WO2017169960A1 - 金属製ダイアフラムダンパ - Google Patents

金属製ダイアフラムダンパ Download PDF

Info

Publication number
WO2017169960A1
WO2017169960A1 PCT/JP2017/011139 JP2017011139W WO2017169960A1 WO 2017169960 A1 WO2017169960 A1 WO 2017169960A1 JP 2017011139 W JP2017011139 W JP 2017011139W WO 2017169960 A1 WO2017169960 A1 WO 2017169960A1
Authority
WO
WIPO (PCT)
Prior art keywords
diaphragm
metal thin
diaphragms
diaphragm damper
thin films
Prior art date
Application number
PCT/JP2017/011139
Other languages
English (en)
French (fr)
Inventor
俊昭 岩
小川 義博
裕亮 佐藤
Original Assignee
イーグル工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イーグル工業株式会社 filed Critical イーグル工業株式会社
Priority to JP2018509078A priority Critical patent/JPWO2017169960A1/ja
Priority to CN201780020518.3A priority patent/CN108884937A/zh
Priority to US16/088,707 priority patent/US20190107167A1/en
Priority to EP17774501.5A priority patent/EP3438510A4/en
Publication of WO2017169960A1 publication Critical patent/WO2017169960A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/02Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using gas only or vacuum
    • F16F9/04Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using gas only or vacuum in a chamber with a flexible wall
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/011Layered products comprising a layer of metal all layers being exclusively metallic all layers being formed of iron alloys or steels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/02Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using gas only or vacuum
    • F16F9/04Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using gas only or vacuum in a chamber with a flexible wall
    • F16F9/0409Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using gas only or vacuum in a chamber with a flexible wall characterised by the wall structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/02Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using gas only or vacuum
    • F16F9/04Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using gas only or vacuum in a chamber with a flexible wall
    • F16F9/0418Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using gas only or vacuum in a chamber with a flexible wall having a particular shape, e.g. annular, spherical, tube-like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J3/00Diaphragms; Bellows; Bellows pistons
    • F16J3/02Diaphragms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/0011Constructional details; Manufacturing or assembly of elements of fuel systems; Materials therefor
    • F02M37/0041Means for damping pressure pulsations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/02Conduits between injection pumps and injectors, e.g. conduits between pump and common-rail or conduits between common-rail and injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/04Means for damping vibrations or pressure fluctuations in injection pump inlets or outlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston

Definitions

  • the present invention relates to a pulsation absorbing diaphragm damper used in a place where pulsation occurs, such as a high-pressure fuel pump, and more particularly to a metallic diaphragm damper.
  • a pad that is connected to a water supply device and seals the periphery of a pair of laminate members in which a synthetic resin film is bonded to the inside and outside of an aluminum foil to absorb pressure shock, and contains pressure gas inside is known.
  • Prior Art 1 for example, see Patent Document 1
  • a diaphragm damper is known in which pressure gas is accommodated in a chamber tightly closed by a pair of metal diaphragms in order to attenuate pressure pulsation in the fluid system (hereinafter referred to as “prior art 2”).
  • Prior art 2 for example, see Patent Document 2.
  • the above prior art 1 is used for preventing water hammer, and the purpose of the pad is not to contaminate the water of the water supply device and that the pad is not eroded by water.
  • Overload prevention means for situations where the pressure fluctuates periodically and the maximum operating pressure rises to about 2 MPa such as a diaphragm damper for absorbing pulsation used in places where pulsation occurs such as the high-pressure fuel pump of the invention
  • a diaphragm damper for absorbing pulsation used in places where pulsation occurs
  • the laminate member may be damaged, and a problem that the life is short is expected.
  • the prior art 2 is for attenuating pressure pulsations in the fuel system of the internal combustion engine.
  • the upper diaphragm and the lower diaphragm constituting the damper are each made of one metal. It is formed from a member. Since the pressure resistance and pulsation absorption performance of this damper depend on the thickness, shape, and material of a single metal member, for example, increasing the thickness to increase pressure resistance increases the spring constant and increases the volume variation. As a result of the reduction, there is a problem in that a damper having high pressure resistance and excellent pulsation absorption performance cannot be obtained.
  • the present invention has been made to solve such a problem, and an object of the present invention is to provide a metal diaphragm damper having an excellent pulsation absorbing performance even when the pressure resistance is improved.
  • the diaphragm damper of the present invention is firstly a diaphragm damper in which the outer edges of a pair of diaphragms are joined to each other, and a high-pressure gas is sealed in a space formed inside.
  • the pair of diaphragms is formed from a metal thin film, At least one of the pair of diaphragms has a multilayer structure in which a plurality of metal thin films are overlapped and fixed at an outer edge portion thereof.
  • the diaphragm damper of the present invention is secondly characterized in that, in the first feature, the plurality of metal thin films are made of the same kind of metal. According to this feature, the welding operation at the outer edge portion is easy and a good welded portion can be obtained.
  • the diaphragm damper according to the present invention is characterized in that, in the first or second feature, the plurality of metal thin films have the same thickness. According to this feature, the respective thin films can be similarly heated during welding, and the welding operation can be facilitated.
  • the distance between the pair of diaphragms is the center compared to the outer diameter side.
  • the part is small. According to this feature, even if a high external pressure acts on the diaphragm damper, it is possible to prevent damage to the outer diameter side shoulder due to stress.
  • the present invention has the following excellent effects.
  • a diaphragm damper in which outer edges of a pair of diaphragms are joined to each other and a high-pressure gas is sealed in a space formed inside, the pair of diaphragms is formed of a metal thin film, and at least one of the pair of diaphragms is
  • the pair of diaphragms is formed of a metal thin film, and at least one of the pair of diaphragms is
  • it is significantly larger than that of a single-layer structure.
  • the spring constant can be reduced, the volume change amount as the diaphragm damper can be increased, and the damper function can be sufficiently exhibited.
  • the respective thin films can be similarly input heat during welding, and the welding operation can be facilitated.
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG. It is a top view which shows the diaphragm damper which concerns on Example 2 of this invention.
  • FIG. 4 is a sectional view taken along line BB in FIG. 3.
  • a diaphragm damper according to a first embodiment of the present invention will be described with reference to FIGS.
  • the diaphragm damper according to the present invention is used in a high-pressure pump that pressurizes fuel supplied from a fuel tank by reciprocating movement of a plunger and pumps it to the injector side.
  • a fuel chamber is formed on the fuel inlet side, and a “suction process” in which fuel is sucked into the pressurizing chamber from the fuel chamber when the plunger is lowered, and fuel in the pressurizing chamber is raised when the plunger is raised.
  • the fuel is pressurized and discharged by repeating the “metering process” for returning a part of the fuel to the fuel chamber and the “pressurization process” for pressurizing the fuel when the plunger further rises after closing the intake valve. To do.
  • the diaphragm damper according to the present invention is used to reduce pulsation generated in the fuel chamber of such a high-pressure pump.
  • FIG. 1 is a plan view of a diaphragm damper according to a first embodiment of the present invention
  • FIG. 2 is a cross-sectional view taken along the line AA of FIG. 1, showing a longitudinal section of the diaphragm damper.
  • the diaphragm damper 1 mainly includes an upper diaphragm 10 and a lower diaphragm 20, and the pair of diaphragms 10 and 20 are formed so as to be vertically symmetric with respect to the joint surface S, and have outer edges.
  • the parts 2 are joined to each other by welding or the like, and a high pressure gas is sealed in a space 3 formed inside.
  • the upper diaphragm 10 and the lower diaphragm 20 are each formed from a disk-shaped metal thin film, and at least one of the diaphragms 10 and 20 is overlapped with a plurality of metal thin films, and is welded at the outer edge 2 thereof. It is configured in a multilayer structure fixed by, for example. Examples of the metal used for the thin film include stainless steel. Further, the thickness of the thin film is set in a range of about 0.1 to 0.5 mm, for example, when the outer diameter of the diaphragm is 30 to 50 mm.
  • the upper diaphragm 10 has a multilayer structure in which two thin metal films 11 and 12 are overlapped, and is fixed by welding or the like only at the outer edge portion 2.
  • the lower diaphragm 20 also has a multilayer structure in which two thin metal films 21 and 22 are overlapped, and is fixed only at the outer edge 2 by welding or the like.
  • the two metal thin films 11 and 12 of the upper diaphragm 10 and the two metal thin films 21 and 22 of the lower diaphragm 20 are fixed by welding or the like only at the outer edge 2 and are fixed at portions other than the outer edge. Therefore, the two metal thin films can be moved relative to each other at portions other than the outer edge portion 2.
  • the multi-layer metal thin film is not limited to two, but may be three or more. Further, not only the upper diaphragm 10 and the lower diaphragm 20 have a multilayer structure, but either one may have a multilayer structure.
  • the two metal thin films 11 and 12 of the upper diaphragm 10 and the two metal thin films 21 and 22 of the lower diaphragm 20 are made of the same kind of metal and have the same thickness. It is.
  • the outer metal thin films 11 and 21 are made of a material having a high corrosion resistance, and the thickness of the two metal thin films varies depending on the spring constant of the material. May be formed from different thin films.
  • the inventor is that the spring constant is proportional to the cube of the thickness t of the metal thin film, and the pressure resistance is the same if the entire thickness of the diaphragm is the same.
  • the thickness of the thin metal film of the single-layer diaphragm is t
  • the total thickness of the two thin metal films of the two-layer diaphragm is t (the thickness of the single layer is t / 2).
  • the spring constant k 1 of the diaphragm of the one-layer structure of the prior art 2 is k 1 ⁇ t 3
  • the spring constant k 2 of the two-layered diaphragm is k 2 ⁇ (t / 2) 3 + (t / 2) 3 .
  • the spring constant k 2 of the two-layer structure bellows, one layer 1 ⁇ 4 of the spring constant k 1 of the diaphragm structure can be reduced significantly spring constant. For this reason, the volume variation
  • the pressure resistance (stress) has the same pressure resistance regardless of whether it is a single layer or multiple layers as long as the thickness (total thickness in the case of multiple layers) t is the same.
  • the two metal thin films 11 and 12 of the upper diaphragm 10 and the two metal thin films 21 and 22 of the lower diaphragm 20 are fixed by welding or the like only at the outer edge portion 2, and at portions other than the outer edge portion. Since it is not fixed, each thin film is deformed in the same manner, and the deformation is not hindered. Further, when the two metal thin films are formed of the same type of metal, the welding operation at the outer edge portion 2 is easy and a good welded portion can be obtained. Further, if the thicknesses of the two metal thin films are the same, heat is similarly applied to the respective thin films during welding, and the welding operation is facilitated.
  • the diaphragm damper according to the first embodiment has the following remarkable effects.
  • the pair of diaphragms 10 and 20 are formed of a metal thin film,
  • At least one of the pair of diaphragms 10 and 20 has a multi-layer structure in which a plurality of metal thin films 11, 12 or 21, 22 are overlapped and fixed at the outer edge portion 2.
  • the spring constant can be significantly reduced as compared with the one-layer structure, the volume change amount as the diaphragm damper can be increased, and the damper function can be sufficiently exerted. it can.
  • a diaphragm damper according to a second embodiment of the present invention will be described with reference to FIGS.
  • the diaphragm damper according to the second embodiment has a cross-sectional shape different from that of the first embodiment, but the other basic configuration is the same as that of the first embodiment, and redundant description is omitted.
  • the upper diaphragm 30 has a multilayer structure in which two thin metal films 31 and 32 are overlapped, and is fixed by welding or the like only at the outer edge portion 2.
  • the lower diaphragm 40 also has a multi-layer structure in which two metal thin films 41 and 42 are overlapped, and is fixed only at the outer edge 2 by welding or the like.
  • the two metal thin films 31 and 32 of the upper diaphragm 30 and the two metal thin films 41 and 42 of the lower diaphragm 40 are fixed only at the outer edge 2 by welding or the like, and fixed at portions other than the outer edge. Therefore, the two metal thin films can be moved relative to each other at portions other than the outer edge portion 2.
  • the upper diaphragm 30 and the lower diaphragm 40 are joined so that the central portions 33 and 43 are recessed as compared with the outer diameter side, respectively.
  • a cross-sectional shape that is symmetrically formed with respect to the surface S and that has a smaller central portion 33 and 43 than the outer diameter side in the distance between the upper diaphragm 30 and the lower diaphragm 40 also referred to as the width of the diaphragm.
  • the feature is that it is set to a so-called dumbbell-shaped cross-sectional shape.
  • the upper diaphragm 30 and the lower diaphragm 40 have R-shaped outer shoulder portions 34 and 44, outer shoulder portions 35 and 45 of the central portions 33 and 43, and inner shoulder portions 36 and 46 of the central portion 33, respectively. Is formed.
  • B1 / B2 is as follows when no external pressure is applied to the diaphragm damper 1.
  • the distance between the diaphragms 30 and 40 in the central portions 33 and 43 is set to about 2 to 5, and B2 is the upper diaphragm 30 in the central portions 33 and 43 and the lower portion in the normal operating range of the diaphragm damper 1.
  • the diaphragm 40 is set so as not to contact but to contact at high external pressure.
  • the diaphragm damper according to the second embodiment has the following remarkable effects.
  • the pair of diaphragms 30 and 400 are formed from a metal thin film,
  • the spring constant can be significantly reduced, the volume change amount as the diaphragm damper can be increased, and the damper function can be sufficiently exhibited.
  • the welding operation at the outer edge 2 can be facilitated and a good welded portion can be obtained.
  • the thicknesses of the two thin metal films By making the thicknesses of the two thin metal films the same, it is possible to heat the respective thin films in the same way during welding, thereby facilitating the welding operation.
  • a high external pressure may act on the diaphragm damper 1 because the center portions 33 and 43 are smaller than the outer diameter side in the distance between the pair of diaphragms 30 and 40. Even in this case, it is possible to prevent the outer shoulders 34 and 44 from being damaged by the stress.
  • the present invention is not limited to two, but may be three or more, and may be plural.
  • both the upper diaphragm and the lower diaphragm have a multilayer structure composed of two metal thin films.
  • the present invention is not limited to this, and either one is A multilayer structure may be used.
  • the present invention is not limited to this and is vertically asymmetric. May be.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Diaphragms And Bellows (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

耐圧性能を高めた場合でも、脈動吸収性能の優れた金属製ダイアフラムダンパを提供する。 一対のダイアフラム10、20の外縁部2が互いに接合され、内部に形成される空間3に高圧ガスが封入されてなるダイアフラムダンパ1において、一対のダイアフラム10、20は金属の薄膜から形成され、一対のダイアフラム10、20の少なくとも一方は、複数枚の金属の薄膜11、12あるいは21、22が重ね合わされ、その外縁部2において固定されてなる多層構造であることを特徴としている。 

Description

金属製ダイアフラムダンパ
 本発明は、たとえば高圧燃料ポンプなどの脈動が生じる箇所に用いられる脈動吸収用のダイアフラムダンパに関し、詳しくは金属製のダイアフラムダンパに関する。
  従来、給水装置に連結され、圧力衝撃を吸収するため、アルミ箔の内外に合成樹脂製フィルムが接着された一対のラミネート部材の周囲をシールし、内部に圧力ガスを収容してなるパッドが知られている(以下、「従来技術1」という。たとえば、特許文献1参照。)。
 また、流体システム内の圧力脈動を減衰するため、一対の金属製のダイアフラムによって密に閉鎖された室内に圧力ガスを収容してなるダイアフラムダンパが知られている(以下、「従来技術2」という。たとえば、特許文献2参照。)。
特表昭62-501404号公報 特開2004-138071号公報
 しかしながら、上記の従来技術1は、ウオータハンマの防止に用いられるものであって、パッドが給水装置の水を汚染しないこと、及び、パッドが水に侵食されないことを目的とするものであり、本発明のような高圧燃料ポンプなどの脈動が生じる箇所に用いられる脈動吸収用のダイアフラムダンパのように、周期的に圧力が変動し、最大作動圧が約2MPaに上るような状況の過負荷防止手段として使用されると、ラミネート部材が損傷するおそれがあり、寿命が短いという問題が予想される。
 また、上記の従来技術2は、内燃機関の燃料システム内の圧力脈動を減衰するためのものであって、ダンパを構成する上側のダイアフラム及び下側のダイアフラムは、それぞれ、1枚の金属製の部材から形成されている。このダンパの耐圧及び脈動吸収性能は1枚の金属製の部材の板厚、形状、材質に依存するため、例えば、耐圧性能を高めるため板厚を大きくするとバネ定数も大きくなり、容積変化量が小さくなる結果、耐圧性能が高く、かつ、脈動吸収性能の優れたダンパを得ることができないという問題があった。
 本発明はこのような問題を解決するためになされたものであって、耐圧性能を高めた場合でも、脈動吸収性能の優れた金属製ダイアフラムダンパを提供することを目的とするものである。              
 上述の目的を達成するために本発明のダイアフラムダンパは、第1に、一対のダイアフラムの外縁部が互いに接合され、内部に形成される空間に高圧ガスが封入されてなるダイアフラムダンパにおいて、
 前記一対のダイアフラムは金属の薄膜から形成され、
 前記一対のダイアフラムの少なくとも一方は、複数枚の金属の薄膜が重ね合わされ、その外縁部において固定されてなる多層構造であることを特徴としている。
 この特徴によれば、1層構造のものと同じ耐圧性を有する場合において、1層構造のものに比べて大幅にバネ定数を小さくすることができ、ダイアフラムダンパとしての容積変化量を大きくすることができ、ダンパ機能を十分に発揮することができる。
 また、本発明のダイアフラムダンパは、第2に、第1の特徴において、前記複数枚の金属の薄膜は、同種の金属から構成されることを特徴としている。
 この特徴によれば、外縁部における溶接作業が容易であると共に良好な溶接部位を得ることができる。
 また、本発明のダイアフラムダンパは、第3に、第1又は第2の特徴において、前記複数枚の金属の薄膜は、同一の厚さであることを特徴としている。
 この特徴によれば、溶接の際、それぞれの薄膜に同じように入熱させることができ、溶接作業を容易とすることができる。
 また、本発明のダイアフラムダンパ装置は、第4に、第1ないし第3のいずれかの特徴において、前記ダイアフラムダンパの縦断面形状において、前記一対のダイアフラムのなす間隔が外径側に比べて中央部が小さいことを特徴としている。
 この特徴によれば、ダイアフラムダンパに高外圧が作用することがあっても、外径側肩部の応力による破損を防止することができる。
 本発明は、以下のような優れた効果を奏する。
(1)一対のダイアフラムの外縁部が互いに接合され、内部に形成される空間に高圧ガスが封入されてなるダイアフラムダンパにおいて、一対のダイアフラムは金属の薄膜から形成され、一対のダイアフラムの少なくとも一方は、複数枚の金属の薄膜が重ね合わされ、その外縁部において固定されてなる多層構造であることにより、1層構造のものと同じ耐圧性を有する場合において、1層構造のものに比べて大幅にバネ定数を小さくすることができ、ダイアフラムダンパとしての容積変化量を大きくすることができ、ダンパ機能を十分に発揮することができる。
(2)複数枚の金属の薄膜は、同種の金属から構成されることにより、外縁部における溶接作業が容易であると共に良好な溶接部位を得ることができる。
(3)複数枚の金属の薄膜は、同一の厚さであることにより、溶接の際、それぞれの薄膜に同じように入熱させることができ、溶接作業を容易とすることができる。
(4)ダイアフラムダンパの縦断面形状において、一対のダイアフラムのなす間隔が外径側に比べて中央部が小さいことにより、ダイアフラムダンパに高外圧が作用することがあっても、外径側肩部の応力による破損を防止することができる。
本発明の実施例1に係るダイアフラムダンパを示す平面図である。 図1のA-A断面図である。 本発明の実施例2に係るダイアフラムダンパを示す平面図である。 図3のB-B断面図である。
 以下に図面を参照して、この発明を実施するための形態を、実施例に基づいて例示的に説明する。ただし、この実施例に記載されている構成部品の寸法、材質、形状、その相対的配置などは、特に明示的な記載がない限り、本発明の範囲をそれらのみに限定する趣旨のものではない。 
 図1及び2を参照して、本発明の実施例1に係るダイアフラムダンパについて説明する。
 本発明に係るダイアフラムダンパは、燃料タンクから供給される燃料をプランジャの往復動によって加圧してインジェクタ側へ圧送する高圧ポンプに使用されている。
 この種の高圧ポンプでは、燃料入口側に燃料チャンバが形成され、プランジャが下降するときに燃料チャンバから加圧室へ燃料を吸入する「吸入工程」、プランジャが上昇するときに加圧室の燃料の一部を燃料チャンバへ戻す「調量工程」、及び、吸入弁を閉じた後プランジャにがさらに上昇するときに燃料を加圧する「加圧工程」を繰り返すことにより、燃料を加圧して吐出する。
 本発明に係るダイアフラムダンパは、このような高圧ポンプの燃料チャンバにおいて発生する脈動を低減するために使用される。
 図1は本発明の実施例1に係るダイアフラムダンパの平面図、図2は図1のA-A断面図でありダイアフラムダンパの縦断面を示している。
 説明の都合上、図2紙面上方をダイアフラムダンパの上方、紙面下方をダイアフラムダンパの下方と呼ぶこととする。
 図1及び2において、ダイアフラムダンパ1は、主として、上方のダイアフラム10と下方のダイアフラム20からなり、該一対のダイアフラム10、20は接合面Sを基準にして上下対称となるように形成され、外縁部2において互いに溶接等により接合され、内部に形成される空間3に高圧ガスが封入されて構成される。
 上方のダイアフラム10及び下方のダイアフラム20は、それぞれ、円盤状の金属の薄膜から形成され、これらのダイアフラム10、20の少なくとも一方は、複数枚の金属の薄膜が重ね合わされ、その外縁部2において溶接等により固定されてなる多層構造に構成される。
 薄膜に使用される金属としては、例えば、ステンレス鋼等、が挙げられる。
 また、薄膜の厚さは、例えば、ダイアフラムの外径が30~50mmの場合、約0.1~0.5mmの範囲に設定される。
 図1及び2に示すダイアフラムダンパ1においては、上方のダイアフラム10は2枚の金属の薄膜11、12が重ね合わされた多層構造であり、その外縁部2においてのみ溶接等により固定されており、同じく、下方のダイアフラム20も2枚の金属の薄膜21、22が重ね合わされた多層構造であり、その外縁部2においてのみ溶接等により固定されている。
 上方のダイアフラム10の2枚の金属の薄膜11及び12並びに下方のダイアフラム20の2枚の金属の薄膜21及び22は、外縁部2においてのみ溶接等により固定され、外縁部以外の部分では固定されていないため、外縁部2以外の部分において2枚の金属の薄膜は相互に相対移動が可能である。
 なお、多層構造の金属の薄膜は、2枚に限らず、3枚以上でもよく、要は複数枚であればよいことはもちろんである。
 また、上方のダイアフラム10及び下方のダイアフラム20のいずれもが多層構造である場合に限らず、いずれか一方が多層構造であってもよい。
 図1及び2においては、上方のダイアフラム10の2枚の金属の薄膜11、12及び下方のダイアフラム20の2枚の金属の薄膜21、22は、同種の金属から構成され、また、厚さも同一である。
 なお、外側の金属の薄膜11、21を耐食性の大きい材料から形成したり、また、厚さも材料のバネ定数に応じて変えるなど、2枚の金属の薄膜は、異種の金属、また、厚さの異なる薄膜から形成されてもよい。
 本発明者は、バネ定数が金属の薄膜の厚さtの3乗に比例すること、及び、耐圧性については、ダイアフラムの全体の厚さが同じであれば同じ耐圧性が得られることから、ダイアフラムを金属の薄膜を複数層組み合わせた多層構造にすることにより、1層のものと耐圧性を同じにした場合でも、1層のものに比べて容積変化量の大きいダイアフラムダンパ得ることができるという知見を得た。
 今、従来技術2の1層構造のダイアフラムのバネ定数及び耐圧性(応力)と、図1に示す2層構造のダイアフラム10、20のバネ定数及び耐圧性(応力)とについて考察するに、例えば、1層構造のダイアフラムの金属の薄膜の厚さをtとし、2層構造のダイアフラムの金属の薄膜の2層合計の厚さをt(1層の厚さはt/2)とする。
 従来技術2の1層構造のダイアフラムのバネ定数kは、k∝t であり、
 2層構造のダイアフラムのバネ定数kは、k∝(t/2) +(t/2) である。
 このように、2層構造のベローズのバネ定数kは、1層構造のダイアフラムのバネ定数kの1/4となり、大幅にバネ定数を小さくすることができる。このため、ダイアフラムダンパとしての容積変化量を大きくすることができ、ダンパ機能を発揮することができる。
 一方、耐圧性(応力)は、1層であっても多層であっても、その厚さ(多層の場合は合計の厚さ)tが同じであれば、同じ耐圧性を有する。
 上方のダイアフラム10の2枚の金属の薄膜11及び12、並びに、下方のダイアフラム20の2枚の金属の薄膜21及び22は、外縁部2においてのみ溶接等により固定され、外縁部以外の部分では固定されていないため、それぞれの薄膜が同じように変形し、変形が阻害されることはない。
 また、2枚の金属の薄膜を同種の金属から形成すると、外縁部2における溶接作業が容易であると共に良好な溶接部位を得ることができる。
 さらに、2枚の金属の薄膜の厚さを同じにすると、溶接の際、それぞれの薄膜に同じように入熱し、溶接作業が容易となる。
  上記したように、実施例1のダイアフラムダンパは、以下のような顕著な効果を奏する。
(1)一対のダイアフラム10、11の外縁部2が互いに接合され、内部に形成される空間3に高圧ガスが封入されてなるダイアフラムダンパ1において、
 一対のダイアフラム10、20は金属の薄膜から形成され、
 一対のダイアフラム10、20の少なくとも一方は、複数枚の金属の薄膜11、12あるいは21、22が重ね合わされ、その外縁部2において固定されてなる多層構造であることにより、1層構造のものと同じ耐圧性を有する場合において、1層構造のものに比べて大幅にバネ定数を小さくすることができ、ダイアフラムダンパとしての容積変化量を大きくすることができ、ダンパ機能を十分に発揮することができる。
(2)2枚の金属の薄膜11、12あるいは21、22を同種の金属から形成することにより、外縁部2における溶接作業が容易であると共に良好な溶接部位を得ることができる。
(3)2枚の金属の薄膜の厚さを同じにすることにより、溶接の際、それぞれの薄膜に同じように入熱させることができ、溶接作業を容易とすることができる。
 図3及び4を参照して、本発明の実施例2に係るダイアフラムダンパについて説明する。
 実施例2に係るダイアフラムダンパは、断面形状が実施例1と相違するが、その他の基本構成は実施例1と同じであり、重複する説明は省略する。
 図3及び4に示すダイアフラムダンパ1においては、上方のダイアフラム30は2枚の金属の薄膜31、32が重ね合わされた多層構造であり、その外縁部2においてのみ溶接等により固定されており、同じく、下方のダイアフラム40も2枚の金属の薄膜41、42が重ね合わされた多層構造であり、その外縁部2においてのみ溶接等により固定されている。
 上方のダイアフラム30の2枚の金属の薄膜31及び32並びに下方のダイアフラム40の2枚の金属の薄膜41及び42は、外縁部2においてのみ溶接等により固定され、外縁部以外の部分では固定されていないため、外縁部2以外の部分において2枚の金属の薄膜は相互に相対移動が可能である。
 実施例2に係るダイアフラムダンパ1は、図4に示すように、上方のダイアフラム30及び下方のダイアフラム40が、それぞれ、外径側に比べて中央部33、43が窪んだ凹部をなすように接合面Sを基準にして上下対称的に形成され、上方のダイアフラム30と下方のダイアフラム40のなす間隔(ダイアフラムの幅ともいう。)が、外径側に比べて中央部33、43が小さい断面形状、いわゆるダンベル(dumbbel)形の断面形状に設定されているところが特徴である。
 また、上方のダイアフラム30及び下方のダイアフラム40は、それぞれ、外径側肩部34、44、中央部33、43の外側肩部35、45及び中央部33の内側肩部36、46がR形状に形成されている。
 今、外径側ダイアフラム30、40のなす間隔をB1とし、中央部33のダイアフラム30、40のなす間隔をB2とした場合、ダイアフラムダンパ1に外圧が作用していない状態において、B1/B2は約2~5程度に設定され、また、中央部33、43のダイアフラム30、40のなす間隔をB2は、ダイアフラムダンパ1の通常作動範囲においては中央部33、43における上方のダイアフラム30及び下方のダイアフラム40は当接せず、高外圧時には当接するように設定されている。
 高外圧時において中央部33、43における上方のダイアフラム30と下方のダイアフラム40とが当接すると、上方のダイアフラム30及び下方のダイアフラム40のそれぞれの外径側肩部34及び44の応力は下がる。このため、ダイアフラムダンパ1に高外圧が作用することがあっても、外径側肩部34及び44の応力による破損を防止することができる。
  上記したように、実施例2のダイアフラムダンパは、以下のような顕著な効果を奏する。
(1)一対のダイアフラム30、40の外縁部2が互いに接合され、内部に形成される空間3に高圧ガスが封入されてなるダイアフラムダンパ1において、
 一対のダイアフラム30、400は金属の薄膜から形成され、
 一対のダイアフラム30、40の少なくとも一方は、複数枚の金属の薄膜31、32あるいは41、42が重ね合わされ、その外縁部2において固定されてなる多層構造であることにより、同じ耐圧性を有する場合において、大幅にバネ定数を小さくすることができ、ダイアフラムダンパとしての容積変化量を大きくすることができ、ダンパ機能を十分に発揮することができる。
(2)2枚の金属の薄膜31、32あるいは41、42を同種の金属から形成することにより、外縁部2における溶接作業が容易であると共に良好な溶接部位を得ることができる。
(3)2枚の金属の薄膜の厚さを同じにすることにより、溶接の際、それぞれの薄膜に同じように入熱させることができ、溶接作業を容易とすることができる。
(4)ダイアフラムダンパ1の縦断面形状において、一対のダイアフラム30、40のなす間隔が外径側に比べて中央部33、43が小さいことにより、ダイアフラムダンパ1に高外圧が作用することがあっても、外径側肩部34及び44の応力による破損を防止することができる。
 以上、本発明の実施例を図面により説明してきたが、具体的な構成はこれら実施例に限られるものではなく、本発明の要旨を逸脱しない範囲における変更や追加があっても本発明に含まれる。
 例えば、前記実施例では、多層構造の金属の薄膜が2枚の場合を説明したが、本発明は2枚に限らず、3枚以上でもよく、要は複数枚であればよい。
 また、例えば、前記実施例では、上方のダイアフラム及び下方のダイアフラムのいずれもが2枚の金属の薄膜からなる多層構造である場合について説明したが、本発明はこれに限らず、いずれか一方が多層構造であってもよい。
  また、例えば、前記実施例では、上方のダイアフラム及び下方のダイアフラムは、接合面を基準にして上下対称的に形成されている場合について説明したが、本発明はこれに限らず、上下非対称であってもよい。
  1          ダイアフラムダンパ
  2          外縁部
  3          内部に形成される空間
  10         上方のダイアフラム
  11、12      金属の薄膜
  20         下方のダイアフラム
  21、22      金属の薄膜
30         上方のダイアフラム
  31、32      金属の薄膜
  33         中央部
  34         外径側肩部
  35         中央部の外側肩部
  36         中央部の内側肩部
  40         下方のダイアフラム
  41、42      金属の薄膜
  43         中央部
  44         外径側肩部
  45         中央部の外側肩部
  46         中央部の内側肩部
  S          接合面
  B1         外径側ダイアフラムのなす間隔
  B2         中央部のダイアフラムのなす間隔
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Claims (4)

  1.  一対のダイアフラムの外縁部が互いに接合され、内部に形成される空間に高圧ガスが封入されてなるダイアフラムダンパにおいて、
     前記一対のダイアフラムは金属の薄膜から形成され、
     前記一対のダイアフラムの少なくとも一方は、複数枚の金属の薄膜が重ね合わされ、その外縁部において固定されてなる多層構造であることを特徴とするダイアフラムダンパ。
  2.  前記複数枚の金属の薄膜は、同種の金属から構成されることを特徴とする請求項1に記載のダイアフラムダンパ。
  3.  前記複数枚の金属の薄膜は、同一の厚さであることを特徴とする請求項1又は2に記載のダイアフラムダンパ。
  4.  前記ダイアフラムダンパの縦断面形状において、前記一対のダイアフラムのなす間隔が外径側に比べて中央部が小さいことを特徴とする請求項1ないし請求項3のいずれか1項に記載のダイアフラムダンパ。
     
     
     
     
     
     
     
     
     
     
     
PCT/JP2017/011139 2016-03-28 2017-03-21 金属製ダイアフラムダンパ WO2017169960A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018509078A JPWO2017169960A1 (ja) 2016-03-28 2017-03-21 金属製ダイアフラムダンパ
CN201780020518.3A CN108884937A (zh) 2016-03-28 2017-03-21 金属制隔膜阻尼器
US16/088,707 US20190107167A1 (en) 2016-03-28 2017-03-21 Metal diaphragm damper
EP17774501.5A EP3438510A4 (en) 2016-03-28 2017-03-21 METAL MEMBRANE SHOCK ABSORBER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016064375 2016-03-28
JP2016-064375 2016-03-28

Publications (1)

Publication Number Publication Date
WO2017169960A1 true WO2017169960A1 (ja) 2017-10-05

Family

ID=59965398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/011139 WO2017169960A1 (ja) 2016-03-28 2017-03-21 金属製ダイアフラムダンパ

Country Status (5)

Country Link
US (1) US20190107167A1 (ja)
EP (1) EP3438510A4 (ja)
JP (1) JPWO2017169960A1 (ja)
CN (1) CN108884937A (ja)
WO (1) WO2017169960A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7373453B2 (ja) * 2020-04-10 2023-11-02 株式会社Ihiエアロスペース 液体推進薬供給装置と衛星用推進装置
CN115218057B (zh) * 2022-07-28 2024-08-23 德帕姆(杭州)泵业科技有限公司 一种脉动阻尼器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57150658U (ja) * 1981-03-18 1982-09-21
JPS62501404A (ja) 1984-10-16 1987-06-11 ダブリユ− ラスト プロプライエタリ− リミテツド 圧力衝撃吸収用パッドおよびその製造方法
JPS63173865A (ja) * 1987-01-13 1988-07-18 Res Dev Corp Of Japan 流体与減圧装置
JPH08219303A (ja) * 1995-02-15 1996-08-30 Fujikin:Kk ダイヤフラム弁
JP2004138071A (ja) 2002-10-19 2004-05-13 Robert Bosch Gmbh 流体システム内の圧力脈動を減衰するための装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4470479A (en) * 1977-03-24 1984-09-11 Matsushita Electric Industrial Co., Ltd. Method of making metal coated foil speaker diaphragm
US4513194A (en) * 1978-10-30 1985-04-23 Michael Mastromatteo Methods of welding
US4644847A (en) * 1983-05-16 1987-02-24 Fluitron, Inc. Reduction of failure incidence of metallic diaphragms for compressors
US7121304B2 (en) * 2001-12-19 2006-10-17 The United States Of America As Represented By The Administrator Of The U.S. Environmental Protection Agency Low permeation hydraulic accumulator
US7036487B2 (en) * 2003-12-16 2006-05-02 Delphi Technologies, Inc Fuel rail pulse damper with integral strengthening rib
DE102006027780A1 (de) * 2006-06-16 2007-12-20 Robert Bosch Gmbh Kraftstoffinjektor
JP4686501B2 (ja) * 2007-05-21 2011-05-25 日立オートモティブシステムズ株式会社 液体脈動ダンパ機構、および液体脈動ダンパ機構を備えた高圧燃料供給ポンプ
DE102007038984A1 (de) * 2007-08-17 2009-02-19 Robert Bosch Gmbh Kraftstoffpumpe für ein Kraftstoffsystem einer Brennkraftmaschine
JP4530053B2 (ja) * 2008-01-22 2010-08-25 株式会社デンソー 燃料ポンプ
DE102008047303A1 (de) * 2008-02-18 2009-08-20 Continental Teves Ag & Co. Ohg Pulsationsdämpfungskapsel
JP2012184757A (ja) * 2011-03-08 2012-09-27 Denso Corp ダンパ装置およびこれを備えた高圧ポンプ
JP5189227B2 (ja) * 2011-04-27 2013-04-24 Ckd株式会社 複層ダイアフラム
DE102011113028B4 (de) * 2011-09-10 2019-01-10 Winkelmann Sp. Z.O.O. Membrandruckausdehnungsgefäß
JP5979092B2 (ja) * 2013-07-23 2016-08-24 トヨタ自動車株式会社 パルセーションダンパおよび高圧燃料ポンプ
JP6173959B2 (ja) * 2014-03-28 2017-08-02 日立オートモティブシステムズ株式会社 電磁弁、電磁弁を備えた高圧燃料供給ポンプ及び燃料噴射弁
KR101562885B1 (ko) * 2014-07-02 2015-10-23 주식회사 만도 브레이크 시스템의 고압어큐뮬레이터

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57150658U (ja) * 1981-03-18 1982-09-21
JPS62501404A (ja) 1984-10-16 1987-06-11 ダブリユ− ラスト プロプライエタリ− リミテツド 圧力衝撃吸収用パッドおよびその製造方法
JPS63173865A (ja) * 1987-01-13 1988-07-18 Res Dev Corp Of Japan 流体与減圧装置
JPH08219303A (ja) * 1995-02-15 1996-08-30 Fujikin:Kk ダイヤフラム弁
JP2004138071A (ja) 2002-10-19 2004-05-13 Robert Bosch Gmbh 流体システム内の圧力脈動を減衰するための装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3438510A4

Also Published As

Publication number Publication date
JPWO2017169960A1 (ja) 2019-02-28
US20190107167A1 (en) 2019-04-11
EP3438510A4 (en) 2019-11-06
EP3438510A1 (en) 2019-02-06
CN108884937A (zh) 2018-11-23

Similar Documents

Publication Publication Date Title
JP4478431B2 (ja) 流体システム内の圧力脈動を減衰するための装置
EP3184795A1 (en) High-pressure fuel supply pump
KR20100066529A (ko) 금속 실린더 헤드 개스킷
KR101707893B1 (ko) 실린더 헤드 개스킷 어셈블리
WO2017169960A1 (ja) 金属製ダイアフラムダンパ
JPH09242875A (ja) 圧力作動型密封リング
JP2009097528A (ja) 金属ガスケット
JP2000249019A (ja) 高圧燃料ポンプの金属ダイヤフラム式脈動吸収装置
JP2018150934A (ja) 燃料噴射システム用の燃料高圧ポンプ
JP2011220196A (ja) ダンパユニット及び、高圧ポンプ
CN103591373A (zh) 阀用金属波纹管及组件的焊接结构
JP5826295B2 (ja) 流体を制御する又は調量する弁装置
JP2004297043A (ja) 積層型圧電体素子
JP6310026B2 (ja) 燃料の圧力脈動低減機構、及びそれを備えた内燃機関の高圧燃料供給ポンプ
US11519678B2 (en) Heat exchanger
CN203594867U (zh) 阀用金属波纹管及组件的焊接结构
TW202026206A (zh) 密封件及具有密封件之組件
JP2011220198A (ja) 高圧ポンプ
JP5923549B2 (ja) 高圧燃料供給ポンプ、及び高圧燃料供給ポンプの製造方法
JP4852281B2 (ja) ガスケット
JP7295337B2 (ja) 高圧燃料供給ポンプ及び製造方法
JP6959109B2 (ja) リリーフ弁機構およびこれを備えた燃料供給ポンプ
JP7146801B2 (ja) メタルダイアフラムダンパ
JP6511559B2 (ja) 燃料の圧力脈動低減機構、及びそれを備えた内燃機関の高圧燃料供給ポンプ
JP6747482B2 (ja) 高圧ポンプ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018509078

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017774501

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017774501

Country of ref document: EP

Effective date: 20181029

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17774501

Country of ref document: EP

Kind code of ref document: A1