WO2017170515A1 - 鋼線 - Google Patents

鋼線 Download PDF

Info

Publication number
WO2017170515A1
WO2017170515A1 PCT/JP2017/012586 JP2017012586W WO2017170515A1 WO 2017170515 A1 WO2017170515 A1 WO 2017170515A1 JP 2017012586 W JP2017012586 W JP 2017012586W WO 2017170515 A1 WO2017170515 A1 WO 2017170515A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel wire
content
wire
cementite
Prior art date
Application number
PCT/JP2017/012586
Other languages
English (en)
French (fr)
Inventor
大輔 平上
敏之 真鍋
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to KR1020187011756A priority Critical patent/KR20180058804A/ko
Priority to JP2018508050A priority patent/JP6501036B2/ja
Priority to CN201780003834.XA priority patent/CN108350544B/zh
Publication of WO2017170515A1 publication Critical patent/WO2017170515A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length

Definitions

  • the present invention relates to a steel wire used for prestressed concrete and the like, and has a tensile strength of 1800 MPa or more without deteriorating manufacturability, without degrading wire drawing workability and twisting characteristics, and hydrogen resistance.
  • the present invention relates to a high-strength steel wire with improved embrittlement characteristics.
  • PC steel wire The steel wire used for tension of prestressed concrete mainly used in civil engineering and building structures is called PC steel wire.
  • a wire obtained by performing a patenting process on a piano wire to make its structure pearlite, and then performing a wire drawing process and a stranded wire process is called a strand.
  • a pearlite steel wire for PC strands is manufactured by subjecting this strand to an aging heat treatment in the final step.
  • the “pearlite wire for PC strand” may be simply referred to as “steel wire” or “pearlite steel wire”.
  • Patent Document 1 discloses a plate shape in pearlite in a region at least D / 10 (D is the diameter of the steel wire) on the surface of the PC steel wire.
  • D is the diameter of the steel wire
  • a high-strength PC steel wire having an average aspect ratio of cementite of 30 or less has been proposed.
  • a process such as rapid heating and holding at 450 ° C. or more for 5 seconds or more is necessary. The method becomes complicated.
  • the high-strength PC steel wire which made the hardness of the area
  • the wire is held in a temperature range of 600 ° C. to 650 ° C. and subjected to partial pearlite transformation treatment. After being applied, it is continuously maintained in a temperature range of 540 ° C. to less than 600 ° C., finish-rolled by hot rolling at 700 ° C. to 950 ° C.
  • a complicated manufacturing method is required, such as holding in a temperature range of more than 450 ° C. to 650 ° C. for 2 seconds to 30 seconds and subsequently performing a blueing treatment at 250 ° C. to 450 ° C.
  • the conventional technique for improving the hydrogen embrittlement resistance of a high-strength steel wire having a wire drawing workability and a twisting property makes the manufacturing method complicated, and the productivity decreases. It was difficult to achieve both the tensile strength of the wire and the hydrogen embrittlement resistance.
  • the present invention is a pearlite steel wire that has high strength and excellent hydrogen embrittlement resistance without degrading manufacturability, without degrading wire drawing workability and twisting characteristics.
  • the purpose is to provide.
  • the structure of the steel wire needs to be pearlite that is easily strengthened during wire drawing.
  • the present inventors investigated in detail the relationship between the chemical composition and the structure affecting the hydrogen embrittlement resistance of a high strength steel wire having a tensile strength of 1800 MPa or more. As a result, the present inventors have found the following knowledge about the pearlite steel wire that can improve the hydrogen embrittlement resistance of a high-strength steel wire and can be manufactured at low cost by improving productivity. .
  • high-strength pearlite steel wire is manufactured by the following method.
  • the wire is immersed in a Pb bath or a molten salt bath installed in a hot rolling line to perform a patenting treatment for completing the pearlite transformation, and then the patented wire is drawn.
  • the heat stretch process which heat-processes, applying aging heat processing and tension
  • lamellar cementite is single crystal plate-like cementite in which plate-like ferrite and cementite are alternately arranged after heat treatment (perlite structure), and this lamellar cementite is refined by wire drawing. Is done. In this specification, the lamellar cementite refined
  • FIG. 1 is a conceptual diagram for explaining lamellar cementite, and schematically shows an enlarged structure in the order of (a), (b), and (c).
  • a plurality of pearlite blocks (Pearlite blocks) in which the crystal orientations of ferrite are aligned exist inside the prior austenite grains (region surrounded by the austenite grain boundary).
  • the pearlite block is composed of a plurality of pearlite colonies with the same crystal orientation of ferrite but different directions of cementite (lamellar cementite).
  • lamellar cementite looks like plate-like cementite sandwiched between plate-like ferrites, like lamellar cementite before wire drawing.
  • the lamellar cementite is composed of a large number of fine cementite grains divided by wire drawing.
  • the present inventors have found that the hydrogen embrittlement resistance of pearlite steel wire can be improved by appropriately finely granulating lamellar cementite in the pearlite structure.
  • lamellar cementite which is an embrittled structure in the structure of pearlite steel wire, causes hydrogen embrittlement when hydrogen enters under a steady tensile stress.
  • lamellar cementite which is an embrittled structure, is made into lamellar cementite that has been finely granulated by wire drawing in addition to forming the structure during wire rod rolling or by patenting the wire rod. The ductility of the structure can be improved and the hydrogen embrittlement resistance of the steel wire can be improved.
  • the inventors of the present invention can improve the hydrogen embrittlement resistance of pearlite steel wire with higher strength than conventional technology by making lamellar cementite with finely grained lamellar cementite of steel wire. I found out that
  • the steel wire according to one embodiment of the present invention has, as chemical components, mass%, C: 0.80% to 1.20%, Si: 0.10% to 2.00%, Mn: 0.20% to Components optionally containing 1.00%, P: 0.030% or less, S: 0.030% or less, O: 0.0100% or less, and N: 0.0010% to 0.0100% Al: 0.100% or less, Cr: 2.00% or less, Mo: 1.00% or less, V: 0.30% or less, B: 0.0050% or less, Ti: 0.050% or less, Nb: 0.050% or less, Zr: 0.050% or less, Ni: 2.00% or less, Cu: 1.00% or less, Ca: 0.010% or less, and Mg: 0.010% or less,
  • the balance is Fe and impurities, the structure contains pearlite, the area ratio of the pearlite is 90% or more, During cementite, it is the area ratio of particle size
  • the steel wire described in the above (1) is, as a chemical component, in mass%, Al: 0.005% to 0.100%, Cr: 0.01% to 2.00%, Mo: 0.01% to 1.00%, V: 0.01% to 0.30%, B: 0.0001% to 0.0050%, Ti: 0.001% to 0.050%, Nb: 0.001% to 0.000. 050%, Zr: 0.001% to 0.050%, Ni: 0.01% to 2.00%, Cu: 0.01% to 1.00%, Ca: 0.0001% to 0.010% And Mg: one or more selected from the group consisting of 0.0001% to 0.010% may be contained.
  • the present invention it is possible to provide a high-strength pearlite steel wire having excellent hydrogen embrittlement resistance and a tensile strength of 1800 MPa or more. And this high-strength pearlite steel wire contributes to the reduction of the construction cost and weight reduction of civil engineering / building, and the industrial effect is very remarkable.
  • a high-strength pearlite steel wire is manufactured as follows. First, a patenting process is performed on a wire manufactured by hot rolling in a molten salt bath installed in a Pb bath or a hot rolling line. Subsequently, the wire is drawn. Thereafter, a “heat stretch process” is performed on the wire, in which heat treatment is performed while applying aging heat treatment or tension.
  • lamellar cementite which is the embrittlement structure of pearlite steel wire
  • it is averaged after wire rod rolling or by reheating patenting treatment. It is effective to reduce the grain growth of cementite grains in the lamellar cementite by reducing the lamellar cementite thickness and suppressing heat generation during wire drawing.
  • the lamellar cementite thickness before wire drawing and grain growth during wire drawing can be suppressed, and by making the cementite finer, the ductility of lamellar cementite can be improved and the occurrence of hydrogen cracking can be suppressed. . Therefore, it is possible to suppress the deterioration of the hydrogen embrittlement resistance even if the strength is high.
  • the area ratio of pearlite is 90% or more
  • the area ratio of cementite grains having an equivalent circle diameter and a particle diameter of 10 nm or less hereinafter simply referred to as “the area of cementite grains of 10 nm or less.
  • the strength of the steel wire after wire drawing and heat stretching can be made 1800 MPa or more, and the hydrogen embrittlement resistance of the steel wire can be obtained. It is possible not to deteriorate.
  • C 0.80% to 1.20%
  • C is an element necessary for making the structure of the steel wire pearlite and ensuring the tensile strength of the steel wire after wire drawing. If the C content is less than 0.80%, pro-eutectoid ferrite is generated in the wire, making it difficult to ensure a predetermined tensile strength of, for example, 1800 MPa. Therefore, the lower limit for the C content is 0.80%. In order to increase the tensile strength more stably, the C content is preferably 0.85% or more, more preferably 0.90% or more. On the other hand, when the C content exceeds 1.20%, proeutectoid cementite increases in the wire, and the wire drawing workability of the wire deteriorates. Therefore, the upper limit of C content is 1.20%. In order to eliminate the variation and obtain the wire drawing workability more stably, the C content is preferably 1.15% or less, more preferably 1.10% or less.
  • Si 0.10% to 2.00%
  • Si is an element necessary for enhancing relaxation properties and increasing tensile strength by solid solution strengthening. If the Si content is less than 0.10%, these effects are insufficient. Therefore, the lower limit for the Si content is 0.10%.
  • the Si content is preferably 0.30% or more, more preferably 0.50% or more.
  • the Si content exceeds 2.00%, these effects are saturated, the wire drawing workability of the wire is deteriorated, and the manufacturability of the steel wire is lowered. Therefore, the upper limit of the Si content is 2.00%.
  • the Si content is preferably 1.80% or less, more preferably 1.50% or less.
  • Mn 0.20% to 1.00%
  • Mn is an element necessary for increasing the tensile strength of steel after pearlite transformation. If the Mn content is less than 0.20%, this effect is insufficient. Therefore, the lower limit of the Mn content is 0.20%. In order to increase the tensile strength more stably, the Mn content is preferably 0.30% or more, more preferably 0.50% or more. On the other hand, if the Mn content exceeds 1.00%, the local strength increases due to segregation, and thus the twisting characteristics deteriorate. Therefore, the upper limit of the Mn content is 1.00%. From the viewpoint of alloy cost, the Mn content is preferably 0.90% or less, more preferably 0.80% or less.
  • P 0.030% or less
  • P is an element contained in the steel wire as an impurity and segregates at the grain boundary to deteriorate the hydrogen embrittlement resistance.
  • the P content is limited to 0.030% or less.
  • the P content is preferably 0.015% or less, more preferably 0.010% or less.
  • the minimum of P content contains 0%.
  • the lower limit of the P content is preferably 0.0001%.
  • S 0.030% or less
  • S is an element contained in the steel wire as an impurity and segregates at the grain boundary to deteriorate the hydrogen embrittlement resistance.
  • the S content is limited to 0.030% or less.
  • the S content is preferably 0.015% or less, and more preferably 0.010% or less.
  • the minimum of S content contains 0%.
  • the lower limit of the S content is preferably 0.0001%.
  • O 0.0100% or less
  • O is an element inevitably contained in the steel wire and present as an oxide such as Al, Ti, or Mn.
  • the O content exceeds 0.0100%, a coarse oxide is formed, which causes disconnection during wire drawing. Therefore, the O content is limited to 0.0100% or less.
  • the O content is preferably 0.0080% or less, more preferably 0.0050% or less.
  • the lower limit of the O content includes 0%. However, considering the current refining technology and manufacturing costs, the lower limit of the O content is preferably 0.0001%.
  • N 0.0010% to 0.0100%
  • N is an element necessary for forming Al / Ti / Nb / V and nitride / carbonitride, reducing the crystal grain size, and improving the ductility of the steel wire. If the N content is less than 0.0010%, this effect cannot be obtained. Therefore, the lower limit of the N content is set to 0.0010%. In order to improve ductility more stably, the N content is preferably 0.0015% or more, more preferably 0.0025% or more. On the other hand, if the N content exceeds 0.0100%, fine precipitates increase and the ductility of the steel wire decreases. Therefore, the upper limit of the N content is 0.0100%. In order to obtain the ductility of the steel wire more stably, the N content is preferably 0.0070% or less, more preferably 0.0050% or less.
  • the above is the basic component composition of the steel wire according to this embodiment, and the balance is iron and impurities.
  • the “impurities” in “the balance is Fe and impurities” refers to what is inevitably mixed from ore as a raw material, scrap, or the manufacturing environment when steel is produced industrially.
  • the steel wire according to the present embodiment is further selectively made of Al, Cr, Mo, V, B, Ti, Nb, Zr, Ni, Cu, Ca, and Mg. You may contain 1 or more types selected from the group which consists of.
  • Al 0.100% or less
  • Al functions as a deoxidizing element and finely crystal grains by forming AlN. As a result, it has the effect of improving the ductility of the steel wire. Moreover, it has the effect of refine
  • the Al content is preferably 0.005% or more. On the other hand, if the Al content exceeds 0.100%, these effects may be saturated and the productivity may be deteriorated. Therefore, the Al content is preferably 0.100% or less.
  • the Al content is more preferably 0.008% to 0.070%, and still more preferably 0.010% to 0.050%.
  • the Cr content is preferably 0.01% or more.
  • the Cr content is preferably 2.00% or less.
  • the Cr content is more preferably 0.05% to 1.00%, still more preferably 0.10% to 0.50%.
  • Mo 1.00% or less Mo has an effect of increasing the tensile strength of the steel wire after the aging heat treatment.
  • the Mo content is preferably 0.01% or more.
  • the Mo content exceeds 1.00%, not only the alloy cost is increased, but an unnecessary martensite structure is easily generated in the steel wire according to the present embodiment, and the wire drawing workability and the steel are increased. There is a risk of degrading the hydrogen embrittlement resistance of the wire. Therefore, the Mo content is preferably 1.00% or less.
  • the Mo content is more preferably 0.03% to 0.50%, still more preferably 0.05% to 0.30%.
  • V 0.30% or less V precipitates as carbide VC and has the effect of increasing the tensile strength and improving the hydrogen embrittlement resistance of the steel wire.
  • the V content is preferably set to 0.01% or more.
  • the V content is preferably 0.30% or less.
  • the V content is more preferably 0.03% to 0.20%, still more preferably 0.05% to 0.15%.
  • B 0.0050% or less B has an effect of increasing the tensile strength of the steel wire after aging heat treatment and an effect of improving the hydrogen embrittlement resistance of the steel wire.
  • the B content is preferably 0.0001% or more.
  • the B content is preferably 0.0050% or less.
  • the B content is more preferably 0.0003% to 0.0040%, and further preferably 0.0005% to 0.0020%.
  • Ti functions as a deoxidizing element, improves the tensile strength of steel wire by precipitating carbides and nitrides, and improves the ductility of steel wire by refining crystal grains. Has an effect.
  • the Ti content is preferably 0.001% or more.
  • the Ti content exceeds 0.050%, these effects are saturated, and a coarse oxide may be generated to deteriorate the wire drawing workability of the steel wire. Therefore, the Ti content is preferably 0.050% or less.
  • the Ti content is more preferably 0.003% to 0.040%, and further preferably 0.005% to 0.030%.
  • Nb 0.050% or less
  • Nb has the effect of increasing the tensile strength of the steel wire by precipitating carbides and nitrides, and the effect of improving the ductility of the steel wire by refining crystal grains.
  • the Nb content is preferably set to 0.001% or more.
  • the Nb content is preferably 0.050% or less.
  • the Nb content is more preferably 0.003% to 0.040%, and still more preferably 0.005% to 0.030%.
  • Zr 0.050% or less Zr functions as a deoxidizing element, and has the effect of reducing solid solution S by forming sulfides and improving the resistance to hydrogen embrittlement of steel wires.
  • the Zr content is preferably set to 0.001% or more.
  • the Zr content is preferably 0.050% or less.
  • the Zr content is more preferably 0.003% to 0.040%, and still more preferably 0.005% to 0.030%.
  • Ni 2.00% or less Ni has an effect of suppressing intrusion of hydrogen.
  • the Ni content is preferably 0.01% or more.
  • the Ni content is preferably 2.00% or less.
  • the Ni content is more preferably 0.04% to 1.00%, still more preferably 0.06% to 0.60%.
  • Cu 1.00% or less Cu has an effect of suppressing intrusion of hydrogen.
  • the Cu content is preferably set to 0.01% or more.
  • the Cu content is preferably 1.00% or less.
  • the Cu content is more preferably 0.02% to 0.50%, still more preferably 0.03% to 0.30%.
  • Ca 0.010% or less Ca functions as a deoxidizing element and has an effect of reducing solid solution S and improving hydrogen embrittlement resistance by forming sulfides.
  • the Ca content is preferably 0.0001% or more.
  • the Ca content is preferably 0.010% or less.
  • the Ca content is more preferably 0.0003% to 0.0050%, and still more preferably 0.0010% to 0.0030%.
  • Mg 0.010% or less Mg functions as a deoxidizing element, and has the effect of reducing solid solution S and improving hydrogen embrittlement resistance by forming sulfides.
  • the Mg content is preferably 0.0001% or more.
  • the Mg content is preferably 0.010% or less.
  • the Mg content is more preferably 0.0003% to 0.0050%, and still more preferably 0.0010% to 0.0030%.
  • the structure of the steel wire according to this embodiment includes pearlite. If the area ratio of this pearlite is less than 90%, the tensile strength of the steel wire after wire drawing and aging heat treatment is lowered, and the twisting property is deteriorated. Therefore, the area ratio of this pearlite is 90% or more. Preferably, the area ratio of pearlite is 95% or more. The area ratio of pearlite may be 100%. On the other hand, the remainder of the structure of the steel wire according to the present embodiment, that is, the structure other than pearlite is a non-pearlite structure of ferrite, bainite, pseudo pearlite, proeutectoid cementite, and martensite.
  • the area ratio of the non-pearlite structure is set to 10% or less.
  • the area ratio of pearlite can be obtained by subtracting the area ratio of the non-pearlite structure from 100%.
  • the area ratio of pearlite can be obtained by the following method.
  • D indicates the diameter (unit: mm) of the steel wire.
  • an L section parallel to the longitudinal direction of the steel wire is mirror-polished and then subjected to picral etching. Then, five fields of view are photographed at a magnification of 2000 times using SEM at three positions of 50 ⁇ m depth, D / 4, and D / 2 from the surface of the etched L cross section.
  • the area per field of view is 60 ⁇ m ⁇ 40 ⁇ m.
  • the particle diameter of the fine cementite grains present in the fine lamellar cementite obtained by subjecting the pearlite steel wire to patenting after wire rolling or reheating and subsequent drawing is 10 nm or less in terms of the equivalent circle diameter. .
  • the refined cementite grains grow and the area ratio of the cementite grains of 10 nm or less is less than 50% of the total lamellar cementite, resulting in reduced ductility.
  • the hydrogen embrittlement resistance decreases. Therefore, the area ratio of 10 nm or less cementite grains is set to 50% or more with respect to the area of all lamellar cementite.
  • the area ratio of cementite grains of 10 nm or less is preferably 90% or less.
  • the size of the cementite grains in the lamellar cementite is such that when the diameter (wire diameter) of the steel wire is D in mm, the L section of the steel wire is polished and the depth from the surface is 0.01.
  • a dark-field image was formed using a transmission electron microscope at an accelerating voltage of 200 kV and a limited field stop was placed in the cementite diffraction spot in TEM, and this was imaged. Obtained by analysis. First, in photographing a TEM dark field image, 10 fields are photographed in a depth of 500 nm ⁇ 500 nm from each surface.
  • the total area of the lamellar cementite and the area of the cementite grains with a circle equivalent diameter (the diameter of a circle having the same area as the cementite grains) and a particle size of 10 nm or less are calculated.
  • the total area of lamellar cementite obtained in each visual field and the area of cementite grains having a particle size of 10 nm or less are totaled, and the area ratio of cementite grains of 10 nm or less is calculated by the following formula.
  • the area ratio of the cementite grains of 10 nm or less in the lamellar cementite of the steel wire according to the present invention can be obtained.
  • Area ratio (%) of cementite grains of 10 nm or less (total area of cementite grains having an equivalent circle diameter of 10 nm or less / total area of lamellar cementite) ⁇ 100
  • a steel wire suitable as a PC steel wire having a tensile strength of 1800 MPa or more and excellent in hydrogen embrittlement resistance can be obtained. If the tensile strength is less than 1800 MPa, the purpose of reducing the construction cost and reducing the weight of the structure cannot be achieved as a pearlite steel wire for PC strands. Further, when the tensile strength is 3000 MPa or more, hydrogen embrittlement becomes significant. Therefore, the tensile strength of the steel wire according to this embodiment is set to 1800 MPa or more and less than 3000 MPa. In addition, the tensile strength of the steel wire according to the present embodiment is measured by a test method based on JIS Z 2241: 2011. It is the value of the breaking strength when a tensile test is performed at 250 mm. In order to obtain the above-described steel wire, the steel wire may be manufactured by a manufacturing method described later.
  • the steel wire according to the present embodiment can be manufactured as follows.
  • the manufacturing method of the steel wire demonstrated below is an example for obtaining the steel wire which concerns on this embodiment, and is not limited by the following procedures and methods, What is the method which can implement
  • steel is melted to have the above chemical components, and then steel pieces are produced by continuous casting. Note that after the continuous casting, the steel pieces may be subjected to ingot rolling.
  • the obtained steel slab is heated to 1050 ° C. or higher and hot rolled at a finish rolling temperature of 850 ° C. or higher to obtain a wire.
  • the wire obtained after finish rolling is wound into a ring shape.
  • the winding temperature is set to 950 ° C. or lower. When the coiling temperature is less than 740 ° C., the hardenability is remarkably lowered.
  • the average lamellar cementite thickness after the patenting treatment needs to be 120 nm or less.
  • the wound wire is immersed in a molten salt bath of 450 ° C. to 570 ° C. or less, and the cooling rate from 850 ° C. to 650 ° C. is set to 15 ° C.
  • the pearlite transformation is performed at a temperature of 500 ° C. to 600 ° C. This process is generally called a patenting process. At this time, if the temperature of the molten salt bath is too low, the steel wire structure becomes bainite, so the molten salt bath temperature needs to be 450 ° C. or higher.
  • the molten salt bath temperature is preferably 550 ° C. or lower.
  • the wire cooled to room temperature at a cooling rate of 5 ° C./s to 30 ° C./s is reheated to a temperature range of 950 ° C. or higher and then immersed in a Pb bath or a salt bath. Then, the cooling rate from 850 ° C. to 650 ° C. may be cooled at a cooling rate of 15 ° C./s or more and maintained at 500 ° C. to 600 ° C.
  • these wires are dry-drawn into 4 mm ⁇ to 6 mm ⁇ steel wires with a total area reduction of 75% to 90% to give tensile strength.
  • the area ratio of cementite grains having a size of 10 nm or less in lamellar cementite of a steel wire it is necessary to suppress heat generation during wire drawing.
  • heat generation during wire drawing due to wire drawing with improved lubricity using a pressure die or the like is suppressed.
  • forced water cooling is performed after drawing, and the temperature of the steel wire is set to 170 ° C. or less within 5 seconds after drawing.
  • the steel wire after wire drawing exceeds 170 ° C. for 5 seconds or more, fine cementite grains grow, the area ratio of cementite grains with a grain size of 10 nm or less becomes less than 50%, and hydrogen embrittlement resistance Characteristics are degraded.
  • the above-described production method produces a high-strength steel wire with excellent hydrogen embrittlement resistance and tensile strength of 1800 MPa or more without degrading manufacturability, without degrading wire drawing workability and twisting characteristics. can do.
  • the conditions in the examples are one example of conditions used for confirming the feasibility and effects of the present invention, and the present invention is not limited to the following examples.
  • the present invention can be implemented with appropriate modifications within a range that can be adapted to the gist. Therefore, the present invention can employ various conditions, all of which are included in the technical features of the present invention.
  • Tables 3 and 4 show the technical characteristics of the steel wire, that is, the area ratio of pearlite, the area ratio of cementite grains of 10 nm or less in lamellar cementite, and the tensile strength of the steel wire. These values are values measured by the methods described above.
  • Test No. 2 (Level 2) is a steel wire obtained by performing blast cooling using stealmore without performing patenting treatment in a molten salt bath after hot rolling, followed by wire drawing and aging heat treatment. is there. In this test number 2, the cooling rate is slower than 15 ° C./s, the area ratio of pearlite is out of the range of the present invention, and the tensile strength of the steel wire after wire drawing and aging heat treatment does not satisfy 1800 MPa. It is a comparative example.
  • Test number 7 (level 7) is a comparison in which the molten salt temperature is high, the area ratio of pearlite is outside the range of the present invention, and the tensile strength of the steel wire after wire drawing and aging heat treatment does not satisfy 1800 MPa. It is an example. Test No.
  • Level 10 is a comparative example in which the area ratio of cementite grains of 10 nm or less did not satisfy the scope of the present invention because the aging heat treatment time after wire drawing was long.
  • Test No. 12 since the molten salt temperature after rolling was low, the area ratio of pearlite was outside the range of the present invention, and the tensile strength of the steel wire after wire drawing and aging heat treatment was 1800 MPa. It is a comparative example that was not satisfied.
  • Test No. 43 (Level 43) is a comparative example in which the tensile strength of the steel wire after aging heat treatment was less than 1800 MPa because the C content was below the range of the present invention.
  • Test number 46 is a comparative example in which the tensile strength of the steel wire after the aging heat treatment was less than 1800 MPa because the Si content was below the range of the present invention.
  • Test number 53 is a comparative example in which the tensile strength of the steel wire after the aging heat treatment was less than 1800 MPa because the Mn content was below the range of the present invention.
  • the hydrogen embrittlement resistance was evaluated using the steel wires having the test numbers described in Tables 3 and 4.
  • the steel wire whose tensile strength is less than 1800 Mpa since the required intensity
  • test numbers 50, 51, and 64 are excluded for steel wires that do not satisfy one or both of wire drawing workability and twisting characteristics. Therefore, the hydrogen embrittlement resistance was not evaluated.
  • the evaluation of hydrogen embrittlement resistance was not performed about the steel wire which productivity fell, such as an alloy cost increasing.
  • the hydrogen embrittlement resistance was evaluated by the FIP test.
  • the steel wire of each test number was immersed in a 20% NH 4 SCN solution at 50 ° C., and a load that was 0.8 times the breaking load was applied to evaluate the breaking time.
  • the specific liquid amount was 12 cc / cm 2 .
  • Twelve FIP tests were evaluated for each test number, and the average value was defined as the hydrogen embrittlement fracture time. Since the hydrogen embrittlement resistance depends on the tensile strength of the steel wire, the steel wire with a tensile strength of 1800 MPa or more is judged to have a good hydrogen embrittlement resistance at 20 hr or more, and “good” in Table 5 displayed.
  • wire drawing workability it is determined that the wire drawing workability is good when the wire breakage does not occur until the target wire diameter during wire drawing or the vertical cracks that cause cracks in the longitudinal surface are generated. Displayed as “good” in Table 5.
  • twisting property it is evaluated by a torsion test under the condition that the distance between chucks is 100 times the diameter and the torsional rotation speed is 5 to 60 rpm, and the case where delamination does not occur is “good twisting property”. It was determined and displayed as “good” in Table 5.
  • the production cost evaluation is based on the steelmaking cost including the alloy cost and the rolling cost, and is equal to or lower than the alloy cost calculated with the central value of the component range of the element including the selected element and lower than the manufacturing cost calculated under normal rolling conditions.
  • the product was indicated as “low manufacturing cost” and indicated as “low” in Table 5.
  • Table 5 when manufacturing costs, such as alloy costs, increased, it displayed as "high” and it determined with the manufacturability of the steel wire having fallen.
  • Test No. 44 is a comparative example in which the hydrogen embrittlement resistance was poor because the P content exceeded the range of the present invention.
  • Test number 48 is a comparative example in which the resistance to hydrogen embrittlement was poor because the Cr content exceeded the range of the present invention.
  • Test No. 49 is a comparative example in which the hydrogen embrittlement resistance was poor because the N content exceeded the range of the present invention.
  • Test number 52 is a comparative example in which the hydrogen embrittlement resistance is poor because the S content exceeds the range of the present invention.
  • Test number 54 is a comparative example in which the resistance to hydrogen embrittlement was poor because the Mo content exceeded the range of the present invention.
  • Test number 60 is a comparative example in which the hydrogen embrittlement resistance is poor because the Ni content exceeds the range of the present invention.
  • Test No. 61 is a comparative example in which the hydrogen embrittlement resistance was poor because the Cu content exceeded the range of the present invention.
  • Test numbers 47, 50, 51, 56, 57, 58, 59, 62, 63 are Mn content, O content, Si content, C content and B content, Ti content, Nb content, Zr content, Ca content, Mg content exceeded the scope of the present invention. One or both of them were not met. For this reason, the hydrogen embrittlement resistance could not be evaluated.
  • test numbers 45, 55, and 56 exceeded the range of the present invention in Al content, V content, C content, and B content, respectively, manufacture of steel wire The sex was decreasing.
  • Test number 64 (level 64) is an example in which the strength against hydrogen embrittlement deteriorated because the strength was 3000 MPa or more.
  • a high-strength steel wire for use in prestressed concrete having a tensile strength of 1800 MPa or more and improved hydrogen embrittlement resistance without lowering the wire drawing workability and twisting characteristics.

Abstract

この鋼線は、化学成分として、質量%で、C:0.80%~1.20%、Si:0.10%~2.00%、Mn:0.20%~1.00%、P:0.030%以下、S:0.030%以下、O:0.0100%以下及びN:0.0010%~0.0100%を含有し、任意に含有される成分が、Al、Cr、Mo、V、B、Ti、Nb、Zr、Ni、Cu、Ca及びMgであり、残部がFe及び不純物であり、組織はパーライトを含み、パーライトの面積率が90%以上であり、ラメラー状セメンタイト中において、円相当径で粒径が10nm以下のセメンタイト粒の面積率が50%以上であり、引張強さが1800MPa以上、3000MPa未満である。

Description

鋼線
 本発明は、プレストレストコンクリートなどに用いる鋼線に関するものであり、製造性を低下させることなく、伸線加工性及び捻回特性を劣化させることなく、引張強さが1800MPa以上であり、かつ耐水素脆化特性を向上させた高強度な鋼線に関する。
 2016年3月28日に出願された日本国特許出願第2016-063666号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が、具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
 主として土木・建築構造物に用いられるプレストレストコンクリートの緊張に用いられている鋼線は、PC鋼線と称される。従来、ピアノ線材をパテンティング処理して、その組織をパーライトにした後、伸線加工と撚り線加工とを行って得られたワイヤは、ストランドと呼ばれている。このストランドを最終工程にて時効熱処理することによって、PCストランド用パーライト鋼線が製造されている。なお、以下、「PCストランド用パーライト鋼線」を、単に「鋼線」または「パーライト鋼線」と記載する場合がある。
 近年は、施工コストの低減や構造物の軽量化を目的に、引張強さが1800MPaを超える高強度のPCストランド用パーライト鋼線が求められている。しかしながら、PCストランド用パーライト鋼線の高強度化に伴って、鋼線の耐水素脆化特性が低下するという課題がある。
 鋼線の耐水素脆化特性を向上させる技術として、特許文献1には、PC鋼線の表面の少なくともD/10(Dは鋼線の直径)の深さの領域において、パーライト中の板状セメンタイトの平均アスペクト比を30以下とした高強度PC鋼線が提案されている。しかしながら、特許文献1に記載のPC鋼線を得るためには、冷間伸線加工後の最終工程において、急速加熱して450℃以上に5秒以上保持するなどの処理が必要であり、製造方法が複雑となる。
 また、特許文献2では、PC鋼線の線径をDとしたときに、表面から0.1Dの領域の硬さを、内部の硬さの1.1倍以下にした高強度PC鋼線が提案されている。ところが、特許文献2に記載のような硬さを得るためには、例えば、線材を900℃~1100℃に加熱後、600℃~650℃の温度範囲に保定して部分的なパーライト変態処理を施した後、引き続き540℃~600℃未満の温度範囲に保持することや、熱間圧延により700℃~950℃で仕上げ圧延した後、500℃~600℃の温度範囲に冷却することや、また、伸線加工後に450℃超~650℃の温度範囲に2秒~30秒保持し、引き続き250℃~450℃でのブルーイング処理を施すなど、複雑な製造方法が必要となる。
特開2004-360005号公報 特開2009-280836号公報
 このように、伸線加工性と捻回特性とを有し、高強度な鋼線の耐水素脆化特性を向上させるための従来技術は、製造方法が複雑になり製造性が低下し、鋼線の引張強さと耐水素脆化特性とを両立させることが難しかった。
 そこで、本発明は、このような実情に鑑み、製造性を低下させることなく、伸線加工性及び捻回特性を劣化させることなく、高強度でかつ耐水素脆化特性に優れたパーライト鋼線を提供することを目的とする。
 まず、鋼線の組織は、伸線時に高強度化しやすいパーライトとする必要がある。本発明者らは、引張強さが1800MPa以上の高強度な鋼線の耐水素脆化特性に及ぼす化学成分と、組織との関係を詳細に調査した。その結果、本発明者らは、高強度な鋼線の耐水素脆化特性を向上させるとともに、生産性を向上させて安価に製造することが可能なパーライト鋼線について、次の知見を見出した。
 一般に、高強度なパーライト鋼線は、以下の方法で製造されている。線材をPb浴、あるいは熱間圧延ラインに設置した溶融塩槽に浸漬して、パーライト変態を完了させるためのパテンティング処理を行い、その後、パテンティング処理した線材を伸線加工する。そして、伸線加工後の線材に対して、時効熱処理や、張力を付与しながら加熱処理を行うヒートストレッチ処理を行う。
 本発明者らは、パーライト鋼線の耐水素脆化特性を向上させるためには、下記の方法が有効であることを見出した。それは、伸線加工の条件を工夫することによってパーライト組織中のラメラーセメンタイトを適正に微細粒化させる方法である。なお、ラメラーセメンタイトとは、熱処理後の板状のフェライトとセメンタイトが交互に配置されたもの(パーライト組織)の内、単結晶の板状セメンタイトであり、このラメラーセメンタイトは、伸線加工によって微細化される。本明細書では、この伸線加工によって微細化されたラメラーセメンタイトを、「ラメラー状セメンタイト」と呼ぶ。
 ここで、図1は、ラメラー状セメンタイトを説明するための概念図であり、(a)、(b)、(c)の順に拡大した組織を模式的に示している。図1(a)に示すように、旧オーステナイト粒(オーステナイト粒境界(Austenite grain boundary)で囲まれた領域)の内部には、フェライトの結晶方位が揃った複数のパーライトブロック(Pearlite block)が存在する。なお、パーライトブロックは、フェライトの結晶方位は同じであるが、セメンタイト(ラメラー状セメンタイト)の向きが互いに異なる複数のパーライトコロニ―(Pearlite colony)からなっている。
 図1(b)に示すように、外観では、ラメラー状セメンタイトは、伸線加工前のラメラーセメンタイト同様に、板状のフェライトに挟まれた板状のセメンタイトに見える。このラメラー状セメンタイトをさらに拡大すると、図1(c)に示すように、ラメラー状セメンタイトは、伸線加工によって分断された多数の微細なセメンタイト粒で構成されている。本発明者らは、パーライト組織中のラメラーセメンタイトを適正に微細粒化させることにより、パーライト鋼線の耐水素脆化特性を向上させることが可能であることを見出した。このように伸線加工によってパーライト組織中のラメラーセメンタイトを微細粒化させる方法が耐水素脆化特性の向上に有効である理由は必ずしも明らかではないが、線材での組織造り込みと伸線加工により、耐水素脆化特性の向上効果が得られるものと推測される。
 即ち、パーライト鋼線の組織中の脆化組織であるラメラーセメンタイトは、定常的な引張応力下で水素が侵入してくると、水素脆化が発生する。一方、この脆化組織であるラメラーセメンタイトを、線材圧延時もしくは線材をパテンティングすることによる組織作り込みに加えて、伸線加工によって適正に微細粒化させたラメラー状セメンタイトにすることによって、パーライト組織の延性を改善でき、鋼線の耐水素脆化特性を向上させることが可能となる。
 本発明者らは、鋼線のラメラーセメンタイトを適正に微細粒化させたラメラー状セメンタイトにすることにより、従来技術と比べて高強度なパーライト鋼線の耐水素脆化特性を向上させることが可能となることを見出した。
 本発明は、上記知見に基づいてなされたものであり、その要旨は以下のとおりである。
(1)
 本発明の一態様に係る鋼線は、化学成分として、質量%で、C:0.80%~1.20%、Si:0.10%~2.00%、Mn:0.20%~1.00%、P:0.030%以下、S:0.030%以下、O:0.0100%以下及びN:0.0010%~0.0100%を含有し、任意に含有される成分が、Al:0.100%以下、Cr:2.00%以下、Mo:1.00%以下、V:0.30%以下、B:0.0050%以下、Ti:0.050%以下、Nb:0.050%以下、Zr:0.050%以下、Ni:2.00%以下、Cu:1.00%以下、Ca:0.010%以下及びMg:0.010%以下であり、残部がFe及び不純物であり、組織はパーライトを含み、前記パーライトの面積率が90%以上であり、ラメラー状セメンタイト中において、円相当径で粒径が10nm以下のセメンタイト粒の面積率が50%以上であり、引張強さが1800MPa以上、3000MPa未満である。
(2)
 上記(1)に記載の鋼線は、化学成分として、質量%で、Al:0.005%~0.100%、Cr:0.01%~2.00%、Mo:0.01%~1.00%、V:0.01%~0.30%、B:0.0001%~0.0050%、Ti:0.001%~0.050%、Nb:0.001%~0.050%、Zr:0.001%~0.050%、Ni:0.01%~2.00%、Cu:0.01%~1.00%、Ca:0.0001%~0.010%及びMg:0.0001%~0.010%からなる群より選択される1種以上を含有してもよい。
 本発明によれば、耐水素脆化特性に優れ、かつ引張強さ1800MPa以上の高強度なパーライト鋼線の提供が可能になる。そして、この高強度なパーライト鋼線は、土木・建築物の施工コストの低減や軽量化に寄与し、産業上の効果は極めて顕著である。
ラメラー状セメンタイトを説明するための概念図であり、(a)、(b)、(c)の順に拡大した組織を模式的に示している。
 上述したように、一般に、高強度なパーライト鋼線は、次のように製造されている。まず、熱間圧延により製造された線材に対し、Pb浴あるいは熱間圧延ラインに設置した溶融塩槽にて、パテンティング処理が行われる。引き続き、この線材は伸線加工される。その後、この線材に対し、時効熱処理や張力を付与しながら加熱処理を行う「ヒートストレッチ処理」が行われる。
 高強度なパーライト鋼線の耐水素脆化特性を向上させるためには、上述したように、パーライト鋼線の脆化組織であるラメラーセメンタイトにおいて、線材圧延後、もしくは再加熱パテンティング処理にて平均ラメラーセメンタイト厚さを小さくし、伸線加工時の発熱を抑制することで、微細粒になったラメラー状セメンタイト中のセメンタイト粒の粒成長を抑制することが有効である。つまり、伸線前のラメラーセメンタイト厚さおよび伸線時の粒成長を抑制し、セメンタイトを微細化することでラメラー状セメンタイトの延性を向上させ、水素割れのき裂の発生を抑制することができる。したがって、高強度であっても耐水素脆化特性の劣化を抑制することが可能となる。
 即ち、鋼線において、パーライトの面積率が90%以上であり、ラメラー状セメンタイト中において、円相当径で粒径が10nm以下のセメンタイト粒の面積率(以下、単に「10nm以下のセメンタイト粒の面積率」と記す場合がある。)を50%以上とすることで、伸線加工及びヒートストレッチ処理後の鋼線の強度を1800MPa以上にすることができ、かつ、鋼線の耐水素脆化特性を劣化させないことが可能である。
 まず、本実施形態における鋼線が含有する化学成分の範囲を限定した理由を説明する。なお、以下の説明における各成分の含有量を表す「%」は、質量%を意味する。
 C:0.80%~1.20%
 Cは、鋼線の組織をパーライトとし、伸線加工後の鋼線の引張強さを確保するために必要な元素である。C含有量が0.80%未満では、線材中に初析フェライトが生成し、例えば1800MPaという所定の引張強さを確保することが困難となる。そのため、C含有量の下限を0.80%とする。より安定して引張強さを高めるためには、C含有量は、好ましくは0.85%以上であり、より好ましくは0.90%以上である。一方、C含有量が1.20%を超えると、線材中に初析セメンタイトが増加して、線材の伸線加工性が劣化する。そのため、C含有量の上限を1.20%とする。バラツキを無くし、より安定して伸線加工性を得るためには、C含有量は、好ましくは1.15%以下であり、より好ましくは1.10%以下である。
 Si:0.10%~2.00%
 Siは、リラクセーション特性を高めるとともに、固溶強化により引張強さを高めるために必要な元素である。Si含有量が0.10%未満では、これらの効果が不十分である。そのため、Si含有量の下限を0.10%とする。より高いリラクセーション特性を得るためには、Si含有量は、好ましくは0.30%以上であり、より好ましくは0.50%以上である。一方、Si含有量が2.00%を超えると、これらの効果が飽和するとともに、線材の伸線加工性が劣化して、鋼線の製造性が低下する。そのため、Si含有量の上限を2.00%とする。より安定して熱間圧延中に割れを発生させないためには、Si含有量は、好ましくは1.80%以下であり、より好ましくは1.50%以下である。
 Mn:0.20%~1.00%
 Mnは、パーライト変態後の鋼の引張強さを高めるために必要な元素である。Mn含有量が0.20%未満では、この効果が不十分である。そのため、Mn含有量の下限を0.20%とする。より安定して引張強さを高めるためには、Mn含有量は、好ましくは0.30%以上であり、より好ましくは0.50%以上である。一方、Mn含有量が1.00%を超えると、偏析により局所的な強度が高くなるため捻回特性が低下する。そのため、Mn含有量の上限を1.00%とする。合金コストの観点より、Mn含有量は、好ましくは0.90%以下であり、より好ましくは0.80%以下である。
 P:0.030%以下
 Pは、不純物として鋼線中に含有され、粒界に偏析して耐水素脆化特性を劣化させる元素である。特に、P含有量が0.030%を超えると、耐水素脆化特性の劣化が著しくなる。したがって、P含有量は0.030%以下に制限する。P含有量は好ましくは0.015%以下であり、より好ましくは0.010%以下である。なお、P含有量の下限は0%を含む。しかしながら、現状の精錬技術と製造コストとを考慮すると、P含有量の下限は0.0001%が好ましい。
 S:0.030%以下
 Sも、Pと同様に、不純物として鋼線中に含有され、粒界に偏析して耐水素脆化特性を劣化させる元素である。特に、S含有量が0.030%を超えると、耐水素脆化特性の劣化が著しくなる。したがって、S含有量は0.030%以下に制限する。S含有量は好ましくは0.015%以下であり、より好ましくは0.010%以下である。なお、S含有量の下限は0%を含む。しかしながら、現状の精錬技術と製造コストとを考慮すると、S含有量の下限は0.0001%が好ましい。
 O:0.0100%以下
 Oは、鋼線中に不可避的に含有され、Al、TiまたはMnなどの酸化物として存在する元素である。特に、O含有量が0.0100%を超えると、粗大な酸化物を形成し、伸線加工時に断線の原因となる。したがって、O含有量は0.0100%以下に制限する。O含有量は好ましくは0.0080%以下であり、より好ましくは0.0050%以下である。なお、O含有量の下限は0%を含む。しかしながら、現状の精錬技術と製造コストとを考慮すると、O含有量の下限は0.0001%が好ましい。
 N:0.0010%~0.0100%
 Nは、Al、Ti、Nb、Vと窒化物/炭窒化物を形成し、結晶粒径を細粒化し、鋼線の延性を向上させるために必要な元素である。N含有量が0.0010%未満では、この効果が得られない。そのため、N含有量の下限を0.0010%とする。より安定して延性を向上させるためには、N含有量は、好ましくは0.0015%以上であり、より好ましくは0.0025%以上である。一方、N含有量が0.0100%を超えると、微細析出物が増加して鋼線の延性を低下させる。そのため、N含有量の上限を0.0100%とする。より安定して鋼線の延性を得るため、N含有量は、好ましくは0.0070%以下であり、より好ましくは0.0050%以下である。
 以上が、本実施形態に係る鋼線の基本的な成分組成であり、残部は、鉄及び不純物である。なお、「残部がFe及び不純物である」における「不純物」とは、鋼を工業的に製造する際に、原料としての鉱石、スクラップ、または製造環境などから不可避的に混入するものを指す。
 上記した基本成分及び不純物の他に、本実施形態に係る鋼線には、さらに、選択的に、Al、Cr、Mo、V、B、Ti、Nb、Zr、Ni、Cu、Ca及びMgからなる群より選択される1種以上を含有してもよい。
 以下に、これら任意に含有される成分の数値限定範囲とその限定理由とについて説明する。
 Al:0.100%以下
 Alは脱酸元素として機能するとともに、AlNを形成することによって、結晶粒を細粒化する。その結果、鋼線の延性を向上させる効果を有する。また、結晶粒を微細化して、鋼線の耐水素脆化特性を向上させる効果を有する。このような効果を得たい場合には、Al含有量を0.005%以上とすることが好ましい。一方で、Al含有量が0.100%を超えると、これらの効果が飽和するとともに製造性を劣化させる虞がある。そのため、Al含有量は0.100%以下が好ましい。Al含有量は、より好ましくは0.008%~0.070%であり、さらに好ましくは0.010%~0.050%である。
 Cr:2.00%以下
 Crはパーライト変態後の鋼の引張強さを高める効果を有する。このような効果を得たい場合には、Cr含有量を0.01%以上とすることが好ましい。一方で、Cr含有量が2.00%を超えると、合金コストが上がるだけでなく、本実施形態に係る鋼線には不必要なマルテンサイト組織が生じ易くなって、伸線加工性や鋼線の耐水素脆化特性を劣化させる虞がある。そのため、Cr含有量は2.00%以下が好ましい。Cr含有量は、より好ましくは0.05%~1.00%であり、さらに好ましくは0.10%~0.50%である。
 Mo:1.00%以下
 Moは時効熱処理後の鋼線の引張強さを高める効果を有する。このような効果を得たい場合には、Mo含有量を0.01%以上とすることが好ましい。一方で、Mo含有量が1.00%を超えると、合金コストが上がるだけでなく、本実施形態に係る鋼線には不必要なマルテンサイト組織が生じ易くなって、伸線加工性や鋼線の耐水素脆化特性を劣化させる虞がある。そのため、Mo含有量は1.00%以下が好ましい。Mo含有量は、より好ましくは0.03%~0.50%であり、さらに好ましくは0.05%~0.30%である。
 V:0.30%以下
 Vは炭化物VCとして析出して、引張強さを高めるとともに、鋼線の耐水素脆化特性を向上させる効果を有する。このような効果を得たい場合には、V含有量を0.01%以上とすることが好ましい。一方で、V含有量が0.30%を超えると、合金コストが増加し、製造性が低下する。そのため、V含有量は0.30%以下が好ましい。V含有量は、より好ましくは0.03%~0.20%であり、さらに好ましくは0.05%~0.15%である。
 B:0.0050%以下
 Bは時効熱処理後の鋼線の引張強さを高める効果や鋼線の耐水素脆化特性を向上させる効果を有する。このような効果を得たい場合には、B含有量を0.0001%以上とすることが好ましい。一方で、B含有量が0.0050%を超えると、これらの効果が飽和し、製造性が低下する。そのため、B含有量は0.0050%以下が好ましい。B含有量は、より好ましくは0.0003%~0.0040%であり、さらに好ましくは0.0005%~0.0020%である。
 Ti:0.050%以下
 Tiは脱酸元素として機能するとともに、炭化物や窒化物を析出させて鋼線の引張強さを高める効果や、結晶粒を細粒化して鋼線の延性を向上させる効果を有する。このような効果を得たい場合には、Ti含有量を0.001%以上とすることが好ましい。一方で、Ti含有量が0.050%を超えると、これらの効果が飽和するとともに、粗大な酸化物を生成して鋼線の伸線加工性を劣化させる虞がある。そのため、Ti含有量は0.050%以下が好ましい。Ti含有量は、より好ましくは0.003%~0.040%であり、さらに好ましくは0.005%~0.030%である。
 Nb:0.050%以下
 Nbは炭化物や窒化物を析出させて鋼線の引張強さを高める効果や、結晶粒を細粒化して鋼線の延性を向上させる効果を有する。このような効果を得たい場合には、Nb含有量を0.001%以上とすることが好ましい。一方で、Nb含有量が0.050%を超えると、これらの効果が飽和するとともに鋼線の捻回特性を劣化させる虞がある。そのため、Nb含有量は0.050%以下が好ましい。Nb含有量は、より好ましくは0.003%~0.040%であり、さらに好ましくは0.005%~0.030%である。
 Zr:0.050%以下
 Zrは脱酸元素として機能するとともに、硫化物を形成することで固溶Sを低減し、鋼線の耐水素脆化特性を向上させる効果を有する。このような効果を得たい場合には、Zr含有量を0.001%以上とすることが好ましい。一方で、Zr含有量が0.050%を超えると、これらの効果が飽和するとともに、粗大な酸化物を生成して、鋼線の伸線加工性を劣化させる虞がある。そのため、Zr含有量は0.050%以下が好ましい。Zr含有量は、より好ましくは0.003%~0.040%であり、さらに好ましくは0.005%~0.030%である。
 Ni:2.00%以下
 Niは水素の侵入を抑制する効果を有する。このような効果を得たい場合には、Ni含有量を0.01%以上とすることが好ましい。一方で、Ni含有量が2.00%を超えると、合金コストが上がるだけでなく、本実施形態に係る鋼線には不必要なマルテンサイト組織が生じ易くなって、鋼線の伸線加工性や耐水素脆化特性を劣化させる虞がある。そのため、Ni含有量は2.00%以下が好ましい。Ni含有量は、より好ましくは0.04%~1.00%であり、さらに好ましくは0.06%~0.60%である。
 Cu:1.00%以下
 Cuは水素の侵入を抑制する効果を有する。このような効果を得たい場合には、Cu含有量を0.01%以上とすることが好ましい。一方で、Cu含有量が1.00%を超えると、熱間延性を阻害し製造性が劣化するとともに、本実施形態に係る鋼線には不必要なマルテンサイト組織が生じ易くなって、鋼線の伸線加工性や耐水素脆化特性を劣化させる虞がある。そのため、Cu含有量は1.00%以下が好ましい。Cu含有量は、より好ましくは0.02%~0.50%であり、さらに好ましくは0.03%~0.30%である。
 Ca:0.010%以下
 Caは脱酸元素として機能するとともに、硫化物を形成することで固溶Sを低減し、耐水素脆化特性を向上させる効果を有する。このような効果を得たい場合には、Ca含有量を0.0001%以上とすることが好ましい。一方で、Ca含有量が0.010%を超えると、これらの効果が飽和するとともに粗大な酸化物を生成し、伸線加工性を劣化させる虞がある。そのため、Ca含有量は0.010%以下が好ましい。Ca含有量は、より好ましくは0.0003%~0.0050%であり、さらに好ましくは0.0010%~0.0030%である。
 Mg:0.010%以下
 Mgは脱酸元素として機能するとともに、硫化物を形成することで固溶Sを低減し、耐水素脆化特性を向上させる効果を有する。このような効果を得たい場合には、Mg含有量を0.0001%以上とすることが好ましい。一方で、Mg含有量が0.010%を超えると、これらの効果が飽和するとともに粗大な酸化物を生成し、伸線加工性を劣化させる虞がある。そのため、Mg含有量は0.010%以下が好ましい。Mg含有量は、より好ましくは0.0003%~0.0050%であり、さらに好ましくは0.0010%~0.0030%である。
 次に、本実施形態に係る鋼線の組織について説明する。
 本実施形態に係る鋼線の組織は、パーライトを含む。このパーライトの面積率が90%未満では、伸線加工及び時効熱処理後の鋼線の引張強さが低下したり、捻回特性が劣化する。したがって、このパーライトの面積率を90%以上とする。好ましくは、パーライトの面積率は95%以上である。なお、パーライトの面積率は、100%でもよい。一方、本実施形態に係る鋼線の組織の残部は、すなわちパーライト以外の組織は、フェライト、ベイナイト、擬似パーライト、初析セメンタイト及びマルテンサイトの非パーライト組織である。これらの非パーライト組織は、伸線加工の際に割れの発生や、伸線加工と時効熱処理後の鋼線の耐水素脆化特性を劣化させる。そのため、非パーライト組織の面積率を10%以下とする。なお、パーライトの面積率は、100%から非パーライト組織の面積率を減じて求めることができる。
 具体的には、パーライトの面積率は次の方法で求めることが出来る。なお、Dは鋼線の直径(単位mm)を示す。鋼線の試料(サンプル)において、鋼線の長手方向に平行なL断面を鏡面研磨した後、ピクラールエッチングする。そして、エッチングしたL断面の表面から50μm深さ、D/4、D/2の3か所の位置において、それぞれSEMを用いて、倍率2000倍で、5視野撮影する。なお、1視野あたりの面積は、60μm×40μmである。得られた各視野のSEM写真を用いて、マルテンサイト、ベイナイト、フェライトなどの非パーライト組織の領域をマーキングし、画像解析ソフトで二値化して面積率を求め、それらを全体から除いたもの、即ち、100%から非パーライト組織の面積率を減じたものをパーライトの面積率として得ることができる。
 パーライト鋼線を線材圧延後もしくは再加熱によるパテンティングを行い、その後の伸線加工により得られる微細なラメラー状セメンタイト中に存在する微細なセメンタイト粒の粒径は、円相当径で10nm以下となる。伸線加工時の発熱により鋼線の温度が高くなると、微細化したセメンタイト粒が粒成長してしまい、10nm以下のセメンタイト粒の面積率が全ラメラー状セメンタイトの50%未満となり延性が低下することで耐水素脆化特性が低下する。そのため、10nm以下のセメンタイト粒の面積率を全ラメラー状セメンタイトの面積に対して50%以上とする。ただし、10nm以下のセメンタイト粒の面積率を90%超とするには、伸線加工ひずみを大きくするか、伸線時の発熱および伸線後の冷却を強化する必要がありコストが高くなるため、10nm以下のセメンタイト粒の面積率は90%以下が好ましい。
 なお、ラメラー状セメンタイト中のセメンタイト粒の大きさは、鋼線の直径(線径)を、単位mmでDとしたとき、鋼線のL断面を研磨して表面からの深さが0.01×D、0.25×Dにて、透過型電子顕微鏡を用いて200kVの加速電圧にてTEMでのセメンタイト回折スポットに制限視野絞りを入れて結像する暗視野を写真撮影し、これを画像解析することにより得られる。まず、TEM暗視野像の撮影では、500nm×500nmの領域を各表面からの深さにおいて10視野ずつ撮影する。次に、撮影された写真を画像解析することで、ラメラー状セメンタイトの全面積および円相当径(セメンタイト粒の面積と同じ面積の円の直径)で粒径が10nm以下のセメンタイト粒の面積を算出する。各視野で得られたラメラー状セメンタイトの全面積と粒径が10nm以下のセメンタイト粒の面積をそれぞれ合計して、下記式により、10nm以下のセメンタイト粒の面積率を算出することによって、本実施形態に係る鋼線のラメラー状セメンタイトにおける10nm以下のセメンタイト粒の面積率を得ることができる。
10nm以下のセメンタイト粒の面積率(%)=(円相当径が10nm以下のセメンタイト粒の合計面積/ラメラー状セメンタイトの合計面積)×100
 上述した化学組成と組織とを満足することで、1800MPa以上の引張強さを有し、耐水素脆化特性に優れるPC鋼線として好適な鋼線を得ることができる。引張強さが1800MPa未満では、PCストランド用パーライト鋼線として、施工コストの低減や構造物の軽量化の目的を達成することができない。また、引っ張り強さが3000MPa以上になると、水素脆化が顕著になる。そのため、本実施形態に係る鋼線の引張強さは1800MPa以上、3000MPa未満とする。なお、本実施形態に係る鋼線の引張強さは、JIS Z 2241:2011に準拠した試験方法によって測定し、試験片形状は伸線ままの鋼線を300mm長さに切断し、チャック間距離250mmで引張試験した際の破断強度の値である。上述した鋼線を得るためには、後述する製造方法により鋼線を製造すればよい。
 次に、本実施形態に係る鋼線の好ましい製造方法について説明する。
 本実施形態に係る鋼線は以下のようにして製造することができる。なお、以下に説明する鋼線の製造方法は、本実施形態に係る鋼線を得るための一例であり、以下の手順及び方法で限定するものではなく、本発明の構成を実現できる方法であれば、如何なる方法をも採用することが可能である。
 まず、上記の化学成分となるよう鋼を溶製した後、連続鋳造によって鋼片を製造する。なお、連続鋳造後、鋼片に分塊圧延を行ってもよい。次に、得られた鋼片を1050℃以上になるように加熱し、仕上げ圧延温度を850℃以上として熱間圧延し、線材を得る。その後、仕上げ圧延後に得られた線材を、リング状に巻取る。この時、巻取り温度を950℃以下とする。巻取り温度は740℃未満になると焼入れ性が著しく低下するため、740℃以上にすることが好ましい。
 鋼線のラメラー状セメンタイトのサイズ(円相当径)が10nm以下のセメンタイト粒の面積率を50%以上とするためには、パテンティング処理後の平均ラメラーセメンタイト厚さを120nm以下とする必要がある。このパテンティング後の平均ラメラーセメンタイト厚さにするためには、巻取り後の線材を、450℃~570℃以下の溶融塩槽に浸漬して、850℃~650℃までの冷却速度を15℃/s以上の冷却速度で冷却し、500℃~600℃の温度でパーライト変態処理を行う。この処理は、一般的にパテンティング処理と呼ばれる。この時、溶融塩槽の温度が低すぎると、鋼線の組織がベイナイトになってしまうので、溶融塩槽温度は450℃以上とする必要がある。
 平均ラメラーセメンタイト厚さを小さくするためには、溶融塩槽温度の低温化が有効であり、溶融塩槽温度を550℃以下にすることが好ましい。また、パーライト変態処理は、熱間圧延後、室温まで冷却速度5℃/s~30℃/sで冷却した線材を、950℃以上の温度域に再加熱した後、Pb浴や塩浴に浸漬して850℃~650℃までの冷却速度を15℃/s以上の冷却速度で冷却し、500℃~600℃に保持してもよい。
 そして、これらの線材を、総減面率75%~90%で4mmφ~6mmφの鋼線に乾式伸線加工して引張強さを付与する。鋼線のラメラー状セメンタイト中のサイズが10nm以下のセメンタイト粒の面積率を50%以上とするためには、伸線時の発熱を抑制する必要がある。この発熱を抑制するためには、プレッシャーダイス等を用いた潤滑性を上げた伸線加工をすることによる伸線時の発熱を抑制する。加えて、伸線後に強制水冷を行い伸線後5秒以内に鋼線の温度を170℃以下にする。伸線後の鋼線が170℃超で5秒以上になると、微細になったセメンタイト粒が粒成長し、粒径が10nm以下のセメンタイト粒の面積率が50%未満になり、耐水素脆化特性が低下する。
 上述の製造方法により、製造性を低下させることなく、伸線加工性及び捻回特性を劣化させることなく、耐水素脆化特性に優れた、引張強さが1800MPa以上の高強度鋼線を製造することができる。
 以下、本発明の鋼線の実施例を挙げ、本実施形態に係る鋼線の効果をより具体的に説明する。ただし、実施例における条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、下記実施例に限定されるものではない。本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、趣旨に適合し得る範囲で適当に変更を加えて実施することも可能である。よって、本発明は、種々の条件を採用し得、それらは何れも本発明の技術的特徴に含まれるものである。
 以下に、実施例により、本発明の効果をさらに具体的に説明する。
 表1及び表2に示す化学成分(単位:質量%)からなる鋼材を用いて、表3及び表4に示す加熱温度に加熱して熱間圧延を行い、表3及び表4に示す巻取り温度にて巻取りをした。
 次いで、熱間圧延ライン後方の溶融塩槽に浸漬してパテンティング処理を行い、得られた線材を伸線加工して、鋼線を作製した。なお、伸線加工時にはプレシャーダイス等を用いて発熱を抑制し、伸線後に水冷することによって鋼線を冷却した。なお、伸線後の鋼線の温度は、接触式温度計によって測定した。
 表3及び表4に、鋼線の技術的特徴、すなわち、パーライトの面積率、ラメラー状セメンタイト中の10nm以下のセメンタイト粒の面積率、及び鋼線の引張強さを示す。これらの値は、それぞれ前述した方法によって測定した値である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 試験番号2(水準2)は、熱間圧延後に溶融塩槽でパテンティング処理を行わずに、ステルモアを用いて衝風冷却し、その後伸線加工及び時効熱処理を行って得られた鋼線である。この試験番号2は、冷却速度が15℃/sよりも遅く、パーライトの面積率が本発明の範囲を外れており、伸線加工と時効熱処理後の鋼線の引張強さが1800MPaを満たさなかった比較例である。試験番号7(水準7)は、溶融塩温度が高く、パーライトの面積率が本発明の範囲を外れており、伸線加工と時効熱処理後の鋼線の引張強さが1800MPaを満たさなかった比較例である。試験番号10(水準10)は、伸線加工後の時効熱処理時間が長かったため、10nm以下のセメンタイト粒の面積率が本発明の範囲を満たさなかった比較例である。試験番号12(水準12)は、圧延後の溶融塩温度が低かったため、パーライトの面積率が本発明の範囲を外れており、伸線加工と時効熱処理後の鋼線の引張強さが1800MPaを満たさなかった比較例である。試験番号43(水準43)は、C含有量が本発明の範囲を下回ったため、時効熱処理後の鋼線の引張強さが1800MPa未満となった比較例である。試験番号46(水準46)は、Si含有量が本発明の範囲を下回ったため、時効熱処理後の鋼線の引張強さが1800MPa未満となった比較例である。試験番号53(水準53)は、Mn含有量が本発明の範囲を下回ったため、時効熱処理後の鋼線の引張強さが1800MPa未満となった比較例である。
 次に、表3、表4に記載した各試験番号の鋼線を用いて耐水素脆化特性を評価した。なお、引張強さが1800MPa未満の鋼線については、必要な強度を満たしていないため、耐水素脆化特性を評価しなかった。また、鋼線の特性として、伸線加工性及び捻回特性のうちの1つ、または両方を満たさなかった鋼線については、試験番号50、51、64(水準50、51、64)を除いて、耐水素脆化特性の評価をしなかった。また、伸線加工性及び捻回特性の両方を満たしていた鋼線について、合金コストが増加するなど製造性が低下した鋼線については、耐水素脆化特性の評価をしなかった。
 耐水素脆化特性はFIP試験により評価した。50℃の20%のNHSCN溶液中に各試験番号の鋼線を浸漬して、破断荷重の0.8倍の荷重を負荷し破断時間を評価した。なお、比液量は12cc/cmとした。FIP試験は各試験番号につき12本評価し、その平均値を水素脆化破断時間とした。耐水素脆化特性は鋼線の引張強さに依存するため、引張強さが1800MPa以上の鋼線では、20hr以上を耐水素脆化特性が良好と判定し、表5中に「良」として表示した。また、伸線加工性については、伸線時加工時に目的の線径まで断線若しくは長手方向表面に割れが発生する縦割れが発生しない場合を「伸線加工性が良好である」と判定し、表5中に「良」として表示した。捻回特性については、チャック間距離を直径の100倍、ねじり回転速度を5~60rpmの条件下で、ねじり試験により評価し、デラミネーションが発生しない場合を「捻回特性が良好である」と判定し、表5中に「良」として表示した。
 また、製造コスト評価は、合金コストを含む製鋼コストおよび圧延コストを基準とし、選択元素を含む元素の成分範囲の中心値で計算した合金コスト以下および通常の圧延条件で計算した製造コスト以下となるものを「製造コストが低い」とし、表5中に「低」として表示した。一方、表5において、合金コストなど製造コストが増加した場合は、「高」として表示し、鋼線の製造性が低下したと判定した。これらの結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 試験番号44(水準44)は、P含有量が本発明の範囲を上回ったため、耐水素脆化特性が不良となった比較例である。試験番号48(水準48)は、Cr含有量が本発明の範囲を上回ったため、耐水素脆化特性が不良となった比較例である。試験番号49(水準49)は、N含有量が本発明の範囲を上回ったため、耐水素脆化特性が不良となった比較例である。試験番号52(水準52)は、S含有量が本発明の範囲を上回ったため、耐水素脆化特性が不良となった比較例である。試験番号54(水準54)は、Mo含有量が本発明の範囲を上回ったため、耐水素脆化特性が不良となった比較例である。試験番号60(水準60)は、Ni含有量が本発明の範囲を上回ったため、耐水素脆化特性が不良となった比較例である。試験番号61(水準61)は、Cu含有量が本発明の範囲を上回ったため、耐水素脆化特性が不良となった比較例である。試験番号47、50、51、56、57、58、59、62、63(水準47、50、51、56、57、58、59、62、63)は、それぞれMn含有量、O含有量、Si含有量、C含有量およびB含有量、Ti含有量、Nb含有量、Zr含有量、Ca含有量、Mg含有量が、本発明の範囲を上回ったため、伸線加工性及び捻回特性のうちの1つ、または両方を満たさなかった。そのため、耐水素脆化特性の評価が出来なかった。また、試験番号45、55及び56(水準45、55及び56)は、それぞれ、Al含有量、V含有量、C含有量及びB含有量が、本発明の範囲を上回ったため、鋼線の製造性が低下していた。試験番号64(水準64)は、強度が3000MPa以上であるため、耐水素脆化特性が低下した例である。
 本発明によれば、引張強さが1800MPa以上であり、かつ伸線加工性及び捻回特性を低下させることなく、耐水素脆化特性を向上させたプレストレストコンクリートなどに用いる高強度な鋼線を、製造性を低下させることなく得ることができ、産業上の貢献が極めて顕著である。

Claims (2)

  1.  化学成分として、質量%で、
    C :0.80%~1.20%、
    Si:0.10%~2.00%、
    Mn:0.20%~1.00%、
    P :0.030%以下、
    S :0.030%以下、
    O :0.0100%以下及び
    N :0.0010%~0.0100%
    を含有し、任意に含有される成分が、
    Al:0.100%以下、
    Cr:2.00%以下、
    Mo:1.00%以下、
    V :0.30%以下、
    B :0.0050%以下、
    Ti:0.050%以下、
    Nb:0.050%以下、
    Zr:0.050%以下、
    Ni:2.00%以下、
    Cu:1.00%以下、
    Ca:0.010%以下及び
    Mg:0.010%以下であり、
    残部がFe及び不純物であり、
    組織はパーライトを含み、
    前記パーライトの面積率が90%以上であり、
    ラメラー状セメンタイト中において、円相当径で粒径が10nm以下のセメンタイト粒の面積率が50%以上であり、
    引張強さが1800MPa以上、3000MPa未満であることを特徴とする、鋼線。
  2.  化学成分として、質量%で、
    Al:0.005%~0.100%、
    Cr:0.01%~2.00%、
    Mo:0.01%~1.00%、
    V :0.01%~0.30%、
    B :0.0001%~0.0050%、
    Ti:0.001%~0.050%、
    Nb:0.001%~0.050%、
    Zr:0.001%~0.050%、
    Ni:0.01%~2.00%、
    Cu:0.01%~1.00%、
    Ca:0.0001%~0.010%及び
    Mg:0.0001%~0.010%
    からなる群より選択される1種以上を含有することを特徴とする、請求項1に記載の鋼線。
PCT/JP2017/012586 2016-03-28 2017-03-28 鋼線 WO2017170515A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020187011756A KR20180058804A (ko) 2016-03-28 2017-03-28 강선
JP2018508050A JP6501036B2 (ja) 2016-03-28 2017-03-28 鋼線
CN201780003834.XA CN108350544B (zh) 2016-03-28 2017-03-28 钢线

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016063666 2016-03-28
JP2016-063666 2016-03-28

Publications (1)

Publication Number Publication Date
WO2017170515A1 true WO2017170515A1 (ja) 2017-10-05

Family

ID=59964606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/012586 WO2017170515A1 (ja) 2016-03-28 2017-03-28 鋼線

Country Status (4)

Country Link
JP (1) JP6501036B2 (ja)
KR (1) KR20180058804A (ja)
CN (1) CN108350544B (ja)
WO (1) WO2017170515A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021509151A (ja) * 2017-12-26 2021-03-18 ポスコPosco 冷間圧造用線材、これを用いた加工品、およびこれらの製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08120407A (ja) * 1994-08-31 1996-05-14 Kobe Steel Ltd 高強度高靭・延性鋼線およびその製造方法
JPH11315348A (ja) * 1998-04-30 1999-11-16 Kobe Steel Ltd 耐遅れ破壊性に優れた高強度線材およびその製造方法並びに高強度ボルト
WO2011126073A1 (ja) * 2010-04-08 2011-10-13 新日本製鐵株式会社 ソーワイヤ用素線及びその製造方法
JP2012021217A (ja) * 2010-07-16 2012-02-02 Kobe Steel Ltd メカニカルデスケーリング性に優れた鋼線材およびその製造方法
WO2013108828A1 (ja) * 2012-01-20 2013-07-25 新日鐵住金株式会社 圧延線材、及びその製造方法
WO2014208492A1 (ja) * 2013-06-24 2014-12-31 新日鐵住金株式会社 高炭素鋼線材及びその製造方法
WO2015186701A1 (ja) * 2014-06-02 2015-12-10 新日鐵住金株式会社 鋼線材
WO2015186801A1 (ja) * 2014-06-04 2015-12-10 新日鐵住金株式会社 鋼線

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4267376B2 (ja) 2003-06-04 2009-05-27 新日本製鐵株式会社 遅れ破壊特性の優れた高強度pc鋼線およびその製造方法
JP5315790B2 (ja) 2008-05-19 2013-10-16 新日鐵住金株式会社 耐遅れ破壊特性に優れた高強度pc鋼線

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08120407A (ja) * 1994-08-31 1996-05-14 Kobe Steel Ltd 高強度高靭・延性鋼線およびその製造方法
JPH11315348A (ja) * 1998-04-30 1999-11-16 Kobe Steel Ltd 耐遅れ破壊性に優れた高強度線材およびその製造方法並びに高強度ボルト
WO2011126073A1 (ja) * 2010-04-08 2011-10-13 新日本製鐵株式会社 ソーワイヤ用素線及びその製造方法
JP2012021217A (ja) * 2010-07-16 2012-02-02 Kobe Steel Ltd メカニカルデスケーリング性に優れた鋼線材およびその製造方法
WO2013108828A1 (ja) * 2012-01-20 2013-07-25 新日鐵住金株式会社 圧延線材、及びその製造方法
WO2014208492A1 (ja) * 2013-06-24 2014-12-31 新日鐵住金株式会社 高炭素鋼線材及びその製造方法
WO2015186701A1 (ja) * 2014-06-02 2015-12-10 新日鐵住金株式会社 鋼線材
WO2015186801A1 (ja) * 2014-06-04 2015-12-10 新日鐵住金株式会社 鋼線

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021509151A (ja) * 2017-12-26 2021-03-18 ポスコPosco 冷間圧造用線材、これを用いた加工品、およびこれらの製造方法
JP7300451B2 (ja) 2017-12-26 2023-06-29 ポスコ カンパニー リミテッド 冷間圧造用線材、これを用いた加工品、およびこれらの製造方法

Also Published As

Publication number Publication date
JP6501036B2 (ja) 2019-04-17
CN108350544B (zh) 2020-07-03
KR20180058804A (ko) 2018-06-01
CN108350544A (zh) 2018-07-31
JPWO2017170515A1 (ja) 2018-08-02

Similar Documents

Publication Publication Date Title
JP4943564B2 (ja) ソーワイヤ用素線及びその製造方法
JP5162875B2 (ja) 伸線特性に優れた高強度線材およびその製造方法
WO2011062012A1 (ja) 低温焼鈍用鋼線及びその製造方法
WO2014208492A1 (ja) 高炭素鋼線材及びその製造方法
KR20130034045A (ko) 특수강 강선 및 특수강 선재
JP6180351B2 (ja) 生引き性に優れた高強度鋼線用線材および高強度鋼線
JPWO2008044356A1 (ja) 延性に優れた高強度鋼線およびその製造方法
JP2005206853A (ja) 伸線加工性に優れた高炭素鋼線材およびその製造方法
WO2018021574A1 (ja) 高強度鋼線
JP6288265B2 (ja) 鋼線
JP7226548B2 (ja) 線材
JP5304323B2 (ja) 高強度鋼線用線材、高強度鋼線及びこれらの製造方法
JP5201000B2 (ja) 高強度鋼線用線材、高強度鋼線及びこれらの製造方法
WO2017014231A1 (ja) 高強度pc鋼線
JP5945196B2 (ja) 高強度鋼線用線材
JP2019123905A (ja) プレストレストコンクリート用緊張材用の二相ステンレス鋼線材、二相ステンレス鋼線及びプレストレストコンクリート用緊張材
JP7063394B2 (ja) 熱間圧延線材
WO2017014232A1 (ja) 高強度pc鋼線
WO2017170515A1 (ja) 鋼線
JP2004359992A (ja) 高強度鋼線用線材、高強度鋼線およびこれらの製造方法
JPH08283867A (ja) 伸線用過共析鋼線材の製造方法
JPH11269607A (ja) 伸線強化型高強度鋼線材およびその製造方法
JPH07179994A (ja) 高強度高靭延性過共析鋼線及びその製法
JP3428502B2 (ja) 鋼線材、極細鋼線及び撚鋼線
JP6648516B2 (ja) 伸線加工用熱間圧延線材

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018508050

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187011756

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17775052

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17775052

Country of ref document: EP

Kind code of ref document: A1