WO2017014231A1 - 高強度pc鋼線 - Google Patents

高強度pc鋼線 Download PDF

Info

Publication number
WO2017014231A1
WO2017014231A1 PCT/JP2016/071264 JP2016071264W WO2017014231A1 WO 2017014231 A1 WO2017014231 A1 WO 2017014231A1 JP 2016071264 W JP2016071264 W JP 2016071264W WO 2017014231 A1 WO2017014231 A1 WO 2017014231A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel wire
strength
less
region
delayed fracture
Prior art date
Application number
PCT/JP2016/071264
Other languages
English (en)
French (fr)
Inventor
真 小此木
大輔 平上
山田 眞人
克仁 大島
田中 秀一
Original Assignee
新日鐵住金株式会社
住友電工スチールワイヤー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社, 住友電工スチールワイヤー株式会社 filed Critical 新日鐵住金株式会社
Priority to KR1020187004981A priority Critical patent/KR102090721B1/ko
Priority to EP16827791.1A priority patent/EP3327161B1/en
Priority to US15/745,747 priority patent/US10752974B2/en
Priority to CN201680042570.4A priority patent/CN107849660B/zh
Publication of WO2017014231A1 publication Critical patent/WO2017014231A1/ja
Priority to ZA2018/01009A priority patent/ZA201801009B/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/525Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/08Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires for concrete reinforcement
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Definitions

  • the present invention relates to a PC steel wire used for prestressed concrete and the like, and particularly to a high strength PC steel wire having a tensile strength of 2000 MPa or more and improved delayed fracture resistance.
  • PC steel wire is mainly used for tension of prestressed concrete used in civil engineering and building structures.
  • a PC steel wire is manufactured by performing a drawing process and a stranded wire process after patenting a piano wire into a pearlite structure, and then performing an aging process in the final process.
  • the high-strength PC steel wire described in Japanese Patent Application Laid-Open No. 2004-360005 has a tensile strength of less than 2000 MPa, so that the tensile strength is not sufficient as a PC steel wire used for prestressed concrete.
  • the high strength PC steel wire described in Japanese Patent Application Laid-Open No. 2009-280836 has a sufficient tensile strength, the hardness of the region from the surface to 0.1D is higher than the region from the surface to 0.1D. Special heat treatment is required to reduce the hardness of the inner region to 1.1 times or less. That is, in Japanese Patent Application Laid-Open No. 2009-280836, the wire is heated to 900 ° C.
  • the present invention has been made in view of the above situation, and an object of the present invention is to provide a high-strength PC steel wire that is easy to manufacture and excellent in delayed fracture resistance.
  • the ratio between the Vickers hardness of the .1D portion (hereinafter also referred to as the surface layer portion) and the Vickers hardness of the region inside the surface layer portion (hereinafter also referred to as the inner region) exceeds 1.1 times. However, the conclusion was reached that a high-strength PC steel wire having excellent delayed fracture resistance can be obtained.
  • the present inventors are effective to generate a structure other than a pearlite structure such as a bainite structure and / or a ferrite structure in the outermost layer region. I found out.
  • the origin of delayed fracture is the surface. Therefore, when the fraction of a structure such as a bainite structure and / or a ferrite structure is increased on the surface, these structures tend to have less dislocation accumulation when processed than the pearlite structure, and the amount of hydrogen intrusion decreases. As a result, it can be estimated that the delayed fracture resistance is improved.
  • PC steel wire is excellent in delayed fracture resistance when the layer containing the bainite structure and / or ferrite structure is formed on the surface, but the strength is not sufficient. Therefore, a bainite structure and / or a ferrite structure is generated only in the outermost layer region of the steel wire, that is, the thickness of the layer including the bainite structure and / or the ferrite structure formed on the surface of the steel wire is reduced. Thereby, it becomes possible to obtain a PC steel wire having high strength and excellent delayed fracture resistance.
  • the area ratio of the pearlite structure in the outermost layer region is less than 80%, the balance is the ferrite structure and / or the bainite structure, and the inner region of the outermost layer region
  • the present invention has been made on the basis of the above knowledge, and the gist thereof is the high strength PC steel wire shown below.
  • the chemical composition of the steel wire is mass%, C: 0.90 to 1.10%, Si: 0.80 to 1.50%, Mn: 0.30 to 0.70%, P: 0.030% or less, S: 0.030% or less, Al: 0.010 to 0.070%, N: 0.0010 to 0.010%, Cr: 0 to 0.50%, V: 0 to 0.10%, B: 0 to 0.005%, Ni: 0 to 1.0%, Cu: 0 to 0.50%, and Balance: Fe and impurities
  • the wire diameter of the steel wire is D
  • the ratio between the Vickers hardness of the portion 0.1D from the surface of the steel wire and the Vickers hardness of the region inside the portion of 0.1D from the surface of the steel wire is Satisfying the following formula (i)
  • the metal structure in the region from the surface of the steel wire to 0.01D is area%, Perlite structure: less than 80%, and Remainder: ferrite structure, bainite structure, or ferrite structure and bainite structure, The metal
  • Hv S Vickers hardness of a portion 0.1D from the surface of the steel wire
  • Hv I Vickers hardness of a region inside the portion of 0.1D from the surface of the steel wire
  • the chemical composition is mass%, Cr: 0.05 to 0.50%, V: 0.01-0.10%, and B: The high-strength PC steel wire according to (1) above, which contains one or more selected from 0.0001 to 0.005%.
  • the chemical composition is mass%, Ni: 0.1 to 1.0%, and Cu: The high-strength PC steel wire according to (1) or (2) above, containing one or more selected from 0.05 to 0.50%.
  • FIG. 1 is a graph showing an example of hardness distribution in a cross section perpendicular to the length direction of the high-strength PC steel wire according to the present embodiment.
  • FIG. 2 is an SEM photograph showing an example of the vicinity of the surface in a cross section perpendicular to the length direction of the high-strength PC steel wire according to the present embodiment.
  • the “outermost layer region” refers to a region from the surface of the steel wire to 0.01 D when the wire diameter of the steel wire is D
  • the “surface layer portion” refers to the steel described above.
  • the portion of 0.1D from the surface of the wire is referred to, and the “inner region” refers to a region inside the portion of 0.1D from the surface of the steel wire.
  • C 0.90 to 1.10% C is contained in order to ensure the tensile strength of the steel wire. If the C content is less than 0.90%, it is difficult to ensure a predetermined tensile strength. On the other hand, when the C content exceeds 1.10%, the amount of pro-eutectoid cementite increases and the wire drawing workability deteriorates. Therefore, the C content is set to 0.90 to 1.10%. In consideration of achieving both high strength and wire drawing workability, the C content is preferably 0.95% or more, and more preferably 1.05% or less.
  • Si 0.80 to 1.50%
  • Si has the effect of increasing relaxation properties and increasing tensile strength by solid solution strengthening. Furthermore, it has the effect of promoting decarburization and promoting the formation of a ferrite structure and / or a bainite structure in the outermost layer region. If the Si content is less than 0.80%, these effects are insufficient. On the other hand, when the Si content exceeds 1.50%, the above effects are saturated, hot ductility is deteriorated, and manufacturability is lowered. Therefore, the Si content is set to 0.80 to 1.50%.
  • the Si content preferably exceeds 1.0% and is preferably 1.40% or less.
  • Mn 0.30 to 0.70% Mn has the effect of increasing the tensile strength of steel after pearlite transformation. If the Mn content is less than 0.30%, the effect is insufficient. On the other hand, when the Mn content exceeds 0.70%, the effect is saturated. Therefore, the Mn content is set to 0.30 to 0.70%.
  • the Mn content is preferably 0.40% or more, and preferably 0.60% or less.
  • P 0.030% or less P is contained as an impurity. P is better segregated because it segregates at the grain boundaries and degrades the delayed fracture resistance. Therefore, the P content is set to 0.030% or less. The P content is preferably 0.015% or less.
  • S 0.030% or less S, like P, is contained as an impurity. S is better segregated because it segregates at the grain boundaries and degrades the delayed fracture resistance. Therefore, the S content is set to 0.030% or less. The S content is preferably 0.015% or less.
  • Al functions as a deoxidizing element, has an effect of forming AlN to refine crystal grains and improving ductility, and an effect of reducing solid solution N and improving delayed fracture resistance. If the Al content is less than 0.010%, the above effect cannot be obtained. On the other hand, if the Al content exceeds 0.070%, the above effects are saturated and manufacturability is deteriorated. Therefore, the Al content is set to 0.010 to 0.070%.
  • the Al content is preferably 0.020% or more, and preferably 0.060% or less.
  • N 0.0010 to 0.0100%
  • N forms an nitride with Al or V, and has the effect of reducing the crystal grain size and improving ductility. If the N content is less than 0.0010%, the above effect cannot be obtained. On the other hand, if the N content exceeds 0.0100%, the delayed fracture resistance is deteriorated. Therefore, the N content is set to 0.0010 to 0.0100%.
  • the N content is preferably 0.0020% or more, and preferably 0.0050% or less.
  • Cr 0 to 0.50% Since Cr has the effect of increasing the tensile strength of the steel after pearlite transformation, it may be contained as necessary. However, if the Cr content exceeds 0.50%, not only the alloy cost increases, but also a martensite structure unnecessary for the present invention is likely to occur, and the wire drawing workability and delayed fracture resistance are deteriorated. . Therefore, the Cr content is 0.50% or less.
  • the Cr content is preferably 0.30% or less. In order to sufficiently obtain the above effects, the Cr content is preferably 0.05% or more, and more preferably 0.10% or more.
  • V 0 to 0.10% V precipitates the carbide VC and increases the tensile strength, and also generates VC or VN. Since these function as hydrogen trap sites, they have the effect of improving delayed fracture resistance. Therefore, you may make it contain as needed. However, if V is contained in an amount exceeding 0.10%, the alloy cost increases, so the V content is set to 0.10% or less.
  • the V content is preferably 0.08% or less. Further, in order to sufficiently obtain the above effect, the V content is preferably 0.01% or more, and more preferably 0.03% or more.
  • B 0 to 0.005%
  • B has the effect of increasing the tensile strength after pearlite transformation and the effect of improving delayed fracture resistance, so it may be contained as necessary. However, if B is contained in an amount exceeding 0.005%, the above effect is saturated. Therefore, the B content is set to 0.005% or less.
  • the B content is preferably 0.002% or less. Further, in order to sufficiently obtain the above effects, the B content is preferably 0.0001% or more, and more preferably 0.0003% or more.
  • Ni 0 to 1.0%
  • Ni has the effect of suppressing hydrogen intrusion and preventing hydrogen embrittlement resistance, so Ni may be included as necessary.
  • the Ni content is set to 1.0% or less.
  • the Ni content is preferably 0.8% or less.
  • the Ni content is preferably 0.1% or more, and more preferably 0.2% or more.
  • Cu 0 to 0.50% Cu has an effect of suppressing hydrogen intrusion and preventing hydrogen embrittlement resistance. Therefore, Cu may be contained as necessary. However, if the Cu content exceeds 0.50%, hot ductility is impaired and manufacturability is deteriorated, and a martensite structure is likely to be generated, thereby deteriorating wire drawing workability and delayed fracture resistance. Therefore, the Cu content is set to 0.50% or less.
  • the Cu content is preferably 0.30% or less. In order to sufficiently obtain the above effect, the Cu content is preferably 0.05% or more, and more preferably 0.10% or more.
  • the balance Fe and impurities
  • the high-strength PC steel wire of the present invention contains the above-mentioned elements, and the balance has a chemical composition that is Fe and impurities.
  • "Impurity” is a component that is mixed due to various factors of raw materials such as ores and scraps and manufacturing processes when steel is industrially manufactured, and is allowed within a range that does not adversely affect the present invention. Means.
  • O is contained as an impurity in the high-strength PC steel wire and exists as an oxide such as Al.
  • the O content is high, a coarse oxide is formed, which causes disconnection during wire drawing. Therefore, the O content is preferably suppressed to 0.010% or less.
  • FIG. 1 is a graph showing an example of hardness distribution in a cross section perpendicular to the length direction of the high-strength PC steel wire according to the present embodiment.
  • the high-strength PC steel wire of the present invention has an M-shape whose hardness distribution is symmetrical with respect to the center of the high-strength PC steel wire (position at a distance of 0.5D from the surface).
  • the high-strength PC steel wire has excellent delayed fracture resistance.
  • the Vickers hardness (Hv I ) of the inner region means an average value of the hardness at a site having a depth of 0.25D and a site (center part) of 0.5D from the surface.
  • (C) Metal structure By including a ferrite structure and / or a bainite structure in the outermost layer region of the PC steel wire having a pearlite structure as a main phase, there is an effect of improving delayed fracture resistance. This is because the formation of a ferrite structure and / or bainite structure with excellent hydrogen embrittlement resistance in the outermost layer region suppresses the occurrence of delayed fracture and improves delayed fracture resistance of high-strength PC steel wires. Can be estimated.
  • FIG. 2 is a scanning electron microscope (SEM) photograph showing an example of the vicinity of the surface in a cross section perpendicular to the length direction of the high-strength PC steel wire according to the present embodiment.
  • the solid line in FIG. 2 indicates that when the wire diameter of the high-strength PC steel wire is D, the distance is 0.01D from the surface of the high-strength PC steel wire.
  • the structure shown dark is the ferrite structure
  • the structure shown thin is the pearlite structure.
  • the area ratio of the pearlite structure in the outermost layer region is less than 80%.
  • the ratio (Hv S / Hv I ) between the Vickers hardness (Hv S ) of the surface layer portion and the Vickers hardness (Hv I ) of the inner region is 1 Even if it exceeds 10., the delayed fracture resistance is improved.
  • the area ratio of the pearlite structure in the outermost layer region is preferably 70% or less.
  • the balance other than the pearlite structure in the outermost layer region is a ferrite structure and / or a bainite structure.
  • the martensite structure is not included because it causes cracking during wire drawing and further deteriorates delayed fracture resistance.
  • the area ratio of the pearlite structure in the inner region from the outermost layer region is 95% or more. If the area ratio of the pearlite structure in the region inside the outermost layer region is less than 95%, the strength is lowered. That is, as described above, in order to improve the delayed fracture resistance, the area ratio of the pearlite structure in the outermost layer region is set to less than 80%, and the area ratio of the remaining ferrite structure and / or bainite structure is relatively large. It is important to. On the other hand, in order to ensure strength, it is important to increase the area ratio of the pearlite structure in the region inside the outermost layer region.
  • the area where the area ratio of the pearlite structure is less than 80% as described above exceeds 0.01D from the surface of the high-strength PC steel wire and extends to a deeper interior, the strength decreases. Therefore, it was defined as a region from the surface of the high-strength PC steel wire to 0.01D.
  • the region where the area ratio of the pearlite structure is less than 80% is preferably a region from the surface of the high-strength PC steel wire to 0.005D.
  • tissue can be measured from observation with an optical microscope or an electron microscope of a high strength PC steel wire.
  • a steel piece having the above-described composition is heated.
  • the heating temperature is preferably 1170 ° C. to 1250 ° C.
  • the time for the steel slab surface is 10 minutes or longer.
  • the winding temperature is preferably 850 ° C. or lower.
  • the cooling rate after winding is large.
  • the cooling rate from winding up to 600 ° C. is preferably 30 ° C./second or more.
  • the temperature of the molten salt tank is preferably less than 500 ° C.
  • the pearlite structure 95% or more in the region inside the outermost layer region it is once immersed in a molten salt bath of less than 500 ° C. and then held in a molten salt bath of 500 to 600 ° C. for 20 seconds or more. It is preferable.
  • a molten salt tank composed of two or more tanks.
  • the total immersion time from the start of immersion in the molten salt bath to the end of immersion is preferably 50 seconds or more.
  • the pearlite transformed wire is drawn to give strength, and then an aging treatment is performed.
  • the wire drawing is preferably performed at a total area reduction of 65% or more.
  • the aging treatment is preferably performed at 350 to 450 ° C.
  • the high-strength PC steel wire of the present invention can be manufactured.
  • the wire diameter of the obtained steel wire is preferably 3.0 mm or more, and more preferably 4.0 mm or more. Moreover, it is preferable that it is 8.0 mm or less, and it is more preferable that it is 7.0 mm or less.
  • the tensile strength test was performed using a 9A test piece in accordance with JIS Z 2241. The results are shown in Table 3.
  • the Vickers hardness test was performed according to JIS Z 2244. When calculating the ratio of Vickers hardness (Hv S / Hv I ), first, the Vickers hardness (Hv S ) of the surface layer is determined at eight angles every 45 ° in a cross section perpendicular to the length direction of the steel wire. In addition, measurement was performed at a test force of 0.98 N at a site where the depth from each surface was 0.1D. Then, by averaging the measured values of the eight resulting it was determined Hv S.
  • the Vickers hardness (Hv I ) of the inner region is an angle at 8 locations where Hv S was measured, and a site having a depth of 0.25D and a site (center part) of 0.5D from each surface The test force was 0.98 N at a total of nine locations. Then, by averaging the measured values of the resulting nine I was determined Hv I. Table 3 shows the calculated ratio of Vickers hardness (Hv S / Hv I ).
  • the area ratio of the metal structure was determined by image analysis after taking a photograph of a cross section perpendicular to the length direction of the steel wire using a scanning electron microscope (SEM). Specifically, first, the area ratio of the metal structure in the outermost layer region is an angle of 8 points every 45 ° starting from the position where the area ratio of the pearlite structure is the smallest in the cross section perpendicular to the length direction of the steel wire. In addition, the range from each surface to a depth of 0.01D was photographed at a magnification of 1000 times, and the area value was measured by image analysis. Then, the area ratio of the metal structure in the outermost layer region was determined by averaging the obtained measurement values at eight locations.
  • SEM scanning electron microscope
  • the area ratio of the metal structure in the inner region from the outermost layer region is an angle of 8 positions where the metal structure in the outermost layer region is measured, and the depth from each surface is 0.1D.
  • a range of 125 ⁇ m ⁇ 95 ⁇ m centered on a total of 17 sites of 25D and 0.5D (center) was photographed at 1000 ⁇ magnification, and the area value was measured by image analysis.
  • region was calculated
  • the delayed fracture resistance was evaluated by the FIP test. Specifically, the high-strength PC steel wires of test numbers 1 to 32 were immersed in a 20% NH 4 SCN solution at 50 ° C., a load that was 0.8 times the breaking load was applied, and the breaking time was evaluated. . The specific liquid amount was 12 cc / cm 2 . In the FIP test, 12 wires are evaluated for each high-strength PC steel wire, and the average value is shown in Table 3 as the delayed fracture time. Delayed fracture resistance depends on the tensile strength of high strength PC steel wire. Therefore, in test numbers 1 to 28, test numbers 1 to 14 are compared with test numbers 15 to 28 using the same steel type, respectively.
  • the high strength PC steel wires with test numbers 1 to 14 that satisfy all the requirements stipulated by the present invention are delayed fracture time compared to the high strength PC steel wires with test numbers 15 to 28 that are outside the range specified by the present invention. Is extremely long and has good delayed fracture resistance.
  • the high-strength PC steel wire of test number 31 is a steel wire of a comparative example because it is manufactured from a steel type o whose Si content is below the range defined in the present invention.
  • Si content is less than the range specified in the present invention
  • the tensile strength of the high-strength PC steel wire is below the range specified in the present invention, and the area ratio of the pearlite structure in the outermost layer region is the present invention. It is out of the range specified in. Therefore, the high strength PC steel wire of test number 31 has poor delayed fracture resistance.
  • the high strength PC steel wires with test numbers 15 to 28 shown in Table 3 are comparative steel wires because the area ratio of the pearlite structure in the outermost layer region is outside the range defined by the present invention. Therefore, the high strength PC steel wires of test numbers 15 to 28 have poor delayed fracture resistance.
  • the high-strength PC steel wires with test numbers 29 and 30 are comparative steel wires because the tensile strength exceeds the range defined by the present invention. Therefore, the high strength PC steel wires of test numbers 29 and 30 have poor delayed fracture resistance.
  • the high strength PC steel wire of test number 32 has poor delayed fracture resistance.
  • the present invention it is possible to provide a high-strength PC steel wire that is easy to manufacture and excellent in delayed fracture resistance. Therefore, the high strength PC steel wire of the present invention can be suitably used for prestressed concrete and the like.

Abstract

鋼線の化学組成が、質量%で、C:0.90~1.10%、Si:0.80~1.50%、Mn:0.30~0.70%、P:0.030%以下、S:0.030%以下、Al:0.010~0.070%、N:0.0010~0.010%、Cr:0~0.50%、V:0~0.10%、B:0~0.005%、Ni:0~1.0%、Cu:0~0.50%、ならびに、残部:Feおよび不純物であり、鋼線の表面から0.1D[D:鋼線の線径]の部位(表層部)のビッカース硬さ(HvS)と表層部より内側の領域のビッカース硬さ(HvI)との比が[1.10<HvS/HvI≦1.15]を満足し、鋼線の表面から0.01Dまでの領域(最表層領域)における金属組織が、面積%で、パーライト組織:80%未満、ならびに、残部:フェライト組織および/またはベイナイト組織であり、上記最表層領域より内側の領域における金属組織が、面積%で、パーライト組織:95%以上であり、かつ、引張強さが2000~2400MPaである、高強度PC鋼線。この高強度PC鋼線は、製造方法が容易であって、かつ、耐遅れ破壊特性に優れる。

Description

高強度PC鋼線
 本発明は、プレストレストコンクリートなどに用いられるPC鋼線に関するものであり、特に、引張強さが2000MPa以上であり、かつ、耐遅れ破壊特性を向上させた高強度PC鋼線に関する。
 PC鋼線は、主として、土木および建築構造物に用いられるプレストレストコンクリートの緊張用に用いられる。従来、PC鋼線は、ピアノ線材をパテンティング処理してパーライト組織にした後、伸線加工および撚り線加工を行い、最終工程にて時効処理して製造されている。
 近年、施工コストの低減および構造物の軽量化を目的に、引張強さが2000MPaを超える高強度PC鋼線が求められている。しかしながら、PC鋼線の高強度化に伴って、耐遅れ破壊特性が低下するという問題があった。
 PC鋼線の耐遅れ破壊特性を向上させる技術として、例えば、特開2004-360005号公報では、鋼線表層の少なくとも1/10d(dは鋼線半径)までの深さの領域において、パーライト中の板状セメンタイトの平均アスペクト比を30以下とした高強度PC鋼線が提案されている。また、特開2009-280836号公報では、引張強さを2000MPa以上にするため、鋼線の線径をDとした場合に、表面から0.1Dまでの領域の硬さを、表面から0.1Dまでの領域より内側の領域の硬さの1.1倍以下とした高強度PC鋼線が提案されている。
特開2004-360005号公報 特開2009-280836号公報
 しかしながら、特開2004-360005号公報に記載の高強度PC鋼線は、引張強さが2000MPaに満たないため、プレストレストコンクリートなどに用いられるPC鋼線として、引張強さが充分ではなかった。また、特開2009-280836号公報に記載の高強度PC鋼線は、充分な引張強さを有するものの、表面から0.1Dまでの領域の硬さを、表面から0.1Dまでの領域より内側の領域の硬さの1.1倍以下にするため、特殊な熱処理を要する。すなわち、特開2009-280836号公報では、線材を900℃~1100℃に加熱後、600~650℃の温度範囲に保定して部分的なパーライト変態処理を施した後、引き続き540℃~600℃未満の温度範囲に保持すること、熱間圧延により700~950℃で仕上げ圧延した後、500~600℃の温度範囲に冷却すること、および、伸線加工後に450℃を超えて650℃以下の温度範囲に2~30秒保持し、引き続き250~450℃でのブルーイング処理を施すことが必要であり、製造方法が複雑であった。
 本発明は、上記現状に鑑みてなされたもので、製造方法が容易であって、かつ、耐遅れ破壊特性に優れた高強度PC鋼線を提供することを目的とする。
 本発明者らは、上記の課題を解決するために鋭意検討を行った結果、下記の知見を得るに至った。
 従来提案されている高強度PC鋼線は、耐遅れ破壊特性を向上させるために、鋼線の表面から線径の1/20までの深さの領域または1/10までの深さの領域における組織および硬さに着目するものであった。本発明者らは、引張強さが2000MPaを超える高強度PC鋼線の硬さ分布を詳細に調べた結果、その硬度分布は鋼線の中心を対称とするM字型を有する。そして、鋼線の線径をDとしたとき、上記鋼線の表面から0.01Dまでの領域(以下、最表層領域ともいう。)における金属組織を制御すれば、上記鋼線の表面から0.1Dの部位(以下、表層部ともいう。)のビッカース硬さと、上記表層部より内側の領域(以下、内領域ともいう。)のビッカース硬さとの比が1.1倍を超える場合であっても、耐遅れ破壊特性に優れる高強度PC鋼線を得ることができるという結論に到達した。
 それに加えて、本発明者らは、PC鋼線の耐遅れ破壊特性を向上させるためには、最表層領域にベイナイト組織および/またはフェライト組織というパーライト組織以外の組織を生成させることが有効であることを見出した。遅れ破壊の発生起点は表面である。そのため、表面にベイナイト組織および/またはフェライト組織などの組織の分率が高くなると、これらの組織は、パーライト組織より加工した際の転位の集積が小さい傾向にあり、水素の侵入量が低下する。その結果、耐遅れ破壊特性が向上したと推定できる。
 しかしながら、その一方で、PC鋼線は、表面にベイナイト組織および/またはフェライト組織を含む層が形成されていると、耐遅れ破壊特性に優れるものの、強度が充分ではない。そこで、鋼線の最表層領域のみにベイナイト組織および/またはフェライト組織を生成させる、すなわち、鋼線の表面に形成されるベイナイト組織および/またはフェライト組織を含む層の厚みを薄くする。これにより、高強度で、かつ、耐遅れ破壊特性に優れたPC鋼線を得ることが可能となる。
 すなわち、鋼線の線径をDとしたとき、最表層領域のパーライト組織の面積率を80%未満として、残部をフェライト組織および/またはベイナイト組織とし、かつ、最表層領域よりも内側の領域のパーライト組織の面積率を95%以上とすることで、鋼線の強度を高くしても耐遅れ破壊特性を劣化させないことが可能となる。
 本発明は、上記の知見を基礎としてなされたものであり、その要旨は、下記に示す高強度PC鋼線にある。
 (1)鋼線の化学組成が、質量%で、
 C:0.90~1.10%、
 Si:0.80~1.50%、
 Mn:0.30~0.70%、
 P:0.030%以下、
 S:0.030%以下、
 Al:0.010~0.070%、
 N:0.0010~0.010%、
 Cr:0~0.50%、
 V:0~0.10%、
 B:0~0.005%、
 Ni:0~1.0%、
 Cu:0~0.50%、ならびに、
 残部:Feおよび不純物であり、
 上記鋼線の線径をDとしたとき、上記鋼線の表面から0.1Dの部位のビッカース硬さと、上記鋼線の表面から0.1Dの部位より内側の領域のビッカース硬さとの比が下記(i)式を満足し、
 上記鋼線の表面から0.01Dまでの領域における金属組織が、面積%で、
パーライト組織:80%未満、ならびに、
 残部:フェライト組織、ベイナイト組織、または、フェライト組織およびベイナイト組織であり、
 上記鋼線の表面から0.01Dまでの領域より内側の領域における金属組織が、面積%で、
 パーライト組織:95%以上であり、かつ、
 引張強さが2000~2400MPaである、高強度PC鋼線。
 1.10<Hv/Hv≦1.15 ・・・(i)
 ただし、上記(i)式中の各記号の意味は、以下の通りである。
 Hv:鋼線の表面から0.1Dの部位のビッカース硬さ
 Hv:鋼線の表面から0.1Dの部位より内側の領域のビッカース硬さ
 (2)上記化学組成が、質量%で、
 Cr:0.05~0.50%、
 V:0.01~0.10%、および、
 B:0.0001~0.005%から選択される1種以上を含有する、上記(1)に記載の高強度PC鋼線。
 (3)上記化学組成が、質量%で、
 Ni:0.1~1.0%、および、
 Cu:0.05~0.50%から選択される1種以上を含有する、上記(1)または上記(2)に記載の高強度PC鋼線。
 本発明によれば、製造方法が容易であって、かつ、耐遅れ破壊特性に優れた高強度PC鋼線を提供することができる。
図1は、本実施形態に係る高強度PC鋼線の長さ方向に垂直な断面における硬度分布の一例を示すグラフである。 図2は、本実施形態に係る高強度PC鋼線の長さ方向に垂直な断面における表面近傍の一例を示すSEM写真である。
 以下、本発明について詳しく説明する。なお、以下の説明において、「最表層領域」とは、鋼線の線径をDとしたとき、上記鋼線の表面から0.01Dまでの領域をいい、「表層部」とは、上記鋼線の表面から0.1Dの部位をいい、「内領域」とは、上記鋼線の表面から0.1Dの部位より内側の領域をいう。
 (A)化学組成
 本発明の高強度PC鋼線において、化学組成を限定する理由は下記のとおりである。なお、以下の説明において含有量についての「%」は、「質量%」を意味する。
 C:0.90~1.10%
 Cは、鋼線の引張強さを確保するため含有させる。C含有量が0.90%未満であると、所定の引張強さを確保することが困難である。一方、C含有量が1.10%を超えると、初析セメンタイト量が増加し、伸線加工性が劣化する。そのため、C含有量を0.90~1.10%とした。高強度および伸線加工性を両立することを考慮すると、C含有量は、0.95%以上であることが好ましく、また、1.05%以下であることが好ましい。
 Si:0.80~1.50%
 Siは、リラクセーション特性を高めるとともに、固溶強化により引張強さを高める効果を有する。さらに、脱炭を促進して、最表層領域にフェライト組織および/またはベイナイト組織の生成を促進する効果がある。Si含有量が0.80%未満では、これらの効果が不充分である。一方、Si含有量が1.50%を超えると、上記効果が飽和するとともに、熱間延性が劣化して、製造性が低下する。そのため、Si含有量を0.80~1.50%とした。Si含有量は、1.0%を超えることが好ましく、また、1.40%以下であることが好ましい。
 Mn:0.30~0.70%
 Mnは、パーライト変態後の鋼の引張強さを高める効果がある。Mn含有量が0.30%未満では、その効果が不充分である。一方、Mn含有量が0.70%を超えると、効果が飽和する。そのため、Mn含有量を0.30~0.70%とした。Mn含有量は、0.40%以上であることが好ましく、また、0.60%以下であることが好ましい。
 P:0.030%以下
 Pは、不純物として含有される。Pは、結晶粒界に偏析して耐遅れ破壊特性を劣化させるため、抑制したほうがよい。そこで、P含有量を0.030%以下とした。P含有量は、0.015%以下であることが好ましい。
 S:0.030%以下
 Sは、Pと同様に、不純物として含有される。Sは、結晶粒界に偏析して耐遅れ破壊特性を劣化させるため、抑制したほうがよい。そこで、S含有量を0.030%以下とした。S含有量は、0.015%以下であることが好ましい。
 Al:0.010~0.070%
 Alは、脱酸元素として機能するとともに、AlNを形成し結晶粒を細粒化し延性を向上させる効果、および、固溶Nを低減して耐遅れ破壊特性を向上させる効果を有する。Al含有量が0.010%未満では、上記効果が得られない。一方、Al含有量が0.070%を超えると、上記効果が飽和するとともに製造性を劣化させる。そのため、Al含有量を0.010~0.070%とした。Al含有量は、0.020%以上であることが好ましく、また、0.060%以下であることが好ましい。
 N:0.0010~0.0100%
 Nは、AlまたはVと窒化物を形成し、結晶粒径を細粒化し延性を向上させる効果を有する。N含有量が0.0010%未満では、上記効果が得られない。一方、N含有量が0.0100%を超えると、耐遅れ破壊特性を劣化させる。そのため、N含有量を0.0010~0.0100%とした。N含有量は、0.0020%以上であることが好ましく、また、0.0050%以下であることが好ましい。
 Cr:0~0.50%
 Crは、パーライト変態後の鋼の引張強さを高める効果を有するため、必要に応じて含有させてもよい。しかしながら、Cr含有量は、0.50%を超えると、合金コストが上がるだけでなく、本発明に不必要なマルテンサイト組織が生じ易くなって、伸線加工性および耐遅れ破壊特性を劣化させる。そのため、Cr含有量を0.50%以下とした。Cr含有量は、0.30%以下であることが好ましい。また、上記効果を充分に得るため、Cr含有量は、0.05%以上であることが好ましく、0.10%以上であることがより好ましい。
 V:0~0.10%
 Vは、炭化物VCを析出し、引張強さを高めるとともに、VCまたはVNを生成し、これらが水素トラップサイトとして機能するため、耐遅れ破壊特性を向上させる効果を有する。そのため、必要に応じて含有させてもよい。しかしながら、Vは、0.10%を超えて含有させると合金コストが高くなるため、V含有量を0.10%以下とした。V含有量は、0.08%以下であることが好ましい。また、上記効果を充分に得るため、V含有量は、0.01%以上であることが好ましく、0.03%以上であることがより好ましい。
 B:0~0.005%
 Bは、パーライト変態後の引張強さを高める効果、および、耐遅れ破壊特性を向上させる効果を有するため、必要に応じて含有させてもよい。しかしながら、Bは、0.005%を超えて含有させると、上記効果が飽和する。そのため、B含有量を0.005%以下とした。B含有量は、0.002%以下であることが好ましい。また、上記効果を充分に得るため、B含有量は、0.0001%以上であることが好ましく、0.0003%以上であることがより好ましい。
 Ni:0~1.0%
 Niは、水素の侵入を抑制し、耐水素脆化を防止する効果を有するため、必要に応じて含有させてもよい。しかしながら、Ni含有量が1.0%を超えると、合金コストが上がるとともに、マルテンサイト組織が生じ易くなって伸線加工性および耐遅れ破壊特性を劣化させる。そのため、Ni含有量を1.0%以下とした。Ni含有量は、0.8%以下であることが好ましい。また、上記効果を充分に得るため、Ni含有量は、0.1%以上であることが好ましく、0.2%以上であることがより好ましい。
 Cu:0~0.50%
 Cuは、水素の侵入を抑制し、耐水素脆化を防止する効果を有するため、必要に応じて含有させてもよい。しかしながら、Cu含有量が0.50%を超えると、熱間延性を阻害し製造性が劣化するとともに、マルテンサイト組織が生じ易くなって、伸線加工性および耐遅れ破壊特性を劣化させる。そのため、Cu含有量を0.50%以下とした。Cu含有量は、0.30%以下であることが好ましい。また、上記効果を充分に得るため、Cu含有量は、0.05%以上であることが好ましく、0.10%以上であることがより好ましい。
 残部:Feおよび不純物
 本発明の高強度PC鋼線は、上記の元素を含有し、残部はFeおよび不純物である化学組成を有する。「不純物」とは、鋼を工業的に製造する際に、鉱石、スクラップ等の原料、製造工程の種々の要因によって混入する成分であって、本発明に悪影響を与えない範囲で許容されるものを意味する。
 Oは、高強度PC鋼線中に不純物として含有され、Alなどの酸化物として存在する。O含有量が高いと粗大な酸化物が形成し、伸線加工時に断線の原因となる。そのため、O含有量は、0.010%以下に抑制することが好ましい。
 (B)ビッカース硬さ
 1.10<Hv/Hv≦1.15 ・・・(i)
 本発明の高強度PC鋼線は、表層部のビッカース硬さ(Hv)と、内領域のビッカース硬さ(Hv)との比(Hv/Hv)が1.10を超えても、耐遅れ破壊特性を向上させることができる。一方、Hv/Hvが1.15を超えると、耐遅れ破壊特性に劣る。したがって、本発明の高強度PC鋼線は、上記(i)式を満足する必要がある。
 図1は、本実施形態に係る高強度PC鋼線の長さ方向に垂直な断面における硬度分布の一例を示すグラフである。図1に示すように、本発明の高強度PC鋼線は、その硬度分布が、高強度PC鋼線の中心(表面からの距離0.5Dの位置)を対称とするM字型を有する。その結果、高強度PC鋼線が耐遅れ破壊特性に優れたものとなる。
 ここで、内領域のビッカース硬さ(Hv)とは、表面からの深さが0.25Dの部位および0.5Dの部位(中心部)における硬度の平均値をいう。
 (C)金属組織
 パーライト組織を主相とするPC鋼線の最表層領域に、フェライト組織および/またはベイナイト組織が含まれることで、耐遅れ破壊特性を向上させる効果がある。これは、最表層領域に耐水素脆化特性に優れたフェライト組織および/またはベイナイト組織を生成させることで、遅れ破壊の亀裂発生を抑制し、高強度PC鋼線の耐遅れ破壊特性向上させるためと推定することができる。
 図2は、本実施形態に係る高強度PC鋼線の長さ方向に垂直な断面における表面近傍の一例を示す走査型電子顕微鏡(SEM)写真である。ここで、図2中の実線は、高強度PC鋼線の線径をDとしたとき、高強度PC鋼線の表面から0.01Dの距離であることを示す。また、図2において、濃く映し出されている組織がフェライト組織、薄く映し出されている組織がパーライト組織である。
 図2に示すように、本発明の高強度PC鋼線は、最表層領域におけるパーライト組織の面積率が80%未満である。最表層領域におけるパーライト組織の面積率が80%未満であると、表層部のビッカース硬さ(Hv)と内領域のビッカース硬さ(Hv)との比(Hv/Hv)が1.10を超える場合であっても、耐遅れ破壊特性が向上する。最表層領域におけるパーライト組織の面積率は、70%以下であることが好ましい。
 また、最表層領域のパーライト組織以外の残部は、フェライト組織および/またはベイナイト組織である。マルテンサイト組織は、伸線加工の際に割れの発生の原因となり、さらに、耐遅れ破壊特性を劣化させるため、含まれない。
 本発明の高強度PC鋼線では、最表層領域より内側の領域におけるパーライト組織の面積率が95%以上である。最表層領域より内側の領域におけるパーライト組織の面積率が95%未満であると、強度が低下する。つまり、前述したように、耐遅れ破壊特性を向上させるために、最表層領域におけるパーライト組織の面積率を80%未満とし、残部であるフェライト組織および/またはベイナイト組織の面積率を相対的に大きくすることが重要である。その一方で、強度を確保するため、最表層領域より内側の領域では、パーライト組織の面積率を大きくすることが重要である。
 また、前述したようなパーライト組織の面積率が80%未満となる領域が、高強度PC鋼線の表面から0.01Dを超え、より深い内部まで拡大すると、強度が低下する。そのため、高強度PC鋼線の表面から0.01Dまでの領域と規定した。パーライト組織の面積率が80%未満となる領域は、高強度PC鋼線の表面から0.005Dまでの領域であることが好ましい。なお、パーライト組織の面積率は、高強度PC鋼線の光学顕微鏡または電子顕微鏡による観察から測定可能である。
 (D)引張強さ
 引張強さ:2000~2400MPa
 高強度PC鋼線の引張強さが2000MPa未満であると、撚り線加工のPCストランドの強度が不充分であるため、施工コストの低減および軽量化が難しい。一方、高強度PC鋼線の引張強さが2400MPaを超えると、耐遅れ破壊特性が急激に劣化する。このため、高強度PC鋼線の引張強さを2000~2400MPaとした。
 (E)製造方法
 製造方法は特に限定されないが、例えば、以下のような方法で、本発明の高強度PC鋼線を容易に、かつ、安価に製造することができる。
 まず、上述した組成を有する鋼片を加熱する。加熱温度は、1170℃~1250℃であることが好ましい。最表層領域のフェライト組織および/またはベイナイト組織の生成には、鋼片表面が1170℃以上となる時間が10分以上であることが好ましい。
 その後、熱間圧延を行い、リング状に巻取る。巻取り温度が低いほど、最表層領域のフェライト組織および/またはベイナイト組織の面積率が高くなる。そのため、巻取り温度は850℃以下であることが好ましい。
 巻取り後に溶融塩槽に浸漬してパーライト変態処理を行う。最表層領域のフェライト組織および/またはベイナイト組織の生成を促進するためには、巻取り後の冷却速度が大きいほうが有効である。巻取り後から600℃までの冷却速度は、30℃/秒以上であることが好ましい。また、巻取り後に浸漬する溶融塩槽の温度が低いほど、最表層領域のベイナイト組織が生成しやすい。そのため、溶融塩槽の温度は、500℃未満にすることが好ましい。また、最表層領域より内側の領域において、パーライト組織を95%以上にするためには、一旦、500℃未満の溶融塩槽に浸漬後、500~600℃の溶融塩槽に20秒以上保持することが好ましい。このように溶融塩槽での浸漬温度を変えるためには、2槽以上からなる溶融塩槽を利用することが効果的である。溶融塩槽への浸漬開始から浸漬終了までの総浸漬時間は、50秒以上とすることが好ましい。
 次いで、パーライト変態後の線材を伸線加工して強度を付与し、その後、時効処理を行う。伸線加工は、総減面率65%以上で行うことが好ましい。また、時効処理は、350~450℃で行うことが好ましい。
 以上の方法で、本発明の高強度PC鋼線を製造することができる。
 得られた鋼線の線径は、3.0mm以上であることが好ましく、4.0mm以上であることがより好ましい。また、8.0mm以下であることが好ましく、7.0mm以下であることがより好ましい。
 以下、実施例によって本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 表1に示す化学組成を有する鋼種a~oを、表2に示す条件で加熱し熱間圧延を行い、リング状に巻取り、熱間圧延ライン後方の溶融塩槽に浸漬してパテンティング処理を行い、線材を製造した。その後、得られた線材を表2に示す線径まで伸線加工を行い、伸線後に加熱して時効処理を行い、試験番号1~32に示す高強度PC鋼線を製造した。そして、これらの鋼線に対して、以下の試験を行った。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 引張強さ試験は、JIS Z 2241に準拠し、9A号試験片を用いて行った。結果を表3に示す。
 ビッカース硬さ試験は、JIS Z 2244に準拠して行った。ビッカース硬さの比(Hv/Hv)を算出するに際し、まず、表層部のビッカース硬さ(Hv)は、鋼線の長さ方向に垂直な断面において45°おきに8箇所の角度で、かつ、それぞれの表面からの深さが0.1Dの部位において、試験力0.98Nで測定した。そして、得られた8箇所の測定値を平均することにより、Hvを求めた。また、内領域のビッカース硬さ(Hv)は、Hvを測定した8箇所の角度で、かつ、それぞれの表面からの深さが0.25Dの部位および0.5Dの部位(中心部)の合計9箇所において、試験力0.98Nで測定した。そして、得られた9箇所の測定値を平均することにより、Hvを求めた。算出したビッカース硬さの比(Hv/Hv)を表3に示す。
 金属組織の面積率は、走査型電子顕微鏡(SEM)を用いて、鋼線の長さ方向に垂直な断面を写真撮影した後、画像解析により求めた。具体的に、まず、最表層領域における金属組織の面積率は、鋼線の長さ方向に垂直な断面において、パーライト組織の面積率が最小の位置を起点に45°おきに8箇所の角度で、かつ、それぞれの表面から0.01Dの深さまでの範囲を1000倍の倍率で写真撮影し、画像解析により面積値を測定した。その後、得られた8箇所の測定値を平均することにより、最表層領域における金属組織の面積率を求めた。また、最表層領域より内側の領域における金属組織の面積率は、最表層領域における金属組織を測定した8箇所の角度で、かつ、それぞれの表面からの深さが0.1Dの部位、0.25Dの部位および0.5Dの部位(中心部)の合計17箇所を中心とする125μm×95μmの範囲を1000倍の倍率で写真撮影し、画像解析により面積値を測定した。その後、得られた17箇所の測定値を平均することにより、最表層領域より内側の領域における金属組織の面積率を求めた。結果を表3に示す。
 耐遅れ破壊特性は、FIP試験により評価した。具体的には、試験番号1~32の高強度PC鋼線を、50℃の20%NHSCN溶液中に浸漬して、破断荷重0.8倍の荷重を負荷し、破断時間を評価した。なお、比液量は12cc/cmとした。FIP試験は、各高強度PC鋼線につき12本ずつ評価し、その平均値を遅れ破壊破断時間として、表3に示す。耐遅れ破壊特性は高強度PC鋼線の引張強さに依存する。そのため、試験番号1~28においては、試験番号1~14と、同一の鋼種を用いた試験番号15~28とをそれぞれ比較し、一方の遅れ破壊破断時間に対して2倍以上の遅れ破壊破断時間であり、かつ、遅れ破壊破断時間が4時間以上となるものを、耐遅れ破壊特性が「良」と判定した。上記条件に該当しないものは、耐遅れ破壊特性が「不良」と判定した。また、試験番号29~32においては、遅れ破壊破断時間が4時間未満であることから、耐遅れ破壊特性が「不良」と判定した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 本発明で規定する要件をすべて満たす試験番号1~14の高強度PC鋼線は、本発明で規定される範囲を外れる試験番号15~28の高強度PC鋼線と比較して遅れ破壊破断時間が著しく長く、耐遅れ破壊特性が良好である。
 試験番号31の高強度PC鋼線は、Si含有量が本発明で規定される範囲を下回る鋼種oから製造されることから、比較例の鋼線である。Si含有量が本発明で規定される範囲を下回る場合、高強度PC鋼線の引張強さが本発明で規定される範囲を下回り、かつ、最表層領域におけるパーライト組織の面積率が、本発明で規定される範囲を外れる。そのため、試験番号31の高強度PC鋼線は、耐遅れ破壊特性が不良である。
 また、表3に示す試験番号15~28の高強度PC鋼線は、最表層領域におけるパーライト組織の面積率が、本発明で規定される範囲を外れることから、比較例の鋼線である。そのため、試験番号15~28の高強度PC鋼線は、耐遅れ破壊特性が不良である。
 試験番号29および30の高強度PC鋼線は、引張強さが本発明で規定される範囲を超えることから、比較例の鋼線である。そのため、試験番号29および30の高強度PC鋼線は、耐遅れ破壊特性が不良である。
 試験番号32の高強度PC鋼線は、表層部のビッカース硬さ(Hv)と内領域のビッカース硬さ(Hv)との比(Hv/Hv)が上記(i)式を満足しないことから、比較例の鋼線である。そのため、試験番号32の高強度PC鋼線は、耐遅れ破壊特性が不良である。
 本発明によれば、製造方法が容易であって、かつ、耐遅れ破壊特性に優れた高強度PC鋼線を提供することができる。したがって、本発明の高強度PC鋼線は、プレストレストコンクリートなどに好適に用いることができる。

Claims (3)

  1.  鋼線の化学組成が、質量%で、
     C:0.90~1.10%、
     Si:0.80~1.50%、
     Mn:0.30~0.70%、
     P:0.030%以下、
     S:0.030%以下、
     Al:0.010~0.070%、
     N:0.0010~0.010%、
     Cr:0~0.50%、
     V:0~0.10%、
     B:0~0.005%、
     Ni:0~1.0%、
     Cu:0~0.50%、ならびに、
     残部:Feおよび不純物であり、
     前記鋼線の線径をDとしたとき、前記鋼線の表面から0.1Dの部位のビッカース硬さと、前記鋼線の表面から0.1Dの部位より内側の領域のビッカース硬さとの比が下記(i)式を満足し、
     前記鋼線の表面から0.01Dまでの領域における金属組織が、面積%で、
     パーライト組織:80%未満、ならびに、
     残部:フェライト組織、ベイナイト組織、または、フェライト組織およびベイナイト組織であり、
     前記鋼線の表面から0.01Dまでの領域より内側の領域における金属組織が、面積%で、
     パーライト組織:95%以上であり、かつ、
     引張強さが2000~2400MPaである、高強度PC鋼線。
     1.10<Hv/Hv≦1.15 ・・・(i)
     ただし、前記(i)式中の各記号の意味は、以下の通りである。
     Hv:鋼線の表面から0.1Dの部位のビッカース硬さ
     Hv:鋼線の表面から0.1Dの部位より内側の領域のビッカース硬さ
  2.  前記化学組成が、質量%で、
     Cr:0.05~0.50%、
     V:0.01~0.10%、および、
     B:0.0001~0.005%から選択される1種以上を含有する、請求項1に記載の高強度PC鋼線。
  3.  前記化学組成が、質量%で、
     Ni:0.1~1.0%、および、
     Cu:0.05~0.50%から選択される1種以上を含有する、請求項1または請求項2に記載の高強度PC鋼線。
PCT/JP2016/071264 2015-07-21 2016-07-20 高強度pc鋼線 WO2017014231A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020187004981A KR102090721B1 (ko) 2015-07-21 2016-07-20 고강도 pc 강선
EP16827791.1A EP3327161B1 (en) 2015-07-21 2016-07-20 High-strength pc steel wire
US15/745,747 US10752974B2 (en) 2015-07-21 2016-07-20 High-strength PC steel wire
CN201680042570.4A CN107849660B (zh) 2015-07-21 2016-07-20 高强度pc钢丝
ZA2018/01009A ZA201801009B (en) 2015-07-21 2018-02-14 High-strength pc steel wire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-144063 2015-07-21
JP2015144063A JP6416709B2 (ja) 2015-07-21 2015-07-21 高強度pc鋼線

Publications (1)

Publication Number Publication Date
WO2017014231A1 true WO2017014231A1 (ja) 2017-01-26

Family

ID=57835154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/071264 WO2017014231A1 (ja) 2015-07-21 2016-07-20 高強度pc鋼線

Country Status (7)

Country Link
US (1) US10752974B2 (ja)
EP (1) EP3327161B1 (ja)
JP (1) JP6416709B2 (ja)
KR (1) KR102090721B1 (ja)
CN (1) CN107849660B (ja)
WO (1) WO2017014231A1 (ja)
ZA (1) ZA201801009B (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7032852B2 (ja) 2014-11-29 2022-03-09 共栄化学工業株式会社 毛髪化粧料
KR102079550B1 (ko) * 2018-08-09 2020-02-21 주식회사 포스코 킹크 특성이 우수한 강선, 강선용 선재 및 이들의 제조방법
JP7226548B2 (ja) * 2019-06-19 2023-02-21 日本製鉄株式会社 線材
CN111304537A (zh) * 2020-03-25 2020-06-19 中国铁道科学研究院集团有限公司 一种强度2200MPa级预应力钢绞线及生产工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07268546A (ja) * 1994-03-30 1995-10-17 Sumitomo Metal Ind Ltd 二層組織構造を有する高炭素鋼線材およびその製造方法
JP2003129177A (ja) * 2001-10-19 2003-05-08 Nippon Steel Corp 耐遅れ破壊特性に優れた高強度pc鋼棒および製造方法
JP2007039799A (ja) * 2005-06-29 2007-02-15 Nippon Steel Corp 伸線特性に優れた高強度線材及びその製造方法、並びに伸線特性に優れた高強度鋼線
JP2009280836A (ja) * 2008-05-19 2009-12-03 Nippon Steel Corp 耐遅れ破壊特性に優れた高強度pc鋼線及びその製造方法
WO2011089782A1 (ja) * 2010-01-25 2011-07-28 新日本製鐵株式会社 線材、鋼線、及び線材の製造方法
JP2014136822A (ja) * 2013-01-17 2014-07-28 Sumitomo Denko Steel Wire Kk 高強度pc鋼より線及びその製造方法
JP2014136823A (ja) * 2013-01-17 2014-07-28 Sumitomo Denko Steel Wire Kk 高強度pc鋼より線及びその製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3303575B2 (ja) 1994-12-15 2002-07-22 住友電気工業株式会社 精密加工性に優れた鋼線およびその製造方法
JPH08176736A (ja) 1994-12-28 1996-07-09 Kobe Steel Ltd 溶接性と靭延性に優れた高強度鋼線の製法
DE69839353T2 (de) * 1997-08-28 2009-06-04 Sumitomo Electric Industries, Ltd. Stahldraht und verfahren zu dessen herstellung
JP3536684B2 (ja) * 1998-08-12 2004-06-14 住友金属工業株式会社 伸線加工性に優れた鋼線材
JP4267376B2 (ja) 2003-06-04 2009-05-27 新日本製鐵株式会社 遅れ破壊特性の優れた高強度pc鋼線およびその製造方法
KR101011565B1 (ko) * 2005-06-29 2011-01-27 신닛뽄세이테쯔 카부시키카이샤 신선 특성이 우수한 고강도 선재 및 그 제조 방법
JP5241178B2 (ja) 2007-09-05 2013-07-17 株式会社神戸製鋼所 伸線加工性に優れた線材およびその製造方法
KR100979006B1 (ko) 2007-12-27 2010-08-30 주식회사 포스코 강도와 연성이 우수한 신선용 선재 및 그 제조방법
JP5802162B2 (ja) * 2012-03-29 2015-10-28 株式会社神戸製鋼所 線材及びこれを用いた鋼線
CN103966417B (zh) 2013-01-31 2016-04-20 张家港市骏马钢帘线有限公司 一种提高超细高碳钢丝表面质量和拉拔性能的工艺方法
EP3056580A4 (en) * 2013-10-08 2017-07-26 Nippon Steel & Sumitomo Metal Corporation Wire rod, hypereutectoid bainite steel wire, and method for manufacturing same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07268546A (ja) * 1994-03-30 1995-10-17 Sumitomo Metal Ind Ltd 二層組織構造を有する高炭素鋼線材およびその製造方法
JP2003129177A (ja) * 2001-10-19 2003-05-08 Nippon Steel Corp 耐遅れ破壊特性に優れた高強度pc鋼棒および製造方法
JP2007039799A (ja) * 2005-06-29 2007-02-15 Nippon Steel Corp 伸線特性に優れた高強度線材及びその製造方法、並びに伸線特性に優れた高強度鋼線
JP2009280836A (ja) * 2008-05-19 2009-12-03 Nippon Steel Corp 耐遅れ破壊特性に優れた高強度pc鋼線及びその製造方法
WO2011089782A1 (ja) * 2010-01-25 2011-07-28 新日本製鐵株式会社 線材、鋼線、及び線材の製造方法
JP2014136822A (ja) * 2013-01-17 2014-07-28 Sumitomo Denko Steel Wire Kk 高強度pc鋼より線及びその製造方法
JP2014136823A (ja) * 2013-01-17 2014-07-28 Sumitomo Denko Steel Wire Kk 高強度pc鋼より線及びその製造方法

Also Published As

Publication number Publication date
CN107849660A (zh) 2018-03-27
EP3327161A1 (en) 2018-05-30
US10752974B2 (en) 2020-08-25
JP6416709B2 (ja) 2018-10-31
EP3327161A4 (en) 2019-01-02
CN107849660B (zh) 2019-09-13
EP3327161B1 (en) 2019-12-04
KR102090721B1 (ko) 2020-03-18
KR20180031731A (ko) 2018-03-28
JP2017025370A (ja) 2017-02-02
ZA201801009B (en) 2018-12-19
US20180216208A1 (en) 2018-08-02

Similar Documents

Publication Publication Date Title
JP5315790B2 (ja) 耐遅れ破壊特性に優れた高強度pc鋼線
WO2011126073A1 (ja) ソーワイヤ用素線及びその製造方法
JPWO2008093466A1 (ja) 捻回特性に優れるpws用めっき鋼線及びその製造方法
JP6212473B2 (ja) 高強度ばね用圧延材及びこれを用いた高強度ばね用ワイヤ
WO2018021574A1 (ja) 高強度鋼線
WO2017014231A1 (ja) 高強度pc鋼線
WO2018012625A1 (ja) 鋼線
WO2016158901A1 (ja) 伸線性に優れた高炭素鋼線材、および鋼線
JP6288265B2 (ja) 鋼線
JP7226548B2 (ja) 線材
WO2017014232A1 (ja) 高強度pc鋼線
JP2010229469A (ja) 冷間加工特性に優れる高強度線材及びその製造方法
JP2019123905A (ja) プレストレストコンクリート用緊張材用の二相ステンレス鋼線材、二相ステンレス鋼線及びプレストレストコンクリート用緊張材
CN108350544B (zh) 钢线
JP6682863B2 (ja) 高炭素鋼線材および高炭素鋼線
JP6135553B2 (ja) 鉄筋およびその製造方法
JP7469642B2 (ja) 高強度鋼線
JP7440758B2 (ja) 線材及び鋼線
JP2022182696A (ja) プレストレストコンクリート用緊張材用のオーステナイト-フェライト二相ステンレス鋼線材、オーステナイト-フェライト二相ステンレス鋼線及びプレストレストコンクリート用緊張材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16827791

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15745747

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187004981

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016827791

Country of ref document: EP