WO2017164126A1 - 現像装置及び回路基板の製造方法 - Google Patents

現像装置及び回路基板の製造方法 Download PDF

Info

Publication number
WO2017164126A1
WO2017164126A1 PCT/JP2017/010963 JP2017010963W WO2017164126A1 WO 2017164126 A1 WO2017164126 A1 WO 2017164126A1 JP 2017010963 W JP2017010963 W JP 2017010963W WO 2017164126 A1 WO2017164126 A1 WO 2017164126A1
Authority
WO
WIPO (PCT)
Prior art keywords
developer
straight line
developing
angle
spray
Prior art date
Application number
PCT/JP2017/010963
Other languages
English (en)
French (fr)
Inventor
中山拓哉
堀内健
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to KR1020187029159A priority Critical patent/KR20180128928A/ko
Priority to JP2017516001A priority patent/JPWO2017164126A1/ja
Priority to CN201780019073.7A priority patent/CN108885411A/zh
Publication of WO2017164126A1 publication Critical patent/WO2017164126A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means

Definitions

  • the present invention relates to a developing device and a method for manufacturing a circuit board.
  • a developing device used when a predetermined wiring electrode is formed on a base material to form a circuit board, and the same is used.
  • the present invention relates to a method for manufacturing a circuit board.
  • a touch panel is an electronic component that combines a display display device and a touched coordinate detection device such as a touch pad, and is often incorporated into devices that are mainly required to be intuitively handled. Specifically, it is mounted on mobile terminals such as mobile phones and tablets, and in recent years, thinning, lightening, narrowing of the frame and cost reduction of touch panels have been demanded.
  • PET film glass with tin-doped indium oxide
  • the conductive ink pattern printing method was used for the lead wiring of the touch module.
  • the resolution of the lead wiring is limited by this method, it is currently photosensitive based on customer needs for narrowing the frame. Photolithographic methods using conductive ink have become mainstream.
  • the developing process which is one of the manufacturing processes of the conductive ink photolithography method.
  • the shower type development method the developing process is continuously performed with the cleaning process in order to supply the developer to the surface to be processed in a shower shape at a high pressure and a large flow rate while moving the base material on a conveyor or the like. Therefore, there is a great advantage in productivity.
  • Patent Literature 1 and Patent Literature 2 disclose literatures that disclose shower type developing devices.
  • an air cut 91 is installed in a downstream portion of the developing unit, and measures against the outflow are taken by blowing air onto the substrate surface using the air cut.
  • Patent Document 1 when the countermeasure is taken, the developer is dried by blowing air, and the components contained in the developer remain on the substrate. become.
  • Patent Document 2 requires a significant modification of the developing device in order to transport the substrate in an inclined state.
  • the present invention solves these problems, that is, development that eliminates uneven development in the shower-type development process of a long film and prevents the developer from flowing into the cleaning liquid tank without using an air cut. It is an object to provide an apparatus and a method for manufacturing a circuit board.
  • the present inventors have dispersed the developer at an angle within a specific range with respect to the substrate, so that the developer does not stay on the substrate.
  • the present invention has been completed by finding that a uniform flow in the direction opposite to the traveling direction is generated, the flow of the developer into the cleaning liquid tank is suppressed, and uniform development without unevenness becomes possible. .
  • the present invention conveys a substrate having a coating film on which a latent image is formed substantially horizontally, and from the upstream side, a developing step of spraying the developer onto the substrate, and a cleaning solution is sprayed to dilute the developer. And a drying step for removing liquid components in this order, and in the developing step, the developer is sprayed upstream by a plurality of spray nozzles.
  • the spray direction O ′ of the developer sprayed from the spray nozzle is An angle ⁇ ′ on the acute angle side formed by the straight line O ′ XZ projected on the XZ plane in the Y direction and the X direction is 45 ° or more and 85 ° or less, and the straight line P parallel to the supply pipe is the X direction.
  • This is a method for manufacturing a circuit board, wherein the acute angle ⁇ to be formed is 45 ° or more and 80 ° or less.
  • the present invention provides a substrate conveying means having a substantially horizontal conveying surface, a developing means for spraying a developer onto the substrate from the upstream side of the conveying means, a cleaning liquid and a developer.
  • a developer supply pipe having a plurality of spray nozzles is provided on the upper side of the transport surface as the developing means.
  • the developer supply pipe has a cleaning means for diluting and a drying means for removing the liquid component in this order.
  • the transport direction of the base material is the X direction
  • the vertical direction is the Z direction
  • the machine width direction is the Y direction
  • a straight line O perpendicular to the aperture surface of the spray nozzle is the Y direction.
  • the angle ⁇ on the acute angle side formed by the straight line O XZ projected on the XZ plane with the X direction is 45 ° or more and 85 ° or less.
  • the developing device has an acute angle angle ⁇ formed by the straight line P parallel to the supply pipe and the X direction of 60 ° or more and 80 ° or less.
  • the developing device and the developing method of the present invention are used, a uniform flow of the developer is formed on the base material at the time of development. It becomes possible to prevent the inflow of liquid.
  • FIG. 6 is a plan view (XY plan view) showing an arrangement of a developer supply pipe. It is a side view (XZ top view) which shows arrangement
  • FIG. 10 is a schematic view of a developing device of Comparative Example 6.
  • FIG. 10 is a schematic view of a developing device of Comparative Example 6.
  • the developing device of the present invention comprises a substrate conveying means having a substantially horizontal conveying surface; From the upstream side of the conveying means, Developing means for spraying a developer onto the substrate; Cleaning means for spraying the cleaning liquid and diluting the developer; A drying means for removing the liquid component in this order, and
  • a developer supply pipe having a plurality of spray nozzles is disposed on the upper side of the transport surface so that the axial direction of the supply pipe is substantially parallel to the transport surface.
  • a substrate having a coating film on which a latent image is formed may be simply referred to as a substrate.
  • FIG. 1 is a sectional view showing an example of the developing device of the present invention.
  • the conveyance means is comprised by the unwinding roll 13, the winding roll 14, and the conveyance conveyor 15, and can convey a base material in the conveyance direction shown in a figure.
  • the developing device of the present invention includes a developing region 10 in which a developing unit for spraying a developer on a substrate, a cleaning region 11 in which a cleaning unit for spraying a cleaning liquid is disposed, and a drying unit for removing liquid components. Are arranged in this order from the upstream side of the conveying means (that is, the side of the unwinding roll 13).
  • each area (development area 10, washing area 11, and drying area 12) is a convenient range of each unit (developing means, washing means, and drying means) in the apparatus. There is no need to have strict boundaries.
  • the conveying means in the developing device of the present invention conveys the base material having the coating film on which the latent image is formed in order to continuously perform the processing by the above-described means (developing means, cleaning means, drying means). Means.
  • continuously conveying means that the substrate is conveyed at the same speed without stopping the substrate between the respective means. Examples of such conveying means include, but are not limited to, conveying means such as a roller-type conveyor and a belt-type conveyor.
  • this transport means has a substantially horizontal transport surface.
  • substantially horizontal is defined as including a range of inclination of ⁇ 10 ° centering on the horizontal.
  • the conveyance surface is the upper surface of the conveyance means for moving the base material, for example, the upper contact surface of the roller in a roller type conveyor.
  • the region 11 and the drying region 12 where the drying means for removing the liquid component are arranged are continuously conveyed, and each process of development, washing, and drying is performed.
  • the transport direction of the substrate is the X direction and the vertical direction.
  • the Z direction and the machine width direction are defined as the Y direction, and these directions and planes defined using these directions as coordinates (for example, FIGS. 4 to 6 and FIGS. 8 to 12) It shall represent the direction of arrangement of the nozzle spray holes and the like.
  • a developing solution supply pipe having a plurality of spray nozzles as developing means is provided in the developing area so that the axial direction of the supply pipe is substantially parallel to the conveying surface above the conveying surface. Placed in. Specifically, for example, in the development region 10 in FIG. 1, the development having a plurality of spray nozzles 16 as shown in FIG. 3 above the transport surface (in FIG. 1, overlaps the surface of the base material 19).
  • the liquid supply pipe 20 is arranged so that a straight line P parallel to the axial direction of the developer supply pipe 20 is substantially parallel to the transport surface.
  • substantially parallel means that the inclination is within ⁇ 5 ° in any direction with respect to the parallel plane.
  • the spray nozzle 16 is shown in a form that branches off and protrudes from the developer supply pipe 20, but does not necessarily have to protrude from the developer supply pipe 20.
  • a spray hole may be formed in the tube 20 itself so that it can be sprayed in a predetermined direction.
  • the number of spray nozzles is 3 in FIG. 3, but can be set as appropriate according to the width to be developed, and the width to be developed according to the size and shape of the developer radiation 71. It is set so that the developer is supplied uniformly with respect to the direction.
  • FIG. 4 is a plan view (XY plan view) showing the arrangement of the developer supply pipe 20 in the developing region of the developing device of the present invention.
  • the developer supply pipe 20 is arranged so that a straight line P parallel to the axial direction of the developer supply pipe 20 intersects the transport direction (X direction) of the base material 19. .
  • the spray nozzle is not shown in figure.
  • the developer supply pipe 20 is arranged so that the angle ⁇ is 45 ° or more and 80 ° or less.
  • which is an acute angle formed by the X direction and the straight line P, is in the range of 45 ° to 80 °.
  • the opening surface of the spray nozzle faces the upstream side. Since the opening surface of the spray nozzle faces the upstream side, it is possible to form a flow of the developer in the upstream direction and prevent the developer from flowing into the cleaning solution tank.
  • a straight line perpendicular to the aperture surface of the spray nozzle is a straight line O
  • a straight line O perpendicular to the aperture surface of the spray nozzle is projected onto the XZ plane in the Y direction.
  • the angle ⁇ on the acute angle side formed by the straight line O XZ and the X direction is 45 ° or more and 85 ° or less.
  • the straight line O perpendicular to the aperture surface of the spray nozzle corresponds to the spray direction of the nozzle as shown in FIG.
  • FIG. 5 is a side view (XZ plan view) showing the arrangement of the spray nozzles 16 in the developing region of the developing device of the present invention.
  • the angle ⁇ on the acute angle side formed by the straight line OXZ which is a projection of the straight line O perpendicular to the aperture surface of the spray nozzle on the XZ plane in the Y direction, is 45. It is the range of not less than 85 ° and not more than 85 °. If ⁇ is less than 45 °, the applied pressure of the developer to be sprayed becomes small, and the coating film is not dissolved and removed well, and a residue is generated.
  • which is an acute angle, is preferably in the range of 45 ° to 80 °, and more preferably 75 ° or less in order to prevent the developer from flowing into the washing step.
  • an angle ⁇ on the acute angle side formed by the straight line O ZY obtained by projecting the straight line O in the X-axis direction on the ZY plane with the Y direction is 60 ° or more and less than 90 °.
  • FIG. 6 is a view (ZY plan view) of the spray nozzle 16 in the developing region of the developing device of the present invention as seen from the transport direction.
  • the developing solution is obtained by inclining an acute angle ⁇ of 60 ° or more and less than 90 ° formed by the straight line O ZY in which the straight line O is projected onto the ZY plane in the X-axis direction. It is preferable to eliminate the stagnation on the base material and cause the developer to flow in the width direction of the base material, thereby improving the new solution replacement efficiency of the developer and enabling more uniform development.
  • the straight line O ZY obtained by projecting the straight line O on the ZY plane in the X axis direction is formed with the Y direction.
  • the angle ⁇ on the acute angle side is preferably in the range of 60 ° or more and less than 90 °.
  • FIG. 7 is a schematic view showing an aperture surface of a developer spray nozzle used in the present invention.
  • the shape of the spray holes of the nozzle is not particularly limited, but as shown in FIG. 7, a flat shape is preferable and an elliptical shape is more preferable in order to increase development efficiency.
  • an angle ⁇ on the acute angle side formed by the straight line R XY obtained by projecting the major axis R of the spray hole on the XY plane in the Z direction and the X direction is 5 ° to 90 °.
  • the major axis is defined as a line segment that passes through the center of gravity of the rectangle having the smallest area circumscribing the spray hole and is parallel to the long side.
  • angles ⁇ and ⁇ are more preferably in the range of ⁇ 10 ⁇ ⁇ 10.
  • which is the spray angle of the developer
  • which is the arrangement angle of the supply pipe
  • the cleaning area 11 is provided with cleaning means for spraying the cleaning liquid and diluting the developer on the base material 19, and the purpose is to dilute the developer to the extent that almost no components remain on the base material.
  • developer having almost no component means that the concentration of the developer component is 0.05% by mass or less, more preferably 0.01% by mass or less. Therefore, in the cleaning region 11, a cleaning liquid supply pipe 21 having a plurality of spray nozzles 16 is installed on the base 19 in order to supply cleaning liquid to the base 19 as cleaning means, and the cleaning liquid is sprayed from the cleaning liquid nozzle 17. As a result, the developer remaining on the substrate 19 is diluted.
  • the cleaning liquid used at this time is not particularly limited. For example, pure water is optimal from the viewpoint of cleaning performance, cost, and environment, but special function processed water such as electrolytic ionic water and ozone-dissolved liquid is also used.
  • drying means for removing the liquid component is arranged.
  • the drying means for example, a method of removing liquid by blowing air using a drying blow 18 or the like, a drying means for drying a liquid component by hot air, or the like can be used.
  • the material of the base material 19 is not particularly limited, for example, a polyethylene terephthalate film (hereinafter referred to as “PET film”), a polyimide film, a polyester film, an aramid film, or the like can be used. It is preferable to do.
  • the form of the base material 19 is preferably a continuous film rather than a single sheet from the viewpoint of productivity, and more preferably a long film.
  • a take-up roll upstream from the developing means and a take-up roll downstream from the drying means It is preferable to provide a take-up roll upstream from the developing means and a take-up roll downstream from the drying means.
  • a so-called roll-to-roll (RtoR) system in which a long film is applied and unwinding from a roll-a series of processes-winding onto a roll is continuously performed. It is because it can do.
  • the method for producing a circuit board according to the present invention comprises: a developing step in which a base material having a coating film on which a latent image is formed is conveyed substantially horizontally; and a developing solution is sprayed onto the base material; A circuit board manufacturing method in which a cleaning process for diluting a liquid and a drying process for removing a liquid component are passed in this order, and in the development process, the developer is sprayed upstream by a plurality of spray nozzles.
  • the angle ⁇ ′ on the acute angle side formed by the straight line O ′ XZ which is obtained by projecting the spray direction O ′ of the developer sprayed from the spray nozzle on the XZ plane in the Y direction, is 45 ° or more and 85 °. ° or less
  • an angle ⁇ ′ on an acute angle side formed by a straight line P ′ connecting a series of spray holes of the spray nozzle and the X direction is 45 ° or more and 80 ° or less.
  • a plurality of developer pipes are arranged on the upper side of the substrate conveying surface so that the axial direction of the supply pipe is substantially parallel to the conveying surface. It is preferable to use a developing device for spraying the developer from the plurality of spray nozzles 16 provided in the developer supply pipe 20.
  • FIG. 2 the conveyance direction of the base material 19 is defined as the X direction
  • the vertical direction is defined as the Z direction
  • the machine width direction is defined as the Y direction. That is, the direction perpendicular to the X direction and the Z direction is the Y direction.
  • a straight line obtained by projecting the straight line O ′ on the XZ plane is defined as O ′ XZ
  • a straight line obtained by projecting the straight line O ′ on the ZY plane is defined as O ′ ZY , as shown in FIG.
  • the major axis of the sprayed portion of the developer is defined as R ′ XY .
  • the meaning of the straight line P ′ connecting a series of spray holes of the spray nozzle indicates the position of the source of the developer sprayed from the spray nozzle, that is, the position of the spray distance.
  • the straight line P and the straight line P ′ parallel to the supply pipe are parallel to each other.
  • FIG. 4 is a plan view (XY plan view) showing the arrangement of the developer supply pipes in the developing step of the circuit board manufacturing method of the present invention.
  • the spray nozzle is omitted in FIG. 4 and this description is based on an example in which the straight line P and the straight line P ′ are parallel. In this description, P in FIG.
  • ⁇ 4 is read as P ′, and ⁇ is read as ⁇ ′.
  • the acute angle side formed by the straight line P that is, equivalent to the straight line P ′
  • the developer is sprayed so that the angle ⁇ (that is, equivalent to ⁇ ′) is 45 ° or more and 80 ° or less.
  • ⁇ ′ is less than 45 °, uneven development occurs due to uneven spraying in the width direction of the substrate 19 of the developer.
  • ⁇ ′ is greater than 80 °, the flow of adjacent developers interferes. As a result, the developer stays on the substrate 19 and development unevenness occurs. Therefore, it is preferable that ⁇ , which is an acute angle formed by the X direction and the straight line P, is in a range of 45 ° to 80 °.
  • FIG. 9 is a side view (XZ plan view) showing the direction of spraying of the developer in the developing step of the method for manufacturing a circuit board of the present invention.
  • the straight line O ′ XZ obtained by projecting the straight line O ′ in the spraying direction on the XZ plane in the Y direction has an acute angle ⁇ ′ of 45 ° or more and 85 ° or less formed with the X direction.
  • the straight line O ′ XZ is located upstream from the spray hole. If ⁇ ′ is less than 45 °, the applied pressure of the developer to be sprayed becomes small, so that the coating film is not dissolved and removed well, and a residue is generated.
  • ⁇ ′ which is the angle on the acute angle side, is preferably in the range of 45 ° to 80 °.
  • FIG. 10 is a side view (XZ plan view) showing the direction in which the developer is sprayed in the developing process of the circuit board manufacturing method of the present invention.
  • the straight line O ′ ZY obtained by projecting the straight line O ′ on the ZY plane in the X-axis direction is inclined at an acute angle angle ⁇ ′ formed with the Y direction by 60 ° or more and less than 90 °.
  • ⁇ ′ is smaller than 60 °, the applied pressure of the developer to be sprayed becomes small, and the coating film is not dissolved and removed well, and a residue is generated. It is preferable that the angle ⁇ ′ on the acute angle side formed by the straight line O′ZY projected on the plane and the Y direction is in the range of 60 ° or more and less than 90 °.
  • FIG. 11 is a perspective view showing an example of the state of the developer spray in the developing step of the circuit board manufacturing method of the present invention
  • FIG. 12 is a plan view (XY plan view) of the developer spray part. It is.
  • the shape of the sprayed portion of the developer is not particularly limited, but a flat shape is preferable for increasing the development efficiency, and an elliptical shape is more preferable as shown in FIG.
  • the major axis of the liquid spray portion is R ′ XY
  • the acute angle ⁇ ′ formed by the straight line R ′ XY and the X direction is preferably 5 ° to 90 °.
  • the major axis is defined as a line segment that passes through the center of gravity of the rectangle having the smallest area circumscribing the spray part and is parallel to the long side.
  • the angles ⁇ ′ and ⁇ ′ are more preferably in the range of ⁇ 10 ⁇ ′ ⁇ ′ ⁇ 10.
  • ⁇ ′ which is an angle obtained by projecting a straight line P ′ connecting a series of spray holes of the spray nozzle onto the XY plane
  • ⁇ ′ that is the spray angle of the developer is ⁇ 10 ⁇ ′ ⁇ ′ ⁇
  • the amount of the developer sprayed from the spray nozzle 16 is not particularly limited, but is preferably in the range of 0.2 to 5 L / min, and more preferably in the range of 0.4 to 1.0 L / min. If the amount of liquid sprayed from the liquid spray nozzle 16 is less than 0.2 L / min, the developer may not be exchanged on the base material 19 and development unevenness may occur, while 5 L / min. This is because if the amount is larger, the pattern may be peeled off due to the striking pressure of the sprayed developer.
  • the conveying speed of the substrate 19 is not particularly limited, but is preferably 0.5 to 7 m / min, and more preferably 2 to 5 m / min.
  • the conveyance speed of the base material 19 is faster than 7 m / min, the developer exposure time may be shortened and a residue may be generated between the patterns.
  • the substrate 19 is slower than 0.5 m / min, the developer exposure time is increased and pattern peeling may occur. This is because it may occur.
  • the developer used in the development step is preferably an alkaline developer.
  • the developer include tetramethylammonium hydroxide, diethanolamine, diethylaminoethanol, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, triethylamine, diethylamine, methylamine, dimethylamine, dimethylaminoethyl acetate, dimethylamino
  • An aqueous solution of ethanol, dimethylaminoethyl methacrylate, cyclohexylamine, ethylenediamine or hexamethylenediamine can be mentioned, and these aqueous solutions include N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl Polar solvents such as sulfoxide or ⁇ -butyrolactone, alcohol
  • Examples of the developer for organic development include N-methyl-2-pyrrolidone, N-acetyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, dimethyl sulfoxide or hexamethylphosphoryl Polar solvents such as amides or mixed solutions of these polar solvents and methanol, ethanol, isopropyl alcohol, xylene, water, methyl carbitol or ethyl carbitol can be used, but from the viewpoint of versatility and stability of developing ability More preferably, sodium carbonate is used [Roll-to-roll method] Although the material of the base material 19 is not specifically limited, For example, a polyethylene terephthalate film (henceforth "PET film”), a polyimide film, a polyester film, an aramid film etc. can be used, and it is using a PET film especially. preferable.
  • PET film polyethylene terephthalate film
  • PET film polyimide film
  • polyester film
  • the form of the base material 19 is preferably a long film from the viewpoint of productivity, and more preferably a long film.
  • a long film film is supplied from the unwinding roll to the developing process, unwinded and subjected to the development process, and is wound on the winding roll after the washing process and the drying process, so-called roll-to-roll system (RtoR system). It is preferable to carry out the treatment.
  • the negative photosensitive resin composition used when the coating film on which the latent image is formed is a negative photosensitive resin composition formed with a latent image of a pattern by exposure
  • a negative photosensitive resin composition containing conductive particles (b) a photosensitive compound having a carboxyl group, and (c) a photopolymerization initiator.
  • conductive particles As the conductive particles (a), silver (hereinafter, “Ag”), gold (hereinafter, “Au”), copper, platinum, lead, tin, nickel, aluminum, tungsten, molybdenum, chromium, titanium, indium, or these
  • Au gold
  • a metal alloy is mentioned, Ag, Au, or copper is preferable from the viewpoint of conductivity, and Ag is more preferable from the viewpoint of cost and stability.
  • the volume average particle diameter of the conductive particles is preferably from 0.1 to 10 ⁇ m, more preferably from 0.5 to 6 ⁇ m.
  • the volume average particle diameter is preferably from 0.1 to 10 ⁇ m, more preferably from 0.5 to 6 ⁇ m.
  • the volume average particle diameter is 0.1 ⁇ m or more, the contact probability between the conductive particles (a) in the curing step is improved, and the specific resistance and the disconnection probability of the manufactured conductive pattern are lowered. Furthermore, in the exposure process, exposure light can smoothly pass through the coating film obtained by applying the negative photosensitive resin composition, and fine patterning becomes easy.
  • the volume average particle diameter is 10 ⁇ m or less, the surface smoothness, pattern accuracy, and dimensional accuracy of the manufactured conductive pattern are improved.
  • the volume average particle diameter of the conductive particles (a) can be measured by a Coulter counter method.
  • the content of the conductive particles is preferably 60 to 95% by mass with respect to the total solid content in the negative photosensitive resin composition.
  • the content with respect to the total solid content is 60% by mass or more, the contact probability between the conductive particles (a) during curing is improved, and the specific resistance and disconnection probability of the manufactured conductive pattern are lowered.
  • the content with respect to the total solid content is 95% by mass or less, the exposure light can smoothly pass through the coating film obtained by applying the negative photosensitive resin composition in the exposure step. Fine patterning becomes easy.
  • the total solid content means all components of the negative photosensitive resin composition excluding the solvent.
  • the photosensitive compound (b) having a carboxyl group includes a monomer, oligomer or polymer having a polymerizable unsaturated group in the molecule.
  • styrenes such as styrene, p-methyl styrene, o-methyl styrene, m-methyl styrene, ⁇ -methyl styrene, chloromethyl styrene or hydroxymethyl styrene, acrylic monomers, 1-vinyl-2-pyrrolidone, acrylic A copolymer or an epoxycarboxylate compound is mentioned.
  • acrylic monomers examples include acrylic acid, methyl acrylate, ethyl acrylate, 2-ethylhexyl acrylate, n-butyl acrylate, iso-butyl acrylate, iso-propane acrylate, glycidyl acrylate, butoxytriethylene glycol acrylate, and dicyclopentanyl.
  • the acrylic copolymer refers to a copolymer containing an acrylic monomer in a monomer to be used, that is, a copolymer component.
  • An alkali-soluble acrylic copolymer having a carboxyl group can be obtained by using an unsaturated acid such as an unsaturated carboxylic acid as a monomer.
  • unsaturated acid include acrylic acid, methacrylic acid, itaconic acid, crotonic acid, maleic acid, fumaric acid, vinyl acetate, and acid anhydrides thereof.
  • the acid value of the obtained acrylic copolymer can be adjusted by the amount of the unsaturated acid used.
  • the epoxycarboxylate compound refers to a compound that can be synthesized using an epoxy compound and a carboxyl compound having an unsaturated double bond as starting materials.
  • examples of the epoxy compound that can be a starting material include glycidyl ethers, alicyclic epoxy resins, glycidyl esters, glycidyl amines, or epoxy resins.
  • the acid value of the epoxycarboxylate compound may be adjusted by reacting the epoxycarboxylate compound with the polybasic acid anhydride.
  • the polybasic acid anhydride include succinic anhydride, phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, itaconic anhydride, 3-methyltetrahydrophthalic anhydride, 4-methyl-hexahydrophthalic anhydride, Examples include trimellitic anhydride or maleic anhydride.
  • an epoxy carboxylate compound has by reacting the carboxyl group which the epoxy carboxylate compound made to react with the above-mentioned polybasic acid anhydride has, and the compound which has unsaturated double bonds, such as glycidyl (meth) acrylate, The amount of the unsaturated double bond may be adjusted.
  • Urethane may be formed by reacting the hydroxy group of the epoxycarboxylate compound with a diisocyanate compound.
  • the diisocyanate compound include hexamethylene diisocyanate, tetramethylxylene diisocyanate, naphthalene-1,5-diisocyanate, tridenic diisocyanate, trimethylhexamethylene diisocyanate, isophorone diisocyanate, allyl cyanide diisocyanate, and norbornane diisocyanate.
  • the acid value of the photosensitive compound (b) having a carboxyl group is preferably 30 to 250 mgKOH / g in order to optimize alkali solubility. If the acid value is less than 30 mgKOH / g, the solubility of the soluble part may be lowered. On the other hand, if the acid value exceeds 250 mgKOH / g, the allowable development width may be narrowed.
  • the acid value of the carboxyl group-containing compound (B) can be measured according to JIS K 0070: 1992.
  • the negative photosensitive resin composition used when the coating film on which the latent image is formed is a negative photosensitive resin composition in which a latent image of a pattern is formed by exposure is polymerized in the molecule. It contains a monomer, oligomer or polymer having a polymerizable unsaturated group, but none of these components has the ability to absorb actinic rays, so it is necessary to use a photopolymerization initiator (c) for photocuring. There is.
  • the photopolymerization initiator (c) is selected depending on the light source used for photocuring, and a photoradical polymerization initiator, a photocationic polymerization initiator, or the like can be used.
  • photopolymerization initiator (c) examples include 1,2-octanedione-1- [4- (phenylthio) -2- (O-benzoyloxime)], 2,4,6-trimethylbenzoyl-diphenyl-phosphine.
  • Oxide bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, ethanone-1- [9-ethyl-6-2 (2-methylbenzoyl) -9H-carbazol-3-yl] -1- (O— Acetyloxime), benzophenone, methyl o-benzoylbenzoate, 4,4′-bis (dimethylamino) benzophenone, 4,4′-bis (diethylamino) benzophenone, 4,4′-dichlorobenzophenone, 4-benzoyl-4 ′ -Methyl diphenyl ketone, dibenzyl ketone, fluorenone, 2,2'-diethoxyacetate Enone, 2,2-dimethoxy-2-phenylacetophenone, 2-hydroxy-2-methylpropiophenone, pt-butyldichloroacetophenone, thioxanthone, 2-methylthioxanthone, 2-chlorothioxan
  • the content of the photopolymerization initiator (c) is preferably 0.05 to 30 parts by mass with respect to 100 parts by mass of the photosensitive compound (b) having a carboxyl group.
  • the content with respect to 100 parts by mass of the photosensitive compound (b) having a carboxyl group is 0.05 parts by mass or more, the cured density of the exposed part increases, and the residual film ratio after development can be increased.
  • the content with respect to 100 parts by mass of the photosensitive compound (b) having a carboxyl group is 30 parts by mass or less, photopolymerization at the upper part of the coating film obtained by applying the negative photosensitive resin composition. Excessive light absorption by the initiator (c) is suppressed. As a result, a decrease in adhesion with the substrate due to the manufactured conductive pattern having an inversely tapered shape is suppressed.
  • the negative photosensitive resin composition used when the coating film on which the latent image is formed is obtained by forming a latent image of a pattern by exposure on the negative photosensitive resin composition
  • the photopolymerization initiator A sensitizer may be contained together with (c).
  • sensitizer examples include 2,4-diethylthioxanthone, isopropylthioxanthone, 2,3-bis (4-diethylaminobenzal) cyclopentanone, 2,6-bis (4-dimethylaminobenzal) cyclohexanone, 2 , 6-bis (4-dimethylaminobenzal) -4-methylcyclohexanone, Michler's ketone, 4,4-bis (diethylamino) benzophenone, 4,4-bis (dimethylamino) chalcone, 4,4-bis (diethylamino) chalcone P-dimethylaminocinnamylidene indanone, p-dimethylaminobenzylidene indanone, 2- (p-dimethylaminophenylvinylene) isonaphthothiazole, 1,3-bis (4-dimethylaminophenylvinylene) isonaphthothiazole,
  • the content of the sensitizer is preferably 0.05 to 10 parts by mass with respect to 100 parts by mass of the photosensitive compound (b) having a carboxyl group.
  • Photosensitivity improves that content with respect to 100 mass parts of photosensitive compounds (b) which have a carboxyl group is 0.05 mass part or more.
  • the content with respect to 100 parts by mass of the photosensitive compound (b) having a carboxyl group is 10 parts by mass or less, an excessive amount on the upper part of the coating film obtained by applying the negative photosensitive resin composition is excessive. Light absorption is suppressed. As a result, the produced conductive pattern has a reverse taper shape, thereby suppressing a decrease in adhesion to the substrate.
  • the coating film on which the latent image is formed is exposed to the negative photosensitive resin composition.
  • the negative photosensitive resin composition used in the case where a latent image of a pattern is formed preferably contains an organic solvent.
  • the solvent include N, N-dimethylacetamide, N, N-dimethylformamide, N-methyl-2-pyrrolidone, dimethylimidazolidinone, dimethyl sulfoxide, ⁇ -butyrolactone, ethyl lactate, 1-methoxy-2-propanol.
  • the boiling point is preferably 0.99 ° C. or more solvents.
  • the boiling point is 150 ° C. or higher, the volatilization of the solvent is suppressed, and the thickening of the negative photosensitive resin composition can be suppressed.
  • the negative photosensitive resin composition used when the coating film on which the latent image is formed is obtained by forming a latent image of a pattern by exposure on the negative photosensitive resin composition, the desired characteristics If it is within the range that does not impair the polymer, it contains additives such as non-photosensitive polymers or plasticizers, plasticizers, leveling agents, surfactants, silane coupling agents, antifoaming agents or pigments that do not have unsaturated double bonds in the molecule. It doesn't matter.
  • non-photosensitive polymer examples include an epoxy resin, a novolac resin, a phenol resin, a polyimide precursor, and a closed ring polyimide.
  • plasticizer examples include dibutyl phthalate, dioctyl phthalate, polyethylene glycol, and glycerin.
  • leveling agent examples include a special vinyl polymer or a special acrylic polymer.
  • silane coupling agent examples include methyltrimethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, hexamethyldisilazane, 3-methacryloxypropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, and vinyltrimethoxysilane. Methoxysilane is mentioned.
  • Example 1 60 g of binder polymer (TR-2500, manufactured by Negami Kogyo Co., Ltd.) and 100 g of diethylene glycol monobutyl ether acetate, which were vacuum-dried at 50 ° C. for 48 hours, were weighed into a three-necked flask equipped with a stirrer and a thermometer and dissolved at 60 ° C. by heating. . The flask was cooled to 30 ° C.
  • binder polymer TR-2500, manufactured by Negami Kogyo Co., Ltd.
  • This negative photosensitive resin composition was uniformly applied to a PET film substrate 19 (width 500 mm, thickness 200 um) on a roll to a thickness of 8 ⁇ m using a polyester screen mesh, and then applied to a box-type oven. And heated at 100 ° C. for 10 minutes to dry. After drying, a photomask having a desired stripe pattern (pitch: 40 ⁇ m, line width: 25 ⁇ m) was used and the exposure amount was 400 mJ / cm 2 (wavelength 365 nm conversion). Then, the development process was performed with the development apparatus shown in FIG. 1, and the coating film in the space portion that was not photocured was removed to form a stripe pattern.
  • a negative type photosensitive resin composition is applied and an unwinding roll 13 for unwinding a base material 19 wound in a roll shape and a developer are scattered.
  • a film take-up roll 14 for taking up the film subjected to the development treatment in a roll shape, and a substrate 19 having a width of 20 cm is conveyed and developed at a speed of 4 m / min by a conveyor 15 provided through each part of the upper part. like You have me.
  • a total of 18 spray nozzles 16 of the developer for spraying the developer as developing means are arranged. Specifically, as shown in FIG. 3 (the number of nozzles shown and the number of embodiments are different), the supply of the developer, in which six spray nozzles for each developer are provided at intervals of 5 cm.
  • the tubes 20 are arranged in three rows as shown in FIG.
  • an angle ⁇ (and ⁇ ′) formed by a straight line P (and a straight line P ′ connecting a series of spray holes of the spray nozzle) parallel to the developer supply pipe and the x axis is set to 70 °. Arranged to be. Further, as shown in FIGS. 5 and 6, the developer spray nozzle 16 is inclined in the X and Y directions, and is a straight line O (and corresponding to this) perpendicular to the aperture surface. The angle ⁇ (and ⁇ ′) formed by the developer spraying direction O ′) and the X axis was adjusted to 70 °, and the angle ⁇ (and ⁇ ′) formed from the Y axis was adjusted to 80 °.
  • the spray hole of the nozzle of the developer spray nozzle 16 installed has an elliptical shape, and the shape of the sprayed portion of the developer discharged from the spray nozzle 16 was sprayed in an elliptical shape.
  • the developer spray nozzle 16 was installed so that the acute angle ⁇ (and ⁇ ′) formed by the straight line R and the Y axis connected in the longitudinal direction of the spray portion was 70 °.
  • a 0.2% by weight aqueous solution of sodium carbonate held at 30 ° C. as a developer the developer is sprayed onto the film at a spray rate of 2 L / min from the spray nozzle 16 of each developer, The coating film in the space portion that was not photocured was dissolved and removed.
  • the developer sprayed on the base material 19 in the development region was collected in the development tank in the development unit without flowing in the direction of the cleaning region.
  • the developer on the base material 19 is diluted and removed by spraying pure water from the cleaning liquid nozzle 17 in the cleaning region, the base material 19 is cleaned, and the base material 19 is heat-treated in the drying region.
  • the washing liquid was dried.
  • the developed pattern was heat-treated at 140 ° C. for 60 minutes in a box type oven to form a conductive pattern.
  • Example 2 In Example 1, the conveying speed was set to 7.5 m / min, and the conductive pattern was produced in the same manner as in Example 1 except for the other conditions.
  • Example 3 In Example 1, the conveyance speed was set to 0.2 m / min, and the conductive pattern was produced in the same manner as in Example 1 except for the other conditions.
  • Example 4 In Example 1, the amount of each developer sprayed from the spray nozzle 16 was set to be 0.1 L / min, and the other conditions were the same as in Example 1 to produce a conductive pattern. It was.
  • Example 5 In Example 1, the amount of each developer sprayed from the spray nozzle 16 was set to 6.0 L / min, and the other conditions were the same as in Example 1 to produce a conductive pattern. It was.
  • Example 6 In Example 1, the angle of ⁇ (and ⁇ ′) was set to 45 °, and other conditions were the same as in Example 1, and a conductive pattern was produced.
  • Example 7 In Example 1, the angle of ⁇ (and ⁇ ′) was set to be 90 °, and the conductive pattern was produced in the same manner as in Example 1 except for the other conditions.
  • Example 8 In Example 1, an angle of ⁇ (and ⁇ ′) was set to be 40 °, and the conductive pattern was manufactured in the same manner as in Example 1 except for the other conditions.
  • Example 9 In Example 1, the angle of ⁇ (and ⁇ ′) was set to 45 °, and other conditions were the same as in Example 1, and a conductive pattern was produced.
  • Example 10 In Example 1, the angle of ⁇ (and ⁇ ′) was set to be 80 °, and the conductive pattern was produced in the same manner as in Example 1 except for the other conditions.
  • Example 1 (Comparative Example 1) In Example 1, the angle of ⁇ (and ⁇ ′) is 90 °, the angle of ⁇ (and ⁇ ′) is 90 °, the angle of ⁇ (and ⁇ ′) is 90 °, and the angle of ⁇ (and ⁇ ′) is A conductive pattern was prepared in the same manner as in Example 1 except that the angle was set to 90 °.
  • Example 2 (Comparative Example 2) In Example 1, the angle of ⁇ (and ⁇ ′) was set to be 30 °, and other conditions were the same as in Example 1, and a conductive pattern was produced.
  • Example 3 (Comparative Example 3)
  • the angle of ⁇ (and ⁇ ′) was set to be 90 °, and the conductive pattern was produced in the same manner as in Example 1 except for the other conditions.
  • Example 4 (Comparative Example 4)
  • the angle of ⁇ (and ⁇ ′) is set to 30 °
  • the angle of ⁇ (and ⁇ ′) is set to 30 °
  • the other conditions are the same as in Example 1, and the conductive pattern Was made.
  • Example 6 (Comparative Example 6)
  • the developer spray nozzle 16 is installed and arranged in the downstream direction so that ⁇ (and ⁇ ′) is 90 ° and ⁇ (and ⁇ ′) is 90 °, and is shown in FIG.
  • an air cut 91 for preventing the developer from flowing into the cleaning region was installed between the development region and the cleaning region, and the conductive pattern was produced in the same manner as in Example 1 except for the above. .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Materials For Photolithography (AREA)
  • Cleaning In General (AREA)
  • Cleaning By Liquid Or Steam (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Nozzles (AREA)
  • Coating Apparatus (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

長尺フィルムのシャワー方式の現像工程にて現像ムラをなくし、エアカットを用いずに現像液の洗浄液槽への流入を防ぐことのできる回路基板の製造方法、および、現像装置を提供することを課題とする。 潜像が形成された塗膜を有する基材を略水平に搬送し、前記基材に現像液を散液する現像工程と、洗浄液を散液し現像液を希釈する洗浄工程と、液体成分を除去する乾燥工程とを、この順で通し、かつ、前記現像工程では複数の散液ノズルで上流側に向けて現像液を散液する、回路基板の製造方法であって、前記基材の搬送方向をX方向、鉛直方向をZ方向、機幅方向をY方向、としたとき、前記散液ノズルから散液される現像液の散液方向O'を前記Y方向にXZ平面上に投影した直線O'XZが前記X方向と形成する鋭角側の角度α'が45°以上85°以下であり、前記散液ノズルの一連の散液孔を結ぶ直線P'が前記X方向と形成する鋭角側の角度β'が、45°以上80°以下である、回路基板の製造方法。

Description

現像装置及び回路基板の製造方法
 本発明は、現像装置及び回路基板の製造方法に関し、例えば、タッチパネルの製造において、基材の上に所定の配線電極を形成し回路基板とする際に用いられる現像装置、及び、それを用いた回路基板の製造方法に関する。
 タッチパネルとはディスプレイ表示機器とタッチパッドのようなタッチした座標の検出装置を組み合わせた電子部品であり、主に直感的に扱えることが要求される機器に組み込まれることが多い。具体的には携帯電話やタブレットなどのモバイル端末に搭載されており、近年タッチパネルの薄膜化、軽量化、狭額縁化、低コスト化が求められている。
 これまで、タッチパッドのようなタッチした座標の検出装置に用いられるタッチモジュールの基材19としてはスズドープ酸化インジウム(以下ITOと記す)付きのガラスが採用されていたが、薄膜化、安価化という顧客ニーズのもと現在はITO付きの長尺のポリエチレンテレフタレートフイルム(以下PETフィルムと記す)が主流となってきている。
 一方、タッチモジュールの引出配線には導電インキのパターン印刷工法が採用されていたが、同工法では引出配線の解像度に限界があるため、狭額縁化という顧客ニーズのもと、現在は感光性の導電インキを用いたフォトリソグラフィ工法が主流となってきている。
 この導電インキのフォトリソグラフィ工法の製造工程の一つである現像工程には、スピン式、ディップ式、シャワー式等、種々の方式が用いられている。このうち、シャワー式の現像方式にあっては基材をコンベア等で移動させつつ現像液を高圧かつ大流量でシャワー状に基材の被処理面に供給するため、現像処理を洗浄工程と連続して実施することが可能になり生産性に大きな利点がある。
 このうち、長尺のPETフィルムを用いたシャワー式の現像方法にあっては、上述したように現像液が基材上に散液供給されるため、フィルム基材上で現像液が滞留しやすく、現像液の置換効率が低下し、現像の不十分な部分と現像過多な部分が発生する。また、滞留した現像液が次工程である洗浄工程に流入にしてしまい、洗浄液が汚染されるといった問題がある。
 シャワー式の現像装置が開示された文献としては、たとえば特許文献1、特特許文献2がある。
 特許文献1においては、現像部の下流部分にエアカット91を設置し、当該エアカットを用いて基材表面にエアを吹き付けることでその流出を対策が採られている。
 また、特許文献2では、傾斜状態の基材への現像液の吐出による現像、現像吐出量の制御により現像液の滞留を制御することで対策を講じている。
特開平7-261013号公報 特開2009-8886号公報
 しかしながら、特許文献1では、当該対策を施した場合には現像液がエアを吹き付けられることで現像液が乾燥してしまい、現像液に含まれている成分が基材上に残存してしまうことになる。
 また、特許文献2の対策では傾斜状態で基材を搬送するために現像装置の大幅な改造が必要となってしまう。
 本発明は、これらの問題を解決すること、すなわち、長尺フィルムのシャワー方式の現像工程にて現像ムラをなくし、エアカットを用いずに現像液の洗浄液槽への流入を防ぐことのできる現像装置、および、回路基板の製造方法を提供することを課題とする。
 本発明者らは、かかる課題に対し鋭意検討を行った結果、現像液を基材に対して特定範囲の角度で散液することにより、基材上で現像液が滞留することなく、基材進行方向に対して逆方向の一様な流れを発生し、洗浄液槽への現像液の流入が抑制され、ムラのない均一な現像が可能となることを見いだし、本発明を完成したものである。
 本発明は、潜像が形成された塗膜を有する基材を略水平に搬送し、上流側から、前記基材に現像液を散液する現像工程と、洗浄液を散液し現像液を希釈する洗浄工程と、液体成分を除去する乾燥工程とを、この順で有し、かつ、前記現像工程では複数の散液ノズルで上流側に向けて現像液を散液する、回路基板の製造方法であって、前記基材の搬送方向をX方向、鉛直方向をZ方向、機幅方向をY方向、としたとき、前記散液ノズルから散液される現像液の散液方向O’を前記Y方向にXZ平面上に投影した直線O’XZが前記X方向と形成する鋭角側の角度α’が45°以上85°以下であり、前記供給管と平行方向の直線Pが前記X方向と形成する鋭角側の角度βが、45°以上80°以下である、回路基板の製造方法である。
 また、本発明は、略水平の搬送面を有する基材の搬送手段と、該搬送手段の上流側から、前記基材に現像液を散液する現像手段と、洗浄液を散液し現像液を希釈する洗浄手段と、液体成分を除去する乾燥手段とを、この順で有し、かつ、前記現像手段として、複数の散液ノズルを有する現像液の供給管が、搬送面の上側に供給管の軸方向が該搬送面に略平行となるように配置された、潜像が形成された塗膜を有する基材の現像装置であって、前記散液ノズルの開孔面が上流側を向いており、前記基材の搬送方向をX方向、鉛直方向をZ方向、機幅方向をY方向、としたとき、前記散液ノズルの開孔面に対して垂直方向の直線Oを前記Y方向にXZ平面上に投影した直線OXZが前記X方向と形成する鋭角側の角度αが45°以上85°以下であり、前記供給管と平行方向の直線Pが前記X方向と形成する鋭角側の角度βが、60°以上80°以下である、現像装置である。
 本発明の現像装置、現像方法を用いれば、現像時に基材上に現像液の一様な流れが基材搬入口方向に形成されるため、現像液の滞留による現像ムラ、洗浄液槽への現像液の流入を防ぐことが可能となる。
本発明の現像装置の一例を示す概略図である。 基材の搬送面とX、Y、Z方向との関係を示す図である。 現像液の散液ノズルと直線P、Oとの関係を示す図である。 現像液の供給管の配置を示す平面図(XY平面図)である。 散液ノズルの配置を示す側面図(XZ平面図)である。 散液ノズルの配置を示す搬送方向から見た図(ZY平面図)である。 本発明に用いる現像液の散液ノズルの開孔面を示す概略図である。 現像工程における現像液の散液方向を示す図である。 現像工程における現像液の散液方向を示す側面図(XZ平面図)である。 現像工程における現像の散液方向を示す側面図(ZY平面図)である。 現像工程における現像液の散液の状況の一例を示した斜視図である 現像工程における現像液の散液部のxy平面投影図(XY平面図)である。 比較例6の現像装置の概略図である。
 以下に本発明による現像装置・回路基板の製造方法を図面を参照して詳細に説明する。
 [現像装置の概略]
 本発明の現像装置は、略水平の搬送面を有する基材の搬送手段と、
該搬送手段の上流側から、
前記基材に現像液を散液する現像手段と、
洗浄液を散液し現像液を希釈する洗浄手段と、
液体成分を除去する乾燥手段とを、この順で有し、かつ、
前記現像手段として、複数の散液ノズルを有する現像液の供給管が、搬送面の上側に供給管の軸方向が該搬送面に略平行となるように配置された、
潜像が形成された塗膜を有する基材の現像装置であって、散液ノズルが特定の方向に配置されたものである。なお、本明細書においては、「潜像が形成された塗膜を有する基材」を単に基材と記す場合もある。
 図1は本発明の現像装置の一例を示す断面図である。図1においては、搬送手段は、巻き出しロール13、巻き取りロール14および搬送コンベア15で構成されており、基材を図中に示す搬送方向に搬送することができる。本発明の現像装置は、基材に現像液を散液する現像手段が配置された現像領域10と、洗浄液を散液する洗浄手段が配置された洗浄領域11と、液体成分を除去する乾燥手段が配置された乾燥領域12とを、搬送手段の上流側(すなわち巻き出しロール13の側)から、この順で有する。かかる構成を採ることにより潜像が形成された塗膜を有する基材19に対し、現像、洗浄、乾燥の各々の処理を連続して行うものである。なお、各領域(現像領域10、洗浄領域11、乾燥領域12)は装置における各手段(現像手段、洗浄手段、乾燥手段)のそれぞれの作用がおよぶ大凡の範囲を便宜的に示したものであり、厳密な境界を有する必要はない。
 [搬送手段]
 本発明の現像装置における搬送手段は、潜像が形成された塗膜を有する基材を、前述の、各手段(現像手段、洗浄手段、乾燥手段)による処理を連続して行うために搬送する手段である。ここで、連続して搬送するとは、前記各手段の間で基材を止めることなく、同じ速度で基材を搬送することをいう。かかる搬送手段としては、例えば、ローラー式のコンベア、ベルト式のコンベア等の搬送手段が挙げられるが、これらに特に限定されるわけではない。
 また、この搬送手段は略水平の搬送面を有するものである。ここで、略水平とは水平を中心として、±10°の傾きの範囲を含むものと定義する。
 また、搬送面とは基材を移動させる搬送手段の上面であり、例えばローラー式のコンベアではローラーの上部接触面である。
 かかる搬送手段により、潜像が形成された塗膜を有する基材は、基材に現像液を散液する現像手段が配置された現像領域10、洗浄液を散液する洗浄手段が配置された洗浄領域11、液体成分を除去する乾燥手段が配置された乾燥領域12、を連続して搬送され、現像、洗浄、乾燥の各々の処理が施される。
 [X、Y、及び、Zの各方向]
 次に、本発明の現像装置の現像領域における現像液の供給管及び散液ノズルについて説明するが、説明に際しては、図2に示す様に、前記基材の搬送方向をX方向、鉛直方向をZ方向、機幅方向をY方向、と定義し、これらの方向、および、これらを座標として定義される平面(例えば図4~6及び図8~12)を用いて、散液ノズルの方向や前記ノズルの散液孔等の配置方向を表すものとする。
 [現像液の供給管の配置]
 本発明の現像装置において、前記現像領域には、現像手段として複数の散液ノズルを有する現像液の供給管が、搬送面の上側に供給管の軸方向が該搬送面に略平行となるように配置される。具体的には、例えば、図1における現像領域10には、搬送面(図1においては基材19の面と重なる)の上側に、図3に示すような複数の散液ノズル16を有する現像液の供給管20が、現像液の供給管20の軸方向と平行な直線Pが搬送面に略平行となるように配置される。ここで略平行とは、平行な面を基準として任意の方向に±5°以内の傾きの範囲であることを表すものとする。現像液の供給管20の軸方向と平行な直線Pが搬送面に略平行となるように配置されることにより、基材と散液ノズル間の距離が一定となり均一な散液が可能となる。図3において、散液ノズル16は、現像液の供給管20から枝分かれして突き出た形態で記されているが、必ずしも現像液の供給管20から突き出ている必要はなく、現像液の供液管20自体に所定の方向に向けて散液できるように散液孔が形成されていてもよい。また、散液ノズルの数については、図3では3である例を示しているが、現像する幅に応じて適宜設定することができ、現像液放射71の大きさや形状に合わせて現像する幅方向に対して現像液が均一に供給されるように設定する。
 図4は、本発明の現像装置の現像領域における現像液の供給管20の配置を示す平面図(XY平面図)である。図4に示すように、現像液の供給管20の軸方向に平行な直線Pが、基材19の搬送方向(X方向)に対して交差する様に現像液の供給管20は配置される。なお、図4は供給管の方向の説明を目的としているので散液ノズルは図示していない。ここで、直線Pと前記X方向とが形成する鋭角側の角度をβとすると、角度βが45°以上80°以下となるように現像液の供給管20は配置される。βが45°より小さくなると基材19の幅方向に現像液の散液ムラが発生することで現像ムラが生じてしまい、一方、80°より大きいと同一の現像液の供給管20において隣り合う散液ノズル16から供給された現像液の流れが干渉し合い、基材19上で現像液が滞留し現像ムラが発生してしまう。これらの理由により、前記X方向と前記直線Pとが形成する鋭角側の角度であるβが45°以上80°以下の範囲であることが好ましい。
 [散液ノズルの配置]
 本発明の現像装置において、前記散液ノズルの開孔面は上流側を向いている。前記散液ノズルの開孔面が上流側を向いていることにより、現像液の上流方向への流れを形成し、洗浄液槽への現像液の流入を防ぐことが可能となる。
 また、前記散液ノズルの開孔面に対して垂直方向の直線を直線Oとしたとき、前記散液ノズルの開孔面に対して垂直方向の直線Oを前記Y方向にXZ平面上に投影した直線OXZが前記X方向と形成する鋭角側の角度αが45°以上85°以下である。
 ここで、散液ノズルの開孔面に対して垂直方向の直線Oは、図3に示す様に、ノズルの散液方向に対応する。
 図5は、本発明の現像装置の現像領域における散液ノズル16の配置を示す側面図(XZ平面図)である。なお、図5においては、散液ノズル16は現像液の各供給管ごとに最も手前の1本のみを図示している。図5に示すように、散液ノズルの開孔面に対して垂直方向の直線Oを前記Y方向にXZ平面上に投影した直線OXZが前記X方向と形成する鋭角側の角度αは45°以上85°以下の範囲である。αが45°より小さいと散液される現像液の打圧が小さくなり塗布膜の溶解、除去が上手く行われず残渣が発生してしまう。一方、85°より大きいと現像液が基材19上で滞留し次工程である洗浄工程に現像液が流入し、洗浄液を汚染してしまうため、前記X方向と前記直線OXZとが形成する鋭角側の角度であるαが、45°以上80°以下の範囲であることが好ましく、洗浄工程への現像液の流入を防止するためには75°以下であることがより好ましい。
 また、前記直線Oを前記X軸方向にZY平面上に投影した直線OZYが前記Y方向と形成する鋭角側の角度γが、60°以上90°未満であることが好ましい。
 図6は、本発明の現像装置の現像領域における散液ノズル16を搬送方向から見た図(ZY平面図)である。なお、図6においては、現像液の供給管20は1本のみを図示している。図6に示すように、直線Oを前記X軸方向にZY平面上に投影した直線OZYが前記Y方向と形成する鋭角側の角度γが60°以上90°未満に傾けることで、現像液の基材上での滞留を解消し基材幅方向に現像液の流れを生じさせることで、現像液の新液交換効率を改善し、より均一な現像を施すことができるため好ましい。一方、γが60°より小さいと散液される現像液の打圧が小さくなり塗布膜の溶解、除去が上手く行われず残渣が発生してしまう場合があり、γが90°であると現像液の上流方向への流れを形成できず、洗浄液槽に現像液が流入してします場合があるため、直線Oを前記X軸方向にZY平面上に投影した直線OZYが前記Y方向と形成する鋭角側の角度γが60°以上90°未満の範囲であることが好ましい。
 [ノズルの散液孔の詳細]
 図7は本発明に用いる現像液の散液ノズルの開孔面を示す概略図である。前記ノズルの散液孔の形状は特に限定されないが、図7に示すように、現像効率を上げるために扁平な形状が好ましく、楕円形状がより好ましい。また、該散液孔の長径Rを前記Z方向にXY平面上に投影した直線RXYと前記X方向とが形成する鋭角側の角度λが5°~90°であることが好ましい。ここで長径とは、散液孔に外接する面積が最小となる長方形の重心を通り長辺と平行な線分とする。また角度βとλは-10<β-λ<10の範囲であることがより好ましい。現像液の散液角度であるλを供給管の配置角度であるβに対して-10<β-λ<10に設定することで、基材19上にて現像液が滞留することなく均一な流れを形成し、より現像ムラのない均一な現像を施すことができる。
 [洗浄領域、乾燥領域]
 洗浄領域11には、洗浄液を散液し基材19上の現像液を希釈する洗浄手段が配置されており、基材上に残存する現像液の成分がほとんどなくなる程度まで希釈することを目的とする。なお、現像液の成分がほとんどなくなる程度とは、現像液の成分の濃度が0.05質量%以下であることをいい、0.01質量%以下であればより好ましい。そのために、洗浄領域11では洗浄手段として洗浄液を基材19に供給するため複数の散液ノズル16を有する洗浄液の供給管21を基材19上部に設置し、洗浄液ノズル17から洗浄液を散液することで基材19上に残存する現像液を希釈する。この際使用する洗浄液としては、特に限定されず、例えば、洗浄性やコスト面、環境面から純水が最適であるが、電解イオン水、オゾン溶解液などの特殊機能加工水なども用いられる。
 乾燥領域12には、液体成分を除去する乾燥手段が配置される。乾燥手段については、特に限定はしないが、例えば乾燥ブロー18などを用いエアーを吹きつけることで液体を除去する方式や熱風により液体成分を乾燥させる乾燥手段などを用いることができる。
 [巻き出しロール、巻き取りロール]
 基材19の材質は特に限定はしないが、例えば、ポリエチレンテレフタレートフィルム(以下、「PETフィルム」)、ポリイミドフィルム、ポリエステルフィルム、アラミドフィルムなどを用いることができ、なかでもコスト面からPETフィルムを使用することが好ましい。
 また、基材19の形態は生産性の観点から枚葉ではなく連続したフィルムが好ましく、長尺フィルムを使用することがより好ましい。
 前記現像手段より上流に巻き出しロールと、乾燥手段より下流に巻き取りロールを備えることが好ましい。かかる構成を採ることにより、長尺のフィルムを適用し、ロールからの巻き出し-一連の処理-ロールへの巻き取りを連続して行ういわゆるロール・ツー・ロール(RtoR)方式で処理を行うことができるためである。
 [回路基板の製造方法]
 本発明の回路基板の製造方法は、潜像が形成された塗膜を有する基材を略水平に搬送し、前記基材に現像液を散液する現像工程と、洗浄液を散液し現像液を希釈する洗浄工程と、液体成分を除去する乾燥工程とを、この順で通し、かつ、現像工程では複数の散液ノズルで上流側に向けて現像液を散液する、回路基板の製造方法であって、
前記基材の搬送方向をX方向、鉛直方向をZ方向、機幅方向をY方向、としたとき、
前記散液ノズルから散液される現像液の散液方向O’を前記Y方向にXZ平面上に投影した直線O’XZが前記X方向と形成する鋭角側の角度α’が45°以上85°以下であり、
前記散液ノズルの一連の散液孔を結ぶ直線P’が前記X方向と形成する鋭角側の角度β’が、45°以上80°以下である回路基板の製造方法である。かかる条件にて、現像液を散液するには、例えば、図1に示す様な、基材の搬送面の上側に供給管の軸方向が該搬送面に略平行となるように複数配置された現像液の供給管20に備えられる複数の散液ノズル16から現像液を散液する現像装置を用いることが好ましい。
 [直線O’、R’等の定義]
 本発明の回路基板の製造方法における現像工程の基材19、搬送コンベア15、供給管20、散液ノズル16の配置状況を図2を用いて説明する。図2に示すように、基材19の搬送方向をX方向、鉛直方向をZ方向、機幅方向をY方向と定義する。すなわち、X方向及びZ方向に直角となる方向がY方向である。
また、図3、8に示すように、前記散液ノズルの一連の散液孔を結ぶ直線P’、前記散液ノズルから散液される現像液の散液方向O’、図9に示すように、直線O’をXZ平面上に投影した直線をO’XZ、図10に示すように、直線O’をZY平面上に投影した直線をO’ZY、と定義し、図12に示すように、現像液の散液部の長径をR’XYと定義する。ここで、前記散液ノズルの一連の散液孔を結ぶ直線P’の意味は、散液ノズルから散液される現像液の散液元すなわち散液距離の起点となる位置の並びを示すものであり、通常、供給管と平行な直線Pと直線P’は平行である。
 [現像液の散液方向]
 現像工程においては、現像液を基材19に供給するための複数の散液ノズル16を有する現像液の供給管20が搬送面の上側に供給管の軸方向が該搬送面に略平行となるように複数配置され、直線Pと直線P’が平行である装置を用いて行うことが好ましい。図4は、本発明の回路基板の製造方法の現像工程における現像液の供給管の配置を示す平面図(XY平面図)である。なお、既述の通り図4では散液ノズルを省略しており、本説明は直線Pと直線P’が平行である例に基づくものとする。また、本説明においては、図4中のPはP’と、βはβ’と読み替えるものとする。図4に示すように、図示しない散液ノズルが設置されている現像液の供給管の平行方向である前記直線P(すなわち、直線P’と等価)と前記X方向とが形成する鋭角側の角度であるβ(すなわちβ’と等価)が45°以上80°以下となるように現像液が散液される。β’が45°より小さくなると現像液の基材19の幅方向に散液ムラが発生することで現像ムラが生じてしまい、一方、80°より大きいと隣り合う現像液同士の流れが干渉し合い、基材19上で現像液が滞留し現像ムラが発生してしまう。したがって、前記X方向と前記直線Pとが形成する鋭角側の角度であるβが45°以上80°以下の範囲であることが好ましい。
 図9は、本発明の回路基板の製造方法の現像工程における現像液の散液方向を示す側面図(XZ平面図)である。図9に示すように、散液方向の直線O’を前記Y方向にXZ平面上に投影した直線O’XZが前記X方向と形成する鋭角側の角度α’が45°以上85°以下の範囲であり、前記直線O’XZは散液孔を起点として上流側にある。α’が45°より小さいと散液される現像液の打圧が小さくなり塗布膜の溶解、除去が上手く行われず残渣が発生してしまう。一方、85°より大きいと現像液が基材19上で滞留し次工程である洗浄工程に現像液が流入し、洗浄液を汚染してしまうため、前記X方向と前記直線O’XZとが形成する鋭角側の角度であるα’が、45°以上80°以下の範囲であることが好ましい。
 図10は、本発明の回路基板の製造方法の現像工程における現像液の散液方向を示す側面図(XZ平面図)である。図10に示すように、直線O’を前記X軸方向にZY平面上に投影した直線O’ZYが前記Y方向と形成する鋭角側の角度γ’を60°以上90°未満に傾けることで、現像液の基材上での滞留を解消し基材幅方向に現像液の流れを生じさせることで、現像液の新液交換効率を改善し、均一な現像を施すことができる。一方、γ’が60°より小さいと散液される現像液の打圧が小さくなり塗布膜の溶解、除去が上手く行われず残渣が発生してしまうため、直線O’を前記X軸方向にZY平面上に投影した直線O’ZYが前記Y方向と形成する鋭角側の角度γ’が60°以上90°未満の範囲であることが好ましい。
 [現像液の散液部の形状]
 図11は、本発明の回路基板の製造方法の現像工程における現像液の散液の状況の一例を示した斜視図であり、図12は現像液の散液部の平面図(XY平面図)である。前記現像液の散液部の形状は特に限定しないが、現像効率を上げるために扁平な形状が好ましく、図12に示すように、楕円形状が、より好ましい。また、散液部の長径をR’XYとすると直線R’XYと前記X方向とが形成する鋭角側の角度λ’が5°~90°であることが好ましい。ここで長径とは、散液部に外接する面積が最小となる長方形の重心を通り長辺と平行な線分とする。また角度β’とλ’は-10<β’-λ’<10の範囲であることがより好ましい。現像液の散液角度であるλ’を前記散液ノズルの一連の散液孔を結ぶ直線P’をXY平面上に投影した角度であるβ’に対して-10<β’-λ’<10とすることで、基材19上にて現像液が滞留することなくより均一な流れを形成し、現像ムラのないより均一な現像を施すことができる。
 [現像液散液量]
 散液ノズル16から散液される現像液の散液量は特に限定はしないが、0.2~5L/minの範囲が好ましく、0.4~1.0L/minの範囲がより好ましい。散液ノズル16から散液される散液量が0.2L/minより少ないと、基材19上で現像液の交換が行われず現像ムラが発生してしまう場合があり、一方、5L/minより多いと、散液される現像液の打圧によりパターンが剥がれてしまう場合があるためである。
 [搬送速度]
 基材19の搬送速度は特に限定はしないが、0.5~7m/minが好ましく、2~5m/minの範囲がより好ましい。基材19の搬送速度が7m/minより速いと、現像液暴露時間が短くなりパターン間に残留が発生する場合があり、0.5m/minより遅いと現像液暴露時間が長くなりパターン剥がれが発生する場合があるためである。
 [現像液の種類]
 潜像が形成された塗膜がネガ型感光性樹脂組成物に露光によるパターンの潜像を形成したものである場合、現像工程にて使用する現像液としては、アルカリ現像液が好ましい。かかる現像液としては、例えば、水酸化テトラメチルアンモニウム、ジエタノールアミン、ジエチルアミノエタノール、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、トリエチルアミン、ジエチルアミン、メチルアミン、ジメチルアミン、酢酸ジメチルアミノエチル、ジメチルアミノエタノール、ジメチルアミノエチルメタクリレート、シクロヘキシルアミン、エチレンジアミン又はヘキサメチレンジアミンの水溶液が挙げられるが、これらの水溶液に、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド若しくはγ-ブチロラクトン等の極性溶媒、メタノール、エタノール若しくはイソプロパノール等のアルコール類、乳酸エチル若しくはプロピレングリコールモノメチルエーテルアセテート等のエステル類、シクロペンタノン、シクロヘキサノン、イソブチルケトン若しくはメチルイソブチルケトン等のケトン類又は界面活性剤を添加しても構わない。有機現像を行う場合の現像液としては、例えば、N-メチル-2-ピロリドン、N-アセチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、ジメチルスルホキシド若しくはヘキサメチルホスホルトリアミド等の極性溶媒又はこれら極性溶媒とメタノール、エタノール、イソプロピルアルコール、キシレン、水、メチルカルビトール若しくはエチルカルビトールとの混合溶液を用いることができるが、汎用性、現像能力の安定性の観点から、より好ましくは炭酸ナトリウムを使用する
 [ロール・ツー・ロール方式]
 基材19の材質は特に限定はしないが、例えば、ポリエチレンテレフタレートフィルム(以下、「PETフィルム」)、ポリイミドフィルム、ポリエステルフィルム、アラミドフィルムなどを用いることができ、なかでもPETフィルムを使用することが好ましい。
 また、基材19の形態は生産性の観点から長尺フィルムを使用することが好ましく、長尺フィルムを使用することがより好ましい。かかる場合、長尺フィルムフィルムを巻き出しロールから現像工程に供給し、巻き出して現像処理を行い、洗浄処理、乾燥処理後に巻き取りロールに巻き取るいわゆるロール・ツー・ロール方式(RtoR方式)で処理を行うことが好ましい。
 [塗膜]
 本発明において、潜像が形成された塗膜がネガ型感光性樹脂組成物に露光によるパターンの潜像を形成したものである場合に用いられるネガ型感光性樹脂組成物としては、(a)導電性粒子、(b)カルボキシル基を有する感光性化合物、及び、(c)光重合開始剤を含有する、ネガ型感光性樹脂組成物を用いることが好ましい。
 導電性粒子(a)としては、銀(以下、「Ag」)、金(以下、「Au」)、銅、白金、鉛、スズ、ニッケル、アルミニウム、タングステン、モリブデン、クロム、チタン若しくはインジウム又はこれら金属の合金が挙げられるが、導電性の観点からAg、Au又は銅が好ましく、コスト及び安定性の観点からAgがより好ましい。
 導電性粒子の体積平均粒子径は、0.1~10μmが好ましく、0.5~6μmがより好ましい。体積平均粒子径が0.1μm以上であると、キュア工程での導電性粒子(a)同士の接触確率が向上し、製造された導電パターンの比抵抗及び断線確率が低くなる。さらには、露光工程において露光光が、ネガ型感光性樹脂組成物を塗布して得られた塗膜中をスムーズに透過することができ、微細パターニングが容易となる。一方で、体積平均粒子径が10μm以下であると、製造された導電パターンの表面平滑度、パターン精度及び寸法精度が向上する。なお、導電性粒子(a)の体積平均粒子径は、コールターカウンター法により測定することができる。
 導電性粒子の含有量は、ネガ型感光性樹脂組成物中の全固形分に対して60~95質量%が好ましい。全固形分に対する含有量が60質量%以上であると、キュア時の導電性粒子(a)同士の接触確率が向上し、製造された導電パターンの比抵抗及び断線確率が低くなる。一方で、全固形分に対する含有量が95質量%以下であると、露光工程において露光光が、ネガ型感光性樹脂組成物を塗布して得られた塗布膜中をスムーズに透過することができ、微細なパターニングが容易となる。ここで全固形分とは、溶剤を除く、ネガ型感光性樹脂組成物の全構成成分をいう。
 カルボキシル基を有する感光性化合物(b)としては、分子内に重合性不飽和基を有するモノマー、オリゴマーもしくはポリマーを含むものである。
 例えば、スチレン、p-メチルスチレン、o-メチルスチレン、m-メチルスチレン、α-メチルスチレン、クロロメチルスチレン若しくはヒドロキシメチルスチレン等のスチレン類、アクリル系モノマー、1-ビニル-2-ピロリドン、アクリル系共重合体又はエポキシカルボキシレート化合物が挙げられる。
 アクリル系モノマーとしては、例えば、アクリル酸、メチルアクリレート、エチルアクリレート、2-エチルヘキシルアクリレート、n-ブチルアクリレート、iso-ブチルアクリレート、iso-プロパンアクリレート、グリシジルアクリレート、ブトキシトリエチレングリコールアクリレート、ジシクロペンタニルアクリレート、ジシクロペンテニルアクリレート、2-ヒドロキシエチルアクリレート、イソボルニルアクリレート、2-ヒドロキシプロピルアクリレート、イソデキシルアクリレートイソデシルアクリレート、イソオクチルアクリレート、ラウリルアクリレート、2-メトキシエチルアクリレート、メトキシエチレングリコールアクリレート、メトキシジエチレングリコールアクリレート、オクタフロロペンチルアクリレート、フェノキシエチルアクリレート、ステアリルアクリレート、トリフロロエチルアクリレート、アミノエチルアクリレート、フェニルアクリレート、フェノキシエチルアクリレート、1-ナフチルアクリレート、2-ナフチルアクリレート、チオフェノールアクリレート若しくはベンジルメルカプタンアクリレート、アリル化シクロヘキシルジアクリレート、メトキシ化シクロヘキシルジアクリレート、1,4-ブタンジオールジアクリレート、1,3-ブチレングリコールジアクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、ポリエチレングリコールジアクリレート、ネオペンチルグリコールジアクリレート、プロピレングリコールジアクリレート、ポリプロピレングリコールジアクリレート若しくはトリグリセロールジアクリレート、トリメチロールプロパントリアクリレート、ジトリメチロールプロパンテトラアクリレート、ジペンタエリスリトールモノヒドロキシペンタアクリレート若しくはジペンタエリスリトールヘキサアクリレート、アクリルアミド、N-メトキシメチルアクリルアミド、N-エトキシメチルアクリルアミド、N-n-ブトキシメチルアクリルアミド若しくはN-イソブトキシメチルアクリルアミド、エポキシ基を不飽和酸で開環させた水酸基を有するエチレングリコールジグリシジルエーテルのアクリル酸付加物、ジエチレングリコールジグリシジルエーテルのアクリル酸付加物、ネオペンチルグリコールジグリシジルエーテルのアクリル酸付加物、グリセリンジグリシジルエーテルのアクリル酸付加物、ビスフェノールAジグリシジルエーテルのアクリル酸付加物、ビスフェノールFのアクリル酸付加物若しくはクレゾールノボラックのアクリル酸付加物等のエポキシアクリレートモノマー又はγ-アクリロキシプロピルトリメトキシシラン、あるいは、それらのアクリル基を、メタクリル基に置換した化合物が挙げられる。
 アクリル系共重合体とは、用いるモノマーすなわち共重合成分にアクリル系モノマーを含む共重合体をいう。
 カルボキシル基を有するアルカリ可溶性のアクリル系共重合体は、モノマーとして不飽和カルボン酸等の不飽和酸を用いることにより得られる。不飽和酸としては、例えば、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、マレイン酸、フマル酸若しくは酢酸ビニル又はこれらの酸無水物が挙げられる。用いる不飽和酸の多少により、得られるアクリル系共重合体の酸価を調整することができる。
 また、上記アクリル系共重合体が有するカルボキシル基と、グリシジル(メタ)アクリレート等の不飽和二重結合を有する化合物と、を反応させることにより、側鎖に反応性の不飽和二重結合を有する、アルカリ可溶性のアクリル系共重合体が得られる。
 エポキシカルボキシレート化合物とは、エポキシ化合物と、不飽和二重結合を有するカルボキシル化合物と、を出発原料として合成することができる化合物をいう。出発原料となり得るエポキシ化合物としては、例えば、グリシジルエーテル類、脂環式エポキシ樹脂、グリシジルエステル類、グリシジルアミン類又はエポキシ樹脂が挙げられるが、より具体的には、メチルグリシジルエーテル、エチルグリシジルエーテル、ブチルグリシジルエーテル、エチレングリコールジグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、ビスフェノールAジグリシジルエーテル、水添ビスフェノールAジグリシジルエーテル、ビスフェノールFジグリシジルエーテル、ビスフェノールSジグリシジルエーテル、ビスフェノールフルオレンジグリシジルエーテル、ビフェノールジグリシジルエーテル、テトラメチルビフェノールグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、3’,4’-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート又はtert-ブチルグリシジルアミンが挙げられる。また、不飽和二重結合を有するカルボキシル化合物としては、例えば、(メタ)アクリル酸、クロトン酸、桂皮酸又はα-シアノ桂皮酸が挙げられる。
 エポキシカルボキシレート化合物と多塩基酸無水物とを反応させて、エポキシカルボキシレート化合物の酸価を調整しても構わない。多塩基酸無水物としては、例えば、無水コハク酸、無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、無水イタコン酸、3-メチルテトラヒドロ無水フタル酸、4-メチルーヘキサヒドロ無水フタル酸、無水トリメリット酸又は無水マレイン酸が挙げられる。
 上記多塩基酸無水物と反応させたエポキシカルボキシレート化合物が有するカルボキシル基と、グリシジル(メタ)アクリレート等の不飽和二重結合を有する化合物と、を反応させることにより、エポキシカルボキシレート化合物が有する反応性の不飽和二重結合の量を調整しても構わない。
 エポキシカルボキシレート化合物が有するヒドロキシ基と、ジイソシアネート化合物を反応させることにより、ウレタン化をしても構わない。ジイソシアネート化合物としては、例えば、ヘキサメチレンジイソシアネート、テトラメチルキシレンジイソシアネート、ナフタレン-1,5-ジイソシアネート、トリデンジイソシアネート、トリメチルヘキサメチレンジイソシアネト、イソホロンジイソシアネート、アリルシアンジイソシアネート又はノルボルナンジイソシアネートが挙げられる。
 カルボキシル基を有する感光性化合物(b)の酸価は、アルカリ可溶性を至適なものとするため、30~250mgKOH/gであることが好ましい。酸価が30mgKOH/g未満であると、可溶部分の溶解性が低下する場合がある。一方で、酸価が250mgKOH/gを超えると、現像許容幅が狭くなる場合がある。なお、カルボキシル基含有化合物(B)の酸価は、JIS K 0070:1992に準拠して測定することができる。
 本発明において、潜像が形成された塗膜がネガ型感光性樹脂組成物に露光によるパターンの潜像を形成したものである場合に用いられるネガ型感光性樹脂組成物は、分子内に重合性不飽和基を有するモノマー、オリゴマーもしくはポリマーを含有するが、これらの成分はいずれも活性光線のエネルギー吸収能力はないため、光硬化を行わせるためには光重合開始剤(c)を用いる必要がある。光重合開始剤(c)は、光硬化に使用される光源によって選択され、光ラジカル重合開始剤や光カチオン重合開始剤等が使用できる。
 光重合開始剤(c)としては、例えば、1,2-オクタンジオンー1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)]、2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド、エタノンー1-[9-エチル-6-2(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(O-アセチルオキシム)、ベンゾフェノン、o-ベンゾイル安息香酸メチル、4,4’-ビス(ジメチルアミノ)ベンゾフェノン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、4,4’-ジクロロベンゾフェノン、4-ベンゾイル-4’-メチルジフェニルケトン、ジベンジルケトン、フルオレノン、2,2’-ジエトキシアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、2-ヒドロキシ-2-メチルプロピオフェノン、p-t-ブチルジクロロアセトフェノン、チオキサントン、2-メチルチオキサントン、2-クロロチオキサントン、2-イソプロピルチオキサントン、ジエチルチオキサントン、ベンジル、ベンジルジメチルケタール、ベンジル-β-メトキシエチルアセタール、ベンゾイン、ベンゾインメチルエーテル、ベンゾインブチルエーテル、アントラキノン、2-t-ブチルアントラキノン、2-アミルアントラキノン、β-クロルアントラキノン、アントロン、ベンズアントロン、ジベンゾスベロン、メチレンアントロン、4-アジドベンザルアセトフェノン、2,6-ビス(p-アジドベンジリデン)シクロヘキサノン、6-ビス(p-アジドベンジリデン)-4-メチルシクロヘキサノン、1-フェニル-1,2-ブタンジオン-2-(O-メトキシカルボニル)オキシム、1-フェニル-プロパンジオン-2-(O-エトキシカルボニル)オキシム、1-フェニル-プロパンジオン-2-(O-ベンゾイル)オキシム、1,3-ジフェニル-プロパントリオン-2-(O-エトキシカルボニル)オキシム、1-フェニル-3-エトキシ-プロパントリオン-2-(O-ベンゾイル)オキシム、ミヒラーケトン、2-メチル-[4-(メチルチオ)フェニル]-2-モルフォリノ-1-プロパノン、ナフタレンスルホニルクロライド、キノリンスルホニルクロライド、N-フェニルチオアクリドン、4,4’-アゾビスイソブチロニトリル、ジフェニルジスルフィド、ベンズチアゾールジスルフィド、トリフェニルホスフィン、カンファーキノン、2,4-ジエチルチオキサントン、イソプロピルチオキサントン、四臭化炭素、トリブロモフェニルスルホン、過酸化ベンゾイン、エオシン又はメチレンブルー等の光還元性色素と、アスコルビン酸若しくはトリエタノールアミン等の還元剤との組み合わせが挙げられるが、光感度の高い、オキシムエステル系化合物が好ましい。
 光重合開始剤(c)の含有量は、カルボキシル基を有する感光性化合物(b)100質量部に対して0.05~30質量部が好ましい。カルボキシル基を有する感光性化合物(b)100質量部に対する含有量が0.05質量部以上であると、露光部の硬化密度が増加し、現像後の残膜率を高くすることができる。一方で、カルボキシル基を有する感光性化合物(b)100質量部に対する含有量が30質量部以下であると、ネガ型感光性樹脂組成物を塗布して得られた塗布膜上部での、光重合開始剤(c)による過剰な光吸収が抑制される。その結果、製造された導電パターンが逆テーパー形状となることによる、基材との密着性低下が抑制される。
 本発明において、潜像が形成された塗膜がネガ型感光性樹脂組成物に露光によるパターンの潜像を形成したものである場合に用いられるネガ型感光性樹脂組成物は、光重合開始剤(c)と共に、増感剤を含有しても構わない。
 増感剤としては、例えば、2,4-ジエチルチオキサントン、イソプロピルチオキサントン、2,3-ビス(4-ジエチルアミノベンザル)シクロペンタノン、2,6-ビス(4-ジメチルアミノベンザル)シクロヘキサノン、2,6-ビス(4-ジメチルアミノベンザル)-4-メチルシクロヘキサノン、ミヒラーケトン、4,4-ビス(ジエチルアミノ)ベンゾフェノン、4,4-ビス(ジメチルアミノ)カルコン、4,4-ビス(ジエチルアミノ)カルコン、p-ジメチルアミノシンナミリデンインダノン、p-ジメチルアミノベンジリデンインダノン、2-(p-ジメチルアミノフェニルビニレン)イソナフトチアゾール、1,3-ビス(4-ジメチルアミノフェニルビニレン)イソナフトチアゾール、1,3-ビス(4-ジメチルアミノベンザル)アセトン、1,3-カルボニルビス(4-ジエチルアミノベンザル)アセトン、3,3-カルボニルビス(7-ジエチルアミノクマリン)、N-フェニル-N-エチルエタノールアミン、N-フェニルエタノールアミン、N-トリルジエタノールアミン、ジメチルアミノ安息香酸イソアミル、ジエチルアミノ安息香酸イソアミル、3-フェニル-5-ベンゾイルチオテトラゾール又は1-フェニル-5-エトキシカルボニルチオテトラゾールが挙げられる。
 増感剤の含有量は、カルボキシル基を有する感光性化合物(b)100質量部に対して0.05~10質量部が好ましい。カルボキシル基を有する感光性化合物(b)100質量部に対する含有量が0.05質量部以上であると、光感度が向上する。一方で、カルボキシル基を有する感光性化合物(b)100質量部に対する含有量が10質量部以下であると、ネガ型感光性樹脂組成物を塗布して得られた塗布膜上部での、過剰な光吸収が抑制される。その結果、製造された導電パターンが逆テーパー形状となることによる、基材との密着性低下が抑制される
 本発明において、潜像が形成された塗膜がネガ型感光性樹脂組成物に露光によるパターンの潜像を形成したものである場合に用いられるネガ型感光性樹脂組成物は、有機溶剤を含有することが好ましい。溶剤としては、例えば、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、ジメチルイミダゾリジノン、ジメチルスルホキシド、γ-ブチロラクトン、乳酸エチル、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、エチレングリコールモノ-n-プロピルエーテル、ジアセトンアルコール、テトラヒドロフルフリルアルコール、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテルアセテート(以下、「DMEA」)、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテルアセテート、トリエチレングリコールジメチルエーテル又は2,2,4,-トリメチル-1,3-ペンタンジオールモノイソブチレートが挙げられるが、沸点が150℃以上の溶媒が好ましい。沸点が150℃以上であると、溶剤の揮発が抑制され、ネガ型感光性樹脂組成物の増粘を抑制することができる。
 本発明において、潜像が形成された塗膜がネガ型感光性樹脂組成物に露光によるパターンの潜像を形成したものである場合に用いられるネガ型感光性樹脂組成物は、その所望の特性を損なわない範囲であれば、分子内に不飽和二重結合を有しない非感光性ポリマー又は可塑剤、レベリング剤、界面活性剤、シランカップリング剤、消泡剤若しくは顔料等の添加剤を含有しても構わない。
 上記の非感光性ポリマーとしては、例えば、エポキシ樹脂、ノボラック樹脂、フェノール樹脂、ポリイミド前駆体又は既閉環ポリイミドが挙げられる。
 可塑剤としては、例えば、ジブチルフタレート、ジオクチルフタレート、ポリエチレングリコール又はグリセリンが挙げられる。
 レベリング剤としては、例えば、特殊ビニル系重合物又は特殊アクリル系重合物が挙げられる。
 シランカップリング剤としては、例えば、メチルトリメトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、ヘキサメチルジシラザン、3-メタクリロキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン又はビニルトリメトキシシランが挙げられる。
以下、本発明の実施例について説明するが、本発明はこれらによって限定されるものではない。
 (実施例1)
 50℃で48時間真空乾燥したバインダーポリマー(根上工業社製TR-2500)60g、ジエチレングリコールモノブチルエーテルアセテート100gを撹拌装置、温度計を備えた3つ口フラスコに計量し、60℃で加熱溶解させた。フラスコを30℃まで冷却し、イソオクチルアクリレート5g、ジペンタエリスリトールヘキサアクリレート25g、1,6-ヘキサンジオール-ビス[(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]0.1g、1-ヒドロキシシクロヘキシルフェニルケトン5g、分散剤(共栄社化学社製、“フローレン(登録商標)”G-700DMEA)2gを加え、2時間撹拌した。得られた有機成分120gと湿式還元法により製造されたもので平均粒径1.19μm、比表面積1.12m/g、タップ密度4.8g/cmのAg粉末を3本ローラーで混練してネガ型感光性樹脂組成物を得た。
 このネガ型感光性樹脂組成物をロール上のPETフィルム基材19(幅500mm、厚さ200um)に、ポリエステル製スクリーンメッシュを用いて8μmの厚みに均一に塗布したのちに、ボックス式のオーブンにて100℃で10分間加熱し乾燥させた。乾燥後、所望のストライプ状パターン(ピッチ40μm、線幅25μm)を有するフォトマスクを用いて、400mJ/cm(波長365nm換算)の露光量にて行った。そして、現像工程を図1に示す現像装置にて現像処理を行い、光硬化していないスペース部分の塗布膜を除去してストライプ状のパターンを形成した。
 図1に示すようにこの実施例における現像装置では、ネガ型感光性樹脂組成物が塗布されて露光されたロール状に巻かれた基材19を巻き出す巻き出しロール13と、現像液を散液するための複数の散液ノズル16、散液後の現像液を回収するための現像槽を備えた現像手段が配置された現像領域10と、洗浄液(純水)を散液し現像液を希釈するための複数の洗浄液ノズル17、散液後の洗浄液を回収するための洗浄槽を備えた洗浄手段が配置された洗浄領域11、フィルム上に残留する液体成分を除去し乾燥する乾燥領域12、現像処理を行ったフィルムをロール状に巻取るフィルム巻取りロール14を有し、上部各部を通して設けられた搬送コンベア15により幅20cmの基材19を4m/minの速度で搬送して現像するようになっている。現像領域には現像手段として現像液を散液する現像液の散液ノズル16は計18本配置されている。具体的には図3に示すよう(図示されているノズルの数と実施例の数は異なる)に1本当たり各6本の現像液の散液ノズルが5cm間隔で設けられた現像液の供給管20が図4に示す様に3列配置されている。ここで、この現像液の供給管と平行な直線P(および、散液ノズルの一連の散液孔を結ぶ直線P’)とx軸とが形成する角度β(およびβ’)を70°になるように配置した。また、図5、図6に示すようにこの現像液の散液ノズル16はX方向、Y方向に傾斜を有しており、開孔面に対して垂直方向の直線O(および、これに対応して、現像液の散液方向O’)とX軸とがなす角度α(およびα’)が70°、Y軸とがなす角度γ(およびγ’)が80°になるよう調整した。また設置している現像液の散液ノズル16のノズルの散液孔が楕円形状であり、散液ノズル16から吐出される現像液の散液部の形状が楕円状に散液された。また、その散液部の長手方向に結ぶ直線RとY軸とが形成する鋭角側の角度λ(およびλ’)が70°となるように現像液の散液ノズル16を設置した。現像液として30℃に保持した炭酸ナトリウムの0.2質量%の水溶液を用いて、各現像液の散液ノズル16から2L/minの散液量にて現像液をフィルムに散液して、光硬化していないスペース部分の塗布膜を溶解・除去した。現像領域にて基材19上に散布されていた現像液は洗浄領域方向に流れ込むことなく、現像部内の現像槽に回収された。次に、洗浄領域にて、純水を洗浄液ノズル17から散液することで基材19上の現像液を希釈して除去し、基材19を洗浄し、乾燥領域にて基材19に熱処理を施し洗浄液を乾燥させた。現像後のパターンをボックス式のオーブンにて140℃で60分間熱処理を施し、導電パターンを形成した。
 (実施例2)
 実施例1において、搬送速度を7.5m/minになるように設定し、それ以外の条件は実施例1と同様にして、導電パターンの作製を行った。
 (実施例3)
 実施例1において、搬送速度を0.2m/minになるように設定し、それ以外の条件は実施例1と同様にして、導電パターンの作製を行った。
 (実施例4)
 実施例1において、各現像液の散液ノズル16からの散液量を0.1L/minになるように設定し、それ以外の条件は実施例1と同様にして、導電パターンの作製を行った。
 (実施例5)
 実施例1において、各現像液の散液ノズル16からの散液量を6.0L/minになるように設定し、それ以外の条件は実施例1と同様にして、導電パターンの作製を行った。
 (実施例6)
実施例1において、γ(およびγ’)の角度が45°になるように設定し、それ以外の条件は実施例1と同様にして、導電パターンの作製を行った。
 (実施例7)
実施例1において、γ(およびγ’)の角度が90°になるように設定し、それ以外の条件は実施例1と同様にして、導電パターンの作製を行った。
 (実施例8)
 実施例1において、λ(およびλ’)の角度が40°になるように設定し、それ以外の条件は実施例1と同様にして、導電パターンの作製を行った。
 (実施例9)
 実施例1において、α(およびα’)の角度が45°になるように設定し、それ以外の条件は実施例1と同様にして、導電パターンの作製を行った。
 (実施例10)
 実施例1において、α(およびα’)の角度が80°になるように設定し、それ以外の条件は実施例1と同様にして、導電パターンの作製を行った。
 (比較例1)
 実施例1において、α(およびα’)の角度が90°、β(およびβ’)の角度が90°、γ(およびγ’)の角度が90°、λ(およびλ’)の角度が90°になるように設定し、それ以外の条件は実施例1と同様にして、導電パターンの作製を行った。
 (比較例2)
 実施例1において、α(およびα’)の角度が30°になるように設定し、それ以外の条件は実施例1と同様にして、導電パターンの作製を行った。
 (比較例3)
 実施例1において、α(およびα’)の角度が90°になるように設定し、それ以外の条件は実施例1と同様にして、導電パターンの作製を行った。
 (比較例4)
 実施例1において、β(およびβ’)の角度が30°、λ(およびλ’)の角度が30°になるように設定し、それ以外の条件は実施例1と同様にして、導電パターンの作製を行った。
 (比較例5)
 実施例1において、β(およびβ’)の角度が90°、λ(およびλ’)の角度が90°になるように設定し、それ以外の条件は実施例1と同様にして、導電パターンの作製を行った。
 (比較例6)
 実施例1において、γ(およびγ’)を90°、λ(およびλ’)を90°になるように現像液の散液ノズル16を下流方向に向けて設置・配置し、図13に示すように現像領域と洗浄領域の間に現像液の洗浄領域への流れ込みを防止するためのエアカット91を設置し、それ以外の条件は実施例1と同様にして、導電パターンの作製を行った。
 (評価手法)
 以上の実施例、比較例に示した通り得られた導電パターンを光学顕微鏡(VHX-500)にて確認し、残渣、パターン剥がれ、配線の直進性を基準に評価を行った。残渣、剥がれがなくパターンの直進性も良好なものを「A」、残渣、剥がれがないが、パターンの直進性は多少悪化しているものを「B」、残渣や剥がれが発生しているものを「C」と評価した。その結果を表1に示す。
 また、20sheet分の現像処理を施した後、洗浄工程にて使用している純水のPH測定機を用いて測定することで、現像液の流入度合いの評価を行った。PH<=7.8のものを「A」、7.8<PH<=8.0のものを「B」、PH>8.0のものを「C」と評価した。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
10 現像領域
11 洗浄領域
12 乾燥領域
13 巻き出しロール
14 巻き取りロール
15 搬送コンベア
16 散液ノズル
17 洗浄液ノズル
18 乾燥ブロー
19 基材
20 現像液の供給管
21 洗浄液の供給管
71 現像液放射
91 エアカット

Claims (13)

  1. 潜像が形成された塗膜を有する基材を略水平に搬送し、前記基材に現像液を散液する現像工程と、洗浄液を散液し現像液を希釈する洗浄工程と、液体成分を除去する乾燥工程とを、この順で通し、かつ、前記現像工程では複数の散液ノズルで上流側に向けて現像液を散液する、回路基板の製造方法であって、前記基材の搬送方向をX方向、鉛直方向をZ方向、機幅方向をY方向、としたとき、前記散液ノズルから散液される現像液の散液方向O’を前記Y方向にXZ平面上に投影した直線O’XZが前記X方向と形成する鋭角側の角度α’が45°以上85°以下であり、前記散液ノズルの一連の散液孔を結ぶ直線P’が前記X方向と形成する鋭角側の角度β’が、45°以上80°以下である、回路基板の製造方法。
  2. 前記直線O’を前記X軸方向にZY平面上に投影した直線O’ZYが前記Y方向と形成する鋭角側の角度γ’が、60°以上90°未満である、請求項1記載の回路基板の製造方法。
  3. 前記現像液の散液部の長径R’XYが前記X方向と形成する鋭角側の角度λが5°以上90°未満である、請求項1または2に記載の回路基板の製造方法。
  4. 前記基材が、フィルムであり、該フィルムの搬送方向の長さをA、前記複数のノズルの散液孔の重心同士を結ぶ、X方向の最大幅をB、としたとき、1<A/Bの関係を満たす、請求項1~3のいずれか一項に記載の回路基板の製造方法。
  5. 前記基材を、ロール・ツー・ロール方式で搬送する、請求項1~3のいずれか一項に記載の回路基板の製造方法。
  6. 前記散液ノズル当たりの現像液の散液量が、0.2~5L/minである、請求項1~5のいずれか一項に記載の回路基板の製造方法。
  7. 前記基材を搬送する速度が、0.5~7m/minである、請求項1~6のいずれか一項に記載の回路基板の製造方法。
  8. 前記現像液が、アルカリ現像液であり、前記塗膜が、ネガ型感光性樹脂組成物を塗布膜に露光によるパターン形成を施したものである、請求項1~7のいずれか一項に記載の回路基板の製造方法。
  9. 前記ネガ型感光性樹脂組成物が、(a)導電性粒子(b)カルボキシル基を有する感光性化合物及び(c)光重合開始剤を含有する、請求項8に記載の回路基板の製造方法。
  10. 略水平の搬送面を有する基材の搬送手段と、該搬送手段の上流側から、前記基材に現像液を散液する現像手段と、洗浄液を散液し現像液を希釈する洗浄手段と、液体成分を除去する乾燥手段とを、この順で有し、かつ、前記現像手段として、複数の散液ノズルを有する現像液の供給管が、搬送面の上側に供給管の軸方向が該搬送面に略平行となるように配置された、潜像が形成された塗膜を有する基材の現像装置であって、前記散液ノズルの開孔面が上流側を向いており、前記基材の搬送方向をX方向、鉛直方向をZ方向、機幅方向をY方向、としたとき、前記散液ノズルの開孔面に対して垂直方向の直線Oを前記Y方向にXZ平面上に投影した直線OXZが前記X方向と形成する鋭角側の角度αが45°以上85°以下であり、前記供給管と平行な直線Pが前記X方向と形成する鋭角側の角度βが、45°以上80°以下である、
    現像装置。
  11. 前記直線Oを前記X軸方向にZY平面上に投影した直線OZYが前記Y方向と形成する鋭角側の角度γが、60°以上90°未満である、請求項10記載の現像装置。
  12. 前記ノズルの散液孔が楕円形状であり、該散液孔の長径Rを前記Z方向にXY平面上に投影した直線RXYが前記X方向と形成する鋭角側の角度λが5°~90°である、請求項10又は11記載の現像装置。
  13. 前記現像手段より上流に巻き出しロールと、乾燥手段より下流に巻き取りロールとを備える、請求項10~12のいずれか一項に記載の現像装置。
PCT/JP2017/010963 2016-03-25 2017-03-17 現像装置及び回路基板の製造方法 WO2017164126A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020187029159A KR20180128928A (ko) 2016-03-25 2017-03-17 현상 장치 및 회로 기판의 제조 방법
JP2017516001A JPWO2017164126A1 (ja) 2016-03-25 2017-03-17 現像装置及び回路基板の製造方法
CN201780019073.7A CN108885411A (zh) 2016-03-25 2017-03-17 显影装置和电路基板的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016061335 2016-03-25
JP2016-061335 2016-03-25

Publications (1)

Publication Number Publication Date
WO2017164126A1 true WO2017164126A1 (ja) 2017-09-28

Family

ID=59900469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/010963 WO2017164126A1 (ja) 2016-03-25 2017-03-17 現像装置及び回路基板の製造方法

Country Status (5)

Country Link
JP (1) JPWO2017164126A1 (ja)
KR (1) KR20180128928A (ja)
CN (1) CN108885411A (ja)
TW (1) TW201738670A (ja)
WO (1) WO2017164126A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110429053A (zh) * 2019-08-19 2019-11-08 江阴江化微电子材料股份有限公司 一种具有活动盖板的湿蚀刻设备及湿蚀刻方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109765763A (zh) * 2019-03-21 2019-05-17 深圳先进技术研究院 一种用于感光性聚酰亚胺前体的显影剂及图案化方法
CN112255884B (zh) * 2020-09-27 2024-04-12 合肥晶合集成电路股份有限公司 一种光刻图形的制造方法与制造系统
CN112676259B (zh) * 2020-12-30 2022-07-19 广州安费诺诚信软性电路有限公司 一种含有微小孔的fpc板的清洗工艺

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52163333U (ja) * 1976-06-04 1977-12-10
JPH09160006A (ja) * 1995-12-12 1997-06-20 Sharp Corp 液晶用基板の液体噴射装置
JPH09213668A (ja) * 1996-02-01 1997-08-15 Dainippon Screen Mfg Co Ltd 基板処理装置
JPH11202117A (ja) * 1998-01-14 1999-07-30 Mitsubishi Chemical Corp カラーフィルターの製造方法
JP2001338864A (ja) * 2000-05-30 2001-12-07 Dainippon Screen Mfg Co Ltd 基板処理装置および基板処理方法
JP2003045844A (ja) * 2001-07-26 2003-02-14 Advanced Display Inc 基板処理装置
JP2003122021A (ja) * 2001-10-17 2003-04-25 Dainippon Printing Co Ltd 現像処理装置
JP2006255556A (ja) * 2005-03-16 2006-09-28 Sharp Corp 液処理装置および液晶表示装置
JP2007194490A (ja) * 2006-01-20 2007-08-02 Toshiba Corp 処理装置及び処理方法
JP2008227195A (ja) * 2007-03-14 2008-09-25 Hitachi High-Technologies Corp 液処理装置
JP2009033040A (ja) * 2007-07-30 2009-02-12 Toray Eng Co Ltd スプレー処理装置
JP2012066176A (ja) * 2010-09-22 2012-04-05 Dainippon Screen Mfg Co Ltd 基板処理装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52163333U (ja) * 1976-06-04 1977-12-10
JPH09160006A (ja) * 1995-12-12 1997-06-20 Sharp Corp 液晶用基板の液体噴射装置
JPH09213668A (ja) * 1996-02-01 1997-08-15 Dainippon Screen Mfg Co Ltd 基板処理装置
JPH11202117A (ja) * 1998-01-14 1999-07-30 Mitsubishi Chemical Corp カラーフィルターの製造方法
JP2001338864A (ja) * 2000-05-30 2001-12-07 Dainippon Screen Mfg Co Ltd 基板処理装置および基板処理方法
JP2003045844A (ja) * 2001-07-26 2003-02-14 Advanced Display Inc 基板処理装置
JP2003122021A (ja) * 2001-10-17 2003-04-25 Dainippon Printing Co Ltd 現像処理装置
JP2006255556A (ja) * 2005-03-16 2006-09-28 Sharp Corp 液処理装置および液晶表示装置
JP2007194490A (ja) * 2006-01-20 2007-08-02 Toshiba Corp 処理装置及び処理方法
JP2008227195A (ja) * 2007-03-14 2008-09-25 Hitachi High-Technologies Corp 液処理装置
JP2009033040A (ja) * 2007-07-30 2009-02-12 Toray Eng Co Ltd スプレー処理装置
JP2012066176A (ja) * 2010-09-22 2012-04-05 Dainippon Screen Mfg Co Ltd 基板処理装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110429053A (zh) * 2019-08-19 2019-11-08 江阴江化微电子材料股份有限公司 一种具有活动盖板的湿蚀刻设备及湿蚀刻方法

Also Published As

Publication number Publication date
TW201738670A (zh) 2017-11-01
CN108885411A (zh) 2018-11-23
KR20180128928A (ko) 2018-12-04
JPWO2017164126A1 (ja) 2019-01-31

Similar Documents

Publication Publication Date Title
WO2017164126A1 (ja) 現像装置及び回路基板の製造方法
JP5967079B2 (ja) 導電ペーストおよび導電パターンの製造方法
WO2016171083A1 (ja) 導電パターン形成部材の製造方法
JP2011118191A (ja) 有機−無機複合導電性パターン形成用感光性ペーストおよび有機−無機複合導電性パターンの製造方法
JP5533043B2 (ja) 感光性導電ペーストおよび導電パターンの製造方法
JP6645186B2 (ja) 導電ペースト、タッチパネル及び導電パターンの製造方法
WO2017208842A1 (ja) 積層パターン形成基材及びタッチパネルの製造方法
JP5764931B2 (ja) 有機−無機複合導電性パターン形成用感光性ペーストおよび有機−無機複合導電性パターンの製造方法
JP5673890B1 (ja) 導電ペースト及び導電パターンの製造方法
TW201517058A (zh) 感光性遮光糊、接觸感測器用積層圖案的製造方法、接觸感測器及觸控面板
JP6566027B2 (ja) 感光性導電ペーストおよび導電パターン付基板の製造方法
TW201533534A (zh) 導電膠、圖案的製造方法、導電圖案的製造方法以及感測器
US20180348905A1 (en) Insulating paste for supporting electrode layer, touch panel, and method of manufacturing touch panel
TWI689564B (zh) 導電糊、觸摸感測器構件及導電圖案的製造方法
WO2018029749A1 (ja) 導電パターン形成部材の製造方法
JP2017174705A (ja) 導電ペースト、導電パターンの製造方法、及び、導電パターンを具備する基板

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017516001

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187029159

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17770168

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17770168

Country of ref document: EP

Kind code of ref document: A1