WO2017169943A1 - 半導体装置の製造方法及び製造装置 - Google Patents

半導体装置の製造方法及び製造装置 Download PDF

Info

Publication number
WO2017169943A1
WO2017169943A1 PCT/JP2017/011082 JP2017011082W WO2017169943A1 WO 2017169943 A1 WO2017169943 A1 WO 2017169943A1 JP 2017011082 W JP2017011082 W JP 2017011082W WO 2017169943 A1 WO2017169943 A1 WO 2017169943A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor chip
substrate
adhesive
semiconductor
main surface
Prior art date
Application number
PCT/JP2017/011082
Other languages
English (en)
French (fr)
Inventor
昇 朝日
将次 仁村
Original Assignee
東レエンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レエンジニアリング株式会社 filed Critical 東レエンジニアリング株式会社
Priority to CN201780032715.7A priority Critical patent/CN109155261B/zh
Priority to KR1020187027596A priority patent/KR102227444B1/ko
Publication of WO2017169943A1 publication Critical patent/WO2017169943A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/46Structure, shape, material or disposition of the wire connectors prior to the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector

Definitions

  • the present invention relates to a semiconductor device manufacturing method and a manufacturing apparatus with improved productivity.
  • Patent Document 1 describes a configuration in which a plurality of semiconductor chips are subjected to temporary pressure bonding and stacked, and then subjected to main pressure bonding in a lump, thereby reducing the number of times the semiconductor chips are exposed to high temperatures.
  • Patent Document 2 describes an apparatus that includes a repair determination unit that detects height variation after temporarily bonding a plurality of semiconductor chips to a substrate surface.
  • Patent Document 1 Japanese Patent Laid-Open No. 2012-2222038
  • Patent Document 2 Japanese Patent Laid-Open No. 2010-232234
  • Patent Document 1 and Patent Document 2 have a problem that the yield is poor and the productivity is lowered because the process proceeds to the main pressure bonding process as it is even if there is a problem of misalignment during temporary pressure bonding. .
  • An object of the present invention is to solve the above problems and improve productivity in manufacturing a semiconductor device.
  • the present invention is a method of manufacturing a semiconductor device for electrically connecting a semiconductor chip and a substrate, Bumps are formed on the second main surface of the semiconductor chip, and electrode pads are formed on the first main surface of the substrate, (A) a temporary placement step for obtaining a plurality of temporary placement bodies in which the bumps and the electrode pads are opposed to each other via an adhesive; and (B) a position shift of a semiconductor chip in the temporary placement body is inspected. And (C) a position correction step of correcting the position by moving the position shift semiconductor chip if there is the position shift semiconductor chip, and (D). A step of heating and pressing the semiconductor chip in the temporary arrangement body to electrically connect the bumps of the semiconductor chip and the electrode pads of the substrate, and to cure the adhesive.
  • a method of manufacturing a semiconductor device is provided.
  • the semiconductor chip can be connected to the substrate without displacement, and the productivity in manufacturing the semiconductor device can be improved.
  • the present invention is a method of manufacturing a semiconductor device for obtaining a semiconductor device in which semiconductor chips are stacked, and an electrode pad is formed on the first main surface of each semiconductor chip, and the second main surface. (B) a second main surface of the new semiconductor chip, and (B) a second main surface of the new semiconductor chip.
  • the present invention provides a method for manufacturing a semiconductor device, comprising: a step of electrically connecting electrode pads to each other and curing an adhesive between the semiconductor chips.
  • the semiconductor chips can be connected to each other with no positional deviation, and the productivity in manufacturing the semiconductor device can be improved.
  • the temporary placement step (B), the inspection step (C), and the position correction step (D) may be repeated a plurality of times.
  • the adhesive is a thermosetting non-conductive adhesive film, and in the position correcting step (D), the semiconductor chip may be moved by heating to a temperature at which the adhesive softens.
  • the bump may have solder at least at the tip portion, and the gap between the bump and the electrode pad facing the bump may be in the range of 1 ⁇ m to 5 ⁇ m.
  • the present invention provides a bump formed on the second main surface of the semiconductor chip and an electrode formed on the first main surface of the substrate or semiconductor chip (hereinafter referred to as “substrate etc.”).
  • substrate etc. An apparatus for manufacturing a semiconductor device that electrically connects a pad, and a suction nozzle that sucks and moves a semiconductor chip onto a substrate or the like and heats and presses it temporarily on a first main surface of the substrate or the like
  • An image pickup device for picking up an image of the semiconductor chip and the substrate, etc., and heating and pressurizing the semiconductor chip laminated on the first main surface of the substrate or the like via an adhesive to electrically connect the bump and the electrode pad.
  • a controller for controlling the suction nozzle, the imaging device, and the crimping head controls the suction nozzle, Glue Then, based on the image taken by the imaging device, the temporary placement processing unit that forms the temporary placement body by making the bumps and the electrode pads face each other, and the position of the semiconductor chip and the substrate or the like in the temporary placement body
  • An inspection processing unit that inspects misalignment and identifies a misaligned semiconductor chip, a position correction processing unit that controls the suction nozzle and moves the misaligned semiconductor chip to correct a position, and controls the crimping head.
  • An apparatus for manufacturing a semiconductor device comprising: a connection processing unit that electrically connects the bump and the electrode pad and cures the adhesive.
  • the method and apparatus for manufacturing a semiconductor device of the present invention it is possible to connect a semiconductor chip to a substrate or another semiconductor chip without displacement, and to improve productivity in manufacturing the semiconductor device.
  • FIGS. 1 to 6 and FIG. 1A and 1B are diagrams for explaining a semiconductor chip provisional placement process according to the first embodiment of the present invention.
  • FIG. 2 is a diagram for explaining an inspection process according to the first embodiment of the present invention.
  • FIG. 3 is a diagram for explaining the position correction process in the first embodiment of the present invention.
  • FIG. 4 is a diagram for explaining a connection process in the first embodiment of the present invention.
  • FIG. 5 is a diagram for explaining a semiconductor device manufacturing apparatus according to the first embodiment of the present invention.
  • FIG. 6 is a diagram for explaining the temperature-viscosity characteristics of the adhesive in the present invention.
  • FIG. 12 is a diagram illustrating the configuration of the pillar bump.
  • the substrate 1 is provided with a plurality of electrode pads 2 and a plurality of positioning marks 3 on its upper surface (first main surface).
  • the substrate 1 is a wafer made of silicon, and one circuit is formed for each region where a semiconductor chip 4 to be described later is mounted.
  • the semiconductor chip 4 is mounted by dicing the substrate 1 after mounting the semiconductor chip 4.
  • a semiconductor device can be formed.
  • the electrode pad 2 functions as an input / output terminal that can be connected to a circuit in the substrate 1.
  • the mark 3 is a mark for detecting the position of the substrate 1 as will be described later.
  • the substrate 1 is a wafer made of silicon.
  • the substrate 1 is not necessarily limited to this and can be appropriately selected depending on the convenience of the semiconductor device.
  • a wafer made of a material other than silicon may be used, or a glass epoxy substrate or a ceramic substrate may be used.
  • the semiconductor chip 4 is a semiconductor chip made of a small piece of silicon, and a bump 5 made of solder at least at the tip is formed on the second main surface at a position facing the electrode pad 2 of the substrate 1. Yes.
  • solder made of Sn—Ag is used.
  • the bumps 5 in FIGS. 1 to 4 are drawn in a round shape, the solder 5S is preferably formed at the tip of the copper pillar 5P, and its configuration is shown in FIG.
  • An adhesive 7 made of a thermosetting non-conductive adhesive film (NCF) is laminated in advance on the second main surface so as to enclose the bumps 5.
  • NCF thermosetting non-conductive adhesive film
  • a through electrode (not shown) is provided from the bump 5 on the second main surface of the semiconductor chip 4 to the first main surface on the opposite side, and an electrode pad 6 is provided on the first main surface side of the through electrode.
  • the electrode pads 6 on the first main surface are electrically connected to the bumps 5 on the second main surface via through electrodes. Further, the position of the electrode pad 6 and the position of the bump 5 differ only in the Z direction, and the position coordinates of X and Y are the same.
  • the semiconductor chip 4 is a semiconductor chip made of silicon.
  • the semiconductor chip 4 is not necessarily limited to this and can be appropriately selected depending on the convenience of the semiconductor device.
  • a semiconductor chip made of a material other than silicon may be used.
  • the semiconductor device manufacturing apparatus 30 includes a control unit 20, an imaging device 11, a monitor TV 14, a moving unit 15, a suction nozzle 16, and a pressure bonding head 13.
  • the control unit 20 includes an inspection processing unit 21, a temporary arrangement processing unit 22, a position correction processing unit 23, and a connection processing unit 24.
  • the moving means 15 has a suction nozzle 16 and is configured to be able to move the suction nozzle 16 in the X, Y, and Z directions.
  • the suction nozzle 16 includes a heater inside and can be heated.
  • the crimping head 13 is also configured to be movable in the X, Y, and Z directions, and can be heated by a heater provided therein.
  • the imaging device 11 is composed of a CMOS sensor, and images the marks 3 on the substrate 1 and the electrode pads 6 of the semiconductor chip 4 in each temporary arrangement body 8.
  • the captured image is input to the inspection processing unit 21 in the control unit 20, and by performing image processing, the position of the mark 3 on the substrate 1 and the position of the electrode pad 6 of the semiconductor chip 4 in each temporary arrangement body 8. And the positional deviation amount of each semiconductor chip 4 is recognized. Further, it is determined whether or not the positional deviation amount is within a predetermined range.
  • An image captured by the imaging device 11 can be monitored by the monitor TV 14.
  • the temporary arrangement processing unit 22 controls a temporary arrangement process described later. That is, the moving means 15 and the suction nozzle 16 are controlled so that the semiconductor chip 4 is taken out of the container or the like, and the position of the semiconductor chip 4 at the position of the electrode pad 2 calculated from the position of the mark 3 of the substrate 1 measured by the inspection processing unit 21
  • the bumps 5 are positioned so as to face each other and temporarily arranged as shown in FIG.
  • the position correction processing unit 23 controls a position correction process described later. Then, the moving means 15 and the suction nozzle 16 are controlled in the same manner as the temporary arrangement processing unit described above, and when the positional deviation amount is not within a predetermined range, the suction nozzle 16 holds the positional deviation semiconductor chip by suction, It is moved in the X and Y directions so as to eliminate the positional deviation. At this time, as will be described later, the suction nozzle 16 is heated to a temperature at which the adhesive 7 is softened, whereby the misaligned semiconductor chip can be easily moved.
  • connection processing unit 24 controls a connection process described later. That is, the crimping head 13 is driven and controlled to heat and press the temporary arrangement body 8 to electrically connect the bumps 5 of the semiconductor chip 4 and the electrode pads 2 of the substrate 1 and to set the adhesive 7 to the curing temperature. Heat to cure.
  • the semiconductor device manufacturing method according to the first embodiment is performed in the order of a temporary placement process, an inspection process, a position correction process, and a connection process.
  • a temporary placement process will be described.
  • the bumps 5 of the semiconductor chip 4 and the electrode pads 2 of the substrate 1 are positioned and temporarily arranged via the adhesive 7 so as to face each other.
  • the adhesive 7 is a thermosetting non-conductive adhesive film (NCF) and is laminated in advance so as to enclose the bumps 5 on the second main surface of the semiconductor chip 4 as described above.
  • the semiconductor chip 4 is heated and pressurized to be temporarily placed on the substrate 1, but is temporarily placed with a gap so as not to contact the electrode pads 2 of the substrate 1.
  • the gap from the tip of the bump 5 of the semiconductor chip 4 to the surface of the electrode pad 2 of the substrate 1 is preferably 1 to 5 ⁇ m, more preferably 1 to 3 ⁇ m.
  • This value is an experimentally obtained value. If the gap is made narrower or the bump 4 and the electrode pad 2 are brought into contact with each other, the bump 5-electrode pad is obtained when both are connected in the connection step described later. It has been found that the adhesive 7 can remain between the two. This is a phenomenon called trapping, and it is considered that the solder melts and entrains the adhesive 7 by heating to the melting point of the solder bump. Further, if the gap is made wider than this value, the semiconductor chip 4 may slip when the semiconductor chip 4 is pressurized in the connection process, which causes a serious displacement in quality.
  • the viscosity of the adhesive 7 varies depending on the temperature.
  • the adhesive 7 which is a thermosetting non-conductive adhesive film (NCF) does not cure in a temperature range lower than the reference temperature Ts determined from its characteristics and reversibly increases with temperature. It exhibits the property of lowering the viscosity, and the property of increasing the viscosity when the temperature is lowered.
  • NCF thermosetting non-conductive adhesive film
  • the temperature range above the reference temperature Ts it hardens and irreversibly exhibits a property that the viscosity increases as the temperature rises. That is, once heated to the reference temperature Ts or higher, the viscosity does not decrease even if the temperature decreases, and a cured state is obtained.
  • the semiconductor chip 4 is temporarily placed by heating the adhesive 7 to a temperature that is lower than the reference temperature Ts and softens the adhesive 7. By leaving it after that, it is possible to prevent the temperature of the adhesive 7 from being lowered and the viscosity to be increased and the semiconductor chip 4 from being displaced.
  • a plurality of semiconductor chips 4 are temporarily placed on the substrate 1 with an adhesive 7 interposed therebetween.
  • the imaging device 11 images the mark 3 on the substrate 1
  • the inspection processing unit 21 measures the position of the mark 3
  • the electrode pad is determined from the predetermined positional relationship between the mark 3 and the electrode pad 2. Recognize each position of 2.
  • the suction nozzle 16 is moved by the moving means 15 to suck the first main surface of the semiconductor chip 4 housed in a container or the like. Thereafter, the suction nozzle 16 is moved above the substrate 1 so that the electrode pad 2 of the substrate 1 and the bump 5 of the semiconductor chip 4 sucked by the suction nozzle 16 face each other, and then the suction nozzle 16 is moved to the electrode of the substrate 1. It is heated and pressed close to the pad 2 and temporarily placed on the substrate 1.
  • the gap between the semiconductor chip 4 and the bump 5 is kept within the above-described range.
  • Example 1 an adhesive film was used as the adhesive 7 and laminated on the semiconductor chip 4 in advance.
  • the present invention is not necessarily limited to this, and can be appropriately selected depending on the process.
  • a liquid adhesive may be used to apply on the substrate 1 from an application nozzle.
  • the inspection step is performed next.
  • the inspection process will be described with reference to FIG.
  • the positional deviation between the electrode pad 2 of the substrate 1 and the electrode pad 6 of the semiconductor chip 4 in each temporary arrangement body 8 is inspected, and the semiconductor chip 4 in the temporary arrangement body 8 whose positional deviation is not within a predetermined range is positioned. It is specified as a misaligned semiconductor chip.
  • the mark 3 of the substrate 1 and the electrode pad 6 of the semiconductor chip 4 in each temporary arrangement body 8 are imaged by the imaging device 11, and the captured image is input to the inspection processing unit 21.
  • the inspection processing unit 21 measures the position of the mark 3 on the substrate 1 and the position of the electrode pad 6 of the semiconductor chip 4 in each temporary arrangement body 8 from the captured image. Then, the position of the electrode pad 2 on the substrate 1 is calculated from the measured position of the mark 3 on the substrate 1. From the calculated position of the electrode pad 2 of the substrate 1 and the measured position of the electrode pad 6 of the semiconductor chip 4 in each temporary arrangement body 8, the positional deviation of the semiconductor chip 4 in each temporary arrangement body 8 is calculated. Then, it is determined whether or not the calculated positional deviation is within a predetermined range, and the semiconductor chip 4 that is not within the predetermined range is specified as a positional deviation semiconductor chip.
  • the imaging device 11 is used to image the mark 3 of the substrate 1 and the electrode pad 6 of the semiconductor chip 4 in each temporary arrangement body 8.
  • the present invention is not necessarily limited thereto. It can be appropriately selected depending on the convenience of the apparatus configuration.
  • an X-ray sensor or an infrared sensor is used as the imaging device 11 to transmit each temporary arrangement body 8, and the positional deviation between the electrode pad 2 of the substrate 1 and the bump 5 of the semiconductor chip 4 in each temporary arrangement body 8 is directly set. You may measure.
  • the position correction step will be described with reference to FIG.
  • the position correcting process is performed to correct the position in order to eliminate the misalignment of the semiconductor chip 4.
  • the first main surface of the semiconductor chip 4 displaced by the suction nozzle 16 is moved in the X and Y directions in the opposite direction of the position displacement while being held by suction.
  • the adhesive 7 is heated to a temperature that is lower than the reference temperature Ts and softens, and the semiconductor chip 4 is moved. Then, by leaving it after the position correction, it is possible to prevent the temperature of the adhesive 7 from being lowered and the viscosity to be increased and the semiconductor chip 4 from being displaced.
  • connection process The connection process will be described with reference to FIG.
  • the temporary arrangement body 8 on the substrate 1 is sequentially heated to the curing temperature equal to or higher than the reference temperature Ts, the semiconductor chip 4 is pressed, and the bumps 5 are brought into contact with the electrode pads 2 of the substrate 1.
  • the adhesive 7 is cured while being electrically connected.
  • the pressure bonding head 13 is moved to above the temporary arrangement bodies 8, and then the pressure bonding head 13 is brought close to the temporary arrangement body 8 to pressurize the semiconductor chip 4 while heating the pressure bonding head 13. Can do.
  • a plurality of semiconductor chips 4 may be simultaneously heated and pressurized using a pressure-bonding head having an area including a plurality of temporary arrangement bodies 8.
  • a method of manufacturing a semiconductor device for electrically connecting a semiconductor chip and a substrate wherein bumps are formed on the second main surface of the semiconductor chip, An electrode pad is formed on the first main surface of the substrate, and (A) a temporary arrangement step of obtaining a plurality of temporary arrangement bodies in which the bump and the electrode pad are opposed to each other via an adhesive; An inspection step of inspecting a positional deviation of the semiconductor chip in the temporary arrangement body and identifying a positional deviation semiconductor chip in which the positional deviation is not within a predetermined range; and (C) if there is the positional deviation semiconductor chip, the positional deviation semiconductor chip.
  • a semiconductor device for electrically connecting a bump formed on a second main surface of a semiconductor chip and an electrode pad formed on a first main surface of a substrate or a semiconductor chip (hereinafter referred to as “substrate or the like”).
  • a manufacturing apparatus that picks up and moves a semiconductor chip onto a substrate or the like, heats and pressurizes, and picks up an image of the semiconductor chip, the substrate, or the like, and a suction nozzle temporarily disposed on a first main surface of the substrate or the like
  • the imaging device and the semiconductor chip laminated on the first main surface of the substrate or the like via an adhesive are heated and pressed to electrically connect the bump and the electrode pad and cure the adhesive.
  • a pressure-bonding head and a controller that controls the suction nozzle, the imaging device, and the pressure-bonding head.
  • the control unit controls the suction nozzle, and the bump and the electrode pad via an adhesive.
  • a temporary placement processing unit that forms a temporary placement body, and based on an image captured by the imaging device, the positional displacement between the semiconductor chip and the substrate in the temporary placement body is inspected. An inspection processing unit to be identified, a position correction processing unit that controls the suction nozzle to move the positional shift semiconductor chip and corrects the position, and controls the crimping head to electrically connect the bump and the electrode pad.
  • a semiconductor device manufacturing apparatus characterized in that the semiconductor chip manufacturing apparatus comprises: Productivity can be improved.
  • FIG. 7 is a diagram for explaining a semiconductor chip temporary placement step according to the second embodiment of the present invention.
  • FIG. 8 is a diagram for explaining the inspection process in the second embodiment of the present invention.
  • FIG. 9 is a diagram for explaining a position correcting step in the second embodiment of the present invention.
  • FIG. 10 is a diagram for explaining a connection process in the second embodiment of the present invention.
  • FIG. 11 is a diagram for explaining a semiconductor device manufacturing apparatus according to the second embodiment of the present invention.
  • FIG. 12 is a diagram illustrating the configuration of the pillar bump.
  • the second embodiment is different from the first embodiment in that a semiconductor chip connection target is not a substrate but a semiconductor chip. That is, productivity is improved in the manufacture of a semiconductor device in which semiconductor chips are stacked.
  • a plurality of semiconductor chips 154 are arranged on a temporary substrate with the second main surface facing down.
  • the temporary substrate only needs to have a surface state in which the semiconductor chip 154 can be easily separated in a subsequent process, and can be appropriately selected depending on the process.
  • a glass epoxy substrate may be used, a release material may be pasted on a plate material or a stage, or a stage having an adsorption function may be used.
  • the semiconductor chip 154 is a semiconductor chip made of a small piece of silicon, and a bump 155 having at least a tip made of solder is formed on the second main surface at a position facing the electrode pad 2 of the substrate 1.
  • Example 2 a solder made of Sn—Ag is used. 7 to 10, the bumps 155 in FIG. 7 to FIG. 10 are drawn round, but it is preferable to use the bumps 155 in which the solder 5S is formed at the tip of the copper pillar 5P (see FIG. 12). ).
  • a through electrode (not shown) is provided from the bump 155 on the second main surface of the semiconductor chip 154 to the first main surface on the opposite surface, and an electrode pad 156 is provided on the first main surface side of the through electrode.
  • the electrode pad 156 on the first main surface is electrically connected to the bump 155 on the second main surface via the through electrode. Further, the position of the electrode pad 6 and the position of the bump 5 differ only in the Z direction, and the position coordinates of X and Y are the same.
  • the semiconductor device manufacturing apparatus 130 includes a control unit 120, an imaging device 111 including an X-ray sensor, an X-ray source 112, a monitor TV 114, a moving unit 115, a suction nozzle 116, and a pressure bonding head 113.
  • the control unit 120 includes an inspection processing unit 121, a temporary arrangement processing unit 122, a position correction processing unit 123, and a connection processing unit 124.
  • the moving means 115 has a suction nozzle 116 and is configured to be able to move the suction nozzle 116 in the X, Y, and Z directions.
  • the suction nozzle includes a heater inside and can be heated.
  • the crimping head 113 is also configured to be movable in the X, Y, and Z directions and can be heated by a heater.
  • the captured fluoroscopic image is input to the inspection processing unit 121 in the control unit 120, and by performing image processing, the position of the electrode pad 156 of the semiconductor chip 154 and the position of the bump 105 of the semiconductor chip 104 (FIG. 7, FIG. 8) is measured, and the positional deviation between the semiconductor chip 154 and the semiconductor chip 104 is recognized. Further, it is determined whether or not the positional deviation is within a predetermined range. Further, the fluoroscopic image captured by the imaging device 111 can be monitored by the monitor TV 114.
  • the temporary arrangement processing unit 122 controls a temporary arrangement process described later. That is, by controlling the moving means 115 and the suction nozzle 116, the semiconductor chip 104 is taken out of the container or the like, and the bump 105 of the semiconductor chip 104 is made to face the position of the electrode pad 156 of the semiconductor chip 154 measured by the inspection processing unit 121. And temporarily arranged as shown in FIG.
  • the position correction processing unit 123 controls a position correction process, which will be described later.
  • the position shift semiconductor chip is sucked and held by the suction nozzle 116 while X, Move in Y direction.
  • the fluidity of only the uppermost adhesive 7 can be increased by supplying heat from the upper side (at the suction nozzle 116 side), so that it is possible to correct misalignment.
  • connection processing unit 124 controls a connection process described later. That is, the crimping head 113 is driven and controlled to press the temporary mounting body 108 to electrically connect the bumps 105 of the semiconductor chip 104 and the electrode pads 156 of the semiconductor chip 154 and to heat the adhesive 107 to the curing temperature. And let it harden.
  • the semiconductor device manufacturing method according to the second embodiment is performed in the order of a temporary placement process, an inspection process, a position correction process, and a connection process.
  • the temporary placement step First, the temporary placement step will be described. As shown in FIG. 7, in the temporary placement step, the bumps 105 of the semiconductor chip 104 and the electrode pads 156 of the semiconductor chip 154 are positioned and provisionally placed with the adhesive 107 interposed therebetween.
  • the semiconductor chip 104 has the same configuration as the semiconductor chip 154, and a through electrode (not shown) is provided from the second main surface to the opposite first main surface, and an electrode pad 106 is provided on the first main surface side of the through electrode. Thus, the electrode pad 106 on the first main surface is electrically connected to the bump 105 on the second main surface via the through electrode.
  • the position of the electrode pad 106 and the position of the bump 105 differ only in the Z direction, and the position coordinates of X and Y are the same.
  • the bump 105 in FIGS. 7 to 10 is drawn in a circle.
  • the bump 5 having a solder 5S formed at the tip of the copper pillar 5P is used. Is preferred (see FIG. 12).
  • the adhesive 107 is a thermosetting non-conductive adhesive film (NCF), and is laminated in advance so as to enclose the bumps 105 on the second main surface of the semiconductor chip 104.
  • the semiconductor chip 104 is heated and pressurized to be temporarily placed on the semiconductor chip 154, but is temporarily placed with a gap so as not to contact the electrode pads 156 of the semiconductor chip 154.
  • the gap from the tip of the bump 105 of the semiconductor chip 104 to the surface of the electrode pad 156 of the semiconductor chip 154 is preferably 1 to 5 ⁇ m, more preferably 1 to 3 ⁇ m.
  • This value is an experimentally obtained value. If the gap is made narrower or the bump 104 and the electrode pad 156 are brought into contact with each other, the bump 105 and the electrode pad are connected when they are connected in the connecting step described later. It is known that the adhesive 107 may remain between 156 (trap phenomenon). If the gap is made wider than this value, the semiconductor chip 104 may slip when the semiconductor chip 104 is pressurized in the connection process, which may cause a positional shift, which is a serious problem in quality.
  • the viscosity of the adhesive 107 varies depending on the temperature.
  • the adhesive 107 which is a thermosetting non-conductive adhesive film (NCF)
  • NCF thermosetting non-conductive adhesive film
  • the adhesive 107 does not cure in a temperature range below the reference temperature Ts determined from its characteristics, and reversibly increases with temperature. It exhibits the property of lowering the viscosity, and the property of increasing the viscosity when the temperature is lowered.
  • NCF thermosetting non-conductive adhesive film
  • the semiconductor chip 104 is temporarily placed by heating the adhesive 107 to a temperature that is lower than the reference temperature Ts and softens. By leaving it after that, it is possible to prevent the temperature of the adhesive 107 from being lowered and the viscosity to be increased and the semiconductor chip 104 from being displaced.
  • the plurality of semiconductor chips 104 are temporarily placed on the semiconductor chip 154 via the adhesive 107 to form a plurality of temporary placement bodies 108.
  • the suction nozzle 116 is moved by the moving means 115 to suck the first main surface of the semiconductor chip 104 housed in a container or the like.
  • the suction nozzle 116 is moved above the semiconductor chip 154 so that the electrode pad 156 of the semiconductor chip 154 and the bump 105 of the semiconductor chip 104 sucked by the suction nozzle 116 face each other, and then the suction nozzle 116 is moved to the semiconductor chip. It is placed near the electrode pad 156 of 154 and temporarily placed on the semiconductor chip 154 by heating and pressing.
  • the gap between the semiconductor chip 104 and the bump 105 is kept within the above-described range.
  • the position of the electrode pad 156 of the semiconductor chip 154 before the semiconductor chip 104 is stacked is previously imaged by an imaging device such as a CCD camera, and the position is measured and stored, the stacking can be performed accurately.
  • the inspection step is performed next.
  • the inspection process will be described with reference to FIG.
  • the positional deviation between the electrode pad 156 of the semiconductor chip 154 and the electrode pad 106 of the semiconductor chip 104 is inspected, and the semiconductor chip 104 in the temporary arrangement body 108 whose positional deviation is not within a predetermined range is specified as the positional deviation semiconductor chip.
  • the imaging device 111 captures X-rays from the X-ray source 112, thereby capturing a perspective image of the bump 105 of the semiconductor chip 104 and the electrode pad 156 of the semiconductor chip 154.
  • the captured image is input to the inspection processing unit 121.
  • the inspection processing unit 121 calculates the positional deviation of the semiconductor chip 104 in each arrangement body 108 from the position of the electrode pad 156 of the semiconductor chip 154 and the position of the bump 105 of the semiconductor chip 104 from the captured image. Then, it is determined whether or not the calculated positional deviation is within a predetermined range, and a semiconductor chip 104 that is not within the predetermined range is specified as a positional deviation semiconductor chip.
  • the imaging device 111 and the X-ray source 112 are used to capture the fluoroscopic images of the electrode pads 156 of the semiconductor chip 154 and the bumps 5 of the semiconductor chip 104. It is not limited and can be selected as appropriate for the convenience of the apparatus configuration.
  • an infrared sensor is used as an imaging device, and infrared rays from an infrared source are transmitted through the temporary arrangement body 108 so as to capture a perspective image of the electrode pads 156 of the semiconductor chip 154 and the bumps 105 of the semiconductor chip 104.
  • the position of the electrode 156 of the semiconductor chip 154 before stacking the semiconductor chip 104 is measured and stored using a CCD camera, a CMOS sensor, or the like, and the semiconductor chip 104 is stacked after the semiconductor chip 104 is stacked.
  • the electrode pad 106 may be imaged with a CCD camera, a CMOS sensor, or the like, and the positional deviation between them may be inspected.
  • the position correction step will be described with reference to FIG. If the misaligned semiconductor chip 104 is found in the above-described inspection process, as shown in FIG. 9, the position correcting process is performed to correct the position in order to eliminate the misalignment of the semiconductor chip 104. Specifically, the first main surface of the semiconductor chip 104 displaced by the suction nozzle 116 is moved in the X and Y directions in the opposite direction of the position displacement while being held by suction. In this position correction process, the adhesive 107 is heated to a temperature that is lower than the reference temperature Ts and softens, and the semiconductor chip 104 is moved.
  • connection process will be described with reference to FIG.
  • the semiconductor chip 104 in the temporary arrangement body 108 on the temporary substrate is pressed to bring the bump 105 into contact with the electrode pad 156 of the semiconductor chip 154 to be electrically connected, and the adhesive 107 is set to the reference temperature Ts or higher.
  • the adhesive 107 is cured by heating. Specifically, it can be performed by moving the crimping head 113 to above each temporary arrangement body 108, then bringing the crimping head 113 close to the temporary arrangement body 108 and heating and pressurizing the semiconductor chip 104.
  • a plurality of semiconductor chips 104 may be simultaneously heated and pressurized using a pressure-bonding head having an area including a plurality of temporary arrangement bodies 108.
  • the temporary placement body 108 in which the semiconductor chips 104 are stacked in multiple stages can be manufactured.
  • the connection step in this case, all the bumps and the electrode pads are electrically connected together by the pressure bonding head 113 and all the adhesives 107 are cured.
  • the temporary arrangement body 108 in which the semiconductor chips 104 without misalignment are stacked in multiple stages can be manufactured.
  • a semiconductor device manufacturing method for obtaining a semiconductor device in which semiconductor chips are stacked, wherein an electrode pad is formed on the first main surface of each semiconductor chip. Bumps are formed on the surface, (A) an arrangement step of arranging a plurality of semiconductor chips on a temporary substrate with the first main surface of the semiconductor chip facing up, and (B) a second main surface of a new semiconductor chip.
  • the productivity in manufacturing the semiconductor device can be improved.
  • the method and apparatus for manufacturing a semiconductor device according to the present invention can be widely used in the field of stacking a semiconductor chip on a substrate or a semiconductor chip.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Wire Bonding (AREA)

Abstract

半導体装置製造における生産性を向上させることを課題とする。具体的には、半導体チップ4と、基板1とを電気的に接続する半導体装置の製造方法であって、半導体チップ4の第2主面にはバンプ5が形成され、基板1の第1主面には電極パッド2が形成されており、 (A)接着剤7を介してバンプ5と電極パッド2とを対向させた仮配置体8を得る仮配置工程、と (B)仮配置体8における半導体チップ4の位置ズレを検査し、位置ズレが所定の範囲にない位置ズレ半導体チップを特定する検査工程、と (C)位置ズレ半導体チップがあれば、当該位置ズレ半導体チップを移動させて位置を修正する位置修正工程、と (D)仮配置体8における半導体チップ4を加熱、加圧して、当該半導体チップ4のバンプ5と基板1の電極パッド2とを電気的に接続するとともに、接着剤7を硬化させる接続工程、とを備えた構成とした。

Description

半導体装置の製造方法及び製造装置
本発明は、生産性を向上させた半導体装置の製造方法及び製造装置に関するものである。
近年、半導体チップを直接基板に実装する技術や半導体チップ同士を積層させて実装密度を高める技術の開発が進んでいる。
特許文献1には、複数の半導体チップを仮圧着して積層した後、一括して本圧着するようにして、半導体チップが高温に曝される回数を少なくした構成が記載されている。また、特許文献2には、基板面に複数の半導体チップを仮圧着した後に高さバラツキを検出し、リペア判断手段を備える装置が記載されている。
特許文献1:特開2012-222038号公報
特許文献2:特開2010-232234号公報
しかしながら、特許文献1及び特許文献2に記載のものは、仮圧着時に位置ズレの問題が発生していたとしてもそのまま本圧着工程に進むため、歩留まりが悪く生産性が低下するという問題があった。
本発明は、上記問題点を解決して、半導体装置製造における生産性を向上させることを課題とする。
上記課題を解決するために本発明は、半導体チップと、基板とを電気的に接続する半導体装置の製造方法であって、
前記半導体チップの第2主面にはバンプが形成され、前記基板の第1主面には電極パッドが形成されており、
(A)接着剤を介して前記バンプと前記電極パッドとを対向させた仮配置体を複数得る仮配置工程、と
(B)前記仮配置体における半導体チップの位置ズレを検査し、前記位置ズレが所定の範囲にない位置ズレ半導体チップを特定する検査工程、と
(C)前記位置ズレ半導体チップがあれば、当該位置ズレ半導体チップを移動させて位置を修正する位置修正工程、と
(D)前記仮配置体における半導体チップを加熱、加圧して、当該半導体チップの前記バンプと前記基板の前記電極パッドとを電気的に接続するとともに、前記接着剤を硬化させる接続工程、と
を備えたことを特徴とする半導体装置の製造方法を提供するものである。
この構成により、位置ズレをなくして半導体チップを基板に接続することができ、半導体装置製造における生産性を向上させることができる。
また、上記課題を解決するために本発明は、半導体チップを積層した半導体装置を得る半導体装置の製造方法であって、各半導体チップの第1主面には電極パッドが形成され第2主面にはバンプが形成されており、(A)半導体チップの第1主面を上にして当該半導体チップを仮基板上に複数配置する配置工程、と(B)新たな半導体チップの第2主面に形成されたバンプと、前記仮基板上の半導体チップの第1主面に形成された電極パッドとを接着剤を介して対向させた仮配置体を複数得る仮配置工程、と(C)前記仮配置体における新たな半導体チップの前記バンプと、当該バンプと対向する前記電極パッドとの位置ズレを検査し、前記位置ズレが所定の範囲にない位置ズレ半導体チップを特定する検査工程、と(D)前記位置ズレ半導体チップがあれば、当該位置ズレ半導体チップを移動させて位置を修正する位置修正工程、と(E)前記仮配置体における各半導体チップを一括して、加熱、加圧して半導体チップ間のバンプと電極パッドとを電気的に接続するとともに、当該半導体チップ間の接着剤を硬化させる接続工程、とを備えたことを特徴とする半導体装置の製造方法を提供するものである。
この構成により、位置ズレをなくして半導体チップ同士を接続することができ、半導体装置製造における生産性を向上させることができる。
前記仮配置工程(B)、前記検査工程(C)、及び前記位置修正工程(D)を複数回繰り返すようにしてもよい。
この構成により、位置ズレのない半導体チップを積層した半導体装置を製造することができる。
前記接着剤は熱硬化性の非導電性接着フィルムであり、前記位置修正工程(D)においては、前記接着剤が軟化する温度に加熱して当該半導体チップを移動させるようにしてもよい。
この構成により、容易に位置ズレした半導体チップの位置を修正することができる。
前記バンプは少なくとも先端部分にはんだを有しており、当該バンプと対向する電極パッドとの間隙は、1μm~5μmの範囲内であるようにしてもよい。
この構成により、加熱、加圧後にバンプと電極パッド間に接着剤がトラップされることを防止することができる。
さらに、上記課題を解決するために本発明は、半導体チップの第2主面に形成されたバンプと、基板又は半導体チップ(以下、「基板等」という)の第1主面に形成された電極パッドとを電気的に接続する半導体装置の製造装置であって、半導体チップを吸着して基板等上に移動させるとともに加熱、加圧して、基板等の第1主面に仮配置する吸着ノズルと、前記半導体チップ及び前記基板等を撮像する撮像装置と、前記基板等の第1主面に接着剤を介して積層された前記半導体チップを加熱、加圧して前記バンプと前記電極パッドとを電気的に接続するとともに前記接着剤を硬化させる圧着ヘッドと、前記吸着ノズル、前記撮像装置、及び前記圧着ヘッドを制御する制御部と、を備え、前記制御部は、前記吸着ノズルを制御して、接着剤を介して前記バンプと前記電極パッドとを対向させて仮配置体を形成する仮配置処理部と、前記撮像装置が撮像した画像に基づいて、前記仮配置体における半導体チップと前記基板等との位置ズレを検査し、位置ズレ半導体チップを特定する検査処理部と、前記吸着ノズルを制御して、当該位置ズレ半導体チップを移動させて位置修正する位置修正処理部と、前記圧着ヘッドを制御して、前記バンプと前記電極パッドとを電気的に接続するとともに前記接着剤を硬化させる接続処理部と、を有したことを特徴とする半導体装置の製造装置を提供するものである。
この構成により、位置ズレをなくして半導体チップを基板等に接続することができ、半導体装置の装置製造における生産性を向上させることができる。
本発明の半導体装置の製造方法及び製造装置により、位置ズレをなくして半導体チップを基板や別の半導体チップに接続することができ、半導体装置製造における生産性を向上させることができる。
本発明の実施例1における半導体チップの仮配置工程を説明する図である。 本発明の実施例1における検査工程を説明する図である。 本発明の実施例1における位置修正工程を説明する図である。 本発明の実施例1における接続工程を説明する図である。 本発明の実施例1における半導体装置の製造装置を説明する図である。 本発明における接着剤の温度-粘度特性を説明する図である。 本発明の実施例2における半導体チップの仮配置工程を説明する図である。 本発明の実施例2における検査工程を説明する図である。 本発明の実施例2における位置修正工程を説明する図である。 本発明の実施例2における接続工程を説明する図である。 本発明の実施例2における半導体装置の製造装置を説明する図である。 ピラーバンプの構成を説明する図である。
本発明の実施例1について、図1~図6、及び図12を参照しながら説明する。図1は、本発明の実施例1における半導体チップの仮配置工程を説明する図である。図2は、本発明の実施例1における検査工程を説明する図である。図3は、本発明の実施例1における位置修正工程を説明する図である。図4は、本発明の実施例1における接続工程を説明する図である。図5は、本発明の実施例1における半導体装置の製造装置を説明する図である。図6は、本発明における接着剤の温度-粘度特性を説明する図である。図12は、ピラーバンプの構成を説明する図である。
(基板)図1に示すように、基板1にはその上面(第1主面)に複数の電極パッド2と複数の位置決め用のマーク3が設けられている。基板1は、シリコンからなるウェハであり、後述する半導体チップ4を実装する領域ごとに一つの回路が形成されていて、基板1を半導体チップ4実装後にダイシングすることにより、半導体チップ4を搭載した半導体装置を形成することができる。電極パッド2は、基板1内の回路に接続することができる入出力端子として機能する。マーク3は、後述するように、基板1の位置を検出するための目印である。
なお、実施例1においては、基板1をシリコンからなるウェハとしたが、必ずしもこれに限定されるものではなく、半導体装置の都合により適宜選択できる。例えば、シリコン以外の材料からなるウェハでもよいし、ガラエポ基板やセラミック基板としてもよい。
(半導体チップ)半導体チップ4は、小片のシリコンからなる半導体チップであり、その第2主面には、基板1の電極パッド2に対向する位置に少なくとも先端がはんだからなるバンプ5が形成されている。実施例1においては、Sn-Agからなるはんだが用いられている。なお、図1~図4におけるバンプ5は丸く描いているが、好ましくは、銅ピラー5Pの先端にはんだ5Sが形成されているものであり、その構成を図12に示す。また、第2主面にはバンプ5を内包するように、事前に熱硬化性の非導電性接着フィルム(NCF)からなる接着剤7がラミネートされている。半導体チップ4の第2主面のバンプ5から反対面の第1主面まで図示しない貫通電極が設けられ、この貫通電極の第1主面側には電極パッド6が設けられており、これによって、第1主面の電極パッド6は、貫通電極を介して第2主面のバンプ5に電気的に接続されている。また、電極パッド6の位置とバンプ5の位置とはZ方向に異なっているのみであって、X、Yの位置座標は同一である。
なお、実施例1においては、半導体チップ4をシリコンからなる半導体チップとしたが、必ずしもこれに限定されず、半導体装置の都合により適宜選択できる。例えば、シリコン以外の材料からなる半導体チップでもよい。
(半導体装置の製造装置)本発明の実施例1における半導体装置の製造装置30について、図5を参照して説明する。半導体装置の製造装置30は、制御部20、撮像装置11、モニタTV14、移動手段15、吸着ノズル16、及び圧着ヘッド13を含んでいる。制御部20は、検査処理部21、仮配置処理部22、位置修正処理部23、及び接続処理部24を備えている。移動手段15は、吸着ノズル16を有して、この吸着ノズル16をX、Y、Z方向に移動可能に構成されている。吸着ノズル16は、ヒータを内部に含んでおり、加熱することが可能である。また、圧着ヘッド13もX,Y、Z方向に移動可能に構成されるともに、内部に設けられたヒータにより加熱することができる。
撮像装置11は、CMOSセンサで構成され、基板1のマーク3及び各仮配置体8における半導体チップ4の電極パッド6を撮像する。撮像された画像は、制御部20における検査処理部21に入力され、画像処理を実施することにより、基板1のマーク3の位置、及び各仮配置体8における半導体チップ4の電極パッド6の位置を計測し、各半導体チップ4の位置ズレ量を認識する。また、この位置ズレ量が予め定めた所定の範囲であるか否かを判断する。撮像装置11が撮像した画像は、モニタTV14でモニタすることができる。
仮配置処理部22は、後述する仮配置工程を制御する。すなわち、移動手段15と吸着ノズル16を制御して、半導体チップ4を容器等から取り出し、検査処理部21が計測した基板1のマーク3の位置から算出した電極パッド2の位置に半導体チップ4のバンプ5を対向させるように位置合わせして図1のように仮配置する。
位置修正処理部23は、後述する位置修正工程を制御する。そして、前述の仮配置処理部と同様に移動手段15と吸着ノズル16とを制御して、位置ズレ量が所定の範囲でない場合に、当該位置ズレ半導体チップを吸着ノズル16で吸着保持しながら、位置ズレを解消するようにX、Y方向に移動させる。このとき、吸着ノズル16は加熱して後述するように、接着剤7が軟化する温度まで加熱することにより、容易に位置ズレ半導体チップを移動させることができる。
接続処理部24は、後述する接続工程を制御する。すなわち、圧着ヘッド13を駆動制御して、仮配置体8を加熱、加圧して、半導体チップ4のバンプ5と基板1の電極パッド2とを電気的に接続するとともに、接着剤7を硬化温度まで加熱して硬化させる。
実施例1における半導体装置の製造方法は、仮配置工程、検査工程、位置修正工程、接続工程の順に行われる。最初に、仮配置工程について説明する。
(仮配置工程)図1に示すように仮配置工程では、接着剤7を介して、半導体チップ4のバンプ5と基板1の電極パッド2とを対向させるように位置決めして仮配置する。接着剤7は、熱硬化性の非導電性接着フィルム(NCF)であり、前述したように予め半導体チップ4の第2主面にバンプ5を内包するようにラミネートされている。仮配置工程では、半導体チップ4を加熱、加圧して基板1に仮配置されるが、基板1の電極パッド2には接触しないように間隙を有して仮配置される。半導体チップ4のバンプ5の先端から基板1の電極パッド2の表面までの間隙は、1~5μmが好ましく、より好ましくは1~3μmである。
この値は、実験的に求めた値であり、これより間隙を狭くしたりバンプ4と電極パッド2とを接触させたりすると、後述する接続工程で両者を接続したときに、バンプ5-電極パッド2間に接着剤7が残留する可能性があることがわかっている。これは、トラップと呼ばれる現象であって、はんだバンプの融点まで加温することによって、はんだが溶融して接着剤7を巻き込むためであると考えられる。また、この値より間隙を広くすると、接続工程で半導体チップ4を加圧したときに、半導体チップ4が滑って位置ズレが発生する可能性があり、品質に重大な問題となる。
接着剤7は、図6に示すように、その温度に応じて粘度が変動する。具
体的には、熱硬化性の非導電性接着フィルム(NCF)である接着剤7は、その特性から定まる基準温度Ts未満の温度域においては硬化することなく、可逆的に温度上昇に伴って粘度が低くなる性質を示し、また、温度を低下させると粘度が高くなる性質を示す。一方、基準温度Ts以上の温度域においては硬化し、不可逆的に温度上昇に伴って粘度が高くなる性質を示す。つまり、一旦基準温度Ts以上に加熱すると温度が低下しても粘度が低下することはなく硬化状態となる。
そのため、仮配置工程においては、基準温度Ts未満の温度であり、接着剤7が軟化する温度に接着剤7を加熱して半導体チップ4を仮配置する。その後放置することにより、接着剤7の温度が下がって粘度が高くなり半導体チップ4が位置ズレすることを防止することができる。
仮配置工程では、複数の半導体チップ4を基板1上に接着剤7を介して仮配置する。具体的には、撮像装置11で基板1のマーク3を撮像し、検査処理部21でマーク3の位置を計測して、予め定められたマーク3と電極パッド2との位置関係から、電極パッド2のそれぞれの位置を認識する。次に、移動手段15により吸着ノズル16を移動させて容器等に収納されている半導体チップ4の第1主面を吸着する。その後、吸着ノズル16を基板1の上方に移動させ、基板1の電極パッド2と吸着ノズル16で吸着している半導体チップ4のバンプ5とを対向させた後、吸着ノズル16を基板1の電極パッド2に近づけて加熱、加圧して基板1上に仮配置する。ここで、前述したように、半導体チップ4のバンプ5との間隙は前述した範囲内に止めておく。
なお、実施例1では、接着剤7として接着フィルムを用い、事前に半導体チップ4にラミネートするようにしたが、必ずしもこれに限定されず、工程の都合により適宜選択することができる。例えば、液状の接着剤を用いて、塗布ノズルから基板1上に塗布するようにしてもよい。
(検査工程)複数の仮配置体8を形成したら、次は、検査工程を実施する。図2を参照しながら、検査工程を説明する。検査工程では、基板1の電極パッド2と各仮配置体8における半導体チップ4の電極パッド6との位置ズレを検査し、位置ズレが所定の範囲にない仮配置体8における半導体チップ4を位置ズレ半導体チップとして特定する。具体的には、撮像装置11で基板1のマーク3、及び各仮配置体8における半導体チップ4の電極パッド6を撮像し、撮像画像を検査処理部21に入力する。検査処理部21は、撮像画像から基板1のマーク3の位置、及び各仮配置体8における半導体チップ4の電極パッド6の位置を計測する。そして、計測した基板1のマーク3の位置から基板1の電極パッド2の位置を算出する。算出した基板1の電極パッド2の位置と、計測した各仮配置体8における半導体チップ4の電極パッド6の位置とから、各仮配置体8における半導体チップ4の位置ズレを算出する。そして算出した位置ズレが予め定めた所定の範囲であるか否かを判断し、所定の範囲にない半導体チップ4を位置ズレ半導体チップとして特定する。
なお、実施例1においては、撮像装置11を用いて、基板1のマーク3と各仮配置体8における半導体チップ4の電極パッド6を撮像するように構成したが、必ずしもこれに限定されず、装置構成の都合により適宜選択することができる。例えば、撮像装置11としてX線センサや赤外線センサを用いて、各仮配置体8を透過させて、基板1の電極パッド2と各仮配置体8における半導体チップ4のバンプ5の位置ズレを直接計測してもよい。
(位置修正工程)図3を参照しながら、位置修正工程を説明する。前述した検査工程で、位置ズレした半導体チップ4が発見されれば、図3に示すように、当該半導体チップ4の位置ズレを解消すべく、位置修正工程を実施してその位置を修正する。具体的には、吸着ノズル16で位置ズレした半導体チップ4の第1主面を吸着保持したまま、位置ズレの逆向きにX、Y方向へ移動させる。この位置修正工程では、接着剤7を基準温度Ts未満の温度であり軟化する温度に加熱して半導体チップ4を移動させる。そして、位置修正後、放置することにより、接着剤7の温度が下がって粘度が高くなり半導体チップ4が位置ズレすることを防止することができる。
(接続工程)図4を参照しながら、接続工程を説明する。接続工程では、基板1上の仮配置体8を順次、基準温度Ts以上の硬化温度に接着剤7を加熱し、また半導体チップ4を加圧して、バンプ5を基板1の電極パッド2に接触させて電気的に接続するとともに、接着剤7を硬化させる。具体的には、圧着ヘッド13を各仮配置体8の上方まで移動させ、次に圧着ヘッド13を仮配置体8に近づけ、圧着ヘッド13を加熱しながら半導体チップ4を加圧することにより行うことができる。
この接続工程は、10秒程度の時間を要するので、複数の仮配置体8を含む面積を有する圧着ヘッドを用いて、複数の半導体チップ4を同時に加熱、加圧するようにしてもよい。
このように、本発明の実施例1によれば、半導体チップと基板とを電気的に接続する半導体装置の製造方法であって、前記半導体チップの第2主面にはバンプが形成され、前記基板の第1主面には電極パッドが形成されており、(A)接着剤を介して前記バンプと前記電極パッドとを対向させた仮配置体を複数得る仮配置工程、と(B)前記仮配置体における半導体チップの位置ズレを検査し、前記位置ズレが所定の範囲にない位置ズレ半導体チップを特定する検査工程、と(C)前記位置ズレ半導体チップがあれば、当該位置ズレ半導体チップを移動させて位置を修正する位置修正工程、と(D)前記仮配置体における半導体チップを加熱、加圧して、当該半導体チップの前記バンプと前記基板の前記電極パッドとを電気的に接続するとともに、前記接着剤を硬化させる接続工程、とを備えたことを特徴とする半導体装置の製造方法により、位置ズレをなくして半導体チップを基板に接続することができ、半導体装置製造における生産性を向上させることができる。
また、半導体チップの第2主面に形成されたバンプと、基板又は半導体チップ(以下、「基板等」という)の第1主面に形成された電極パッドとを電気的に接続する半導体装置の製造装置であって、半導体チップを吸着して基板等上に移動させるとともに加熱、加圧して、基板等の第1主面に仮配置する吸着ノズルと、前記半導体チップ及び前記基板等を撮像する撮像装置と、前記基板等の第1主面に接着剤を介して積層された前記半導体チップを加熱、加圧して前記バンプと前記電極パッドとを電気的に接続するとともに前記接着剤を硬化させる圧着ヘッドと、前記吸着ノズル、前記撮像装置、及び前記圧着ヘッドを制御する制御部と、を備え、前記制御部は、前記吸着ノズルを制御して、接着剤を介して前記バンプと前記電極パッドとを対向させて仮配置体を形成する仮配置処理部と、前記撮像装置が撮像した画像に基づいて、前記仮配置体における半導体チップと前記基板等との位置ズレを検査し、位置ズレ半導体チップを特定する検査処理部と、前記吸着ノズルを制御して、当該位置ズレ半導体チップを移動させて位置修正する位置修正処理部と、前記圧着ヘッドを制御して、前記バンプと前記電極パッドとを電気的に接続するとともに前記接着剤を硬化させる接続処理部と、を有したことを特徴とする半導体装置の製造装置により、位置ズレをなくして半導体チップを基板に接続することができ、半導体装置製造における生産性を向上させることができる。
本発明の実施例2について、図7~図12を参照しながら説明する。図7は、本発明の実施例2における半導体チップの仮配置工程を説明する図である。図8は、本発明の実施例2における検査工程を説明する図である。図9は、本発明の実施例2における位置修正工程を説明する図である。図10は、本発明の実施例2における接続工程を説明する図である。図11は、本発明の実施例2における半導体装置の製造装置を説明する図である。図12は、ピラーバンプの構成を説明する図である。
実施例2は、半導体チップの接続対象が基板ではなく、半導体チップである点が実施例1に対して異なっている。すなわち、半導体チップ同士を積層した半導体装置の製造について、生産性を向上させるものである。
(ベースとなる半導体チップの準備)図7に示すように、複数の半導体チップ154をその第2主面を下にして、仮基板の上に配置しておく。仮基板は、後工程で半導体チップ154が分離しやすい表面状態のものであればよく、適宜、工程の都合により選択できる。例えば、ガラエポ基板を用いてもよいし、板材やステージの上に離型紙を貼りつけたものでもよいし、吸着機能のあるステージを用いてもよい。半導体チップ154は、小片のシリコンからなる半導体チップであり、その第2主面には、基板1の電極パッド2に対向する位置に少なくとも先端がはんだからなるバンプ155が形成されている。実施例2においては、Sn-Agからなるはんだが用いられている。なお、実施例1と同様に、図7~図10におけるバンプ155を丸く描いているが、バンプ155として銅ピラー5Pの先端にはんだ5Sが形成されているものを用いることが好ましい(図12参照)。半導体チップ154の第2主面のバンプ155から反対面の第1主面まで図示しない貫通電極が設けられ、この貫通電極の第1主面側には電極パッド156が設けられており、これによって、第1主面の電極パッド156は、貫通電極を介して第2主面のバンプ155に電気的に接続されている。また、電極パッド6の位置とバンプ5の位置とはZ方向に異なっているのみであって、X、Yの位置座標は同一である。
(半導体装置の製造装置)本発明の実施例2における半導体装置の製造装置130について、図11を参照して説明する。半導体装置の製造装置130は、制御部120、X線センサからなる撮像装置111、X線源112、モニタTV114、移動手段115、吸着ノズル116、及び圧着ヘッド113を含んでいる。制御部120は、検査処理部121、仮配置処理部122、位置修正処理部123、及び接続処理部124を備えている。移動手段115は、吸着ノズル116を有して、この吸着ノズル116をX、Y、Z方向に移動可能に構成されている。吸着ノズルは内部にヒータを含んでいて加熱することが可能となっている。また、圧着ヘッド113もX,Y、Z方向に移動可能に構成されているとともに、ヒータにより加熱することができる。
X線源112で発生させたX線を積層された半導体チップに入射させ、透過したX線をX線センサで撮像して、バンプと電極パッドとの透視画像を得る。撮像された透視画像は、制御部120における検査処理部121に入力され、画像処理を実施することにより、半導体チップ154の電極パッド156の位置、及び半導体チップ104のバンプ105の位置(図7、図8参照)を計測し、半導体チップ154と半導体チップ104との位置ズレを認識する。また、この位置ズレが予め定めた所定の範囲であるか否かを判断する。また、撮像装置111が撮像した透視画像は、モニタTV114でモニタすることができる。
仮配置処理部122は、後述する仮配置工程を制御する。すなわち、移動手段115と吸着ノズル116を制御して、半導体チップ104を容器等から取り出し、検査処理部121が計測した半導体チップ154の電極パッド156の位置に半導体チップ104のバンプ105を対向させるように位置合わせして図7のように仮配置する。
位置修正処理部123は、後述する位置修正工程を制御し、位置ズレが所定の範囲でない場合に、当該位置ズレ半導体チップを吸着ノズル116で吸着保持しながら、位置ズレを解消するようにX、Y方向に移動させる。なお、多段積層の場合でも、上側(吸着ノズル116側)から熱を供給することで最上段の接着剤7のみ流動性を高めることができるため、位置ズレ補正が可能となる。
接続処理部124は、後述する接続工程を制御する。すなわち、圧着ヘッド113を駆動制御して、仮装着体108を加圧して半導体チップ104のバンプ105と半導体チップ154の電極パッド156とを電気的に接続するとともに、接着剤107を硬化温度に加熱して硬化させる。
実施例2における半導体装置の製造方法は、仮配置工程、検査工程、位置修正工程、接続工程の順に行われる。
(仮配置工程)最初に、仮配置工程について説明する。図7に示すように仮配置工程では、接着剤107を介して、半導体チップ104のバンプ105と半導体チップ154の電極パッド156とを対向させるように位置決めして仮配置する。半導体チップ104も半導体チップ154と同様の構成であり、第2主面から反対面の第1主面まで図示しない貫通電極が設けられ、この貫通電極の第1主面側には電極パッド106が設けられており、これによって、第1主面の電極パッド106は、貫通電極を介して第2主面のバンプ105に電気的に接続されている。また、電極パッド106の位置とバンプ105の位置とはZ方向に異なっているのみであって、X、Yの位置座標は同一である。また、図7~図10におけるバンプ105を丸く描いているが、本発明が対象とする高集積な半導体装置においてはバンプ5として銅ピラー5Pの先端にはんだ5Sが形成されているものを用いることが好ましい(図12参照)。接着剤107は、熱硬化性の非導電性接着フィルム(NCF)であり、予め半導体チップ104の第2主面にバンプ105を内包するようにラミネートされている。仮配置工程では、半導体チップ104を加熱、加圧して半導体チップ154に仮配置されるが、半導体チップ154の電極パッド156には接触しないように間隙を有して仮配置される。実施例1と同様に、半導体チップ104のバンプ105の先端から半導体チップ154の電極パッド156の表面までの間隙は1~5μmが好ましく、より好ましくは1~3μmである。
この値は、実験的に求めた値であり、これより間隙を狭くしたりバンプ104と電極パッド156とを接触させたりすると、後述する接続工程で両者を接続したときに、バンプ105-電極パッド156間に接着剤107が残留する可能性があることがわかっている(トラップ現象)。また、この値より間隙を広くすると、接続工程で半導体チップ104を加圧したときに、半導体チップ104が滑って位置ズレが発生する可能性があり、品質に重大な問題となる。
接着剤107は、図6に示すように、その温度に応じて粘度が変動する。具体的には、熱硬化性の非導電性接着フィルム(NCF)である接着剤107は、その特性から定まる基準温度Ts未満の温度域においては硬化することなく、可逆的に温度上昇に伴って粘度が低くなる性質を示し、また、温度を低下させると粘度が高くなる性質を示す。一方、基準温度Ts以上の温度域においては硬化し、不可逆的に温度上昇に伴って粘度が高くなる性質を示す。つまり、基準温度Ts以上に一旦加熱すると温度が低下しても粘度が低下することはなく硬化状態となる。
そのため、仮配置工程においては、接着剤107を基準温度Ts未満の温度であり軟化する温度に加熱して半導体チップ104を仮配置する。その後放置することにより、接着剤107の温度が下がって粘度が高くなり半導体チップ104が位置ズレすることを防止することができる。
仮配置工程では、複数の半導体チップ104を半導体チップ154上に接着剤107を介して仮配置して複数の仮配置体108を形成する。具体的には、移動手段115により吸着ノズル116を移動させて容器等に収納されている半導体チップ104の第1主面を吸着する。その後、吸着ノズル116を半導体チップ154の上方に移動させ、半導体チップ154の電極パッド156と吸着ノズル116で吸着している半導体チップ104のバンプ105とを対向させた後、吸着ノズル116を半導体チップ154の電極パッド156に近づけて加熱、加圧して半導体チップ154上に仮配置する。ここで、前述したように、半導体チップ104のバンプ105との間隙は前述した範囲内に止めておく。また、半導体チップ104を積層する前の半導体チップ154の電極パッド156の位置を予めCCDカメラ等の撮像装置で撮像して位置を計測して記憶しておくと正確に積層することができる。
(検査工程)複数の仮配置体108を形成したら、次は、検査工程を実施する。図8を参照しながら、検査工程を説明する。検査工程では、半導体チップ154の電極パッド156と半導体チップ104の電極パッド106との位置ズレを検査し、位置ズレが所定の範囲にない仮配置体108における半導体チップ104を位置ズレ半導体チップとして特定する。具体的には、撮像装置111がX線源112からのX線を撮像することにより、半導体チップ104のバンプ105と半導体チップ154の電極パッド156との透視画像を撮像する。撮像画像は、検査処理部121に入力される。検査処理部121は、撮像画像から半導体チップ154の電極パッド156の位置と、半導体チップ104のバンプ105の位置とから、各配置体108における半導体チップ104の位置ズレを算出する。そして算出した位置ズレが予め定めた所定の範囲であるか否かを判断し、所定の範囲にない半導体チップ104を位置ズレ半導体チップとして特定する。
なお、実施例2においては、撮像装置111とX線源112とを用いて、半導体チップ154の電極パッド156と半導体チップ104のバンプ5の透視画像を撮像するように構成したが、必ずしもこれに限定されず、装置構成の都合により適宜選択することができる。例えば、撮像装置として赤外線センサを用いて、赤外線源からの赤外線が仮配置体108を透過させて、半導体チップ154の電極パッド156と半導体チップ104のバンプ105の透視画像を撮像するようにしてもよいし、CCDカメラやCMOSセンサ等を用いて、半導体チップ104を積層する前の半導体チップ154の電極156の位置を計測、記憶しておいて、半導体チップ104を積層した後、当該半導体チップ104の電極パッド106をCCDカメラやCMOSセンサ等で撮像し、両者の位置ズレを検査するようにしてもよい。
(位置修正工程)図9を参照しながら、位置修正工程を説明する。前述した検査工程で、位置ズレした半導体チップ104が発見されれば、図9に示すように、当該半導体チップ104の位置ズレを解消すべく、位置修正工程を実施してその位置を修正する。具体的には、吸着ノズル116で位置ズレした半導体チップ104の第1主面を吸着保持したまま、位置ズレの逆向きにX、Y方向へ移動させる。この位置修正工程では、接着剤107を基準温度Ts未満の温度であり軟化する温度に加熱して半導体チップ104を移動させる。なお、上述したように、多段積層の場合でも、上側(吸着ノズル116側)から熱を供給することで最上段の接着剤7のみ軟化する温度に加熱ことができるため、位置ズレ補正が可能となる。そして、位置修正後、放置することにより、接着剤107の温度が下がって粘度が高くなり半導体チップ104が位置ズレすることを防止することができる。
(接続工程)図10を参照しながら、接続工程を説明する。接続工程では、仮基板上の仮配置体108における半導体チップ104を加圧してバンプ105を半導体チップ154の電極パッド156に接触させて電気的に接続するとともに、接着剤107を基準温度Ts以上に加熱して接着剤107を硬
化させる。具体的には、圧着ヘッド113を各仮配置体108の上方まで移動させ、次に圧着ヘッド113を仮配置体108に近づけ、半導体チップ104を加熱、加圧することにより行うことができる。
この接続工程は、10秒程度の時間を要するので、複数の仮配置体108を含む面積を有する圧着ヘッドを用いて、複数の半導体チップ104を同時に加熱、加圧するようにしてもよい。
仮配置工程、検査工程、及び位置修正工程を複数回繰り返すことにより、半導体チップ104を多段に積層した仮配置体108を製造することができる。この場合の接続工程では、圧着ヘッド113で一括して全てのバンプと電極パッドとを電気的に接続するとともに全ての接着剤107を硬化させる。これにより、位置ズレのない半導体チップ104を多段に積層した仮配置体108を製造することができる。
このように、本発明の実施例2によれば、半導体チップを積層した半導体装置を得る半導体装置の製造方法であって、各半導体チップの第1主面には電極パッドが形成され第2主面にはバンプが形成されており、(A)半導体チップの第1主面を上にして当該半導体チップを仮基板上に複数配置する配置工程、と(B)新たな半導体チップの第2主面に形成されたバンプと、前記仮基板上の半導体チップの第1主面に形成された電極パッドとを接着剤を介して対向させた仮配置体を複数得る仮配置工程、と(C)前記仮配置体における新たな半導体チップの前記バンプと、当該バンプと対向する前記電極パッドとの位置ズレを検査し、前記位置ズレが所定の範囲にない位置ズレ半導体チップを特定する検査工程、と(D)前記位置ズレ半導体チップがあれば、当該位置ズレ半導体チップを移動させて位置を修正する位置修正工程、と(E)前記仮配置体における各半導体チップを一括して、加熱、加圧して半導体チップ間のバンプと電極パッドとを電気的に接続するとともに、半導体チップ間の接着剤を硬化させる接続工程、とを備えたことを特徴とする半導体装置の製造方法により、位置ズレをなくして半導体チップを基板に接続することができ、半導体装置製造における生産性を向上させることができる。
本発明における半導体装置の製造方法及び製造装置は、基板又は半導体チップに半導体チップを積層する分野に広く用いることができる。
1:基板  2:電極パッド  3:マーク  4:半導体チップ  5:バンプ  6:電極パッド  7:接着剤  8:仮配置体11:撮像装置  13:圧着ヘッド  14:モニタTV15:移動手段  16:吸着ノズル20:制御部  21:検査処理部  22:仮配置処理部  23:位置修正処理部24:接続処理部  30:半導体装置の製造装置104:半導体チップ  105:バンプ  106:電極パッド  107:接着剤  108:仮配置体111:X線センサ  112:X線源  113:圧着ヘッド  114:モニタTV115:移動手段   116:吸着ノズル120:制御部  121:検査処理部  122:仮配置処理部  123:位置修正処理部  124:接続処理部  130:半導体装置の製造装置154:半導体チップ  155:バンプ  156:電極パッド 

Claims (6)

  1. 半導体チップと、基板とを電気的に接続する半導体装置の製造方法であって、
    前記半導体チップの第2主面にはバンプが形成され、前記基板の第1主面には電極パッドが形成されており、
    (A)接着剤を介して前記バンプと前記電極パッドとを対向させた仮配置体を複数得る仮配置工程、と
    (B)前記仮配置体における半導体チップの位置ズレを検査し、前記位置ズレが所定の範囲にない位置ズレ半導体チップを特定する検査工程、と
    (C)前記位置ズレ半導体チップがあれば、当該位置ズレ半導体チップを移動させて位置を修正する位置修正工程、と
    (D)前記仮配置体における半導体チップを加熱、加圧して、当該半導体チップの前記バンプと前記基板の前記電極パッドとを電気的に接続するとともに、前記接着剤を硬化させる接続工程、と
    を備えたことを特徴とする半導体装置の製造方法。
  2. 半導体チップを積層した半導体装置を得る半導体装置の製造方法であって、
    各半導体チップの第1主面には電極パッドが形成され、第2主面にはバンプが形成されており、
    (A)半導体チップの第1主面を上にして当該半導体チップを仮基板上に複数配置する配置工程、と
    (B)新たな半導体チップの第2主面に形成されたバンプと、前記仮基板上の半導体チップの第1主面に形成された電極パッドとを接着剤を介して対向させた仮配置体を複数得る仮配置工程、と
    (C)前記仮配置体における新たな半導体チップの前記バンプと、当該バンプと対向する前記電極パッドとの位置ズレを検査し、前記位置ズレが所定の範囲にない位置ズレ半導体チップを特定する検査工程、と
    (D)前記位置ズレ半導体チップがあれば、当該位置ズレ半導体チップを移動させて位置を修正する位置修正工程、と
    (E)前記仮配置体における各半導体チップを一括して、加熱、加圧して半導体チップ間のバンプと電極パッドとを電気的に接続するとともに、半導体チップ間の接着剤を硬化させる接続工程、と
    を備えたことを特徴とする半導体装置の製造方法。
  3. 前記仮配置工程(B)、前記検査工程(C)、前記位置修正工程(D)を複数回繰り返すことを特徴とする請求項2に記載の半導体装置の製造方法。
  4. 前記接着剤は熱硬化性の非導電性接着フィルム(NCF)であり、前記位置修正工程(D)においては、前記接着剤が軟化する温度に加熱して当該位置ズレ半導体チップを移動させることを特徴とする請求項1~3のいずれかに記載の半導体装置の製造方法。
  5. 前記バンプは少なくとも先端部分にはんだを有しており、当該バンプと対向する電極パッドとの間隙は、1μm~5μmの範囲内であることを特徴とする請求項1~4に記載の半導体装置の製造方法。
  6. 半導体チップの第2主面に形成されたバンプと、基板又は半導体チップ(以下、「基板等」という)の第1主面に形成された電極パッドとを電気的に接続する半導体装置の製造装置であって、
    半導体チップを吸着して基板等上に移動させるとともに加熱、加圧して、基板等の第1主面に仮配置する吸着ノズルと、
    前記半導体チップ及び前記基板等を撮像する撮像装置と、
    前記基板等の第1主面に接着剤を介して積層された前記半導体チップを加熱、加圧して前記バンプと前記電極パッドとを電気的に接続するとともに前記接着剤を硬化させる圧着ヘッドと、
    前記吸着ノズル、前記撮像装置、及び前記圧着ヘッドを制御する制御部と、を備え、
    前記制御部は、
    前記吸着ノズルを制御して、接着剤を介して前記バンプと前記電極パッドとを対向させて仮配置体を形成する仮配置処理部と、
    前記撮像装置が撮像した画像に基づいて、前記仮配置体における半導体チップと前記基板等との位置ズレを検査し、位置ズレ半導体チップを特定する検査処理部と、
    前記吸着ノズルを制御して、当該位置ズレ半導体チップを移動させて位置修正する位置修正処理部と、
    前記圧着ヘッドを制御して、前記バンプと前記電極パッドとを電気的に接続するとともに前記接着剤を硬化させる接続処理部と、を有したことを特徴とする半導体装置の製造装置。

     
PCT/JP2017/011082 2016-03-30 2017-03-21 半導体装置の製造方法及び製造装置 WO2017169943A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780032715.7A CN109155261B (zh) 2016-03-30 2017-03-21 半导体装置的制造方法和制造装置
KR1020187027596A KR102227444B1 (ko) 2016-03-30 2017-03-21 반도체 장치의 제조 방법 및 제조 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016067397A JP6613194B2 (ja) 2016-03-30 2016-03-30 半導体装置の製造方法及び製造装置
JP2016-067397 2016-03-30

Publications (1)

Publication Number Publication Date
WO2017169943A1 true WO2017169943A1 (ja) 2017-10-05

Family

ID=59965207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/011082 WO2017169943A1 (ja) 2016-03-30 2017-03-21 半導体装置の製造方法及び製造装置

Country Status (4)

Country Link
JP (1) JP6613194B2 (ja)
KR (1) KR102227444B1 (ja)
CN (1) CN109155261B (ja)
WO (1) WO2017169943A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10217718B1 (en) * 2017-10-13 2019-02-26 Denselight Semiconductors Pte. Ltd. Method for wafer-level semiconductor die attachment
KR102252732B1 (ko) * 2019-06-11 2021-05-18 세메스 주식회사 다이 본딩 방법 및 다이 본딩 장치
JP7402188B2 (ja) * 2021-01-05 2023-12-20 プライムプラネットエナジー&ソリューションズ株式会社 積層型電極体の製造方法および製造装置
CN112951972B (zh) * 2021-02-02 2022-08-16 东莞市中麒光电技术有限公司 一种cob模块修复方法
CN113013307A (zh) * 2021-03-01 2021-06-22 东莞市中麒光电技术有限公司 一种显示模块故障芯片修复方法
CN113394241B (zh) * 2021-06-10 2022-10-14 东莞市中麒光电技术有限公司 一种精准稳定的芯片巨量转移方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08330393A (ja) * 1995-03-24 1996-12-13 Matsushita Electric Ind Co Ltd フラットパネルディスプレイへのic部品の接合方法
US20090321948A1 (en) * 2008-06-27 2009-12-31 Taiwan Semiconductor Manufacturing Company, Ltd. Method for stacking devices
JP2011199138A (ja) * 2010-03-23 2011-10-06 Fujikura Ltd 電子部品相互の接続方法及び接続構造
JP2012222038A (ja) * 2011-04-05 2012-11-12 Elpida Memory Inc 半導体装置の製造方法
WO2013133015A1 (ja) * 2012-03-07 2013-09-12 東レ株式会社 半導体装置の製造方法および半導体装置の製造装置
JP2015095499A (ja) * 2013-11-11 2015-05-18 東レ株式会社 半導体装置の製造方法
JP2016009850A (ja) * 2014-06-26 2016-01-18 東レエンジニアリング株式会社 実装装置および実装方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3147116B2 (ja) * 1999-07-16 2001-03-19 松下電器産業株式会社 電子部品の半田付け方法及び電子部品の仮止め用ボンド
JP2007220837A (ja) * 2006-02-16 2007-08-30 Juki Corp 電子部品実装方法及び装置
JP2009239256A (ja) * 2008-03-03 2009-10-15 Panasonic Corp 半導体装置及びその製造方法
JP2010232234A (ja) 2009-03-26 2010-10-14 Toray Eng Co Ltd 実装装置および実装方法
JP5104844B2 (ja) * 2009-11-12 2012-12-19 富士通株式会社 電子部品の実装方法
JP2011199184A (ja) * 2010-03-23 2011-10-06 Fujifilm Corp 基板実装装置及び基板実装方法
JP5772050B2 (ja) * 2011-02-22 2015-09-02 富士通株式会社 半導体装置及びその製造方法、電源装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08330393A (ja) * 1995-03-24 1996-12-13 Matsushita Electric Ind Co Ltd フラットパネルディスプレイへのic部品の接合方法
US20090321948A1 (en) * 2008-06-27 2009-12-31 Taiwan Semiconductor Manufacturing Company, Ltd. Method for stacking devices
JP2011199138A (ja) * 2010-03-23 2011-10-06 Fujikura Ltd 電子部品相互の接続方法及び接続構造
JP2012222038A (ja) * 2011-04-05 2012-11-12 Elpida Memory Inc 半導体装置の製造方法
WO2013133015A1 (ja) * 2012-03-07 2013-09-12 東レ株式会社 半導体装置の製造方法および半導体装置の製造装置
JP2015095499A (ja) * 2013-11-11 2015-05-18 東レ株式会社 半導体装置の製造方法
JP2016009850A (ja) * 2014-06-26 2016-01-18 東レエンジニアリング株式会社 実装装置および実装方法

Also Published As

Publication number Publication date
KR102227444B1 (ko) 2021-03-11
JP2017183456A (ja) 2017-10-05
CN109155261A (zh) 2019-01-04
KR20180128411A (ko) 2018-12-03
JP6613194B2 (ja) 2019-11-27
CN109155261B (zh) 2022-04-01

Similar Documents

Publication Publication Date Title
JP6613194B2 (ja) 半導体装置の製造方法及び製造装置
KR102230921B1 (ko) 반도체 장치의 제조 방법, 및 실장 장치
CN109103117B (zh) 结合半导体芯片的设备和结合半导体芯片的方法
TW201906106A (zh) 覆晶之雷射接合用的裝置以及覆晶之雷射接合方法
TW200933792A (en) Apparatus and method for manufacturing semiconductor device
TWI670776B (zh) 半導體裝置的製造方法以及封裝裝置
TW202032692A (zh) 用於半導體晶片之雷射接合裝置
KR20140094086A (ko) 반도체 칩 부착 방법
JP4482598B2 (ja) ボンディング装置、ボンディング装置の補正量算出方法及びボンディング方法
JP6688543B2 (ja) 半導体装置の製造方法及び半導体装置の製造装置
US20030138993A1 (en) Method and apparatus for manufacturing semiconductor device
TWI746888B (zh) 封裝裝置
KR20120090202A (ko) 반도체 패키지 제조용 스테이지 블럭
KR102221588B1 (ko) 반도체 칩 본딩 장치 및 반도체 칩 본딩 방법
JP4640380B2 (ja) 半導体装置の実装方法
JP2001338946A (ja) チップ実装方法
JP7317354B2 (ja) 実装装置
KR101909109B1 (ko) 반도체 디바이스의 제조 방법
TW202339885A (zh) 檢查方法
JP6461822B2 (ja) 半導体装置の実装方法および実装装置
JP2015192104A (ja) 半導体チップ実装方法および半導体チップ実装装置
JPH0829798A (ja) 電子部品の接続装置
JPH11204563A (ja) 実装方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187027596

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17774484

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17774484

Country of ref document: EP

Kind code of ref document: A1