WO2017163848A1 - 超高分子量エチレン系共重合体パウダー、並びに、超高分子量エチレン系共重合体パウダーを用いた成型体 - Google Patents

超高分子量エチレン系共重合体パウダー、並びに、超高分子量エチレン系共重合体パウダーを用いた成型体 Download PDF

Info

Publication number
WO2017163848A1
WO2017163848A1 PCT/JP2017/008853 JP2017008853W WO2017163848A1 WO 2017163848 A1 WO2017163848 A1 WO 2017163848A1 JP 2017008853 W JP2017008853 W JP 2017008853W WO 2017163848 A1 WO2017163848 A1 WO 2017163848A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular weight
ethylene copolymer
weight ethylene
copolymer powder
ultrahigh molecular
Prior art date
Application number
PCT/JP2017/008853
Other languages
English (en)
French (fr)
Inventor
至亮 浜田
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to PL17769893T priority Critical patent/PL3279225T3/pl
Priority to EP17769893.3A priority patent/EP3279225B1/en
Priority to CN201780000391.9A priority patent/CN107438631B/zh
Priority to US15/571,424 priority patent/US10336843B2/en
Priority to KR1020177014403A priority patent/KR101804740B1/ko
Priority to JP2017522995A priority patent/JP6195403B1/ja
Publication of WO2017163848A1 publication Critical patent/WO2017163848A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/16Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/08Making granules by agglomerating smaller particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/003Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor characterised by the choice of material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/28Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/30Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds comprising olefins as the major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/08Copolymers of ethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • B29L2031/3468Batteries, accumulators or fuel cells
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/18Bulk density
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2800/00Copolymer characterised by the proportions of the comonomers expressed
    • C08F2800/10Copolymer characterised by the proportions of the comonomers expressed as molar percentages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/06Properties of polyethylene
    • C08L2207/068Ultra high molecular weight polyethylene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an ultra high molecular weight ethylene copolymer powder and a molded body using the ultra high molecular weight ethylene copolymer powder.
  • ultra-high molecular weight olefins especially ultra-high molecular weight polyethylene, have higher molecular weight than general-purpose polyethylene, so they have excellent stretch processability, high strength, high chemical stability, and long-term reliability. For these reasons, it is used as a raw material for molded bodies such as microporous membranes and fibers for secondary batteries represented by lead-acid batteries and lithium ion batteries.
  • Ultra high molecular weight olefins are superior in various properties such as impact resistance, wear resistance, slidability, low temperature characteristics, and chemical resistance compared to general-purpose polyethylene. It is used for moldings such as lining materials such as chutes, bearings, gears, roller guide rails, or bone substitute materials, osteoconductive materials and osteoinductive materials.
  • ultra high molecular weight polyethylenes are high in molecular weight, it is difficult to extrude with a single resin, so when producing microporous membranes or fibers for secondary battery separators, For example, in an extruder, it is often kneaded and extruded at a high temperature in a state dissolved in a solvent.
  • JP 2007-23171 A Japanese Patent No. 4173444 JP2015-157905A
  • Patent Document 3 is disclosed as means for solving these problems.
  • the resulting molded body is cut into a skive shape (hereinafter referred to as a molded body sheet).
  • a molded body sheet After molding by compression molding (press molding) or ram extrusion using ultra high molecular weight polyethylene, the resulting molded body is cut into a skive shape (hereinafter referred to as a molded body sheet).
  • the obtained molded sheet is curved.
  • aging may be carried out.
  • the number of steps increases by one, not only the productivity is lowered, but also the molded sheet is peeled from the mold used for aging. There is a problem that cannot be done.
  • the present invention has been made in view of the above-mentioned problems, and can not only achieve both wear resistance and impact resistance after molding, but also can suppress the bending of the molded body sheet, and molding.
  • Ultra-high molecular weight that can easily peel off the sheet from the mold when the body sheet is aged, and can further suppress film breakage and thread breakage due to foreign matter in the separator for secondary batteries and fibers It is an object of the present invention to provide an ethylene copolymer powder and a molded product obtained using the ultrahigh molecular weight ethylene copolymer powder.
  • the present inventors have intensively studied to achieve the above-mentioned problems.
  • an ultra-high molecular weight ethylene copolymer powder having an ⁇ -olefin content in a specific range not only can both impact resistance and wear resistance be achieved, but also a molded body Can curb the sheet, and can be easily peeled off from the mold when the molded sheet is aged.
  • film breaks and threads caused by foreign matter The inventors have found that cutting can be suppressed and have completed the present invention.
  • the present invention is as follows.
  • the ethylene unit and the ⁇ -olefin unit having 3 to 8 carbon atoms are used as constituent units.
  • the viscosity average molecular weight is 100,000 or more and 10,000,000 or less
  • the content of the ⁇ -olefin unit is 0.01 mol% or more and 0.10 mol% or less with respect to the total amount of the ethylene unit and the ⁇ -olefin unit,
  • the time at which the exothermic peak top resulting from crystallization was obtained was defined as the isothermal crystallization time, starting from the time at which the temperature reached 126 ° C. in Step A3 (0 minutes).
  • Step A1 Hold at 50 ° C. for 1 minute, then heat up to 180 ° C. at a rate of 10 ° C./min
  • Step A2 Hold at 180 ° C. for 30 minutes and then drop to 126 ° C. at a rate of 80 ° C./min
  • Step A3 Hold at 126 ° C.
  • [5] Tap density, 0.51 g / cm 3 or more 0.64 g / cm 3 or less, and, The ultrahigh molecular weight ethylene copolymer powder according to any one of [1] to [4], which has a bulk density of 0.40 g / cm 3 or more and 0.60 g / cm 3 or less.
  • [6] The ultrahigh molecular weight polyethylene copolymer powder according to [5], wherein the ratio of the tap density to the bulk density is 1.10 or more and 1.50 or less.
  • [7] The ultrahigh molecular weight ethylene copolymer powder according to any one of [1] to [6], wherein the average particle size is 50 ⁇ m or more and 200 ⁇ m or less.
  • [8] [1] A molded article of the ultrahigh molecular weight ethylene copolymer powder according to any one of [7]. [9] The molded article according to [8], which is a separator film for a secondary battery and a fiber obtained by a wet extrusion method. [10] The molded article according to [9], wherein the secondary battery is a lithium ion secondary battery or a lead storage battery. [11] [9] The molded article according to [9], wherein the product using the fiber is a rope, a net, bulletproof clothing, protective clothing, protective gloves, a fiber-reinforced concrete product, and a helmet. [12] The molded article according to [8], which is used for lining applications, bearings, gears, roller guide rails, bone substitute materials, osteoconductive materials, or osteoinductive materials.
  • the present invention not only can the impact resistance and wear resistance of the molded product be compatible, but also the curvature of the molded body sheet can be suppressed, and when the molded body sheet is aged,
  • the sheet can be easily peeled, and in the separator for secondary batteries and fibers, an ultra-high molecular weight ethylene copolymer powder that can suppress film breakage and thread breakage caused by foreign matter, and A molded product obtained by using a high molecular weight ethylene copolymer powder can be realized.
  • the present embodiment a mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail, but the present invention is not limited to this. Various modifications are possible without departing from the scope of the invention.
  • the ultrahigh molecular weight ethylene copolymer powder of this embodiment comprises ethylene units and ⁇ -olefin units having 3 to 8 carbon atoms as constituent units, and has a viscosity average molecular weight of 100,000 to 10,000,000.
  • the content of the ⁇ -olefin unit is 0.01 mol% or more and 0.10 mol% or less with respect to the total amount of the ethylene unit and the ⁇ -olefin unit, and the following conditions using a differential scanning calorimeter: In the measurement, when the time at which the temperature reached 126 ° C.
  • Step A3 Hold at 126 ° C
  • each monomer unit constituting the polymer follows the naming of the monomer from which the monomer unit is derived.
  • ethylene unit means a structural unit of a polymer resulting from polymerization of ethylene as a monomer, and its structure is a molecular structure in which two carbons of ethylene are polymer main chains.
  • ⁇ -olefin unit means a structural unit of a polymer resulting from the polymerization of a monomer ⁇ -olefin, and its structure is composed of two carbons of the olefin derived from the ⁇ -olefin. It is a molecular structure that is a combined main chain.
  • the ultrahigh molecular weight ethylene copolymer powder is not particularly limited as long as it contains an ethylene unit and an ⁇ -olefin unit having 3 to 8 carbon atoms.
  • the ⁇ -olefin having 3 or more and 8 or less carbon atoms copolymerizable with ethylene is not particularly limited, and specifically includes a linear, branched, or cyclic ⁇ -olefin, a formula CH 2 ⁇ CHR 1 (where, R 1 is an aryl group having 1 to 6 carbon atoms, and at least one ⁇ selected from the group consisting of linear, branched or cyclic dienes having 4 to 7 carbon atoms. Olefins.
  • the ⁇ -olefin propylene and 1-butene are preferable from the viewpoint of the wear resistance, heat resistance and strength of the molded body.
  • the viscosity average molecular weight (Mv) is from 100,000 to 10,000,000, more preferably from 150,000 to 9,500,000, and even more preferably from 200,000 to 9,000,000.
  • Mv is 100,000 or more
  • wear resistance and strength are further improved.
  • a moldability improves more because Mv is 10,000,000 or less.
  • Mv is in the above range
  • the productivity of the powder is excellent.
  • Ultra high molecular weight ethylene copolymer powder with such characteristics is formed into separators for secondary batteries and molded into fibers by compression molding (press molding), ram extrusion, extrusion kneading in a state dissolved in a solvent. For example, it can be suitably used for a wide range of uses.
  • Mv As a method for controlling Mv within the above range, there may be mentioned changing the polymerization temperature of the reactor when polymerizing the ultrahigh molecular weight ethylene copolymer powder.
  • the higher the polymerization temperature the lower the Mv.
  • the lower the polymerization temperature the higher the Mv.
  • Another method for setting Mv in the above range is to change the organometallic compound species as a co-catalyst added when polymerizing the ultrahigh molecular weight ethylene copolymer powder.
  • a chain transfer agent may be added when polymerizing the ultrahigh molecular weight polyethylene copolymer.
  • Mv of the ultrahigh molecular weight ethylene copolymer powder produced even at the same polymerization temperature tends to be low.
  • the Mv of ultra high molecular weight ethylene copolymer powder is obtained by dissolving ultra high molecular weight ethylene copolymer powder in decahydronaphthalene solution at different concentrations and extrapolating the reduced viscosity obtained at 135 ° C to zero.
  • the following formula A can be calculated from the intrinsic viscosity [ ⁇ ] (dL / g). In more detail, it can obtain
  • require by the method as described in an Example. Mv (5.34 ⁇ 10 4 ) ⁇ [ ⁇ ] 1.49 Formula A
  • the ethylene unit content is 99.90 mol% or more and 99.99 mol% or less, more preferably 99.905 mol% or more and 99.99 mol% or less, with respect to the total amount of ethylene units and ⁇ -olefin units, and 99.91 mol%. % To 99.99 mol% is more preferable.
  • the content of the ethylene unit is within the above range, the heat resistance and / or the strength tends to be superior.
  • the content of ⁇ -olefin units is 0.01 mol% or more and 0.10 mol% or less, preferably 0.01 mol% or more and 0.095 mol% or less, based on the total amount of ethylene units and ⁇ -olefin units. 01 mol% or more and 0.09 mol% or less are more preferable.
  • the content of the ⁇ -olefin unit is within the above range, impact resistance and wear resistance tend to be further improved.
  • the measurement of the content of ⁇ -olefin units is described in G.H. J. et al.
  • the content of ⁇ -olefin units is calculated using the area of methylene carbon observed by 13 C-NMR spectrum. It can be calculated from the intensity. More specifically, it can be measured by the method described in the examples.
  • the isothermal crystallization time is a time at which an exothermic peak top resulting from crystallization was obtained at 126 ° C., and was measured using a differential scanning calorimeter (DSC) under the following measurement conditions.
  • the time at which the exothermic peak top resulting from crystallization is obtained is defined as the isothermal crystallization time, starting from the time when the temperature reaches 126 ° C. (0 minutes).
  • Step A1 Hold at 50 ° C. for 1 minute, then heat up to 180 ° C. at a rate of 10 ° C./min
  • Step A2 Hold at 180 ° C. for 30 minutes and then drop to 126 ° C. at a rate of 80 ° C./min
  • Step A3 Hold at 126 ° C.
  • the isothermal crystallization time needs to be 5 minutes or more, preferably 7 minutes or more, and more preferably 8 minutes or more.
  • a molded product sheet obtained by cutting a molded product obtained by compression molding (press molding) or ram extrusion into a skive shape may be curved. To eliminate this curvature, the molded product sheet is sandwiched between molds. Aging may be performed. If the isothermal crystallization time is less than 5 minutes, the molded body sheet is not only easily bent, but after aging the curved molded body sheet, the sheet cannot be peeled off from the mold used for aging. End up.
  • the catalyst is not localized in the polymerization reactor.
  • the catalyst concentration with respect to the inert hydrocarbon medium is 10 g / L.
  • Step B3 the heat of fusion in the temperature raising process of Step B3 (the heat of fusion in the second temperature raising process) is defined as the heat of fusion ( ⁇ H2).
  • Step B1 Hold at 50 ° C. for 1 minute, then raise the temperature to 180 ° C. at a rate of 10 ° C./min
  • Step B2 Hold at 180 ° C. for 5 minutes, then lower the temperature to 50 ° C. at a rate of 10 ° C./min
  • Step B3 Hold at 50 ° C for 5 minutes, then heat up to 180 ° C at a rate of 10 ° C / min
  • the heat of fusion ( ⁇ H2) is preferably 230 J / g or less, more preferably 50 J / g or more and 220 J / g or less, and further preferably 100 J / g or more and 210 J / g or less.
  • the heat of fusion ( ⁇ H2) is 50 J / g or more, the strength as a molded body can be maintained, and when it is 230 J / g or less, it can be obtained by compression molding (press molding) or ram extrusion. It tends to be possible to further suppress the bending of the molded body sheet obtained when the molded body is cut into a skive shape.
  • the catalyst is not localized in the polymerization reactor.
  • the catalyst concentration relative to the inert hydrocarbon medium is 10 g / L or less, when supplying the catalyst and the inert hydrocarbon medium to the polymerization reactor, providing a plurality of catalyst feed ports, using four or more stirring blades in the stirring device,
  • the rotational speed of the stirring blade may be 60 rpm or more.
  • Titanium element content defines what was measured with the inductively coupled plasma mass spectrometer (ICP / MS).
  • the titanium element content is preferably 6 ppm or less, more preferably 0.1 ppm or more and 5.5 ppm or less, and further preferably 0.5 ppm or more and 5 ppm or less.
  • the titanium element content is preferably 0.1 ppm or more, and when it is 6 ppm or less, the isothermal crystallization time is less than 5 minutes, or the heat of fusion ( ⁇ H2) is 150 J / g. It is in the tendency which can be suppressed more.
  • the content of titanium element contained in the ultrahigh molecular weight ethylene copolymer powder can be controlled by the productivity of the ultrahigh molecular weight ethylene copolymer powder per unit catalyst, and is increased by increasing the productivity. It is possible to reduce the amount.
  • the measurement of titanium content can be performed by the method as described in an Example.
  • the tap density of the ultrahigh molecular weight ethylene copolymer powder is preferably not 0.51 g / cm 3 or more 0.64 g / cm 3 or less, more preferably 0.52 g / cm 3 or more 0.63 g / cm 3 or less More preferably, it is 0.53 g / cm 3 or more and 0.62 g / cm 3 or less.
  • the tap density of the ultrahigh molecular weight ethylene copolymer powder is within the above range, the powder is sufficiently filled at the time of molding, so that a uniform molded body is obtained. Therefore, when the molded body is cut into a skive shape There exists a tendency which can suppress the curve of the molded object sheet
  • the bulk density of the ultrahigh molecular weight ethylene copolymer powder is preferably 0.40 g / cm 3 or more and 0.60 g / cm 3 or less, more preferably 0.40 g / cm 3 or more and 0.58 g / cm. 3 or less, more preferably 0.40 g / cm 3 or more and 0.55 g / cm 3 or less.
  • the bulk density is 0.40 g / cm 3 or more, the flowability of the ultrahigh molecular weight ethylene copolymer powder is sufficiently high, the handling property is excellent, the feed to various molding machines is stable, and the molded product Tend to be stable.
  • the bulk density of the ultrahigh molecular weight ethylene copolymer powder is 0.60 g / cm 3 or less, it is excellent in productivity and the like, and exhibits better processing applicability when processing molded products. There is a tendency.
  • the ratio of the tap density to the bulk density is preferably 1.10 or more and 1.50 or less, more preferably 1.10 or more and 1.48 or less, and further preferably 1.10 or more and 1.45 or less. is there.
  • the ratio of the tap density to the bulk density is within the above range, the balance between the suppression of the bending of the molded body sheet, the process applicability, and the dimensional stability of the molded body tends to be more excellent.
  • the bulk density varies depending on the catalyst used, but can be controlled by the productivity of the ultrahigh molecular weight ethylene copolymer powder per unit catalyst.
  • the bulk density of the ultrahigh molecular weight ethylene copolymer powder can be controlled by the polymerization temperature when polymerizing the ultrahigh molecular weight ethylene copolymer powder, and the bulk density is increased by increasing the polymerization temperature. It can be reduced.
  • the bulk density of the ultrahigh molecular weight ethylene copolymer powder can be controlled by the slurry concentration in the polymerization vessel, and the bulk density can be increased by increasing the slurry concentration.
  • the bulk density of the ultrahigh molecular weight ethylene copolymer powder can be measured by the method described in the examples.
  • the catalyst concentration with respect to the inert hydrocarbon medium is set to 10 g / L or less, and when supplying the catalyst and the inert hydrocarbon medium to the polymerization reactor, a plurality of catalyst feed ports are provided and supplied.
  • the use of four or more stirring blades in the stirring device, the rotational speed of the stirring blades being 60 rpm or more, and the like can be mentioned.
  • the amount of Stadis 450 added is preferably 20 ppm or more and 50 ppm or less.
  • the ratio of the tap density to the bulk density can also be controlled by the above-mentioned method, and it is also a preferable method to blend a lubricant such as calcium stearate described later.
  • the average particle size of the ultrahigh molecular weight ethylene copolymer powder is preferably 50 ⁇ m or more and 200 ⁇ m or less, more preferably 60 ⁇ m or more and 190 ⁇ m or less, and further preferably 70 ⁇ m or more and 180 ⁇ m or less.
  • the average particle size of the ultra high molecular weight ethylene copolymer powder is 50 ⁇ m or more, handling properties such as charging the ultra high molecular weight ethylene copolymer powder into a hopper and weighing from the hopper are improved. There is a tendency.
  • the average particle size is 200 ⁇ m or less, it tends to be more excellent in process applicability such as productivity in various molding processes.
  • the average particle size of the ultra high molecular weight ethylene copolymer powder can be controlled by the particle size of the catalyst used, and is controlled by the productivity of the ultra high molecular weight ethylene copolymer powder per unit catalyst amount. It is also possible. In addition, the average particle diameter of ultra high molecular weight ethylene copolymer powder can be measured by the method as described in the Example mentioned later.
  • the ultra high molecular weight ethylene copolymer powder may be molded as it is with various molding machines, or after mixing with the organic peroxide in the ultra high molecular weight ethylene copolymer powder, with various molding machines. It may be molded. When mixed with an organic peroxide and then processed with various molding machines, there is a problem that uneven cross-linking occurs. However, if this embodiment system and other ultra-high molecular weight ethylene copolymer powder is used, the molecular chain The cross-linking reaction preferentially proceeds with tertiary carbon derived from a small amount of ⁇ -olefin present therein, and a uniform cross-linking reaction proceeds. Thereby, the wear resistance of the molded product is further improved.
  • the organic peroxide (organic peroxide cross-linking agent) used when molding the ultra high molecular weight ethylene copolymer powder contributes to the crosslinking of the ultra high molecular weight ethylene copolymer powder
  • the organic substance having an atomic group —O—O— is not particularly limited, and examples thereof include organic peroxides such as dialkyl peroxides, diacyl peroxides, hydroperoxides, and ketone peroxides; Can be mentioned.
  • the organic peroxide is not particularly limited.
  • Alpha .'- di (tert- butylperoxy) diisopropylbenzene and the like are preferred.
  • 2,5-dimethyl-2,5-bis (t-butylperoxy) hexane (trade name “Perhexa 25B” manufactured by NOF Corporation)
  • 2,5-dimethyl-2,5-bis (T-Butyloxy) hexyne-3 (trade name “Perhexin25B” manufactured by NOF Corporation)
  • dicumyl peroxide 1,1-bis (t-butylperoxy) 3,3,5-trimethylcyclohexane are preferred.
  • the ultra high molecular weight ethylene copolymer powder and the organic peroxide can be mixed using an ordinary mixer.
  • mixing by a stirrer such as a Henschel mixer or mixing by rotation such as a blender is preferable.
  • the stirring / mixing conditions in this case are not unconditionally determined because they also depend on conditions such as temperature, pressure, and sales expansion speed. For example, at normal temperature and normal pressure, the speed is 50 to 800 rpm for 1 minute. From about 10 minutes.
  • the stirring / mixing speed may be appropriately changed. For example, the mixing may be initially performed at a low speed for several minutes, and then the mixing / mixing components may be mixed to some extent at a high speed for several minutes. .
  • the organic peroxide to be mixed with the ultrahigh molecular weight ethylene copolymer powder may be used as it is, or may be added after being dissolved in a hydrocarbon solvent or the like.
  • Examples of the molding method of ultra-high molecular weight polyethylene that is difficult to mold by a general polyethylene molding method include compression molding (press molding) and extrusion molding.
  • Compression molding is a method in which raw material powder is uniformly dispersed in a mold, molded by heating and pressing, and then cooled and taken out. It is also possible to make a plate-like product as it is, make a block, and finish it into a final product by cutting or the like.
  • extrusion molding a separator for a secondary battery by kneading extrusion molding, fiber molding, or a ram extruder that pushes the piston back and forth in a state where it is dissolved in a solvent in the extruder is used.
  • a separator for a secondary battery by kneading extrusion molding, fiber molding, or a ram extruder that pushes the piston back and forth in a state where it is dissolved in a solvent in the extruder is used.
  • various shapes such as sheets, flat plates, deformed products, and pipes can be obtained.
  • the ultra high molecular weight ethylene copolymer powder is not particularly limited, and can be produced using a general Ziegler-Natta catalyst or a metallocene catalyst, and among them, it is preferred to produce using a Ziegler-Natta catalyst.
  • the Ziegler-Natta catalyst is disclosed in [0032] to [0068] of Patent Document 3 described above.
  • a solid catalyst component and an organometallic compound component (hereinafter abbreviated as “catalyst”) are added to a polymerization system under ethylene-based polymerization conditions, both may be separately added to the polymerization system. Alternatively, both may be added to the polymerization system after mixing them in advance. Further, the ratio of the two to be combined is not particularly limited, but the organometallic compound component is preferably 0.01 mmol or more and 1,000 mmol or less, more preferably 0.1 mmol or more and 500 mmol or less, and more preferably 1 mmol or more and 100 mmol or less with respect to 1 g of the solid catalyst component. Further preferred. Another purpose of mixing the two is to prevent electrostatic adhesion to a storage tank or piping.
  • Examples of the polymerization method in the method for producing an ultrahigh molecular weight ethylene copolymer powder include a method of (co) polymerizing a monomer containing ethylene or an ⁇ -olefin having 3 to 8 carbon atoms by suspension polymerization. . Polymerization by the suspension polymerization method is preferable in that the heat of polymerization can be efficiently removed.
  • an inert hydrocarbon medium can be used as a medium, and the olefin itself can also be used as a solvent.
  • the inert hydrocarbon medium is not particularly limited, and specifically, aliphatic hydrocarbons such as propane, butane, isobutane, pentane, isopentane, hexane, heptane, octane, decane, dodecane, and kerosene; cyclopentane, And alicyclic hydrocarbons such as cyclohexane and methylcyclopentane; aromatic hydrocarbons such as benzene, toluene and xylene; halogenated hydrocarbons such as ethyl chloride, chlorobenzene and dichloromethane; or a mixture thereof.
  • aliphatic hydrocarbons such as propane, butane, isobutane, pentane, isopentane, hexane, heptane, octane, decane, dodecane, and kerosene
  • cyclopentane And alicyclic hydro
  • the catalyst concentration with respect to the inert hydrocarbon medium is set to 10 g / L or less, and when supplying the catalyst and the inert hydrocarbon medium to the polymerization reactor, a plurality of catalyst feed ports are provided. Examples thereof include supply, use of four or more stirring blades in the stirring device, and a rotation speed of the stirring blades of 60 rpm or more.
  • the polymerization temperature in the production method for obtaining the ultrahigh molecular weight ethylene copolymer powder in the above range is usually preferably 20 ° C or higher and 100 ° C or lower, more preferably 30 ° C or higher and 95 ° C or lower, and 40 ° C or higher and 90 ° C or lower. Is more preferable.
  • the polymerization temperature is 20 ° C. or higher, industrially efficient production is possible.
  • the polymerization temperature is 100 ° C. or lower, stable operation can be continuously performed.
  • the polymerization pressure in the production method for obtaining the ultrahigh molecular weight ethylene copolymer powder in the above range is usually preferably from normal pressure to 2 MPa, more preferably from 0.1 MPa to 1.5 MPa, and more preferably from 0.2 MPa to 1 MPa. More preferably, the pressure is 0.0 MPa or less.
  • normal pressure to 2 MPa
  • the polymerization pressure is equal to or higher than normal pressure
  • an ultra-high molecular weight ethylene copolymer powder having a high total metal amount and a high total chlorine amount tends to be obtained
  • the polymerization pressure is 2 MPa or less, the total metal amount and It tends to be able to stably produce ultra-high molecular weight ethylene copolymer powder with a low total chlorine content.
  • the molecular weight of the resulting ultrahigh molecular weight ethylene copolymer powder is determined by allowing hydrogen to exist in the polymerization system or the polymerization temperature. It can also be adjusted by changing. By adding hydrogen as a chain transfer agent in the polymerization system, the molecular weight can be controlled within an appropriate range.
  • the molar fraction of hydrogen is preferably 0.01 mol% or more and 10 mol% or less, more preferably 0.01 mol% or more and 5 mol% or less, and further preferably 0.01 mol% or more and 1 mol% or less.
  • the other well-known component useful for manufacture of ultra high molecular weight ethylene-type copolymer powder other than each above components can be included.
  • a drying method after polymerization for obtaining an ultrahigh molecular weight ethylene copolymer powder in the above range a drying method in which heat is not applied as much as possible is preferable.
  • a rotary kiln method, a paddle method, a fluidized dryer or the like is preferable.
  • the drying temperature is preferably 50 ° C. or higher and 150 ° C. or lower, and more preferably 70 ° C. or higher and 100 ° C. or lower. It is also effective to promote drying by introducing an inert gas such as nitrogen into the dryer.
  • the ultra high molecular weight ethylene copolymer powder as described above may be used in combination with various known additives as required.
  • the heat stabilizer is not particularly limited, but for example, a heat-resistant stabilizer such as tetrakis [methylene (3,5-di-t-butyl-4-hydroxy) hydrocinnamate] methane, distearyl thiodipropionate; or Weather stabilizers such as bis (2,2 ′, 6,6′-tetramethyl-4-piperidine) sebacate and 2- (2-hydroxy-t-butyl-5-methylphenyl) -5-chlorobenzotriazole Can be mentioned.
  • stearates such as calcium stearate, magnesium stearate, and zinc stearate, which are known as lubricants and hydrogen chloride absorbents, can also be mentioned as suitable additives.
  • the molded body of the present embodiment is a molded body using the ultrahigh molecular weight ethylene copolymer powder.
  • the molded body contains the ultra-high molecular weight ethylene copolymer powder, and may further contain an organic peroxide as necessary. If it is such a molded object, it is excellent in abrasion resistance and intensity
  • the ultrahigh molecular weight ethylene copolymer powder obtained as described above can have high processability and high continuous process productivity, and can be processed by various processing methods. Moreover, the molded object using the ultra high molecular weight ethylene copolymer powder can be applied to various uses.
  • Main applications include separators for rechargeable batteries such as lithium ion rechargeable batteries and lead storage batteries, lining materials such as hoppers and chutes with fibers, non-adhesiveness and low friction coefficient, and self-lubricating and wear resistance with low friction coefficient It is suitably used for bearings, gears, roller guide rails, bone substitute materials, osteoconductive materials or osteoinductive materials that require high performance.
  • Viscosity average molecular weight The viscosity average molecular weight of the ultrahigh molecular weight ethylene copolymer powder was determined by the following method according to ISO 1628-3 (2010). First, 20 mg of ultrahigh molecular weight ethylene copolymer powder was weighed in a melting tube, and the melting tube was purged with nitrogen. Then, 20 mL of decahydronaphthalene (2,6-di-t-butyl-4-methylphenol was added at 1 g / L was added) and stirred at 150 ° C. for 2 hours to dissolve the ultrahigh molecular weight ethylene copolymer powder.
  • the drop time (ts) between the marked lines was measured using a Canon-Fenske viscometer (manufactured by Shibata Kagaku Kikai Kogyo Co., Ltd .: product number-100) in a thermostatic bath at 135 ° C. Similarly, the drop time (ts) between the marked lines was measured in the same manner for samples in which ultrahigh molecular weight ethylene copolymer powder was changed to 10 mg, 5 mg, and 2.5 mg. The fall time (tb) of only decahydronaphthalene without ultrahigh molecular weight ethylene copolymer powder as a blank was measured.
  • the reduced viscosity ( ⁇ sp / C) of the ultrahigh molecular weight ethylene copolymer powder obtained according to the following formula is plotted, and the concentration (C) (unit: g / dL) and the ultrahigh molecular weight ethylene copolymer powder of the ultrahigh molecular weight ethylene copolymer powder are plotted.
  • a linear equation of reduced viscosity ( ⁇ sp / C) was derived, and the intrinsic viscosity ([ ⁇ ]) extrapolated to a concentration of 0 was determined.
  • ⁇ sp / C (ts / tb ⁇ 1) /0.1 (unit: dL / g)
  • Measuring device ECS-400 manufactured by JEOL Observation nucleus: 13 C Observation frequency: 100.53 MHz Pulse width: 45 ° (7.5 ⁇ sec) Pulse program: single pulse dec PD: 5 sec Measurement temperature: 130 ° C Accumulation count: 30,000 times or more Standard: PE (-eeee-) signal 29.9ppm Solvent: orthodichlorobenzene-d4 Sample concentration: 5 to 10 wt% Melting temperature: 130-140 ° C
  • Step A1 Hold at 50 ° C. for 1 minute, then heat up to 180 ° C. at a rate of 10 ° C./min
  • Step A2 Hold at 180 ° C. for 30 minutes and then drop to 126 ° C. at a rate of 80 ° C./min
  • Step A3 Hold at 126 ° C
  • Step B2 Hold at 50 ° C. for 1 minute, then raise the temperature to 180 ° C. at a rate of 10 ° C./min
  • Step B2 Hold at 180 ° C. for 5 minutes, then lower the temperature to 50 ° C. at a rate of 10 ° C./min
  • Step B3 Hold at 50 ° C for 5 minutes, then heat up to 180 ° C at a rate of 10 ° C / min.
  • Titanium element content Ultra high molecular weight ethylene copolymer powder was pressure-decomposed using a microwave decomposing apparatus (model ETHOS TC, manufactured by Milestone General Co., Ltd.), and ICP-MS (induction) was performed using an internal standard method.
  • the element concentration of titanium as a metal in the ultrahigh molecular weight ethylene copolymer powder was measured with a coupled plasma mass spectrometer, model X series X7, manufactured by Thermo Fisher Scientific Co.).
  • the average particle diameter of the ultrahigh molecular weight ethylene copolymer powder is 10 types of sieves defined by JIS Z8801 (openings: 710 ⁇ m, 500 ⁇ m, 425 ⁇ m, 355 ⁇ m, 300 ⁇ m, 212 ⁇ m, 150 ⁇ m, 106 ⁇ m). , 75 ⁇ m, 53 ⁇ m) using an integral curve obtained by integrating the weight of the particles remaining on each sieve obtained when classifying 100 g of ultrahigh molecular weight ethylene copolymer powder from the side having a large opening, The average particle size was defined as the particle size that resulted in the weight of
  • the slurry was put into a lab plast mill (model 4C150-01 manufactured by Toyo Seiki Seisakusho Co., Ltd.) set at 190 ° C., and kneaded for 30 minutes at a rotation speed of 50 rpm in a nitrogen atmosphere.
  • the mixture (gel) obtained by kneading was compressed by a press machine heated to 165 ° C. to prepare a gel sheet having a thickness of 1.0 mm.
  • a 10 cm ⁇ 10 cm test piece was cut out from the prepared gel sheet, set in a simultaneous biaxial tenter stretching machine heated to 120 ° C., and held for 3 minutes.
  • the film was stretched at an MD magnification of 7.0 times and a TD magnification of 7.0 times (that is, 7 ⁇ 7 times) at a speed of 12 mm / sec.
  • the stretched sheet was sufficiently immersed in normal hexane to extract and remove liquid paraffin, and then normal hexane was removed by drying.
  • the thin film after completion of extraction was dried at room temperature for 10 hours to obtain a microporous film.
  • melt-kneaded This was supplied by a pump to a twin screw extruder under a nitrogen atmosphere, and melt kneaded.
  • the melt-kneading conditions were set at a preset temperature of 250 ° C., a screw speed of 200 rpm, and a discharge rate of 12 kg / hr.
  • a stainless steel plain woven screen having openings of 250 ⁇ m, 106 ⁇ m, 45 ⁇ m, 106 ⁇ m, and 250 ⁇ m conforming to JIS Z8801 standard was installed through a gear pump.
  • the obtained strand was sufficiently immersed in normal hexane through a spinning die to extract and remove liquid paraffin, and then normal hexane was removed by drying. Next, the strand was stretched 20 times at 120 ° C., and further stretched 50 times at 140 ° C. to obtain a fiber.
  • Example 1 Hexane, ethylene, hydrogen, ⁇ -olefin, catalyst, and
  • Stadis 450 manufactured by The Associated Octel Company
  • the polymerization temperature was kept at 75 ° C. by jacket cooling.
  • Hexane was supplied at 55 L / Hr.
  • As the catalyst a mixture of triisobutylaluminum and diisobutylaluminum hydride, which are promoter components, and a solid catalyst component [A] were used.
  • Solid catalyst component [A] was added to the polymerizer at a rate of 0.7 g / Hr, and a mixture of triisobutylaluminum and diisobutylaluminum hydride was added to the polymerizer at a rate of 9 mmol / Hr.
  • the solid catalyst component [A] and the mixture of triisobutylaluminum and diisobutylaluminum hydride were added in equal amounts so as to provide a total of 5 L / Hr by providing three feed ports in the polymerization reactor. .
  • Stadis 450 was added into the polymerization reactor from three feed ports so that the concentration with respect to the ultrahigh molecular weight ethylene copolymer was 22 ppm.
  • Butene-1 was continuously added as an ⁇ -olefin so as to be 0.4 mol% with respect to the gas phase ethylene concentration. Hydrogen was continuously added so that it might become 0.2 mol% with respect to gaseous phase ethylene concentration.
  • the polymerization pressure was kept at 0.4 MPa by continuously supplying ethylene. Stirring was sufficiently performed under these conditions so that the inside of the polymerization reactor was uniform. Six stirring blades were used as stirring blades in the stirring device, and the number of rotations of the stirring blades was 105 rpm.
  • the production rate of the ultrahigh molecular weight ethylene copolymer was 10 kg / Hr.
  • the catalytic activity was 30,000 g-PE / g-solid catalyst component [A].
  • the polymerization slurry was continuously drawn into a flash drum having a pressure of 0.05 Mpa to separate unreacted ethylene so that the level of the polymerization reactor was kept constant.
  • the polymerization slurry passed through the solvent separation step continuously and then sent to the drying step.
  • the dryer was a drum type and jacket 80 ° C. under a nitrogen stream. There was no presence of bulk polymer, and the slurry removal piping was not blocked, and stable continuous operation was possible.
  • 1,000 ppm of calcium stearate manufactured by Dainichi Chemical Co., Ltd.
  • was added and mixed uniformly using a Henschel mixer was added and mixed uniformly using a Henschel mixer, and the resulting powder was not passed through a sieve using a sieve having an opening of 425 ⁇ m. The thing was removed.
  • the ultrahigh molecular weight ethylene copolymer powder thus obtained is designated PE1.
  • the ultrahigh molecular weight ethylene copolymer powder of Example 1 the molecular weight, the content of ⁇ -olefin units, the isothermal crystallization time, the heat of fusion ( ⁇ H2), the titanium element content, the bulk density, And the result of having measured the average particle diameter is shown in Table 1.
  • ultra high molecular weight ethylene copolymer powder was molded according to the above-described method, and film breakage, yarn breakage test, abrasion resistance test, impact strength evaluation, and sheet shape during skive cut were performed. The results are shown in Table 1.
  • Example 2 Example 2 except that the polymerization temperature was 66 ° C., butene-1 as an ⁇ -olefin was continuously added to a gas phase ethylene concentration of 0.35 mol%, and hydrogen was not supplied. The same operation was carried out to obtain an ultra high molecular weight ethylene copolymer powder (PE2). Evaluation similar to Example 1 was performed using the obtained ultrahigh molecular weight ethylene copolymer powder PE2. The results are shown in Table 1.
  • Example 3 Example 1 except that the polymerization temperature was 59 ° C., butene-1 as an ⁇ -olefin was continuously added so as to be 0.15 mol% with respect to the gas phase ethylene concentration, and hydrogen was not supplied. The same operation was performed to obtain an ultra high molecular weight ethylene copolymer powder (PE3). Evaluation similar to Example 1 was performed using the obtained ultrahigh molecular weight ethylene copolymer powder PE3. The results are shown in Table 1.
  • Example 4 Example 1 except that the polymerization temperature was 59 ° C., butene-1 as an ⁇ -olefin was continuously added at 0.95 mol% with respect to the gas phase ethylene concentration, and hydrogen was not supplied. The same operation was carried out to obtain an ultra high molecular weight ethylene copolymer powder (PE4). Evaluation similar to Example 1 was performed using the obtained ultrahigh molecular weight ethylene copolymer powder PE4. The results are shown in Table 1.
  • Example 5 The polymerization temperature is set to 93 ° C., butene-1 as an ⁇ -olefin is continuously added so as to be 0.05 mol% with respect to the gas phase ethylene concentration, and hydrogen is set to 12 mol% with respect to the gas phase ethylene concentration. Except for the above, the same operation as in Example 1 was performed to obtain an ultrahigh molecular weight ethylene copolymer powder (PE5). Evaluation similar to Example 1 was performed using the obtained ultra high molecular weight ethylene copolymer powder PE5. The results are shown in Table 1.
  • Example 6 The polymerization temperature was 93 ° C., butene-1 as an ⁇ -olefin was continuously added so as to be 0.83 mol% with respect to the gas phase ethylene concentration, and hydrogen was 5.5 mol% with respect to the gas phase ethylene concentration. Except for this, the same operation as in Example 1 was performed to obtain an ultrahigh molecular weight ethylene copolymer powder (PE6). Evaluation similar to Example 1 was performed using the obtained ultrahigh molecular weight ethylene copolymer powder PE6. The results are shown in Table 1.
  • Example 7 An ultra-high molecular weight ethylene copolymer was prepared in the same manner as in Example 1 except that butene-1 was continuously added as an ⁇ -olefin so as to be 0.95 mol% with respect to the gas phase ethylene concentration. Powder (PE7) was obtained. Evaluation similar to Example 1 was performed using the obtained ultra high molecular weight ethylene copolymer powder PE7. The results are shown in Table 1.
  • Example 8 An ultrahigh molecular weight ethylene copolymer was prepared in the same manner as in Example 2 except that butene-1 as an ⁇ -olefin was continuously added so as to be 0.95 mol% with respect to the gas phase ethylene concentration. Powder (PE8) was obtained. Evaluation similar to Example 1 was performed using the obtained ultrahigh molecular weight ethylene copolymer powder PE8. The results are shown in Table 1.
  • Example 9 Example 1 except that the polymerization temperature was 59 ° C., butene-1 as an ⁇ -olefin was continuously added so as to be 0.55 mol% with respect to the gas phase ethylene concentration, and hydrogen was not supplied. The same operation was performed to obtain an ultra high molecular weight ethylene copolymer powder (PE9). Evaluation similar to Example 1 was performed using the obtained ultra high molecular weight ethylene copolymer powder PE9. The results are shown in Table 1.
  • Example 10 PE10 Except that the polymerization pressure was 0.3 MPa, the same operation as in Example 1 was performed to obtain an ultrahigh molecular weight ethylene copolymer powder (PE10). Evaluation similar to Example 1 was performed using the obtained ultra high molecular weight ethylene copolymer powder PE10. The results are shown in Table 1.
  • Example 11 PE11 Except that the polymerization pressure was 0.3 MPa, the same operation as in Example 2 was performed to obtain an ultrahigh molecular weight ethylene copolymer powder (PE11). Evaluation similar to Example 1 was performed using the obtained ultrahigh molecular weight ethylene copolymer powder PE11. The results are shown in Table 1.
  • Example 12 The polymerization temperature is set to 93 ° C., butene-1 as an ⁇ -olefin is continuously added so as to be 0.05 mol% with respect to the gas phase ethylene concentration, and hydrogen is set to 12 mol% with respect to the gas phase ethylene concentration. Then, except that the polymerization pressure was 0.25 MPa, the same operation as in Example 1 was performed to obtain an ultrahigh molecular weight ethylene copolymer powder (PE12). Evaluation similar to Example 1 was performed using the obtained ultra high molecular weight ethylene copolymer powder PE12. The results are shown in Table 1.
  • Example 13 Except that butene-1 was continuously added as an ⁇ -olefin so as to be 0.83 mol% with respect to the gas phase ethylene concentration, and hydrogen was adjusted to 5.5 mol% with respect to the gas phase ethylene concentration.
  • the same operation as in Example 12 was performed to obtain an ultrahigh molecular weight ethylene copolymer powder (PE13). Evaluation similar to Example 1 was performed using the obtained ultra high molecular weight ethylene copolymer powder PE13. The results are shown in Table 1.
  • Example 14 Except that the polymerization pressure was 0.33 MPa, the same operation as in Example 1 was performed to obtain an ultrahigh molecular weight ethylene copolymer powder (PE14). Evaluation similar to Example 1 was performed using the obtained ultra high molecular weight ethylene copolymer powder PE14. The results are shown in Table 1.
  • Example 15 Except that the polymerization pressure was 0.33 MPa, the same operation as in Example 2 was performed to obtain an ultrahigh molecular weight ethylene copolymer powder (PE15). Evaluation similar to Example 1 was performed using the obtained ultra high molecular weight ethylene copolymer powder PE15. The results are shown in Table 1.
  • Example 16 PE16 Except that the polymerization pressure was 0.27 MPa, the same operation as in Example 12 was performed to obtain an ultrahigh molecular weight ethylene copolymer powder (PE16). Evaluation similar to Example 1 was performed using the obtained ultrahigh molecular weight ethylene copolymer powder PE16. The results are shown in Table 2.
  • Example 17 PE17 Except that the polymerization pressure was 0.27 MPa, the same operation as in Example 13 was performed to obtain an ultrahigh molecular weight ethylene copolymer powder (PE17). Evaluation similar to Example 1 was performed using the obtained ultra high molecular weight ethylene copolymer powder PE17. The results are shown in Table 2.
  • Example 18 Except that calcium stearate was not added, the same operation as in Example 1 was performed to obtain an ultrahigh molecular weight ethylene copolymer powder (PE18). Evaluation similar to Example 1 was performed using the obtained ultra high molecular weight ethylene copolymer powder PE18. The results are shown in Table 2.
  • Example 19 Except that calcium stearate was not added, the same operation as in Example 2 was performed to obtain an ultrahigh molecular weight ethylene copolymer powder (PE19). Evaluation similar to Example 1 was performed using the obtained ultra high molecular weight ethylene copolymer powder PE19. The results are shown in Table 2.
  • Example 20 Except that the polymerization temperature was 82 ° C. and hydrogen was 0.15 mol% with respect to the gas phase ethylene concentration, the same operation as in Example 1 was performed, and ultrahigh molecular weight ethylene copolymer powder (PE20 ) Evaluation similar to Example 1 was performed using the obtained ultra high molecular weight ethylene copolymer powder PE20. The results are shown in Table 2.
  • Example 21 The polymerization temperature was 60 ° C., butene-1 as an ⁇ -olefin was continuously added so as to be 0.35 mol% with respect to the gas phase ethylene concentration, and hydrogen was 0.15 mol% with respect to the gas phase ethylene concentration. Except for this, the same operation as in Example 1 was performed to obtain an ultrahigh molecular weight ethylene copolymer powder (PE21). Evaluation similar to Example 1 was performed using the obtained ultrahigh molecular weight ethylene copolymer powder PE21. The results are shown in Table 2.
  • Example 1 (Comparative Example 1: PE22) The same procedure as in Example 1 was performed except that the polymerization temperature was 96 ° C., no ⁇ -olefin was added, and hydrogen was 13 mol% with respect to the gas phase ethylene concentration. A copolymer powder (PE22) was obtained. Evaluation similar to Example 1 was performed using the obtained ultrahigh molecular weight ethylene copolymer powder PE22. The results are shown in Table 2.
  • Example 3 An ultrahigh molecular weight ethylene copolymer powder (PE18) was obtained in the same manner as in Example 1, except that the polymerization temperature was 55 ° C. and neither ⁇ -olefin nor hydrogen was supplied. Evaluation similar to Example 1 was performed using the obtained ultrahigh molecular weight ethylene copolymer powder PE24. The results are shown in Table 2.
  • Example 1 except that the polymerization temperature was 55 ° C., butene-1 as an ⁇ -olefin was continuously added to 1.1 mol% with respect to the gas phase ethylene concentration, and hydrogen was not supplied. The same operation was performed to obtain an ultra high molecular weight ethylene copolymer powder (PE25). Evaluation similar to Example 1 was performed using the obtained ultra high molecular weight ethylene copolymer powder PE25. The results are shown in Table 2.
  • Example 5 (Comparative Example 5: PE26) Except that the polymerization pressure was 0.2 MPa, the same operation as in Example 1 was performed to obtain an ultrahigh molecular weight ethylene copolymer powder (PE26). Evaluation similar to Example 1 was performed using the obtained ultra high molecular weight ethylene copolymer powder PE26. The results are shown in Table 2.
  • Example 8 PE29 Except that the polymerization temperature was 82 ° C., the same operation as in Example 1 was performed to obtain an ultrahigh molecular weight ethylene copolymer powder (PE29). Evaluation similar to Example 1 was performed using the obtained ultra high molecular weight ethylene copolymer powder PE29. The results are shown in Table 2.
  • the ultra high molecular weight ethylene copolymer powder of the present invention can not only achieve both wear resistance and impact resistance after molding, but also can suppress bending of the molded body sheet, And when the molded sheet is aged, the sheet can be easily peeled from the mold, and in the secondary battery separator and fiber, it is excellent in that it can suppress film breakage and thread breakage caused by foreign matter. You can see that
  • molded products obtained using these ultra-high molecular weight ethylene copolymer powders are excellent in the above-mentioned physical properties, but are also used in separators for secondary batteries such as lithium ion secondary batteries and lead storage batteries, fibers Non-adhesive, low friction coefficient hopper, chute and other lining materials, self-lubricating, low friction coefficient and wear resistance required, bearings, gears, roller guide rails, bone substitute materials, osteoconductive materials Or it is used suitably for an osteoinductive material etc.
  • the ultra-high molecular weight ethylene copolymer powder of the present invention can not only achieve both wear resistance and impact resistance after molding, but also aged a curved sheet obtained when the molded body is cut into a skive shape.
  • the sheet can be easily peeled off from the mold, and it is excellent in that it can suppress film breakage and thread breakage due to foreign matter in the separator for secondary batteries and fibers, so that it can be used for molding, etc. Has industrial applicability in a wide range of applications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Transplantation (AREA)
  • Public Health (AREA)
  • Dermatology (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Textile Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Materials Engineering (AREA)

Abstract

エチレン単位と炭素数3以上8以下のα-オレフィン単位を構成単位とし、 粘度平均分子量が、100,000以上10,000,000以下であり、 前記α-オレフィン単位の含有量が、前記エチレン単位及び前記α-オレフィン単位の総量に対して、0.01mol%以上0.10mol%以下であり、 示差走査熱量計を用いた以下の条件の測定において、ステップA3の126℃に達した時間を起点(0分)として、結晶化に起因する発熱ピークトップが得られた時間を等温結晶化時間としたとき、 該等温結晶化時間が5分以上である、超高分子量エチレン系共重合体パウダー。 (等温結晶化時間測定条件) ステップA1:50℃で1分間保持後、10℃/minの昇温速度で180℃まで昇温 ステップA2:180℃で30分間保持後、80℃/minの降温速度で126℃まで降温 ステップA3:126℃にて保持

Description

超高分子量エチレン系共重合体パウダー、並びに、超高分子量エチレン系共重合体パウダーを用いた成型体
 本発明は、超高分子量エチレン系共重合体パウダー、並びに、超高分子量エチレン系共重合体パウダーを用いた成型体に関する。
 従来、超高分子量オレフィン、特に超高分子量ポリエチレンは、汎用のポリエチレンに比べ、分子量が高いため、延伸加工性に優れる、強度が高い、化学的安定性が高い、長期信頼性に優れていることなどの理由から、鉛蓄電池やリチウムイオン電池に代表される二次電池のセパレータ用微多孔膜および繊維などの成型体の原料として使用されている。
 また、超高分子量オレフィン、特に超高分子量ポリエチレンは、汎用のポリエチレンに比べ、耐衝撃性、耐摩耗性、摺動性、低温特性、耐薬品性などの種々の特性に優れているため、ホッパー、シュートなどのライニング材、軸受け、歯車、ローラーガイドレール、あるいは、骨代用材、骨伝導性材及び骨誘導材などの成型体に使用されている。
 これら超高分子量ポリエチレンは、分子量が高いゆえに、樹脂単体での押出成型加工が困難であるため、二次電池セパレーター用微多孔膜や繊維等を製造する際には、超高分子量ポリエチレンパウダーは、例えば押出機中において、溶剤に溶解された状態で、高温下で、混練押出成型されることが多い。
 また、上と同じ理由で、圧縮成型(プレス成型)やラム押出しなどによって成型することも多い。圧縮成型品やラム押出品に共通して、耐衝撃性、耐摩耗性を両立させることが重要である。これらの特性を両立させる方法例が特許文献1から3に開示されている。
特開2007-23171号公報 特許第4173444号公報 特開2015-157905号公報
発明が解決しようとしている課題
 しかしながら近年、耐摩耗性の観点から、特許文献1及び2の技術では十分とは言えず、また、耐衝撃性の観点から、その効果が言及されておらず、さらに高い耐摩耗性と耐衝撃性を両立させることが望まれている。これらを解決する手段として特許文献3が開示されている。
 一方で、超高分子量ポリエチレンを用いて、圧縮成型(プレス成型)やラム押出しなどによって成型した後、得られた成型体をスカイブ状に切断してシート(以下、成型体シートと記載する)を得る技術がある。このような場合、得られた成型体シートが湾曲するという欠点がある。この湾曲を解消するために、エージングを実施することがあるが、工程が1つ増えてしまうため、生産性が低下してしまうだけでなく、エージングに用いる金型から成型体シートを剥離することができないという課題がある。
 また、二次電池用セパレーター、繊維、圧縮成型(プレス成型)やラム押出しなどに共通する課題として、成型体中の異物の混入があった。特に、二次電池用セパレーター、繊維においては、異物に起因する膜切れや糸切れを起こすことがあり、これらを解決する必要がある。
 本発明は、上記問題点に鑑みてなされたものであり、成型後の耐摩耗性と耐衝撃性を両立させることができるだけでなく、成型体シートの湾曲を抑制することができ、かつ、成型体シートをエージングした際に金型からシートが容易に剥離することが可能で、さらに二次電池用セパレーター、繊維においては、異物に起因する膜切れや糸切れを抑制することができる超高分子量エチレン系共重合体パウダー、並びに該超高分子量エチレン系共重合体パウダーを用いて得られる成型体を提供することを目的とする。
 そこで、本発明者らは、前記課題を達成するために鋭意研究を重ねた。その結果、驚くべきことに、特定範囲のα-オレフィン含有量を有する超高分子量エチレン系共重合体パウダーを用いることで、耐衝撃性、耐摩耗性を両立させることができるだけでなく、成型体シートの湾曲を抑制することができ、かつ、成型体シートをエージングした際に金型から容易に剥離できることが可能で、さらに二次電池用セパレーター、繊維においては、異物に起因する膜切れや糸切れを抑制することができることを見出して、本発明を完成するに至った。
 すなわち、本発明は以下のとおりである。
〔1〕
 エチレン単位と炭素数3以上8以下のα-オレフィン単位を構成単位とし、
 粘度平均分子量が、100,000以上10,000,000以下であり、
 前記α-オレフィン単位の含有量が、前記エチレン単位及び前記α-オレフィン単位の総量に対して、0.01mol%以上0.10mol%以下であり、
 示差走査熱量計を用いた以下の条件の測定において、ステップA3の126℃に達した時間を起点(0分)として、結晶化に起因する発熱ピークトップが得られた時間を等温結晶化時間としたとき、
 該等温結晶化時間が5分以上である、超高分子量エチレン系共重合体パウダー。
(等温結晶化時間測定条件)
 ステップA1:50℃で1分間保持後、10℃/minの昇温速度で180℃まで昇温
 ステップA2:180℃で30分間保持後、80℃/minの降温速度で126℃まで降温
 ステップA3:126℃にて保持
〔2〕
 示差走査熱量計を用いた以下の条件の測定において、ステップB3の昇温過程における融解熱量(ΔH2)が、230J/g以下である、〔1〕記載の超高分子量エチレン系共重合体パウダー。
(融解熱量(ΔH2)測定条件)
 ステップB1:50℃で1分間保持後、10℃/minの昇温速度で180℃まで昇温
 ステップB2:180℃で5分間保持後、10℃/minの降温速度で50℃まで降温
 ステップB3:50℃で5分間保持後10℃/minの昇温速度で180℃まで昇温
〔3〕
 誘導結合プラズマ質量分析計(ICP/MS)によるチタン元素含有量が、6ppm以下である、〔1〕又は〔2〕記載の超高分子量エチレン系共重合体パウダー。
〔4〕
 前記等温結晶化時間が8分以上である、〔1〕~〔3〕のいずれか1項に記載の超高分子量エチレン系共重合体パウダー。
〔5〕
 タップ密度が、0.51g/cm以上0.64g/cm以下であり、かつ、
 嵩密度が、0.40g/cm以上0.60g/cm以下である、〔1〕~〔4〕のいずれか1項に記載の超高分子量エチレン系共重合体パウダー。
〔6〕
 嵩密度に対するタップ密度の比が、1.10以上1.50以下である〔5〕に記載の超高分子量ポリエチレン系共重合体パウダー。
〔7〕
 平均粒子径が、50μm以上200μm以下である、〔1〕~〔6〕のいずれか1項に記載の超高分子量エチレン系共重合体パウダー。
〔8〕
 〔1〕~〔7〕のいずれか1項に記載の超高分子量エチレン系共重合体パウダーの成型体。
〔9〕
 湿式押出法によって得られる、二次電池用セパレータ膜、繊維であることを特徴とする〔8〕に記載の成型体。
〔10〕
 前記二次電池がリチウムイオン二次電池、若しくは、鉛蓄電池であることを特徴とする〔9〕に記載の成型体。
〔11〕
 前記繊維を用いた製品がロープ、ネット、防弾衣料、防護衣料、防護手袋、繊維補強コンクリート製品、及びヘルメットであることを特徴とする〔9〕記載の成型体。
〔12〕
 ライニング用途、軸受け、歯車、ローラーガイドレール、骨代用材、骨伝導性材、又は骨誘導材に用いられる、〔8〕に記載の成型体。
 本発明によれば、成型品の耐衝撃性、耐摩耗性を両立させることができるだけでなく、成型体シートの湾曲を抑制することができ、かつ、成型体シートをエージングした際に金型からシートが容易に剥離することが可能で、さらに二次電池用セパレーター、繊維においては、異物に起因する膜切れや糸切れを抑制することができる超高分子量エチレン系共重合体パウダー、並びに該超高分子量エチレン系共重合体パウダーを用いて得られる成型体を実現することができる。
 以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明するが、本発明はこれに限定されるものではなく。その要旨を逸脱しない範囲で様々な変形が可能である。
〔超高分子量エチレン系共重合体パウダー〕
 本実施形態の超高分子量エチレン系共重合体パウダーは、エチレン単位と炭素数3以上8以下のα-オレフィン単位を構成単位とし、粘度平均分子量が、100,000以上10,000,000以下であり、前記α-オレフィン単位の含有量が、前記エチレン単位及び前記α-オレフィン単位の総量に対して、0.01mol%以上0.10mol%以下であり、示差走査熱量計を用いた以下の条件の測定において、ステップA3の126℃に達した時間を起点(0分)として、結晶化に起因する発熱ピークトップが得られた時間を等温結晶化時間としたとき、該等温結晶化時間が5分以上である。
(等温結晶化時間測定条件)
 ステップA1:50℃で1分間保持後、10℃/minの昇温速度で180℃まで昇温
 ステップA2:180℃で30分間保持後、80℃/minの降温速度で126℃まで降温
 ステップA3:126℃にて保持
 本明細書中において、重合体を構成する各単量体単位の命名は、単量体単位が由来する単量体の命名に従う。例えば、「エチレン単位」とは、単量体であるエチレンを重合した結果生ずる重合体の構成単位を意味し、その構造は、エチレンの二つの炭素が重合体主鎖となっている分子構造である。また、「α-オレフィン単位」とは、単量体であるα-オレフィンを重合した結果生ずる重合体の構成単位を意味し、その構造は、α-オレフィンに由来するオレフィンの二つの炭素が重合体主鎖となっている分子構造である。
 超高分子量エチレン系共重合体パウダーとしては、エチレン単位と、炭素数3以上8以下のα-オレフィン単位と、を含む限り特に限定されない。エチレンと共重合可能な炭素数3以上8以下のα-オレフィンとしては、特に限定されないが、具体的には、直鎖、分岐、又は環状α-オレフィン、式CH=CHR(ここで、Rは炭素数1~6のアリール基である。)で表される化合物、及び炭素数4~7の、直鎖状、分岐状又は環状のジエンからなる群より選ばれる少なくとも1種のα-オレフィンが挙げられる。この中でも、α-オレフィンとしては、成型体の耐摩耗性や耐熱性及び強度の観点から、プロピレン及び1-ブテンが好ましい。
〔粘度平均分子量〕
 粘度平均分子量(Mv)は、100,000以上10,000,000以下あり、より好ましくは150,000以上9,500,000以下であり、200,000以上9,000,000以下がさらに好ましい。Mvが100,000以上であることにより、耐摩耗性と強度がより向上する。また、Mvが10,000,000以下であることにより、成型性がより向上する。さらに、Mvが上記範囲であることにより、パウダーの生産性に優れる。このような特性を有する超高分子量エチレン系共重合体パウダーは、圧縮成形(プレス成型)、ラム押出し、溶剤に溶解された状態での押出混錬による二次電池用セパレーター成型や繊維への成型などに好適に用いることができ、得られる成型体を幅広い用途に好適に用いることができる。
 Mvを上記範囲に制御する方法としては、超高分子量エチレン系共重合体パウダーを重合する際の反応器の重合温度を変化させることが挙げられる。一般には、重合温度を高温にするほどMvは低くなる傾向にあり、重合温度を低温にするほどMvは高くなる傾向にある。また、Mvを上記範囲にする別の方法としては、超高分子量エチレン系共重合体パウダーを重合する際に添加する助触媒としての有機金属化合物種を変更することが挙げられる。また、超高分子量ポリエチレン系共重合体を重合する際に連鎖移動剤を添加してもよい。このように連鎖移動剤を添加することで、同一重合温度でも生成する超高分子量エチレン系共重合体パウダーのMvが低くなる傾向にある。
 超高分子量エチレン系共重合体パウダーのMvは、デカヒドロナフタレン溶液中に超高分子量エチレン系共重合体パウダーを異なる濃度で溶解させ、135℃で求めた還元粘度を濃度0に外挿して求めた極限粘度[η](dL/g)から、以下の数式Aにより算出することができる。より詳細には、実施例に記載の方法により求めることができる。
  Mv=(5.34×10)×[η]1.49       ・・・数式A
〔エチレン単位の含有量〕
 エチレン単位の含有量は、エチレン単位及びα-オレフィン単位の総量に対して、99.90mol%以上99.99mol%以下であり、99.905mol%以上99.99mol%以下がより好ましく、99.91mol%以上99.99mol%以下がさらに好ましい。エチレン単位の含有量が上記範囲内であることにより、耐熱性及び/又は強度により優れる傾向にある。
[α-オレフィン単位の含有量]
 α-オレフィン単位の含有量は、エチレン単位及びα-オレフィン単位の総量に対して、0.01mol%以上0.10mol%以下であり、0.01mol%以上0.095mol%以下が好ましく、0.01mol%以上0.09mol%以下がより好ましい。α-オレフィン単位の含有量が上記範囲内であることにより、耐衝撃性、耐摩耗性がより向上する傾向にある。なお、α-オレフィン単位の含有量の測定は、G.J.RayらのMacromolecules 、10 、773(1977)に開示された方法に準じて行われ、α-オレフィン単位の含有量は、13C-NMRスペクトルにより観測されるメチレン炭素のシグナルを用いて、その面積強度より算出することができる。より具体的には、実施例に記載の方法により測定することができる。
〔等温結晶化時間〕
 本実施形態において、等温結晶化時間は、126℃において結晶化に起因する発熱ピークトップが得られた時間であり、示差走査熱量計(DSC)を用いて、以下の測定条件により測定した際に、126℃に達した時間を起点(0分)として、結晶化に起因する発熱ピークトップが得られた時間を等温結晶化時間と定義する。
 ステップA1:50℃で1分間保持後、10℃/minの昇温速度で180℃まで昇温
 ステップA2:180℃で30分間保持後、80℃/minの降温速度で126℃まで降温
 ステップA3:126℃にて保持。
 等温結晶化時間は5分以上である必要があり、7分以上が好ましく、8分以上がより好ましい。圧縮成型(プレス成型)やラム押出しなどによって得られる成型体をスカイブ状に切断したときに得られる成型体シートが湾曲してしまうことがあり、この湾曲を解消するために、金型に挟んでエージングを実施することがある。等温結晶化時間が5分未満であると、成型体シートが湾曲しやすいだけでなく、この湾曲した成型体シートをエージングした後に、エージング時に用いた金型からシートを剥離することができなくなってしまう。
 等温結晶化時間を上記範囲に制御する方法としては、重合反応器内で触媒が局在化しないようにすることが考えられ、具体的には、不活性炭化水素媒体に対する触媒濃度を10g/L以下にすること、重合反応器に触媒、及び、不活性炭化水素媒体を供給する際、複数の触媒フィード口を設けて供給すること、撹拌装置内に4枚以上の撹拌翼を用いること、撹拌翼の回転速度を60rpm以上にすることなどが挙げられる。
〔融解熱量(ΔH2)〕
 示差走査熱量計を用いた以下の条件の測定において、ステップB3の昇温過程における融解熱量(2回目の昇温過程における融解熱量)を融解熱量(ΔH2)と定義する。
(融解熱量(ΔH2)測定条件)
 ステップB1:50℃で1分間保持後、10℃/minの昇温速度で180℃まで昇温
 ステップB2:180℃で5分間保持後、10℃/minの降温速度で50℃まで降温
 ステップB3:50℃で5分間保持後10℃/minの昇温速度で180℃まで昇温
 このとき、融解熱量(ΔH2)は、好ましくは230J/g以下であり、より好ましくは50J/g以上220J/g以下であり、さらに好ましくは100J/g以上210J/g以下である。融解熱量(ΔH2)が50J/g以上であることにより、成型体としての強度を維持することができ、また230J/g以下であることにより、圧縮成型(プレス成型)やラム押出しなどによって得られる成型体をスカイブ状に切断したときに得られた成型体シートが湾曲することをより抑制できる傾向にある。また、成型体シートの湾曲を解消するために、成型体シートを金型に挟んでエージングした後、金型から成型体シートを剥離する操作を省くことができる。そのため、金型から成型体シートが剥離できないという問題を回避することが可能となる。
 融解熱量(ΔH2)を上記範囲に制御する方法としては、重合反応器内で触媒が局在化しないようにすることが考えられ、具体的には、不活性炭化水素媒体に対する触媒濃度を10g/L以下にすること、重合反応器に触媒、及び、不活性炭化水素媒体を供給する際、複数の触媒フィード口を設けて供給すること、撹拌装置内に4枚以上の撹拌翼を用いること、撹拌翼の回転速度を60rpm以上にすることなどが挙げられる。
〔チタン元素含有量〕
 チタン元素含有量は、誘導結合プラズマ質量分析計(ICP/MS)にて測定したものを定義する。チタン元素含有量は、好ましくは6ppm以下であり、より好ましくは0.1ppm以上5.5ppm以下であり、さらに好ましくは0.5ppm以上5ppm以下である。チタン元素含有量は耐酸性の観点から、0.1ppm以上であることが好ましく、また6ppm以下であることにより、等温結晶化時間が5分未満になったり、融解熱量(ΔH2)が150J/gを超えたりすることをより抑制できる傾向にある。また、このことにより、成型体中の異物の混入を抑制することができ、特に、二次電池用セパレーター、繊維においては、異物に起因する膜切れや糸切れを起こすことが少なくなる効果がある。なお、超高分子量エチレン系共重合体パウダーに含まれるチタン元素含有量は、単位触媒あたりの超高分子量エチレン系共重合体パウダーの生産性により制御が可能であり、生産性を上げることにより含有量を少なくすることが可能である。なお、チタン含有量の測定は実施例に記載の方法により行なうことができる。
〔タップ密度、及び、嵩密度〕
 超高分子量エチレン系共重合体パウダーのタップ密度は、好ましくは0.51g/cm以上0.64g/cm以下であり、より好ましくは0.52g/cm以上0.63g/cm以下であり、さらに好ましくは0.53g/cm以上0.62g/cm以下である。超高分子量エチレン系共重合体パウダーのタップ密度が上記範囲内であることにより、成型時にパウダーが十分充填されるため、均一な成型体が得られ、そのため、成型体をスカイブ状に切断したときに得られる成型体シートの湾曲を抑制することができる傾向にある。
 また、超高分子量エチレン系共重合体パウダーの嵩密度は、好ましくは0.40g/cm以上0.60g/cm以下であり、より好ましくは0.40g/cm以上0.58g/cm以下であり、さらに好ましくは0.40g/cm以上0.55g/cm以下である。嵩密度が0.40g/cm以上であることにより、超高分子量エチレン系共重合体パウダーの流動性が充分に高くなり、ハンドリング性に優れ、各種成型機へのフィードが安定し、成型品の寸法が安定する傾向にある。一方、超高分子量エチレン系共重合体パウダーの嵩密度が0.60g/cm以下であることにより、成型品の加工等の際に、生産性等に優れ、より良好な加工適用性を示す傾向にある。
 また、嵩密度に対するタップ密度の比は、好ましくは1.10以上1.50以下であり、より好ましくは1.10以上1.48以下であり、さらに好ましくは1.10以上1.45以下である。嵩密度に対するタップ密度の比が上記範囲内であることにより、成型体シートの湾曲の抑制、加工適用性、成型体の寸法安定性のバランスがより優れる傾向にある。
 一般的には、嵩密度は、使用する触媒によって異なるが、単位触媒あたりの超高分子量エチレン系共重合体パウダーの生産性により制御することが可能である。超高分子量エチレン系共重合体パウダーの嵩密度は、超高分子量エチレン系共重合体パウダーを重合する際の重合温度によって制御することが可能であり、重合温度を高くすることによりその嵩密度を低下させることが可能である。また、超高分子量エチレン系共重合体パウダーの嵩密度は重合器内のスラリー濃度によって制御することも可能であり、スラリー濃度を高くすることによりその嵩密度を増加させることが可能である。なお、超高分子量エチレン系共重合体パウダーの嵩密度は実施例に記載の方法によって測定することができる。
 また、タップ密度を前述の範囲にするためには、超高分子量エチレン系共重合体パウダーの凝集体を作らないことが重要である。そのための手段としては、重合反応器内で触媒が局在化しないようにすることが挙げられる。具体的には、不活性炭化水素媒体に対する触媒濃度を10g/L以下にすること、重合反応器に触媒、及び、不活性炭化水素媒体を供給する際、複数の触媒フィード口を設けて供給すること、撹拌装置内に4枚以上の撹拌翼を用いること、撹拌翼の回転速度を60rpm以上にすることなどが挙げられる。また、重合反応器へのポリマーの静電気付着を抑制することが効果的である。具体的には、前述の特許文献3の〔0081〕に開示されているが、Stadis450の添加量を20ppm以上50ppm以下にすることが好ましい。
 また、嵩密度に対するタップ密度の比も、上述の方法で制御することができ、更に後述のステアリン酸カルシウムなどの滑剤を配合することも好ましい方法である。
〔平均粒子径〕
 超高分子量エチレン系共重合体パウダーの平均粒子径は、好ましくは50μm以上200μm以下であり、より好ましくは60μm以上190μm以下であり、さらに好ましくは70μm以上180μm以下である。超高分子量エチレン系共重合体パウダーの平均粒子径が50μm以上であることにより、超高分子量エチレン系共重合体パウダーのホッパー等への投入やホッパーからの計量等のハンドリング性がより良好となる傾向にある。一方、平均粒子径が200μm以下であることにより、各種成型加工工程において、生産性等の加工適用性により優れる傾向にある。超高分子量エチレン系共重合体パウダーの平均粒子径の制御は、使用する触媒の粒子径によって制御することができ、単位触媒量あたりの超高分子量エチレン系共重合体パウダーの生産性により制御することも可能である。なお、超高分子量エチレン系共重合体パウダーの平均粒子径は後述する実施例に記載の方法により測定することができる。
 超高分子量エチレン系共重合体パウダーは、そのまま各種成型機にて成型加工しても構わないし、超高分子量エチレン系共重合体パウダーに有機過酸化物と混合した後、各種成型加工機にて成型加工しても構わない。有機過酸化物と混合した後、各種成型機にて成型加工する場合、架橋ムラが発生するという問題があるが、本実施系他の超高分子量エチレン系共重合体パウダーであれば、分子鎖中に存在する微量なα-オレフィンに由来の3級炭素で架橋反応が優先的に進行し、均一な架橋反応が進行する。これにより、成型品の耐摩耗性がより向上する。
 超高分子量エチレン系共重合体パウダーを成型する際に用いる、有機過酸化物(有機過酸化物架橋剤)としては、上記超高分子量エチレン系共重合体パウダーの架橋に寄与し、分子内に原子団-O-O-を有する有機物であれば特に限定されないが、例えば、ジアルキルペルオキシド、ジアシルペルオキシド、ヒドロペルオキシド、ケトンペルオキシド等の有機ペルオキシド;アルキルペルエステル等の有機ペルエステル;ペルオキシジカーボネートなどが挙げられる。上記有機過酸化物としては、特に限定されないが、具体的には、ジクミルペルオキシド、ジ-tert-ブチルペルオキシド、2,5-ジメチル-2,5-ジ-(tert-ブチルペルオキシ)ヘキサン、2,5-ジメチル-2,5-ジ-(tert-ブチルペルオキシ)ヘキシン-3、1,3-ビス(tert-ブチルペルオキシイソプロピル)ベンゼン、1,1-ビス(tert-ブチルペルオキシ)-3,3,5-トリメチルシクロヘキサン、n-ブチル-4,4-ビス(tert-ブチルペルオキシ)バレレート、ベンゾイルペルオキシド、p-クロロベンゾイルペルオキシド、2,4-ジクロロベンゾイルペルオキシド、tert-ブチルペルオキシベンゾエート、tert-ブチルペルベンゾエート、tert-ブチルペルオキシイソプロピルカーボネート、ジアセチルペルオキシド、ラウロイルペルオキシド、tert-ブチルクミルペルオキシド、α、α’-ジ(tert-ブチルペルオキシ)ジイソプロピルベンゼン等が挙げられる。これらの中では、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキサン(商品名「パーヘキサ25B」日本油脂(株)製)、2,5-ジメチル-2,5-ビス(t-ブチルオキシ)ヘキシン-3(商品名「パーヘキシン25B」日本油脂(株)製)、ジクミルパーオキサイド、1,1-ビス(t-ブチルパーオキシ)3,3,5-トリメチルシクロヘキサンが好ましい。
 超高分子量エチレン系共重合体パウダーと有機過酸化物と混合は、通常の混合器を用いて行うことができる。たとえば、ヘンシェルミキサーのような攪拌機による混合やブレンダーのような回転による混合が好ましい。この場合の撹拌・混合条件は、温度、圧力、拡販速度等の条件にも依るため一概に決定されないが、例えば、常温、常圧下では、50回転/分から800回転/分の速度で、1分間から10分程度撹拌・混合すればよい。また、撹拌・混合速度は、適宜変更してもよく、例えば、最初低速で数分間混合を行い、ある程度配合成分が一様に混ざった段階で、より高速で数分間撹拌・混合してもよい。超高分子量エチレン系共重合体パウダーに混合する有機過酸化物は、そのまま用いてもよいし、炭化水素溶媒等に溶解して添加してもよい。
〔超高分子量エチレン系共重合体パウダーの成型方法〕
 一般的なポリエチレンの成型方法では成型困難な超高分子量ポリエチレンの成型方法としては、圧縮成型(プレス成型)、押出し成型が挙げられる。圧縮成型は、金型に原料パウダーを均一に散布し、加熱・加圧して成型した後、冷却して取り出す方法である。板状のものはそのまま製品として、ブロックを作り、切削加工などにより最終製品に仕上げることも可能である。一方、押出し成型では、押出機中において、溶剤に溶解された状態で、高温下で、混練押出成型による二次電池用セパレーター、繊維成型や、ピストンを前後させて押出すラム押出機が用いられる。押出し機の出口の形状を変えることにより、シート、平板、異形品、パイプなど様々な形状の物が得られる。
〔超高分子量エチレン系共重合体パウダーの製造方法〕
 超高分子量エチレン系共重合体パウダーは、特に限定されず、一般的なチーグラー・ナッタ触媒やメタロセン触媒を用いて製造することが可能であり、中でもチーグラー・ナッタ触媒を用いて製造することが好ましい。チーグラー・ナッタ触媒については、前述の特許文献3の〔0032〕から〔0068〕に開示されている。
 固体触媒成分、及び、有機金属化合物成分(以下、「触媒」と省略する)をエチレン系重合条件下である重合系内に添加する際には、両者を別々に重合系内に添加してもよいし、予め両者を混合させた後に重合系内に添加してもよい。また、組み合わせる両者の比率は、特に限定されないが、固体触媒成分1gに対し有機金属化合物成分は0.01mmol以上1,000mmol以下が好ましく、0.1mmol以上500mmol以下がより好ましく、1mmol以上100mmol以下がさらに好ましい。両者を混合させる他の目的としては、保存タンクや配管等に静電付着を防止することも挙げられる。
 超高分子量エチレン系共重合体パウダーの製造方法における重合法は、懸濁重合法により、エチレン又は炭素数3以上8以下のα-オレフィンを含む単量体を(共)重合させる方法が挙げられる。懸濁重合法で重合すれば、重合熱を効率的に除熱することができる点で好ましい。懸濁重合法においては、媒体として不活性炭化水素媒体を用いることができ、さらにオレフィン自身を溶媒として用いることもできる。
 上記不活性炭化水素媒体としては、特に限定されないが、具体的には、プロパン、ブタン、イソブタン、ペンタン、イソペンタン、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、灯油等の脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロペンタン等の脂環式炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素;エチルクロライド、クロルベンゼン、ジクロロメタン等のハロゲン化炭化水素;又はこれらの混合物等を挙げることができる。
 前述したとおり、本発明を実施するうえで、重合反応器内で触媒が局在化しないようにすることが重要である。その具体的な方法として、不活性炭化水素媒体に対する触媒濃度を10g/L以下にすること、重合反応器に触媒、及び、不活性炭化水素媒体を供給する際、複数の触媒フィード口を設けて供給すること、撹拌装置内に4枚以上の撹拌翼を用いること、撹拌翼の回転速度を60rpm以上にすることなどが挙げられる。
 上記範囲の超高分子量エチレン系共重合体パウダーを得るための製造方法における重合温度は、通常、20℃以上100℃以下が好ましく、30℃以上95℃以下がより好ましく、40℃以上90℃以下がさらに好ましい。重合温度が20℃以上であることにより、工業的に効率的な製造が可能である。一方、重合温度が100℃以下であることにより、連続的に安定運転が可能である。
 上記範囲の超高分子量エチレン系共重合体パウダーを得るための製造方法における重合圧力は、通常、常圧以上2MPa以下が好ましく、0.1MPa以上1.5MPa以下がより好ましく、0.2MPa以上1.0MPa以下がさらに好ましい。重合圧力が常圧以上であることにより、総金属量及び全塩素量の高い超高分子量エチレン系共重合体パウダーが得られる傾向にあり、重合圧力が2MPa以下であることにより、総金属量及び全塩素量の低い超高分子量エチレン系共重合体パウダーを安定的に生産できる傾向にある。
 また、重合を反応条件の異なる2段以上に分けて行なうことも可能である。さらに、例えば、西独国特許出願公開第3127133号明細書に記載されているように、得られる超高分子量エチレン系共重合体パウダーの分子量は、重合系に水素を存在させるか、又は重合温度を変化させることによって調節することもできる。重合系内に連鎖移動剤として水素を添加することにより、分子量を適切な範囲で制御することが可能である。重合系内に水素を添加する場合、水素のモル分率は、0.01mol%以上10mol%以下が好ましく、0.01mol%以上5mol%以下がより好ましく、0.01mol%以上1mol%以下がさらに好ましい。なお、本実施形態では、上記のような各成分以外にも超高分子量エチレン系共重合体パウダーの製造に有用な他の公知の成分を含むことができる。
 一般的に超高分子量エチレン系共重合体パウダーを重合する際には、重合反応器へのポリマーの静電気付着を抑制するため、The Associated Octel Company社製(代理店丸和物産)のStadis450等の静電気防止剤を使用することも可能である。Stadis450は、不活性炭化水素媒体に希釈したものをポンプ等により重合反応器に添加することもできる。この際の添加量は、単位時間当たりの超高分子量エチレン系共重合体パウダーの生産量に対して、0.1ppm以上50ppm以下が好ましく、10ppm以上30ppm以下がより好ましい。
 上記範囲の超高分子量エチレン系共重合体パウダーを得るための、重合後の乾燥方法としては、できるだけ熱をかけない乾燥方法が好ましい。乾燥機の形式としては、ロータリーキルン方式やパドル方式や流動乾燥機などが好ましい。乾燥温度としては50℃以上、150℃以下が好ましく、70℃以上100℃以下がさらに好ましい。また乾燥機に窒素等の不活性ガスを導入し乾燥を促進することも効果的である。
〔その他の成分〕
 上記のような超高分子量エチレン系共重合体パウダーは、必要に応じて公知の各種添加剤と組み合わせて用いてもよい。熱安定剤としては、特に限定されないが、例えば、テトラキス[メチレン(3,5-ジ-t-ブチル-4-ヒドロキシ)ヒドロシンナメート]メタン、ジステアリルチオジプロピオネート等の耐熱安定剤;又はビス(2,2’,6,6’-テトラメチル-4-ピペリジン)セバケート、2-(2-ヒドロキシ-t-ブチル-5-メチルフェニル)-5-クロロベンゾトリアゾール等の耐候安定剤等が挙げられる。また、滑剤や塩化水素吸収剤等として公知であるステアリン酸カルシウム、ステアリン酸マグネシウム、ステアリン酸亜鉛等のステアリン酸塩も、好適な添加剤として挙げることができる。
〔成型体〕
 本実施形態の成型体は、上記超高分子量エチレン系共重合体パウダーを用いた成型体である。該成型体は、上記超高分子量エチレン系共重合体パウダーを含み、必要に応じて有機過酸化物をさらに含んでもよい。このような成型体であれば、他の諸物性を維持しつつ、耐摩耗性及び強度に優れ、かつ製品物性が高く、長期安定性に優れる。
〔用途〕
 上記のようにして得られる超高分子量エチレン系共重合体パウダーは、高度な加工性と高い連続加工生産性を有することができ、種々の加工方法により加工することができる。また、超高分子量エチレン系共重合体パウダーを用いた成型体は、種々の用途に応用されることができる。主な用途としてリチウムイオン二次電池や鉛蓄電池などの二次電池用セパレーターや、繊維、非粘着性、低摩擦係数でホッパー、シュートなどのライニング材、また自己潤滑性、低摩擦係数で耐摩耗性が要求される、軸受け、歯車、ローラーガイドレール、骨代用材、骨伝導性材又は骨誘導材などに好適に使用される。
 以下、本発明を実施例及び比較例によりさらに詳しく説明するが、本発明は以下の実施例により何ら限定されるものではない。
〔測定方法及び条件〕
(1)粘度平均分子量(Mv)
 超高分子量エチレン系共重合体パウダーの粘度平均分子量については、ISO1628-3(2010)に準じて、以下に示す方法によって求めた。まず、溶融管に超高分子量エチレン系共重合体パウダー20mgを秤量し、溶融管を窒素置換した後、20mLのデカヒドロナフタレン(2,6-ジ-t-ブチル-4-メチルフェノールを1g/L加えたもの)を加え、150℃で2時間攪拌して超高分子量エチレン系共重合体パウダーを溶解させた。その溶液を135℃の恒温槽で、キャノン-フェンスケの粘度計(柴田科学器械工業社製:製品番号-100)を用いて、標線間の落下時間(ts)を測定した。同様に、超高分子量エチレン系共重合体パウダーを10mg、5mg、2.5mgと変えたサンプルついても同様に標線間の落下時間(ts)を測定した。ブランクとして超高分子量エチレン系共重合体パウダーを入れていない、デカヒドロナフタレンのみの落下時間(tb)を測定した。以下の式に従って求めた超高分子量エチレン系共重合体パウダーの還元粘度(ηsp/C)をそれぞれプロットして濃度(C)(単位:g/dL)と超高分子量エチレン系共重合体パウダーの還元粘度(ηsp/C)の直線式を導き、濃度0に外挿した極限粘度([η])を求めた。
   ηsp/C=(ts/tb-1)/0.1 (単位:dL/g)
 次に、下記数式Aを用いて、上記極限粘度[η]の値を用い、粘度平均分子量(Mv)を算出した。
   Mv=(5.34×10)×[η]1.49        ・・・数式A
(2)α-オレフィン単位の含有量
 超高分子量エチレン系共重合体パウダー中のα-オレフィンに由来する重合単位の含有率(mol%)の測定は、G.J.RayらのMacromolecules,10,773(1977)に開示された方法に準じて行い、13C-NMRスペクトルにより観測されるメチレン炭素のシグナルを用いて、その面積強度より算出した。
 測定装置    :日本電子製ECS-400
 観測核     :13
 観測周波数   :100.53MHz
 パルス幅    :45°(7.5μsec)
 パルスプログラム:single pulse dec
 PD      :5sec
 測定温度    :130℃
 積算回数    :30,000回以上
 基準      :PE(-eee-)シグナルであり29.9ppm
 溶媒      :オルトジクロロベンゼン-d4
 試料濃度    :5~10wt%
 溶解温度    :130~140℃
(3)等温結晶化時間
 等温結晶化時間の測定は、DSC(パーキンエルマー社製、商品名:DSC8000)を用いて行なった。8~10mgの超高分子量エチレン系共重合体パウダーをアルミニウムパンに挿填し、DSCに設置した。その後、以下の測定条件により126℃において結晶化に起因する発熱ピークトップが得られた時間を測定し、その時間を等温結晶化時間とした。
 ステップA1:50℃で1分間保持後、10℃/minの昇温速度で180℃まで昇温
 ステップA2:180℃で30分間保持後、80℃/minの降温速度で126℃まで降温
 ステップA3:126℃にて保持
(4)融解熱量(ΔH2)
 融解熱量(ΔH2)の測定は、DSC(パーキンエルマー社製、商品名:DSC8000)を用いて行なった。8~10mgの超高分子量エチレン系共重合体パウダーをアルミニウムパンに挿填し、DSCに設置した。その後、以下の測定条件により、ステップB3の昇温過程における融解熱量(ΔH2)を算出した。
 ステップB1:50℃で1分間保持後、10℃/minの昇温速度で180℃まで昇温
 ステップB2:180℃で5分間保持後、10℃/minの降温速度で50℃まで降温
 ステップB3:50℃で5分間保持後10℃/minの昇温速度で180℃まで昇温
(5)チタン元素含有量
 超高分子量エチレン系共重合体パウダーをマイクロウェーブ分解装置(型式ETHOS TC、マイルストーンゼネラル社製)を用い加圧分解し、内部標準法にて、ICP-MS(誘導結合プラズマ質量分析装置、型式Xシリーズ X7、サーモフィッシャーサイエンティフィック社製)にて、超高分子量エチレン系共重合体パウダー中の金属としてチタンの元素濃度を測定した。
(6)嵩密度
 超高分子量エチレン系共重合体パウダーの嵩密度は、JIS K-6721:1997に従い測定した。
(7)タップ密度
 超高分子量エチレン系共重合体パウダーのタップ密度は、JIS K-7370:2000に記載された方法により測定した。また、(6)及び(7)の測定結果より、嵩密度に対するタップ密度の比を算出した。
(8)平均粒子径
 超高分子量エチレン系共重合体パウダーの平均粒子径は、JIS Z8801で規定された10種類の篩(目開き:710μm、500μm、425μm、355μm、300μm、212μm、150μm、106μm、75μm、53μm)を用いて、100gの超高分子量エチレン系共重合体パウダーを分級した際に得られる各篩に残った粒子の重量を目開きの大きい側から積分した積分曲線において、50%の重量になる粒子径を平均粒子径とした。
(9)成型方法
(9-1)微多孔膜成型
 100ccのポリカップに、超高分子量エチレン系共重合体パウダー4.0g、及び酸化防止剤としてペンタエリスリチル-テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]を0.012g(0.3質量%)投入して、ドライブレンドすることにより、ポリマー等混合物を得た。さらに、該混合物に流動パラフィン(37.78℃における動粘度7.59×10-5/s)36.0g(ポリエチレン濃度10質量%)を投入し、室温にてスパチュラで撹拌することにより、均一なスラリーを得た。
 当該スラリーを190℃に設定したラボプラストミル((株)東洋精機製作所製4C150-01型)に投入し、窒素雰囲気下、回転数50rpmで30分間混練した。混練によって得られた混合物(ゲル)を165℃に加熱したプレス機で圧縮することにより、厚さ1.0mmのゲルシートを作製した。作製したゲルシートから10cm×10cmの試験片を切り出し、120℃に加熱した同時二軸テンター延伸機にセットし、3分間保持した。その後、12mm/secのスピードでMD倍率7.0倍、TD倍率7.0倍(即ち、7×7倍)になるように延伸した。次に延伸後のシートをノルマルヘキサン中に充分に浸漬して流動パラフィンを抽出除去し、その後ノルマルヘキサンを乾燥除去した。抽出完了後の薄膜を室温で10時間乾燥し、微多孔膜を得た。
(9-2)繊維成型
 超高分子量エチレン系共重合体パウダー4.0gに、酸化防止剤としてペンタエリスリチル-テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]を0.012g(0.3質量%)添加し、タンブラーブレンダーを用いてドライブレンドすることにより、ポリマー等混合物を得た。得られたポリマー等混合物と流動パラフィン(37.78℃における動粘度7.59×10-5/s)36.0g(ポリエチレン濃度10質量%)を、窒素で置換を行った事前混合槽に投入し、室温にて撹拌することにより、均一なスラリーを得た。これをポンプにより、窒素雰囲気下にて二軸押出機へ供給して、溶融混練した。溶融混練条件は、設定温度250℃、スクリュー回転数200rpm、吐出量12kg/hrで行った。押し出し機の下流側に吐出安定性を付与するため、ギアポンプを介し、JIS Z8801規格に準拠した目開き250μmと、106μmと、45μmと、106μmと、250μmのステンレス製平織スクリーンとを重ねて設置したスクリーンメッシュ通過後、紡糸用ダイスを経て、得られたストランドをノルマルヘキサン中に充分に浸漬して流動パラフィンを抽出除去し、その後ノルマルヘキサンを乾燥除去した。次に、ストランドを120℃で20倍に延伸し、さらに、140℃で50倍に延伸し、繊維を得た。
(9-3)圧縮成型(プレス成型)、及び、ラム成型
 超高分子量エチレン系共重合体パウダーを、JIS K7139に準拠して圧縮成形(プレス成型)、又は、ラム押出(約12MPaの圧力のもとで約1.2mのラム長さの水平ラム押出機でシリンダー内温度:約240℃、成型口金温度:約200℃の設定温度)により成型体を得た。
(10)膜切れ、糸切れ評価
 (9-1)及び(9-2)の延伸工程で、微多孔膜、及び、繊維を製造時の膜切れ、糸切れ状態を目視評価した。判断基準は以下のとおりである。
  ○・・・10回試験時、10回とも膜切れ、糸切れが発生しなかった。
  △・・・10回延伸時、1回、膜切れ、糸切れが発生した。
  ×・・・10回延伸時、2回以上、膜切れ、糸切れが発生した。
(11)耐摩耗性試験
 (9-3)で得られた成型体を用いて、耐摩耗性試験(サンドスラリー試験)を行った。試験に用いるサンドは、4号珪砂2kg/水2L、回転数1、750rpm、試験時間24時間後の摩耗損失量から下記数式Bで摩耗損失量比を求めた。摩耗損失量比が5%を超えるものを不可(×)、5%以下のものを優良(○)と評価した。
   摩耗損失量比=(W1-W2)/W1*100      ・・・数式B
    W1=元重量、W2=テスト後の重量
(12)衝撃強度評価
 (9-3)で得られた成型体から縦8cm×横1cm、厚さ4mmの試験片を切り出した後、衝撃強度を評価した。10点の測定値の加算平均値を算出し、ノッチ付シャルピー衝撃強度とした。ノッチ付シャルピー衝撃強度が100kJ/g未満のものを不可(×)、100kJ/g以上を優良(○)として評価した。
(13)スカイブカット時のシート形状
 (9-3)で縦1m×横1m、厚さ0.1mの成型体を得た後、成型体を90℃に加熱し、5mm厚さになるようにスカイブカットを行った。得られたシートを130℃の鉄板にはさみ、1時間エージングした後のシートを目視評価した。判断基準は以下のとおりである。
  ○・・・エージング後にシートがきれいに鉄板から離れ、かつ、シート端部に湾曲、波打ちが見られない。
  △・・・エージング後にシートを鉄板から離すのが困難であるが、離した後のシート端部に湾曲、波打ちが見られない。
  ×・・・エージング後にシートがきれいに鉄板から離れない。または、鉄板からきれいに離れても湾曲、波打ちが解消されない。
〔触媒合成例1:固体触媒成分[A]の調製〕
(1)(A-1)担体の合成
 充分に窒素置換された8Lステンレス製オートクレーブに2mol/Lのヒドロキシトリクロロシランのヘキサン溶液1,000mLを仕込み、65℃で攪拌しながら組成式AlMg(C11(OCで表される有機マグネシウム化合物のヘキサン溶液2,550mL(マグネシウム2.68mol相当)を4時間かけて滴下し、さらに65℃で1時間攪拌しながら反応を継続させた。反応終了後、上澄み液を除去し、1,800mLのヘキサンで4回洗浄した。この固体((A-1)担体)を分析した結果、固体1g当たりに含まれるマグネシウムが8.31mmolであった。
(2)固体触媒成分[A]の調製
 上記(A-1)担体110gを含有するヘキサンスラリー1,970mLに10℃で攪拌しながら1mol/Lの四塩化チタンヘキサン溶液110mLと1mol/Lの組成式AlMg(C11(OSiH)で表される有機マグネシウム化合物のヘキサン溶液110mLとを同時に1時間かけて添加した。添加後、10℃で1時間反応を継続させた。反応終了後、上澄み液を1,100mL除去し、ヘキサン1,100mLで2回洗浄することにより、固体触媒成分[A]を調製した。この固体触媒成分[A]1g中に含まれるチタン量は0.75mmolであった。
(実施例1:PE1)
 ヘキサン、エチレン、水素、α-オレフィン、触媒、Stadis450(The Associated Octel Company社製)を、攪拌装置が付いたベッセル型300L重合反応器に連続的に供給した。重合温度はジャケット冷却により75℃に保った。ヘキサンは55L/Hrで供給した。触媒としては、助触媒成分であるトリイソブチルアルミニウムとジイソブチルアルミニウムハイドライドの混合物と、固体触媒成分[A]とを使用した。固体触媒成分[A]は0.7g/Hrの速度で重合器に添加し、トリイソブチルアルミニウムとジイソブチルアルミニウムハイドライドの混合物は9mmol/Hrの速度で重合器に添加した。なお、固体触媒成分[A]、及び、トリイソブチルアルミニウムとジイソブチルアルミニウムハイドライドの混合物は重合反応器内に3か所のフィード口を設けてトータル5L/Hrの速度になるように等量ずつ添加した。同じく重合反応器内に3か所のフィード口からStadis450を超高分子量エチレン系共重合体に対する濃度が22ppmになるように添加した。α-オレフィンとしてブテン-1を気相エチレン濃度に対して0.4mol%となるように連続的に添加した。水素は気相エチレン濃度に対して0.2mol%となるように連続的に添加した。重合圧力はエチレンを連続供給することにより0.4MPaに保った。これらの条件で重合反応器内が均一になるように十分撹拌を行った。撹拌装置内の撹拌翼はタービン翼を6枚用い、撹拌翼の回転数は105rpmとした。超高分子量エチレン系共重合体の製造速度は10kg/Hrであった。触媒活性は30,000g-PE/g-固体触媒成分[A]であった。重合スラリーは、重合反応器のレベルが一定に保たれるように連続的に圧力0.05Mpaのフラッシュドラムに抜き、未反応のエチレンを分離した。重合スラリーは、連続的に溶媒分離工程を経て後、乾燥工程へ送った。乾燥機はドラム式で窒素気流下、ジャケット80℃とした。塊状のポリマーの存在も無く、スラリー抜き取り配管も閉塞することなく、安定して連続運転ができた。さらに、ステアリン酸カルシウム(大日化学社製、C60)を1,000ppm添加し、ヘンシェルミキサーを用いて、均一混合し、得られたパウダーを目開き425μmの篩を用いて、篩を通過しなかったものを除去した。こうして得られた超高分子量エチレン系共重合体パウダーをPE1とする。
 実施例1の超高分子量エチレン系共重合体パウダーについては、上述した方法に従い、分子量、α-オレフィン単位の含有量、等温結晶化時間、融解熱量(ΔH2)、チタン元素含有量、嵩密度、及び、平均粒子径を測定した結果を表1に示す。また、上述した方法に従い超高分子量エチレン系共重合体パウダーを成型し、膜切れ、及び、糸切れ試験、耐摩耗性試験、衝撃強度評価、スカイブカット時のシート形状を行った。その結果を表1に示す。
(実施例2:PE2)
 重合温度を66℃とし、α-オレフィンとしてブテン-1を気相エチレン濃度に対して0.35mol%となるように連続的に添加し、水素の供給をしなかったこと以外は、実施例1と同様の操作を行い、超高分子量エチレン系共重合体パウダー(PE2)を得た。得られた超高分子量エチレン系共重合体パウダーPE2を用いて実施例1と同様の評価を行なった。結果を表1に示す。
(実施例3:PE3)
 重合温度を59℃とし、α-オレフィンとしてブテン-1を気相エチレン濃度に対して0.15mol%となるように連続的に添加し、水素の供給をしなかったこと以外は、実施例1と同様の操作を行い、超高分子量エチレン系共重合体パウダー(PE3)を得た。得られた超高分子量エチレン系共重合体パウダーPE3を用いて実施例1と同様の評価を行なった。結果を表1に示す。
(実施例4:PE4)
 重合温度を59℃とし、α-オレフィンとしてブテン-1を気相エチレン濃度に対して0.95mol%となるように連続的に添加し、水素の供給をしなかったこと以外は、実施例1と同様の操作を行い、超高分子量エチレン系共重合体パウダー(PE4)を得た。得られた超高分子量エチレン系共重合体パウダーPE4を用いて実施例1と同様の評価を行なった。結果を表1に示す。
(実施例5:PE5)
 重合温度を93℃とし、α-オレフィンとしてブテン-1を気相エチレン濃度に対して0.05mol%となるように連続的に添加し、水素は気相エチレン濃度に対して12mol%となるようにしたこと以外は、実施例1と同様の操作を行い、超高分子量エチレン系共重合体パウダー(PE5)を得た。得られた超高分子量エチレン系共重合体パウダーPE5を用いて実施例1と同様の評価を行なった。結果を表1に示す。
(実施例6:PE6)
 重合温度を93℃とし、α-オレフィンとしてブテン-1を気相エチレン濃度に対して0.83mol%となるように連続的に添加し、水素は気相エチレン濃度に対して5.5mol%となるようにしたこと以外は、実施例1と同様の操作を行い、超高分子量エチレン系共重合体パウダー(PE6)を得た。得られた超高分子量エチレン系共重合体パウダーPE6を用いて実施例1と同様の評価を行なった。結果を表1に示す。
(実施例7:PE7)
 α-オレフィンとしてブテン-1を気相エチレン濃度に対して0.95mol%となるように連続的に添加したこと以外は、実施例1と同様の操作を行い、超高分子量エチレン系共重合体パウダー(PE7)を得た。得られた超高分子量エチレン系共重合体パウダーPE7を用いて実施例1と同様の評価を行なった。結果を表1に示す。
(実施例8:PE8)
 α-オレフィンとしてブテン-1を気相エチレン濃度に対して0.95mol%となるように連続的に添加したこと以外は、実施例2と同様の操作を行い、超高分子量エチレン系共重合体パウダー(PE8)を得た。得られた超高分子量エチレン系共重合体パウダーPE8を用いて実施例1と同様の評価を行なった。結果を表1に示す。
(実施例9:PE9)
 重合温度を59℃とし、α-オレフィンとしてブテン-1を気相エチレン濃度に対して0.55mol%となるように連続的に添加し、水素の供給をしなかったこと以外は、実施例1と同様の操作を行い、超高分子量エチレン系共重合体パウダー(PE9)を得た。得られた超高分子量エチレン系共重合体パウダーPE9を用いて実施例1と同様の評価を行なった。結果を表1に示す。
(実施例10:PE10)
 重合圧力を0.3MPaにしたこと以外は、実施例1と同様の操作を行い、超高分子量エチレン系共重合体パウダー(PE10)を得た。得られた超高分子量エチレン系共重合体パウダーPE10を用いて実施例1と同様の評価を行なった。結果を表1に示す。
(実施例11:PE11)
 重合圧力を0.3MPaにしたこと以外は、実施例2と同様の操作を行い、超高分子量エチレン系共重合体パウダー(PE11)を得た。得られた超高分子量エチレン系共重合体パウダーPE11を用いて実施例1と同様の評価を行なった。結果を表1に示す。
(実施例12:PE12)
 重合温度を93℃とし、α-オレフィンとしてブテン-1を気相エチレン濃度に対して0.05mol%となるように連続的に添加し、水素は気相エチレン濃度に対して12mol%となるようにし、重合圧力を0.25MPaにしたこと以外は、実施例1と同様の操作を行い、超高分子量エチレン系共重合体パウダー(PE12)を得た。得られた超高分子量エチレン系共重合体パウダーPE12を用いて実施例1と同様の評価を行なった。結果を表1に示す。
(実施例13:PE13)
 α-オレフィンとしてブテン-1を気相エチレン濃度に対して0.83mol%となるように連続的に添加し、水素は気相エチレン濃度に対して5.5mol%となるようにしたこと以外は、実施例12と同様の操作を行い、超高分子量エチレン系共重合体パウダー(PE13)を得た。得られた超高分子量エチレン系共重合体パウダーPE13を用いて実施例1と同様の評価を行なった。結果を表1に示す。
(実施例14:PE14)
 重合圧力を0.33MPaにしたこと以外は、実施例1と同様の操作を行い、超高分子量エチレン系共重合体パウダー(PE14)を得た。得られた超高分子量エチレン系共重合体パウダーPE14を用いて実施例1と同様の評価を行なった。結果を表1に示す。
(実施例15:PE15)
 重合圧力を0.33MPaにしたこと以外は、実施例2と同様の操作を行い、超高分子量エチレン系共重合体パウダー(PE15)を得た。得られた超高分子量エチレン系共重合体パウダーPE15を用いて実施例1と同様の評価を行なった。結果を表1に示す。
(実施例16:PE16)
 重合圧力を0.27MPaにしたこと以外は、実施例12と同様の操作を行い、超高分子量エチレン系共重合体パウダー(PE16)を得た。得られた超高分子量エチレン系共重合体パウダーPE16を用いて実施例1と同様の評価を行なった。結果を表2に示す。
(実施例17:PE17)
 重合圧力を0.27MPaにしたこと以外は、実施例13と同様の操作を行い、超高分子量エチレン系共重合体パウダー(PE17)を得た。得られた超高分子量エチレン系共重合体パウダーPE17を用いて実施例1と同様の評価を行なった。結果を表2に示す。
(実施例18:PE18)
 ステアリン酸カルシウムを添加しなかったこと以外は、実施例1と同様の操作を行い、超高分子量エチレン系共重合体パウダー(PE18)を得た。得られた超高分子量エチレン系共重合体パウダーPE18を用いて実施例1と同様の評価を行なった。結果を表2に示す。
(実施例19:PE19)
 ステアリン酸カルシウムを添加しなかったこと以外は、実施例2と同様の操作を行い、超高分子量エチレン系共重合体パウダー(PE19)を得た。得られた超高分子量エチレン系共重合体パウダーPE19を用いて実施例1と同様の評価を行なった。結果を表2に示す。
(実施例20:PE20)
 重合温度を82℃とし、水素は気相エチレン濃度に対して0.15mol%となるようにしたこと以外は、実施例1と同様の操作を行い、超高分子量エチレン系共重合体パウダー(PE20)を得た。得られた超高分子量エチレン系共重合体パウダーPE20を用いて実施例1と同様の評価を行なった。結果を表2に示す。
(実施例21:PE21)
 重合温度を60℃とし、α-オレフィンとしてブテン-1を気相エチレン濃度に対して0.35mol%となるように連続的に添加し、水素は気相エチレン濃度に対して0.15mol%となるようにしたこと以外は、実施例1と同様の操作を行い、超高分子量エチレン系共重合体パウダー(PE21)を得た。得られた超高分子量エチレン系共重合体パウダーPE21を用いて実施例1と同様の評価を行なった。結果を表2に示す。
(比較例1:PE22)
 重合温度を96℃とし、α-オレフィンを添加せず、水素は気相エチレン濃度に対して13mol%となるようにしたこと以外は、実施例1と同様の操作を行い、超高分子量エチレン系共重合体パウダー(PE22)を得た。得られた超高分子量エチレン系共重合体パウダーPE22を用いて実施例1と同様の評価を行なった。結果を表2に示す。
(比較例2:PE23)
 重合温度を96℃とし、α-オレフィンとしてブテン-1を気相エチレン濃度に対して1.1mol%となるように連続的に添加し、水素は気相エチレン濃度に対して7.1mol%となるようにしたこと以外は、実施例1と同様の操作を行い、超高分子量エチレン系共重合体パウダー(PE23)を得た。得られた超高分子量エチレン系共重合体パウダーPE23を用いて実施例1と同様の評価を行なった。結果を表2に示す。
(比較例3:PE24)
 重合温度を55℃とし、α-オレフィンも水素の供給もしなかったこと以外は、実施例1と同様の操作を行い、超高分子量エチレン系共重合体パウダー(PE18)を得た。得られた超高分子量エチレン系共重合体パウダーPE24を用いて実施例1と同様の評価を行なった。結果を表2に示す。
(比較例4:PE25)
 重合温度を55℃とし、α-オレフィンとしてブテン-1を気相エチレン濃度に対して1.1mol%となるように連続的に添加し、水素の供給をしなかったこと以外は、実施例1と同様の操作を行い、超高分子量エチレン系共重合体パウダー(PE25)を得た。得られた超高分子量エチレン系共重合体パウダーPE25を用いて実施例1と同様の評価を行なった。結果を表2に示す。
(比較例5:PE26)
 重合圧力を0.2MPaにしたこと以外は、実施例1と同様の操作を行い、超高分子量エチレン系共重合体パウダー(PE26)を得た。得られた超高分子量エチレン系共重合体パウダーPE26を用いて実施例1と同様の評価を行なった。結果を表2に示す。
(比較例6:PE27)
 固体触媒成分[A]、及び、トリイソブチルアルミニウムとジイソブチルアルミニウムハイドライドの混合物を重合反応器内に1か所のみのフィード口を設けて添加し、撹拌装置内の撹拌翼にタービン翼を2枚用い、撹拌翼の回転数は30rpmとしたこと以外は、実施例1と同様の操作を行い、超高分子量エチレン系共重合体パウダー(PE27)を得た。得られた超高分子量エチレン系共重合体パウダーPE27を用いて実施例1と同様の評価を行なった。結果を表2に示す。
(比較例7:PE28)
 重合温度を71℃とし、α-オレフィンとしてブテン-1を気相エチレン濃度に対して0.50mol%となるように連続的に添加し、Stadis450を超高分子量エチレン系共重合体に対する濃度が10ppmになるように添加し、ステアリン酸カルシウムを添加しなかったこと、及び、得られた超高分子量エチレン系共重合体パウダーを、微多孔膜成型、繊維成型、圧縮成型(プレス成型)、及び、ラム成型する際に、有機過酸化物(架橋剤)として2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキサン(商品名「パーヘキサ25B」日本油脂(株)製)500ppm添加ブレンドしたこと以外は、比較例6と同様の操作を行い、超高分子量エチレン系共重合体パウダー(PE28)を得た。得られた超高分子量エチレン系共重合体パウダーPE28を用いて実施例1と同様の評価を行なった。結果を表2に示す。
(比較例8:PE29)
 重合温度を82℃にしたこと以外は、実施例1と同様の操作を行い、超高分子量エチレン系共重合体パウダー(PE29)を得た。得られた超高分子量エチレン系共重合体パウダーPE29を用いて実施例1と同様の評価を行なった。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 以上のことから、本発明の超高分子量エチレン系共重合体パウダーは、成型後の耐摩耗性と耐衝撃性を両立させることができるだけでなく、成型体シートの湾曲を抑制することができ、かつ、成型体シートをエージングした際に金型からシートが容易に剥離可能で、さらに二次電池用セパレーター、繊維においては、異物に起因する膜切れや糸切れを抑制することができる点で優れていることがわかる。
 また、これらの超高分子量エチレン系共重合体パウダーを用いて得られる成型体は上述の物性に優れることからしても、リチウムイオン二次電池や鉛蓄電池などの二次電池用セパレーターや、繊維、非粘着性、低摩擦係数でホッパー、シュートなどのライニング材、また自己潤滑性、低摩擦係数で耐摩耗性が要求される、軸受け、歯車、ローラーガイドレール、骨代用材、骨伝導性材又は骨誘導材などに好適に使用される。
 本発明の超高分子量エチレン系共重合体パウダーは、成型後の耐摩耗性と耐衝撃性を両立させることができるだけでなく、成型体をスカイブ状に切断したときに得られる湾曲したシートをエージングした際に金型からシートが容易に剥離可能な点、さらに二次電池用セパレーター、繊維において、異物に起因する膜切れや糸切れを抑制することができる点で優れているため、成型用途等の広い用途において産業上の利用可能性を有する。

Claims (12)

  1.  エチレン単位と炭素数3以上8以下のα-オレフィン単位を構成単位とし、
     粘度平均分子量が、100,000以上10,000,000以下であり、
     前記α-オレフィン単位の含有量が、前記エチレン単位及び前記α-オレフィン単位の総量に対して、0.01mol%以上0.10mol%以下であり、
     示差走査熱量計を用いた以下の条件の測定において、ステップA3の126℃に達した時間を起点(0分)として、結晶化に起因する発熱ピークトップが得られた時間を等温結晶化時間としたとき、
     該等温結晶化時間が5分以上である、超高分子量エチレン系共重合体パウダー。
    (等温結晶化時間測定条件)
     ステップA1:50℃で1分間保持後、10℃/minの昇温速度で180℃まで昇温
     ステップA2:180℃で30分間保持後、80℃/minの降温速度で126℃まで降温
     ステップA3:126℃にて保持
  2.  示差走査熱量計を用いた以下の条件の測定において、ステップB3の昇温過程における融解熱量(ΔH2)が、230J/g以下である、請求項1記載の超高分子量エチレン系共重合体パウダー。
    (融解熱量(ΔH2)測定条件)
     ステップB1:50℃で1分間保持後、10℃/minの昇温速度で180℃まで昇温
     ステップB2:180℃で5分間保持後、10℃/minの降温速度で50℃まで降温
     ステップB3:50℃で5分間保持後10℃/minの昇温速度で180℃まで昇温
  3.  誘導結合プラズマ質量分析計(ICP/MS)によるチタン元素含有量が、6ppm以下である、請求項1又は2記載の超高分子量エチレン系共重合体パウダー。
  4.  前記等温結晶化時間が8分以上である、請求項1~3のいずれか1項に記載の超高分子量エチレン系共重合体パウダー。
  5.  タップ密度が、0.51g/cm以上0.64g/cm以下であり、かつ、
     嵩密度が、0.40g/cm以上0.60g/cm以下である、請求項1~4のいずれか1項に記載の超高分子量エチレン系共重合体パウダー。
  6.  嵩密度に対するタップ密度の比が、1.10以上1.50以下である、請求項5に記載の超高分子量ポリエチレン系共重合体パウダー。
  7.  平均粒子径が、50μm以上200μm以下である、請求項1~6のいずれか1項に記載の超高分子量エチレン系共重合体パウダー。
  8.  請求項1~7のいずれか1項に記載の超高分子量エチレン系共重合体パウダーの成型体。
  9.  湿式押出法によって得られる、二次電池用セパレータ膜、繊維であることを特徴とする請求項8に記載の成型体。
  10.  前記二次電池がリチウムイオン二次電池、若しくは、鉛蓄電池であることを特徴とする請求項9に記載の成型体。
  11.  前記繊維を用いた製品がロープ、ネット、防弾衣料、防護衣料、防護手袋、繊維補強コンクリート製品、及びヘルメットであることを特徴とする請求項9に記載の成型体。
  12.  ライニング用途、軸受け、歯車、ローラーガイドレール、骨代用材、骨伝導性材、又は骨誘導材に用いられる、請求項8に記載の成型体。
PCT/JP2017/008853 2016-03-25 2017-03-06 超高分子量エチレン系共重合体パウダー、並びに、超高分子量エチレン系共重合体パウダーを用いた成型体 WO2017163848A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PL17769893T PL3279225T3 (pl) 2016-03-25 2017-03-06 Oparty na etylenie proszek kopolimerowy o ultrawysokiej masie cząsteczkowej i formowany przedmiot wykorzystujący oparty na etylenie proszek kopolimerowy o ultrawysokiej masie cząsteczkowej
EP17769893.3A EP3279225B1 (en) 2016-03-25 2017-03-06 Ultra high molecular weight ethylene-based copolymer powder, and molded article using the same
CN201780000391.9A CN107438631B (zh) 2016-03-25 2017-03-06 超高分子量乙烯类共聚物粉末以及使用了超高分子量乙烯类共聚物粉末的成型体
US15/571,424 US10336843B2 (en) 2016-03-25 2017-03-06 Ultra-high molecular weight ethylene-based copolymer powder, and molded article using ultra-high molecular weight ethylene-based copolymer powder
KR1020177014403A KR101804740B1 (ko) 2016-03-25 2017-03-06 초고분자량 에틸렌계 공중합체 파우더 및 초고분자량 에틸렌계 공중합체 파우더를 사용한 성형체
JP2017522995A JP6195403B1 (ja) 2016-03-25 2017-03-06 超高分子量エチレン系共重合体パウダー、並びに、超高分子量エチレン系共重合体パウダーを用いた成型体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-061721 2016-03-25
JP2016061721 2016-03-25

Publications (1)

Publication Number Publication Date
WO2017163848A1 true WO2017163848A1 (ja) 2017-09-28

Family

ID=59900115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/008853 WO2017163848A1 (ja) 2016-03-25 2017-03-06 超高分子量エチレン系共重合体パウダー、並びに、超高分子量エチレン系共重合体パウダーを用いた成型体

Country Status (7)

Country Link
US (1) US10336843B2 (ja)
EP (1) EP3279225B1 (ja)
KR (1) KR101804740B1 (ja)
CN (1) CN107438631B (ja)
HU (1) HUE043430T2 (ja)
PL (1) PL3279225T3 (ja)
WO (1) WO2017163848A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020094153A (ja) * 2018-12-14 2020-06-18 旭化成株式会社 エチレン系重合体パウダーを主体とする樹脂組成物、及び、それよりなる成型体
US20210017363A1 (en) * 2018-03-27 2021-01-21 Asahi Kasei Kabushiki Kaisha Ultrahigh-Molecular-Weight Polyethylene Powder
US20220144981A1 (en) * 2019-02-20 2022-05-12 Asahi Kasei Kabushiki Kaisha Polyethylene Powder

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6487591B1 (ja) * 2017-09-07 2019-03-20 旭化成株式会社 超高分子量エチレン系重合パウダー、及び、超高分子量エチレン系重合パウダーを用いた成型体
JP6692004B2 (ja) * 2018-04-24 2020-05-13 旭化成株式会社 ポリエチレンパウダー、成形体、及び微多孔膜
KR20210113323A (ko) 2019-03-01 2021-09-15 아사히 가세이 가부시키가이샤 폴리에틸렌 파우더 및 이것을 성형하여 이루어지는 성형체
JP7315369B2 (ja) * 2019-04-26 2023-07-26 旭化成株式会社 エチレン重合体粒子及び成形体
JP2021152140A (ja) * 2020-03-24 2021-09-30 旭化成株式会社 ポリエチレンパウダー、及び成形体
JP2022182443A (ja) * 2021-05-28 2022-12-08 旭化成株式会社 ポリエチレンパウダー、及び成形体

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006070886A1 (ja) * 2004-12-28 2006-07-06 Asahi Kasei Chemicals Corporation 超高分子量エチレン系共重合体パウダー
WO2008001772A1 (fr) * 2006-06-27 2008-01-03 Asahi Kasei Chemicals Corporation Feuille de polyoléfine de poids moléculaire ultra élevé, moulée par étirement, présentant une excellente transparence et d'excellentes propriétés mécaniques, et son procédé de fabrication
WO2008123526A1 (ja) * 2007-03-29 2008-10-16 Sumitomo Chemical Company, Limited 超高分子量エチレン-α-オレフィン共重合体パウダー
JP2011153171A (ja) * 2010-01-26 2011-08-11 Japan Polyethylene Corp 薄肉容器用ポリエチレン及びそれからなる容器
JP2012229355A (ja) * 2011-04-27 2012-11-22 Asahi Kasei Chemicals Corp 成形性、長期特性に優れた、ボトルキャップに適したポリエチレン樹脂組成物およびボトルキャップ
JP2015157905A (ja) * 2014-02-24 2015-09-03 旭化成ケミカルズ株式会社 超高分子量エチレン系共重合体パウダー及び成形体
JP5876632B1 (ja) * 2014-05-28 2016-03-02 東レバッテリーセパレータフィルム株式会社 ポリオレフィン微多孔膜およびその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4417475A1 (de) 1994-05-19 1995-11-23 Hoechst Ag Verfahren zur Herstellung einer Katalysatorkomponente für die Polymerisation von Ethylen und 1-Olefinen zu ultrahochmolekularen Ethylenpolymeren
JP4173444B2 (ja) 2001-09-06 2008-10-29 三井化学株式会社 ポリエチレン樹脂組成物
JP2005314544A (ja) 2004-04-28 2005-11-10 Asahi Kasei Chemicals Corp 超高分子量ポリエチレン樹脂組成物およびそれから得られる成形体
JP2007023171A (ja) 2005-07-19 2007-02-01 Mitsui Chemicals Inc 耐熱性に優れる超高分子量ポリエチレン微粒子及び製造方法
KR101583166B1 (ko) * 2011-08-31 2016-01-06 미쓰이 가가쿠 가부시키가이샤 폴리올레핀 수지 조성물 및 그 용도
KR101747401B1 (ko) * 2014-12-08 2017-06-14 주식회사 엘지화학 가공성이 우수한 에틸렌/알파-올레핀 공중합체

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006070886A1 (ja) * 2004-12-28 2006-07-06 Asahi Kasei Chemicals Corporation 超高分子量エチレン系共重合体パウダー
WO2008001772A1 (fr) * 2006-06-27 2008-01-03 Asahi Kasei Chemicals Corporation Feuille de polyoléfine de poids moléculaire ultra élevé, moulée par étirement, présentant une excellente transparence et d'excellentes propriétés mécaniques, et son procédé de fabrication
WO2008123526A1 (ja) * 2007-03-29 2008-10-16 Sumitomo Chemical Company, Limited 超高分子量エチレン-α-オレフィン共重合体パウダー
JP2011153171A (ja) * 2010-01-26 2011-08-11 Japan Polyethylene Corp 薄肉容器用ポリエチレン及びそれからなる容器
JP2012229355A (ja) * 2011-04-27 2012-11-22 Asahi Kasei Chemicals Corp 成形性、長期特性に優れた、ボトルキャップに適したポリエチレン樹脂組成物およびボトルキャップ
JP2015157905A (ja) * 2014-02-24 2015-09-03 旭化成ケミカルズ株式会社 超高分子量エチレン系共重合体パウダー及び成形体
JP5876632B1 (ja) * 2014-05-28 2016-03-02 東レバッテリーセパレータフィルム株式会社 ポリオレフィン微多孔膜およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3279225A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210017363A1 (en) * 2018-03-27 2021-01-21 Asahi Kasei Kabushiki Kaisha Ultrahigh-Molecular-Weight Polyethylene Powder
US11623981B2 (en) * 2018-03-27 2023-04-11 Asahi Kasei Kabushiki Kaisha Ultrahigh-molecular-weight polyethylene powder
JP2020094153A (ja) * 2018-12-14 2020-06-18 旭化成株式会社 エチレン系重合体パウダーを主体とする樹脂組成物、及び、それよりなる成型体
JP7251962B2 (ja) 2018-12-14 2023-04-04 旭化成株式会社 エチレン系重合体パウダーを主体とする樹脂組成物、及び、それよりなる成型体
US20220144981A1 (en) * 2019-02-20 2022-05-12 Asahi Kasei Kabushiki Kaisha Polyethylene Powder

Also Published As

Publication number Publication date
KR20170120091A (ko) 2017-10-30
EP3279225B1 (en) 2019-01-02
CN107438631B (zh) 2018-06-26
EP3279225A4 (en) 2018-06-20
HUE043430T2 (hu) 2019-08-28
EP3279225A1 (en) 2018-02-07
CN107438631A (zh) 2017-12-05
US10336843B2 (en) 2019-07-02
KR101804740B1 (ko) 2018-01-04
US20190002611A1 (en) 2019-01-03
PL3279225T3 (pl) 2019-08-30

Similar Documents

Publication Publication Date Title
WO2017163848A1 (ja) 超高分子量エチレン系共重合体パウダー、並びに、超高分子量エチレン系共重合体パウダーを用いた成型体
JP6195403B1 (ja) 超高分子量エチレン系共重合体パウダー、並びに、超高分子量エチレン系共重合体パウダーを用いた成型体
JP6692004B2 (ja) ポリエチレンパウダー、成形体、及び微多孔膜
JP7461334B2 (ja) ポリエチレンパウダー
JP2012229417A (ja) 超高分子量ポリエチレン粒子の製造方法、およびそれを用いた成形体
JP6487591B1 (ja) 超高分子量エチレン系重合パウダー、及び、超高分子量エチレン系重合パウダーを用いた成型体
JP2017088773A (ja) ポリエチレンパウダー、及び繊維
JP7251962B2 (ja) エチレン系重合体パウダーを主体とする樹脂組成物、及び、それよりなる成型体
JP7349022B2 (ja) ポリエチレンパウダー及びその成形体
JP2020180234A (ja) エチレン重合体粒子及び成形体
JP7330304B2 (ja) ポリエチレンパウダー及びその成形体
JP6868355B2 (ja) 超高分子量ポリエチレンパウダー
JP7496443B2 (ja) ポリエチレンパウダー、及び成形体
TW202344525A (zh) 聚乙烯粉末及使用其之成形體
JP2021152140A (ja) ポリエチレンパウダー、及び成形体
JP2023138348A (ja) ポリエチレンパウダー、及び成形体
EP4001325A1 (en) Polyethylene resin for secondary battery separator, method for manufacturing the same, and separator to which the same is applied

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017522995

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177014403

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE