WO2017164718A1 - 리튬이차전지 양극활물질의 제조 방법 및 이에 의하여 제조된 리튬이차전지 양극활물질 - Google Patents

리튬이차전지 양극활물질의 제조 방법 및 이에 의하여 제조된 리튬이차전지 양극활물질 Download PDF

Info

Publication number
WO2017164718A1
WO2017164718A1 PCT/KR2017/003265 KR2017003265W WO2017164718A1 WO 2017164718 A1 WO2017164718 A1 WO 2017164718A1 KR 2017003265 W KR2017003265 W KR 2017003265W WO 2017164718 A1 WO2017164718 A1 WO 2017164718A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel composite
composite oxide
lithium nickel
active material
metal oxide
Prior art date
Application number
PCT/KR2017/003265
Other languages
English (en)
French (fr)
Inventor
최문호
신종승
전석용
유현종
박영남
Original Assignee
주식회사 에코프로비엠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160055094A external-priority patent/KR101892612B1/ko
Application filed by 주식회사 에코프로비엠 filed Critical 주식회사 에코프로비엠
Priority to CN201780019636.2A priority Critical patent/CN108886142B/zh
Priority to JP2018550462A priority patent/JP6845869B2/ja
Priority to US16/086,563 priority patent/US11165061B2/en
Priority to EP17770688.4A priority patent/EP3442056A4/en
Publication of WO2017164718A1 publication Critical patent/WO2017164718A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for manufacturing a lithium secondary battery positive electrode active material and a lithium secondary battery positive electrode active material produced thereby, more specifically, a lithium secondary battery positive electrode active material comprising the step of doping or coating with a certain metal oxide It relates to a method for producing and a lithium secondary battery positive electrode active material is reduced residual lithium produced thereby.
  • lithium secondary batteries that exhibit high energy density and operating potential, have a long cycle life, and have a low self discharge rate. It is commercialized and widely used.
  • Lithium-containing cobalt oxide (LiCoO 2 ) is mainly used as a positive electrode active material of a lithium secondary battery.
  • lithium-containing manganese oxides such as LiMnO 2 having a layered crystal structure and LiMn 2 O 4 having a spinel crystal structure, and lithium-containing nickel oxide
  • phosphorus LiNiO 2 is also contemplated.
  • LiCoO 2 is most frequently used because of its excellent life characteristics and excellent charge / discharge efficiency, but due to its small capacity and high cost due to resource limitations of cobalt used as a raw material, it is used as a power source for medium and large battery fields such as electric vehicles.
  • the disadvantage is that there is a limit in price competitiveness.
  • Lithium manganese oxides such as LiMnO 2 and LiMn 2 O 4 are rich in manganese resources used as raw materials and have the advantages of being cheap, environmentally friendly, and excellent in thermal safety, but having a small capacity, high temperature characteristics and cycle characteristics. There is this poor problem.
  • the method for producing a lithium composite oxide generally includes preparing a transition metal precursor, mixing the transition metal precursor and the lithium compound, and then calcining the mixture.
  • LiOH and / or Li 2 CO 3 is used as the lithium compound.
  • the Ni content of the positive electrode active material is 65% or less
  • Li 2 CO 3 is used, and when the Ni content is 65% or more, it is preferable to use LiOH because it is a low temperature reaction.
  • the Ni rich system having a Ni content of 65% or more is a low temperature reaction, there is a problem in that the amount of residual lithium present in the form of LiOH and Li 2 CO 3 on the surface of the cathode active material is high.
  • Such residual lithium that is, unreacted LiOH and Li 2 CO 3 reacts with the electrolyte and the like in the battery, causing gas generation and swelling, thereby causing a problem of severely deteriorating high temperature safety.
  • unreacted LiOH may cause gelation due to its high viscosity during slurry mixing before electrode plate production.
  • An object of the present invention is to provide a method for producing a new lithium secondary battery cathode active material that can improve the capacity and rate characteristics while removing the unreacted lithium in order to solve the problems of the prior art as described above.
  • Another object of the present invention is to provide a lithium secondary battery cathode active material produced by the production method of the present invention.
  • the present invention to solve the above problems
  • M1 is one or more elements selected from the group consisting of Co, Mn,
  • M2 is one or more elements selected from the group consisting of Al, Mn, Mg, Si, P and Ga,
  • step ii) washing with water by adding the compound obtained in step i) to a washing solution;
  • the compound dried in step iii) is a metal oxide containing a lithium compound and M3 (M3 is Al, B, Ba, Mg, Ce, Cr, F, Li, Mo, P, Sr, Ti, and Zr At least one element selected from the group consisting of M1, M2 and M3 are not all the same); And
  • the washing solution of step ii) is distilled water, methanol, ethanol, 2-propanol, 1-butanol, ethylene glycol, polyvinyl alcohol (PVA), acetone, acetylacetone, benzophenone, NaOH , NH 4 OH, LiOH, KOH, Mg (OH) 2 And Ba (OH) 2 It characterized in that it comprises one or more selected from the group consisting of.
  • step of drying the washed compound in step iii is characterized in that the drying in a reduced pressure atmosphere at 50 to 300 °C.
  • the metal oxide containing M3 in the iv) step of mixing with the metal oxide containing the particles, lithium compound and M3 dried in the step iii) is characterized in that the particle diameter is 5 ⁇ m or less It is done.
  • M3 is cerium, and the metal oxide containing M3 is CeO 2 .
  • M3 is Mg
  • the metal oxide containing M3 is MgO
  • the mixed with the metal particles comprising the particles, lithium compounds and M3 dried in step iii) iv) comprises the M3 per 100 parts by weight of the particles dried in step iii)
  • the metal oxide is characterized in that it is mixed at a ratio of 0.001 to 10 parts by weight.
  • step vi) adding the particles heat-treated in the step v) to a washing solution and washing; It is preferable to further include.
  • the washing solution used in step vi) is preferably the same as the washing solution of step ii), specifically, methanol, ethanol, 2-propanol, 1-butanol, ethylene glycol, polyvinyl alcohol (PVA), acetone , Acetylacetone, benzophenone, NaOH, NH 4 OH, LiOH, KOH, Mg (OH) 2 and Ba (OH) 2 characterized in that it comprises one or more selected from the group consisting of.
  • the manufacturing method according to the present invention is as described above vi) after the washing step vii) a metal oxide for surface coating comprising the lithium nickel composite oxide represented by the formula (2) and M4 (M4 is M3 Al, B, Ba, Mg, At least one element selected from the group consisting of Ce, Cr, F, Li, Mo, P, Sr, Ti, and Zr; And viii) heat treatment; It is possible to include more.
  • the metal oxide for surface coating containing M4 has a particle diameter of 5 ⁇ m or less.
  • M4 is Mg
  • the metal oxide for surface coating containing M4 is MgO
  • the present invention also provides a lithium nickel composite oxide produced by the production method of the present invention.
  • Lithium nickel composite oxide prepared by the production method of the present invention is characterized in that the peak is detected in the XRD range of 28 ° to 29 °, 45 ° to 50 °, 55 ° to 60 °.
  • the present invention also provides a lithium secondary battery comprising a lithium nickel composite oxide produced by the production method of the present invention.
  • the lithium secondary battery cathode active material prepared by the method for preparing a lithium secondary battery cathode active material according to the present invention exhibits high capacity characteristics while reducing the amount of unreacted lithium surface.
  • 1 and 2 show the results of measuring the SEM photograph of the active material prepared in one embodiment and comparative example of the present invention.
  • 3 and 4 show the results of measuring the XRD of the active material prepared in Examples and Comparative Examples of the present invention.
  • Figure 6 shows the result of measuring the C-rate of the battery including the active material prepared in one embodiment and comparative example of the present invention.
  • Figure 7 shows the results of measuring the life characteristics of a battery including the active material prepared in one embodiment and comparative example of the present invention.
  • Figure 8 shows the result of measuring the impedance characteristics before and after high temperature storage of the battery containing the active material prepared in one embodiment and comparative example of the present invention.
  • Figure 9 shows the results of measuring the thermal stability of the battery containing the active material prepared in one embodiment and comparative example of the present invention.
  • NiCoAl (OH) 2 a precursor represented by NiCoAl (OH) 2 was prepared by co-precipitation.
  • the prepared positive electrode active material for a lithium secondary battery was poured into distilled water and washed with water while maintaining the temperature.
  • CeO 2 as a compound containing M4 for coating on a washed cathode active material was mixed with 0.005 mol and then heat treated at a second temperature.
  • the positive electrode active material of Examples 2 to 4 was prepared in the same manner as in Example 1.
  • Example-1 1.4 0.125 0.05
  • Example-2 1.4 0.125 0.1
  • Example-3 1.4 0.125 0.25
  • Example-4 1.4 0.125 0.5
  • Example-5 1.4 0.125 0.05
  • Example-6 1.4 0.125 0.05 0.05
  • Example-7 1.4 0.125 0.05 0.05 Comparative Example-1 1.4 0.125 Comparative Example-2 1.4 0.125 0.1
  • NiCoAl (OH) 2 by coprecipitation
  • the precursor represented by was prepared.
  • the prepared positive electrode active material for a lithium secondary battery was poured into distilled water and washed with water while maintaining the temperature.
  • NiCoAl (OH) 2 by coprecipitation
  • the precursor represented by was prepared.
  • the prepared positive electrode active material for a lithium secondary battery was poured into distilled water and washed with water while maintaining the temperature.
  • TiO 2 0.005 mol was mixed as a compound containing M4 for coating on the washed cathode active material, and then heat-treated at a second temperature.
  • NiCoAl (OH) 2 by coprecipitation
  • the precursor represented by was prepared.
  • the prepared positive electrode active material for a lithium secondary battery was poured into distilled water and washed with water while maintaining the temperature.
  • CeO 2 0.005 mol was mixed as a compound containing M4 for coating on the washed cathode active material, and then heat-treated at a second temperature.
  • NiCoAl (OH) 2 by coprecipitation
  • the precursor represented by was prepared. 1.4 mol and 0.125 mol of Al 2 O 3 and Mg (OH) 2 were added to the prepared precursor as a compound containing LiOH and a dopant M3, respectively, and heat-treated at a first temperature to prepare a cathode active material for a lithium secondary battery. After distilled water was prepared and the temperature was kept constant, the prepared positive electrode active material for a lithium secondary battery was poured into distilled water and washed with water while maintaining the temperature. After the heat treatment at a second temperature to prepare a positive electrode active material of Comparative Example 1.
  • NiCoAl (OH) 2 by coprecipitation
  • the precursor represented by was prepared. 1.4 mol, 0.125 mol, and 0.1 mol of Al 2 O 3 , Mg (OH) 2 , and TiO 2 were added to the prepared precursor as a compound containing LiOH and a dopant M3, respectively, and heat-treated at a first temperature for a lithium secondary battery.
  • a cathode active material was prepared. After distilled water was prepared and the temperature was kept constant, the prepared positive electrode active material for a lithium secondary battery was poured into distilled water and washed with water while maintaining the temperature. After the heat treatment at a second temperature to prepare a positive electrode active material of Comparative Example 2.
  • a characteristic peak is detected in a range of 2 ⁇ from 28 ° to 29 °, 45 ° to 50 °, and 55 ° to 60 °, in particular 2 ⁇ .
  • the intensity of the peak detected when CeO 2 is added after firing is higher than that of simultaneously inputting a lithium source and CeO 2 .
  • Example-1 782 1,123 215 76.6 236.8 13.9
  • Example-2 927 1,183 215 77.7 236.2 17.2
  • Example-3 1,401 1,885 215 64.4 - 26.3
  • Example-4 1,502 2,006 215 63.0 - 33.9
  • Example-5 1,444 1,494 215.6 70.9 243.5 11.4
  • Comparative Example-1 1,592 2,025 219 45.6 232.8 35.1
  • a slurry was prepared by mixing a lithium secondary battery positive electrode active material prepared according to each of the above Examples and Comparative Examples, artificial graphite as a conductive material, and polyvinylidene fluoride (PVdF) as a binder in a weight ratio of 85: 10: 5.
  • the slurry was uniformly applied to an aluminum foil having a thickness of 15 ⁇ m, and vacuum dried at 135 ° C. to prepare a positive electrode for a lithium secondary battery.
  • the c-rate was measured for the coin cell containing the positive electrode active material of Examples and Comparative Examples, and the results are shown in Table 2 and FIG. 6.
  • Example 1 In the case of Example 1 in which the cerium oxide was introduced at the time of heat treatment after coating, it was confirmed that the life characteristics were significantly improved compared to Comparative Example-1 without introducing cerium.
  • the battery including the cathode active material of Example 5 doped with cerium as a lithium source according to the present invention shows not only the impedance measured before storage but also the smallest increase in impedance after storage. Can be.
  • cerium oxide was found to exhibit excellent thermal stability.
  • the lithium secondary battery cathode active material prepared by the method for preparing a lithium secondary battery cathode active material according to the present invention exhibits high capacity characteristics while reducing the amount of unreacted lithium surface.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 리튬이차전지 양극활물질의 제조 방법 및 이에 의하여 제조된 리튬이차전지 양극활물질에 관한 것으로서, 더욱 상세하게는 일정 금속 산화물로 도핑 또는 코팅되는 단계를 포함하는 것을 특징으로 하는 리튬이차전지 양극활물질의 제조 방법 및 이에 의하여 제조된 잔류 리튬이 저감된 리튬이차전지 양극활물질에 관한 것이다.

Description

리튬이차전지 양극활물질의 제조 방법 및 이에 의하여 제조된 리튬이차전지 양극활물질
본 발명은 리튬이차전지 양극활물질의 제조 방법 및 이에 의하여 제조된 리튬이차전지 양극활물질에 관한 것으로서, 더욱 상세하게는 일정 금속 산화물로 도핑 또는 코팅되는 단계를 포함하는 것을 특징으로 하는 리튬이차전지 양극활물질의 제조 방법 및 이에 의하여 제조된 잔류 리튬이 저감된 리튬이차전지 양극활물질에 관한 것이다.
모바일 기기에 대한 기술과 수요가 증가함에 따라 에너지원으로서 이차전지의 수요가 급격히 증가하고 있고, 그러한 이차전지 중 높은 에너지 밀도와 작동 전위를 나타내고, 사이클 수명이 길며, 자기 방전율이 낮은 리튬 이차전지가 상용화 되어 널리 사용되고 있다.
리튬 이차전지의 양극 활물질로는 리튬 함유 코발트 산화물(LiCoO2)이 주로 사용되고 있고, 그 외에 층상 결정 구조의 LiMnO2, 스피넬 결정구조의 LiMn2O4 등의 리튬 함유 망간 산화물과, 리튬 함유 니켈 산화물인 LiNiO2의 사용도 고려되고 있다.
상기 양극 활물질들 중 LiCoO2은 수명 특성 및 충방전 효율이 우수하여 가장 많이 사용되고 있지만, 용량이 작고 원료로서 사용되는 코발트의 자원적 한계로 인해 고가이므로 전기자동차 등과 같은 중대형 전지분야의 동력원으로 대량 사용하기에는 가격 경쟁력에 한계가 있다는 단점이 있다. LiMnO2, LiMn2O4 등의 리튬 망간 산화물은 원료로서 사용되는 망간 자원이 풍부하여 가격이 저렴하고, 환경 친화적이며, 열적 안전성이 우수하다는 장점이 있지만, 용량이 작고, 고온 특성 및 사이클 특성 등이 열악한 문제가 있다.
이러한 단점을 보완하기 위해 이차 전지 양극 활물질로서 니켈 리치 시스템(Ni rich system)의 수요가 늘어나기 시작하였으나, 이러한 니켈 리치 시스템(Ni rich system)의 활물질은 고용량을 내는 우수한 장점을 가지고 있는 반면, 잔류 미반응 리튬이 높아 스웰링 현상 유발 및 전해액과의 반응에 따른 가스발생 등의 문제점을 가지고 있다.
리튬 복합 산화물을 제조하는 방법은 일반적으로 전이 금속 전구체를 제조하고, 상기 전이 금속 전구체와 리튬 화합물을 혼합한 후, 상기 혼합물을 소성하는 단계를 포함한다. 이때, 상기 리튬 화합물로는 LiOH 및/또는 Li2CO3가 사용된다. 일반적으로 양극활물질의 Ni함량이 65% 이하일 경우에는 Li2CO3를 사용하며, Ni 함량이 65% 이상일 경우에는 저온 반응이기에 LiOH를 사용하는 것이 바람직하다. 그러나, Ni 함량이 65% 이상인 니켈 리치 시스템(Ni rich system)은 저온 반응이기에 양극활물질 표면에 LiOH, Li2CO3 형태로 존재하는 잔류 리튬량이 높다는 문제점이 있다.
이러한 잔류 리튬 즉, 미반응 LiOH 및 Li2CO3는 전지 내에서 전해액 등과 반응하여 가스 발생 및 스웰링(swelling) 현상을 유발함으로써, 고온 안전성이 심각하게 저하되는 문제를 야기시킨다. 또한, 미반응 LiOH는 극판 제조 전 슬러리 믹싱시 점도가 높아 겔화를 야기시키기도 한다.
이러한 미반응 Li을 제거하기 위하여 일반적으로 수세 공정을 도입하지만, 이 경우 수세시 양극 활물질 표면 손상이 발생하여 용량 및 율 특성이 저하되고 또한 고온 저장시 저항이 증가하는 또 다른 문제를 야기시킨다.
본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위하여 미반응 리튬을 제거하면서도 용량 및 율특성을 개선할 수 있는 새로운 리튬이차전지 양극활물질의 제조 방법을 제공하는 것을 목적으로 한다.
본 발명은 또한, 본 발명의 제조 방법에 의하여 제조된 리튬이차전지 양극활물질을 제공하는 것을 목적으로 한다.
본 발명은 상기와 같은 과제를 해결하기 위하여
i) 하기 화학식 1로 표시되는 니켈 복합산화물을 제조하는 단계;
[화학식 1] Ni1-x-yM1xM2y(OH)2
(M1은 Co, Mn 로 이루어진 군으로부터 선택된 하나 이상의 원소이고,
M2는 Al, Mn, Mg, Si, P 및 Ga로 이루어진 군으로부터 선택된 하나 이상의 원소이며,
0 ≤≤ a ≤≤ 0.3이고, 0 ≤≤ x ≤≤ 0.03, 0 ≤≤ y ≤≤ 0.03 임)
ii) 상기 i)단계에서 얻어진 화합물을 수세 용액에 첨가하여 수세하는 단계;
iii) 상기 ii)단계에서 수세된 화합물을 건조시키는 단계;
iv) 상기 iii)단계에서 건조된 화합물을 리튬 화합물 및 M3를 포함하는 금속 산화물(M3는 Al, B, Ba, Mg, Ce, Cr, F, Li, Mo, P, Sr, Ti, 및 Zr 으로 이루어진 그룹에서 선택된 하나 이상의 원소이고, M1, M2 및 M3는 모두 동일하지 않음)과 혼합하는 단계; 및
v) 열처리하는 단계; 를 포함하는
하기 화학식 2로 표시되는 리튬 니켈 복합 산화물의 제조 방법을 제공한다.
[화학식 2] Li1+aNi1-x-yM1xM2yM3zO2
본 발명에 의한 제조 방법에 있어서, 상기 ii)단계의 수세 용액은 증류수, 메탄올, 에탄올, 2-프로판올, 1-부탄올, 에틸렌글리콜, 폴리비닐알콜(PVA), 아세톤, 아세틸아세톤, 벤조페논, NaOH, NH4OH, LiOH, KOH, Mg(OH)2 및 Ba(OH)2 으로 이루어진 그룹에서 선택된 하나 이상을 포함하는 것을 특징으로 한다.
본 발명에 의한 제조 방법에 있어서, 상기 iii)단계, 즉, 상기 ii)단계에서 수세된 화합물을 건조시키는 단계에서는 50 내지 300 ℃에서 감압 분위기에서 건조시키는 것을 특징으로 한다.
본 발명에 의한 제조 방법에 있어서, 상기 iii) 단계에서 건조된 입자, 리튬 화합물 및 M3 를 포함하는 금속 산화물과 혼합하는 iv) 단계에서 상기 M3 를 포함하는 금속 산화물은 입자 직경이 5 ㎛ 이하인 것을 특징으로 한다.
본 발명에 의한 제조 방법에 있어서, 상기 M3 는 세륨이고, 상기 M3 를 포함하는 금속 산화물은 CeO2 인 것을 특징으로 한다.
본 발명에 의한 제조 방법에 있어서, 상기 M3 는 Mg 이고, 상기 M3 를 포함하는 금속 산화물은 MgO 인 것을 특징으로 한다.
본 발명에 의한 제조 방법에 있어서, 상기 iii) 단계에서 건조된 입자, 리튬 화합물 및 M3 를 포함하는 금속 산화물과 혼합하는 iv) 단계에서 상기 iii) 단계에서 건조된 입자 100 중량부당 상기 M3 를 포함하는 금속 산화물은 0.001 내지 10 중량부의 비율로 혼합되는 것을 특징으로 한다.
본 발명에 의한 제조 방법에 있어서, vi) 상기 v)단계에서 열처리된 입자를 수세 용액에 첨가하여 수세하는 단계; 를 더 포함하는 것이 바람직하다. 이때 상기 vi)단계에서 사용되는 수세 용액은 상기 ii)단계의 수세 용액과 동일한 것이 바람직하며, 구체적으로는 메탄올, 에탄올, 2-프로판올, 1-부탄올, 에틸렌글리콜, 폴리비닐알콜(PVA), 아세톤, 아세틸아세톤, 벤조페논, NaOH, NH4OH, LiOH, KOH, Mg(OH)2 및 Ba(OH)2 으로 이루어진 그룹에서 선택된 하나 이상을 포함하는 것을 특징으로 한다.
본 발명에 의한 제조 방법은 상기와 같이 vi) 수세 단계 이후 vii) 상기 화학식 2로 표시되는 리튬 니켈 복합 산화물과 M4 를 포함하는 표면 코팅용 금속 산화물(M4 는 M3는 Al, B, Ba, Mg, Ce, Cr, F, Li, Mo, P, Sr, Ti, 및 Zr 으로 이루어진 그룹에서 선택된 하나 이상의 원소임)을 혼합하는 단계; 및 viii) 열처리 하는 단계; 를 더 포함하는 것이 가능하다.
본 발명에 의한 제조 방법에 있어서, 상기 M4 를 포함하는 표면 코팅용 금속 산화물은 입자 직경이 5 ㎛ 이하인 것을 특징으로 한다.
본 발명에 의한 제조 방법에 있어서, 상기 M4 는 Mg 이고, 상기 M4 를 포함하는 표면 코팅용 금속 산화물은 MgO 인 것을 특징으로 한다.
본 발명은 또한, 본 발명의 제조 방법에 의하여 제조된 리튬 니켈 복합 산화물을 제공한다.
본 발명의 제조 방법에 의하여 제조된 리튬 니켈 복합 산화물은 XRD 에서 2θ 가 28° 내지 29°, 45° 내지 50°, 55° 내지 60° 범위에서 피크가 검출되는 것을 특징으로 한다.
본 발명은 또한, 본 발명의 제조 방법에 의하여 제조된 리튬 니켈 복합 산화물을 포함하는 리튬이차전지를 제공한다.
본 발명에 의한 리튬이차전지 양극활물질의 제조 방법은 리튬 화합물과 전구체를 반응시킨 후, 표면 수세하고, 금속 산화물을 추가로 도핑하고 열처리함으로써 금속 산화물을 리튬원과 함께 도핑하거나, 활물질 제조 후 금속 산화물을 표면을 코팅되도록 함으로써, 본 발명에 의한 리튬이차전지 양극활물질의 제조 방법에 의하여 제조된 리튬이차전지 양극활물질은 표면 미반응 리튬의 양을 감소시키면서도 고용량 특성을 나타낸다.
도 1 및 도 2는 본 발명의 일 실시예 및 비교예에서 제조된 활물질의 SEM 사진을 측정한 결과를 나타낸다.
도 3 및 도 4는 본발명의 일 실시예 및 비교예에서 제조된 활물질의 XRD를 측정한 결과를 나타낸다.
도 5는 본 발명의 일 실시예 및 비교예에서 제조된 활물질을 포함하는 전지의 충방전 특성을 측정한 결과를 나타낸다.
도 6은 본 발명의 일 실시예 및 비교예에서 제조된 활물질을 포함하는 전지의 C-rate를 측정한 결과를 나타낸다.
도 7는 본 발명의 일 실시예 및 비교예에서 제조된 활물질을 포함하는 전지의 수명 특성을 측정한 결과를 나타낸다.
도 8은 본 발명의 일 실시예 및 비교예에서 제조된 활물질을 포함하는 전지의 고온 저장 전후의 임피던스 특성을 측정한 결과를 나타낸다.
도 9은 본 발명의 일 실시예 및 비교예에서 제조된 활물질을 포함하는 전지의 열안정성 특성을 측정한 결과를 나타낸다.
이하에서는 본 발명을 실시예에 의하여 더욱 상세히 설명한다. 그러나 본 발명이 이하의 실시예에 의하여 한정되는 것은 아니다.
< 실시예 1> 양극활물질 제조
NCA 계열의 양극활물질을 제조하기 위하여 먼저 공침반응에 의하여 NiCoAl(OH)2 로 표시되는 전구체를 제조하였다.
제조된 전구체에 리튬 화합물로서 LiOH 및 도펀트 M3를 포함하는 화합물로서 Al2O3, Mg(OH)2 를 각각 1.4몰, 0.125몰 첨가하고 제 1 온도에서 열처리하여 리튬 이차 전지용 양극활물질을 제조하였다.
증류수를 준비하고, 온도를 일정하게 유지한 후, 상기 제조된 리튬 이차 전지용 양극활물질을 증류수에 투입하여 온도를 유지시키면서 수세하였다.
수세된 양극활물질에 코팅을 위한 M4 를 함유하는 화합물로서 CeO2 를 0.005몰 혼합하고, 이후 제 2 온도에서 열처리하였다.
< 실시예 2 내지 4>
코팅을 위한 M4를 함유하는 화합물로서 CeO2 의 혼합 비율을 아래 표 1에서 보는 바와 같이 첨가한 것을 제외하고는 상기 실시예 1 과 동일하게 하여 실시예 2 내지 4의 양극활물질을 제조하였다.
구분 M3, mol% M4, mol%
Al Mg Ce Ti Ce Ti
실시예-1 1.4 0.125 0.05
실시예-2 1.4 0.125 0.1
실시예-3 1.4 0.125 0.25
실시예-4 1.4 0.125 0.5
실시예-5 1.4 0.125 0.05
실시예-6 1.4 0.125 0.05 0.05
실시예-7 1.4 0.125 0.05 0.05
비교예-1 1.4 0.125
비교예-2 1.4 0.125 0.1
< 실시예 5>
공침반응에 의하여 NiCoAl(OH)2 로 표시되는 전구체를 제조하였다.
제조된 전구체에 리튬 화합물로서 LiOH 및 도펀트 M3를 포함하는 화합물로서 Al2O3, Mg(OH)2 및 CeO2 를 각각 1.4몰, 0.125몰 및 0.05몰 첨가하고 제 1 온도에서 열처리하여 리튬 이차 전지용 양극활물질을 제조하였다.
증류수를 준비하고, 온도를 일정하게 유지한 후, 상기 제조된 리튬 이차 전지용 양극활물질을 증류수에 투입하여 온도를 유지시키면서 수세하였다.
이후 제 2 온도에서 열처리하여 실시예 5의 양극활물질을 제조하였다.
< 실시예 6>
공침반응에 의하여 NiCoAl(OH)2 로 표시되는 전구체를 제조하였다.
제조된 전구체에 리튬 화합물로서 LiOH 및 도펀트 M3를 포함하는 화합물로서 Al2O3, Mg(OH)2 및 CeO2 를 각각 1.4몰, 0.125몰 및 0.05몰 첨가하고 제 1 온도에서 열처리하여 리튬 이차 전지용 양극활물질을 제조하였다.
증류수를 준비하고, 온도를 일정하게 유지한 후, 상기 제조된 리튬 이차 전지용 양극활물질을 증류수에 투입하여 온도를 유지시키면서 수세하였다.
수세된 양극활물질에 코팅을 위한 M4를 함유하는 화합물로서 TiO2를 0.005몰 혼합하고, 이후 제 2 온도에서 열처리하였다.
< 실시예 7>
공침반응에 의하여 NiCoAl(OH)2 로 표시되는 전구체를 제조하였다.
제조된 전구체에 리튬 화합물로서 LiOH 및 도펀트 M3를 포함하는 화합물로서 Al2O3, Mg(OH)2 및 CeO2 를 각각 1.4몰, 0.125몰 및 0.05몰 첨가하고 제 1 온도에서 열처리하여 리튬 이차 전지용 양극활물질을 제조하였다.
증류수를 준비하고, 온도를 일정하게 유지한 후, 상기 제조된 리튬 이차 전지용 양극활물질을 증류수에 투입하여 온도를 유지시키면서 수세하였다.
수세된 양극활물질에 코팅을 위한 M4를 함유하는 화합물로서 CeO2를 0.005몰 혼합하고, 이후 제 2 온도에서 열처리하였다.
< 비교예 1>
공침반응에 의하여 NiCoAl(OH)2 로 표시되는 전구체를 제조하였다. 제조된 전구체에 리튬 화합물로서 LiOH 및 도펀트 M3를 포함하는 화합물로서 Al2O3, Mg(OH)2를 각각 1.4몰, 0.125몰 첨가하고 제 1 온도에서 열처리하여 리튬 이차 전지용 양극활물질을 제조하였다. 증류수를 준비하고, 온도를 일정하게 유지한 후, 상기 제조된 리튬 이차 전지용 양극활물질을 증류수에 투입하여 온도를 유지시키면서 수세하였다. 이후 제 2 온도에서 열처리하여 비교예 1의 양극활물질을 제조하였다.
< 비교예 2>
공침반응에 의하여 NiCoAl(OH)2 로 표시되는 전구체를 제조하였다. 제조된 전구체에 리튬 화합물로서 LiOH 및 도펀트 M3를 포함하는 화합물로서 Al2O3, Mg(OH)2, TiO2 를 각각 1.4몰, 0.125몰, 0.1몰 첨가하고 제 1 온도에서 열처리하여 리튬 이차 전지용 양극활물질을 제조하였다. 증류수를 준비하고, 온도를 일정하게 유지한 후, 상기 제조된 리튬 이차 전지용 양극활물질을 증류수에 투입하여 온도를 유지시키면서 수세하였다. 이후 제 2 온도에서 열처리하여 비교예 2의 양극활물질을 제조하였다.
< 실험예 > SEM 사진 측정
상기 실시예 1 내지 5, 및 비교예 1, 2 에서 제조된 양극활물질의 SEM 사진을 측정하고 도 1 및 도 2에 나타내었다.
< 실험예 > XRD 측정
상기 실시예 1 내지 5, 및 비교예 1, 2 에서 제조된 양극활물질의 XRD를 측정하고 도 3 및 도 4 에 나타내었다.
도 3 및 도 4에서 본 발명의 실시예에 의하여 제조된 양극활물질의 경우 2θ 가 28° 내지 29°, 45° 내지 50°, 55° 내지 60° 범위에서 특징적인 피크가 검출되며, 특히 2θ 가 28° 내지 29°범위에서는 리튬원과 CeO2 를 동시에 투입하는 것보다 소성후 CeO2 를 투입하는 경우 검출되는 피크의 강도가 높게 측정되는 것을 알 수 있다.
< 실험예 > 잔류 리튬 측정
상기 실시예 및 비교예에서 제조된 리튬-니켈 복합산화물의 잔류 리튬을 측정하고 그 결과를 표 2 에 나타내었다.
잔류 리튬을 측정하기 위해 활물질 1 g을 증류수 5 g에 침지시킨 뒤 5 분간 교반하고 여과액을 취하여 0.1 M HCl로 적정하였으며, 상기 여과액의 pH가 5가 될 때까지 투입된 HCl의 부피를 측정함으로써 활물질의 잔류 리튬을 분석하였다.
Mg 만을 도핑한 비교예-1 에 비하여 본 발명의 실시예에 의하여 세륨을 도핑한 경우 잔류 리튬이 크게 감소하는 것을 확인할 수 있다.
No 잔류리튬, ppm 방전용량(0.1C) 수명 유지율, % DSC peak,'C 저장후
LiOH Li2CO3 lmp.,ohm
실시예-1 782 1,123 215 76.6 236.8 13.9
실시예-2 927 1,183 215 77.7 236.2 17.2
실시예-3 1,401 1,885 215 64.4 - 26.3
실시예-4 1,502 2,006 215 63.0 - 33.9
실시예-5 1,444 1,494 215.6 70.9 243.5 11.4
비교예-1 1,592 2,025 219 45.6 232.8 35.1
비교예-2 819 1,348 219 60.9 236.5 16.2
< 제조예 > 전지의 제조
상기 실시예 및 비교예 각각에 따라 제조된 리튬 이차 전지용 양극 활물질과 도전재로서 인조흑연, 결합재로는 폴리비닐리덴플루오라이드(PVdF)를 85: 10: 5의 중량비로 혼합하여 슬러리를 제조하였다. 상기 슬러리를 15 ㎛ 두께의 알루미늄박에 균일하게 도포하고, 135 ℃에서 진공 건조하여 리튬 이차 전지용 양극을 제조하였다.
상기 양극과, 리튬 호일을 상대 전극으로 하며, 두께가 20 ㎛인 다공성 폴리프로필렌막을 세퍼레이터로 하고, 에틸렌 카보네이트, 디에틸 카보네이트 및 에틸 메틸 카보네이트가 3:1:6 의 부피비로 혼합된 용매에 LiPF6를 1.15 M 농도로 녹인 전해액을 사용하여 통상의 방법으로 코인 전지를 제조하였다.
< 실험예 > 충방전 특성 평가
상기 제조예에서 제조된 전지에 대해 충방전 특성을 측정하고 그 결과를 표 2 및 도 5에 나타내었다.
< 실험예 > C-rate 측정 결과
상기 실시예 및 비교예의 양극활물질을 포함하는 코인 셀에 대해서 c-rate를 측정하고 그 결과를 표 2 및 도 6에 나타내었다.
Mg 만을 도핑한 비교예-1 에 비하여 본 발명의 실시예에 의하여 세륨을 도핑한 경우 c-rate 특성이 크게 개선되는 것을 확인할 수 있다.
< 실험예 > 수명 특성 측정
상기 실시예 및 비교예의 양극활물질을 포함하는 코인 셀에 대해서 수명 특성을 측정하고 그 결과를 상기 표 2 및 도 7에 나타내었다.
세륨 산화물을 열처리 후 코팅시에 도입한 실시예 1의 경우 세륨을 도입하지 않은 비교예-1 보다 수명 특성이 크게 개선되는 것을 확인할 수 있다.
< 실험예 > 저장안정성 - 임피던스 측정 결과
상기 실시예 및 비교예의 활물질을 포함하는 전지에 대해 60 ℃ 고온 에서 7일간 보관한 후, 저장 전후의 임피던스의 변화를 측정하여 그 결과를 표 2 및 도 8에 나타내었다.
표 2 및 도 8에서 본 발명에 의하여 세륨을 리튬 소스와 같이 도핑하는 실시예 5의 양극활물질을 포함하는 전지의 경우 저장 전 측정된 임피던스가 작을 뿐만 아니라, 저장 후 임피던스 증가량이 가장 작다는 것을 알 수 있다.
< 실험예 > 열 안정성 특성 측정
상기 실시예 및 비교예의 활물질을 포함하는 전지에 대해 열 안정성을 평가하기 위해서 DSC 피크 온도를 측정하고 그 결과를 상기 표 2 및 도 9에 나타내었다.
도 9에서 세륨 산화물을 도핑하거나 코팅하지 않은 비교예 1에 비하여 세륨 산화물을 리튬 소스와 같이 도핑하는 실시예 5의 양극활물질을 포함하는 전지의 경우 피크 온도가 더 높아 우수한 열 안정성을 나타냄을 확인할 수 있으며, 세륨 산화물을 열처리 후 코팅시에 도입한 실시예 1의 경우 우수한 열적 안정성을 보이는 것으로 확인되었다.
본 발명에 의한 리튬이차전지 양극활물질의 제조 방법은 리튬 화합물과 전구체를 반응시킨 후, 표면 수세하고, 금속 산화물을 추가로 도핑하고 열처리함으로써 금속 산화물을 리튬원과 함께 도핑하거나, 활물질 제조 후 금속 산화물을 표면을 코팅되도록 함으로써, 본 발명에 의한 리튬이차전지 양극활물질의 제조 방법에 의하여 제조된 리튬이차전지 양극활물질은 표면 미반응 리튬의 양을 감소시키면서도 고용량 특성을 나타낸다.

Claims (15)

  1. i) 하기 화학식 1로 표시되는 니켈 복합산화물을 제조하는 단계;
    [화학식 1] Ni1-x-yM1xM2y(OH)2
    (M1은 Co, Mn 로 이루어진 군으로부터 선택된 하나 이상의 원소이고,
    M2는 Al, Mn, Mg, Si, P 및 Ga로 이루어진 군으로부터 선택된 하나 이상의 원소이며,
    0 ≤≤ a ≤≤ 0.3 이고, 0 ≤≤ x ≤≤ 0.03, 0 ≤≤ y ≤≤ 0.03 임)
    ii) 상기 i)단계에서 얻어진 화합물을 수세 용액에 첨가하여 수세하는 단계;
    iii) 상기 ii)단계에서 수세된 화합물을 건조시키는 단계;
    iv) 상기 iii)단계에서 건조된 화합물을 리튬 화합물 및 M3 를 포함하는 금속 산화물(M3 는 Al, B, Ba, Mg, Ce, Cr, F, Li, Mo, P, Sr, Ti, 및 Zr 으로 이루어진 그룹에서 선택된 하나 이상의 원소이고, M1, M2 및 M3는 모두 동일하지 않음)과 혼합하는 단계; 및
    v) 열처리 하는 단계;
    를 포함하는 하기 화학식 2로 표시되는 리튬 니켈 복합 산화물의 제조 방법.
    [화학식 2] Li1+aNi1-x-yM1xM2yM3zO2
    (상기 화학식 2에서 M1은 Co, Mn 로 이루어진 군으로부터 선택된 하나 이상의 원소이고, M2는 Al, Mn, Mg, Si, P 및 Ga로 이루어진 군으로부터 선택된 하나 이상의 원소이며, 0 ≤≤ a ≤≤ 0.3 이고, 0 ≤≤ x ≤≤ 0.03, 0 ≤≤ y ≤≤ 0.03, 0 ≤≤ z ≤≤ 0.03 임)
  2. 제 1 항에 있어서,
    상기 ii)단계의 수세 용액은 증류수, 메탄올, 에탄올, 2-프로판올, 1-부탄올, 에틸렌글리콜, 폴리비닐알콜(PVA), 아세톤, 아세틸아세톤, 벤조페논, NaOH, NH4OH, LiOH, KOH, Mg(OH)2 및 Ba(OH)2 으로 이루어진 그룹에서 선택된 하나 이상을 포함하는 것인
    리튬 니켈 복합 산화물의 제조 방법.
  3. 제 1 항에 있어서,
    iii) 상기 ii)단계에서 수세된 화합물을 건조시키는 단계에서는 50 내지 300 ℃에서 감압 분위기에서 건조시키는 것인
    리튬 니켈 복합 산화물의 제조 방법.
  4. 제 1 항에 있어서,
    상기 iv) 단계에서 상기 iii) 단계에서 건조된 입자, 리튬 화합물 및 M3 를 포함하는 금속 산화물과 혼합하는 단계에서 상기 M3 를 포함하는 금속 산화물은 입자 직경이 5 ㎛ 이하인 것인
    리튬 니켈 복합 산화물의 제조 방법.
  5. 제 1 항에 있어서,
    상기 M3 는 세륨이고, 상기 M3 를 포함하는 금속 산화물은 CeO2 인 것인
    리튬 니켈 복합 산화물의 제조 방법.
  6. 제 1 항에 있어서,
    상기 M3 는 Mg 이고, 상기 M3 를 포함하는 금속 산화물은 MgO 인 것인
    리튬 니켈 복합 산화물의 제조 방법.
  7. 제 1 항에 있어서,
    상기 iv) 단계에서 상기 iii) 단계에서 건조된 입자, 리튬 화합물 및 M3 를 포함하는 금속 산화물과 혼합하는 단계에서
    상기 iii) 단계에서 건조된 입자 100 중량부당 상기 M3 를 포함하는 금속 산화물은 0.001 내지 10 중량부의 비율로 혼합되는 것인
    리튬 니켈 복합 산화물의 제조 방법.
  8. 제 1 항 내지 제 7 항 중 어느 한 항에 의하여 제조된 리튬 니켈 복합 산화물.
  9. 제 1 항에 있어서,
    vi) 상기 v)단계에서 열처리된 입자를 수세 용액에 첨가하여 수세하는 단계; 를 더 포함하는 것인
    리튬 니켈 복합 산화물의 제조 방법.
  10. 제 9 항에 있어서,
    상기 수세 용액은 증류수, 메탄올, 에탄올, 2-프로판올, 1-부탄올, 에틸렌글리콜, 폴리비닐알콜(PVA), 아세톤, 아세틸아세톤, 벤조페논, NaOH, NH4OH, LiOH, KOH, Mg(OH)2 및 Ba(OH)2 으로 이루어진 그룹에서 선택된 하나 이상을 포함하는 것인
    리튬 니켈 복합 산화물의 제조 방법.
  11. 제 1 항에 있어서,
    vii) 상기 화학식 2로 표시되는 리튬 니켈 복합 산화물과 M4 를 포함하는 표면 코팅용 금속 산화물(M4 는 M3 는 Al, B, Ba, Mg, Ce, Cr, F, Li, Mo, P, Sr, Ti, 및 Zr 으로 이루어진 그룹에서 선택된 하나 이상의 원소임)을 혼합하는 단계; 및
    viii) 열처리 하는 단계; 를 더 포함하는
    리튬 니켈 복합 산화물의 제조 방법.
  12. 제 11 항에 있어서,
    상기 M4 를 포함하는 표면 코팅용 금속 산화물은 입자 직경이 5 ㎛ 이하인 것인
    리튬 니켈 복합 산화물의 제조 방법.
  13. 제 11 항에 있어서,
    상기 M4 를 포함하는 표면 코팅용 금속 산화물은 CeO2 인 것인
    리튬 니켈 복합 산화물의 제조 방법.
  14. 제 9 항 내지 제 13 항 중 어느 한 항의 제조 방법에 의하여 제조된
    리튬 니켈 복합 산화물.
  15. 제 14 항에 있어서,
    상기 리튬 니켈 복합 산화물은 XRD 에서 2θ 가 28° 내지 29°, 45° 내지 50°, 55° 내지 60° 범위에서 피크가 검출되는 것인
    리튬 니켈 복합 산화물.
PCT/KR2017/003265 2016-03-25 2017-03-27 리튬이차전지 양극활물질의 제조 방법 및 이에 의하여 제조된 리튬이차전지 양극활물질 WO2017164718A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780019636.2A CN108886142B (zh) 2016-03-25 2017-03-27 锂二次电池阳极活性物质的制造方法及由此制得的锂二次电池阳极活性物质
JP2018550462A JP6845869B2 (ja) 2016-03-25 2017-03-27 リチウム二次電池正極活物質の製造方法及びこれにより製造されたリチウム二次電池正極活物質
US16/086,563 US11165061B2 (en) 2016-03-25 2017-03-27 Method of preparing positive electrode active material for lithium secondary battery and positive electrode active material for lithium secondary battery prepared thereby
EP17770688.4A EP3442056A4 (en) 2016-03-25 2017-03-27 METHOD FOR MANUFACTURING LITHIUM ACCUMULATOR POSITIVE ELECTRODE ACTIVE MATERIAL, AND LITHIUM BATTERY POSITIVE ELECTRODE ACTIVE MATERIAL THEREFOR

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2016-0035922 2016-03-25
KR20160035922 2016-03-25
KR1020160055094A KR101892612B1 (ko) 2016-03-25 2016-05-04 리튬이차전지 양극활물질의 제조 방법 및 이에 의하여 제조된 리튬이차전지 양극활물질
KR10-2016-0055094 2016-05-04

Publications (1)

Publication Number Publication Date
WO2017164718A1 true WO2017164718A1 (ko) 2017-09-28

Family

ID=59900438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/003265 WO2017164718A1 (ko) 2016-03-25 2017-03-27 리튬이차전지 양극활물질의 제조 방법 및 이에 의하여 제조된 리튬이차전지 양극활물질

Country Status (1)

Country Link
WO (1) WO2017164718A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020061360A (ja) * 2018-10-04 2020-04-16 三星電子株式会社Samsung Electronics Co., Ltd. 複合正極活物質、それを採用した正極及びリチウム電池、並びにその製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050048453A (ko) * 2003-11-18 2005-05-24 한양대학교 산학협력단 표면처리된 리튬이차전지용 양극활물질 및 그 제조방법
JP5055702B2 (ja) * 2005-03-09 2012-10-24 株式会社Gsユアサ 正極活物質及びその製造方法
JP2012230898A (ja) * 2011-04-14 2012-11-22 Toda Kogyo Corp Li−Ni複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池
KR20140093529A (ko) * 2013-01-18 2014-07-28 삼성에스디아이 주식회사 복합양극활물질, 이를 채용한 양극 및 리튬전지, 및 그 제조방법
JP2016006762A (ja) * 2014-05-28 2016-01-14 日亜化学工業株式会社 非水系二次電池用正極活物質

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050048453A (ko) * 2003-11-18 2005-05-24 한양대학교 산학협력단 표면처리된 리튬이차전지용 양극활물질 및 그 제조방법
JP5055702B2 (ja) * 2005-03-09 2012-10-24 株式会社Gsユアサ 正極活物質及びその製造方法
JP2012230898A (ja) * 2011-04-14 2012-11-22 Toda Kogyo Corp Li−Ni複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池
KR20140093529A (ko) * 2013-01-18 2014-07-28 삼성에스디아이 주식회사 복합양극활물질, 이를 채용한 양극 및 리튬전지, 및 그 제조방법
JP2016006762A (ja) * 2014-05-28 2016-01-14 日亜化学工業株式会社 非水系二次電池用正極活物質

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020061360A (ja) * 2018-10-04 2020-04-16 三星電子株式会社Samsung Electronics Co., Ltd. 複合正極活物質、それを採用した正極及びリチウム電池、並びにその製造方法
US11955631B2 (en) 2018-10-04 2024-04-09 Samsung Electronics Co., Ltd. Composite cathode active material, cathode and lithium battery each containing composite cathode active material, and method of preparing composite cathode active material
JP7483296B2 (ja) 2018-10-04 2024-05-15 三星電子株式会社 複合正極活物質、それを採用した正極及びリチウム電池、並びにその製造方法

Similar Documents

Publication Publication Date Title
WO2019112279A2 (ko) 리튬이차전지용 양극활물질, 그 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지
WO2015030402A1 (ko) 리튬 전이금속 복합 입자, 이의 제조방법, 및 이를 포함하는 양극 활물질
KR101892612B1 (ko) 리튬이차전지 양극활물질의 제조 방법 및 이에 의하여 제조된 리튬이차전지 양극활물질
WO2013002457A1 (ko) 양극활물질, 상기 양극활물질을 포함하는 전극, 및 리튬 전기 화학 전지
WO2015130106A1 (ko) 리튬-니켈계 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2018012694A1 (ko) 리튬 금속이 양극에 형성된 리튬 이차전지와 이의 제조방법
WO2014204213A1 (ko) 리튬이차전지용 양극 활물질 및 그의 제조방법
WO2016053059A1 (ko) 이종의 바인더를 포함하는 양극 활물질 슬러리 및 이로부터 제조된 양극
WO2018212481A1 (ko) 리튬 이차전지용 음극의 제조방법
WO2018164405A1 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2019074306A2 (ko) 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
WO2015053580A1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
WO2019240496A1 (ko) 리튬 이차전지용 음극활물질 및 이를 포함하는 리튬 이차전지
WO2019225879A1 (ko) 리튬 이차전지용 음극활물질 및 이의 제조방법
WO2021025370A1 (ko) 리튬 이차전지용 양극 활물질
WO2012064053A2 (ko) 리튬 망간 복합 산화물 및 이의 제조 방법
WO2018016737A1 (ko) 리튬 코발트 산화물을 합성하기 위한 양극 활물질을 포함하는 리튬 이차전지, 이의 제조방법
WO2020159202A1 (ko) 음극 및 이를 포함하는 리튬 이차전지
WO2019078688A2 (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2020149618A1 (ko) 음극 활물질의 제조 방법
WO2022055309A1 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2019078506A2 (ko) 리튬 이차전지용 양극 활물질의 제조방법, 이에 의해 제조된 양극 활물질, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2020145638A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법, 상기 제조방법에 의해 제조된 양극 활물질
WO2021085946A1 (ko) 음극 활물질의 제조 방법, 음극 활물질, 이를 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2017164718A1 (ko) 리튬이차전지 양극활물질의 제조 방법 및 이에 의하여 제조된 리튬이차전지 양극활물질

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018550462

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017770688

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017770688

Country of ref document: EP

Effective date: 20181025

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17770688

Country of ref document: EP

Kind code of ref document: A1