WO2017170280A1 - 有機半導体素子、重合体、有機半導体組成物及び有機半導体膜 - Google Patents

有機半導体素子、重合体、有機半導体組成物及び有機半導体膜 Download PDF

Info

Publication number
WO2017170280A1
WO2017170280A1 PCT/JP2017/012174 JP2017012174W WO2017170280A1 WO 2017170280 A1 WO2017170280 A1 WO 2017170280A1 JP 2017012174 W JP2017012174 W JP 2017012174W WO 2017170280 A1 WO2017170280 A1 WO 2017170280A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
atom
organic semiconductor
formula
integer
Prior art date
Application number
PCT/JP2017/012174
Other languages
English (en)
French (fr)
Inventor
陽介 山本
史子 玉國
渡邉 哲也
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2018509273A priority Critical patent/JP6574052B2/ja
Publication of WO2017170280A1 publication Critical patent/WO2017170280A1/ja
Priority to US16/141,434 priority patent/US11038125B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/124Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one nitrogen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/80Constructional details
    • H10K10/82Electrodes
    • H10K10/84Ohmic electrodes, e.g. source or drain electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1412Saturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3243Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more sulfur atoms as the only heteroatom, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/33Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
    • C08G2261/334Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/36Oligomers, i.e. comprising up to 10 repeat units
    • C08G2261/364Oligomers, i.e. comprising up to 10 repeat units containing hetero atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/414Stille reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets

Definitions

  • the present invention relates to an organic semiconductor element, a polymer used therefor, an organic semiconductor composition, and an organic semiconductor film.
  • a semiconductor element is used for a display such as a liquid crystal display or an organic electroluminescence display, a device using a logic circuit such as an RFID (radio frequency identifier: RF tag) or a memory, a solar cell, or the like.
  • a display such as a liquid crystal display or an organic electroluminescence display
  • a device using a logic circuit such as an RFID (radio frequency identifier: RF tag) or a memory, a solar cell, or the like.
  • an organic semiconductor element having an organic semiconductor film is superior to an inorganic semiconductor element having an inorganic semiconductor film because it can be reduced in weight or cost and is excellent in flexibility.
  • Organic polymer compounds and low molecular compounds have been studied as organic compounds that form the above-described organic semiconductor films. Examples of the organic polymer compound include a polymer compound having a structural unit derived from a condensed ring compound having a 5-membered ring structure between two different heterocycles (Patent Document 1). Moreover, a dinap
  • the above-described displays and the like are rapidly improving in performance, and organic semiconductor elements mounted thereon are required to have high performance and homogeneity with reduced variation in performance. Furthermore, since an organic semiconductor element or an organic semiconductor film may be exposed to a high temperature environment, heat resistance is required to maintain carrier mobility even under high temperature conditions. Examples of the high temperature environment include high temperature conditions for producing an organic semiconductor element, and further use of the organic semiconductor element in a high temperature environment. However, conventional organic semiconductor elements are still not sufficient in terms of carrier mobility, homogeneity and heat resistance, and there is room for improvement.
  • An object of the present invention is to provide an organic semiconductor element having carrier mobility, its homogeneity and heat resistance, and a polymer, an organic semiconductor composition and an organic semiconductor film used therefor.
  • the present inventor uses a polymer having a repeating unit containing a condensed ring structure derived from a dinaphthochalcogenophene compound and a specific conjugated group in an organic semiconductor film in an organic semiconductor film. Further, it has been found that the inclusion of this polymer in an organic semiconductor film makes it possible to combine carrier mobility, its homogeneity, and heat resistance. The present invention has been further studied and completed based on these findings.
  • An organic semiconductor element comprising an organic semiconductor film containing a polymer having a repeating unit represented by the following formula (1).
  • Y 1 represents an oxygen atom, a sulfur atom or a selenium atom.
  • R 11 to R 14 each independently represents a substituent.
  • a and b are each independently an integer of 0 to 3, and r and s are each independently an integer of 0 to 2.
  • a 10 represents an aromatic hydrocarbon group, an aromatic heterocyclic group, a vinylene group or an ethynylene group.
  • m 10 is an integer of 1 to 12.
  • Y 1, R 11 ⁇ R 14 , a, b, r and s have the same meanings as Y 1, R 11 ⁇ R 14 , a, b, r and s in each formula (1).
  • a 11 and A 13 are each independently an aromatic hydrocarbon group, an aromatic heterocyclic group other than the aromatic heterocyclic groups represented by the following formulas (A-1) to (A-12), a vinylene group, An ethynylene group is shown.
  • a 12 represents an aromatic heterocyclic group represented by any of the following formulas (A-1) to (A-12).
  • n 11 and m 13 are each independently an integer of 0 to 4, and m 12 is an integer of 0 to 4. However, the sum of m 11 , m 12 and m 13 is 1 or more.
  • X A each independently represents an oxygen atom, a sulfur atom, a selenium atom or NR X.
  • R N and R X are an alkyl group which may contain at least one of —O—, —S— and —NR A3 — in the carbon chain, or represented by the following formula (1-1) Indicates a group.
  • Y A each independently represents an oxygen atom or a sulfur atom.
  • Z A each independently represents CR A2 or a nitrogen atom.
  • W A each independently represents C (R A2 ) 2 , NR A1 , nitrogen atom, CR A2 , oxygen atom, sulfur atom or selenium atom.
  • R A1 each independently represents an alkyl group which may contain at least one of —O—, —S— and —NR A3 — in the carbon chain, and a group represented by the following formula (1-1) Or a single bond.
  • R A2 each independently represents a hydrogen atom, a halogen atom, an alkyl group which may contain at least one of —O—, —S— and —NR A3 — in the carbon chain, or a single bond.
  • R A3 each independently represents a hydrogen atom or a substituent.
  • L a represents an alkylene group having 1 to 20 carbon atoms which may contain at least one of —O—, —S— and —NR 1S — in the carbon chain.
  • Ar represents an aromatic heterocyclic group or an aromatic hydrocarbon group having 6 to 18 carbon atoms.
  • L b represents an alkyl group having 1 to 100 carbon atoms which may contain at least one of —O—, —S— and —NR 2S — in the carbon chain.
  • R 1S and R 2S each independently represent a hydrogen atom or a substituent.
  • l is an integer of 1 to 5.
  • ⁇ 3> The organic semiconductor element according to ⁇ 2>, wherein m 12 is an integer of 1 to 4.
  • ⁇ 4> — (A 11 ) m 11 — and — (A 13 ) m 13 — are each independently represented by the following formula (Ar-1): ⁇ 2> or ⁇ 3> .
  • X d represents an oxygen atom, a sulfur atom, a selenium atom or NR D1 .
  • Z d each independently represents a nitrogen atom or CR D2 .
  • R D1 and R D2 represent a hydrogen atom or a substituent.
  • m d is an integer of 1 to 4. * Indicates a binding site with another group forming the above repeating unit.
  • ⁇ 5> The organic semiconductor element according to ⁇ 4>, wherein X d is a sulfur atom, and Z d is CR D2 .
  • ⁇ 6> The organic semiconductor element according to any one of ⁇ 1> to ⁇ 5>, wherein the organic semiconductor element is an organic thin film transistor element.
  • a polymer having a repeating unit represented by the following formula (1) A polymer having a repeating unit represented by the following formula (1).
  • Y 1 represents an oxygen atom, a sulfur atom or a selenium atom.
  • R 11 to R 14 each independently represents a substituent.
  • a and b are each independently an integer of 0 to 3, and r and s are each independently an integer of 0 to 2.
  • a 10 represents an aromatic hydrocarbon group, an aromatic heterocyclic group, a vinylene group or an ethynylene group.
  • m 10 is an integer of 1 to 12.
  • Y 1, R 11 ⁇ R 14 , a, b, r and s have the same meanings as Y 1, R 11 ⁇ R 14 , a, b, r and s in each formula (1).
  • a 11 and A 13 are each independently an aromatic hydrocarbon group, an aromatic heterocyclic group other than the aromatic heterocyclic groups represented by the following formulas (A-1) to (A-12), a vinylene group, An ethynylene group is shown.
  • a 12 represents an aromatic heterocyclic group represented by any of the following formulas (A-1) to (A-12).
  • n 11 and m 13 are each independently an integer of 0 to 4, and m 12 is an integer of 0 to 4. However, the sum of m 11 , m 12 and m 13 is 1 or more.
  • X A each independently represents an oxygen atom, a sulfur atom, a selenium atom or NR X.
  • R N and R X are an alkyl group which may contain at least one of —O—, —S— and —NR A3 — in the carbon chain, or represented by the following formula (1-1) Indicates a group.
  • Y A each independently represents an oxygen atom or a sulfur atom.
  • Z A each independently represents CR A2 or a nitrogen atom.
  • W A each independently represents C (R A2 ) 2 , NR A1 , nitrogen atom, CR A2 , oxygen atom, sulfur atom or selenium atom.
  • R A1 each independently represents an alkyl group which may contain at least one of —O—, —S— and —NR A3 — in the carbon chain, and a group represented by the following formula (1-1) Or a single bond.
  • R A2 each independently represents a hydrogen atom, a halogen atom, an alkyl group which may contain at least one of —O—, —S— and —NR A3 — in the carbon chain, or a single bond.
  • R A3 each independently represents a hydrogen atom or a substituent.
  • L a represents an alkylene group having 1 to 20 carbon atoms which may contain at least one of —O—, —S— and —NR 1S — in the carbon chain.
  • Ar represents an aromatic heterocyclic group or an aromatic hydrocarbon group having 6 to 18 carbon atoms.
  • L b represents an alkyl group having 1 to 100 carbon atoms which may contain at least one of —O—, —S— and —NR 2S — in the carbon chain.
  • R 1S and R 2S each independently represent a hydrogen atom or a substituent.
  • l is an integer of 1 to 5.
  • m 12 is a polymer according to an integer of 1 to 4 ⁇ 8>.
  • X d represents an oxygen atom, a sulfur atom, a selenium atom or NR D1 .
  • Z d each independently represents a nitrogen atom or CR D2 .
  • R D1 and R D2 represent a hydrogen atom or a substituent.
  • m d is an integer of 1 to 4. * Indicates a binding site with another group forming the above repeating unit.
  • ⁇ 11> The polymer according to ⁇ 10>, wherein X d is a sulfur atom, and Z d is CR D2 .
  • ⁇ 12> An organic semiconductor composition comprising the polymer according to any one of ⁇ 7> to ⁇ 11> and a solvent.
  • ⁇ 13> An organic semiconductor film comprising the polymer according to any one of ⁇ 7> to ⁇ 11> above.
  • the present invention can provide an organic semiconductor element having both carrier mobility, homogeneity, and heat resistance. Moreover, this invention can provide the polymer used for the organic-semiconductor element which has the said outstanding characteristic, the organic-semiconductor composition and organic-semiconductor film containing this polymer.
  • 1 is a schematic cross-sectional view showing a bottom gate-bottom contact type organic thin film transistor element which is an example of a semiconductor element of the present invention.
  • 1 is a schematic cross-sectional view showing a bottom gate-top contact type organic thin film transistor element which is an example of a semiconductor element of the present invention.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the indication of a compound includes its salt and its ion in addition to the compound itself. Moreover, what changed the structure in part within the range which does not impair the target effect is included. Moreover, about the compound which does not specify substituted or unsubstituted, the thing which has arbitrary substituents is included in the range which does not impair the target effect. The same applies to substituents and linking groups (hereinafter referred to as substituents and the like).
  • each repeating unit present in the polymer may be the same or different. The same applies to each group forming a repeating unit.
  • the number of carbon atoms of the group when the number of carbon atoms of the group is limited, the number of carbon atoms of this group means the total number of carbon atoms including substituents unless otherwise specified.
  • this group when a group can form a non-cyclic skeleton and a cyclic skeleton, this group includes a non-cyclic skeleton group and a cyclic skeleton group unless otherwise specified.
  • the alkyl group includes a linear alkyl group, a branched alkyl group, and a cyclic (cyclo) alkyl group.
  • the lower limit of the number of atoms of the group forming the cyclic skeleton is 3 or more, and preferably 5 or more, regardless of the lower limit of the number of atoms specifically described for the group.
  • the polymer (organic semiconductor) of the present invention has a repeating unit represented by the following formula (1).
  • the polymer is a copolymer having a group of two naphthalene rings and Karukogenofen ring is derived from Gina shift chalcogenopyryloarylidene Fen compound condensed, a repeating unit containing a group represented by at least one following A 10 .
  • This copolymer is preferably a ⁇ -conjugated polymer.
  • the polymer of the present invention when having an aromatic heterocyclic group represented by A 12 in Formula (2) described below, have an electron-donating (donor) units, electron-accepting and (acceptor) units, so-called It can also be referred to as “DA polymer”.
  • DA polymer an electron-donating (donor) units, electron-accepting and (acceptor) units, so-called It can also be referred to as “DA polymer”.
  • a group derived from the Gina shift chalcogenopyryloarylidene Fen compound serves as a donor unit
  • an aromatic heterocyclic group represented by A 12 is an acceptor unit.
  • Polymers of the present invention when having a group represented by A 11 or A 13 in the formula (2) described below, none of these groups is a donor unit.
  • Y 1 represents an oxygen atom, a sulfur atom or a selenium atom.
  • Y 1 is preferably an oxygen atom or a sulfur atom, a sulfur atom is more preferable.
  • R 11 to R 14 each represent a substituent.
  • the substituent that can be taken as R 11 to R 14 is not particularly limited.
  • an alkyl group which may contain at least one of —O—, —S— and —NR 1 — in the carbon chain (for example, an alkyl group having 1 to 35 carbon atoms or 1 carbon atom) Is preferably an alkoxy group having 1 to 35 carbon atoms, more preferably an alkyl group having 1 to 25 carbon atoms, an alkenyl group (preferably having 2 to 30 carbon atoms), an alkynyl group (preferably having 2 to 30 carbon atoms), an aromatic carbonization.
  • a hydrogen group (preferably having 6 to 30 carbon atoms), an aromatic heterocyclic group (preferably a 5- to 7-membered ring.
  • the ring-constituting hetero atom includes at least one of an oxygen atom, a nitrogen atom, a sulfur atom and a selenium atom.
  • a halogen atom (a fluorine atom, a chlorine atom, a bromine atom or an iodine atom is preferred, a fluorine atom or a chlorine atom is more preferred, and a fluorine atom is particularly preferred.
  • a group represented by the formula (1-1) described later is preferable.
  • an alkyl group containing —O— in the carbon chain is a group having —O— in the middle of the carbon-carbon bond, or a group having —O— at the terminal of the carbon-carbon bond (also referred to as an alkoxy group). And a group having —O— in the middle and at the end of the carbon-carbon bond.
  • the alkyl group includes —O—, —S—, and —NR 1 —, the total of these numbers is at least one, and the upper limit is not particularly limited, but is, for example, five.
  • R 1 represents a hydrogen atom or a substituent.
  • the substituents can take as R 1, it is not particularly limited, the same meaning as the substituent in later-described R 1S and R 2S.
  • Two adjacent R 11 to R 14 may be bonded to each other to form a ring, but it is preferable not to form a ring.
  • a and b are each an integer of 0 to 3, preferably 0 or 1, and preferably 0.
  • r and s are each an integer of 0 to 2, preferably 0 or 1, and preferably 0.
  • a 10 is an aromatic hydrocarbon group, an aromatic heterocyclic group, a vinylene group or an ethynylene group, preferably an aromatic hydrocarbon group or an aromatic heterocyclic group.
  • the aromatic hydrocarbon group that can be adopted as A 10 is not particularly limited, and may be a monocyclic group or a condensed ring group of two or more rings.
  • the group is preferably.
  • an aromatic hydrocarbon group having 6 to 20 carbon atoms is preferable, an aromatic hydrocarbon group having 6 to 18 carbon atoms is more preferable, and a phenylene group, a naphthylene group, a 3-ring or a 4-ring A group obtained by removing two hydrogen atoms from an aromatic hydrocarbon condensed with is more preferable.
  • Examples of the group obtained by removing two hydrogen atoms from an aromatic hydrocarbon condensed with three or four rings include, for example, a group obtained by removing two hydrogen atoms from a fluorene ring, anthracene ring, phenanthrene ring, chrysene ring or pyrene ring. Can be mentioned.
  • a phenylene group, a naphthylene group, a fluorene ring group or a pyrene ring group is preferable, and a phenylene group or a naphthylene group is particularly preferable.
  • the aromatic heterocyclic group that can be adopted as A 10 is not particularly limited, and may be a monocyclic group, a condensed group of two or more rings, or a monocyclic or condensed ring group. It may be a group in which heterocyclic groups are linked by a carbon-carbon double bond. In the case of a monocyclic group, the number of ring members is preferably 5 to 7 members. Further, the ring-constituting hetero atom contained in the aromatic heterocyclic group is preferably a nitrogen atom, an oxygen atom, a sulfur atom or a selenium atom, and more preferably a sulfur atom.
  • aromatic heterocyclic group examples include aromatic heterocyclic groups represented by formulas (A-1) to (A-12) described later, or other aromatic heterocyclic groups.
  • aromatic heterocyclic ring that forms an aromatic heterocyclic group other than the aromatic heterocyclic group represented by the formulas (A-1) to (A-12) include, for example, a furan ring, a thiophene ring, a selenophene ring, and pyrrole.
  • Examples thereof include a single ring such as a ring, an oxazole ring, a thiazole ring, a selenoazole group, an imidazole ring, an oxadiazole ring, a thiadiazole ring, a selenodiazole group, a triazole ring, a pyridine ring or a triazine ring.
  • a single ring such as a ring, an oxazole ring, a thiazole ring, a selenoazole group, an imidazole ring, an oxadiazole ring, a thiadiazole ring, a selenodiazole group, a triazole ring, a pyridine ring or a triazine ring.
  • the condensed ring which combined at least 2 single ring among these single rings, or the condensed ring of at least 1 said single ring and at least 1 benzen
  • the number of rings to be combined is not particularly limited as long as it is 2 or more, but for example, 2 to 6 is preferable.
  • Specific examples of such an aromatic heterocycle include a benzodithiophene ring, a dithiophene ring, a trithiophene ring, and a cyclopentadithiophene ring.
  • the aromatic heterocyclic groups other than the aromatic heterocyclic groups represented by the formulas (A-1) to (A-12) among them, those represented by the formula (Ar-1) described later are preferable.
  • a ring group, a thiophene ring group or a selenophene ring group is more preferred, and a thiophene ring is still more preferred.
  • Each of the aromatic hydrocarbon group and the aromatic heterocyclic group may have a substituent.
  • substituents are not particularly limited, and for example, an alkyl group that may contain at least one of —O—, —S— and —NR 1 — in the carbon chain (for example, having 1 to 35 carbon atoms). Or an alkyl group having 1 to 35 carbon atoms, more preferably an alkyl group having 1 to 25 carbon atoms, an alkenyl group (preferably having 2 to 30 carbon atoms), an alkynyl group (having 2 to 30 carbon atoms). Preferred), an aromatic hydrocarbon group (preferably having 6 to 30 carbon atoms), an aromatic heterocyclic group (preferably a 5- to 7-membered ring.
  • the ring-constituting heteroatoms include oxygen, nitrogen, sulfur and selenium. Those containing at least one of the atoms are preferred), halogen atoms (fluorine atoms, chlorine atoms, bromine atoms or iodine atoms are preferred; fluorine atoms or chlorine atoms are more preferred; Atom is particularly preferred.), Or, a group represented by the formula (1-1) described later. Among these, the alkyl group is preferable. R 1 is as described above.
  • Vinylene group can take as A 10, which may have a substituent, but preferably does not have.
  • the substituent that the vinylene group may have is the same as the substituent that the aromatic hydrocarbon group and the aromatic heterocyclic group may have, and the preferred range is also the same.
  • m 10 is an integer of 1 to 12, preferably an integer of 1 to 10, more preferably an integer of 1 to 8, still more preferably an integer of 1 to 5, and particularly preferably an integer of 1 to 3.
  • the plurality of A 10 may be the same or different.
  • the combination of A 10 that can be adopted as (A 10 ) m 10 is not particularly limited, and the above groups can be appropriately selected and combined.
  • Preferable examples include an embodiment containing at least one (preferably 1 to 4) aromatic heterocyclic group represented by any one of formulas (A-1) to (A-12) described later, more preferably Furthermore, at least one aromatic hydrocarbon group other than an aromatic hydrocarbon group or an aromatic heterocyclic group represented by the following formulas (A-1) to (A-12) (preferably two or more, more preferably 2 to 8, more preferably 2 to 6).
  • the repeating unit represented by the above formula (1) is preferably represented by the following formula (2).
  • Y 1, R 11 ⁇ R 14, a, b, r and s are, respectively, Y 1 in the formula (1), R 11 ⁇ R 14, a, b, r and s as defined
  • the preferred ones are also the same.
  • a 12 represents an aromatic heterocyclic group represented by any of the following formulas (A-1) to (A-12).
  • * indicates a binding site with another group forming the repeating unit represented by the formula (2).
  • a broken line within a 5-membered ring or a 6-membered ring indicates that the 5-membered ring or 6-membered ring is an aromatic ring.
  • X A represents an oxygen atom, a sulfur atom, a selenium atom or NR X, and preferably a sulfur atom or NR X.
  • R N and R X are each an alkyl group which may contain at least one of —O—, —S— and —NR A3 — in the carbon chain, or a group represented by formula (1-1) described later. The group represented is shown.
  • the alkyl group that can be taken as R N and R X has the same meaning as the alkyl group that can be taken as R A1 described later, and the preferred range is also the same. R A3 will be described later.
  • Y A represents an oxygen atom or a sulfur atom, respectively, and an oxygen atom is preferred.
  • Z A represents CR A2 or a nitrogen atom, respectively, and CR A2 is preferable.
  • R A2 represents a hydrogen atom, a halogen atom, an alkyl group which may contain at least one of —O—, —S— and —NR A3 — in the carbon chain, or a single bond.
  • R A2 is preferably a hydrogen atom or a single bond. In the formulas (A-2) and (A-8), R A2 does not take a single bond.
  • R A2 is a halogen atom, a fluorine atom, a chlorine atom, a bromine atom or an iodine atom is preferable, and a fluorine atom is more preferable.
  • the alkyl group that can be taken as R A2 has the same meaning as the alkyl group that can be taken as R A1 described later, and the preferred range is also the same. R A3 will be described later.
  • CR A2 when R A2 is a single bond, the C atom of CR A2 is a binding site in each of the above formulas (A-5), (A-10) and (A-11) (in each formula, * Show). Specifically, in the above formulas (A-5) and (A-10), in each of the two ring structures containing Z A , one Z A is CR A2 and R A2 is a single bond It becomes.
  • CR A2 (carbon atom) having a single bond is a bonding site indicated by * in each formula.
  • two Z A out of eight are CR A2 and R A2 thereof is a single bond.
  • CR A2 carbon atom having these single bonds serves as a bonding site indicated by * in formula (A-11).
  • the binding site means a bonding part with another group forming the repeating unit represented by the above formula (2).
  • the other group refers to a group derived from the above-mentioned dinaphthochalcogenophene compound or a group represented by A 11 , A 12 or A 13 in the repeating unit represented by the above formula (2).
  • W A represents C (R A2 ) 2 , NR A1 , nitrogen atom, CR A2 , oxygen atom, sulfur atom or selenium atom, respectively, preferably C (R A2 ) 2 , CR A2 or sulfur atom, and CR A2 Or a sulfur atom is more preferable.
  • R A1 is an alkyl group which may contain at least one of —O—, —S— and —NR A3 — in the carbon chain, a group represented by the formula (1-1) described later, Or a single bond is shown.
  • R A1 is preferably the above alkyl group or a group represented by the formula (1-1) described later.
  • the alkyl group that can be taken as R A1 may be linear or branched.
  • the alkyl group preferably has 1 to 35 carbon atoms, and more preferably 1 to 25 carbon atoms.
  • R A2 in W A has the same meaning as R A2 in Z A , and preferred ones are also the same.
  • R A3 represents a hydrogen atom or a substituent.
  • the substituent that can be employed as R A3 is not particularly limited, and is the same as the substituent in R 1S and R 2S described later, and the preferred range is also the same.
  • one W A be one of the following embodiments embodiments 1 to 3, it is preferable that the aspect 1.
  • Embodiments 1 W A is CR A2, and the R A2 is a single bond.
  • Aspect 2 W A is NR A1 and R A1 is a single bond.
  • Embodiment 3 W A is C (R A2) 2, and wherein one is a single bond of the R A2, the other is a hydrogen atom, a halogen atom or the alkyl group.
  • CR A2 (carbon atom), NR A1 (nitrogen atom), or C (R A2 ) 2 (carbon atom) having the single bond is a bonding site in formula (A-6) (wherein * Show).
  • the aromatic heterocyclic groups represented by the above formulas (A-7) and (A-12) may each have a substituent.
  • a substituent is not particularly limited, and is the same as the substituent that the aromatic hydrocarbon group and the aromatic heterocyclic group that can be adopted as A 10 may have, and the preferable ones are also the same. is there.
  • a 12 is a group of the formulas (A-1) to (A-12), the formulas (A-1) to (A-6), the formulas (A-8) to (A-10), A-12) is preferably an aromatic heterocyclic group represented by formula (A-1), formula (A-3), formula (A-4) or formula (A-6).
  • An aromatic heterocyclic group is more preferable, and an aromatic heterocyclic group represented by the formula (A-3) is further preferable.
  • L a represents an alkylene group having 1 to 20 carbon atoms which may contain at least one of —O—, —S— and —NR 1S — in the carbon chain.
  • an alkylene group containing —O— in the carbon chain includes a group having —O— in the middle of a carbon-carbon bond, a group having —O— at one or both ends, and a carbon-carbon bond. And a group having —O— at one or both ends.
  • the alkylene group contains —O—, —S—, and —NR 1S —, the total of these numbers is at least one, and the upper limit is not particularly limited, but for example, five.
  • Alkylene group which may take as L a is straight-chain, may be either branched or cyclic, it is preferably a linear or branched alkylene group.
  • the number of carbon atoms of the alkylene group is preferably 1 to 15 and more preferably 1 to 10 in terms of carrier mobility and solubility.
  • Alkylene group which may take as L a is in the case of branched-chain, for the carbon number of the branch portion, is intended to include the carbon number of the alkylene group represented by L a.
  • L a is -NR 1S - include, and if the R 1S contains a carbon atom, the carbon number of R 1S shall not be included in the carbon number of the alkylene group can take as L a.
  • Ar represents an aromatic heterocyclic group or an aromatic hydrocarbon group having 6 to 18 carbon atoms.
  • the aromatic heterocyclic group that can be taken as Ar may be a monocyclic group or a condensed group of two or more rings, and is preferably a monocyclic group in terms of carrier mobility. In the case of a monocyclic group, the number of ring members is preferably 5 to 7 members. Further, the ring-constituting hetero atom contained in the aromatic heterocyclic group is preferably a nitrogen atom, an oxygen atom, a sulfur atom or a selenium atom, and more preferably a sulfur atom.
  • the aromatic heterocyclic group which may take as Ar among aromatic heterocyclic group which may take as A 10, the above formula (A-1) ⁇ aromatic heterocyclic aromatic other than the groups represented by (A-12) A group heterocyclic group is preferred.
  • the aromatic hydrocarbon group having 6 to 18 carbon atoms that can be used as Ar is not particularly limited.
  • the aromatic hydrocarbon group is a benzene ring group, a naphthalene ring group, or an aromatic hydrocarbon condensed with three or more rings (for example, fluorene). And a group obtained by removing two or more hydrogen atoms from the ring.
  • a benzene ring group or a naphthalene ring group is preferable, and a benzene ring group is preferable.
  • L b represents an alkyl group having 1 to 100 carbon atoms which may contain at least one of —O—, —S— and —NR 2S — in the carbon chain.
  • the alkyl group that can be taken as L b may be linear, branched or cyclic, but is preferably a linear or branched alkyl group from the viewpoint of carrier mobility and solubility.
  • a chain alkyl group is more preferred.
  • the alkyl group may be a halogenated alkyl group having a halogen atom (preferably a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, more preferably a fluorine atom) as a substituent.
  • Number of carbon atoms in the alkyl group can take as L b is from 1 to 100, it is preferably 9-100.
  • the group represented by the formula (1-1) has a plurality of L b , at least one L b is the above alkyl group having 9 to 100 carbon atoms from the viewpoint of carrier mobility and solubility. It is preferably 20 to 100 alkyl groups, more preferably 20 to 40 alkyl groups.
  • the alkyl group that can be taken as L b is a branched chain, the carbon number of the branched portion is included in the carbon number of the alkyl group that can be taken as L b .
  • L b contains —NR 2S — and this R 2S contains a carbon atom
  • the carbon number of R 2S is not included in the carbon number of the alkylene group that can be taken as L b .
  • R 1S and R 2S each represent a hydrogen atom or a substituent.
  • the substituent that can be adopted as R 1S and R 2S is not particularly limited, and examples thereof include an alkyl group (preferably a linear or branched alkyl group having 1 to 10 carbon atoms), a halogen atom (preferably a fluorine atom). , A chlorine atom, a bromine atom or an iodine atom), or an aromatic hydrocarbon group (preferably an aromatic hydrocarbon group having 6 to 20 carbon atoms).
  • R 1S and R 2S are each preferably a hydrogen atom or an alkyl group, and more preferably an alkyl group.
  • the position of Ar (ring member atom) to which L b is bonded is not particularly limited.
  • L when L a is the 1-position of the ring members to bind
  • a preferably 2 to 4-position more preferably at least one L b is bonded to the 4-position .
  • l is an integer of 1 to 5, preferably 1 or 2.
  • the plurality of L b may be the same as or different from each other.
  • * represents a binding site for introduction into the above repeating unit.
  • This binding site is the La of the group represented by the formula (1-1)
  • a group derived from the Gina shift chalcogenopyryloarylidene phen compounds can take as the A 10, aromatic hydrocarbon group, an aromatic heterocyclic group or vinylene group, a nitrogen atom, the nitrogen atom in NR A1 in W a of the formula (A1) or (a-2) ring-constituting nitrogen atom in, in NR X in X a, or, later to a 11 or binds an aromatic hydrocarbon group or aromatic heterocyclic group a 13.
  • m 12 is an integer of 0 to 4, preferably an integer of 1 to 4, more preferably an integer of 1 to 3, more preferably 1 or 2, and particularly preferably 1.
  • the plurality of A 12 may be the same aromatic heterocyclic group or different aromatic heterocyclic groups.
  • a 11 and A 13 are each an aromatic hydrocarbon group, an aromatic heterocyclic group other than the aromatic heterocyclic groups represented by the above formulas (A-1) to (A-12), a vinylene group, or An ethynylene group is shown.
  • aromatic hydrocarbon group and vinylene group which can be taken as A 11 and A 13 are not particularly limited, and are the same as the aromatic hydrocarbon group and vinylene group which can be taken as A 10 , and preferred ones are also the same.
  • Aromatic heterocyclic groups that can be used as A 11 and A 13 are not particularly limited as long as they are other than the aromatic heterocyclic groups represented by the above formulas (A-1) to (A-12). It may be a ring group, may be a condensed group of two or more rings, or may be a group in which monocyclic or condensed heterocyclic groups are linked by a carbon-carbon double bond. Good. In the case of a monocyclic group, the number of ring members is preferably 5 to 7 members. Further, the ring-constituting hetero atom contained in the aromatic heterocyclic group is preferably a nitrogen atom, an oxygen atom, a sulfur atom or a selenium atom, and more preferably a sulfur atom.
  • aromatic heterocyclic group that can be taken as A 11 and A 13 include aromatic heterocyclic groups represented by formulas (A-1) to (A-12) among the aromatic heterocyclic groups that can be taken as A 10.
  • aromatic heterocyclic groups represented by formulas (A-1) to (A-12) among the aromatic heterocyclic groups that can be taken as A 10.
  • aromatic heterocyclic group and preferable ones are also the same.
  • a 11 and A 13 are each preferably an aromatic hydrocarbon group or an aromatic heterocyclic group, more preferably a benzene ring or an aromatic heterocyclic group, and each represented by a benzene ring or a formula (Ar-1) described later. More preferred are benzene rings, furan rings, thiophene rings or selenophene rings, and most preferred are thiophene rings.
  • a 11 and A 13 may be the same as or different from each other.
  • a 11 and A 13 may each have a substituent.
  • a substituent is not particularly limited, and is the same as the substituent that the aromatic hydrocarbon group and the aromatic heterocyclic group that can be adopted as A 10 may have, and the preferable ones are also the same. is there.
  • * represents a binding site with another group that forms the repeating unit represented by the formula (2).
  • X d represents an oxygen atom, a sulfur atom, a selenium atom or NR D1 .
  • X d is preferably an oxygen atom, a sulfur atom or a selenium atom, more preferably an oxygen atom or a sulfur atom, and still more preferably a sulfur atom.
  • Z d represents a nitrogen atom or CR D2 , respectively. In the ring represented by the above formula, an embodiment in which one of the two Z d is a nitrogen atom and the other is CR D2 or an embodiment in which the two Z d are both CR D2 is preferable.
  • R D1 and R D2 each represent a hydrogen atom or a substituent, and preferably a hydrogen atom.
  • the substituent that can be taken as R D1 and R D2 is not particularly limited, and is preferably the same as the substituent that the aromatic hydrocarbon group and the aromatic heterocyclic group that can be taken as A 10 may have. The range is the same.
  • R D1 and R D2 are each an alkoxy group, they may be bonded to each other to form an alkylenedioxy group, and an alkylenedioxythiophene ring may be formed as the ring represented by the formula (Ar-1).
  • the number of carbon atoms of the alkylene group is as described above, but 1 to 3 is preferable.
  • an embodiment in which X d is a sulfur atom and Z d is both CR D2 (R D2 is preferably a hydrogen atom) is preferable.
  • Z d is both CR D2 and R D2 is a substituent, two R D2s may be bonded to each other to form a ring.
  • md is an integer of 1 to 4, preferably 1 or 2.
  • m 11 and m 13 are each an integer of 0 to 4, preferably an integer of 0 to 2, and preferably 1 or 2.
  • m 11 and m 13 are each an integer of 2 to 4, the plurality of A 11 and A 13 may be the same or different.
  • m 11 to m 13 can all take 0, but not all take 0. That is, the sum of m 11 , m 12 and m 13 is 1 or more, specifically 1 to 12.
  • the group other than the group derived from the dinaphthochalcogenophene compound (a group corresponding to A 11 and A 13 ) in the repeating unit is: preferentially attributed to a 11.
  • the polymer 2 used in the examples is interpreted as m 11 is 4 and m 13 is 0.
  • the specific example of the repeating unit represented by the said Formula (1) is shown to the following and an Example, this invention is not limited to these.
  • those having a dinaphthothiophene skeleton were shown, but in the present invention, those in which the dinaphthothiophene skeleton is replaced with a dinaphthofuran skeleton or a dinaphthoselenophene skeleton are also included.
  • at least one hydrogen atom is an alkyl group that may include at least one of —O—, —S—, and —NR—, or the above formula (1-1). It may be substituted with the group represented.
  • the alkyl group has the same meaning as the alkyl group, which is a preferred substituent that can be taken as the above R 11 and R 12 , R represents a hydrogen atom or a substituent, and the substituent that can be taken as R is the above R 1S and It is synonymous with the substituent in R2S .
  • the polymer of the present invention may contain one type of repeating unit represented by the formula (1), or two or more types.
  • the polymer of the present invention has two or more repeating units represented by the formula (1).
  • the polymer having two or more repeating units may be a random copolymer or a block copolymer.
  • the polymer of the present invention may be an oligomer having a repeating unit number (degree of polymerization) n of 2 to 9, or may be a polymer compound (polymer) having a repeating unit number n of 10 or more.
  • a polymer compound is preferable because it can have carrier mobility, homogeneity, and heat resistance.
  • the degree of polymerization n can be estimated from the weight average molecular weight described later and the mass of each repeating unit.
  • the polymer of the present invention may have a repeating unit other than the repeating unit represented by the above formula (1) (referred to as another repeating unit).
  • the polymer of the present invention may have another repeating unit in any of its main chains.
  • a group derived from a dinaphthochalcogenophene compound and A You may have between any of 10 .
  • the content of the repeating unit represented by the formula (1) is preferably 60 to 100% with respect to the total number of moles of the repeating unit of the polymer of the present invention, and is preferably 80 to 100%. %, More preferably 90 to 100%, and particularly preferably formed substantially only of the repeating unit represented by the formula (1).
  • being substantially formed only from the repeating unit represented by the formula (1) means that the molar ratio in the polymer of the repeating unit represented by the formula (1) is 95% or more. Meaning 97% or more, more preferably 99% or more.
  • the polymer of the present invention has a weight average molecular weight of preferably 2,000 or more, more preferably 10,000 or more, and more preferably 20,000 or more in terms of improving carrier mobility and preventing variation. More preferably, it is more preferably 30,000 or more, and most preferably 45,000 or more. From the viewpoint of solubility, the weight average molecular weight is preferably 1,000,000 or less, more preferably 300,000 or less, still more preferably 200,000 or less, and 150,000. It is particularly preferred that In the present invention, the weight average molecular weight and the number average molecular weight are measured by a gel permeation chromatography (GPC) method, and are determined by conversion with standard polystyrene.
  • GPC gel permeation chromatography
  • GPC uses HLC-8121GPC (manufactured by Tosoh Corporation) and two columns of TSKgel GMH HR -H (20) HT (Tosoh Corporation, 7.8 mm ID ⁇ 30 cm) are used for elution. 1,2,4-Trichlorobenzene is used as the liquid.
  • the conditions are as follows: the sample concentration is 0.02 mass%, the flow rate is 1.0 mL / min, the sample injection amount is 300 ⁇ L, the measurement temperature is 160 ° C., and an IR (infrared) detector is used.
  • the calibration curve is “Standard sample TSK standard, polystyrene” manufactured by Tosoh Corporation: “F-128”, “F-80”, “F-40”, “F-20”, “F-10”, “ It is manufactured using 12 samples of “F-4”, “F-2”, “F-1”, “A-5000”, “A-2500”, “A-1000”, and “A-500”.
  • the terminal structure of the polymer of the present invention is not particularly limited, and is uniquely determined by the presence or absence of other repeating units, the type of substrate used during synthesis, or the type of quenching agent (reaction terminator) used during synthesis. Not.
  • the method for synthesizing the polymer of the present invention is not particularly limited, and the polymer can be synthesized with reference to ordinary methods.
  • a group derived from Gina shift chalcogen compound in the formula (1) and combines the respective precursor compounds capable of directing each group represented by A 10, each of the precursor, Suzuki coupling reaction, or It can be synthesized by a cross coupling reaction such as a Stille coupling reaction.
  • JP 2010-527327, JP 2007-516315, JP 2014-515043, JP 2014-507488, JP 2011-501451, JP 2010- Reference can be made to publications such as No. 18790, International Publication No. 2012/174561, Special Table 2011-514399, and Special Table 2011-514913.
  • Organic semiconductor composition contains the above-described polymer and solvent, and is preferably used for forming the organic semiconductor film of the present invention.
  • a polymer is as above-mentioned, and may be used individually by 1 type and may be used together 2 or more types.
  • the polymer content of the organic semiconductor composition is not particularly limited, and can be represented, for example, by the content in the solid content excluding the solvent described below.
  • As a content rate in solid content it is preferable to set it as the same range as the content rate of the polymer in the organic-semiconductor film mentioned later, for example.
  • a solvent will not be specifically limited if the above-mentioned polymer is dissolved or disperse
  • a solvent may be used individually by 1 type and may use 2 or more types together.
  • the organic solvent is not particularly limited, but an (aliphatic) hydrocarbon solvent such as hexane, octane or decane, an aromatic hydrocarbon solvent such as toluene, xylene, mesitylene, ethylbenzene, decalin, 1-methylnaphthalene, tetralin or anisole.
  • an (aliphatic) hydrocarbon solvent such as hexane, octane or decane
  • an aromatic hydrocarbon solvent such as toluene, xylene, mesitylene, ethylbenzene, decalin, 1-methylnaphthalene, tetralin or anisole.
  • Ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone, halogenated hydrocarbon solvents such as dichloromethane, chloroform, tetrachloromethane, dichloroethane, trichloroethane, tetrachloroethane, chlorobenzene, dichlorobenzene or chlorotoluene, ethyl acetate, butyl acetate Ester solvents such as amyl acetate or ethyl lactate, methanol, propanol, butanol, pentanol, hexanol, cyclohexanol, Alcohol solvents such as tilcellosolve, ethyl cellosolve or ethylene glycol, ether solvents such as butoxybenzene, dibutyl ether, tetrahydrofuran or dioxane, amide
  • the content of the solvent in the organic semiconductor composition is preferably 90 to 99.99% by mass, more preferably 95 to 99.99% by mass, and 96 to 99.95% by mass. Is more preferable.
  • the organic semiconductor composition of the present invention may contain components other than the polymer and solvent of the present invention.
  • examples of such a component include a binder polymer or various additives.
  • Binder polymer As the binder polymer, a binder polymer usually used in an organic semiconductor composition can be used without any particular limitation.
  • a binder polymer include polystyrene, poly ( ⁇ -methylstyrene), polyvinyl cinnamate, poly (4-divinylbenzene), poly (4-vinylphenol), poly (4-methylstyrene), polycarbonate, Insulating polymers such as polyarylate, polyester, polyamide, polyimide, polyurethane, polysiloxane, polysulfone, polymethyl methacrylate, polymethyl acrylate, cellulose, polyethylene or polypropylene, and copolymers thereof, polysilane, polycarbazole, poly Semiconductor polymers such as arylamine, polyfluorene, polythiophene, polypyrrole, polyaniline, polyparaphenylene vinylene, polyacene or polyheteroacene, and these Copolymers, rubbers, or, may
  • a polymer compound having a benzene ring (a polymer having a repeating unit having a benzene ring group) is preferable.
  • content in particular of the repeating unit which has a benzene ring group is not restrict
  • the upper limit is not particularly limited, but 100 mol% can be mentioned.
  • the weight average molecular weight of the binder polymer is not particularly limited, but is preferably 1,000 to 10 million, more preferably 3,000 to 5 million, and still more preferably 5,000 to 3 million.
  • the content of the binder polymer in the organic semiconductor composition is not particularly limited.
  • the content in the solid content is preferably in the same range as the content of the binder polymer in the organic semiconductor film described later.
  • an organic semiconductor composition, particularly an organic semiconductor film of an organic thin film transistor element is formed using an organic semiconductor composition having a binder polymer content within the above range, carrier mobility and heat resistance are further improved.
  • an additive what is normally used for an organic-semiconductor composition can be used, without being restrict
  • the content of the additive in the organic semiconductor composition is not particularly limited.
  • the content in the solid content is preferably in the same range as the content of the additive in the organic semiconductor film described later. . It is excellent in film forming property as it is the said range.
  • an organic semiconductor element particularly an organic semiconductor film of an organic thin film transistor element
  • the film forming property is excellent, and carrier mobility and heat resistance are more improved. improves.
  • the method for preparing the organic semiconductor composition is not particularly limited, and a normal preparation method can be adopted.
  • the organic semiconductor composition of the present invention can be prepared by adding a predetermined amount of each component to a solvent and appropriately stirring.
  • the organic semiconductor element of the present invention includes the organic semiconductor film of the present invention. Although it does not specifically limit as an organic-semiconductor element of this invention, It uses preferably as a nonluminous organic-semiconductor device.
  • the non-light-emitting organic semiconductor device may be any device that does not aim to emit light, such as an organic thin film transistor element that controls the amount of current or voltage, an organic photoelectric conversion element that converts light energy into electric power (light Solid-state imaging devices for sensors or solar cells for energy conversion), organic thermoelectric conversion devices that convert thermal energy into electric power, gas sensors, organic rectifying devices, organic inverters, information recording devices, and the like.
  • an organic semiconductor film functions as an electronic element.
  • Organic thin film transistor element as a preferred embodiment of the organic semiconductor element of the present invention will be described.
  • the organic thin film transistor element (also referred to as organic TFT element) of the present invention has the organic semiconductor film (also referred to as organic semiconductor layer or semiconductor active layer) of the present invention, and further includes a source electrode, a drain electrode, a gate electrode, Can have.
  • the organic TFT element of the present invention is provided on a substrate in contact with an organic semiconductor layer, a gate electrode, an organic semiconductor layer, a gate insulating layer provided between the gate electrode and the organic semiconductor layer, and an organic semiconductor layer. And a source electrode and a drain electrode which are connected via each other.
  • an organic semiconductor layer and a gate insulating layer are provided adjacent to each other. If the organic thin-film transistor element of this invention is provided with said each layer, it will not specifically limit about the structure. For example, it has any structure such as bottom contact type (bottom gate-bottom contact type and top gate-bottom contact type) or top contact type (bottom gate-top contact type and top gate-top contact type). May be.
  • the organic thin film transistor element of the present invention is more preferably a bottom gate-bottom contact type or a bottom gate-top contact type (these are collectively referred to as a bottom gate type).
  • a bottom gate type bottom gate-bottom contact type and top gate-bottom contact type
  • FIG. 1 is a schematic cross-sectional view of a bottom gate-bottom contact type organic thin film transistor element 100 as an example of the semiconductor element of the present invention.
  • the organic thin film transistor element 100 includes a substrate (base material) 10, a gate electrode 20, a gate insulating film 30, a source electrode 40 and a drain electrode 42, an organic semiconductor film 50, and a sealing. Layer 60 in this order.
  • the substrate (base material), the gate electrode, the gate insulating film, the source electrode, the drain electrode, the organic semiconductor film, the sealing layer, and the respective manufacturing methods will be described in detail.
  • the substrate plays a role of supporting a gate electrode, a source electrode, a drain electrode and the like which will be described later.
  • substrate is not restrict
  • substrate is not specifically limited, For example, it is preferable that it is 10 mm or less, it is still more preferable that it is 2 mm or less, and it is especially preferable that it is 1.5 mm or less. On the other hand, it is preferably 0.01 mm or more, and more preferably 0.05 mm or more.
  • the gate electrode As the gate electrode, a normal electrode used as the gate electrode of the organic TFT element can be applied without particular limitation.
  • the material (electrode material) for forming the gate electrode is not particularly limited. For example, gold, silver, aluminum, copper, chromium, nickel, cobalt, titanium, platinum, magnesium, calcium, barium, sodium, or other metals, InO 2 , conductive oxide such as SnO 2 or indium tin oxide (ITO), conductive polymer such as polyaniline, polypyrrole, polythiophene, polyacetylene or polydiacetylene, semiconductor such as silicon, germanium or gallium arsenide, or fullerene And carbon materials such as carbon nanotubes or graphite. Especially, the said metal is preferable and silver or aluminum is more preferable.
  • the thickness of the gate electrode is not particularly limited, but is preferably 20 to 200 nm.
  • the gate electrode may function as the substrate, and in this case, the substrate may not be provided.
  • a method for forming the gate electrode is not particularly limited.
  • coating or printing a thing is mentioned.
  • examples of the patterning method include printing methods such as inkjet printing, screen printing, offset printing or relief printing (flexographic printing), photolithography methods, mask vapor deposition methods, and the like.
  • the gate insulating film is not particularly limited as long as it is an insulating film (layer), and may be a single layer or a multilayer.
  • the gate insulating layer is preferably formed of an insulating material, and examples of the insulating material include organic polymers and inorganic oxides.
  • the organic polymer and the inorganic oxide are not particularly limited as long as they have insulating properties, and those that can form a thin film, for example, a thin film having a thickness of 1 ⁇ m or less are preferable.
  • Each of the organic polymer and the inorganic oxide may be used alone or in combination of two or more, or the organic polymer and the inorganic oxide may be used in combination.
  • polyvinyl phenol polystyrene (PS), poly (meth) acrylate represented by polymethylmethacrylate, polyvinyl alcohol, polyvinyl chloride (PVC), polyfluorination Vinylidene (PVDF), polytetrafluoroethylene (PTFE), cyclic fluoroalkyl polymers represented by CYTOP (registered trademark), polycycloolefin, polyester, polyethersulfone, polyetherketone, polyimide, epoxy resin, polydimethylsiloxane ( Polyorganosiloxane represented by PDMS), polysilsesquioxane, butadiene rubber and the like.
  • PS polyvinyl phenol, polystyrene (PS), poly (meth) acrylate represented by polymethylmethacrylate, polyvinyl alcohol, polyvinyl chloride (PVC), polyfluorination Vinylidene (PVDF), polytetrafluoroethylene (PTFE), cyclic fluoroal
  • thermosetting resins such as phenol resin, novolac resin, cinnamate resin, acrylic resin, and polyparaxylylene resin are also included.
  • the organic polymer can be used in combination with a compound having a reactive substituent such as an alkoxysilyl group, a vinyl group, an acryloyloxy group, an epoxy group, or a methylol group.
  • the organic polymer is preferably crosslinked and cured for the purpose of increasing the solvent resistance or the insulation resistance of the gate insulating layer.
  • Crosslinking is preferably performed by generating an acid or radical using light, heat or both.
  • radical generator that generates radicals by light or heat
  • thermal polymerization initiators (H1) and photopolymerization described in paragraphs [0182] to [0186] of JP2013-214649A Initiator (H2), photo radical generator described in paragraphs [0046] to [0051] of JP2011-186069A, or paragraphs [0042] to [0056] of JP2010-285518A These radical photopolymerization initiators can be suitably used, and their contents are preferably incorporated in the present specification.
  • number average molecular weight (Mn) is 140 to 5,000, described in paragraphs [0167] to [0177] of JP2013-214649A, has a crosslinkable functional group, and has a fluorine atom. It is also preferred to use “no compound (G)”, the contents of which are preferably incorporated herein.
  • a photoacid generator that generates an acid by light
  • a photocationic polymerization initiator described in paragraphs [0033] to [0034] of JP2010-285518A or JP2012
  • the acid generators particularly sulfonium salts or iodonium salts described in paragraphs [0120] to [0136] of JP-A No. 163946 can be preferably used, and the contents thereof are preferably incorporated herein.
  • thermal acid generator that generates an acid by heat
  • a thermal cationic polymerization initiator described in JP-A 2010-285518, paragraphs [0035] to [0038], in particular, an onium salt, or the like
  • the catalysts described in paragraphs [0034] to [0035] of JP-A-2005-354012, particularly sulfonic acids and sulfonic acid amine salts, can be preferably used, and the contents thereof are preferably incorporated herein.
  • crosslinking agents described in paragraphs [0032] to [0033] of JP-A-2005-354012 particularly bifunctional or higher epoxy compounds or oxetane compounds, paragraphs [0046] to [0062] of JP-A-2006-303465.
  • a compound having at least two crosslinking groups, wherein at least one of the crosslinking groups is a methylol group or an NH group or paragraphs of JP2012-163946A It is also preferable to use compounds having two or more hydroxymethyl groups or alkoxymethyl groups in the molecule, as described in [0137] to [0145], and the contents thereof are preferably incorporated herein.
  • the method for forming the gate insulating layer with an organic polymer is not particularly limited, and examples thereof include a method in which a coating solution containing an organic polymer is applied and, if necessary, cured.
  • the solvent used in the coating solution is not particularly limited as long as it can dissolve or disperse the organic polymer, and it is appropriately selected from among the commonly used solvents depending on the type of the organic polymer. Can do.
  • the coating method is not particularly limited, and examples thereof include the above printing methods. Among these, a wet coating method such as a micro gravure coating method, a dip coating method, a screen coating printing, a die coating method or a spin coating method is preferable.
  • the application conditions are not particularly limited, and can be set as appropriate.
  • the curing method and conditions are not particularly limited as long as the organic polymer can be crosslinked and the conditions.
  • the crosslinking method (radical or acid), and further, the photoacid generator or thermal acid generator to be used. It can be set as appropriate according to the type of the agent.
  • the inorganic oxide is not particularly limited.
  • oxides such as nickel, compounds having a perovskite structure, such as SrTiO 3 , CaTiO 3 , BaTiO 3 , MgTiO 3, or SrNb 2 O 6 , or composite oxides or mixtures thereof.
  • silicon oxide in addition to silicon oxide (SiO X ), BPSG (Boron Phosphorus Silicon Glass), PSG (Phosphorus Silicon Glass), BSG (Borosisilicate glass), AsSG (Arsenic Silicate Glass), PbSG (Lead Silicate Glass). Glass), silicon oxynitride (SiON), SOG (spin-on-glass), or low dielectric constant SiO 2 -based material (eg, polyaryl ether, cycloperfluorocarbon polymer, benzocyclobutene, cyclic fluororesin, polytetrafluoroethylene, Fluorinated aryl ether, fluorinated polyimide, amorphous carbon or organic SOG).
  • SiO 2 -based material eg, polyaryl ether, cycloperfluorocarbon polymer, benzocyclobutene, cyclic fluororesin, polytetrafluoroethylene, Fluorinated aryl ether, fluorinated polyimi
  • a method for forming the gate insulating layer with an inorganic oxide is not particularly limited, and for example, a vacuum film forming method such as a vacuum deposition method, a sputtering method, an ion plating method, or a CVD (chemical vapor deposition) method can be used. .
  • plasma may be assisted using an arbitrary gas, an ion gun, a radical gun, or the like.
  • a precursor corresponding to each metal oxide specifically, a metal halide such as chloride or bromide, a metal alkoxide, or a metal hydroxide may be converted into an acid such as hydrochloric acid, sulfuric acid or nitric acid in alcohol or water.
  • the gate insulating layer can be formed by hydrolysis with a base such as sodium hydroxide or potassium hydroxide. When such a solution process is used, the above wet coating method can be used.
  • the gate insulating layer is formed of an inorganic oxide
  • any one of the lift-off method, the sol-gel method, the electrodeposition method and the shadow mask method is combined with the patterning method as necessary. It can also be used.
  • the gate insulating layer may be subjected to surface treatment such as corona treatment, plasma treatment, UV (ultraviolet ray) / ozone treatment. In this case, it is preferable not to roughen the surface roughness by each treatment.
  • the arithmetic average roughness Ra or the root mean square roughness R q (both JIS B0601: 2013) of the surface of the gate insulating layer after the treatment is preferably 0.5 nm or less.
  • the thickness of the gate insulating film is not particularly limited, but is preferably 100 to 1000 nm.
  • the source electrode is an electrode through which current flows from the outside through wiring.
  • the drain electrode is an electrode that sends current to the outside through wiring.
  • the material for forming the source electrode and the drain electrode can be the same as the electrode material for forming the gate electrode described above. Among these, metals are preferable, and silver is more preferable.
  • the thickness of a source electrode and a drain electrode is not specifically limited, 1 nm or more is preferable respectively and 10 nm or more is especially preferable. Moreover, 500 nm or less is preferable and 300 nm or less is especially preferable.
  • interval (gate length) between a source electrode and a drain electrode can be determined suitably, for example, 200 micrometers or less are preferable and 100 micrometers or less are especially preferable.
  • the gate width can be determined as appropriate, but is preferably 5000 ⁇ m or less, and particularly preferably 1000 ⁇ m or less.
  • a method for forming the source electrode and the drain electrode is not particularly limited. For example, a method of vacuum-depositing or sputtering an electrode material on a substrate on which a gate electrode and a gate insulating film are formed, and applying an electrode forming composition. Or the method of printing etc. are mentioned. In the case of patterning, the patterning method is the same as the gate electrode method described above.
  • the organic semiconductor film contains the above-described polymer of the present invention.
  • the polymer contained in the organic semiconductor film may be one type or two or more types.
  • the organic semiconductor film contains the polymer of the present invention it has high carrier mobility with high homogeneity and high heat resistance. The reason is not clear, but it can be considered as follows. That is, the group derived from the dinaphthochalcogenophene compound, which is a constituent component of the polymer of the present invention, is an electron donating (donor) unit and has a structure in which five rings are condensed. Therefore, it can be said that it has a relatively wide ⁇ plane and is advantageous for packing between molecules.
  • the polymer of the present invention combines A 10 which is an electron-accepting (acceptor) unit, preferably an aromatic heterocyclic group represented by any one of formulas (A-1) to (A-12).
  • the main chain skeleton is a kind of so-called “DA polymer” in which an electron donating (donor) unit and an electron accepting (acceptor) unit are formed.
  • DA polymer so-called “DA polymer” in which an electron donating (donor) unit and an electron accepting (acceptor) unit are formed.
  • DA type polymer containing a specific skeleton is easily polarized in a molecule and is advantageous for packing between molecules. Therefore, it is considered that the carrier mobility is increased and high heat resistance is exhibited.
  • the group derived from the above-mentioned dinaphthochalcogenophene compound has an asymmetric structure, and this group itself has a dipole moment.
  • solubility is high. Therefore, it is considered that the coating film after the application of the composition containing a polymer provides a uniform film with less unevenness and an organic semiconductor element with less variation in carrier mobility.
  • the content of the polymer in the organic semiconductor film is not particularly limited and can be set as appropriate. For example, it is preferably 10% by mass or more, more preferably 30% by mass or more, and further preferably 50% by mass or more.
  • the upper limit can be 100 mass%.
  • the upper limit is preferably 90% by mass or less, and more preferably 80% by mass or less, for example.
  • the organic semiconductor film may contain the binder polymer or additive in addition to the polymer of the present invention.
  • the binder polymer and additives are as described above.
  • Each of the binder polymer and the additive may contain one kind or two or more kinds.
  • the content rate of the binder polymer in the organic semiconductor film is not particularly limited and can be appropriately set. For example, it is preferably 90% by mass or less, more preferably 70% by mass or less, and further preferably 50% by mass or less.
  • the lower limit can be 0% by mass or more, for example, preferably 10% by mass or more, more preferably 15% by mass or more, and further preferably 20% by mass or more.
  • the content of the additive in the organic semiconductor film is preferably 10% by mass or less, more preferably 5% by mass or less, and still more preferably 1% by mass or less.
  • the thickness of the organic semiconductor film cannot be uniquely determined according to the applied organic semiconductor element, but is preferably 10 to 500 nm, and more preferably 20 to 200 nm.
  • This organic semiconductor film can be formed by applying the organic semiconductor composition described above. Specifically, an organic semiconductor film can be formed by applying the organic semiconductor composition described above onto a substrate and drying it.
  • the application of the organic semiconductor composition on the substrate means not only an embodiment in which the organic semiconductor composition is directly applied to the substrate, but also the organic semiconductor composition above the substrate via another layer provided on the substrate.
  • a mode of applying the object is also included.
  • Another layer to which the organic semiconductor composition is applied (a layer that is in contact with the organic semiconductor layer and serves as a foundation of the organic semiconductor layer) is inevitably determined by the structure of the organic thin film transistor.
  • the bottom gate type is a gate insulating film
  • the top gate type top gate-bottom contact type and top gate-top contact type
  • a coating method of the organic semiconductor composition a normal method can be used, for example, a bar coating method, a spin coating method, a knife coating method, a doctor blade method, an ink jet printing method, a flexographic printing method, a gravure printing method, or a screen.
  • the printing method is mentioned.
  • a coating method of the organic semiconductor composition a method for forming an organic semiconductor film (so-called gap casting method) described in JP2013-207085A, and a method for manufacturing an organic semiconductor thin film described in International Publication No. 2014/175351 A method (so-called edge casting method or continuous edge casting method) or the like is also preferably used.
  • Drying can select appropriate conditions depending on the type of each component contained in the organic semiconductor composition. Although natural drying may be used, heat treatment is preferable from the viewpoint of improving productivity. Although the heat treatment conditions cannot be uniquely determined, for example, the heating temperature is preferably 30 to 250 ° C., more preferably 40 to 200 ° C., further preferably 50 to 150 ° C., and the heating time is 10 to 300 minutes. Preferably, 20 to 180 minutes is more preferable.
  • the organic semiconductor film of the present invention contains the polymer of the present invention and exhibits high heat resistance. Therefore, even when a heating process such as formation of a sealing layer is performed after the organic semiconductor is provided, the high carrier mobility of the organic semiconductor film can be maintained. Therefore, the organic thin film transistor element of the present invention preferably includes a sealing layer as the outermost layer from the viewpoint of durability. Thereby, both high carrier mobility and durability can be achieved.
  • a sealing agent composition for forming a sealing layer
  • the sealant is preferably heat dried to form a layer.
  • the heating conditions at this time cannot be uniquely determined depending on the type of the sealant, but for example, the heating temperature is preferably 50 to 200 ° C., more preferably 100 to 175 ° C. Other conditions such as the heating time are appropriately determined according to the type of the sealant.
  • the thickness of the sealing layer is not particularly limited, but is preferably 0.2 to 10 ⁇ m.
  • FIG. 2 is a schematic cross-sectional view showing a bottom gate-top contact type organic thin film transistor element 200 which is an example of the semiconductor element of the present invention.
  • the organic thin film transistor element 200 includes a substrate 10, a gate electrode 20, a gate insulating film 30, an organic semiconductor film 50, a source electrode 40 and a drain electrode 42, and a sealing layer 60. Have in this order.
  • the organic thin film transistor element 200 is the same as the organic thin film transistor element 100 except that the layer configuration (stacking mode) is different.
  • the organic thin film transistor element 200 includes the organic semiconductor film of the present invention. Therefore, even when the source electrode and the drain electrode are formed on the organic semiconductor film by heat treatment after applying or printing the electrode forming composition, the high carrier mobility of the organic semiconductor film can be maintained.
  • Polymer 2 was synthesized according to the following scheme.
  • the precipitate was collected by filtration and washed with methanol.
  • the obtained crude product was subjected to Soxhlet extraction sequentially with methanol, acetone and hexane to remove soluble impurities. Subsequently, after Soxhlet extraction with chloroform, the resulting solution was concentrated under reduced pressure, methanol was added, the precipitated solid was collected by filtration, washed with methanol, and vacuum dried at 80 ° C. for 12 hours. In this way, Polymer 2 (145 mg) was obtained.
  • the polystyrene equivalent number average molecular weight of the polymer 2 was 1.9 ⁇ 10 4 , and the weight average molecular weight was 4.6 ⁇ 10 4 .
  • intermediate body 11 is Journal of Materials Chemistry C, 2015, p. The compound described in 3,9849-9858.
  • Intermediate 10 (90 mg, 155 ⁇ mol), Intermediate 11 (201 mg, 155 ⁇ mol), Tri (o-tolyl) phosphine (P (o-tolyl) 3 : 3.8 mg, 12.4 ⁇ mol), Tris (dibenzylideneacetone) di Palladium (Pd 2 (dba) 3 : 3.1 mg, 3.1 ⁇ mol) and dehydrated chlorobenzene (5 mL) were mixed and stirred at 130 ° C. for 24 hours under a nitrogen atmosphere.
  • the reaction solution was cooled to room temperature, poured into a mixed solution of methanol (40 mL) / concentrated hydrochloric acid (2 mL), and stirred for 2 hours.
  • the precipitate was collected by filtration and washed with methanol.
  • the obtained crude product was subjected to Soxhlet extraction sequentially with methanol, acetone and hexane to remove soluble impurities. Subsequently, after Soxhlet extraction with chloroform, the resulting solution was concentrated under reduced pressure, methanol was added, the precipitated solid was collected by filtration, washed with methanol, and vacuum dried at 80 ° C. for 12 hours. In this way, polymer 9 (195 mg) was obtained.
  • the polystyrene equivalent number average molecular weight of the polymer 9 was 1.9 ⁇ 10 4 , and the weight average molecular weight was 4.6 ⁇ 10 4 .
  • Comparative compounds 1 to 5 shown below were prepared. Comparative compound 1 is a compound described in Patent Document 3. Comparative compound 2 is compound A described in Patent Document 2. Comparative compound 3 is poly (3-hexylthiophene-2,5-diyl) (manufactured by Aldrich). Comparative compounds 4 and 5 were synthesized in the same manner as in Synthesis Example 1 or 2, respectively.
  • Example 1 A bottom gate-bottom contact type organic thin film transistor element 100 shown in FIG. 1 was manufactured and its characteristics were evaluated. ⁇ Manufacture of organic thin-film transistor elements> Aluminum was vapor-deposited on a glass substrate (Eagle XG: manufactured by Corning, thickness 1.1 mm) to form a gate electrode (thickness 50 nm).
  • a silver ink (silver nanocolloid H-1 (trade name), manufactured by Mitsubishi Materials Corp.) is applied thereon, and an ink jet apparatus: DMP-2831 (trade name, manufactured by FUJIFILM Dimatics) is used as a source electrode. And a drain electrode shape (thickness: about 100 nm, gate length: 60 ⁇ m, gate width: 200 ⁇ m). Thereafter, the substrate was baked at 180 ° C. for 30 minutes and sintered to form a source electrode and a drain electrode. Thus, a device precursor was obtained.
  • Each organic semiconductor composition shown in Table 1 was spin-coated on the device precursor in a nitrogen glove box (500 rpm for 10 seconds, further 1,000 rpm for 30 seconds), and then on a hot plate at 100 ° C. for 1 hour.
  • the organic semiconductor layer (film thickness of about 20 nm) was formed by drying.
  • organic thin film transistor elements T1 to T21 of the present invention and comparative organic thin film transistor elements CT1 to CT5 were manufactured, respectively.
  • 10 samples were manufactured as samples for measuring carrier mobility.
  • the polymer content in the organic semiconductor layer was 100% by mass.
  • the carrier mobility mu AV the results of the organic thin-film transistor element T1 ⁇ T21, CT-3 and CT-4 shown in Table 1.
  • the carrier mobility ⁇ AV is preferably as high as possible. In this test, it is preferably 1 ⁇ 10 ⁇ 2 cm 2 / Vs or more.
  • I d (w / 2L) ⁇ C i (V g ⁇ V th ) 2
  • L is the gate length
  • w is the gate width
  • is the carrier mobility
  • C i is the capacitance per unit area of the gate insulating layer
  • V g is the gate voltage
  • V th is the threshold voltage.
  • the variation coefficient is calculated by the following equation for the carrier mobility ⁇ of 10 samples measured in the above “measurement of carrier mobility ⁇ ” test. did.
  • the standard deviation is calculated by a conventional method, the average value using the above carrier mobility mu AV.
  • This variation coefficient was evaluated as an index of variation in carrier mobility. Which of the following evaluation ranks included the obtained variation coefficient was determined. The smaller the variation coefficient, the smaller the variation in mobility between specimens. In this test, rank A or B is preferable, and rank A is more preferable.
  • Mutation coefficient (%) (standard deviation / average value) x 100
  • Carrier mobility maintenance ratio (%) (carrier mobility after heating ⁇ H AV / carrier mobility ⁇ AV ) ⁇ 100
  • Each of the organic thin film transistor elements CT1 to CT5 includes an organic semiconductor layer containing the above-described comparative compound, and does not have carrier mobility, homogeneity, and heat resistance. That is, the organic thin film transistor elements CT1 and CT2 each having an organic semiconductor layer containing the comparative compounds 1 and 2 which are dinaphthothiophene compounds have large variations in carrier mobility, and further, the carrier mobility is greatly increased after heating. Declined.
  • the organic semiconductor layer contains a polymer. However, these polymers are composed of repeating units that do not contain groups derived from dinaphthochalcogenophene compounds.
  • the organic thin-film transistor device containing these polymers was inferior to any of the carrier mobility mu AV and heat resistance.
  • the organic thin film transistor element CT5 includes an organic semiconductor layer containing a polymer composed only of a group derived from a dinaphthochalcogenophene compound, but is not sufficient in terms of variation in carrier mobility and heat resistance. It was.
  • each of the organic thin film transistor elements T1 to T21 of the present invention has an organic semiconductor layer containing the polymer of the present invention, and has a high level of carrier mobility, homogeneity and heat resistance. .
  • a 12 in the formula (2) is an aromatic heterocyclic group represented by the formula (A-3)
  • the effect of improving the carrier mobility is large, and the carrier mobility, its homogeneity and heat resistance are further improved. It was possible to have a high level of balance (elements Nos.

Abstract

下記式(1)で表される繰り返し単位を有する重合体を含有する有機半導体膜を備えた有機半導体素子、並びに、この重合体、これを含む有機半導体組成物及び有機半導体膜。式中、YはO、S又はSeを示す。R11~R14は置換基を示す。a及びbは0~3の整数、r及びsは0~2の整数である。A10は香族複素環基等を示す。m10は1~12の整数である。

Description

有機半導体素子、重合体、有機半導体組成物及び有機半導体膜
 本発明は、有機半導体素子、これに用いる重合体、有機半導体組成物及び有機半導体膜に関する。
 液晶ディスプレイ若しくは有機エレクトロルミネッセンスディスプレイ等のディスプレイ、RFID(radio frequency identifier:RFタグ)若しくはメモリ等の論理回路を用いる装置、又は、太陽電池等には、半導体素子が利用されている。中でも、有機半導体膜を有する有機半導体素子は、軽量化又は低コスト化が可能で柔軟性にも優れることから、無機半導体膜を有する無機半導体素子に対して、優位性を備えている。
 上述の有機半導体膜を形成する有機化合物として、有機高分子化合物及び低分子化合物が検討されてきた。有機高分子化合物として、例えば、互いに異なる2つの複素環の間に5員環構造を有する縮合環化合物由来の構造単位を有する高分子化合物が挙げられる(特許文献1)。また、低分子化合物として、例えば、ジナフトチオフェン化合物が挙げられる(特許文献2及び3)。
特開2015-172140号公報 特開2015-048346号公報 特開2013-197193号公報
 上述のディスプレイ等は高性能化が急速に進展しており、それに搭載される有機半導体素子には、高性能化と、性能のばらつきが低減された均質性とが求められている。
 更に、有機半導体素子ないしは有機半導体膜には、高温環境下に曝されることがあるため、高温条件下においてもキャリア移動度を維持する耐熱性が求められている。高温環境下としては、例えば、有機半導体素子を製造する際の高温条件、更には有機半導体素子の高温環境下での使用が挙げられる。
 しかし、従来の有機半導体素子は、キャリア移動度、その均質性及び耐熱性のいずれにおいても未だ十分ではなく、改善の余地があった。
 本発明は、キャリア移動度、その均質性及び耐熱性を兼ね備えた有機半導体素子、並びに、これに用いる重合体、有機半導体組成物及び有機半導体膜を提供することを課題とする。
 本発明者は、鋭意検討を重ねた結果、有機半導体素子において、ジナフトカルコゲノフェン化合物由来の縮合環構造と特定の共役基とを含む繰り返し単位を有する重合体を有機半導体膜に用いることができること、更に、この重合体を有機半導体膜に含有させることにより、キャリア移動度及びその均質性と耐熱性とを兼ね備えることが可能になることを、見出した。本発明はこれらの知見に基づき、更に検討を重ね、完成されるに至ったものである。
 本発明の上記課題は下記の手段により解決された。
<1>下記式(1)で表される繰り返し単位を有する重合体を含有する有機半導体膜を備えた有機半導体素子。
Figure JPOXMLDOC01-appb-C000011
 式(1)中、
は、酸素原子、硫黄原子又はセレン原子を示す。
11~R14は各々独立に置換基を示す。
a及びbは各々独立に0~3の整数であり、r及びsは各々独立に0~2の整数である。
10は芳香族炭化水素基、芳香族複素環基、ビニレン基又はエチニレン基を示す。
10は1~12の整数である。
<2>繰り返し単位が、下記式(2)で表される<1>に記載の有機半導体素子。
Figure JPOXMLDOC01-appb-C000012
 式(2)中、
、R11~R14、a、b、r及びsはそれぞれ式(1)におけるY、R11~R14、a、b、r及びsと同義である。
11及びA13は、各々独立に、芳香族炭化水素基、下記式(A-1)~(A-12)で表される芳香族複素環基以外の芳香族複素環基、ビニレン基又はエチニレン基を示す。
12は下記式(A-1)~(A-12)のいずれかで表される芳香族複素環基を示す。
11及びm13は各々独立に0~4の整数であり、m12は0~4の整数である。ただし、m11、m12及びm13の合計は1以上である。
Figure JPOXMLDOC01-appb-C000013
 式(A-1)~(A-12)中、
は、各々独立に、酸素原子、硫黄原子、セレン原子又はNRを示す。R及びRは、炭素鎖中に-O-、-S-及び-NRA3-のうち少なくとも1つを含んでいてもよいアルキル基、又は、下記式(1-1)で表される基を示す。
は各々独立に酸素原子又は硫黄原子を示す。
は各々独立にCRA2又は窒素原子を示す。
は、各々独立に、C(RA2、NRA1、窒素原子、CRA2、酸素原子、硫黄原子又はセレン原子を示す。RA1は、各々独立に、炭素鎖中に-O-、-S-及び-NRA3-のうち少なくとも1つを含んでいてもよいアルキル基、下記式(1-1)で表される基、又は、単結合を示す。RA2は、各々独立に、水素原子、ハロゲン原子、炭素鎖中に-O-、-S-及び-NRA3-のうち少なくとも1つを含んでいてもよいアルキル基、又は、単結合を示す。RA3は各々独立に水素原子又は置換基を示す。
*は、上記繰り返し単位を形成する他の基との結合部位を示す。
Figure JPOXMLDOC01-appb-C000014
 式(1-1)中、
は、炭素鎖中に-O-、-S-及び-NR1S-のうち少なくとも1つを含んでいてもよい炭素数1~20のアルキレン基を示す。
Arは、芳香族複素環基又は炭素数6~18の芳香族炭化水素基を示す。
は、炭素鎖中に-O-、-S-及び-NR2S-のうち少なくとも1つを含んでいてもよい炭素数1~100のアルキル基を示す。
1S及びR2Sは各々独立に水素原子又は置換基を示す。
lは1~5の整数である。
*は、上記式(A-1)若しくは(A-2)中の環構成窒素原子、XにおけるNR中の窒素原子又はWにおけるNRA1中の窒素原子との結合部位を示す。
<3>m12が、1~4の整数である<2>に記載の有機半導体素子。
<4>-(A11)m11-及び-(A13)m13-が、各々独立に、下記式(Ar-1)で表される<2>又は<3>に記載の有機半導体素子。
Figure JPOXMLDOC01-appb-C000015
 式(Ar-1)中、
は、酸素原子、硫黄原子、セレン原子又はNRD1を示す。
は、各々独立に、窒素原子又はCRD2を示す。
D1及びRD2は水素原子又は置換基を示す。
は1~4の整数である。
*は、上記繰り返し単位を形成する他の基との結合部位を示す。
<5>Xが硫黄原子であり、ZがいずれもCRD2である<4>に記載の有機半導体素子。
<6>有機半導体素子が、有機薄膜トランジスタ素子である<1>~<5>のいずれか1つに記載の有機半導体素子。
<7>下記式(1)で表される繰り返し単位を有する重合体。
Figure JPOXMLDOC01-appb-C000016
 式(1)中、
は、酸素原子、硫黄原子又はセレン原子を示す。
11~R14は各々独立に置換基を示す。
a及びbは各々独立に0~3の整数であり、r及びsは各々独立に0~2の整数である。
10は芳香族炭化水素基、芳香族複素環基、ビニレン基又はエチニレン基を示す。
10は1~12の整数である。
<8>繰り返し単位が、下記式(2)で表される<7>に記載の重合体。
Figure JPOXMLDOC01-appb-C000017
 式(2)中、
、R11~R14、a、b、r及びsはそれぞれ式(1)におけるY、R11~R14、a、b、r及びsと同義である。
11及びA13は、各々独立に、芳香族炭化水素基、下記式(A-1)~(A-12)で表される芳香族複素環基以外の芳香族複素環基、ビニレン基又はエチニレン基を示す。
12は下記式(A-1)~(A-12)のいずれかで表される芳香族複素環基を示す。
11及びm13は各々独立に0~4の整数であり、m12は0~4の整数である。ただし、m11、m12及びm13の合計は1以上である。
Figure JPOXMLDOC01-appb-C000018
 式(A-1)~(A-12)中、
は、各々独立に、酸素原子、硫黄原子、セレン原子又はNRを示す。R及びRは、炭素鎖中に-O-、-S-及び-NRA3-のうち少なくとも1つを含んでいてもよいアルキル基、又は、下記式(1-1)で表される基を示す。
は各々独立に酸素原子又は硫黄原子を示す。
は各々独立にCRA2又は窒素原子を示す。
は、各々独立に、C(RA2、NRA1、窒素原子、CRA2、酸素原子、硫黄原子又はセレン原子を示す。RA1は、各々独立に、炭素鎖中に-O-、-S-及び-NRA3-のうち少なくとも1つを含んでいてもよいアルキル基、下記式(1-1)で表される基、又は、単結合を示す。RA2は、各々独立に、水素原子、ハロゲン原子、炭素鎖中に-O-、-S-及び-NRA3-のうち少なくとも1つを含んでいてもよいアルキル基、又は、単結合を示す。RA3は各々独立に水素原子又は置換基を示す。
*は、上記繰り返し単位を形成する他の基との結合部位を示す。
Figure JPOXMLDOC01-appb-C000019
 式(1-1)中、
は、炭素鎖中に-O-、-S-及び-NR1S-のうち少なくとも1つを含んでいてもよい炭素数1~20のアルキレン基を示す。
Arは、芳香族複素環基又は炭素数6~18の芳香族炭化水素基を示す。
は、炭素鎖中に-O-、-S-及び-NR2S-のうち少なくとも1つを含んでいてもよい炭素数1~100のアルキル基を示す。
1S及びR2Sは各々独立に水素原子又は置換基を示す。
lは1~5の整数である。
*は、上記式(A-1)若しくは(A-2)中の環構成窒素原子、XにおけるNR中の窒素原子又はWにおけるNRA1中の窒素原子との結合部位を示す。
<9>m12が、1~4の整数である<8>に記載の重合体。
<10>-(A11)m11-及び-(A13)m13-が、各々独立に、下記式(Ar-1)で表される<8>又は<9>に記載の重合体。
Figure JPOXMLDOC01-appb-C000020
 式(Ar-1)中、
は、酸素原子、硫黄原子、セレン原子又はNRD1を示す。
は、各々独立に、窒素原子又はCRD2を示す。
D1及びRD2は水素原子又は置換基を示す。
は1~4の整数である。
*は、上記繰り返し単位を形成する他の基との結合部位を示す。
<11>Xが硫黄原子であり、ZがいずれもCRD2である<10>に記載の重合体。
<12>上記<7>~<11>のいずれか1つに記載の重合体と溶媒とを含有する有機半導体組成物。
<13>上記<7>~<11>のいずれか1つに記載の重合体を含む有機半導体膜。
 本発明は、キャリア移動度、その均質性及び耐熱性を兼ね備えた有機半導体素子を提供することができる。また、本発明は、上記優れた特性を有する有機半導体素子に用いる重合体、並びに、この重合体を含有する有機半導体組成物及び有機半導体膜を提供することができる。
 本発明の上記及び他の特徴及び利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。
本発明の半導体素子の一例であるボトムゲート-ボトムコンタクト型の有機薄膜トランジスタ素子を示す断面模式図である。 本発明の半導体素子の一例であるボトムゲート-トップコンタクト型の有機薄膜トランジスタ素子を示す断面模式図である。
 本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本明細書において、化合物の表示については、化合物そのものの他、その塩、そのイオンを含む。また、目的とする効果を損なわない範囲で、構造の一部を変化させたものを含む。
 また、置換又は無置換を明記していない化合物については、目的とする効果を損なわない範囲で、任意の置換基を有するものを含む。このことは、置換基及び連結基等(以下、置換基等という)についても同様である。
 本明細書おいて、特定の符号で表示された置換基等が複数あるとき、又は、複数の置換基等を同時に規定するときには、特段の断りがない限り、それぞれの置換基等は互いに同一でも異なっていてもよい。このことは、置換基等の数の規定についても同様である。また、複数の置換基等が近接(特に隣接)するとき、特段の断りがない限り、それらが互いに連結して環を形成してもよい。
 本発明において、重合体中に同一の化学構造で表された複数の繰り返し単位が存在する場合、重合体中に存在する各繰り返し単位は同一でも異なっていてもよい。このことは、繰り返し単位を形成する各基についても同様である。
 また、基の炭素数が限定されている場合、この基の炭素数は、特段の断りがない限り、置換基を含めた全炭素数を意味する。
 本発明において、基が非環状骨格及び環状骨格を形成しうる場合、特段の断りがない限り、この基は、非環状骨格の基と環状骨格の基を含む。例えば、アルキル基は、直鎖アルキル基、分岐アルキル基及び環状(シクロ)アルキル基を含む。基が環状骨格を形成しうる場合、環状骨格を形成する基の原子数の下限は、この基について具体的に記載した原子数の下限にかかわらず、3以上であり、5以上が好ましい。
 本発明の好ましい実施形態について以下に説明するが、本発明はこれに限定されない。
[重合体]
 まず、本発明の重合体について説明する。
 本発明の重合体(有機半導体)は、下記式(1)で表される繰り返し単位を有する。この重合体は、2つのナフタレン環とカルコゲノフェン環とが縮合したジナフトカルコゲノフェン化合物に由来する基と、少なくとも1つの下記A10で示される基とを含む繰り返し単位を有する共重合体である。この共重合体は、好ましくはπ共役型重合体である。
 本発明の重合体は、後述する式(2)中のA12で示される芳香族複素環基を有する場合、電子供与性(ドナー)ユニットと、電子受容性(アクセプター)ユニットとを有する、所謂「D-Aポリマー」ということもできる。この場合、上記ジナフトカルコゲノフェン化合物に由来する基がドナーユニットとなり、A12で示される芳香族複素環基がアクセプターユニットとなる。本発明の重合体が、後述する式(2)中のA11又はA13で示される基を有する場合、これらの基はいずれもドナーユニットとなる。
Figure JPOXMLDOC01-appb-C000021
 式(1)中、Yは、酸素原子、硫黄原子又はセレン原子を示す。Yは、酸素原子又は硫黄原子が好ましく、硫黄原子がより好ましい。
 R11~R14は、それぞれ、置換基を示す。
 R11~R14として採りうる置換基としては、特に限定されない。好ましい置換基としては、炭素鎖中に-O-、-S-及び-NR-のうち少なくとも1つを含んでいてもよいアルキル基(例えば、炭素数1~35のアルキル基若しくは炭素数1~35のアルコキシ基が好ましく、炭素数1~25のアルキル基がより好ましい)、アルケニル基(炭素数2~30が好ましい。)、アルキニル基(炭素数2~30が好ましい。)、芳香族炭化水素基(炭素数6~30が好ましい。)、芳香族複素環基(5~7員環が好ましい。環構成ヘテロ原子として、酸素原子、窒素原子、硫黄原子及びセレン原子のうち少なくとも1つ含むものが好ましい。)、ハロゲン原子(フッ素原子、塩素原子、臭素原子若しくはヨウ素原子が好ましく、フッ素原子若しくは塩素原子がより好ましく、フッ素原子が特に好ましい。)、又は、後述する式(1-1)で表される基が挙げられる。中でも、上記アルキル基が好ましい。
 本発明において、炭素鎖中に-O-を含むアルキル基は、炭素-炭素結合の途中に-O-を有する基、炭素-炭素結合の末端に-O-を有する基(アルコキシ基ともいう)、及び、炭素-炭素結合の途中及び末端に-O-を有する基を含む。炭素鎖中に-S-又は-NR-を含むアルキル基も同様である。アルキル基が-O-、-S-及び-NR-を含む場合、これらの数の合計は少なくとも1つであり、その上限は、特に限定されないが、例えば5個である。
 Rは、水素原子又は置換基を示す。Rとして採りうる置換基としては、特に限定されず、後述するR1S及びR2Sにおける置換基と同義である。
 R11~R14のうち隣接する2つは、互いに結合して環を形成していてもよいが、環を形成しないほうが好ましい。
 a及びbは、それぞれ、0~3の整数であり、0又は1が好ましく、0が好ましい。
 r及びsは、それぞれ、0~2の整数であり、0又は1が好ましく、0が好ましい。
 A10は、芳香族炭化水素基、芳香族複素環基、ビニレン基又はエチニレン基であり、芳香族炭化水素基又は芳香族複素環基が好ましい。
 A10として採りうる芳香族炭化水素基としては、特に限定されず、単環の基であっても、2環以上の縮環の基であってもよく、キャリア移動度の点で、単環の基であることが好ましい。芳香族炭化水素基としては、炭素数6~20の芳香族炭化水素基が好ましく、炭素数6~18の芳香族炭化水素基がより好ましく、フェニレン基、ナフチレン基、又は、3環若しくは4環が縮合した芳香族炭化水素から水素原子を2つ除いた基が更に好ましい。3環若しくは4環が縮合した芳香族炭化水素から水素原子を2つ除いた基としては、例えば、フルオレン環、アントラセン環、フェナントレン環、クリセン環若しくはピレン環から水素原子を2つ除いた基が挙げられる。
 芳香族炭化水素基としては、フェニレン基、ナフチレン基、フルオレン環基又はピレン環基が好ましく、フェニレン基又はナフチレン基が特に好ましい。
 A10として採りうる芳香族複素環基としては、特に限定されず、単環の基であってもよく、2環以上の縮環の基であってもよく、また、単環又は縮環の複素環基が炭素-炭素二重結合により連結された基であってもよい。単環の基である場合、その環員数は5~7員が好ましい。また、芳香族複素環基に含まれる環構成ヘテロ原子としては、窒素原子、酸素原子、硫黄原子又はセレン原子であることが好ましく、硫黄原子であることがより好ましい。
 この芳香族複素環基としては、後述する式(A-1)~(A-12)で表される芳香族複素環基、又は、これら以外の芳香族複素環基が挙げられる。
 式(A-1)~(A-12)で表される芳香族複素環基以外の芳香族複素環基を形成する芳香族複素環としては、例えば、フラン環、チオフェン環、セレノフェン環、ピロール環、オキサゾール環、チアゾール環、セレノアゾール基、イミダゾール環、オキサジアゾール環、チアジアゾール環、セレノジアゾール基、トリアゾール環、ピリジン環若しくはトリアジン環等の単環が挙げられる。また、これらの単環うち少なくとも2個の単環を組み合わせた縮合環、又は、少なくとも1個の上記単環と、少なくとも1つのベンゼン環若しくはシクロペンタジエン環との縮合環等が挙げられる。縮合環において、組み合わされる環の数は、2個以上であれば特に限定されないが、例えば、2~6個が好ましい。このような芳香族複素環としては、具体的には、ベンゾジチオフェン環、ジチオフェン環、トリチオフェン環、シクロペンタジチオフェン環等が挙げられる。
 式(A-1)~(A-12)で表される芳香族複素環基以外の芳香族複素環基としては、中でも、後述する式(Ar-1)で表されるものが好ましく、フラン環基、チオフェン環基又はセレノフェン環基がより好ましく、チオフェン環が更に好ましい。
 上記芳香族炭化水素基及び上記芳香族複素環基は、それぞれ、置換基を有していてもよい。好ましい置換基としては、特に限定されず、例えば、炭素鎖中に-O-、-S-及び-NR-のうち少なくとも1つを含んでいてもよいアルキル基(例えば、炭素数1~35のアルキル基若しくは炭素数1~35のアルコキシ基が好ましく、炭素数1~25のアルキル基がより好ましい)、アルケニル基(炭素数2~30が好ましい。)、アルキニル基(炭素数2~30が好ましい。)、芳香族炭化水素基(炭素数6~30が好ましい。)、芳香族複素環基(5~7員環が好ましい。環構成ヘテロ原子として、酸素原子、窒素原子、硫黄原子及びセレン原子のうち少なくとも1つ含むものが好ましい。)、ハロゲン原子(フッ素原子、塩素原子、臭素原子若しくはヨウ素原子が好ましく、フッ素原子若しくは塩素原子がより好ましく、フッ素原子が特に好ましい。)、又は、後述する式(1-1)で表される基が挙げられる。中でも、上記アルキル基が好ましい。
 Rは上述した通りである。
 A10として採りうるビニレン基は、置換基を有していてもよいが、有していないことが好ましい。ビニレン基が有していてもよい置換基としては、上記芳香族炭化水素基及び上記芳香族複素環基が有していてもよい置換基と同義であり、好ましい範囲も同じである。
 m10は、1~12の整数であり、1~10の整数が好ましく、1~8の整数がより好ましく、1~5の整数が更に好ましく、1~3の整数が特に好ましい。
 m10が2以上の整数である場合、複数のA10は同一でも異なっていてもよい。
 この場合、(A10)m10として採りうるA10の組み合わせは、特に限定されず、上記各基を適宜に選択して組み合わせることができる。好ましくは、後述する式(A-1)~(A-12)のいずれかで表される芳香族複素環基を少なくとも1個(好ましくは1~4個)含む態様が挙げられ、より好ましくは、更に芳香族炭化水素基又は下記式(A-1)~(A-12)で表される芳香族複素環基以外の芳香族複素環基を少なくとも1個(好ましくは2個以上、より好ましくは2~8個、更に好ましくは2~6個)含む態様が挙げられる。
 上記式(1)で表される繰り返し単位は、下記式(2)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000022
 式(2)において、Y、R11~R14、a、b、r及びsは、それぞれ、上記式(1)におけるY、R11~R14、a、b、r及びsと同義であり、好ましいものも同じである。
 A12は、下記式(A-1)~(A-12)のいずれかで表される芳香族複素環基を示す。下記の各式において、*は式(2)で表される繰り返し単位を形成する他の基との結合部位を示す。
Figure JPOXMLDOC01-appb-C000023
 式(A-6)及び式(A-9)において、5員環内ないしは6員環内の丸破線は、この5員環ないしは6員環が芳香族環であることを示す。
 式(A-1)~(A-12)中、Xは、それぞれ、酸素原子、硫黄原子、セレン原子又はNRを示し、硫黄原子又はNRが好ましい。
 R及びRは、それぞれ、炭素鎖中に-O-、-S-及び-NRA3-のうち少なくとも1つを含んでいてもよいアルキル基、又は、後述する式(1-1)で表される基を示す。R及Rとして採りうる上記アルキル基は、後述するRA1として採りうるアルキル基と同義であり、好ましい範囲も同じである。RA3については後述する。
 Yは、それぞれ、酸素原子又は硫黄原子を示し、酸素原子が好ましい。
 Zは、それぞれ、CRA2又は窒素原子を示し、CRA2が好ましい。
 RA2は、それぞれ、水素原子、ハロゲン原子、炭素鎖中に-O-、-S-及び-NRA3-のうち少なくとも1つを含んでいてもよいアルキル基、又は、単結合を示す。RA2は、水素原子又は単結合が好ましい。なお、式(A-2)及び式(A-8)中においてRA2は単結合を採らない。RA2がハロゲン原子である場合、フッ素原子、塩素原子、臭素原子又はヨウ素原子が好ましく、フッ素原子がより好ましい。RA2として採りうる上記アルキル基は、後述するRA1として採りうるアルキル基と同義であり、好ましい範囲も同じである。RA3については後述する。
 CRA2において、RA2が単結合である場合、CRA2のC原子が、上記式(A-5)、(A-10)及び(A-11)それぞれにおける結合部位(各式中、*で示す)となる。
 具体的には、上記式(A-5)及び式(A-10)においては、Zを含む2つの環構造それぞれにおいて、1つのZがCRA2であり、かつそのRA2が単結合となる。この単結合を有するCRA2(炭素原子)が各式において*で示す結合部位となる。また、式(A-11)においては、8個のうち2つのZがCRA2であり、かつそれらのRA2が単結合となる。これらの単結合を有するCRA2(炭素原子)が式(A-11)において*で示す結合部位となる。
 式(2)で表される繰り返し単位において、結合部位は、上記式(2)で表される繰り返し単位を形成する他の基との結合部を意味する。他の基とは、上記式(2)で表される繰り返し単位における、上述のジナフトカルコゲノフェン化合物に由来する基、又は、A11、A12若しくはA13で示される基をいう。
 Wは、それぞれ、C(RA2、NRA1、窒素原子、CRA2、酸素原子、硫黄原子又はセレン原子を示し、C(RA2、CRA2又は硫黄原子が好ましく、CRA2又は硫黄原子がより好ましい。
 RA1は、それぞれ、炭素鎖中に-O-、-S-及び-NRA3-のうち少なくとも1つを含んでいてもよいアルキル基、後述する式(1-1)で表される基、又は、単結合を示す。RA1としては、上記アルキル基又は後述する式(1-1)で表される基が好ましい。RA1として採りうる上記アルキル基は直鎖でも分岐鎖でもよい。このアルキル基の炭素数は、1~35であることが好ましく、1~25であることがより好ましい。
 WにおけるRA2は、ZにおけるRA2と同義であり、好ましいものも同じである。
 RA3は、水素原子又は置換基を示す。RA3として採りうる置換基としては、特に限定されず、後述するR1S及びR2Sにおける置換基と同義であり、好ましい範囲も同じである。
 上記式(A-6)において、Wを含む2つの環構造それぞれについて、1つのWは、下記態様1~3のいずれかの態様となり、態様1となることが好ましい。
   態様1:WがCRA2であり、かつそのRA2が単結合である。
   態様2:WがNRA1であり、かつそのRA1が単結合である。
   態様3:WがC(RA2であり、かつそのRA2のうち一方が単結合であり、他方が水素原子、ハロゲン原子又は上記アルキル基である。
 上記各態様において、上記単結合を有するCRA2(炭素原子)、NRA1(窒素原子)又はC(RA2(炭素原子)が式(A-6)における結合部位(式中、*で示す)となる。
 上記式(A-7)及び式(A-12)で表される芳香族複素環基は、それぞれ、置換基を有していてもよい。このような置換基としては、特に限定されず、上記A10として採りうる芳香族炭化水素基及び上記芳香族複素環基が有していてもよい置換基と同義であり、好ましいものも同じである。
 A12は、上記式(A-1)~(A-12)の中でも、式(A-1)~式(A-6)、式(A-8)~式(A-10)又は式(A-12)で表される芳香族複素環基であることが好ましく、式(A-1)、式(A-3)、式(A-4)又は式(A-6)で表される芳香族複素環基であることがより好ましく、式(A-3)で表される芳香族複素環基であることが更に好ましい。
 下記式(1-1)で表される基について説明する。
Figure JPOXMLDOC01-appb-C000024
 式(1-1)中、Lは、炭素鎖中に-O-、-S-及び-NR1S-のうち少なくとも1つを含んでいてもよい炭素数1~20のアルキレン基を示す。
 本発明において、炭素鎖中に-O-を含むアルキレン基は、炭素-炭素結合の途中に-O-を有する基、一末端又は両末端に-O-を有する基、並びに、炭素-炭素結合の途中及び一末端又は両末端に-O-を有する基を含む。炭素鎖中に-S-又は-NR1S-を含むアルキレン基も同様である。また、アルキレン基が-O-、-S-及び-NR1S-を含む場合、これらの数の合計は少なくとも1つであり、その上限は、特に限定されないが、例えば5個である。
 Lとして採りうるアルキレン基は、直鎖、分岐鎖及び環状のいずれであってもよいが、直鎖又は分岐鎖のアルキレン基であることが好ましい。アルキレン基の炭素数は、キャリア移動度及び溶解性の点で、1~15であることが好ましく、1~10であることが更に好ましい。
 Lとして採りうるアルキレン基が分岐鎖である場合には、分岐部分の炭素数については、Lを示すアルキレン基の炭素数に含むものとする。ただし、Lが-NR1S-を含み、かつ、このR1Sが炭素原子を含む場合には、R1Sの炭素数は、Lとして採りうるアルキレン基の炭素数に含めないものとする。
 Arは、芳香族複素環基又は炭素数6~18の芳香族炭化水素基を示す。
 Arとして採りうる芳香族複素環基は、単環の基であっても、2環以上の縮環の基であってもよく、キャリア移動度の点で、単環であることが好ましい。単環の基である場合、その環員数は5~7員が好ましい。また、芳香族複素環基に含まれる環構成ヘテロ原子としては、窒素原子、酸素原子、硫黄原子又はセレン原子であることが好ましく、硫黄原子であることがより好ましい。
 Arとして採りうる芳香族複素環基としては、A10として採りうる芳香族複素環基のうち、上記式(A-1)~(A-12)で表される芳香族複素環基以外の芳香族複素環基が好ましい。
 Arとして採りうる炭素数6~18の芳香族炭化水素基としては、特に限定されないが、例えば、ベンゼン環基、ナフタレン環基、又は、3環以上の環が縮合した芳香族炭化水素(例えばフルオレン環)から2以上の水素原子を取り除いた基が挙げられる。これらの中でも、キャリア移動度の点で、ベンゼン環基又はナフタレン環基であることが好ましく、ベンゼン環基であることが好ましい。
 Lは、炭素鎖中に-O-、-S-及び-NR2S-のうち少なくとも1つを含んでいてもよい炭素数1~100のアルキル基を示す。
 Lとして採りうるアルキル基は、直鎖、分岐鎖及び環状のいずれであってもよいが、キャリア移動度及び溶解性の点で、直鎖又は分岐鎖のアルキル基であることが好ましく、分岐鎖のアルキル基がより好ましい。また、このアルキル基は、置換基としてハロゲン原子(好ましくは、フッ素原子、塩素原子、臭素原子又はヨウ素原子、より好ましくはフッ素原子)を有するハロゲン化アルキル基であってもよい。
 Lとして採りうるアルキル基の炭素数は、1~100であり、9~100であることが好ましい。
 また、式(1-1)で表される基がLを複数個有する場合、キャリア移動度及び溶解性の点で、少なくとも1つのLが、炭素数9~100の上記アルキル基であることが好ましく、20~100の上記アルキル基であることがより好ましく、20~40の上記アルキル基であることが更に好ましい。
 Lとして採りうるアルキル基が分岐鎖である場合には、分岐部分の炭素数については、Lとして採りうるアルキル基の炭素数に含むものとする。ただし、Lが-NR2S-を含み、かつ、このR2Sが炭素原子を含む場合には、R2Sの炭素数は、Lとして採りうるアルキレン基の炭素数に含めないものとする。
 R1S及びR2Sは、それぞれ、水素原子又は置換基を示す。R1S及びR2Sとして採りうる置換基としては、特に限定されないが、例えば、アルキル基(好ましくは、炭素数1~10の直鎖又は分岐鎖のアルキル基)、ハロゲン原子(好ましくは、フッ素原子、塩素原子、臭素原子又はヨウ素原子)、又は、芳香族炭化水素基(好ましくは炭素数6~20の芳香族炭化水素基)が挙げられる。これらの中でも、R1S及びR2Sは、それぞれ、水素原子又はアルキル基であることが好ましく、アルキル基であることがより好ましい。
 Lが結合するAr(環構成原子)の位置は、特に限定されない。例えば、Arにおいて、Lに対して(Lが結合する環構成原子を1位としたとき)2~4位が好ましく、少なくとも1つのLが4位に結合していることがより好ましい。
 lは1~5の整数であり、1又は2であることが好ましい。lが2以上である場合、複数のLは互いに同一でも異なっていてもよい。
 式(1-1)において、*は上記繰り返し単位に導入するための結合部位を示す。この結合部位は、式(1-1)で表される基のLaと、上記ジナフトカルコゲノフェン化合物に由来する基、上記A10として採りうる、芳香族炭化水素基、芳香族複素環基若しくはビニレン基、上記式(A-1)若しくは(A-2)中の環構成窒素原子、XにおけるNR中の窒素原子、WにおけるNRA1中の窒素原子、又は、後述するA11若しくはA13の芳香族炭化水素基若しくは芳香族複素環基とを結合する。
 式(A-1)~式(A-12)で表される芳香族複素環基の例を以下及び実施例に示すが、本発明はこれらの例に限定されない。下記芳香族複素環基において、R、R及び*は上述した通りである。
Figure JPOXMLDOC01-appb-C000025
 式(2)において、m12は、0~4の整数であり、1~4の整数が好ましく、1~3の整数がより好ましく、1又は2が更に好ましく、1が特に好ましい。
 m12が2~4の整数である場合、複数のA12は互いに同一の芳香族複素環基であってもよく、異なる芳香族複素環基であってもよい。
 A11及びA13は、それぞれ、芳香族炭化水素基、上記式(A-1)~(A-12)で表される芳香族複素環基以外の芳香族複素環基、ビニレン基、又は、エチニレン基を示す。
 A11及びA13として採りうる芳香族炭化水素基及びビニレン基としては、特に限定されず、A10として採りうる芳香族炭化水素基及びビニレン基と同義であり、好ましいものも同じである。
 A11及びA13として採りうる芳香族複素環基としては、上記式(A-1)~(A-12)で表される芳香族複素環基以外のものであれば特に限定されず、単環の基であってもよく、2環以上の縮環の基であってもよく、また、単環又は縮環の複素環基が炭素-炭素二重結合により連結された基であってもよい。単環の基である場合、その環員数は5~7員が好ましい。また、芳香族複素環基に含まれる環構成ヘテロ原子としては、窒素原子、酸素原子、硫黄原子又はセレン原子であることが好ましく、硫黄原子であることがより好ましい。
 A11及びA13として採りうる芳香族複素環基としては、A10として採りうる芳香族複素環基のうち、式(A-1)~(A-12)で表される芳香族複素環基以外の芳香族複素環基と同義であり、好ましいものも同じである。
 A11及びA13は、それぞれ、芳香族炭化水素基又は芳香族複素環基が好ましく、ベンゼン環又は芳香族複素環基がより好ましく、ベンゼン環又は後述する式(Ar-1)で表されるものが更に好ましく、ベンゼン環又はフラン環、チオフェン環若しくはセレノフェン環が特に好ましく、チオフェン環が最も好ましい。
 A11とA13とは、互いに同一でも異なっていてもよい。
 A11及びA13は、それぞれ、置換基を有していてもよい。このような置換基としては、特に限定されず、上記A10として採りうる芳香族炭化水素基及び上記芳香族複素環基が有していてもよい置換基と同義であり、好ましいものも同じである。
 式(2)における、-(A11)m11-及び-(A13)m13-は、それぞれ、下記式(Ar-1)で表されることが好ましく、A12が上記式(A-1)~(A-12)で表される芳香族複素環基であり、-(A11)m11-及び-(A13)m13-がともに下記式(Ar-1)で表されることがより好ましい。
Figure JPOXMLDOC01-appb-C000026
 式(Ar-1)において、*は、式(2)で表される繰り返し単位を形成する他の基との結合部位を示す。
 Xは、酸素原子、硫黄原子、セレン原子又はNRD1を示す。Xは、酸素原子、硫黄原子又はセレン原子が好ましく、酸素原子又は硫黄原子がより好ましく、硫黄原子が更に好ましい。
 Zは、それぞれ、窒素原子又はCRD2を示す。上記式で表される環において、二つあるZのうち一つが窒素原子であり、もう一方がCRD2である態様、又は、二つあるZがともにCRD2である態様が好ましく、二つあるZがともにCRD2である態様がより好ましい。
 RD1及びRD2は、それぞれ、水素原子又は置換基を示し、水素原子が好ましい。RD1及びRD2として採りうる置換基は、特に限定されず、上記A10として採りうる芳香族炭化水素基及び上記芳香族複素環基が有していてもよい置換基と同義であり、好ましい範囲も同じである。
 RD1及びRD2がそれぞれアルコキシ基である場合、互いに結合してアルキレンジオキシ基となり、式(Ar-1)で表される環としてアルキレンジオキシチオフェン環を形成していてもよい。アルキレン基の炭素数は、上記の通りであるが、1~3が好ましい。
 式(Ar-1)においては、Xが硫黄原子で、かつZがいずれもCRD2(RD2は好ましくは水素原子)である態様が好ましい。
 式(Ar-1)において、ZがいずれもCRD2であり、RD2が置換基である場合、2つのRD2は互いに結合して環を形成していてもよい。
 式(Ar-1)において、mは、1~4の整数であり、1又は2が好ましい。
 式(2)において、m11及びm13は、それぞれ、0~4の整数であり、0~2の整数が好ましく、1又は2が好ましい。
 m11及びm13が、それぞれ、2~4の整数である場合、複数のA11及びA13は、それぞれ、同一であってもよく、異なっていてもよい。
 式(2)において、m11~m13は、いずれも、0を採りうるが、そのすべてが0を採ることはない。すなわち、m11、m12及びm13の合計は1以上であり、具体的には1~12である。
 式(2)で表される繰り返し単位において、m12が0である場合、この繰り返し単位における、ジナフトカルコゲノフェン化合物由来の基以外の基(A11及びA13に相当する基)は、優先的にA11に帰属される。例えば、実施例で用いた重合体2は、m11が4で、m13が0であると、解釈する。
 上記式(1)で表される繰り返し単位の具体例を以下及び実施例に示すが、本発明はこれらに限定されない。
 下記の具体例においては、ジナフトチオフェン骨格を有するものを示したが、本発明においては、ジナフトチオフェン骨格を、ジナフトフラン骨格又はジナフトセレノフェン骨格に代えたものも含む。
 また、下記の各具体例において、少なくとも1つの水素原子は、-O-、-S-及び-NR-のうち少なくとも1つを含んでもよいアルキル基、又は、上述の式(1-1)で表される基で置換されていてもよい。上記アルキル基としては、上述のR11及びR12として採りうる好ましい置換基である上記アルキル基と同義であり、Rは水素原子又は置換基を示し、Rとして採りうる置換基は上記R1S及びR2Sにおける置換基と同義である。
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
 本発明の重合体は、式(1)で表される繰り返し単位を1種単独で含んでもよいし、2種以上含んでもよい。
 本発明の重合体は、式(1)で表される繰り返し単位を2以上有する。この繰り返し単位を2以上有する重合体は、ランダム共重合体でもブロック共重合体でもよい。本発明の重合体は、繰り返し単位数(重合度)nが2~9のオリゴマーであってもよく、繰り返し単位数nが10以上の高分子化合物(ポリマー)であってもよい。中でも、高分子化合物であることが、キャリア移動度、その均質性及び耐熱性を兼ね備えることができる点で、好ましい。
 重合度nは、後述する重量平均分子量と、各繰り返し単位の質量とから概算できる。
 本発明の重合体は、上記式(1)で表される繰り返し単位以外の繰り返し単位(他の繰り返し単位という)を有していてもよい。本発明の重合体は、他の繰り返し単位を、その主鎖のいずれに有していてもよく、式(1)で表される繰り返し単位において、ジナフトカルコゲノフェン化合物に由来する基及びA10のいずれの間に有していてもよい。
 本発明の重合体において、式(1)で表される繰り返し単位の含有量は、本発明の重合体の繰り返し単位の全モル数に対し、60~100%であることが好ましく、80~100%であることがより好ましく、90~100%であることが更に好ましく、実質的に式(1)で表される繰り返し単位のみから形成されていることが特に好ましい。なお、実質的に式(1)で表される繰り返し単位のみから形成されているとは、式(1)で表される繰り返し単位の、重合体中のモル比率が95%以上であることを意味し、97%以上であることが好ましく、99%以上であることがより好ましい。
 式(1)で表される繰り返し単位の含有量が上記範囲内であると、キャリア移動度、キャリア移動度ばらつき、耐熱性が更に優れた有機半導体膜が得られる。
 本発明の重合体は、キャリア移動度の向上及びばらつき防止の点で、重量平均分子量が、2,000以上であることが好ましく、10,000以上であることがより好ましく、20,000以上であることが更に好ましく、30,000以上であることが特に好ましく、45,000以上であることが最も好ましい。また、溶解性の観点から、重量平均分子量は、1,000,000以下であることが好ましく、300,000以下であることがより好ましく、200,000以下であることが更に好ましく、150,000以下であることが特に好ましい。
 本発明において、重量平均分子量及び数平均分子量は、ゲル浸透クロマトグラフィ法(GPC(Gel Permeation Chromatography))法にて測定され、標準ポリスチレンで換算して求められる。具体的には、例えば、GPCは、HLC-8121GPC(東ソー社製)を用い、カラムとして、TSKgel GMHHR-H(20) HT(東ソー社製、7.8mmID×30cm)を2本用い、溶離液として1,2,4-トリクロロベンゼンを用いる。また、条件としては、試料濃度を0.02質量%、流速を1.0mL/min、サンプル注入量を300μL、測定温度を160℃とし、IR(infrared)検出器を用いて行う。また、検量線は、東ソー社製の「標準試料TSK standard,polystyrene」:「F-128」、「F-80」、「F-40」、「F-20」、「F-10」、「F-4」、「F-2」、「F-1」、「A-5000」、「A-2500」、「A-1000」、「A-500」の12サンプルを用いて、作製する。
 本発明の重合体の末端構造は、特に制限はなく、他の繰り返し単位の有無、合成時に使用した基質の種類、又は、合成時のクエンチ剤(反応停止剤)の種類により、一義的に決定されない。末端の構造としては、例えば、水素原子、ヒドロキシ基、ハロゲン原子、エチレン性不飽和基、アルキル基、芳香族複素環基(チオフェン環が好ましい。)又は芳香族炭化水素基(ベンゼン環が好ましい。)が挙げられる。
 本発明の重合体の合成方法は、特に限定されず、通常の方法を参照して、合成することができる。例えば、式(1)中のジナフトカルコゲン化合物に由来する基、及び、A10で示される各基を導くことのできる各前駆体化合物を合成し、それぞれの前駆体を、鈴木カップリング反応又はStilleカップリング反応等のクロスカップリング反応させることにより、合成することができる。本発明の重合体の合成に際して、例えば、特表2010-527327号、特表2007-516315号、特表2014-515043号、特表2014-507488号、特表2011-501451号、特開2010-18790号、国際公開第2012/174561号、特表2011-514399号、及び、特表2011-514913号等の各公報を参考にすることができる。
[有機半導体組成物]
 次に、本発明の有機半導体組成物について、説明する。
 この有機半導体組成物は、上述の重合体と溶媒とを含有し、本発明の有機半導体膜の形成に好ましく用いられる。
 <重合体>
 重合体は、上述の通りであり、1種単独で用いてもよいし、2種以上併用してもよい。
 有機半導体組成物の、重合体の含有率は、特に限定されず、例えば、後述する溶媒を除いた固形分中の含有率で表すことができる。固形分中の含有率としては、例えば、後述する有機半導体膜中の重合体の含有率と同じ範囲にすることが好ましい。
 <溶媒>
 溶媒は、上述の重合体を溶解又は分散させるものであれば特に限定されず、無機溶媒又は有機溶媒が挙げられる。中でも、有機溶媒が好ましい。溶媒は、1種単独で使用してもよいし、2種以上を併用してもよい。
 有機溶媒としては、特に限定されないが、ヘキサン、オクタン若しくはデカン等の(脂肪族)炭化水素溶媒、トルエン、キシレン、メシチレン、エチルベンゼン、デカリン、1-メチルナフタレン、テトラリン若しくはアニソール等の芳香族炭化水素溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン若しくはシクロヘキサノン等のケトン溶媒、ジクロロメタン、クロロホルム、テトラクロロメタン、ジクロロエタン、トリクロロエタン、テトラクロロエタン、クロロベンゼン、ジクロロベンゼン若しくはクロロトルエン等のハロゲン化炭化水素溶媒、酢酸エチル、酢酸ブチル、酢酸アミル若しくは乳酸エチル等のエステル溶媒、メタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、シクロヘキサノール、メチルセロソルブ、エチルセロソルブ若しくはエチレングリコール等のアルコール溶媒、ブトキシベンゼン、ジブチルエーテル、テトラヒドロフラン若しくはジオキサン等のエーテル溶媒、N,N-ジメチルホルムアミド若しくはN,N-ジメチルアセトアミド等のアミド溶媒、1-メチル-2-ピロリドン若しくは1-メチル-2-イミダゾリジノン等のイミド溶媒、ジメチルスルホキサイド等のスルホキシド溶媒、又は、アセトニトリル等のニトリル溶媒等が挙げられる。
 有機半導体組成物中の、溶媒の含有率は、90~99.99質量%であることが好ましく、95~99.99質量%であることがより好ましく、96~99.95質量%であることが更に好ましい。
 <その他の成分>
 本発明の有機半導体組成物は、本発明の重合体及び溶媒以外の成分を含有してもよい。
 このような成分として、バインダーポリマー、又は、各種の添加剤等が挙げられる。
 (バインダーポリマー)
 バインダーポリマーは、有機半導体組成物に通常用いられるバインダーポリマーを特に制限されることなく、用いることができる。
 このようなバインダーポリマーとしては、例えば、ポリスチレン、ポリ(α-メチルスチレン)、ポリビニルシンナメート、ポリ(4-ジビニルベンゼン)、ポリ(4-ビニルフェノール)、ポリ(4-メチルスチレン)、ポリカーボネート、ポリアリレート、ポリエステル、ポリアミド、ポリイミド、ポリウレタン、ポリシロキサン、ポリスルフォン、ポリメチルメタクリレート、ポリメチルアクリレート、セルロース、ポリエチレン若しくはポリプロピレンなどの絶縁性ポリマー、及び、これらの共重合体、ポリシラン、ポリカルバゾール、ポリアリールアミン、ポリフルオレン、ポリチオフェン、ポリピロール、ポリアニリン、ポリパラフェニレンビニレン、ポリアセン若しくはポリヘテロアセンなどの半導体ポリマー、及び、これらの共重合体、ゴム、又は、熱可塑性エラストマーを挙げることができる。
 中でも、バインダーポリマーとしては、ベンゼン環を有する高分子化合物(ベンゼン環基を有する繰り返し単位を有する高分子)が好ましい。ベンゼン環基を有する繰り返し単位の含有量は特に制限されないが、全繰り返し単位中、50モル%以上が好ましく、70モル%以上がより好ましく、90モル%以上が更に好ましい。上限は特に制限されないが、100モル%が挙げられる。
 バインダーポリマーの重量平均分子量は、特に限定されないが、1,000~1,000万が好ましく、3,000~500万がより好ましく、5,000~300万が更に好ましい。
 有機半導体組成物の、バインダーポリマーの含有率は、特に限定されず、例えば、固形分中の含有率としては、後述する有機半導体膜中の、バインダーポリマーの含有率と同じ範囲にすることが好ましい。バインダーポリマーの含有率が上記範囲内にある有機半導体組成物を用いて有機半導体素子、とりわけ有機薄膜トランジスタ素子の有機半導体膜を形成すると、キャリア移動度及び耐熱性が更に向上する。
 (添加剤)
 添加剤としては、有機半導体組成物に通常用いられるものを特に制限されることなく、用いることができる。
 有機半導体組成物の、添加剤の含有率は、特に限定されず、例えば、固形分中の含有率としては、後述する有機半導体膜中の、添加剤の含有率と同じ範囲にすることが好ましい。上記範囲であると、膜形成性に優れる。例えば、添加剤の含有率が上記範囲内にある有機半導体組成物を用いて有機半導体素子、とりわけ有機薄膜トランジスタ素子の有機半導体膜を形成すると、膜形成性に優れ、キャリア移動度及び耐熱性がより向上する。
<調製方法>
 有機半導体組成物の調製方法としては、特に制限されず、通常の調製方法を採用できる。例えば、溶媒に所定量の各成分を添加して、適宜攪拌処理することにより、本発明の有機半導体組成物を調製することができる。
[有機半導体素子]
 次に、本発明の有機半導体素子について、説明する。
 本発明の有機半導体素子は、本発明の有機半導体膜を備えている。
 本発明の有機半導体素子としては、特に限定されないが、非発光性の有機半導体デバイスとして好ましく用いられる。非発光性の有機半導体デバイスとしては、発光することを目的としないデバイスであればよく、例えば、電流量若しくは電圧量を制御する有機薄膜トランジスタ素子、光エネルギーを電力に変換する有機光電変換素子(光センサ用途の固体撮像素子又はエネルギー変換用途の太陽電池等)、熱エネルギーを電力に変換する有機熱電変換素子、ガスセンサ、有機整流素子、有機インバーター又は情報記録素子等が挙げられる。非発光性の有機半導体デバイスは、有機半導体膜をエレクトロニクス要素として機能させることが好ましい。
 <有機薄膜トランジスタ素子>
 本発明の有機半導体素子の好ましい形態としての有機薄膜トランジスタ素子を説明する。
 本発明の有機薄膜トランジスタ素子(有機TFT素子ともいう)は、本発明の有機半導体膜(有機半導体層又は半導体活性層ともいう)を有し、更に、ソース電極と、ドレイン電極と、ゲート電極と、を有することができる。
 本発明の有機TFT素子は、基板上に、ゲート電極と、有機半導体層と、ゲート電極及び有機半導体層の間に設けられたゲート絶縁層と、有機半導体層に接して設けられ、有機半導体層を介して連結されたソース電極及びドレイン電極とを有する。この有機TFT素子においては、有機半導体層とゲート絶縁層が隣接して設けられる。
 本発明の有機薄膜トランジスタ素子は、上記各層を備えていればその構造については特に限定されない。例えば、ボトムコンタクト型(ボトムゲート-ボトムコンタクト型及びトップゲート-ボトムコンタクト型)、又は、トップコンタクト型(ボトムゲート-トップコンタクト型及びトップゲート-トップコンタクト型)などのいずれの構造を有していてもよい。本発明の有機薄膜トランジスタ素子は、より好ましくは、ボトムゲート-ボトムコンタクト型又はボトムゲート-トップコンタクト型(これらを総称してボトムゲート型という)である。
 以下、本発明の有機薄膜トランジスタ素子の一例について、図面を参照して説明する。
 - ボトムゲート-ボトムコンタクト型有機薄膜トランジスタ素子 -
 図1は、本発明の半導体素子の一例であるボトムゲート-ボトムコンタクト型の有機薄膜トランジスタ素子100の断面模式図である。
 有機薄膜トランジスタ素子100は、図1に示されるように、基板(基材)10と、ゲート電極20と、ゲート絶縁膜30と、ソース電極40及びドレイン電極42と、有機半導体膜50と、封止層60とを、この順で、有する。
 以下、基板(基材)、ゲート電極、ゲート絶縁膜、ソース電極、ドレイン電極、有機半導体膜及び封止層、並びに、それぞれの作製方法について詳述する。
 (基板)
 基板は、後述するゲート電極、ソース電極及びドレイン電極等を支持する役割を果たす。
 基板の種類は、特に制限されず、例えば、プラスチック基板、シリコン基板、ガラス基板又はセラミック基板等が挙げられる。中でも、各デバイスへの適用性及びコストの観点から、ガラス基板又はプラスチック基板であることが好ましい。
 基板の厚みは、特に限定されないが、例えば、10mm以下であるのが好ましく、2mm以下であるのが更に好ましく、1.5mm以下であるのが特に好ましい。一方、0.01mm以上であるのが好ましく、0.05mm以上であるのが更に好ましい。
 (ゲート電極)
 ゲート電極は、有機TFT素子のゲート電極として用いられている通常の電極を特に制限されることなく適用できる。
 ゲート電極を形成する材料(電極材料)としては、特に限定されず、例えば、金、銀、アルミニウム、銅、クロム、ニッケル、コバルト、チタン、白金、マグネシウム、カルシウム、バリウム若しくはナトリウム等の金属、InO、SnO若しくはインジウム錫酸化物(ITO)等の導電性の酸化物、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン若しくはポリジアセチレン等の導電性高分子、シリコン、ゲルマニウム若しくはガリウム砒素等の半導体、又は、フラーレン、カーボンナノチューブ若しくはグラファイト等の炭素材料等が挙げられる。中でも、上記金属が好ましく、銀又はアルミニウムがより好ましい。
 ゲート電極の厚みは、特に限定されないが、20~200nmであることが好ましい。
 ゲート電極は、上記基板として機能するものでもよく、この場合、上記基板はなくてもよい。
 ゲート電極を形成する方法は、特に限定されないが、例えば、基板上に、上述の電極材料を真空蒸着(以下単に、蒸着ともいう)又はスパッタする方法、上述の電極材料を含有する電極形成用組成物を塗布又は印刷する方法等が挙げられる。また、電極をパターニングする場合、パターニング方法としては、例えば、インクジェット印刷、スクリーン印刷、オフセット印刷若しくは凸版印刷(フレキソ印刷)等の印刷法、フォトリソグラフィー法又はマスク蒸着法等が挙げられる。
 (ゲート絶縁層)
 ゲート絶縁膜は、絶縁性を有する膜(層)であれば特に限定されず、単層であってもよいし、多層であってもよい。
 ゲート絶縁層は、絶縁性の材料で形成されるのが好ましく、絶縁性の材料として、例えば、有機高分子又は無機酸化物等が好ましく挙げられる。
 有機高分子及び無機酸化物等は、絶縁性を有するものであれば特に限定されず、薄膜、例えば厚み1μm以下の薄膜を形成できるものが好ましい。
 有機高分子及び無機酸化物は、ぞれぞれ、1種を用いても、2種以上を併用してもよく、また、有機高分子と無機酸化物を併用してもよい。
 有機高分子としては、特に限定されるものではないが、例えば、ポリビニルフェノール、ポリスチレン(PS)、ポリメチルメタクリレートに代表されるポリ(メタ)アクリレート、ポリビニルアルコール、ポリ塩化ビニル(PVC)、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、CYTOP(登録商標)に代表される環状フルオロアルキルポリマー、ポリシクロオレフィン、ポリエステル、ポリエーテルスルホン、ポリエーテルケトン、ポリイミド、エポキシ樹脂、ポリジメチルシロキサン(PDMS)に代表されるポリオルガノシロキサン、ポリシルセスキオキサン又はブタジエンゴム等が挙げられる。また、上記の他にも、フェノール樹脂、ノボラック樹脂、シンナメート樹脂、アクリル樹脂又はポリパラキシリレン樹脂等の熱硬化性樹脂も挙げられる。
 有機高分子は、アルコキシシリル基、ビニル基、アクリロイルオキシ基、エポキシ基又はメチロール基等の反応性置換基を有する化合物と併用することもできる。
 有機高分子でゲート絶縁層を形成する場合、ゲート絶縁層の耐溶媒性又は絶縁耐性を増す目的等で、有機高分子を架橋し、硬化させることも好ましい。架橋は、光、熱又はこれら双方を用いて、酸又はラジカルを発生させることにより、行うのが好ましい。
 ラジカルにより架橋する場合、光又は熱によりラジカルを発生させるラジカル発生剤として、例えば、特開2013-214649号公報の段落[0182]~[0186]に記載の熱重合開始剤(H1)及び光重合開始剤(H2)、特開2011-186069号公報の段落[0046]~[0051]に記載の光ラジカル発生剤、又は、特開2010-285518号公報の段落[0042]~[0056]に記載の光ラジカル重合開始剤等を好適に用いることができ、これらの内容は好ましくは本明細書に組み込まれる。
 また、特開2013-214649号公報の段落[0167]~[0177]に記載の「数平均分子量(Mn)が140~5,000であり、架橋性官能基を有し、フッ素原子を有さない化合物(G)」を用いることも好ましく、これらの内容は好ましくは本明細書に組み込まれる。
 酸により架橋する場合、光により酸を発生させる光酸発生剤として、例えば、特開2010-285518号公報の段落[0033]~[0034]に記載の光カチオン重合開始剤、又は、特開2012-163946号公報の段落[0120]~[0136]に記載の、酸発生剤、特にスルホニウム塩若しくはヨードニウム塩等を好ましく使用することができ、これらの内容は好ましくは本明細書に組み込まれる。
 熱により酸を発生させる熱酸発生剤(触媒)として、例えば、特開2010-285518号公報の段落[0035]~[0038]に記載の熱カチオン重合開始剤、特にオニウム塩等、又は、特開2005-354012号公報の段落[0034]~[0035]に記載の触媒、特にスルホン酸類及びスルホン酸アミン塩等を好ましく使用することができ、これらの内容は好ましくは本願明細書に組み込まれる。
 また、特開2005-354012号公報の段落[0032]~[0033]に記載の架橋剤、特に二官能以上のエポキシ化合物若しくはオキセタン化合物、特開2006-303465号公報の段落[0046]~[0062]に記載の架橋剤、特に2個以上の架橋基を有し、この架橋基の少なくとも一つがメチロール基若しくはNH基であることを特徴とする化合物、又は、特開2012-163946号公報の段落[0137]~[0145]に記載の、ヒドロキシメチル基若しくはアルコキシメチル基を分子内に2個以上有する化合物を用いることも好ましく、これらの内容は好ましくは本明細書に組み込まれる。
 ゲート絶縁層を有機高分子で形成する方法としては、特に限定されないが、例えば、有機高分子を含有する塗布液を塗布し、必要により硬化する方法が挙げられる。
 上記塗布液に用いられる溶媒としては、上記有機高分子を溶解ないしは分散できるものであれば特に限定されず、有機高分子の種類等に応じて通常用いる溶媒の中から適宜に選択して用いることができる。
 塗布方法は、特に限定されず、上記の各印刷法が挙げられる。中でも、マイクログラビアコート法、ディップコート法、スクリーンコート印刷、ダイコート法又はスピンコート法等のウエットコーティング法が好ましい。
 塗布条件も、特に限定されず、適宜に設定できる。
 硬化する方法及び条件は、有機高分子を架橋することができる方法及び条件であれば特に限定されず、例えば、上記架橋方法(ラジカル又は酸)、更には、用いる光酸発生剤又は熱酸発生剤等の種類等に応じて、適宜に設定できる。
 上記無機酸化物としては、特に限定されるものではないが、例えば、酸化ケイ素、窒化ケイ素(SiN)、酸化ハフニウム、酸化チタン、酸化タンタル、酸化アルミニウム、酸化ニオブ、酸化ジルコニウム、酸化銅若しくは酸化ニッケル等の酸化物、また、SrTiO、CaTiO、BaTiO、MgTiO若しくはSrNbのような、ペロブスカイト構造を持つ化合物、又は、これらの複合酸化物若しくは混合物等が挙げられる。
 ここで、酸化ケイ素としては、酸化シリコン(SiO)の他に、BPSG(Boron Phosphorus Silicon Glass)、PSG(Phosphorus Silicon Glass)、BSG(Borosilicate glass)、AsSG(砒素シリケートガラス)、PbSG(鉛シリケートガラス)、酸化窒化シリコン(SiON)、SOG(スピンオングラス)、又は、低誘電率SiO系材料(例えば、ポリアリールエーテル、シクロパーフルオロカーボンポリマー、ベンゾシクロブテン、環状フッ素樹脂、ポリテトラフルオロエチレン、フッ化アリールエーテル、フッ化ポリイミド、アモルファスカーボン又は有機SOG)を含む。
 ゲート絶縁層を無機酸化物で形成する方法としては、特に限定されないが、例えば、真空蒸着法、スパッタリング法、イオンプレーティング又はCVD(chemical vapor deposition)法等の真空成膜法を用いることができる。また、成膜中に、任意のガスを用いたプラズマ、イオン銃若しくはラジカル銃等でアシストしてもよい。
 また、それぞれの金属酸化物に対応する前駆体、具体的には塩化物若しくは臭化物等の金属ハロゲン化物、金属アルコキシド又は金属水酸化物等を、アルコール又は水中で、塩酸、硫酸若しくは硝酸等の酸、又は水酸化ナトリウム若しくは水酸化カリウム等の塩基と反応させて加水分解することにより、ゲート絶縁層を形成することもできる。このような溶液系のプロセスを用いる場合、上記ウエットコーティング法を用いることができる。
 ゲート絶縁層を無機酸化物で形成する場合、上記の方法以外にも、リフトオフ法、ゾル-ゲル法、電着法及びシャドウマスク法のいずれかと、必要に応じてパターニング法とを組み合わせた方法を用いることもできる。
 ゲート絶縁層は、コロナ処理、プラズマ処理、UV(紫外線)/オゾン処理等の表面処理を施してもよい。この場合、各処理によって表面粗さを粗くしないことが好ましい。例えば、処理後のゲート絶縁層表面の算術平均粗さRa又は二乗平均平方根粗さR(いずれも、JIS B0601:2013)が0.5nm以下であることが好ましい。
 ゲート絶縁膜の膜厚は、特に限定されないが、100~1000nmであることが好ましい。
 (ソース電極及びドレイン電極)
 本発明の有機TFT素子において、ソース電極は、配線を通じて外部から電流が流入する電極である。また、ドレイン電極は、配線を通じて外部に電流を送り出す電極である。
 ソース電極及びドレイン電極を形成する材料は、上述したゲート電極を形成する電極材料と同じものを用いることができる。中でも、金属が好ましく、銀がより好ましい。
 ソース電極及びドレイン電極の厚みは、特に限定されないが、それぞれ、1nm以上が好ましく、10nm以上が特に好ましい。また、500nm以下が好ましく、300nm以下が特に好ましい。
 ソース電極とドレイン電極との間の間隔(ゲート長)は、適宜に決定できるが、例えば、200μm以下が好ましく、100μm以下が特に好ましい。また、ゲート幅は、適宜に決定できるが、例えば、5000μm以下が好ましく、1000μm以下が特に好ましい。
 ソース電極及びドレイン電極を形成する方法は、特に限定されないが、例えば、ゲート電極とゲート絶縁膜とが形成された基板上に、電極材料を真空蒸着又はスパッタする方法、電極形成用組成物を塗布又は印刷する方法等が挙げられる。パターニングする場合、パターニングする方法は上述したゲート電極の方法と同じである。
 (有機半導体膜)
 有機TFT素子において、有機半導体膜は、上述の、本発明の重合体を含有する。有機半導体膜に含有される重合体は、1種でもよく、2種以上でもよい。
 有機半導体膜が本発明の重合体を含有すると、高く、しかも均質性のよいキャリア移動度と、高い耐熱性とを兼ね備えたものとなる。その理由は定かではないが、次のように考えられる。すなわち、本発明の重合体の構成成分であるジナフトカルコゲノフェン化合物に由来する基は電子供与性(ドナー)ユニットで、五環が縮環した構造を有している。そのため、比較的広いπ平面を有し、分子間のパッキングに有利な構造といえる。更に、本発明の重合体は、電子受容性(アクセプター)ユニットであるA10、好ましくは式(A-1)~式(A-12)のいずれかで表される芳香族複素環基を組み合わせて含有することで、主鎖骨格が電子供与性(ドナー)ユニットと電子受容性(アクセプター)ユニットとから形成される、所謂「D-Aポリマー」の一種となる。このような、特定の骨格を含むD-A型ポリマーは分子内で分極しやすく、分子間のパッキングに有利である。そのため、キャリア移動度が高くなり、高い耐熱性を示すと考えられる。
 また、上記のジナフトカルコゲノフェン化合物に由来する基は非対称型の構造を有しており、しかもこの基自体が双曲子モーメントを有している。これにより、対称骨格を有する重合体と比較して、溶解性が高い。そのため、重合体を含む組成物を塗布した後の塗膜は凹凸が少ない均一な膜が得られ、キャリア移動度のばらつきが少ない有機半導体素子が得られると考えられる。
 有機半導体膜中の、重合体の含有率は、特に限定されず適宜に設定できる。例えば、10質量%以上であることが好ましく、30質量%以上であることがより好ましく、50質量%以上であることが更に好ましい。その上限は、100質量%とすることができる。この上限は、有機半導体膜がバインダーポリマー等を含有する場合、例えば、90質量%以下であることが好ましく、80質量%以下であることが更に好ましい。
 有機半導体膜は、本発明の重合体に加えて、上記バインダーポリマー又は添加剤を含有していてもよい。バインダーポリマー及び添加剤については上述した通りである。
 バインダーポリマー及び添加剤は、それぞれ、1種を含有していてもよく、2種以上を含有していてもよい。
 有機半導体膜中の、バインダーポリマーの含有率は、特に限定されず適宜に設定できる。例えば、90質量%以下が好ましく、70質量%以下であることがより好ましく、50質量%以下であることが更に好ましい。その下限は、0質量%以上とすることができ、例えば、10質量%以上であることが好ましく、15質量%以上であることがより好ましく、20質量%以上であることが更に好ましい。
 有機半導体膜中の、添加剤の含有率は、10質量%以下であることが好ましく、5質量%以下であることがより好ましく、1質量%以下であることが更に好ましい。
 有機半導体膜の膜厚は、適用される有機半導体素子に応じて一義的に決定することができないが、例えば、10~500nmが好ましく、20~200nmがより好ましい。
 この有機半導体膜は、上述した有機半導体組成物を塗布して形成することができる。具体的には、上述した有機半導体組成物を基板上に塗布して、乾燥させることにより、有機半導体膜を形成することができる。
 本発明において、有機半導体組成物を基板上に塗布するとは、有機半導体組成物を基板に直接適用する態様のみならず、基板上に設けられた別の層を介して基板の上方に有機半導体組成物を適用する態様も含むものとする。有機半導体組成物が塗布される別の層(有機半導体層に接する、有機半導体層の土台となる層)は、有機薄膜トランジスタの構造により必然的に定まる。例えば、ボトムゲート型の場合、ゲート絶縁膜であり、トップゲート型(トップゲート-ボトムコンタクト型及びトップゲート-トップコンタクト型)の場合、ソース電極又はドレイン電極である。
 有機半導体組成物の塗布方法としては、通常の方法を用いることができ、例えば、バーコート法、スピンコート法、ナイフコート法、ドクターブレード法、インクジェット印刷法、フレキソ印刷法、グラビア印刷法又はスクリーン印刷法が挙げられる。更に、有機半導体組成物の塗布方法としては、特開2013-207085号公報に記載の有機半導体膜の形成方法(いわゆるギャップキャスト法)、国際公開第2014/175351号に記載の有機半導体薄膜の製造方法(いわゆるエッジキャスト法又は連続エッジキャスト法)等も好適に用いられる。
 乾燥(乾燥処理)は、有機半導体組成物に含まれる各成分の種類により適宜の条件を選定できる。自然乾燥であってもよいが、生産性を向上させる観点から、加熱処理が好ましい。加熱処理条件は、一義的に決定できないが、例えば、加熱温度としては30~250℃が好ましく、40~200℃がより好ましく、50~150℃が更に好ましく、加熱時間としては10~300分が好ましく、20~180分がより好ましい。
 (封止層)
 本発明の有機半導体膜は、上述のように、本発明の重合体を含有しており、高い耐熱性を示す。したがって、この有機半導体を設けた後に、封止層等の形成などの加熱工程を行っても、有機半導体膜の高いキャリア移動度を維持することができる。
 したがって、本発明の有機薄膜トランジスタ素子は、耐久性の観点から、最外層に封止層を備えるのが好ましい。これにより、高いキャリア移動度と耐久性とを両立できる。
 封止層には、有機TFT素子に通常用いられる封止剤(封止層形成用組成物)を用いることができる。
 封止剤は、好ましくは、加熱乾燥されて、層に形成される。このときの加熱条件は、封止剤の種類等に応じて一義的に決定できないが、例えば、加熱温度としては50~200℃が好ましく、100~175℃がより好ましい。加熱時間等のその他の条件は、封止剤の種類等に応じて適宜に決定される。
 封止層の膜厚は、特に限定されないが、0.2~10μmであることが好ましい。
 - ボトムゲート-トップコンタクト型有機薄膜トランジスタ素子 -
 図2は、本発明の半導体素子の一例であるボトムゲート-トップコンタクト型の有機薄膜トランジスタ素子200を表す断面模式図である。
 有機薄膜トランジスタ素子200は、図2に示されるように、基板10と、ゲート電極20と、ゲート絶縁膜30と、有機半導体膜50と、ソース電極40及びドレイン電極42と、封止層60とを、この順で、有する。
 有機薄膜トランジスタ素子200は、層構成(積層態様)が異なること以外は、有機薄膜トランジスタ素子100を同じである。したがって、基板、ゲート電極、ゲート絶縁膜、ソース電極、ドレイン電極、有機半導体膜及び封止層については、上述の、ボトムゲート-ボトムコンタクト型有機薄膜トランジスタ素子におけるものと同じであるので、その説明を省略する。
 有機薄膜トランジスタ素子200は、本発明の有機半導体膜を備えている。したがって、有機半導体膜上に、ソース電極及びドレイン電極を、電極形成用組成物を塗布又は印刷した後に加熱処理して形成しても、有機半導体膜の高いキャリア移動度を維持することができる。
 本発明を実施例に基づき更に詳細に説明するが、本発明は下記実施例に限定されない。
[合成例]
 各例に用いた重合体1~21を以下に示す。
 各重合体の重量平均分子量を上記方法により測定し、表1に示した。なお、比較化合物1及び2の分子量は分子式から計算した値を表1に示した。
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
<合成例1:重合体2合成>
 下記スキームに従い、中間体5及び中間体10を合成した。
 下記スキーム中の略語は次の通りである。
 Ni(dppp)Clはジクロロ(1,3-ビス(ジフェニルホスフィノ)プロパン)ニッケル(II)を、THFはテトラヒドロフランを、NBSはN-ブロモスクシンイミドを、AcOHは酢酸を、EtOはジエチルエーテルを、BuLiはブチルリチウムを、TMSはトリメチルシリルを、TBAFはテトラブチルアンモニウムフルオリドを、Meはメチルを、DMFはN,N-ジメチルホルムアミドを、TfOはトリフルオロメタンスルホン酸無水物を、それぞれ、示す。
Figure JPOXMLDOC01-appb-C000036
-中間体5の合成-
 中間体2は、Macromolecules,2010,43,p.9779-9786に記載の方法を参考に合成した。中間体3及び5はJournal of the American Chemical Society,2013,135,p.844-854に記載の方法を参考に合成した。中間体4はAngewandte Chemie International Edition、1995,34,p.303-307に記載の方法を参考に合成した。
Figure JPOXMLDOC01-appb-C000037
-中間体6の合成-
 1-ブロモ-4-メトキシ-2-(トリメチルシリルエチニル)ベンゼン(10.5g、37.2mmol)及びテトラヒドロフラン(75mL)を混合し、窒素雰囲気下、-78℃に冷却した。これに1.6M(モル/L)のノルマルブチルリチウムヘキサン溶液(24mL、38.4mmol)を加えた後、-78℃で30分攪拌した。次いで、0.5Mの塩化亜鉛のテトラヒドロフラン(THF)溶液(75mL、37.5mmol)を滴下し、更に30分攪拌した。反応溶液を室温(約20℃)まで昇温した後、2,5-ジブロモチオフェン(3g、12.4mmol)及びビス(トリフェニルホスフィン)パラジウム(II)ジクロリド(870mg、1.24mmol)を加え、12時間加熱還流した。反応溶液を室温まで冷却した後、シリカゲル上をろ過し、濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(溶出液:ヘキサン:酢酸エチル=95:5)で精製し、中間体6(2.9g、収率:48%)を得た。
-中間体7の合成-
 中間体6(2.0g、4.1mmol)及び1.0Mのテトラブチルアンモニウムフルオリドのテトラヒドロフラン溶液(12mL、12.0mmol)を混合し、窒素雰囲気下、反応溶液を室温で1時間撹拌した後、水を加えて反応をクエンチし、反応生成物をクロロホルムで抽出した。有機相を水で洗浄し、硫酸ナトリウムで乾燥した後にシリカゲル上をろ過し、濃縮することで、中間体7(1.25g、89%)で得た。中間体7はこれ以上精製せずに、次の反応に用いた。
 中間体8はChmistry Letters,2011,40,p.300-302に記載の方法を参考に合成した。
-中間体9の合成-
 中間体8(800mg、2.3mmol)及びクロロホルム(23mL)を混合し、窒窒素雰囲気下、混合溶液を0℃まで冷却した。そこへ1.0Mの三臭化ホウ素のジクロロメタン溶液(12mL、12mmol)を滴下した。反応溶液を室温まで昇温後3時間撹拌し、水を加えて反応をクエンチし、反応生成物を酢酸エチルで抽出した。有機相を水で洗浄し、硫酸ナトリウムで乾燥した後、ろ過し、濃縮することで、中間体9(690mg、95%)で得た。中間体9はこれ以上精製せずに、次の反応に用いた。
-中間体10の合成-
 中間体9(690mg、2.2mmol)とピリジン(11mL)を加え、窒窒素雰囲気下、反応溶液を0℃まで冷却し、トリフルオロメタンスルホン酸無水物(0.8mL、4.8mmol)を滴下した。混合溶液を室温まで昇温後3時間撹拌し、水(50mL)を加えてクエンチした。生じた粉末をろ取し、一度トルエンに溶解させ、シリカゲル上をろ過して、濃縮した。得られた粗生成物をトルエン/メタノールで再結晶することで、中間体10(720mg、57%)を得た。
 下記スキームに従い、重合体2を合成した。
Figure JPOXMLDOC01-appb-C000038
 中間体5(206mg、155μmol)、中間体10(90mg、155μmol)、トリ(o-トリル)ホスフィン(P(o-tolyl):3.8mg、12.4μmol)、トリス(ジベンジリデンアセトン)ジパラジウム(Pd(dba):3.1mg、3.1μmol)及び脱水クロロベンゼン(5mL)を混合し、窒素雰囲気下、130℃で24時間撹拌した。反応液を室温まで冷却した後、メタノール(40mL)/濃塩酸(2mL)混合液に注ぎ、2時間撹拌した。析出物をろ取し、メタノールで洗浄した。得られた粗生成物をメタノール、アセトン、ヘキサンで順次ソックスレー抽出し、可溶性の不純物を取り除いた。続いて、クロロホルムでソックスレー抽出し、得られた溶液を減圧濃縮した後、メタノールを添加し、析出した固形分をろ取し、メタノールで洗浄して、80℃で12時間真空乾燥した。こうして、重合体2(145mg)を得た。
 重合体2のポリスチレン換算の数平均分子量は1.9×10であり、重量平均分子量は4.6×10であった。
<合成例2:重合体9の合成>
 下記スキームに従い、重合体9を合成した。
Figure JPOXMLDOC01-appb-C000039
 なお、中間体11はJournal of Materials Chemistry C,2015,p.3,9849-9858に記載の化合物である。
 中間体10(90mg、155μmol)、中間体11(201mg、155μmol)、トリ(o-トリル)ホスフィン(P(o-tolyl):3.8mg、12.4μmol)、トリス(ジベンジリデンアセトン)ジパラジウム(Pd(dba):3.1mg、3.1μmol)及び脱水クロロベンゼン(5mL)を混合し、窒素雰囲気下、130℃で24時間撹拌した。反応液を室温まで冷却した後、メタノール(40mL)/濃塩酸(2mL)混合液に注ぎ、2時間撹拌した。析出物をろ取し、メタノールで洗浄した。得られた粗生成物をメタノール、アセトン、ヘキサンで順次ソックスレー抽出し、可溶性の不純物を取り除いた。続いて、クロロホルムでソックスレー抽出し、得られた溶液を減圧濃縮した後、メタノールを添加し、析出した固形分をろ取し、メタノールで洗浄して、80℃で12時間真空乾燥した。こうして、重合体9(195mg)を得た。
 重合体9のポリスチレン換算の数平均分子量は1.9×10であり、重量平均分子量は4.6×104であった。
<合成例3:重合体1、3~8及び10~21の合成>
 上記合成例1又は2と同様にして、重合体1、3~8及び10~21を合成した。
<比較のための化合物>
 下記に示す比較化合物1~5を準備した。
 比較化合物1は、特許文献3に記載の化合物である。
 比較化合物2は、特許文献2に記載の化合物Aである。
 比較化合物3は、ポリ(3-ヘキシルチオフェン-2,5-ジイル)(アルドリッチ社製)である。
 比較化合物4及び5は、それぞれ、上記合成例1又は2と同様にして、合成した。
Figure JPOXMLDOC01-appb-C000040
[有機半導体組成物の調製例]
 表1に示す重合体又は比較化合物3mgと、クロロベンゼン1mLとを硝子バイヤルに投入し、ミックスローター(アズワン社製)により、60℃で12時間撹拌混合した。次いで、得られた液を0.5μmのメンブレンフィルターでろ過して、本発明の有機半導体組成物1~21及び比較のための有機半導体組成物c1~c5を調製した。
 得られた各組成物中の重合体の含有率は、いずれも、0.27質量%であった。
[実施例1]
 図1に示すボトムゲート-ボトムコンタクト型の有機薄膜トランジスタ素子100を製造し、その特性を評価した。
 <有機薄膜トランジスタ素子の製造>
 ガラス基板(イーグルXG:コーニング社製、厚み1.1mm)上に、アルミニウムを蒸着してゲート電極(厚み50nm)を形成した。その上に、ゲート絶縁膜形成用組成物(ポリビニルフェノール/2,4,6-トリス[ビス(メトキシメチル)アミノ]-1,3,5-トリアジン=1質量部/1質量部のPGMEA(プロピレングリコールモノメチルエーテルアセテート)溶液(固形分濃度2質量%))をスピンコートし、150℃で60分間ベーク(加熱乾燥)して、膜厚400nmのゲート絶縁膜を形成した。
 次いで、その上に、銀インク(銀ナノコロイドH-1(商品名)、三菱マテリアル社製)を、インクジェット装置:DMP-2831(商品名、富士フイルムダイマティクス社製)を用いて、ソース電極及びドレイン電極の形状(厚み約100nm、ゲート長60μm及びゲート幅200μm)に、印刷(描画)した。その後、オーブンにて180℃で30分ベークし、焼結して、ソース電極及びドレイン電極を形成した。このようにして素子前駆体を得た。
 窒素グローブボックス中で、素子前駆体の上に、表1に示す各有機半導体組成物をスピンコート(500rpm10秒間、更に1,000rpmで30秒間)した後、ホットプレート上で、100℃で1時間乾燥して、有機半導体層(膜厚約20nm)を形成した。このようにして、本発明の有機薄膜トランジスタ素子T1~T21及び比較のための有機薄膜トランジスタ素子CT1~CT5をそれぞれ製造した。
 各有機薄膜トランジスタ素子について、キャリア移動度測定用検体として10検体ずつ製造した。
 有機半導体層中の重合体の含有率は、いずれも、100質量%であった。
 <有機薄膜トランジスタ素子の評価>
 製造した各有機薄膜トランジスタ素子について、半導体特性評価装置:B2900A(商品名、アジレントテクノロジーズ社製)を用いて、大気下で、以下の性能評価をした。その結果を表1に示す。
 (キャリア移動度のばらつき(均質性)の評価)
1.キャリア移動度μAVの測定
 各有機薄膜トランジスタ素子T1~T21及びCT1~CT5それぞれについて、製造したキャリア移動度測定用検体10検体すべてのキャリア移動度を測定した。具体的には、各有機薄膜トランジスタ素子のソース電極-ドレイン電極間に-50Vの電圧を印加し、ゲート電圧を+10V~-70Vの範囲で変化させ、ドレイン電流Iを表す下記式を用いてキャリア移動度μ(cm/Vs)を算出した。10検体のキャリア移動度の平均値を求め、これを、キャリア移動度μAVとした。キャリア移動度μAVについては、有機薄膜トランジスタ素子T1~T21、CT-3及びCT-4の結果を表1に示した。
 キャリア移動度μAVは高いほど好ましく、本試験において、1×10-2cm/Vs以上であることが好ましい。
 I=(w/2L)μC(V-Vth
 式中、Lはゲート長、wはゲート幅、μはキャリア移動度、Cはゲート絶縁層の単位面積当たりの容量、Vはゲート電圧、Vthは閾値電圧を、それぞれ、表す。
2.変異係数の算出
 各有機薄膜トランジスタ素子T1~T21及びCT1~CT5それぞれについて、上記「キャリア移動度μの測定」試験において測定した10検体のキャリア移動度μに対して、下記式により、変異係数を算出した。
 下記式において、標準偏差は定法により算出し、平均値は上記キャリア移動度μAVを用いた。
 この変異係数を、キャリア移動度のばらつきの指標として、評価した。得られた変異係数が下記評価ランクのいずれに含まれるかを判定した。変異係数は、小さいほど検体間において移動度のばらつきが小さいことを示し、本試験においては、ランクA又はBであることが好ましく、ランクAであることがより好ましい。
 変異係数(%)=(標準偏差/平均値)×100
 「A」:15%未満
 「B」:15%以上30%未満
 「C」:30%以上50%未満
 「D」:50%以上
 (耐熱性の評価)
 有機薄膜トランジスタ素子T1~T21及びCT1~CT5それぞれについて、キャリア移動度測定用検体10検体それぞれを、窒素グローブボックス中にて、150℃に1時間加熱した。その後、上記「キャリア移動度μAVの測定」と同様にして、加熱後のキャリア移動度μを測定し、10検体のキャリア移動度μの平均値を求め、これを、加熱後のキャリア移動度μ AVとした。
 得られた加熱後のキャリア移動度μ AVと、キャリア移動度μAVとから、キャリア移動度維持率(%)を下記式により求めた。得られたキャリア移動度維持率(%)が下記評価ランクのいずれに含まれるかを判定した。キャリア移動度維持率は、値が大きいほど耐熱性が高く、本試験において、ランクA又はBであることが好ましく、ランクAであることがより好ましい。
 キャリア移動度維持率(%)=(加熱後のキャリア移動度μ AV/キャリア移動度μAV)×100
 「A」:80%以上
 「B」:60%以上80%未満
 「C」:40%以上60%未満
 「D」:40%以上
Figure JPOXMLDOC01-appb-T000041
 表1の結果から、以下のことが分かる。
 有機薄膜トランジスタ素子CT1~CT5は、いずれも、上述の比較化合物を含有する有機半導体層を備えており、キャリア移動度、その均質性及び耐熱性を兼ね備えるものではなかった。
 すなわち、ジナフトチオフェン化合物である比較化合物1及び2を含有する有機半導体層を備えた有機薄膜トランジスタ素子CT1及びCT2は、いずれも、キャリア移動度のばらつきが大きく、更に、加熱後にキャリア移動度が大幅に低下した。有機薄膜トランジスタ素子CT3及びCT4は、いずれも、有機半導体層が重合体を含有するものである。しかし、これらの重合体は、ジナフトカルコゲノフェン化合物由来の基を含まない繰り返し単位からなるものである。そのため、これらの重合体を含有する有機薄膜トランジスタ素子は、キャリア移動度μAV及び耐熱性のいずれにも劣るものであった。一方、有機薄膜トランジスタ素子CT5は、ジナフトカルコゲノフェン化合物由来の基のみからなる重合体を含有する有機半導体層を備えているが、キャリア移動度のばらつき及び耐熱性の点で十分なものではなかった。
 これに対して、本発明の有機薄膜トランジスタ素子T1~T21は、いずれも、本発明の重合体を含有する有機半導体層を備え、キャリア移動度、その均質性及び耐熱性を高い水準で兼ね備えていた。
 特に、式(2)のA12で表される芳香族複素環基を有する重合体を含有していると、キャリア移動度及びその均質性を保持したまま、耐熱性を更に向上させることができた(素子No.T4~T17、T20及びT21)。
 また、式(2)のA12が式(A-3)で表される芳香族複素環基であると、キャリア移動度の向上効果が大きく、キャリア移動度、その均質性及び耐熱性をより高い水準でバランスよく兼ね備えることができた(素子No.T8~T10及びT21)。
 更に、式(2)のA11及びA13がいずれも式(Ar-1)で表される芳香族複素環基であると、キャリア移動度を大幅に向上させることができた(素子No.T9及びT20)。
 式(1)のYが酸素原子である重合体と硫黄原子である重合体の場合を比較すると、キャリア移動度の均質性及び耐熱性の点ではほぼ同等の性能を示したが、キャリア移動度の点ではYが硫黄原子である重合体の方が高くなった(素子No.T9及びT21)。
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
 本願は、2016年4月1日に日本国で特許出願された特願2016-074079に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。
 10 基板
 20 ゲート電極
 30 ゲート絶縁膜
 40 ソース電極
 42 ドレイン電極
 50 有機半導体膜
 60 封止層
 100、200 有機薄膜トランジスタ素子

Claims (13)

  1.  下記式(1)で表される繰り返し単位を有する重合体を含有する有機半導体膜を備えた有機半導体素子。
    Figure JPOXMLDOC01-appb-C000001
     式(1)中、
    は、酸素原子、硫黄原子又はセレン原子を示す。
    11~R14は各々独立に置換基を示す。
    a及びbは各々独立に0~3の整数であり、r及びsは各々独立に0~2の整数である。
    10は芳香族炭化水素基、芳香族複素環基、ビニレン基又はエチニレン基を示す。
    10は1~12の整数である。
  2.  前記繰り返し単位が、下記式(2)で表される請求項1に記載の有機半導体素子。
    Figure JPOXMLDOC01-appb-C000002
     式(2)中、
    、R11~R14、a、b、r及びsはそれぞれ前記式(1)におけるY、R11~R14、a、b、r及びsと同義である。
    11及びA13は、各々独立に、芳香族炭化水素基、下記式(A-1)~(A-12)で表される芳香族複素環基以外の芳香族複素環基、ビニレン基又はエチニレン基を示す。
    12は下記式(A-1)~(A-12)のいずれかで表される芳香族複素環基を示す。
    11及びm13は各々独立に0~4の整数であり、m12は0~4の整数である。ただし、m11、m12及びm13の合計は1以上である。
    Figure JPOXMLDOC01-appb-C000003
     式(A-1)~(A-12)中、
    は、各々独立に、酸素原子、硫黄原子、セレン原子又はNRを示す。R及びRは、炭素鎖中に-O-、-S-及び-NRA3-のうち少なくとも1つを含んでいてもよいアルキル基、又は、下記式(1-1)で表される基を示す。
    は各々独立に酸素原子又は硫黄原子を示す。
    は各々独立にCRA2又は窒素原子を示す。
    は、各々独立に、C(RA2、NRA1、窒素原子、CRA2、酸素原子、硫黄原子又はセレン原子を示す。RA1は、各々独立に、炭素鎖中に-O-、-S-及び-NRA3-のうち少なくとも1つを含んでいてもよいアルキル基、下記式(1-1)で表される基、又は、単結合を示す。RA2は、各々独立に、水素原子、ハロゲン原子、炭素鎖中に-O-、-S-及び-NRA3-のうち少なくとも1つを含んでいてもよいアルキル基、又は、単結合を示す。RA3は各々独立に水素原子又は置換基を示す。
    *は、前記繰り返し単位を形成する他の基との結合部位を示す。
    Figure JPOXMLDOC01-appb-C000004
     式(1-1)中、
    は、炭素鎖中に-O-、-S-及び-NR1S-のうち少なくとも1つを含んでいてもよい炭素数1~20のアルキレン基を示す。
    Arは、芳香族複素環基又は炭素数6~18の芳香族炭化水素基を示す。
    は、炭素鎖中に-O-、-S-及び-NR2S-のうち少なくとも1つを含んでいてもよい炭素数1~100のアルキル基を示す。
    1S及びR2Sは各々独立に水素原子又は置換基を示す。
    lは1~5の整数である。
    *は、前記式(A-1)若しくは(A-2)中の環構成窒素原子、XにおけるNR中の窒素原子又はWにおけるNRA1中の窒素原子との結合部位を示す。
  3.  前記m12が、1~4の整数である請求項2に記載の有機半導体素子。
  4.  前記-(A11)m11-及び-(A13)m13-が、各々独立に、下記式(Ar-1)で表される請求項2又は3に記載の有機半導体素子。
    Figure JPOXMLDOC01-appb-C000005
     式(Ar-1)中、
    は、酸素原子、硫黄原子、セレン原子又はNRD1を示す。
    は、各々独立に、窒素原子又はCRD2を示す。
    D1及びRD2は水素原子又は置換基を示す。
    は1~4の整数である。
    *は、前記繰り返し単位を形成する他の基との結合部位を示す。
  5.  前記Xが硫黄原子であり、前記Zがいずれも前記CRD2である請求項4に記載の有機半導体素子。
  6.  前記有機半導体素子が、有機薄膜トランジスタ素子である請求項1~5のいずれか1項に記載の有機半導体素子。
  7.  下記式(1)で表される繰り返し単位を有する重合体。
    Figure JPOXMLDOC01-appb-C000006
     式(1)中、
    は、酸素原子、硫黄原子又はセレン原子を示す。
    11~R14は各々独立に置換基を示す。
    a及びbは各々独立に0~3の整数であり、r及びsは各々独立に0~2の整数である。
    10は芳香族炭化水素基、芳香族複素環基、ビニレン基又はエチニレン基を示す。
    10は1~12の整数である。
  8.  前記繰り返し単位が、下記式(2)で表される請求項7に記載の重合体。
    Figure JPOXMLDOC01-appb-C000007
     式(2)中、
    、R11~R14、a、b、r及びsはそれぞれ前記式(1)におけるY、R11~R14、a、b、r及びsと同義である。
    11及びA13は、各々独立に、芳香族炭化水素基、下記式(A-1)~(A-12)で表される芳香族複素環基以外の芳香族複素環基、ビニレン基又はエチニレン基を示す。
    12は下記式(A-1)~(A-12)のいずれかで表される芳香族複素環基を示す。
    11及びm13は各々独立に0~4の整数であり、m12は0~4の整数である。ただし、m11、m12及びm13の合計は1以上である。
    Figure JPOXMLDOC01-appb-C000008
     式(A-1)~(A-12)中、
    は、各々独立に、酸素原子、硫黄原子、セレン原子又はNRを示す。R及びRは、炭素鎖中に-O-、-S-及び-NRA3-のうち少なくとも1つを含んでいてもよいアルキル基、又は、下記式(1-1)で表される基を示す。
    は各々独立に酸素原子又は硫黄原子を示す。
    は各々独立にCRA2又は窒素原子を示す。
    は、各々独立に、C(RA2、NRA1、窒素原子、CRA2、酸素原子、硫黄原子又はセレン原子を示す。RA1は、各々独立に、炭素鎖中に-O-、-S-及び-NRA3-のうち少なくとも1つを含んでいてもよいアルキル基、下記式(1-1)で表される基、又は、単結合を示す。RA2は、各々独立に、水素原子、ハロゲン原子、炭素鎖中に-O-、-S-及び-NRA3-のうち少なくとも1つを含んでいてもよいアルキル基、又は、単結合を示す。RA3は各々独立に水素原子又は置換基を示す。
    *は、前記繰り返し単位を形成する他の基との結合部位を示す。
    Figure JPOXMLDOC01-appb-C000009
     式(1-1)中、
    は、炭素鎖中に-O-、-S-及び-NR1S-のうち少なくとも1つを含んでいてもよい炭素数1~20のアルキレン基を示す。
    Arは、芳香族複素環基又は炭素数6~18の芳香族炭化水素基を示す。
    は、炭素鎖中に-O-、-S-及び-NR2S-のうち少なくとも1つを含んでいてもよい炭素数1~100のアルキル基を示す。
    1S及びR2Sは各々独立に水素原子又は置換基を示す。
    lは1~5の整数である。
    *は、前記式(A-1)若しくは(A-2)中の環構成窒素原子、XにおけるNR中の窒素原子又はWにおけるNRA1中の窒素原子との結合部位を示す。
  9.  前記m12が、1~4の整数である請求項8に記載の重合体。
  10.  前記-(A11)m11-及び-(A13)m13-が、各々独立に、下記式(Ar-1)で表される請求項8又は9に記載の重合体。
    Figure JPOXMLDOC01-appb-C000010
     式(Ar-1)中、
    は、酸素原子、硫黄原子、セレン原子又はNRD1を示す。
    は、各々独立に、窒素原子又はCRD2を示す。
    D1及びRD2は水素原子又は置換基を示す。
    は1~4の整数である。
    *は、前記繰り返し単位を形成する他の基との結合部位を示す。
  11.  前記Xが硫黄原子であり、前記Zがいずれも前記CRD2である請求項10に記載の重合体。
  12.  請求項7~11のいずれか1項に記載の重合体と溶媒とを含有する有機半導体組成物。
  13.  請求項7~11のいずれか1項に記載の重合体を含む有機半導体膜。
PCT/JP2017/012174 2016-04-01 2017-03-24 有機半導体素子、重合体、有機半導体組成物及び有機半導体膜 WO2017170280A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018509273A JP6574052B2 (ja) 2016-04-01 2017-03-24 有機半導体素子、重合体、有機半導体組成物及び有機半導体膜
US16/141,434 US11038125B2 (en) 2016-04-01 2018-09-25 Organic semiconductor element, polymer, organic semiconductor composition, and organic semiconductor film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016074079 2016-04-01
JP2016-074079 2016-04-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/141,434 Continuation US11038125B2 (en) 2016-04-01 2018-09-25 Organic semiconductor element, polymer, organic semiconductor composition, and organic semiconductor film

Publications (1)

Publication Number Publication Date
WO2017170280A1 true WO2017170280A1 (ja) 2017-10-05

Family

ID=59965411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/012174 WO2017170280A1 (ja) 2016-04-01 2017-03-24 有機半導体素子、重合体、有機半導体組成物及び有機半導体膜

Country Status (3)

Country Link
US (1) US11038125B2 (ja)
JP (1) JP6574052B2 (ja)
WO (1) WO2017170280A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130046498A (ko) * 2011-10-28 2013-05-08 주식회사 동진쎄미켐 자가 가교형 고분자, 이를 포함하는 레지스트 하층막 조성물 및 이를 이용한 패턴 형성 방법
JP2013189589A (ja) * 2012-03-15 2013-09-26 Kanagawa Univ 発光材料及び発光素子
JP2013197193A (ja) * 2012-03-16 2013-09-30 Jnc Corp 有機半導体薄膜、有機半導体素子および有機電界効果トランジスタ
JP2015048346A (ja) * 2013-09-04 2015-03-16 出光興産株式会社 ジナフトチオフェン化合物、ジナフトチオフェン化合物を含む有機薄膜トランジスタ用組成物、及びそれを用いた有機薄膜トランジスタ

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100572419C (zh) 2003-10-28 2009-12-23 西巴特殊化学品控股有限公司 新颖的二酮基吡咯并吡咯聚合物
JP4731840B2 (ja) 2004-06-14 2011-07-27 キヤノン株式会社 電界効果型トランジスタおよびその製造方法
JP5037841B2 (ja) 2005-03-25 2012-10-03 キヤノン株式会社 有機半導体素子、電界効果型トランジスタおよびそれらの製造方法
KR101128943B1 (ko) 2007-04-13 2012-03-27 주식회사 엘지화학 디옥시피롤기를 포함하는 헤테로고리 화합물 및 이를이용한 유기 전자 소자
EP2205657B1 (en) 2007-10-25 2017-04-05 Basf Se Ketopyrroles as organic semiconductors
US9293708B2 (en) 2011-06-17 2016-03-22 The Regents Of The University Of California Regioregular pyridal[2,1,3]thiadiazole π-conjugated copolymers for organic semiconductors
JP5649977B2 (ja) 2008-02-05 2015-01-07 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se ナフタレン−イミド半導体ポリマー
JP5471048B2 (ja) 2008-06-13 2014-04-16 住友化学株式会社 共重合体及びそれを用いた高分子発光素子
JP5284880B2 (ja) 2009-06-10 2013-09-11 株式会社カネカ 光硬化性組成物およびそれを用いた絶縁性薄膜および薄膜トランジスタ
JP5493088B2 (ja) * 2010-02-04 2014-05-14 学校法人神奈川大学 ジベンゾチオフェン骨格を有する化合物における屈折率付与効果を増大させる方法
JP2011186069A (ja) 2010-03-05 2011-09-22 Adeka Corp 感光性樹脂組成物
EP2651953B1 (en) 2010-12-17 2020-10-14 Raynergy Tek Inc. Conjugated polymers
JP5703197B2 (ja) 2011-01-18 2015-04-15 富士フイルム株式会社 化学増幅型レジスト組成物、それを用いたレジスト膜、レジスト塗布マスクブランクス、レジストパターン形成方法、及び、フォトマスク、並びに、高分子化合物
KR20140023923A (ko) 2011-03-11 2014-02-27 메르크 파텐트 게엠베하 공액 중합체
US9537110B2 (en) * 2012-02-22 2017-01-03 Jnc Corporation Chalcogen-containing organic compound and use thereof
JP2013207085A (ja) 2012-03-28 2013-10-07 Teijin Ltd 有機半導体組成物、有機半導体膜の形成方法、有機半導体積層体、及び半導体デバイス
JP2013214649A (ja) 2012-04-03 2013-10-17 Asahi Glass Co Ltd 半導体装置およびその製造方法
JP6128665B2 (ja) 2013-04-25 2017-05-17 パイクリスタル株式会社 有機半導体薄膜の製造方法
JP6252264B2 (ja) 2014-03-12 2017-12-27 住友化学株式会社 高分子化合物およびそれを用いた有機半導体素子
US9865830B2 (en) * 2015-06-16 2018-01-09 Gwangju Institute Of Science And Technology Organic thin film transistor, method for manufacturing the same and method for recoverying insulation thereof
US10385035B2 (en) * 2017-06-20 2019-08-20 Saint Louis University Dinaphthothiophene compounds

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130046498A (ko) * 2011-10-28 2013-05-08 주식회사 동진쎄미켐 자가 가교형 고분자, 이를 포함하는 레지스트 하층막 조성물 및 이를 이용한 패턴 형성 방법
JP2013189589A (ja) * 2012-03-15 2013-09-26 Kanagawa Univ 発光材料及び発光素子
JP2013197193A (ja) * 2012-03-16 2013-09-30 Jnc Corp 有機半導体薄膜、有機半導体素子および有機電界効果トランジスタ
JP2015048346A (ja) * 2013-09-04 2015-03-16 出光興産株式会社 ジナフトチオフェン化合物、ジナフトチオフェン化合物を含む有機薄膜トランジスタ用組成物、及びそれを用いた有機薄膜トランジスタ

Also Published As

Publication number Publication date
JP6574052B2 (ja) 2019-09-11
US11038125B2 (en) 2021-06-15
US20190027696A1 (en) 2019-01-24
JPWO2017170280A1 (ja) 2019-02-14

Similar Documents

Publication Publication Date Title
JP6285075B2 (ja) 有機半導体素子及びその製造方法、化合物、有機半導体組成物、並びに、有機半導体膜及びその製造方法
US10971686B2 (en) Organic semiconductor element, polymer, organic semiconductor composition, and organic semiconductor film
JP6689393B2 (ja) 有機半導体膜形成用組成物、有機半導体膜及びその製造方法、並びに、有機半導体素子
JP6666996B2 (ja) 有機薄膜トランジスタ素子、有機半導体膜形成用組成物、有機半導体膜の製造方法及び有機半導体膜
JP6651606B2 (ja) 有機半導体組成物、有機薄膜トランジスタの製造方法、及び有機薄膜トランジスタ
US11133475B2 (en) Organic semiconductor element, organic semiconductor composition, method of manufacturing organic semiconductor film, organic semiconductor film, and compound and polymer using the same
JP6751364B2 (ja) 有機半導体素子、有機半導体組成物、有機半導体膜の製造方法、有機半導体膜、及びこれらに用いるポリマー
JP6709275B2 (ja) 有機半導体膜、有機半導体素子、重合体及び有機半導体組成物
JP6574052B2 (ja) 有機半導体素子、重合体、有機半導体組成物及び有機半導体膜
JP6814448B2 (ja) 有機半導体素子、有機半導体組成物、有機半導体膜の製造方法、有機半導体膜、並びに、これらに用いる化合物及びポリマー
JP6752466B2 (ja) 有機半導体素子、有機半導体組成物、有機半導体膜の製造方法、有機半導体膜、並びに、これらに用いる化合物及びポリマー

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018509273

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17774817

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17774817

Country of ref document: EP

Kind code of ref document: A1