WO2017170189A1 - ゴム組成物およびそれを用いた高圧水素機器用シール部品 - Google Patents

ゴム組成物およびそれを用いた高圧水素機器用シール部品 Download PDF

Info

Publication number
WO2017170189A1
WO2017170189A1 PCT/JP2017/011919 JP2017011919W WO2017170189A1 WO 2017170189 A1 WO2017170189 A1 WO 2017170189A1 JP 2017011919 W JP2017011919 W JP 2017011919W WO 2017170189 A1 WO2017170189 A1 WO 2017170189A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber composition
pressure hydrogen
ebenb
rubber
hydrogen gas
Prior art date
Application number
PCT/JP2017/011919
Other languages
English (en)
French (fr)
Inventor
古賀 敦
Original Assignee
Nok株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok株式会社 filed Critical Nok株式会社
Priority to EP17774726.8A priority Critical patent/EP3409742B1/en
Priority to JP2017529847A priority patent/JP6210442B1/ja
Priority to KR1020187026255A priority patent/KR102134360B1/ko
Priority to CN201780013749.1A priority patent/CN108699424A/zh
Publication of WO2017170189A1 publication Critical patent/WO2017170189A1/ja
Priority to US16/106,398 priority patent/US10815407B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/08Butenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • C08F210/18Copolymers of ethene with alpha-alkenes, e.g. EP rubbers with non-conjugated dienes, e.g. EPT rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/045Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated conjugated hydrocarbons other than butadiene or isoprene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K3/1006Materials in mouldable or extrudable form for sealing or packing joints or covers characterised by the chemical nature of one of its constituents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/021Sealings between relatively-stationary surfaces with elastic packing
    • F16J15/022Sealings between relatively-stationary surfaces with elastic packing characterised by structure or material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2200/00Chemical nature of materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K2200/06Macromolecular organic compounds, e.g. prepolymers
    • C09K2200/0642Copolymers containing at least three different monomers

Definitions

  • the present invention relates to a rubber composition and a seal part for high-pressure hydrogen equipment using the rubber composition. More specifically, the present invention relates to a rubber composition suitable for producing a seal part for high-pressure hydrogen equipment used in a low temperature environment (for example, about ⁇ 40 ° C. to ⁇ 60 ° C.).
  • the target time for filling high-pressure hydrogen gas is set to about 3 minutes, which is the same as that of a gasoline vehicle, it is necessary to rapidly fill the on-vehicle high-pressure tank with hydrogen gas.
  • the temperature rise of the high-pressure tank becomes a problem. Therefore, in order to suppress the temperature rise of the on-vehicle high-pressure tank, it is common to use low-temperature hydrogen gas that has been cooled to about ⁇ 40 ° C. in advance.
  • a sealing part that can seal high-pressure hydrogen gas at ⁇ 40 ° C. is indispensable. Further, when it is assumed that the fuel cell vehicle is used in an extremely cold region, a sealing function can be achieved even at ⁇ 50 ° C. There is a demand for seal parts that can perform.
  • NBR nitrile rubber
  • FKM fluorine rubber
  • IIR butyl rubber
  • EPDM ethylene / propylene / diene terpolymer
  • the sealing parts for high-pressure hydrogen equipment are required to further improve the characteristics, and in particular, the improvement of blister resistance is desired.
  • the blister resistance of the seal part for high-pressure hydrogen equipment means a characteristic that blisters (such as cracks and foam) are not formed when the seal part comes into contact with high-pressure hydrogen. Such blister formation is undesirable because it causes rubber breakage.
  • Non-Patent Document 1 When sealing parts come into contact with high-pressure hydrogen gas, some hydrogen gas permeates through them, but if hydrogen gas diffuses quickly in the sealing parts (the diffusion coefficient is large), rubber breakage occurs. Hateful.
  • the present invention has an object to provide a rubber composition suitable for producing a seal part for high-pressure hydrogen equipment that is excellent in low-temperature sealability and blister resistance, and a seal part for high-pressure hydrogen equipment using the rubber composition.
  • the present inventors have focused on the fact that the ethylene / butene / ethylidene norbornene terpolymer (EBENB) has an excellent low temperature sealing property, and uses EBENB instead of the conventional EPDM.
  • EBENB ethylene / butene / ethylidene norbornene terpolymer
  • the gist configuration of the present invention is as follows.
  • a rubber composition comprising an ethylene / butene / ethylidenenorbornene terpolymer (EBENB), A rubber composition used for producing seal parts for high-pressure hydrogen equipment.
  • EBENB ethylene / butene / ethylidenenorbornene terpolymer
  • the rubber composition according to the above [1] wherein the ethylene / butene / ethylidene norbornene terpolymer (EBENB) has an iodine value of 3 to 20.
  • EBENB ethylene / butene / ethylidene norbornene terpolymer
  • a seal part for high-pressure hydrogen equipment which is a product obtained by vulcanizing and molding the rubber composition according to any one of [1] to [3],
  • the TR10 value measured in the low temperature elastic recovery test specified in JIS K6261: 2006 is ⁇ 50 ° C. or lower
  • the rubber composition according to the present embodiment contains an ethylene / butene / ethylidene norbornene terpolymer (EBENB). Moreover, it is preferable that a rubber composition further contains a filler, a crosslinking agent, and a processing aid. Moreover, you may contain various compounding agents as needed.
  • EBENB ethylene / butene / ethylidene norbornene terpolymer
  • EPDM has been widely used as a material having a low-temperature sealing property.
  • rubber compositions using EPDM are from the viewpoint of material cost and processability compared to rubber compositions using other rubber materials.
  • the production cost tended to be high. Therefore, the present inventor focused on EBENB, which has excellent cold resistance and excellent flexibility, and proceeded with studies.
  • EBENB which has excellent cold resistance and excellent flexibility, and proceeded with studies.
  • the seal part for high-pressure hydrogen equipment obtained by using EBENB uses EPDM, Compared to the above, it was found that the low-temperature sealing property was equal to or more than that, and the processability as a rubber composition was excellent due to its flexibility. Furthermore, it was found that the seal part for high-pressure hydrogen equipment obtained by using EBENB has particularly fast diffusion of hydrogen gas (high diffusion coefficient of hydrogen gas) and excellent blister resistance.
  • the rubber composition according to the present invention completed through the above-described studies, the rubber composition has desired sealing characteristics required as a seal part for high-pressure hydrogen equipment, and particularly has excellent low-temperature sealability and blister resistance.
  • a seal part for high-pressure hydrogen equipment having both can be manufactured.
  • EBENB any of ethylene and butene obtained by copolymerizing a small amount of various ethylidene norbornene components can be used, and actually various commercially available EBENBs can be used as they are.
  • the iodine value (g / 100 g) of EBENB is preferably 3 to 20, and more preferably 5 to 18. By setting it as the above range, a stable molecular state can be maintained even in a low temperature environment, low temperature sealing property can be improved, and mechanical strength is also improved, so that blister resistance can also be improved.
  • EBENB has a smaller polymer viscosity expressed by Mooney viscosity (ML 1 + 4 , 100 ° C.) than EPDM, and it can be said that EBENB is excellent in terms of workability (for example, kneadability and moldability). Therefore, by using EBENB instead of EPDM, productivity such as molding efficiency is improved, which leads to reduction in production cost.
  • the Mooney viscosity (ML 1 + 4 , 100 ° C.) of such EBENB is preferably 10 to 45, more preferably 15 to 25. If this Mooney viscosity is too low, the compression set may increase and the tensile strength may decrease. On the other hand, when the Mooney viscosity is too high, the characteristics are improved, but the processability may be inferior.
  • the Mooney viscosity (ML 1 + 4 , 100 ° C.) can be determined according to JIS K6300-1: 2013.
  • the content of the ethylene component in EBENB is preferably 60 to 80% by mass, and more preferably 65 to 75% by mass. By setting it as the said range, the glass transition temperature of EBENB shows the minimum value, and cold resistance improves.
  • the content of EBENB is preferably 1 to 100 parts by weight, more preferably 50 to 100 parts by weight, and still more preferably 70 to 100 parts by weight in the rubber composition according to this embodiment. . By making the content of EBENB within the above range, improvement in workability and productivity can be expected.
  • filler conventionally known fillers can be used. Specifically, inorganic fillers such as carbon black, silicic acid, silicate, calcium carbonate, magnesium carbonate, clay, talc, bentonite, sericite, mica, calcium silicate, alumina hydrate, barium sulfate, and polyethylene resin And organic fillers such as polypropylene resin, styrene resin, coumarone-indene resin, melamine resin, phenol resin, and cork powder, which can be used alone or in combination. Among these, carbon black is preferable as the filler.
  • inorganic fillers such as carbon black, silicic acid, silicate, calcium carbonate, magnesium carbonate, clay, talc, bentonite, sericite, mica, calcium silicate, alumina hydrate, barium sulfate, and polyethylene resin
  • organic fillers such as polypropylene resin, styrene resin, coumarone-indene resin, melamine resin, phenol resin, and
  • the blending amount of the filler is preferably 0.1 to 300 parts by weight with respect to 100 parts by weight of EBENB, but depending on the type of the filler, it may be blended even outside the above range. What is necessary is just to determine the kind and compounding quantity of these fillers arbitrarily according to the objective.
  • organic peroxides are mainly preferred.
  • Organic peroxides include t-butyl peroxide, dicumyl peroxide, 2,5-dimethyl-2,5-di-t-butylperoxyhexane, 2,5-dimethyl-2,5-di-t.
  • the blending amount of the crosslinking agent is preferably 0.5 to 10 parts by weight, more preferably 1 to 5 parts by weight with respect to 100 parts by weight of EBENB.
  • a master batch containing the organic peroxide as described above for example, DCP30ZP03K (manufactured by Nippon Zeon Co., Ltd .; dicumyl peroxide 30% by mass, Zetpol 2010L 30% by mass, SRF carbon black 40% by mass) or the like is used. You can also.
  • Such a masterbatch is preferable in that kneadability and dispersibility can be improved when preparing a rubber composition.
  • a crosslinking accelerator may be contained as necessary.
  • the crosslinking accelerator triallyl isocyanurate (TAIC), triallyl cyanate (TAC), liquid polybutadiene, N, N′-m-phenylene dimaleimide, trimethylolpropane trimethacrylate, or the like can be used.
  • TAIC triallyl isocyanurate
  • TAC triallyl cyanate
  • liquid polybutadiene N, N′-m-phenylene dimaleimide, trimethylolpropane trimethacrylate, or the like
  • the crosslinking efficiency can be improved, and the heat resistance and mechanical properties can be improved. Therefore, the stability as a seal part can also be improved.
  • processing aids include process oils mainly composed of aliphatic hydrocarbons, such as Idemitsu Kosan Co., Ltd. products PW380 and PW220, which can be used alone or in combination.
  • process oil is more preferable in that it has a lower molecular weight than paraffin wax having a similar chemical structure, and therefore exhibits a specific effect that cannot be achieved when paraffin wax is blended.
  • the blending amount of the processing aid is preferably 1 to 20 parts by weight, more preferably 3 to 15 parts by weight with respect to 100 parts by weight of EBENB. By setting it in the above range, kneading workability is improved and oil bleeding can be prevented.
  • a compounding agent generally used in the rubber industry such as an acid acceptor and an antioxidant is used as necessary. May be used as appropriate.
  • the compounding amount of the rubber compounding agent is preferably 300 parts by weight or less with respect to 100 parts by weight of EBENB.
  • the rubber composition can be prepared by kneading various materials using a kneader such as a single screw extruder, a twin screw extruder, a roll, a Banbury mixer, a kneader, or a high shear mixer.
  • a kneader such as a single screw extruder, a twin screw extruder, a roll, a Banbury mixer, a kneader, or a high shear mixer.
  • the vulcanization of the rubber composition can be generally performed by pressure vulcanization at about 150 to 230 ° C. for about 0.5 to 30 minutes using an injection molding machine, a compression molding machine or the like.
  • secondary vulcanization may be performed as necessary in order to reliably vulcanize the vulcanized product.
  • Secondary vulcanization can generally be performed by oven heating at about 150-250 ° C. for about 0.5-24 hours.
  • the one obtained by vulcanization molding of the rubber composition according to the present invention (molded product) is suitable as a seal part for high-pressure hydrogen equipment.
  • the high-pressure hydrogen equipment include containers and pipes used when filling or transporting high-pressure hydrogen gas, such as an on-vehicle tank of a fuel cell vehicle, a hydrogen station, and various hydrogen gas tanks.
  • the above-mentioned sealing parts for high-pressure hydrogen equipment are parts used for sealing (sealing) hydrogen gas in the high-pressure hydrogen equipment.
  • Seal parts for high-pressure hydrogen equipment exhibit excellent sealing performance even in a low-temperature environment (for example, about ⁇ 40 to 60 ° C.), and are particularly suitable when used in an environment of ⁇ 50 ° C. or less.
  • Such a high-pressure hydrogen equipment seal part preferably has a TR10 value of ⁇ 50 ° C. or lower as measured in a low-temperature elastic recovery test specified in JIS K6261: 2006, for example.
  • the sealing part for high-pressure hydrogen equipment as described above preferably diffuses hydrogen gas quickly.
  • the diffusion coefficient of hydrogen gas is preferably 5 ⁇ 10 ⁇ 6 cm 2 / s or more.
  • the shape of the seal part for high-pressure hydrogen equipment is not particularly limited, and can be various shapes depending on the application. Examples thereof include shapes such as O-rings, packings, and sheets.
  • Example 1 In Example 1, 70 parts by weight of carbon black, 3 parts by weight of a peroxide crosslinking agent, 5 parts by weight of zinc oxide, and 1 part of stearic acid with respect to 100 parts by weight of EBENB (experimental synthetic product) having an iodine value of 16 A rubber composition was obtained by blending appropriate amounts of parts by weight and, if necessary, processing aids and antioxidants, and kneading them with a kneader and an open roll.
  • Example 2 a rubber composition was obtained in the same manner as in Example 1 except that EBENB (experimental synthetic product) having an iodine value of 10 was used.
  • Example 3 a rubber composition was obtained in the same manner as in Example 1 except that EBENB (experimental synthetic product) having an iodine value of 5 was used.
  • Comparative Example 1 a rubber composition was obtained in the same manner as in Example 1 except that EPDM (experimental synthetic product) having an iodine value of 16 was used.
  • Comparative Example 2 In Comparative Example 2, a rubber composition was obtained in the same manner as in Example 1 except that EPDM (experimental synthetic product) having an iodine value of 26 was used.
  • the temperature difference between these temperatures indicates that the smaller the value, the more elastic recovery is realized in a narrower temperature range.
  • Such a material may exhibit a preferable sealing behavior from the viewpoint of rubber elasticity. Recognize. In this example, particularly when TR10 was ⁇ 50 ° C. or lower, it was evaluated that the low temperature sealing property was good.
  • the permeation coefficient of hydrogen gas is an index representing the ease of permeation when hydrogen gas permeates the rubber material, and the larger the value, the more the rubber material permeates more hydrogen.
  • the diffusion coefficient of hydrogen gas is an index indicating the ease of diffusion when hydrogen gas diffuses into the rubber material. The larger the value, the easier the hydrogen gas diffuses into the rubber material. ing. In this example, particularly when the diffusion coefficient of hydrogen gas was 5 ⁇ 10 ⁇ 6 cm 2 / s or more, it was evaluated that the blister resistance was good.
  • the molded article using the rubber composition according to Examples 1 to 3 including EBENB has a TR10 higher than the molded article of the rubber composition according to Comparative Examples 1 and 2 using EPDM instead of EBENB. Since it was a low temperature, it was confirmed that it was excellent in low temperature sealability.
  • the molded article using the rubber composition according to Examples 1 to 3 including EBENB has the same compression set as the molded article of the rubber composition according to Comparative Examples 1 and 2 using EPDM. It was confirmed that it has sufficient heat resistance (seal life).
  • the molded article using the rubber composition according to Examples 1 to 3 including EBENB has the same hydrogen gas permeability coefficient as the molded article of the rubber composition according to Comparative Examples 1 and 2 using EPDM. From this, it was confirmed that it has an equivalent gas barrier property.
  • the molded article using the rubber composition according to Examples 1 to 3 including EBENB has a larger hydrogen gas permeability coefficient than the molded article of the rubber composition according to Comparative Examples 1 and 2 using EPDM. From this, it was confirmed that hydrogen gas diffused quickly.
  • the rubber composition containing EBENB according to the present invention is particularly suitable for producing a seal part for high-pressure hydrogen equipment having excellent low-temperature sealability and blister resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Sealing Material Composition (AREA)
  • Gasket Seals (AREA)

Abstract

本発明は、特に、低温シール性および耐ブリスタ性に優れた高圧水素機器用シール部品を製造するために好適なゴム組成物およびそれを用いた高圧水素機器用シール部品を提供することを目的とする。 エチレン・ブテン・エチリデンノルボルネン3元共重合体(EBENB)を含むゴム組成物であって、高圧水素機器用シール部品を製造するために用いられる、ゴム組成物。

Description

ゴム組成物およびそれを用いた高圧水素機器用シール部品
 本発明は、ゴム組成物およびそれを用いた高圧水素機器用シール部品に関する。さらに詳しくは、低温(例えば、-40℃~-60℃程度)の環境下で使用される高圧水素機器用シール部品を製造するために適したゴム組成物に関する。
 近年、水素と酸素により発電する燃料電池システムを用いた燃料電池自動車の普及が進んでいる。このような燃料電池車においてガソリン車と同等の航続距離を実現するためには、燃料電池自動車に積載した高圧タンクでは、70MPaクラスの高圧水素ガスが使用されている。また、このような車載の高圧タンクに圧縮水素ガスを充填するための水素ステーションでは、90MPaクラスの高圧水素ガスが使用されている。
 さらに、高圧水素ガスの充填目標時間を、ガソリン車と同等の3分程度に設定した場合には、車載高圧タンクに水素ガスを急速に充填する必要があり、その際にガスの断熱膨張により車載高圧タンクの温度上昇が問題となる。そのため、車載高圧タンクの温度上昇を抑えるために、事前に-40℃程度まで冷却した低温の水素ガスを使用するのが一般的である。
 このような燃料電池自動車では、-40℃の高圧水素ガスをシールし得るシール部品が不可欠であり、さらに極寒地での燃料電池車の使用を想定した場合には、-50℃でもシール機能を発揮し得るシール部品が求められている。
 一方で、ガスシール用のシール部品としては、従来からニトリルゴム(NBR)、フッ素ゴム(FKM)、ブチルゴム(IIR)などを用いたゴム材料が広く用いられている。しかしながら、これらの材料は、上記のような低温環境下では、十分なシール機能を有しているとは言えず、低温シール性の不足による漏れの発生が懸念される。
 これに対し、低温でもシール性を発揮し得るゴム材料としては、エチレン・プロピレン・ジエン3元共重合体(EPDM)が広く知られている。EPDMを用いたゴム組成物は、その優れた低温シール性から、既に高圧水素機器用シール部品としても用いられている(特許文献1)。
 また、近年、高圧水素機器用シール部品は、更なる特性の向上が求められており、特に、耐ブリスタ性の向上が望まれている。ここで、高圧水素機器用シール部品の耐ブリスタ性とは、シール部品が高圧水素に接触したときにブリスタ(亀裂や発泡など)を形成しない特性を意味する。このようなブリスタの形成は、ゴム破壊の原因となるため望ましくない。
 また、ブリスタに起因するゴム破壊は、特に、シール部品における水素ガスの拡散係数との相関が知られている(例えば、非特許文献1)。シール部品は、高圧の水素ガスと接触したときに、その内部を多少水素ガスが透過するが、シール部品中での水素ガスの拡散が速い(拡散係数が大きい)場合には、ゴム破壊が生じにくい。
 これに対し、従来のEPDMを用いた高圧水素機器用シール部品は、その内部に水素ガスが浸透した場合、水素ガスが拡散しにくいため(水素ガスの拡散係数が小さく)、未だ十分な耐ブリスタ性が達成されていなかった。
特開2015-206002号公報
「ゴムOリングのブリスタ破壊の可視化評価」日本ゴム協会誌、第85巻、第5号、162頁~167頁、2012年
 そこで本発明は、特に、低温シール性および耐ブリスタ性に優れた高圧水素機器用シール部品を製造するために好適なゴム組成物およびそれを用いた高圧水素機器用シール部品を提供することを目的とする。
 本発明者らは、鋭意検討の結果、エチレン・ブテン・エチリデンノルボルネン3元共重合体(EBENB)が、優れた低温シール性を有することに着目し、従来のEPDMに替えて、EBENBを用いることにより、優れた低温シール性および耐ブリスタ性の双方を有する高圧水素機器用シール部品を製造するために好適なゴム組成物が得られることを見出し、本発明を完成させるに至った。
 すなわち、本発明の要旨構成は、以下のとおりである。
[1] エチレン・ブテン・エチリデンノルボルネン3元共重合体(EBENB)を含むゴム組成物であって、
 高圧水素機器用シール部品を製造するために用いられる、ゴム組成物。
[2] 前記エチレン・ブテン・エチリデンノルボルネン3元共重合体(EBENB)のヨウ素価が、3~20である、上記[1]に記載のゴム組成物。
[3] 前記高圧水素機器用シール部品が、-50℃での低温シール性を有する、上記[1]または[2]に記載のゴム組成物。
[4] 上記[1]~[3]のいずれか1項に記載のゴム組成物を加硫成形した物である高圧水素機器用シール部品であって、
 JIS K6261:2006に規定されている低温弾性回復試験で測定したTR10の値が、-50℃以下であり、
 水素ガスの拡散係数が、5×10-6cm/s以上である、高圧水素機器用シール部品。
 本発明のゴム組成物によれば、優れた低温シール性および耐ブリスタ性を有する高圧水素機器用シール部品を得ることができる。
 本発明に従うゴム組成物の実施形態について、以下で詳しく説明する。
 本実施形態に係るゴム組成物は、エチレン・ブテン・エチリデンノルボルネン3元共重合体(EBENB)を含む。また、ゴム組成物は、充填剤、架橋剤および加工助剤をさらに含むことが好ましい。また、必要に応じて、さらに各種配合剤を含有してもよい。
 従来、低温シール性を有する材料としては、EPDMが広く用いられていたが、EPDMを用いたゴム組成物は、他のゴム材料を用いたゴム組成物に比べて材料コストや加工性の観点から、生産コストが高くなる傾向にあった。そこで、本発明者は、優れた耐寒性を有し、柔軟性に優れたEBENBに着目し、検討を進めたところ、EBENBを用いて得られる高圧水素機器用シール部品は、EPDMを用いた場合に比べて、低温シール性も同等かそれ以上であり、また、その柔軟性からゴム組成物としての加工性にも優れていることが分かった。さらに、EBENBを用いて得られる高圧水素機器用シール部品は、特に水素ガスの拡散が早く(水素ガスの拡散係数が大きく)、耐ブリスタ性も優れていることが分かった。
 上記のような検討を経て完成された本発明に係るゴム組成物によれば、高圧水素機器用シール部品として求められる所望のシール特性を有し、特に、優れた低温シール性および耐ブリスタ性の双方を有する高圧水素機器用シール部品を製造できる。
 EBENBとしては、エチレンおよびブテンに各種のエチリデンノルボルネン成分を少量共重合させたもののいずれをも用いることができ、実際には各種の市販EBENBをそのまま用いることができる。
 EBENBのヨウ素価(g/100g)は、3~20であることが好ましく、より好ましくは5~18である。上記範囲とすることにより、低温環境下においても安定した分子の状態を維持することができ、低温シール性を向上でき、さらに機械強度も向上することから、耐ブリスタ性をも向上できる。
 また、EBENBは、EPDMに比べて、ムーニー粘度(ML1+4、100℃)で表されるポリマー粘度が小さく、加工性(例えば混練性や成形性)の観点でも優れているといえる。そのため、EPDMに替えて、EBENBを用いることにより、成形効率などの生産性が向上し、ひいては生産コストの低減にもつながる。
 このようなEBENBのムーニー粘度(ML1+4、100℃)としては、好ましくは10~45であり、より好ましくは15~25である。このムーニー粘度が低すぎると、圧縮永久ひずみが大きくなり、引張強さが小さくなる場合がある。一方、このムーニー粘度が高すぎると、特性は向上するが、加工性に劣る場合がある。なお、ムーニー粘度(ML1+4、100℃)は、JIS K6300-1:2013の規定に従って求めることができる。
 また、EBENB中のエチレン成分の含有量は、好ましくは60~80質量%であり、より好ましくは65~75質量%である。上記範囲とすることにより、EBENBのガラス転移温度が最小値を示し、耐寒性が向上する。
 このようなEBENBの含有量は、本実施形態に係るゴム組成物中に、1~100重量部であることが好ましく、より好ましくは50~100重量部、さらに好ましくは70~100重量部である。EBENBの含有量を上記範囲とすることにより、加工性、生産性の向上が見込める。
 充填剤は、従来から公知の充填剤が使用可能である。具体的にはカーボンブラックや、珪酸、珪酸塩、炭酸カルシウム、炭酸マグネシウム、クレー、タルク、ベントナイト、セリサイト、マイカ、珪酸カルシウム、アルミナ水和物、硫酸バリウムなどの無機系充填剤や、ポリエチレン樹脂、ポリプロピレン樹脂、スチレン樹脂、クマロンーインデン樹脂、メラミン樹脂、フェノール樹脂及びコルク粉末などの有機系充填剤が挙げられ、単独あるいは組み合わせて用いることができる。中でも、充填剤としては、カーボンブラックが好ましい。
 充填剤の配合量は、EBENB100重量部に対して、0.1~300重量部であることが好ましいが、充填剤の種類によっては上記範囲外であっても配合可能な場合がある。これらの充填剤はその目的に合わせて任意に種類、配合量を決定すればよい。
 架橋剤としては、主に有機過酸化物が好ましい。有機過酸化物としては、t-ブチルパーオキサイド、ジクミルパーオキサイド、2,5-ジメチル-2,5-ジ-t-ブチルパーオキシヘキサン、2,5-ジメチル-2,5-ジ-t-ブチルパーオキシヘキシン-3、t-ブチルクミルパーオキサイド、1,3-ジ-t-ブチルパーオキシイソプロピルベンゼン、2,5-ジメチル-2,5-ジベンゾイルパーオキシヘキサン、t-ブチルパーオキシベンゾエート、t-ブチルパーオキシイソプロピルカーボネート、n-ブチル-4,4-ジ-t-ブチルパーオキシバレレートなどが挙げられる。
 架橋剤の配合量は、EBENB100重量部に対して、0.5~10重量部であることが好ましく、より好ましくは1~5重量部である。上記範囲とすることにより、加硫時に発泡して成形できなくなることを防止でき、また架橋密度が良好となるため十分な物性のものが得やすくなる。
 また、上記のような有機過酸化物が含まれるマスターバッチ、例えばDCP30ZP03K(日本ゼオン株式会社製マスターバッチ;ジクミルパーオキサイド30質量%、Zetpol2010L30質量%、SRFカーボンブラック40質量%)などを用いることもできる。このようなマスターバッチは、ゴム組成物を調製する際の混練性および分散性を向上し得る点で好ましい。
 さらに、必要に応じて架橋促進剤を含有してもよい。架橋促進剤としては、トリアリルイソシアヌレート(TAIC)、トリアリルシアネート(TAC)、液状ポリブタジエン、N,N’-m-フェニレンジマレイミド、トリメタクリル酸トリメチロールプロパンなどを用いることができる。架橋促進剤は、適量配合添加されることにより、架橋効率を向上でき、さらに耐熱性や機械的特性を向上できるので、シール部品としての安定性も向上し得る。
 加工助剤としては、脂肪族炭化水素を主成分とするプロセスオイル、例えば出光興産株式会社製品PW380、PW220などが挙げられ、単独あるいは組み合わせて用いることができる。特に、プロセスオイルは、化学構造が類似するパラフィンワックスに比べて低分子であるため、パラフィンワックスを配合した場合には達成し得ない特有の効果を奏する点で、より好ましい。
 加工助剤の配合量は、EBENB100重量部に対して、1~20重量部であることが好ましく、より好ましくは3~15重量部である。上記範囲とすることにより、混練加工性が良好となり、またオイルのブリード発生などを防止できる。
 本実施形態に係るゴム組成物中には、上記成分以外にも、ゴム配合剤として、受酸剤や、酸化防止剤などのゴム工業で一般的に使用されている配合剤が、必要に応じて適宜添加されて用いられてもよい。ゴム配合剤の配合量は、EBENB100重量部に対して、300重量部以下であることが好ましい。
 ゴム組成物の調製は、各種材料を、例えば一軸押出機、二軸押出機、ロール、バンバリーミキサー、ニーダー、高剪断型ミキサーなどの混練機を用いて混練することによって行うことができる。
 また、ゴム組成物の加硫は、射出成形機、圧縮成形機などを用いて、一般に約150~230℃、約0.5~30分間の加圧加硫によって行うことができる。また、上記のような加硫を一次加硫として施した後、加硫物の内部まで確実に加硫させるため、必要に応じて二次加硫を行ってもよい。二次加硫は、一般に約150~250℃、約0.5~24時間のオーブン加熱によって行うことができる。
 本発明に係るゴム組成物を加硫成形して得られるもの(成形品)は、高圧水素機器用シール部品として好適である。ここで、高圧水素機器とは、例えば、燃料電池自動車の車載タンクや、水素ステーション、各種水素ガスタンク等の、高圧水素ガスを充填または輸送する際に用いる容器や配管等が挙げられる。
 また、上記のような高圧水素機器用シール部品は、高圧水素機器内の水素ガスをシール(封止)するために用いられる部品である。高圧水素機器用シール部品は、低温(例えば、-40~60℃程度)の環境下でも、優れたシール性が発揮され、特に-50℃以下の環境下で用いられる場合に好適である。このような高圧水素機器用シール部品は、例えば、JIS K6261:2006に規定されている低温弾性回復試験で測定したTR10の値が、-50℃以下であることが好ましい。さらに、上記のような高圧水素機器用シール部品は、水素ガスの拡散が早いことが好ましく、例えば、水素ガスの拡散係数が、5×10-6cm/s以上であることが好ましい。
 また、高圧水素機器用シール部品の形状は特に限定されず、用途に応じた様々な形状にすることができるが、例えば、Oリング、パッキンおよびシートなどの形状が挙げられる。
 以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の概念および特許請求の範囲に含まれるあらゆる態様を含み、本発明の範囲内で種々に改変することができる。
 次に、本発明の効果をさらに明確にするために、実施例および比較例について説明するが、本発明はこれら実施例に限定されるものではない。
(実施例1)
 実施例1では、ヨウ素価16のEBENB(実験合成品)100重量部に対して、カーボンブラックを70重量部、過酸化物架橋剤を3重量部、酸化亜鉛を5重量部、ステアリン酸を1重量部、さらに必要に応じて加工助剤および酸化防止剤を適量配合し、これらをニーダーおよびオープンロールにて混練して、ゴム組成物を得た。
(実施例2)
 実施例2では、ヨウ素価10のEBENB(実験合成品)を用いた以外は、実施例1と同様の方法で、ゴム組成物を得た。
(実施例3)
 実施例3では、ヨウ素価5のEBENB(実験合成品)を用いた以外は、実施例1と同様の方法で、ゴム組成物を得た。
(比較例1)
 比較例1では、ヨウ素価16のEPDM(実験合成品)を用いた以外は、実施例1と同様の方法で、ゴム組成物を得た。
(比較例2)
 比較例2では、ヨウ素価26のEPDM(実験合成品)を用いた以外は、実施例1と同様の方法で、ゴム組成物を得た。
[評価]
 上記実施例および比較例に係るゴム組成物を用いて、下記に示す特性評価を行った。各特性の評価条件は下記の通りである。結果を表1に示す。
[1]低温弾性回復試験(低温シール性)
 上記ゴム組成物について、シート金型を用いて、180℃、8分間の加圧加硫(一次加硫)および180℃、24時間のオープン加硫(二次加硫)を行い、厚さ2mmの板状加硫ゴムを成型した。
 得られた板状加硫ゴムについて、JIS K6261:2006に従って、TR-10およびTR70を測定した。TR10およびTR70は、試験片を50%伸張して凍結させた後、これを昇温して弾性率を回復する際に、収縮率がそれぞれ10%および70%になる温度である。TR10およびTR70の各温度は、低いほど、低温でゴム弾性が回復していることを示しており、ゴム弾性によりシール性を付与するシール部品においては、これらの温度がより低いことが望ましい。また、これらの温度の温度差は、値が小さいほど、弾性の回復がより狭い温度範囲で実現することを示しており、このような材料は、ゴム弾性の観点から好ましいシール挙動を示すことがわかる。
 なお、本実施例では、特にTR10が-50℃以下である場合を低温シール性が良好であると評価した。
[2]圧縮永久ひずみ試験(耐熱性)
 上記ゴム組成物について、Oリング金型を用いて、180℃、10分間の加圧加硫(一次加硫)および150℃、24時間のオープン加硫(二次加硫)を行い、JIS B2401-1:2012 G25で規定するOリングを得た。
 得られたOリングについて、JIS K6262:2006に従って、圧縮率25%、試験温度150℃、試験時間70時間の耐熱老化後の、圧縮永久ひずみ(%)を測定した。Oリングの圧縮永久ひずみは、その値が小さいほど、Oリングのシール性がよく、シール寿命が長いことを意味する。
[3]ガス透過試験(ガスバリア性および耐ブリスタ性)
 上記ゴム組成物について、シート金型を用いて、180℃、8分間の加圧加硫(一次加硫)および150℃、24時間のオープン加硫(二次加硫)を行い、厚さ0.5mmの板状加硫ゴムを成型した。
 次に、得られた板状加硫ゴムについて、JIS K6275-1:2009に準拠し、30℃、0.6MPaにおける、水素ガスの透過係数およびガスの拡散係数を算出した。水素ガスの透過係数は、水素ガスがゴム材料を透過する際の透過のし易さを表す指標であり、その値が大きいほど、ゴム材料はより多くの水素を透過させることを示している。また、水素ガスの拡散係数は、水素ガスがゴム材料中に拡散する際の拡散のし易さを表す指標であり、その値が大きいほど、ゴム材料中に水素ガスが拡散し易いことを示している。
 なお、本実施例では、特に水素ガスの拡散係数が、5×10-6cm/s以上である場合を耐ブリスタ性が良好であると評価した。
[4]加圧サイクル試験(シール耐久性)
 上記ゴム組成物について、Oリング金型を用いて、180℃、10分間の加圧加硫(一次加硫)および150℃、24時間のオープン加硫(二次加硫)を行い、JIS B2401-1:2012 G25で規定するOリングを得た。
 得られたOリングを用い圧力容器に、高圧水素ガスを充填し、90MPaまで昇圧して、一定時間保持し、その後0.6MPaに減圧して、さらに一定時間保持し、この加圧と減圧の圧力サイクル(1サイクル6秒間)を5,500回実施し(30℃にて)、サイクル中に顕著なリークが発生しないことを確認した。リークが発生しなかったものは、シール耐久性に優れていることを意味する。
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、本発明に係るEBENBを含むゴム組成物によれば、高圧水素機器用シール部品としての所望のシール特性を有しつつ、従来のEPDMを用いたゴム組成物(比較例1および2)に比べて、特に低温シール性および耐ブリスタ性の双方を向上できることが確認された(実施例1~3)。
 特に、EBENBを含む実施例1~3に係るゴム組成物を用いた成形品は、EBENBの代わりにEPDMを用いた比較例1および2に係るゴム組成物の成形品に比べて、TR10がより低い温度であることから、低温シール性に優れていることが確認された。
 また、EBENBを含む実施例1~3に係るゴム組成物を用いた成形品は、EPDMを用いた比較例1および2に係るゴム組成物の成形品と、同等の圧縮永久ひずみであることから、十分な耐熱性(シール寿命)を有することが確認された。
 また、EBENBを含む実施例1~3に係るゴム組成物を用いた成形品は、EPDMを用いた比較例1および2に係るゴム組成物の成形品と、同等の水素ガスの透過係数であることから、同等のガスバリア性を有することが確認された。
 また、EBENBを含む実施例1~3に係るゴム組成物を用いた成形品は、EPDMを用いた比較例1および2に係るゴム組成物の成形品に比べて、水素ガスの透過係数が大きいことから、水素ガスの拡散が速いことが確認された。
 さらに、EBENBを含む実施例1~3に係るゴム組成物を用いた成形品は、EPDMを用いた比較例1および2に係るゴム組成物の成形品と同様に、いずれもリークは発生せず、同等のシール耐久性を有していることが確認された。
 以上から、本発明に係るEBENBを含むゴム組成物は、特に低温シール性および耐ブリスタ性に優れた高圧水素機器用シール部品を製造するために好適であることが確認された。

Claims (4)

  1.  エチレン・ブテン・エチリデンノルボルネン3元共重合体(EBENB)を含むゴム組成物であって、
     高圧水素機器用シール部品を製造するために用いられる、ゴム組成物。
  2.  前記エチレン・ブテン・エチリデンノルボルネン3元共重合体のヨウ素価が、3~20である、請求項1に記載のゴム組成物。
  3.  前記高圧水素機器用シール部品が、-50℃での低温シール性を有する、請求項1または2に記載のゴム組成物。
  4.  請求項1~3のいずれか1項に記載のゴム組成物を加硫成形した物である水素機器用シール部品であって、
     JIS K6261:2006に規定されている低温弾性回復試験で測定したTR10の値が、-50℃以下であり、
     水素ガスの拡散係数が、5×10-6cm/s以上である、高圧水素機器用シール部品。
PCT/JP2017/011919 2016-03-28 2017-03-24 ゴム組成物およびそれを用いた高圧水素機器用シール部品 WO2017170189A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP17774726.8A EP3409742B1 (en) 2016-03-28 2017-03-24 Rubber composition and high-pressure hydrogen instrument seal component using same
JP2017529847A JP6210442B1 (ja) 2016-03-28 2017-03-24 ゴム組成物およびそれを用いた高圧水素機器用シール部品
KR1020187026255A KR102134360B1 (ko) 2016-03-28 2017-03-24 고무 조성물 및 그것을 이용한 고압 수소 기기용 밀봉 부품
CN201780013749.1A CN108699424A (zh) 2016-03-28 2017-03-24 橡胶组合物及使用该橡胶组合物的高压氢设备用密封部件
US16/106,398 US10815407B2 (en) 2016-03-28 2018-08-21 Rubber composition and sealing part for high pressure hydrogen apparatus using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016064574 2016-03-28
JP2016-064574 2016-03-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/106,398 Continuation US10815407B2 (en) 2016-03-28 2018-08-21 Rubber composition and sealing part for high pressure hydrogen apparatus using same

Publications (1)

Publication Number Publication Date
WO2017170189A1 true WO2017170189A1 (ja) 2017-10-05

Family

ID=59964535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/011919 WO2017170189A1 (ja) 2016-03-28 2017-03-24 ゴム組成物およびそれを用いた高圧水素機器用シール部品

Country Status (6)

Country Link
US (1) US10815407B2 (ja)
EP (1) EP3409742B1 (ja)
JP (1) JP6210442B1 (ja)
KR (1) KR102134360B1 (ja)
CN (1) CN108699424A (ja)
WO (1) WO2017170189A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021124816A1 (ja) 2019-12-20 2021-06-24 Nok株式会社 ゴム組成物および加硫成形品

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000072936A (ja) * 1998-08-31 2000-03-07 Jsr Corp ロール用ゴム組成物、およびシール材用ゴム組成物
JP2011213822A (ja) * 2010-03-31 2011-10-27 Mitsui Chemicals Inc エチレン・ブテン・非共役ポリエン共重合体、該共重合体を含むゴム組成物および該組成物の用途
WO2015122415A1 (ja) * 2014-02-13 2015-08-20 三井化学株式会社 エチレン・α-オレフィン・非共役ポリエン共重合体およびその用途、並びにその製造方法
JP2015206002A (ja) 2014-04-22 2015-11-19 三菱電線工業株式会社 ゴム組成物および高圧水素機器用シール部材

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2047254B (en) * 1979-04-13 1983-03-09 Mitsui Petrochemical Ind Rubbery ethylene/1-butene/polyene copolymers and process for production thereof
CN1207106A (zh) * 1995-06-29 1999-02-03 Dsm有限公司 弹性体共聚物
EP1088836B1 (en) * 1999-04-02 2012-11-21 Mitsui Chemicals, Inc. Ethylene/alpha-olefin/unconjugated polyene copolymer rubber, rubber composition for sealing, molded rubber for sealing, and process for producing the molded rubber part
JP3955851B2 (ja) * 2004-02-03 2007-08-08 三井化学株式会社 ワイパーブレード用ゴム組成物およびワイパーブレードゴム成形体
CN102504727B (zh) * 2011-10-24 2013-06-05 杜德升 一种夹筋自粘玻璃密封胶条及其制造方法
US20140073464A1 (en) * 2012-09-12 2014-03-13 Thu Van Nguyen Composite bat with varying barrel thicknesses

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000072936A (ja) * 1998-08-31 2000-03-07 Jsr Corp ロール用ゴム組成物、およびシール材用ゴム組成物
JP2011213822A (ja) * 2010-03-31 2011-10-27 Mitsui Chemicals Inc エチレン・ブテン・非共役ポリエン共重合体、該共重合体を含むゴム組成物および該組成物の用途
WO2015122415A1 (ja) * 2014-02-13 2015-08-20 三井化学株式会社 エチレン・α-オレフィン・非共役ポリエン共重合体およびその用途、並びにその製造方法
JP2015206002A (ja) 2014-04-22 2015-11-19 三菱電線工業株式会社 ゴム組成物および高圧水素機器用シール部材

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"A Visualizing Study of Blister Fracture in Rubber O-rings", JOURNAL OF THE SOCIETY OF RUBBER SCIENCE AND TECHNOLOGY, vol. 85, no. 5, 2012, pages 162 - 167
See also references of EP3409742A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021124816A1 (ja) 2019-12-20 2021-06-24 Nok株式会社 ゴム組成物および加硫成形品
CN114787269A (zh) * 2019-12-20 2022-07-22 Nok株式会社 橡胶组合物及硫化成型品

Also Published As

Publication number Publication date
EP3409742A1 (en) 2018-12-05
US20180355232A1 (en) 2018-12-13
KR102134360B1 (ko) 2020-07-16
EP3409742A4 (en) 2019-10-23
EP3409742B1 (en) 2024-05-01
KR20180107256A (ko) 2018-10-01
JP6210442B1 (ja) 2017-10-11
US10815407B2 (en) 2020-10-27
CN108699424A (zh) 2018-10-23
JPWO2017170189A1 (ja) 2018-04-05

Similar Documents

Publication Publication Date Title
WO2017170190A1 (ja) ゴム組成物およびそれを用いたゴム成形品
KR101577363B1 (ko) 향상된 진동 절연성과 내열성을 갖는 열가소성 엘라스토머 조성물 및 이로부터 형성된 성형품
JP2015206002A (ja) ゴム組成物および高圧水素機器用シール部材
KR20150044842A (ko) Nbr 조성물
US8217132B2 (en) Silicone rubber composition
JP6210442B1 (ja) ゴム組成物およびそれを用いた高圧水素機器用シール部品
US8697782B2 (en) Rubber composition
WO2019188339A1 (ja) ゴム組成物およびそれを用いた混練機表面への粘着性の低減方法
JP6932242B2 (ja) ゴム組成物
JP6853371B2 (ja) 水素ガスシール用シリコーンゴム組成物の製造法
JP5013717B2 (ja) 熱可塑性エラストマー及びシール材並びにそれらの製造方法
WO2021124816A1 (ja) ゴム組成物および加硫成形品
CN110536923A (zh) 氢化nbr组合物
JP2015013972A (ja) フッ素ゴム系シール材用組成物およびフッ素ゴム系シール材
Tao et al. The Use of a New Fuel Resistant Polyacrylate to Enhance the Fluid Resistance of a New Low0Temperature, Extrusion Grade Polyacrylate
KR20210059487A (ko) 저온 보관 투명 용기용 폴리프로필렌 수지 조성물
WO2018116723A1 (ja) アクリロニトリル・ブタジエン共重合ゴム-エピクロロヒドリン系ゴム組成物

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017529847

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017774726

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20187026255

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187026255

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2017774726

Country of ref document: EP

Effective date: 20180831

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17774726

Country of ref document: EP

Kind code of ref document: A1