WO2017169119A1 - 変異プライマーの設計方法 - Google Patents

変異プライマーの設計方法 Download PDF

Info

Publication number
WO2017169119A1
WO2017169119A1 PCT/JP2017/004162 JP2017004162W WO2017169119A1 WO 2017169119 A1 WO2017169119 A1 WO 2017169119A1 JP 2017004162 W JP2017004162 W JP 2017004162W WO 2017169119 A1 WO2017169119 A1 WO 2017169119A1
Authority
WO
WIPO (PCT)
Prior art keywords
primer
mutation
nucleotide residue
amplification
nucleic acid
Prior art date
Application number
PCT/JP2017/004162
Other languages
English (en)
French (fr)
Inventor
真 高石
Original Assignee
大研医器株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016154013A external-priority patent/JP6681804B2/ja
Application filed by 大研医器株式会社 filed Critical 大研医器株式会社
Priority to CA3019468A priority Critical patent/CA3019468A1/en
Priority to CN201780020530.4A priority patent/CN109072221A/zh
Priority to KR1020187028480A priority patent/KR20180129806A/ko
Priority to SG11201808514YA priority patent/SG11201808514YA/en
Priority to US16/089,980 priority patent/US20190144933A1/en
Priority to EP17773668.3A priority patent/EP3438257A4/en
Publication of WO2017169119A1 publication Critical patent/WO2017169119A1/ja
Priority to ZA2018/06890A priority patent/ZA201806890B/en

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B25/00ICT specially adapted for hybridisation; ICT specially adapted for gene or protein expression
    • G16B25/20Polymerase chain reaction [PCR]; Primer or probe design; Probe optimisation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B25/00ICT specially adapted for hybridisation; ICT specially adapted for gene or protein expression

Definitions

  • the present invention relates to a method for designing a primer into which a mutation has been introduced.
  • the nucleic acid amplification method has become an indispensable method not only in the basic research field but also in various fields including epidemiological examination, medical diagnosis, forensic medicine and genetic analysis. Since the nucleic acid amplification method can specifically amplify the target nucleic acid sequence, it is extremely useful as a highly sensitive means for detecting the presence of the target nucleic acid.
  • Non-specific amplification due to the formation of primer dimers or loop structures can occur, for example, when the 3 ′ end region of the primer has some degree of complementarity with itself or with other primers.
  • problems such as a decrease in S / N ratio and the occurrence of false positives occur. May occur, making it impossible to detect the target sequence.
  • Patent Document 1 discloses a method for improving the S / N ratio by using a labeled primer and applying the FRET principle so that a signal caused by a primer dimer is not detected.
  • Patent Document 2 discloses a primer containing a modified nucleotide selected from the group consisting of 2′-fluoro-nucleotides, 2′-amino nucleotides and arabinose nucleotides in the 3 ′ terminal sequence. ing.
  • Patent Document 3 discloses a primer containing a modified pyrimidine nucleobase in the sequence on the 3 ′ end side. Patent Documents 2 and 3 describe that the use of these primers can suppress the formation of primer dimers.
  • Patent Document 1 The method described in Patent Document 1 is an effective means in quantitative PCR in which the presence or amount of a target nucleic acid is detected by reading the fluorescence emitted from an amplification product, but the amplified nucleic acid is detected by an intercalator. It cannot be applied to the detection system. Moreover, since generation
  • Patent Documents 2 and 3 suppress the generation of primer dimers that cause nonspecific amplification.
  • these documents only have abstract descriptions such as “within three 3 ′ terminal nucleotide positions” or “within 4 nucleotides from the 3 ′ terminal” for the positions at which modified or modified nucleotides are introduced, and are more effective.
  • the problem to be solved by the present invention is to provide a novel method for designing a mutant primer that is unlikely to cause non-specific amplification due to primer dimer or loop structure.
  • the present invention for solving the above problems is a method for designing a primer into which a mutation is introduced, which is used in a nucleic acid amplification method, A basic sequence design step of designing a base sequence completely complementary to the template DNA as a basic primer sequence; One or more nucleotide residues contained in the basic primer sequence, wherein one or two or more nucleotide residues selected from the group consisting of the following (1) to (4) are met. It is a design method provided with the mutation introduction site selection process selected as. (1) Nucleotide residues that may contribute to the formation of primer dimers. (2) A nucleotide residue that may contribute to the formation of a loop structure in one primer molecule.
  • the DNA polymerase does not recognize the mutation introduced into the mutation primer as a nucleotide residue.
  • the mutation is one or more selected from the group consisting of the following (A) to (D).
  • A A nucleotide residue or polynucleotide obtained by binding the 5 ′ end and the 3 ′ end of the nucleotide residue located before and after the mutation introduction site and the 5 ′ end and the 3 ′ end, respectively.
  • B A spacer chain composed of a carbon chain or a PEG chain.
  • C A spacer chain comprising a tetrahydrofuran derivative represented by the general formula 1.
  • General formula 1 In general formula 1, R represents H or a hydroxyl group, and n represents a natural number.
  • D Spacer chain with photolytic modification.
  • the present invention also relates to a primer designed by the above design method and a nucleic acid amplification method using the primer. According to the primer and nucleic acid amplification method of the present invention, non-specific amplification in nucleic acid amplification can be reduced.
  • the nucleic acid amplification complement method of the present invention is particularly preferably applied to an isothermal amplification method. Unlike the PCR method, the isothermal amplification method does not include a denaturation step of double-stranded DNA, and nonspecific amplification is likely to occur. Therefore, it is particularly preferable to apply the nucleic acid amplification method of the present invention.
  • the present invention also relates to a program for causing a computer to execute each step of the above-described design method as a procedure. According to the program of the present invention, it is possible to easily design a mutation primer that is unlikely to cause nonspecific amplification.
  • the present invention it is possible to provide a mutation primer and a nucleic acid amplification method that hardly cause non-specific amplification.
  • (D) It is a figure showing the structure of the primer in which the spacer chain
  • the black arrow indicates the mutation introduction site.
  • the left and right arrows indicate the direction in which nucleic acid synthesis is performed.
  • the vertical line between the two primers represents a hydrogen bond.
  • m represents a mutation.
  • a cross indicates that nucleic acid synthesis is not performed.
  • the vertical line between the two primers represents a hydrogen bond.
  • the black arrow indicates the mutation introduction site.
  • the left arrow indicates the direction in which nucleic acid synthesis is performed.
  • Vertical lines represent hydrogen bonds. It is a schematic diagram of the primer into which the mutation has been introduced. m represents a mutation. A cross indicates that nucleic acid synthesis is not performed. The vertical line between the two primers represents a hydrogen bond. It is a schematic diagram of a primer dimer. The black arrow indicates the mutation introduction site. The left and right arrows indicate the direction in which nucleic acid synthesis is performed. The vertical line between the two primers represents a hydrogen bond. It is a schematic diagram of the primer into which the mutation has been introduced. m represents a mutation. The x and left and right arrows indicate that nucleic acid synthesis in the direction of the arrow stops at the position of the x mark. The vertical line between the two primers represents a hydrogen bond.
  • FIG. 1 It is a schematic diagram showing a state that a non-specific amplification product functions as a new non-specific amplification primer and non-specific amplification is linked.
  • the black arrow indicates the mutation introduction site.
  • the left and right arrows indicate the direction in which nucleic acid synthesis is performed.
  • the vertical line between the two primers represents a hydrogen bond.
  • m represents a mutation.
  • the black arrow indicates the mutation introduction site.
  • the left arrow indicates the direction in which nucleic acid synthesis is performed. Vertical lines represent hydrogen bonds.
  • FIG. 1 It is a schematic diagram showing that the chain
  • m represents a mutation.
  • the amplification curve of Test Example 1 is represented.
  • the amplification curve of Experiment 1 which expanded the time axis is represented.
  • the amplification curve of Test Example 2 is represented.
  • the amplification curve of Experiment 2 which expanded the time axis It is a figure showing a mode that nonspecific amplification arises by the primer dimer of two F primers, and P1 which is a nonspecific amplification product is formed.
  • P1 ′ which is a non-specific amplification product
  • R primer is used as a template, so that non-specific amplification occurs
  • P2 ′ which is a non-specific amplification product
  • P1 ′ which is a non-specific amplification product
  • P1 ′′ which is a non-specific amplification product
  • P1 ′′ which is a non-specific amplification product is a primer, and R primer is used as a template to generate non-specific amplification and P2 ′′ which is a product of non-specific amplification is formed.
  • the amplification curve of Test Example 3 is represented.
  • the amplification curve of Experiment 3 which expanded the time axis is represented.
  • the amplification curve of Test Example 4 is represented.
  • the amplification curve of Experiment 4 which expanded the time axis is represented.
  • the nucleic acid amplification method includes all methods for amplifying nucleic acid.
  • PCR method; reverse transcription PCR method derived from PCR method, real-time PCR method, DNA sequencing method; LAMP method, SmartAmp method, and Table 2012 / 1244681 includes an isothermal amplification method such as the nucleic acid amplification method (TRIAmp amplification method) described in Japanese Patent Publication No. 124681.
  • the design method of the present invention is particularly preferably applied for designing a primer for use in an isothermal amplification method.
  • a primer refers to a short nucleic acid fragment having a role of supplying 3′OH when a DNA polymerase synthesizes a nucleic acid in a nucleic acid amplification reaction, and includes DNA and RNA. Unless otherwise specified in the following description, a primer refers to a DNA primer.
  • the present invention is a method for designing a primer into which a mutation has been introduced.
  • “introducing mutation” means modifying nucleotide residues constituting an ordinary nucleic acid (adenine nucleotide residue, guanine nucleotide residue, thymine nucleotide residue, cytosine nucleotide residue, uracil nucleotide residue). Is substituted with a nucleotide residue that has been subjected to, a modified nucleotide residue, a chemical structure other than the nucleotide residue, or a nucleotide residue having an unusual binding mode, etc. Refers to the structure.
  • a chemical structure conventionally used as a spacer can be used.
  • mutations include chemical structures that DNA polymerase does not recognize as nucleotide residues.
  • specific examples of such mutations include the following chemical structures (A) to (D).
  • A) A nucleotide residue or polynucleotide obtained by binding the 5 ′ end and the 3 ′ end of the nucleotide residue located before and after the mutation introduction site and the 5 ′ end and the 3 ′ end, respectively.
  • B) A spacer chain composed of a carbon chain or a PEG chain.
  • C A spacer chain comprising a tetrahydrofuran derivative represented by the general formula 1.
  • D Spacer chain with photolytic modification.
  • a nucleotide residue constituting a nucleic acid is bonded at its 3 ′ end to the 5 ′ end of another nucleotide residue, while it is bonded at its 5 ′ end to the 3 ′ end of another nucleotide residue.
  • the primer introduced with the mutation in (A) is composed of normal nucleotide residues, but the DNA polymerase is used for this because the nucleotide residue or polynucleotide binding mode at the mutation introduction site is reversed. Cannot be recognized as a nucleotide residue, and the nucleic acid synthesis reaction cannot be continued (FIG. 2).
  • the primer into which the mutation is introduced hybridizes with the complementary strand, the mutation does not form a hydrogen bond with the base on the complementary strand side.
  • the DNA polymerase cannot recognize it as a nucleotide residue and cannot continue the nucleic acid synthesis reaction (FIGS. 3 and 4). Moreover, when the primer into which the mutation is introduced hybridizes with the complementary strand, the mutation does not form a hydrogen bond with the base on the complementary strand side.
  • the carbon chain length of the carbon chain per nucleotide residue to be substituted can be preferably 3 to 9.
  • the degree of polymerization of the PEG chain per nucleotide residue to be substituted can be preferably 1 to 3.
  • (B) a structure derived from 3- (4,4′-Dimethoxytrityloxy) propyl-1-[(2-cyanoethyl)-(N, N-diisopropyl)]-phosphoramidite (commonly known as Spacer C3)
  • Examples include 8-O- (4,4′-Dimethoxytrityl) -triethyleneglycol, a structure derived from 1-[(2-cyanoethyl)-(N, N-diisopropyl)]-phosphoramidite (commonly called Spacer 9).
  • the DNA polymerase cannot recognize it as a nucleotide residue and cannot continue the nucleic acid synthesis reaction (FIG. 5). Moreover, when the primer into which the mutation is introduced hybridizes with the complementary strand, the mutation does not form a hydrogen bond with the base on the complementary strand side.
  • n per nucleotide residue to be substituted can be preferably 1.
  • the DNA polymerase cannot recognize it as a nucleotide residue and cannot continue the nucleic acid synthesis reaction (FIG. 6). Moreover, when the primer into which the mutation is introduced hybridizes with the complementary strand, the mutation does not form a hydrogen bond with the base on the complementary strand side.
  • the photocleavable modified spacer chain is a spacer chain modified with a compound having a property of decomposing by exposure to UV or visible light, and has a nitrobenzene skeleton in this specification.
  • the compound group (refer patent 4870791) which has as one.
  • the number of mutations introduced into one primer can be set as appropriate as long as the specificity of the primer is not lost.
  • Primer specificity can be calculated by a general primer design tool.
  • the primer designing method of the present invention includes a basic sequence designing step.
  • the basic sequence design step is a step of designing a base sequence that is completely complementary to the template DNA as a basic primer sequence, and can be performed in the same manner as the primer design in a normal nucleic acid amplification method. That is, a base sequence of about 15 to 50 bases suitable for the primer from the viewpoint of specificity, GC content, Tm value, etc. is selected from the target base sequences. Calculation methods such as specificity, GC content, and Tm value are not limited, and manual calculation or a commonly used calculation tool may be used.
  • the number of basic primer sequences designed in one system is appropriately changed depending on the target nucleic acid amplification system. That is, when the target nucleic acid amplification method is a normal PCR method, two types of F primer and R primer are used, and when the target nucleic acid amplification method is a system requiring three or more types of primers such as the Lamp method, three or more types are used. Design basic primer sequences.
  • the mutagenesis site selection step is a step of selecting a nucleotide residue that meets one or more conditions selected from the group consisting of the following (1) to (4) from the basic primer sequence to be a mutagenesis site. .
  • the means for predicting whether or not the primer composed of the basic primer sequence forms a primer dimer or a loop structure, and which nucleotide residue contributes in the case of formation is not particularly limited and is generally used. You may use a calculation tool.
  • nucleotide residues that meet the conditions of (1) contribute to the formation of primer dimers such as the nucleotide residues shown in FIG. 7 (TAA of F primer, TTA of R primer), that is, complementary strands.
  • the primer dimer When the primer dimer is formed, the primer itself becomes a template as shown in FIG. 7, and nonspecific amplification occurs.
  • Select nucleotide residues that meet the conditions of (1) as mutation-introducing sites black arrows in FIG. 7
  • suppress primer dimer formation by introducing mutations and suppress the occurrence of non-specific amplification. (FIG. 8).
  • Nucleotide residues that meet the conditions in (2) are nucleotides that may contribute to the formation of a loop structure, such as the nucleotide residues shown in FIG. 9 (TAA on the 5 ′ side, TTA on the 3 ′ side), for example. Residue.
  • TAA the nucleotide residues shown in FIG. 9
  • the primer itself becomes a template as shown in FIG. 9, and nonspecific amplification occurs.
  • Select nucleotide residues that meet the conditions of (2) as mutation-introducing sites as mutation-introducing sites (solid arrows in FIG. 9), suppress the formation of loop structures by introducing mutations, and suppress the occurrence of non-specific amplification. (FIG. 10).
  • nucleotide residues that meet the conditions of (3) for example, nucleotide residues (C of F primer, G of R primer) such as the nucleotide residues shown in FIG. 11 may form primer dimers. In the predicted case, it is a nucleotide residue located in a region other than the region where the primer hybridizes in a complementary or non-complementary manner.
  • the primer dimer When the primer dimer is formed, the primer itself becomes a template as shown in FIG. 11, and nonspecific amplification occurs up to a chain length that can be synthesized to the maximum by DNA polymerase.
  • a nucleotide residue that meets the conditions of (3) is selected as a mutation introduction site (solid arrow in FIG. 11), and by introducing a mutation, the DNA synthesis reaction of DNA polymerase is inhibited at the mutation introduction site and non-specific.
  • the chain length of the target amplification product can be suppressed short (FIG. 12).
  • the selection of a nucleotide residue that satisfies the condition of (3) as a mutagenesis site is particularly effective when a non-specific amplification product can function as a new non-specific amplification primer as shown in FIG. It is valid.
  • the non-specific amplification products P1 and P2 generated by the primers shown in FIG. 13 are denatured and become single-stranded, and then hybridize with each other to cause new non-specific amplification.
  • This new non-specific amplification product can function as a primer to generate further non-specific amplification, thus preventing the non-specific amplification chain from stopping.
  • nucleotide residues that meet the conditions in (4) are predicted to form a loop structure within a molecule of a primer consisting of a basic primer sequence, such as nucleotide residue (C) shown in FIG.
  • region constituting the loop structure means a sequence region in a loop shape and a region where the primer hybridizes in a complementary or non-complementary manner.
  • the primer itself becomes a template as shown in FIG. 15, and nonspecific amplification occurs up to a chain length that can be synthesized to the maximum by DNA polymerase.
  • a nucleotide residue that meets the condition of (4) is selected as a mutation introduction site (solid arrow in FIG. 15), and by introducing a mutation, the DNA synthesis reaction of DNA polymerase is inhibited at the mutation introduction site and non-specific.
  • the chain length of the target amplification product can be suppressed short (FIG. 16).
  • Selecting a nucleotide residue that meets the condition of (4) as a mutagenesis site means that a non-specific amplification product is converted into a new non-specific amplification by the same principle as described with reference to FIGS. This is particularly effective when it can function as a primer.
  • the primer designed by the design method of the present invention may be variously modified for purposes other than suppression of non-specific amplification.
  • ⁇ Test Example 1> In order to amplify the direct repeat sequence in the genomic DNA of Mycobacterium bovis BCG str. Tokyo 172 strain by the nucleic acid amplification method (TRIAmp amplification method) described in Re-Table 2012/124682, DRa-21 and DRb-19 The primer set described in FIG. The sequences of these primers are shown in the upper part of Table 1 as primer 1F and primer 1R. Unless otherwise specified, the primer solvent described in this test example is 1 ⁇ TE buffer.
  • nucleotides that may contribute to the formation of hairpin loops, homodimers, and heterodimers in the sequences of primers 1F and 1R using a general calculation program available on the web and available by downloading Residues were selected.
  • the nucleotide residues thus selected were selected as mutation introduction sites, and primers of primer sets 2 and 3 shown in Table 1 were designed and prepared.
  • part in primer sets 2 and 3 was prepared (primer sets 4 and 5, Table 1).
  • reaction solutions shown in Table 2 were prepared, and TRIAmp amplification was performed.
  • the TRIAmp amplification reaction was carried out at 68 ° C. for 2 hours using a Thermal Cycler Dice Real Time System Lite TP710, and the reaction was followed by FAM detection mode.
  • the amplification curves and Ct values calculated as a result are shown in FIGS. 17 and 18 and Table 3, respectively.
  • two sets of reaction solutions were prepared for each primer combination (hereinafter, each sample is referred to as sample 1 and sample 2), and an amplification curve and a Ct value were calculated for each.
  • ⁇ Test Example 2> Using the primer set of F primer and R primer shown in Table 1, prepare a reaction solution in which the template DNA is replaced with water in the composition shown in Table 2, and perform a TRIAmp amplification reaction under the same conditions as in Test Example 1 to obtain an amplification curve And Ct values were calculated. The results are shown in Table 4 and FIGS. In the TRIAmp amplification reaction, four sets of reaction solutions were prepared for each primer combination (hereinafter, each sample is referred to as non-specific samples 1 to 4), and an amplification curve and Ct value were calculated for each.
  • nucleic acid amplification in a system that does not contain template DNA that is, non-specific amplification rate is higher than that in the case of using primer set 1 in which no mutation is introduced. It can be seen that the primer sets 2 and 3 into which are introduced are significantly slower. In particular, when primer set 3 was used, nonspecific amplification of nucleic acid did not occur in 3 out of 4 samples. This result indicates that non-specific amplification is strongly suppressed by introducing mutations into the primers.
  • Primer set 4 has a sequence on the 3 ′ end side from the mutation introduction site in primer set 2. As shown in Table 4, when the TRIAmp amplification reaction was performed using primer set 4, the non-specific amplification rate was slower than when primer set 1 was used. However, the effect of suppressing the non-specific amplification rate is stronger when primer set 2 is used than when primer set 4 is used (Table 4).
  • primer set 5 has a sequence on the 3 ′ end side from the mutation introduction site in primer set 3, but when primer 5 is used, nucleic acid amplification reaction does not occur even if the reaction solution contains template DNA. Absent.
  • the F primer forms a primer dimer with another F primer (upper part of FIG. 21), and P1 which is a non-specific amplification product is generated as the DNA synthesis reaction proceeds (lower part of FIG. 21).
  • denatured and single-stranded P1 forms a dimer with the R primer (upper part of FIG. 22), and P2 that is a non-specific amplification product is generated as the DNA synthesis reaction proceeds (lower part of FIG. 22).
  • a sequence (CCC) complementary to 3 nucleotides (GGG) at the 3 ′ end of P2 exists in P1 and P2, non-specific amplification proceeds one after another.
  • the F primer forms a primer dimer with another F primer (the upper part of FIG. 23), and even if the DNA synthesis reaction proceeds, the extension of the F primer used as a template It stops at the third nucleotide residue (G) from the 5 'end (lower row in Fig. 23). Therefore, it becomes difficult for P1 ′ produced by this non-specific amplification to form a dimer with an R primer at its 3 ′ end, and no non-specific amplification chain occurs. Even if P1 ′ and R primer form a dimer (the upper part of FIG.
  • the extension is at the third nucleotide residue (C) from the 5 ′ end of the R primer used as a template. Since it stops (bottom of FIG. 24), it is unlikely that P2 ′ generated by this non-specific amplification will cause further non-specific amplification linkage.
  • the F primer of primer set 3 since the F primer of primer set 3 has mutations introduced into nucleotide residues that contribute to the formation of primer dimers by the two F primers, the primer is hardly formed and the DNA synthesis reaction is very unlikely ( FIG. 25 top). Even if a DNA synthesis reaction occurs and P1 ′′ which is an amplification product is generated (lower part of FIG. 25), even if this forms a primer dimer with the R primer (upper part of FIG. 26), the reaction is R Since it stops at the mutagenesis site of the primer (lower part of FIG. 26), it is unlikely that the amplification product P2 ′′ will cause further non-specific amplification chain.
  • primer sets 2 and 3 consisting of primers introduced with mutations have an effect of suppressing the nonspecific amplification reaction rate.
  • the primer set introduced with any mutation of Spacer C3, dSpacer, Spacer 9, Abasic, or PC Spacer is used. DNA amplification could be carried out without any problem.
  • TRIAmp amplification reaction was performed under the same conditions as in Test Example 1 to calculate the amplification curve and Ct value. The results are shown in Table 7 and FIGS.
  • four sets of reaction solutions were prepared for each primer combination (hereinafter, each sample is referred to as non-specific samples 1 to 4), and an amplification curve and Ct value were calculated for each.
  • nucleic acid amplification in a system not containing template DNA that is, non-specific amplification rate is expressed by a spacer chain composed of a carbon chain or a PEG chain.
  • a spacer chain composed of a carbon chain or a PEG chain Even when using a primer set into which a spacer chain composed of a tetrahydrofuran derivative or a spacer chain with a photodegradable modification is introduced, it is significantly slower than the primer set 1 in which no mutation is introduced. I understand. This result shows that non-specific amplification is strongly suppressed by the introduction of mutations into the primer by the method of the present invention.
  • the present invention can be applied to a method for reducing nonspecific amplification in a nucleic acid amplification method.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Evolutionary Biology (AREA)
  • Theoretical Computer Science (AREA)
  • Medical Informatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Plant Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

プライマーダイマー又はループ構造に起因する非特異的増幅が生じにくい変異プライマーの新規の設計方法を提供する。 基礎プライマー配列に含まれる1又は2以上のヌクレオチド残基であって、以下の(1)~(4)からなる群から選ばれる1又は2以上の条件に合致するヌクレオチド残基を変異導入部位として選択する変異導入部位選択工程を備える、変異が導入されたプライマーの設計方法。 (1)プライマーダイマーの形成に寄与する可能性のあるヌクレオチド残基。 (2)プライマー1分子内でのループ構造の形成に寄与する可能性のあるヌクレオチド残基。 (3)前記基礎プライマー配列からなるプライマーがプライマーダイマーを形成することが予測される場合において、プライマーが相補的又は非相補的にハイブリダイズする領域以外の領域に位置するヌクレオチド残基。 (4)前記基礎プライマー配列からなるプライマーが1分子内でループ構造を形成することが予測される場合において、ループ構造を構成する領域以外の領域に位置するヌクレオチド残基。

Description

変異プライマーの設計方法
 本発明は変異が導入されたプライマーの設計方法に関する。
 現在、核酸増幅法は基礎研究分野のみならず、疫学的検査、医学的診断、法医学および遺伝子分析を含む様々な分野において必要不可欠な手法となっている。核酸増幅法は標的核酸配列を特異的に増幅できることから、標的核酸の存在を検出するための高感受性手段として極めて有用である。
 核酸増幅法を行うに際しての問題の一つとして非特異的増幅産物の生成が挙げられる。そして、プライマーダイマーの形成やプライマー1分子内でのループ構造の形成が、非特異的増幅が生じる要因となることが知られている。プライマーダイマー又はループ構造の形成に起因する非特異的増幅は、例えば、プライマーの3´末端領域がそれ自体又は他のプライマーとのある程度の相補性を有する場合に生じ得る。
 定量的PCRや等温増幅法のように標的配列の有無を判別するための核酸増幅系において、このような非特異的増幅が生じると、S/N比の低下、偽陽性の発生などの問題が生じ、標的配列の検出が不可能になる場合がある。
 このような状況下、非特異的増幅反応の原因の一つであるプライマーダイマーの発生を抑制する方法が提案されている。
 特許文献1には標識したプライマーを用いFRETの原理を応用することで、プライマーダイマーに起因するシグナルが検出されないようにし、S/N比を向上させる方法が開示されている。
 また、特許文献2には、2’-フルオロ-ヌクレオチド類、2’-アミノヌクレオチド類及びアラビノースヌクレオチド類から成る群から選ばれる修飾されたヌクレオチドを3´末端側の配列内に含むプライマーが開示されている。
 同様の技術として特許文献3には、改変されたピリミジン核酸塩基を3´末端側の配列内に含むプライマーが開示されている。
 特許文献2及び3には、これらプライマーを用いるとプライマーダイマーの形成が抑制できることが記載されている。
特表2005-528121号公報 特開2002-291490号公報 特表2008-535518号公報
 特許文献1に記載の方法は、増幅産物より発される蛍光を読み取ることにより標的核酸の存在の有無又は存在量を検出する定量的PCRにおいては有効な手段であるが、インターカレーターにより増幅核酸を検出する系には応用できない。また、プライマーダイマー自体の発生は抑制できないため、プライマーダイマーに起因する非特異的増幅産物の生成によるプライマーの枯渇を防ぐことはできない。
 特許文献2及び3に記載の方法は、非特異的増幅の原因であるプライマーダイマーの発生自体を抑制するものである。しかし、これらの文献には修飾又は改変ヌクレオチドを導入する位置について「3つの3´末端ヌクレオチド位置内」又は「3´末端から4ヌクレオチド以内」などの抽象的な記載しか無く、より効果的に非特異的増幅を抑制できる修飾プライマーの設計の方法については開示が無い。
 このような状況下において、本発明の解決しようとする課題は、プライマーダイマー又はループ構造に起因する非特異的増幅が生じにくい変異プライマーの新規の設計方法を提供することにある。
 上記課題を解決する本発明は、核酸増幅法に用いる、変異が導入されたプライマーの設計方法であって、
鋳型DNAに完全に相補的な塩基配列を基礎プライマー配列として設計する基礎配列設計工程と、
該基礎プライマー配列に含まれる1又は2以上のヌクレオチド残基であって、以下の(1)~(4)からなる群から選ばれる1又は2以上の条件に合致するヌクレオチド残基を変異導入部位として選択する変異導入部位選択工程を備える、設計方法である。
(1)プライマーダイマーの形成に寄与する可能性のあるヌクレオチド残基。
(2)プライマー1分子内でのループ構造の形成に寄与する可能性のあるヌクレオチド残基。
(3)前記基礎プライマー配列からなるプライマーがプライマーダイマーを形成することが予測される場合において、プライマーが相補的又は非相補的にハイブリダイズする領域以外の領域に位置するヌクレオチド残基。
(4)前記基礎プライマー配列からなるプライマーが1分子内でループ構造を形成することが予測される場合において、ループ構造を構成する領域以外の領域に位置するヌクレオチド残基。
 本発明の設計方法によれば、プライマーダイマー又はループ構造に起因する非特異的増幅が生じにくい変異プライマーを容易に設計することができる。
 本発明においては、変異プライマーに導入された変異をDNAポリメラーゼがヌクレオチド残基と認識しないものとすることが好ましい。
 このような形態とすることによって、より非特異的増幅が生じにくいプライマーを設計することができる。
 本発明の好ましい形態では、変異が以下の(A)~(D)からなる群から選ばれる1種又は2種以上である。
(A)前記変異導入部位の前後に位置するヌクレオチド残基の5´末端及び3´末端と、それぞれ5´末端及び3´末端を結合してなるヌクレオチド残基又はポリヌクレオチド。
(B)炭素鎖又はPEG鎖からなるスペーサー鎖。
(C)一般式1で表されるテトラヒドロフラン誘導体からなるスペーサー鎖。
一般式1
Figure JPOXMLDOC01-appb-C000002
(一般式1中、RはH,または水酸基、nは自然数を示す。)
(D)光分解性修飾のされたスペーサー鎖。
 変異プライマーに導入する変異を(A)~(D)とすることによって、さらに非特異的増幅を生じにくいプライマーを設計することができる。
 また、本発明は、上述の設計方法により設計されたプライマー及び当該プライマーを用いる核酸増幅法にも関する。
 本発明のプライマー及び核酸増幅方法によれば、核酸増幅における非特異的増幅を低減することができる。
 本発明の核酸増幅補法は、等温増幅法に適用することが特に好ましい。
 等温増幅法はPCR法とは異なり、二本鎖DNAの変性工程を含まず非特異的増幅が生じ易いため、本発明の核酸増幅法を適用することが特に好ましい。
 また、本発明は、上述の設計方法の各工程を手順としてコンピュータに実行させるためのプログラムにも関する。
 本発明のプログラムによれば、非特異的増幅を生じにくい変異プライマーを簡便に設計することができる。
 本発明によれば、非特異的増幅を生じにくい変異プライマー及び核酸増幅法を提供することができる。
通常の核酸の構造を表す図である。 (A)の変異が導入されたプライマーの構造を表す図である。 (B)の変異として炭素鎖が導入されたプライマーの構造を表す図である。 (B)の変異としてPEG鎖が導入されたプライマーの構造を表す図である。 (C)の変異として一般式1で表されるテトラヒドロフラン誘導体からなるスペーサー鎖が導入されたプライマーの構造を表す図である。 (D)の変異として光分解性修飾のされたスペーサー鎖が導入されたプライマーの構造を表す図である。 プライマーダイマーの模式図である。黒塗りの矢印は変異導入部位を表す。左右方向の矢印は核酸合成が行われる方向を表す。2つのプライマー間の縦線は水素結合を表す。 変異が導入されたプライマーの模式図である。mは変異を示す。×印は核酸合成が行われないことを表す。2つのプライマー間の縦線は水素結合を表す。 ループ構造の模式図である。黒塗りの矢印は変異導入部位を表す。左方向の矢印は核酸合成が行われる方向を表す。縦線は水素結合を表す。 変異が導入されたプライマーの模式図である。mは変異を示す。×印は核酸合成が行われないことを表す。2つのプライマー間の縦線は水素結合を表す。 プライマーダイマーの模式図である。黒塗りの矢印は変異導入部位を表す。左右方向の矢印は核酸合成が行われる方向を表す。2つのプライマー間の縦線は水素結合を表す。 変異が導入されたプライマーの模式図である。mは変異を示す。×印と左右方向の矢印は、×印の位置において矢印の方向の核酸合成が停止することを表す。2つのプライマー間の縦線は水素結合を表す。 非特異的増幅産物が新たな非特異的増幅のプライマーとして機能し非特異的増幅が連鎖する様子を表す模式図である。黒塗りの矢印は変異導入部位を表す。左右方向の矢印は核酸合成が行われる方向を表す。2つのプライマー間の縦線は水素結合を表す。 変異の導入によりプライマーの形成に起因する非特異的増幅の連鎖が抑制されることを表す模式図である。mは変異を示す。 ループ構造の模式図である。黒塗りの矢印は変異導入部位を表す。左方向の矢印は核酸合成が行われる方向を表す。縦線は水素結合を表す。 変異の導入によりループ構造の形成に起因する非特異的増幅の連鎖が抑制されることを表す模式図である。mは変異を示す。 試験例1の増幅曲線を表す。 時間軸を拡大した試験例1の増幅曲線を表す。 試験例2の増幅曲線を表す。 時間軸を拡大した試験例2の増幅曲線を表す。 2つのFプライマーのプライマーダイマーにより非特異的増幅が生じ、非特異的増幅産物であるP1が形成される様子を表す図である。 非特異的増幅産物であるP1がプライマー、Rプライマーが鋳型として非特異的増幅が生じ、非特異的増幅の産物であるP2が形成される様子を表す図である。 プライマーセット2により非特異的増幅反応が抑制されるメカニズムを説明する図である。変異が導入された2つのFプライマーのプライマーダイマーにより非特異的増幅が生じ、非特異的増幅産物であるP1´が形成される様子を表す。 プライマーセット2により非特異的増幅反応が抑制されるメカニズムを説明する図である。非特異的増幅産物であるP1´がプライマー、Rプライマーが鋳型として非特異的増幅が生じ、非特異的増幅の産物であるP2´が形成される様子を表す。 プライマーセット3により非特異的増幅反応が抑制されるメカニズムを説明する図である。変異が導入された2つのFプライマーのプライマーダイマーにより非特異的増幅が生じ、非特異的増幅産物であるP1´´が形成される様子を表す。 プライマーセット3により非特異的増幅反応が抑制されるメカニズムを説明する図である。非特異的増幅産物であるP1´´がプライマー、Rプライマーが鋳型として非特異的増幅が生じ、非特異的増幅の産物であるP2´´が形成される様子を表す。 試験例3の増幅曲線を表す。 時間軸を拡大した試験例3の増幅曲線を表す。 試験例4の増幅曲線を表す。 時間軸を拡大した試験例4の増幅曲線を表す。
 以下、本発明の実施の形態について詳しく説明を加える。なお、本発明の技術的範囲は以下の実施の形態に限定されるものではない。
 本発明において核酸増幅法とは核酸を増幅する全ての方法を含み、PCR法;PCR法より派生した逆転写PCR法、リアルタイムPCR法、DNAシークエンシング法;LAMP法、SmartAmp法、また再表2012/124681号公報に記載の核酸増幅法(TRIAmp増幅法)のような等温増幅法を含む。
 本発明の設計方法は特に等温増幅法に用いるためのプライマーの設計のために適用することが好ましい。
 本発明においてプライマーとは核酸増幅反応においてDNAポリメラーゼが核酸を合成する際に3´OHを供給する役割をもつ短い核酸の断片のことをいい、DNA及びRNAを含む。以下の説明において特に断りが無い場合には、プライマーとはDNAプライマーのことを指す。
 本発明は変異が導入されたプライマーの設計方法である。本発明において「変異を導入する」とは、通常の核酸を構成するヌクレオチド残基(アデニンヌクレオチド残基、グアニンヌクレオチド残基、チミンヌクレオチド残基、シトシンヌクレオチド残基、ウラシルヌクレオチド残基)を、修飾が施されたヌクレオチド残基、改変されたヌクレオチド残基、ヌクレオチド残基以外の化学構造、又は通常とは異なる結合態様のヌクレオチド残基等に置換することをいい、「変異」とは上述の化学構造のことをいう。
 本発明における変異としては、従来スペーサーとして利用されている化学構造を利用することができる。
 特に好ましい変異としては、DNAポリメラーゼがヌクレオチド残基と認識しない化学構造が挙げられる。このような変異として具体的には以下の(A)~(D)の化学構造が挙げられる。
(A)前記変異導入部位の前後に位置するヌクレオチド残基の5´末端及び3´末端と、それぞれ5´末端及び3´末端を結合してなるヌクレオチド残基又はポリヌクレオチド。
(B)炭素鎖又はPEG鎖からなるスペーサー鎖。
(C)一般式1で表されるテトラヒドロフラン誘導体からなるスペーサー鎖。
(D)光分解性修飾のされたスペーサー鎖。
 通常、核酸を構成するヌクレオチド残基は、その3´末端において他のヌクレオチド残基の5´末端と結合し、他方、その5´末端において他のヌクレオチド残基の3´末端と結合している(図1)。
 (A)の変異が導入されたプライマーは通常のヌクレオチド残基で構成されているが、変異導入部位におけるヌクレオチド残基又はポリヌクレオチドの結合様式が通常とは逆転しているため、DNAポリメラーゼがこれをヌクレオチド残基であると認識できず、核酸合成反応を継続することができない(図2)。また、当該変異が導入されたプライマーが相補鎖とハイブリダイゼーションする際に、当該変異は相補鎖側の塩基と水素結合を形成しない。
 (B)の変異はヌクレオチド残基とは全く構造が異なるため、DNAポリメラーゼがこれをヌクレオチド残基であると認識できず、核酸合成反応を継続することができない(図3及び4)。また、当該変異が導入されたプライマーが相補鎖とハイブリダイゼーションする際に、当該変異は相補鎖側の塩基と水素結合を形成しない。
 導入する変異を炭素鎖とする場合には、置換するヌクレオチド残基1個当たりの当該炭素鎖の炭素鎖長は、好ましくは3~9とすることができる。
 また、導入する変異をPEG鎖とする場合には、置換するヌクレオチド残基1個当たりの当該PEG鎖の重合度は、好ましくは1~3とすることができる。
 (B)の変異としては、3-(4,4'-Dimethoxytrityloxy)propyl-1-[(2-cyanoethyl)-(N,N-diisopropyl)]- phosphoramiditeから誘導される構造(通称Spacer C3)、8-O-(4,4'-Dimethoxytrityl)-triethyleneglycol, 1-[(2-cyanoethyl)- (N,N-diisopropyl)]-phosphoramiditeから誘導される構造(通称Spacer 9)などが例示できる。
 (C)の変異は塩基を有さないため、DNAポリメラーゼがこれをヌクレオチド残基であると認識できず、核酸合成反応を継続することができない(図5)。また、当該変異が導入されたプライマーが相補鎖とハイブリダイゼーションする際に、当該変異は相補鎖側の塩基と水素結合を形成しない。
 (C)の変異としては、5'-O-Dimethoxytrityl-1',2'-Dideoxyribose-3'-[(2-cyanoethyl)-(N,N-diisopropyl)]-phosphoramiditeから誘導される構造(通称dSpacer)、5-O-Dimethoxytrityl-1-O-tert-butyldimethylsilyl-2-deoxyribose-3-[(2-cyanoethyl)-(N,N-diisopropyl)]-phosphoramidite(通称Abasic)から誘導される構造などが例示できる。
 なお、AbasicのTBDMS保護基(tert-butyldimethylsily基)はプライマー合成の際に脱保護される。そのため、Abasicを導入した後のプライマーの構造は、図5においてRをOHとした構造となる。
 なお、導入する変異を一般式1で表されるテトラヒドロフラン誘導体からなるスペーサー鎖とする場合には、置換するヌクレオチド残基1個当たりのnの値は、好ましくは1とすることができる。
 (D)の変異はヌクレオチド残基とは全く構造が異なるため、DNAポリメラーゼがこれをヌクレオチド残基であると認識できず、核酸合成反応を継続することができない(図6)。また、当該変異が導入されたプライマーが相補鎖とハイブリダイゼーションする際に、当該変異は相補鎖側の塩基と水素結合を形成しない。
 なお、光分解性修飾のされたスペーサー鎖とはUVまたは可視光の曝露によって分解する性質を持つ化合物で修飾されたスペーサー鎖であって、本明細書においてはニトロベンゼン骨格を有することを特徴の一つとして有している化合物群(特許第4870791号参照)を指す。
 (D)の変異としては、1-[2-Nitro-5-(6trifluoroacetylcaproamidomethyl)phenyl]-ethyl- [2-cyano-ethyl(N,N-diisopropyl)]phosphoramidite から誘導される構造(通称PC 5'-Amino-Modifier)、1-[2-Nitro-5-(6-(N-(4,4'dimethoxytrityl))biotinamidocaproamidomethyl)phenyl]-ethyl-[2cyanoethyl-(N,N-diisopropyl)]phosphoramidite から誘導される構造(通称PC 5'-Biotin)、3-(4,4'-Dimethoxytrityl)-1-(2nitrophenyl)-propane-1,3-diol-[2cyanoethyl-(N,N-diisopropyl)]phosphoramidite から誘導される構造(通称PC Linker)、[4-(4,4'-Dimethoxytrityloxy)butyramidomethyl)-1-(2-nitrophenyl)-ethyl]-2-cyanoethyl-(N,N-diisopropyl)-phosphoramiditeから誘導される構造(通称PC Spacer)などが例示できる。
 1つのプライマーに導入する変異の数はプライマーの特異性を失わない範囲で適宜設定することができる。プライマーの特異性は一般的なプライマー設計ツールにより算出することができる。
 次に、本発明の設計方法の各工程について説明する。
 本発明のプライマーの設計方法は、基礎配列設計工程を含む。基礎配列設計工程は鋳型DNAに完全に相補的な塩基配列を基礎プライマー配列として設計する工程であり、通常の核酸増幅法におけるプライマーの設計と同様に行うことができる。すなわち、特異性、GC含有量、Tm値などの観点からプライマーに適した15~50塩基程度の塩基配列を、標的とする塩基配列の中から選択する。特異性やGC含有量、Tm値などの算出方法は制限されず、手計算でもよいし一般的に利用されている計算ツールなどを使用してもよい。
 1つの系において設計する基礎プライマー配列の数は、目的とする核酸増幅法の系によって適宜変更する。すなわち、目的とする核酸増幅法が、通常のPCR法である場合においてはFプライマーとRプライマーの2種、Lamp法のような3種以上のプライマーを要する系である場合においては3種以上の基礎プライマー配列を設計する。
 基礎配列設計工程における基礎プライマー配列の設計の後、変異導入部位選択工程を行う。変異導入部位選択工程は、以下の(1)~(4)からなる群から選ばれる1又は2以上の条件に合致するヌクレオチド残基を基礎プライマー配列から選択し、変異導入部位とする工程である。
(1)プライマーダイマーの形成に寄与する可能性のあるヌクレオチド残基。
(2)プライマー1分子内でのループ構造の形成に寄与する可能性のあるヌクレオチド残基。
(3)前記基礎プライマー配列からなるプライマーがプライマーダイマーを形成することが予測される場合において、プライマーが相補的又は非相補的にハイブリダイズする領域以外の領域に位置するヌクレオチド残基。
(4)前記基礎プライマー配列からなるプライマーが1分子内でループ構造を形成することが予測される場合において、ループ構造を構成する領域以外の領域に位置するヌクレオチド残基。
 基礎プライマー配列からなるプライマーが、プライマーダイマー又はループ構造を形成するか否か、また形成する場合には何れのヌクレオチド残基が寄与するのか予測する手段は特に限定されず、一般的に利用されている計算ツールなどを使用してもよい。
 まず、(1)の条件に合致するヌクレオチド残基は、例えば図7に示すヌクレオチド残基(FプライマーのTAA、RプライマーのTTA)のような、プライマーダイマーの形成に寄与、つまり、相補鎖の塩基と水素結合を形成する可能性のあるヌクレオチド残基である。プライマーダイマーが形成されると、図7に示すようにプライマー自体が鋳型となり、非特異的増幅が生じてしまう。
 (1)の条件に合致するヌクレオチド残基を変異導入部位として選択し(図7中黒塗り矢印)、変異を導入することでプライマーダイマーの形成を抑制し、非特異的増幅の発生を抑えることができる(図8)。
 図7及び8にはFプライマーとRプライマーという互いに異なるプライマー同士のプライマーダイマーの形成を抑制する場合の概要を示したが、同一のプライマー同士のプライマーダイマーの形成に寄与するヌクレオチド残基も(1)の条件に合致することは言うまでもない。
 (2)の条件に合致するヌクレオチド残基は、例えば図9に示すヌクレオチド残基(5´側のTAA、3´側のTTA)のような、ループ構造の形成に寄与する可能性のあるヌクレオチド残基である。ループ構造が形成されると、図9に示すようにプライマー自体が鋳型となり、非特異的増幅が生じてしまう。
 (2)の条件に合致するヌクレオチド残基を変異導入部位として選択し(図9中黒塗り矢印)、変異を導入することでループ構造の形成を抑制し、非特異的増幅の発生を抑えることができる(図10)。
 (3)の条件に合致するヌクレオチド残基は、例えば図11に示すヌクレオチド残基(FプライマーのC、RプライマーのG)のような、基礎プライマー配列からなるプライマーがプライマーダイマーを形成することが予測される場合において、プライマーが相補的又は非相補的にハイブリダイズする領域以外の領域に位置するヌクレオチド残基である。
 プライマーダイマーが形成されると、図11に示すようにプライマー自体が鋳型となり、DNAポリメラーゼが最大限合成可能な鎖長にまで非特異的増幅が生じてしまう。(3)の条件に合致するヌクレオチド残基を変異導入部位として選択し(図11中黒塗り矢印)、変異を導入することで、変異導入部位においてDNAポリメラーゼのDNA合成反応を阻害し、非特異的増幅産物の鎖長を短く抑制することができる(図12)。
 (3)の条件に合致するヌクレオチド残基を変異導入部位として選択することは、例えば図13に示すような、非特異的増幅産物が新たな非特異的増幅のプライマーとして機能し得る場合に特に有効である。図13に示したプライマーにより生じた非特異的増幅産物であるP1とP2は、変性し一本鎖となった後、再び互いにハイブリダイズし、新たな非特異的増幅を引き起こす。この新たな非特異的増幅の産物はさらに別の非特異的増幅を生じるプライマーとして機能し得るため、非特異的増幅の連鎖は止まらないこととなる。
 この場合に(3)の条件に合致するヌクレオチド残基に変異を導入すると、図14に示すように非特異的増幅産物P1´及びP2´が新たな非特異的増幅のプライマーとして機能しないため、非特異的増幅の連鎖を防止することができる。
 図13及び14にはFプライマーとRプライマーという互いに異なるプライマー同士のプライマーダイマーの形成を抑制する場合の概要を示したが、同一のプライマー同士のプライマーの形成に寄与するヌクレオチド残基も(3)の条件に合致することは言うまでもない。
 (4)の条件に合致するヌクレオチド残基は、例えば図15に示すヌクレオチド残基(C)のような、基礎プライマー配列からなるプライマーが1分子内でループ構造を形成することが予測される場合において、ループ構造を構成する領域以外の領域に位置するヌクレオチド残基である。ここで、「ループ構造を構成する領域」とは、ループ状となっている配列領域、並びに、プライマーが相補的又は非相補的にハイブリダイズする領域のことをいう。
 ループ構造が形成されると、図15に示すようにプライマー自体が鋳型となり、DNAポリメラーゼが最大限合成可能な鎖長にまで非特異的増幅が生じてしまう。(4)の条件に合致するヌクレオチド残基を変異導入部位として選択し(図15中黒塗り矢印)、変異を導入することで、変異導入部位においてDNAポリメラーゼのDNA合成反応を阻害し、非特異的増幅産物の鎖長を短く抑制することができる(図16)。
 (4)の条件に合致するヌクレオチド残基を変異導入部位として選択することは、図13及び14を参照しながら説明したものと同様の原理によって非特異的増幅産物が新たな非特異的増幅のプライマーとして機能し得る場合に特に有効である。(4)の条件に合致するヌクレオチド残基に変異を導入することで、非特異的増幅の連鎖を防止することができる。
 本発明の設計方法により設計するプライマーには、非特異的増幅の抑制以外の目的をもって各種修飾を行っても良い。
<試験例1>
 Mycobacterium bovis BCG str. Tokyo 172株のゲノムDNAにおけるDirect Repeat配列を、再表2012/124681号公報に記載の核酸増幅法(TRIAmp増幅法)により増幅するため、同公報においてDRa-21及びDRb-19として記載のプライマーのセットを用意した。これらプライマーの配列を表1上段にプライマー1F及びプライマー1Rとして示す。なお、特に指定のない場合には、本試験例記載のプライマーの溶媒は1×TE buffer である。
 ウェブ上で利用可能な、また、ダウンロードすることにより利用可能な一般的な計算プログラムを用いて、プライマー1F及び1Rの配列中、ヘアピンループ、ホモダイマー、ヘテロダイマーの形成に寄与する可能性のあるヌクレオチド残基を選出した。
 これにより選出されたヌクレオチド残基を変異導入部位として選択し、表1に示すプライマーセット2及び3のプライマーを設計し、これを調製した。
 また、プライマーセット2及び3における変異導入部位より3´末端側の配列からなるプライマーを用意した(プライマーセット4及び5、表1)。
 表1に示すFプイライマー及びRプライマーのプライマーセットを用いて、表2に示す反応溶液を調製し、TRIAmp増幅法を行った。TRIAmp増幅反応はThermal Cycler Dice Real Time System Lite TP710を使用して68℃で2時間行い、FAM検出モードにより反応を追跡した。その結果算出された増幅曲線とCt値を図17、18及び表3にそれぞれ示す。なお、TRIAmp増幅反応はそれぞれのプライマーの組み合わせについて反応溶液を2セット調製し(以下、それぞれのサンプルをサンプル1及びサンプル2という)、それぞれについて増幅曲線とCt値を算出した。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 図17、18及び表3に示すように、極端にプライマー長が短いプライマーセット5以外のプライマーを用いた場合には、最終的な輝度には多少の差があるものの、その増幅速度はいずれも同程度であった。
 これらの結果は、本発明の方法で変異が導入されたプライマーは、同プライマーの変異導入部位から5´末端側を単純に欠損させたプライマーとは機能が異なるということを示している。
<試験例2>
 表1に示すFプライマー及びRプライマーのプライマーセットを用いて、表2に示す組成においてテンプレートDNAを水に代えた反応溶液を調製し、試験例1と同様の条件でTRIAmp増幅反応を行い増幅曲線及びCt値を算出した。結果を表4及び図19、20に示す。
 なお、TRIAmp増幅反応はそれぞれのプライマーの組み合わせについて反応溶液を4セット調製し(以下、それぞれのサンプルを非特異的サンプル1~4という)、それぞれについて増幅曲線とCt値を算出した。
Figure JPOXMLDOC01-appb-T000006
 図19、20及び表4に示すように、テンプレートDNAを含まない系での核酸増幅、すなわち非特異的増幅速度は、変異が導入されていないプライマーセット1を用いた場合と比較して、変異を導入したプライマーセット2、3を用いた場合の方が顕著に遅くなっていることがわかる。特にプライマーセット3を用いた場合には、4サンプル中3サンプルにおいて核酸の非特異的増幅が起こらなかった。
 この結果は、プライマーへの変異の導入により、非特異的増幅が強く抑制されていることを示している。
 プライマーセット4はプライマーセット2における変異導入部位より3´末端側の配列を有する。表4に示す通り、プライマーセット4を用いてTRIAmp増幅反応を行った場合、プライマーセット1を用いた場合に比べて非特異的増幅速度は遅くなっている。しかし、プライマーセット4よりも、プライマーセット2を用いたときの方が、非特異的増幅速度の抑制効果が強く表れている(表4)。
 また、プライマーセット5はプライマーセット3における変異導入部位より3´末端側の配列を有するが、プライマー5を用いた場合では、反応溶液にテンプレートDNAが含まれていたとしても、核酸増幅反応が起こらない。
 これらの結果は、本発明の方法で変異が導入されたプライマーは、同プライマーの変異導入部位から5´末端側を単純に欠損させたプライマーとは機能が異なるということを示している。
 プライマーセット1を用いてTRIAmp増幅反応を行った際に非特異的増幅が生じてしまう原因は、図21及び22に示すメカニズムによるものであると予想される。すなわち、Fプライマーが他のFプライマーとプライマーダイマーを形成し(図21上段)、DNA合成反応が進むことで非特異的増幅産物であるP1が生じる(図21下段)。次いで、変性し一本鎖になったP1がRプライマーとダイマーを形成し(図22上段)、DNA合成反応が進むことで非特異的増幅産物であるP2が生じる(図22下段)。そして、P2の3´末端の3ヌクレオチド(GGG)と相補的な配列(CCC)がP1やP2中に存在するため、次々と非特異的増幅が進行してしまう。
 一方、プライマーセット2を用いた場合には、Fプライマーが他のFプライマーとプライマーダイマーを形成し(図23上段)、DNA合成反応が進んだとしても、その伸長は鋳型となったFプライマーの5´末端から3番目のヌクレオチド残基(G)で停止する(図23下段)。そのため、この非特異的増幅により生じたP1´が、その3´末端でRプライマーとダイマーを形成することが困難となり、非特異的増幅の連鎖は起こらない。仮にP1´とRプライマーがダイマーを形成し(図24上段)、DNA合成反応が起こったとしても、その伸長は鋳型となったRプライマーの5´末端から3番目のヌクレオチド残基(C)で停止するため(図24下段)、この非特異的増幅によって生じたP2´がさらなる非特異的増幅の連鎖を生じる可能性は低い。
 また、プライマーセット3のFプライマーには、2つのFプライマーによるプライマーダイマーの形成に寄与するヌクレオチド残基に変異が導入されているため、プライマーが形成されにくく、DNA合成反応が非常に生じにくい(図25上段)。仮に、DNA合成反応が起こり、増幅産物であるP1´´が生じ(図25下段)、これがRプライマーとプライマーダイマーを形成しDNA合成反応が起こったとしても(図26上段)、その反応はRプライマーの変異導入部位で停止するため(図26下段)、その増幅産物であるP2´´がさらなる非特異的増幅の連鎖を生じる可能性は低い。
 以上の理由から、変異が導入されたプライマーからなるプライマーセット2及び3には、非特異的増幅反応速度の抑制効果があるものと考えられる。
<試験例3>
 表5に示した配列中、mで表される位置にSpacer C3、dSpacer、Spacer 9、Abasic、又はPC Spacerから誘導される構造が導入されたFプライマー及びRプライマーのプライマーセットを用意した。
Figure JPOXMLDOC01-appb-T000007
 表5に示すFプライマー及びRプライマーのプライマーセット及び、表1に示すFプライマー及びRプライマーのプライマーセット1~3を用いて、表2に示す組成において試験例1と同様の条件でTRIAmp増幅反応を行い増幅曲線及びCt値を算出した。結果を表6及び図27、28に示す。
 なお、プライマーセット3 Abasicの溶媒は0.2Mトリエチルアミン-酢酸溶液を滅菌水で10μMに希釈したものである。
Figure JPOXMLDOC01-appb-T000008
 表6及び図27、28に示すように、プライマーセット1~3より多少増幅速度が遅いものの、Spacer C3、dSpacer、Spacer 9、Abasic、又はPC Spacerの何れの変異が導入されたプライマーセットを用いた場合であっても、問題なくDNAの増幅を行うことができた。
<試験例4>
 また、表5に示すFプライマー及びRプライマーのプライマーセット及び、表1に示すFプライマー及びRプライマーのプライマーセット1~3を用いて、表2に示す組成においてテンプレートDNAを水に代えた反応溶液を調製し、試験例1と同様の条件でTRIAmp増幅反応を行い増幅曲線及びCt値を算出した。結果を表7及び図29、30に示す。
 なお、TRIAmp増幅反応はそれぞれのプライマーの組み合わせについて反応溶液を4セット調製し(以下、それぞれのサンプルを非特異的サンプル1~4という)、それぞれについて増幅曲線とCt値を算出した。
Figure JPOXMLDOC01-appb-T000009
 図27~30及び表6、7に示すように、テンプレートDNAを含まない系での核酸増幅、すなわち非特異的増幅速度は、炭素鎖又はPEG鎖からなるスペーサー鎖、一般式1で表されるテトラヒドロフラン誘導体からなるスペーサー鎖、光分解性修飾のされたスペーサー鎖、の変異を導入したプライマーセットを用いた場合においても変異を導入していないプライマーセット1と比較して顕著に遅くなっていることがわかる。
 この結果は、本発明の方法によるプライマーへの変異の導入により、非特異的増幅が強く抑制されていることを示している。
 本発明は核酸増幅法における非特異的増幅の低減方法に応用することができる。

Claims (7)

  1. 核酸増幅法に用いる、変異が導入されたプライマーの設計方法であって、
    鋳型DNAに完全に相補的な塩基配列を基礎プライマー配列として設計する基礎配列設計工程と、
    該基礎プライマー配列に含まれる1又は2以上のヌクレオチド残基であって、以下の(1)~(4)からなる群から選ばれる1又は2以上の条件に合致するヌクレオチド残基を変異導入部位として選択する変異導入部位選択工程を備える、設計方法。
    (1)プライマーダイマーの形成に寄与する可能性のあるヌクレオチド残基。
    (2)プライマー1分子内でのループ構造の形成に寄与する可能性のあるヌクレオチド残基。
    (3)前記基礎プライマー配列からなるプライマーがプライマーダイマーを形成することが予測される場合において、プライマーが相補的又は非相補的にハイブリダイズする領域以外の領域に位置するヌクレオチド残基。
    (4)前記基礎プライマー配列からなるプライマーが1分子内でループ構造を形成することが予測される場合において、ループ構造を構成する領域以外の領域に位置するヌクレオチド残基。
  2. 前記変異が、DNAポリメラーゼがヌクレオチド残基と認識しないものであることを特徴とする、請求項1に記載の設計方法。
  3. 前記変異が、以下の(A)~(D)からなる群から選ばれる1種又は2種以上であることを特徴とする、請求項1又は2に記載の設計方法。
    (A)前記変異導入部位の前後に位置するヌクレオチド残基の5´末端及び3´末端と、それぞれ5´末端及び3´末端を結合してなるヌクレオチド残基又はポリヌクレオチド。
    (B)炭素鎖又はPEG鎖からなるスペーサー鎖。
    (C)一般式1で表されるテトラヒドロフラン誘導体からなるスペーサー鎖。
    一般式1
    Figure JPOXMLDOC01-appb-C000001
    (一般式1中、RはH,または水酸基、nは自然数を示す。)
    (D)光分解性修飾のされたスペーサー鎖。
  4. 請求項1~3の何れか一項に記載の設計方法により設計されたプライマー。
  5. 請求項4に記載のプライマーを用いることを特徴とする、核酸増幅法。
  6. 等温増幅法であることを特徴とする請求項5に記載の核酸増幅法。
  7. 請求項1~3の何れか一項に記載の設計方法の各工程を手順としてコンピュータに実行させるためのプログラム。
PCT/JP2017/004162 2016-03-30 2017-02-06 変異プライマーの設計方法 WO2017169119A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CA3019468A CA3019468A1 (en) 2016-03-30 2017-02-06 Method for designing mutant primer
CN201780020530.4A CN109072221A (zh) 2016-03-30 2017-02-06 变异引物的设计方法
KR1020187028480A KR20180129806A (ko) 2016-03-30 2017-02-06 변이 프라이머의 설계 방법
SG11201808514YA SG11201808514YA (en) 2016-03-30 2017-02-06 Method for designing mutant primer
US16/089,980 US20190144933A1 (en) 2016-03-30 2017-02-06 Method for designing mutant primer
EP17773668.3A EP3438257A4 (en) 2016-03-30 2017-02-06 METHOD FOR DESIGNING A MUTANT PRIMER
ZA2018/06890A ZA201806890B (en) 2016-03-30 2018-10-16 Method for designing mutant primer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016067252 2016-03-30
JP2016-067252 2016-03-30
JP2016-154013 2016-08-04
JP2016154013A JP6681804B2 (ja) 2016-03-30 2016-08-04 変異プライマーの設計方法

Publications (1)

Publication Number Publication Date
WO2017169119A1 true WO2017169119A1 (ja) 2017-10-05

Family

ID=59963875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004162 WO2017169119A1 (ja) 2016-03-30 2017-02-06 変異プライマーの設計方法

Country Status (1)

Country Link
WO (1) WO2017169119A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10279593A (ja) * 1997-03-20 1998-10-20 F Hoffmann La Roche Ag 修飾されたプライマー
JP2002291490A (ja) * 2000-10-25 2002-10-08 F Hoffmann La Roche Ag 修飾プライマーを使用する増幅
JP2008535518A (ja) * 2005-04-14 2008-09-04 アプレラ コーポレイション プソイドイソシトシン核酸塩基誘導体を含む3’改変オリゴヌクレオチド、およびプライマーまたはプローブとしてのその適用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10279593A (ja) * 1997-03-20 1998-10-20 F Hoffmann La Roche Ag 修飾されたプライマー
JP2002291490A (ja) * 2000-10-25 2002-10-08 F Hoffmann La Roche Ag 修飾プライマーを使用する増幅
JP2008535518A (ja) * 2005-04-14 2008-09-04 アプレラ コーポレイション プソイドイソシトシン核酸塩基誘導体を含む3’改変オリゴヌクレオチド、およびプライマーまたはプローブとしてのその適用

Similar Documents

Publication Publication Date Title
US8455197B2 (en) Nucleic acid amplification
JP6100933B2 (ja) アレリックラダー遺伝子座
Satterfield Cooperative Primers: 2.5 Million–Fold Improvement in the Reduction of Nonspecific Amplification
JP7245126B2 (ja) 標的核酸を検出する方法
CN100516234C (zh) Headloop DNA扩增
CN109517888B (zh) 使用等位基因特异的反应性引物的核酸扩增方法
JP2011501663A5 (ja)
JP5647936B2 (ja) 修飾ヌクレオチド及びこれを用いたリアルタイムポリメラーゼ反応
WO2016093333A1 (ja) 塩基変異の検出方法及びキット並びに核酸サンプルのpcr増幅を抑制する方法
KR101525495B1 (ko) 덤벨 구조 올리고뉴클레오티드, 이를 포함한 핵산 증폭용 프라이머 및 이를 이용한 핵산 증폭 방법
JP6681804B2 (ja) 変異プライマーの設計方法
WO2017169119A1 (ja) 変異プライマーの設計方法
CN107075576B (zh) 哑铃结构寡核苷酸、包含其的核酸扩增用引物及利用该引物的核酸扩增方法
Stawski Preparing whole genome human mitochondrial DNA libraries for next generation sequencing using Illumina Nextera XT
JP2009050217A (ja) 標的dnaを検出する方法
JP6938641B2 (ja) プライマーダイマー形成を減少させ、増幅効率を増加させる方法
KR101856205B1 (ko) 핵산의 대립형질 특이적 프라이머 및 이를 이용한 유전형 판별 방법
Morlighem et al. DNA amplification techniques in pharmacogenomics
JP7306722B2 (ja) プライマー及びその使用
JP2010029146A (ja) 塩基配列解析法
JP2008104424A (ja) アンモニウムカチオンを用いたオリゴヌクレオチドの融解温度制御法
JP2009219445A (ja) Vkorc1遺伝子上の1塩基多型を検出する方法およびプライマーセット
JP2014187904A (ja) 血液から塩基多型を検出する方法
JPWO2022076559A5 (ja)
JP2009153482A (ja) Cyp2c9遺伝子上の1塩基多型を検出する方法およびプライマーセット

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 3019468

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 11201808514Y

Country of ref document: SG

ENP Entry into the national phase

Ref document number: 20187028480

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017773668

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017773668

Country of ref document: EP

Effective date: 20181030

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17773668

Country of ref document: EP

Kind code of ref document: A1