이상이고, 휠 림의 중심(CO)을 기준으로 제2단(170b)과 RF1H의 최고점 위치(HPP) 사이의 각은 약 5°이상일 수 있다.
도 8은 도 2에 도시된 흡음부재를 발췌하여 나타낸 단면도이고, 도 9는 흡음부재의 중심부의 높이에 따른 소음을 나타낸 그래프이다.
도 8을 참조하면, 흡음부재(170)는 중심부(170c)를 기준으로 좌우 대칭인 형상을 갖는다. 또한, 흡음부재(170)의 중심부(170c)의 첨점(pp)은 앞서 도 2를 설명한 바와 같이 트레드의 중심선(CL) 상에 놓일 수 있다. 따라서, 질량 중심을 공기입 타이어(1)의 중심(예, 중심선 CL, 도 2참조)에 위치하도록 하고, 주행 중 공기입 타이어(1)의 질량 분포가 어느 특정 위치로 쏠리지 않게 할 수 있다.
흡음부재(170)는 공기입 타이어(1)의 폭 방향을 따라 일정하지 않은 두께를 갖는다. 흡음부재(170)는 중심부(170c)로부터 한 쌍의 가장자리부(170e) 각각을 향하는 방향을 따라 연속적으로(점진적으로) 감소하는 두께를 갖는다.
흡음부재(170)는 가장자리부(170e)의 제1두께(T1) 보다 큰 제2두께(T2)를 갖는 중심부(170c)를 구비함으로써, 공기입 타이어(1)의 내부 공기 진동을 효율적으로 분산시켜 공명 진동을 효율적으로 저감시킬 수 있다. 가장자리부(170e) 각각의 제1두께(T1)는 제2두께(T2) 보다 작게 형성된다. 본 발명의 비교예로서, 가장자리부(170e)의 제1두께(T1)가 중심부(170c)의 제2두께(T2)와 동일하거나 그 보다 크게 형성된 경우, 공기입 타이어의 핸들링 또는 코너링 등의 운행시 공기입 타이어(1)의 가장자리 부분의 굴신을 저하시키는 문제가 있다. 그러나, 본 발명의 실시예에 따르면, 가장자리부(170e) 각각의 제1두께(T1)를 제2두께(T2) 보다 작게 형성함으로써, 소음 저감 효과 및 공기입 타이어(1)의 운행 성능 저하를 방지를 동시에 달성할 수 있다.
중심부(170c)의 제2두께(T2)는 약 2.0cm 보다 클 수 있다. 도9에 도시된 바와 같이, 소음 저감 효과를 얻기 위해서 중심부(170c)의 제2두께(T2)의 최소값은 약 2.0cm 임을 확인할 수 있다. 도 9를 참조하면 중심부(170c)의 제2두께(T2)가 약 2.0cm 보다 작은 경우, 그 소음이 급격히 증가함을 확인할 수 있다.
흡음부재(170)의 제1면(171)은 비교적 편평한 평면인데 반해, 흡음부재(170)의 제2면(172)은 곡면을 포함할 수 있다. 예컨대, 제2면(172)은 도 8에 도시된 바와 같이, 일정한 곡률(또는 곡률반경 R)을 가질 수 있다. 곡면의 제2면(172)은 타이어 내부에서의 공기의 유동을 저하시키지 않아 흡음 및 진동 특성을 충분히 확보할 수 있다. 후술할 본 발명의 다른 실시예와 같이(도 10, 도 11), 제2면(172)이 각을 이루는 부분(angular portion)을 포함하면, 해당 부분의 형상이 공기입 타이어(1)의 내부 공간의 공동 공명음의 유동 및 흡수에 영향을 주어 공기입 타이어(1)의 흡음 및 진동 흡수의 성능이 저하될 수 있다. 따라서, 제2면(172)은 곡면을 갖는 것이 보다 바람할수 있다.
예컨대, 제2면(172)은 약 150mm 내지 250mm의 곡률반경(R)을 가질 수 있다. 전술한 바와 같이 중심부(170c)의 제2두께(T2)의 최소값이 2.0cm인 점을 고려하면, 제2면(172)의 곡률반경(R)이 전술한 하한치보다 작은 경우 흡음부재(170)의 가장자리부(170e)의 내구성이 저하되는 문제가 있으며, 전술한 상한치보다 큰 경우 실질적으로 흡음부재(170)가 직육면체의 형상을 가지게 된다. 실질적으로 직육면체의 형상의 흡음부재는, 질량 및 부피의 증가도 야기시켜 공기입 타이어를 장착한 자동차의 연비를 저하시킨다. 또한, 실질적으로 직육면체의 형상의 흡음부재를 구비한 공기입 타이어는, 공기입 타이어의 내부 공간(cavity) 자체의 형상에 의한 진동, 예컨대 내부 공간(cavity)에서 유체의 유동에 따른 진동이 유발될 수 있다. 그러나, 본 발명의 실시예들에 따른 흡음부재(170)를 구비한 경우, 공기입 타이어(1)의 내부 공간(Cavity)의 형상에 의한 진동의 유발 가능성을 최소화할 수 있다. 본 발명의 비제한적인 실시예로, 제2면(172)의 곡률반경(R)은 약 200mm 일 수 있다.
흡음부재(170)는 밀도가 약 10 kg/m3 내지 50 kg/m3인 고분자 재료를 포함할 수 있다. 밀도가 10 kg/m3 보다 작은 경우 흡음율이 저하되며, 밀도가 50 kg/m3를 초과하는 경우 흡음부재(170)의 무게가 증가하여 공기입 타이어(1)에 피로가 누적되는 문제가 있다.
흡음부재(170)의 체적은 공기입 타이어(1)의 내부 공간의 체적(V)의 약 5% 내지 25%의 범위 내에서 선택될 수 있다. 공기입 타이어(1)의 내부 공간의 체적(V)은 도 2에 도시된 바와 같은 공기입 타이어(1) 및 림(200) 사이의 공간의 체적을 나타낸다. 흡음부재(170)의 체적이 전술한 범위를 벗어나는 경우, 흡음부재(170)의 무게 증가에 의하여 공기입 타이어(1)의 회전 저항이 커지고, 유니포미티가 저하될 수 있다.
흡음부재(170)는 인열강도가 약 0.1kg/cm 내지 1.5 kg/cm 이고, 인장강도가 약 1.0kg/cm2 내지 2.5 kg/cm2인 고분자 재료를 포함할 수 있다. 또한, 흡음부재(170)는 연신율이 약 100% 내지 300%인 고분자 재료를 포함할 수 있다.
흡음부재(170)는 에테르계 또는 에스테르계 폴리우레탄 폼으로 형성될 수 있다. 에테르계 폴리우레탄 폼은, 에스테르계 폴리우례탄 폼에 비하여 내약품성, 내수성, 내한성 및 동적 피로특성이 우수한 장점이 있다.
도 10은 본 발명의 또 다른 실시예에 따른 흡음부재를 나타낸 단면도이다.
도 10을 참조하면, 흡음부재(270)는 제2면(272)이 곡면을 구비하지 않는 점을 제외하고, 전술한 흡음부재(170)의 특징을 모두 포함한다. 이하에서는 설명의 편의를 위하여 차이점을 위주로 설명한다.
흡음부재(270)의 제2면(272)은 중심부(270c)에서 어느 하나의 가장자리부(270e)를 향해 연장되는 제1서브면(272a), 및 중심부(270c)에서 다른 하나의 가장자리부(270e)를 향해 연장되는 제2서브면(272b)을 포함한다. 제1 및 제2서브면(272a, 272b) 각각은 평면을 포함할 수 있으며, 제1 및 제2서브면(272a, 272b)이 이루는 내각(θ)은 둔각일 수 있다.
도 11은 본 발명의 또 다른 실시예에 따른 흡음부재를 나타낸 단면도이다.
도 11을 참조하면, 흡음부재(370)는 제2면(372)이 요철면을 구비하고, 흡음부재(270)의 두께가 연속적으로(점진적으로) 변하지 않는다는 점을 제외하고, 전술한 흡음부재(170, 270)의 특징을 모두 포함한다. 이하에서는 설명의 편의를 위하여 차이점을 위주로 설명한다.
흡음부재(370)의 제2면(372)은 요철면을 포함할 수 있다. 일 실시예로, 도 8에 도시된 바와 같이 제2면(372)은 단면이 계단 형상인 요철을 가질 수 있으나, 본 발명은 이에 한정되지 않는다. 또 다른 실시예로, 제2면(372)의 요철은, 단면이 톱니 형상이거나 곡면을 갖는 엠보싱 형상과 같이 다양하게 변형 가능하다.
흡음부재(370)는 중심부(370c)에서 한 쌍의 가장자리부(370e) 각각을 향하는 방향을 따라 불연속적(단계적으로) 감소하는 두께를 가질 수 있다.
전술한 도 10 및 도 11을 참조하여 설명한 흡음부재(270, 370)의 경우, 제2면(172)이 각을 이루는 부분(angular portion)을 포함하므로, 공기입 타이어(1)의 내부 공간의 공동 공명음의 유동 및 흡수에 영향을 주어 흡음 및 진동 흡수의 성능이 저하될 수 있음은 앞서 설명한 바와 같다. 따라서, 전술한 도 8에서와 같이 제2면(172)은 곡면을 갖는 것이 바람직할 수 있다.
이와 같이 본 발명은 도면에 도시된 일 실시예를 참고로 하여 설명하였으나 이는 예시적인 것에 불과하며 당해 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 실시예의 변형이 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.

Claims (13)

  1. 공기입 타이어에 있어서,
    그루브를 갖는 트레드;
    상기 트레드의 양측 단부에 각각 배치된 한 쌍의 사이드 월들; 및
    상기 한 쌍의 사이드 월들 각각에 인접하며 각각 제1두께를 갖는 한 쌍의 가장자리부들, 및 상기 한 쌍의 가장자리부들 사이에 위치하며 상기 제1두께와 다른 제2두께를 갖는 중심부를 포함하고, 상기 공기입 타이어의 내측에 배치되는 흡음부재;를 포함하는, 공기입 타이어.
  2. 제1항에 있어서,
    상기 제1두께는 상기 제2두께 보다 작은, 공기입 타이어.
  3. 제1항 또는 제2항에 있어서,
    상기 제2두께의 최소값은 2cm 인, 공기입 타이어.
  4. 제1항 또는 제2항에 있어서,
    상기 흡음부재는 상기 트레드를 향하는 제1면, 및 상기 제1면의 반대편인 제2면을 포함하고,
    상기 제2면은 곡면을 포함하는, 공기입 타이어.
  5. 제4항에 있어서,
    상기 곡면은 일정한 값의 곡률을 갖는, 공기입 타이어.
  6. 제1항에 있어서,
    상기 흡음부재는 상기 트레드의 중심선에 대하여 대칭인, 공기입 타이어.
  7. 제1항에 있어서,
    상기 흡음부재는 상기 공기입 타이어의 원주방향을 따라 연장되되, 상기 공기입 타이어의 원주방향을 따르는 상기 흡음부재의 제1단 및 제2단은 서로 이격된, 공기입 타이어.
  8. 제7항에 있어서,
    상기 제1단과 상기 제2단 사이에 상기 공기입 타이어의 RF1H의 최고점 위치가 있는, 공기입 타이어.
    여기서, 공기입 타이어의 RF1H의 최고점 위치는, 레이디얼 포스 베리에이션(Radial Force Variation)의 레이디얼 포스 제1하모닉(Radial Force First Harmonic)성분의 최고점(high-value point) 위치와 대응하는 상기 공기입 타이어의 위치(position)를 나타낸다.
  9. 제8항에 있어서,
    상기 공기입 타이어의 휠 림의 중심에 대한 상기 제1단과 상기 제2단 사이의 각도의 최소값은, 10°인, 공기입 타이어.
  10. 제1항에 있어서,
    상기 트레드의 내측면과 상기 흡음부재 사이에 배치되는 접착층; 및
    상기 접착층과 상기 트레드의 내측면 사이에 개재되는 프라이머층;을 더 포함하는, 공기입 타이어.
  11. 제1항에 있어서,
    상기 흡음부재는 에테르계 폴리우레탄 폼을 포함하는, 공기입 타이어.
  12. 제1항에 있어서,
    상기 흡음부재의 제1폭은,
    상기 한 쌍의 사이드 월들 사이의 제2폭의 약 55 % 내지 약 65%이되, 약 120mm 내지 약 160mm인, 공기입 타이어.
  13. 제12항에 있어서,
    상기 흡음부재의 체적은, 상기 공기입 타이어의 내부 공간의 체적의 약 5% 내지 25%인, 공기입 타이어.
PCT/KR2017/001520 2016-03-29 2017-02-13 공기입 타이어 WO2017171229A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/088,636 US20190084358A1 (en) 2016-03-29 2017-02-13 Pneumatic tire
EP17775654.1A EP3437900B1 (en) 2016-03-29 2017-02-13 Pneumatic tire
CN201780020729.7A CN108883674B (zh) 2016-03-29 2017-02-13 充气轮胎

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2016-0037778 2016-03-29
KR20160037778 2016-03-29
KR1020170016917A KR101767077B1 (ko) 2016-03-29 2017-02-07 공기입 타이어
KR10-2017-0016917 2017-02-07

Publications (1)

Publication Number Publication Date
WO2017171229A1 true WO2017171229A1 (ko) 2017-10-05

Family

ID=59651570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/001520 WO2017171229A1 (ko) 2016-03-29 2017-02-13 공기입 타이어

Country Status (5)

Country Link
US (1) US20190084358A1 (ko)
EP (1) EP3437900B1 (ko)
KR (1) KR101767077B1 (ko)
CN (1) CN108883674B (ko)
WO (1) WO2017171229A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020121569A1 (ja) * 2018-12-13 2020-06-18 株式会社ブリヂストン 乗用車用空気入りラジアルタイヤ

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109789653B (zh) * 2016-06-30 2021-11-12 普利司通美国轮胎运营有限责任公司 用于处理内衬的方法、由此产生的内衬以及包含此类内衬的轮胎
KR101993303B1 (ko) 2017-11-16 2019-06-26 넥센타이어 주식회사 소음 저감부재가 구비된 공기입 타이어
KR102092174B1 (ko) 2018-11-26 2020-04-20 넥센타이어 주식회사 저소음 공기입 타이어
CN110143105B (zh) * 2019-05-23 2021-03-30 北京航空航天大学 用于抑制汽车轮胎声腔共振的异形内廓轮胎
KR102247474B1 (ko) 2019-09-24 2021-05-03 넥센타이어 주식회사 오목홈형 흡음부재를 구비한 공기입 타이어
KR102247465B1 (ko) 2019-09-25 2021-05-03 넥센타이어 주식회사 다층구조물형 흡음부재를 구비한 공기입 타이어
KR102234460B1 (ko) 2019-09-25 2021-03-31 넥센타이어 주식회사 장단빗면형 흡음부재를 구비한 공기입 타이어
KR102229485B1 (ko) 2019-10-01 2021-03-18 넥센타이어 주식회사 관통구멍형 흡음부재를 구비한 공기입 타이어
KR102571716B1 (ko) * 2021-08-02 2023-08-29 금호타이어 주식회사 공명음 저감 타이어
KR102606331B1 (ko) * 2021-10-20 2023-11-29 넥센타이어 주식회사 타이어

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004276809A (ja) * 2003-03-17 2004-10-07 Honda Motor Co Ltd 車両用車輪
JP2006335199A (ja) * 2005-06-01 2006-12-14 Sumitomo Rubber Ind Ltd 空気入りタイヤ
US7188652B2 (en) * 2004-03-16 2007-03-13 Sumitomo Rubber Industries, Ltd. Pneumatic tire with noise damper
JP4567423B2 (ja) * 2004-11-19 2010-10-20 住友ゴム工業株式会社 タイヤの制音具
JP2015209198A (ja) * 2014-04-25 2015-11-24 クムホ タイヤ カンパニー インコーポレイテッドKumho Tireco.,Inc. 空洞共鳴音低減タイヤ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4224432B2 (ja) * 2004-06-14 2009-02-12 住友ゴム工業株式会社 空気入りタイヤとリムとの組立体
JP4567424B2 (ja) * 2004-11-19 2010-10-20 住友ゴム工業株式会社 空気入りタイヤとリムとの組立体及びそれに用いられる帯状体の製造方法
EP1659004B1 (en) * 2004-11-19 2012-02-01 Sumitomo Rubber Industries, Ltd. Assembly of pneumatic tire and rim and a noise damper used therein
JP4299813B2 (ja) * 2005-07-20 2009-07-22 住友ゴム工業株式会社 空気入りタイヤ
JP2007112395A (ja) * 2005-10-24 2007-05-10 Sumitomo Rubber Ind Ltd 空気入りタイヤとリムとの組立体
DE102006024059A1 (de) * 2006-05-23 2007-11-29 Volkswagen Ag Anordnung an einem Fahrzeugrad zur Absorption von Schall
KR20100005511A (ko) * 2008-07-07 2010-01-15 넥센타이어 주식회사 흡음 댐퍼를 부착한 저소음 공기입 타이어
JP4862918B2 (ja) * 2009-06-05 2012-01-25 横浜ゴム株式会社 空気入りタイヤ
WO2012090310A1 (ja) * 2010-12-28 2012-07-05 ソシエテ ド テクノロジー ミシュラン 空気入りタイヤ
DE102014206009A1 (de) * 2014-03-31 2015-10-01 Continental Reifen Deutschland Gmbh Fahrzeugluftreifen

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004276809A (ja) * 2003-03-17 2004-10-07 Honda Motor Co Ltd 車両用車輪
US7188652B2 (en) * 2004-03-16 2007-03-13 Sumitomo Rubber Industries, Ltd. Pneumatic tire with noise damper
JP4567423B2 (ja) * 2004-11-19 2010-10-20 住友ゴム工業株式会社 タイヤの制音具
JP2006335199A (ja) * 2005-06-01 2006-12-14 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JP2015209198A (ja) * 2014-04-25 2015-11-24 クムホ タイヤ カンパニー インコーポレイテッドKumho Tireco.,Inc. 空洞共鳴音低減タイヤ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020121569A1 (ja) * 2018-12-13 2020-06-18 株式会社ブリヂストン 乗用車用空気入りラジアルタイヤ
JP2020093677A (ja) * 2018-12-13 2020-06-18 株式会社ブリヂストン 乗用車用空気入りラジアルタイヤ
EP3895908A4 (en) * 2018-12-13 2022-10-05 Bridgestone Corporation RADIAL TIRE FOR PASSENGER VEHICLE
JP7482963B2 (ja) 2018-12-13 2024-05-14 株式会社ブリヂストン 乗用車用空気入りラジアルタイヤ

Also Published As

Publication number Publication date
CN108883674B (zh) 2020-11-24
EP3437900A4 (en) 2019-08-28
CN108883674A (zh) 2018-11-23
EP3437900A1 (en) 2019-02-06
US20190084358A1 (en) 2019-03-21
EP3437900B1 (en) 2021-05-12
KR101767077B1 (ko) 2017-08-11

Similar Documents

Publication Publication Date Title
WO2017171229A1 (ko) 공기입 타이어
WO2014115917A1 (ko) 비공기입 휠 일체형 타이어 및 그 제조방법
JPH03135802A (ja) 二輪車用空気入りタイヤ
WO2017159899A1 (ko) 2단 구조를 갖는 외륜 및 이를 이용한 비공기압 바퀴
US5355925A (en) Pneumatic radial tire having asymmetric belt covering layers
KR101890371B1 (ko) 공기입 타이어
KR102023653B1 (ko) 공기입 타이어
KR102082950B1 (ko) 공기입 타이어
KR101993303B1 (ko) 소음 저감부재가 구비된 공기입 타이어
KR102099916B1 (ko) 탈부착형 중량체 유닛 및 이를 구비하는 타이어
KR102304425B1 (ko) 타이어
WO2020189854A1 (ko) 단일 단면 구조를 갖는 튜브 리스 타이어 조립체
KR0120043Y1 (ko) 내구력을 향상시킨 공기입 레디알 타이어
KR101775105B1 (ko) 타이어
KR102267438B1 (ko) 타이바 및 타이바가 삽입된 공기입 타이어
KR102605834B1 (ko) 타이어
KR102135891B1 (ko) 공기입 타이어
KR102217974B1 (ko) 타이어
JPS60146705A (ja) 車輌用車輪
KR20230044822A (ko) 공기입 타이어
KR101775106B1 (ko) 공기입 타이어
KR101890808B1 (ko) 공기입 타이어
KR20180012532A (ko) 탈부착형 림 프로텍터 및 이를 구비한 타이어
KR20180004071A (ko) 공기입 타이어
RU2086420C1 (ru) Шина бормотова для ходовой части транспортного средства

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017775654

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017775654

Country of ref document: EP

Effective date: 20181029

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17775654

Country of ref document: EP

Kind code of ref document: A1