WO2017159791A1 - 近赤外線遮蔽材料微粒子分散体、近赤外線遮蔽体および近赤外線遮蔽用合わせ構造体、並びに、それらの製造方法 - Google Patents

近赤外線遮蔽材料微粒子分散体、近赤外線遮蔽体および近赤外線遮蔽用合わせ構造体、並びに、それらの製造方法 Download PDF

Info

Publication number
WO2017159791A1
WO2017159791A1 PCT/JP2017/010687 JP2017010687W WO2017159791A1 WO 2017159791 A1 WO2017159791 A1 WO 2017159791A1 JP 2017010687 W JP2017010687 W JP 2017010687W WO 2017159791 A1 WO2017159791 A1 WO 2017159791A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared shielding
shielding material
tungsten oxide
fine particles
particle dispersion
Prior art date
Application number
PCT/JP2017/010687
Other languages
English (en)
French (fr)
Inventor
中山 博貴
裕史 常松
長南 武
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=59851718&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2017159791(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to MYPI2018703288A priority Critical patent/MY193596A/en
Priority to BR112018068657A priority patent/BR112018068657A2/pt
Priority to JP2018506006A priority patent/JP6825619B2/ja
Priority to EP17766787.0A priority patent/EP3431565A4/en
Priority to MX2018011190A priority patent/MX2018011190A/es
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to SG11201807946RA priority patent/SG11201807946RA/en
Priority to US16/084,949 priority patent/US10562786B2/en
Priority to KR1020187029409A priority patent/KR102371493B1/ko
Priority to CN201780017764.3A priority patent/CN109312208B/zh
Priority to AU2017232748A priority patent/AU2017232748B2/en
Publication of WO2017159791A1 publication Critical patent/WO2017159791A1/ja
Priority to PH12018501975A priority patent/PH12018501975A1/en
Priority to IL261773A priority patent/IL261773B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • C01G41/006Compounds containing, besides tungsten, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • C01G41/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3417Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials all coatings being oxide coatings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/04Compounds with a limited amount of crystallinty, e.g. as indicated by a crystallinity index
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/77Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values

Definitions

  • the present invention relates to a near-infrared shielding material fine particle dispersion that is transparent in the visible light region and absorbs in the near-infrared region, a near-infrared shielding material, a near-infrared shielding laminated structure, and a method for producing them.
  • Patent Document 1 discloses an inorganic pigment such as carbon black or titanium black that absorbs from the visible light region to the near-infrared region, and aniline that has strong absorption only in the visible light region.
  • a light shielding film containing a black pigment containing an organic pigment such as black has been proposed, and Patent Document 2 proposes a half mirror type light shielding member in which a metal such as aluminum is deposited.
  • Patent Document 3 on a transparent glass substrate, at least one metal ion selected from the group consisting of Group IIIa, Group IVa, Group Vb, Group VIb and Group VIIb of the periodic table as a first layer from the substrate side. And a transparent dielectric film as a second layer on the first layer, and a group IIIa, IVa, and Vb of the periodic table as a third layer on the second layer.
  • a composite tungsten oxide film containing at least one metal ion selected from the group consisting of Group VIb and Group VIIb, and the refractive index of the transparent dielectric film of the second layer is the first layer and the refractive index of the composite tungsten oxide film of the third layer.
  • Patent Document 4 a first dielectric film is provided as a first layer from the substrate side on a transparent glass substrate in the same manner as Patent Document 3, and a tungsten oxide is formed as a second layer on the first layer.
  • a heat ray-shielding glass in which a film is provided and a second dielectric film is provided as a third layer on the second layer.
  • Patent Document 5 a composite tungsten oxide film containing the same metal element is provided as a first layer from the substrate side on the transparent substrate by the same method as Patent Document 3, and the second layer is formed on the first layer.
  • Heat ray blocking glass provided with a transparent dielectric film as a layer has been proposed.
  • Patent Document 6 tungsten trioxide (WO 3 ), molybdenum trioxide (MoO 3 ), niobium pentoxide (Nb 2 O 5 ), tantalum pentoxide (Ta) containing an additive material such as hydrogen, lithium, sodium, or potassium. 2 O 5 ), a metal oxide film selected from one or more of vanadium pentoxide (V 2 O 5 ) and vanadium dioxide (VO 2 ) is coated by a CVD method or a spray method and thermally decomposed at about 250 ° C. There has been proposed a solar control glass sheet having solar light shielding properties formed in this manner.
  • Patent Document 7 when a tungsten oxide obtained by hydrolyzing tungstic acid is used and sunlight is irradiated by adding an organic polymer having a specific structure called polyvinylpyrrolidone to the tungsten oxide.
  • an organic polymer having a specific structure called polyvinylpyrrolidone As the ultraviolet rays in the light are absorbed by the tungsten oxide, excited electrons and holes are generated, the appearance amount of pentavalent tungsten is remarkably increased by a small amount of ultraviolet rays, and the coloring reaction is accelerated.
  • Patent Document 8 The inventors of the present invention disclosed in Patent Document 8 by dissolving tungsten hexachloride in alcohol and evaporating the solvent as it is, or evaporating the solvent after heating to reflux and then heating at 100 ° C. to 500 ° C. Obtaining a powder comprising tungsten oxide or a hydrate thereof, or a mixture of both, obtaining an electrochromic device using the tungsten oxide fine particles, and forming a multi-layer laminate and introducing protons into the film It has been proposed that the optical characteristics of the film can be changed.
  • Patent Document 9 a meta-type ammonium tungstate and various water-soluble metal salts are used as raw materials, and heated to about 300 to 700 ° C., and an inert gas (addition amount; By supplying hydrogen gas to which about 50 vol% or more or water vapor (addition amount; about 15 vol% or less) is added, M x WO 3 (M element is a metal element such as alkali, alkaline earth, rare earth, 0 ⁇ Various methods for producing tungsten bronzes represented by x ⁇ 1) have been proposed.
  • Patent Document 10 an infrared shielding material fine particle dispersion in which infrared material fine particles are dispersed in a medium, and the infrared material fine particles include tungsten oxide fine particles and / or composite tungsten oxide fine particles.
  • An infrared shielding material fine particle dispersion containing and having a dispersed particle diameter of the infrared material fine particles of 1 nm to 800 nm is disclosed.
  • JP 2003-029314 A Japanese Patent Laid-Open No. 9-107815 JP-A-8-59300 JP-A-8-12378 JP-A-8-283044 JP 2000-1119045 A JP-A-9-127559 JP 2003-121884 A JP-A-8-73223 International Publication WO2005 / 037932
  • Patent Documents 1 to 10 have the following problems.
  • the black pigment described in Patent Document 1 has a large absorption in the visible light region. For this reason, since the color tone of the window material to which the black pigment is applied becomes dark, it was considered that the usage method is limited.
  • the window material to which the metal vapor deposition film described in Patent Document 2 is applied has a half-mirror appearance. For this reason, when the window material etc. to which the said metal vapor deposition film was applied were used outdoors, reflection was dazzled and it was thought that there was a problem on scenery.
  • the heat ray blocking materials described in Patent Documents 3 to 5 are mainly manufactured by a method using a dry method such as a sputtering method, a vapor deposition method, an ion plating method, and a chemical vapor deposition method (CVD method). Has been. For this reason, there exists a subject that a large sized manufacturing apparatus is required and manufacturing cost becomes high.
  • the base material of the heat ray blocking material is exposed to high-temperature plasma, or heating after film formation is required. For this reason, when a resin such as a film is used as a base material, it is necessary to separately examine the equipment and the film forming conditions.
  • the tungsten oxide films and composite tungsten oxide films described in Patent Documents 3 to 5 are films that exhibit a predetermined function when a multilayer film with other transparent dielectric films is formed. Therefore, it was considered to be a proposal different from the present invention.
  • the solar control coated glass sheet described in Patent Document 6 forms a film on a glass by using a CVD method or a combination of a spray method and a thermal decomposition method.
  • a CVD method or a combination of a spray method and a thermal decomposition method.
  • a resin such as a film as a base material
  • the sunlight-modulable light insulating material and electrochromic element described in Patent Documents 7 to 8 are materials that change the color tone of the film by ultraviolet rays or a potential difference. For this reason, the structure of the film is complicated, and it was considered difficult to apply to application fields where color tone change is not desired.
  • Patent Document 9 describes a method for producing tungsten bronze. However, this document does not describe the particle diameter and optical characteristics of the obtained powder. This is considered to be because the use of the tungsten bronze is an electrode material for an electrolysis apparatus or a fuel cell or a catalyst material for organic synthesis. That is, it was considered that the proposal was different from the present invention.
  • Patent Document 10 has been made to solve the above-described problems. And, it has a wavelength of 780 nm or more while sufficiently transmitting visible light, does not have a half-mirror-like appearance, does not require a large manufacturing apparatus for film formation on a substrate, and does not require high-temperature heat treatment during film formation.
  • the present invention has been made under the above-mentioned circumstances, and the problem to be solved is a near-infrared shielding material fine particle dispersion containing tungsten oxide or composite tungsten oxide according to the prior art, near-infrared shielding.
  • Near-infrared shielding material fine particles containing composite tungsten oxide that exhibits the effect of maintaining high transmittance in the visible light region while blocking light in the near-infrared region more efficiently than the combined structure for body and near-infrared shielding It is to provide a dispersion, a near-infrared shield, a laminated structure for near-infrared shielding, and a method for producing them.
  • the present inventors conducted research.
  • a material containing free electrons exhibits a reflection / absorption response due to plasma vibration with respect to an electromagnetic wave having a wavelength of 200 nm to 2600 nm around the region of sunlight.
  • the powder of the material is made into fine particles smaller than the wavelength of light, it is known that geometrical scattering in the visible light region (wavelength 380 nm to 780 nm) is reduced and transparency in the visible light region can be obtained.
  • the term “transparency” is used to mean that light is less scattered and has high transparency with respect to light in the visible light region.
  • the present inventors set the contained crystals to hexagonal crystals, and in the lattice constant, the values of the a axis and the c axis are set to a value of 7.3850 ⁇ or more.
  • the present invention has been completed by conceiving a configuration in which the particle diameter of the fine particles is 100 nm or less and the c axis is 7.5600 mm or more and 7.6240 mm or less.
  • the first invention for solving the above-described problem is Near-infrared shielding material fine particles are dispersed in a near-infrared shielding material fine particles dispersed in a solid medium
  • the near-infrared shielding material fine particles are composite tungsten oxide fine particles containing a hexagonal crystal structure
  • the lattice constant of the composite tungsten oxide fine particles is such that the a-axis is 7.3850 mm to 7.4186 mm, the c-axis is 7.5600 mm to 7.6240 mm
  • the near-infrared shielding material fine particle dispersion, wherein the near-infrared shielding material fine particles have a particle diameter of 100 nm or less.
  • the second invention is The near-infrared ray according to the first invention, wherein the composite tungsten oxide fine particles have a lattice constant of 7.431 mm to 7.4111 mm and a c axis of 7.5891 mm to 7.6240 mm. This is a fine particle dispersion of shielding material.
  • the third invention is The near-infrared ray according to the first invention, wherein the composite tungsten oxide fine particles have a lattice constant of 7.431 mm to 7.4186 mm and an c-axis of 7.5830 mm to 7.5950 mm. This is a fine particle dispersion of shielding material.
  • the fourth invention is: The near-infrared shielding material fine particle dispersion, wherein the near-infrared shielding material fine particles have a particle diameter of 10 nm to 100 nm.
  • the fifth invention is: The composite tungsten oxide fine particles have the general formula MxWyOz (where the M element is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir).
  • the sixth invention is: The near-infrared shielding material fine particle dispersion, wherein the M element is one or more elements selected from Cs and Rb.
  • the seventh invention The near-infrared shielding material fine particle dispersion is characterized in that the surface of the near-infrared shielding material fine particles is coated with an oxide containing one or more elements selected from Si, Ti, Zr, and Al. .
  • the eighth invention The near-infrared shielding material fine particle dispersion, wherein the solid medium is resin or glass.
  • the ninth invention The resin is a polyethylene resin, polyvinyl chloride resin, polyvinylidene chloride resin, polyvinyl alcohol resin, polystyrene resin, polypropylene resin, ethylene vinyl acetate copolymer, polyester resin, polyethylene terephthalate resin, fluorine resin, acrylic resin, polycarbonate resin,
  • the near-infrared shielding material fine particle dispersion is one or more kinds selected from a polyimide resin and a polyvinyl butyral resin.
  • the tenth invention is The near-infrared shielding material fine particle dispersion according to any one of the first to ninth inventions is formed in any one selected from a plate shape, a film shape, and a thin film shape. It is a shield.
  • the eleventh invention is The near-infrared shielding material fine particle dispersion according to any one of the first to ninth inventions is selected between a plate glass, a plastic plate, and a plastic plate containing fine particles having a solar radiation shielding function, between two or more laminated plates. It is a laminated structure for shielding near infrared rays, characterized in that it exists.
  • the twelfth invention A method for producing a near-infrared shielding material fine particle dispersion, General formula MxWyOz (where M element is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu , Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo, Ta , Re, Be, Hf, Os, Bi, I, W is tungsten, O is oxygen, 0.20 ⁇ x / y ⁇ 0.37, 2.2 ⁇ z / a first step of producing a composite tungsten oxide having a hexagonal crystal structure represented by y ⁇ 3.0); The composite tungsten oxide obtained in the first step is mechanically pulverized, and in the lattice constant
  • the thirteenth invention In the second step, in the hexagonal crystal structure, in the lattice constant, the a-axis is 7.431 to 7.4111 ⁇ , the c-axis is 7.5891 to 7.6240 ⁇ , and the particle diameter is 100 nm or less. Tungsten oxide fine particles are produced. The method for producing an infrared shielding material fine particle dispersion according to the twelfth invention.
  • the fourteenth invention is In the second step, in the hexagonal crystal structure, in the lattice constant, the a-axis is 7.431 to 7.4186 ⁇ , the c-axis is 7.5830 to 7.5950 ⁇ , and the particle diameter is 100 nm or less.
  • Tungsten oxide fine particles are produced.
  • the fifteenth invention The method for producing a near-infrared shielding material fine particle dispersion, wherein the solid medium is a resin or glass.
  • the sixteenth invention is The resin is a polyethylene resin, polyvinyl chloride resin, polyvinylidene chloride resin, polyvinyl alcohol resin, polystyrene resin, polypropylene resin, ethylene vinyl acetate copolymer, polyester resin, polyethylene terephthalate resin, fluorine resin, acrylic resin, polycarbonate resin, It is a method for producing a near-infrared shielding material fine particle dispersion, which is at least one selected from a polyimide resin and a polyvinyl butyral resin.
  • the seventeenth invention The third step includes a fourth step of forming the near-infrared shielding material fine particle dispersion into any one selected from a plate shape, a film shape, and a thin film shape.
  • the eighteenth invention Said 4th process is a manufacturing method of the near-infrared shielding material fine particle dispersion characterized by including the process of forming the said near-infrared shielding material fine particle dispersion in the base-material surface.
  • the nineteenth invention The near-infrared shielding material dispersion obtained by the method for producing a near-infrared shielding material fine particle dispersion according to any one of the seventeenth and eighteenth inventions is selected from plate glass, plastic, and plastic containing fine particles having a solar radiation shielding function. And a fifth step of sandwiching between two or more opposing transparent substrates.
  • the method for producing a near infrared shielding laminated structure comprising:
  • the near-infrared shielding material fine particle dispersion, the near-infrared shielding body, and the near-infrared shielding laminated structure according to the present invention are a near-infrared shielding material fine particle dispersion, a near-infrared shielding body, and a near-infrared shielding laminated structure according to the related art. Compared to the body, it exhibited excellent optical properties such as maintaining high transmittance in the visible light region while blocking light in the near infrared region more efficiently.
  • the near-infrared shielding material fine particle dispersion according to the present invention is a composite tungsten oxide fine particle having a hexagonal crystal structure, and the fine particle has a lattice constant of 7.3850 ⁇ to 7.4186 ⁇ , c-axis.
  • the near-infrared shielding material fine particles having a particle diameter of 7.5600 to 7.6240 and having a particle diameter of 100 nm or less are dispersed in the solid medium.
  • the near infrared shielding material fine particle dispersion according to the present invention is selected from a sheet glass, a plastic plate, and a plastic plate containing fine particles having a solar radiation shielding function. It exists between the above laminated boards.
  • the near-infrared shielding material fine particles according to the present invention are composite tungsten oxide fine particles having a hexagonal crystal structure, and the lattice constant of the hexagonal composite tungsten oxide is such that the a-axis is 7.3850 mm or more. 7.4186 mm or less, and the c-axis has 7.5600 mm or more and 7.6240 mm or less. Further, the value of the ratio relating to (lattice constant of c-axis / lattice constant of a-axis) is preferably 1.0221 or more and 1.0289 or less.
  • the hexagonal composite tungsten oxide takes the predetermined lattice constant described above, so that the light transmittance of the near-infrared shielding material fine particle dispersion in which the fine particles are dispersed in the medium falls within a wavelength range of 350 nm to 600 nm. It has a maximum value and exhibits a transmittance having a minimum value in the wavelength range of 800 to 2100 nm. More specifically, the wavelength range where the maximum value of transmittance and the wavelength range where the minimum value occurs will be described. The maximum value occurs in the wavelength range of 440 to 600 nm, and the minimum value occurs in the wavelength range of 1150 to 2100 nm. That is, the maximum value of the transmittance occurs in the visible light region, and the minimum value of the transmittance occurs in the near infrared region.
  • tungsten trioxide WO 3
  • the composition range of tungsten and oxygen is such that the composition ratio of oxygen to tungsten is 3 or less, and further, 2.2 ⁇ z / y ⁇ 2.999 when the tungsten oxide is expressed as WyOz. Is preferred. If the value of z / y is 2.2 or more, it is possible to avoid the appearance of a crystal phase of WO 2 other than the target in the tungsten oxide, and the chemical stability as a material. This is because it can be applied as an effective near-infrared shielding material. On the other hand, if the value of z / y is 2.999 or less, the required amount of free electrons is generated in the tungsten oxide, and an efficient near-infrared shielding material is obtained.
  • tungsten oxide fine particles obtained by making the tungsten oxide fine particles when expressed as a general formula WyOz, a so-called “Magneli phase” having a composition ratio represented by 2.45 ⁇ z / y ⁇ 2.999 is chemical. It is preferable as a near-infrared shielding material because it is stable and has good absorption characteristics in the near-infrared region.
  • a M element to the tungsten oxide to form a composite tungsten oxide.
  • free electrons are generated in the composite tungsten oxide, free electron-derived absorption characteristics are expressed in the near-infrared region, and it becomes effective as a near-infrared absorbing material having a wavelength of around 1000 nm.
  • M element is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe. Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S More preferably, the element is one or more elements selected from Se, Br, Te, Ti, Nb, V, Mo, Ta, Re, Be, Hf, Os, Bi, and I.
  • a more efficient near-infrared shielding material can be obtained by using the composite tungsten oxide in combination with the above-described control of the amount of oxygen and addition of an element that generates free electrons.
  • the general formula of the near-infrared shielding material that combines the control of the amount of oxygen and the addition of an element that generates free electrons is described as MxWyOz (where M element is the M element, W is tungsten, and O is oxygen). Then, the relationship of 0.001 ⁇ x / y ⁇ 1, preferably 0.20 ⁇ x / y ⁇ 0.37 is satisfied.
  • M element is alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh. Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te , Ti, Nb, V, Mo, Ta, and Re are more preferably one or more elements selected from the viewpoint of improving optical properties and weather resistance as a near-infrared shielding material. Those belonging to the alkali metal, alkaline earth metal element, transition metal element, 4B group element, and 5B group element are more preferable.
  • the composite tungsten oxide fine particles described above have a hexagonal crystal structure
  • the transmittance of the fine particles in the visible light region is improved, and the absorption in the near infrared region is improved.
  • this hexagonal crystal structure six octahedrons formed by WO 6 units are assembled to form a hexagonal void, and an M element is arranged in the void to form one unit.
  • the hexagonal crystal structure is composed of a large number of these units.
  • the unit structure (octahedral formed with WO 6 units) As long as six hexagonal voids are formed and a structure in which M elements are arranged in the voids.
  • the absorption in the near infrared region is improved.
  • the hexagonal crystal is formed.
  • hexagonal crystals are easily formed.
  • the composite tungsten oxide fine particles added with one or more selected from Cs and Rb among these M elements having a large ionic radius it is possible to achieve both absorption in the near infrared region and transmission in the visible light region. .
  • the lattice constant is preferably 7.4031 to 7.4186 mm for the a-axis and 7.5750 to 7.6240 mm for the c-axis.
  • the lattice constant is preferably 7.3850 to 7.3950 and the c-axis is 7.5600 to 7.5700 ⁇ .
  • the lattice constant of the a-axis is 7.3850 mm or more and 7.4186 mm or less, and the c axis is 7.5600 mm or more and 7.6240 mm or less.
  • the M element is not limited to the above Cs and Rb. Even if the M element is an element other than Cs or Rb, it may be present as an added M element in a hexagonal void formed by WO 6 units.
  • the present inventors have repeatedly studied in consideration of further improving the near-infrared shielding function of the composite tungsten oxide fine particles, and have come up with a configuration in which the amount of free electrons contained is further increased. That is, as a measure for increasing the amount of free electrons, the inventors have conceived that a mechanical treatment is applied to the composite tungsten oxide fine particles to impart appropriate strain and deformation to the contained hexagonal crystals. In the hexagonal crystal given the appropriate strain and deformation, it is considered that the overlapping state of electron orbits in the atoms constituting the crystallite structure changes and the amount of free electrons increases.
  • the composite tungsten oxide particles are distorted into a crystal structure by pulverization under predetermined conditions.
  • grain was paid attention about the particle
  • the composite tungsten oxide fine particles finally obtained can be obtained as long as the lattice constant is within a predetermined range in spite of variations in the lattice constant and constituent element composition among the particles. It has been found that it exhibits optical properties.
  • the inventors who have obtained the above-described knowledge further measure distortion and deformation of the crystal structure of the fine particles by measuring the a-axis and c-axis which are lattice constants in the crystal structure of the composite tungsten oxide fine particles. While grasping the degree, the optical properties exhibited by the fine particles were studied.
  • the fine particles have a wavelength of 350 nm to Acquired knowledge that it is a near-infrared shielding material fine particle having a maximum value in the range of 600 nm, a light transmittance having a minimum value in the wavelength range of 800 nm to 2100 nm, and exhibiting an excellent near-infrared shielding effect.
  • the present invention has been completed.
  • the near-infrared shielding material fine particles according to the present invention in the hexagonal composite tungsten oxide fine particles having an a-axis of 7.3850 to 7.4186 ⁇ and a c-axis of 7.5600 to 7.6240 ⁇ , it has also been found that when the value of x / y indicating the addition amount is in the range of 0.20 ⁇ x / y ⁇ 0.37, a particularly excellent near-infrared shielding effect is exhibited.
  • the near-infrared shielding material fine particle dispersion has the maximum value (%) ⁇ minimum value (%) ⁇ 69 (points) when the above-described maximum value and minimum value of transmittance are expressed as percentages. It was found that when the difference between the maximum value and the minimum value was expressed in percentage, particularly excellent optical characteristics of 69 points or more were exhibited.
  • the near-infrared shielding material fine particles according to the present invention have a particle diameter of 100 nm or less.
  • the particle diameter is preferably 10 nm to 100 nm, more preferably 10 nm to 80 nm, still more preferably 10 nm to 60 nm, and most preferably 10 nm to 40 nm. It is as follows. When the particle diameter is in the range of 10 nm or more and 40 nm or less, the most excellent infrared shielding property is exhibited.
  • the particle diameter is an average value of the diameters of the individual near-infrared shielding material fine particles not aggregated, and is the average particle diameter of the near-infrared shielding material fine particles contained in the near-infrared shielding material fine particle dispersion described later.
  • the particle diameter does not include the diameter of the aggregate of the composite tungsten oxide fine particles, and is different from the dispersed particle diameter.
  • the average particle diameter is calculated from an electron microscope image of the near-infrared shielding material fine particles.
  • the average particle diameter of the composite tungsten oxide fine particles contained in the near-infrared shielding material fine particle dispersion is calculated from the transmission electron microscope image of the thinned sample of the composite tungsten oxide fine particle dispersion taken out by cross-section processing. It can be obtained by measuring 100 particle diameters using an image processing apparatus and calculating the average value.
  • a microtome, a cross section polisher, a focused ion beam (FIB) apparatus, or the like can be used for cross-sectional processing for taking out the thinned sample.
  • the average particle diameter of the composite tungsten oxide fine particles contained in the near-infrared shielding material fine particle dispersion is an average value of the particle diameters of the composite tungsten oxide fine particles dispersed in the solid medium as a matrix.
  • the crystallite diameter of the composite tungsten oxide fine particles is preferably 10 nm or more and 100 nm or less, more preferably 10 nm or more and 80 nm or less, further preferably 10 nm or more and 60 nm or less, most preferably Preferably they are 10 nm or more and 40 nm or less. This is because the best infrared shielding properties are exhibited when the crystallite diameter is in the range of 10 nm to 40 nm.
  • the lattice constant and the crystallite diameter of the composite tungsten oxide fine particles contained in the composite tungsten oxide fine particle dispersion obtained after the pulverization treatment, the pulverization treatment, or the dispersion treatment described later are the composite tungsten oxide fine particle dispersion.
  • the composite tungsten oxide fine particles obtained by removing volatile components from the liquid and the composite tungsten oxide fine particles contained in the near-infrared shielding material fine particle dispersion obtained from the composite tungsten oxide fine particle dispersion are also maintained. .
  • the effect of the present invention is also exhibited in the near-infrared shielding material fine particle dispersion containing the composite tungsten oxide fine particle dispersion and the composite tungsten oxide fine particles according to the present invention.
  • the composite tungsten oxide fine particles as the near-infrared shielding material fine particles are preferably single crystals having an amorphous phase volume ratio of 50% or less.
  • the crystallite diameter can be set to 10 nm or more and 100 nm or less while maintaining the lattice constant within the predetermined range. Because.
  • the particle diameter is 100 nm or less, but when the amorphous phase is present in a volume ratio exceeding 50%, or when the fine particles are polycrystalline, the lattice constant is set to the predetermined value described above. It may not be maintained within the range.
  • the maximum value and the minimum value are expressed as follows. 69 points or more cannot be secured in the difference. As a result, the near-infrared absorption characteristics are insufficient, and the expression of the near-infrared shielding characteristics is insufficient.
  • the composite tungsten oxide fine particles are single crystals because in the electron microscope image obtained by a transmission electron microscope or the like, no crystal grain boundary is observed inside each fine particle, and only uniform lattice fringes are observed. can do.
  • the volume ratio of the amorphous phase in the composite tungsten oxide fine particles is 50% or less.
  • uniform lattice fringes are observed throughout the fine particles, and almost no clear portions of the lattice fringes are observed. It can be confirmed from not being done.
  • the volume ratio of the amorphous phase can often be calculated by paying attention to the outer peripheral portion of each fine particle.
  • the composite tungsten oxide has a thickness of 10% or less of the particle diameter.
  • the volume ratio of the amorphous phase in the fine particles is 50% or less.
  • the composite tungsten oxide fine particles are dispersed in a matrix of a solid medium such as a resin constituting the near-infrared shielding material fine particle dispersion, a crystal is obtained from the average particle diameter of the dispersed composite tungsten oxide fine particles. If the value obtained by subtracting the child diameter is 20% or less of the average particle diameter, it can be said that the composite tungsten oxide fine particles are single crystals having an amorphous phase volume ratio of 50% or less.
  • the value obtained by subtracting the crystallite diameter from the average particle diameter of the composite tungsten oxide fine particles dispersed in the composite tungsten oxide fine particle dispersion is 20% or less of the value of the average particle diameter. It is preferable to appropriately adjust the synthesis step, the pulverization step, and the dispersion step of the composite tungsten oxide fine particles according to the production equipment.
  • the surface of the fine particles constituting the infrared shielding material of the present invention is coated with an oxide containing one or more of Si, Ti, Zr, and Al, which improves the weather resistance of the infrared shielding material. It is preferable from the viewpoint.
  • the near-infrared shielding material fine particle dispersion containing the composite tungsten oxide fine particles according to the present invention greatly absorbs light in the near-infrared region, particularly in the vicinity of a wavelength of 1000 nm, so that the transmission color tone changes from blue to green.
  • the dispersed particle diameter of the near-infrared shielding material fine particles can be selected depending on the intended use. First, when it is used for an application that maintains transparency, it is more preferable to have a dispersed particle size of 800 nm or less. This is because particles having a dispersed particle size smaller than 800 nm do not completely block light by scattering, and can maintain visibility in the visible light region and at the same time efficiently maintain transparency. .
  • the above-mentioned dispersed particle diameter of the near-infrared shielding material fine particles is a concept including the diameter of the aggregate of the composite tungsten oxide fine particles, and is a concept different from the above-described particle diameter of the near-infrared shielding material fine particles according to the present invention. It is.
  • the dispersed particle diameter is preferably 200 nm or less, more preferably 10 nm or more and 200 nm or less, and further preferably 10 nm or more and 100 nm or less.
  • the reason for this is that if the dispersed particle size is small, the scattering of light in the visible light region having a wavelength of 400 nm to 780 nm due to geometrical scattering or Mie scattering is reduced. This is because it is possible to avoid the loss of transparency. That is, when the dispersed particle diameter is 200 nm or less, the geometric scattering or Mie scattering is reduced, and a Rayleigh scattering region is obtained.
  • the scattered light is proportional to the sixth power of the dispersed particle diameter, so that the scattering is reduced and the transparency is improved as the dispersed particle diameter is decreased. Furthermore, when the dispersed particle diameter is 100 nm or less, the scattered light is preferably very small. From the viewpoint of avoiding light scattering, it is preferable that the dispersed particle diameter is small. If the dispersed particle diameter is 10 nm or more, industrial production is easy.
  • the near-infrared shielding material fine particle dispersion in which the near-infrared shielding material fine particles are dispersed in the medium has a visible light transmittance of 85% or less and a haze of 10% or less. be able to.
  • the haze can be set to 1% or less.
  • the light scattering of the near-infrared shielding material fine particle dispersion needs to consider the aggregation of the near-infrared shielding material fine particles, and it is necessary to consider the dispersion particle diameter.
  • the near-infrared shielding film produced by dispersing the fine particles in an appropriate medium or on the medium surface is a vacuum film-forming method such as a sputtering method, a vapor deposition method, an ion plating method, and a chemical vapor deposition method (CVD method).
  • a vacuum film-forming method such as a sputtering method, a vapor deposition method, an ion plating method, and a chemical vapor deposition method (CVD method).
  • CVD method chemical vapor deposition method
  • the composite tungsten oxide fine particles represented by the general formula MxWyOz according to the present invention are obtained by converting a tungsten compound as a starting material of tungsten oxide fine particles into a reducing gas atmosphere or a reducing gas. It can be produced by a solid phase reaction method in which heat treatment is performed in a mixed gas atmosphere with an active gas or in an inert gas atmosphere.
  • the composite tungsten oxide fine particles obtained through the heat treatment to be finely divided by a pulverization process or the like so as to have a predetermined particle diameter have sufficient near infrared absorption power and have preferable properties as near infrared shielding fine particles. is doing.
  • the starting material for obtaining the composite tungsten oxide fine particles represented by the general formula MxWyOz according to the present invention includes tungsten trioxide powder, tungsten dioxide powder, tungsten oxide hydrate, or tungsten hexachloride powder.
  • ammonium tungstate powder tungsten oxide hydrate powder obtained by dissolving tungsten hexachloride in alcohol and drying, or water after adding tungsten hexachloride dissolved in alcohol
  • the tungsten compound which is a starting material for obtaining the composite tungsten oxide fine particles is a solution or a dispersion
  • each element can be easily and uniformly mixed.
  • the starting material of the composite tungsten oxide fine particles may be a powder obtained by mixing an alcohol solution of tungsten hexachloride or an ammonium tungstate aqueous solution with a solution of the compound containing the M element and then drying. preferable.
  • the starting material of the composite tungsten oxide fine particles is a dispersion in which tungsten hexachloride is dissolved in alcohol and then water is added to form a precipitate, and a simple substance or compound containing the M element It is also preferable that the powder is a powder that is mixed with a solution of the compound containing the element M and dried.
  • Examples of the compound containing element M include, but are not limited to, element Tungstate, chloride, nitrate, sulfate, oxalate, oxide, carbonate, hydroxide, and the like. However, what is necessary is just to become a solution form. Further, when the composite tungsten oxide fine particles are produced industrially, if a tungsten oxide hydrate powder or tungsten trioxide and an M element carbonate or hydroxide are used, the heat treatment and the like can be performed. It is a preferable production method without generating harmful gas.
  • the heat treatment conditions for the composite tungsten oxide fine particles in a reducing atmosphere or in a mixed gas atmosphere of a reducing gas and an inert gas will be described.
  • the starting material is heat-treated in a reducing gas atmosphere or in a mixed gas atmosphere of a reducing gas and an inert gas.
  • This heat treatment temperature is preferably higher than the temperature at which the composite tungsten oxide fine particles crystallize. Specifically, 500 ° C. or higher and 1000 ° C. or lower is preferable, and 500 ° C. or higher and 800 ° C. or lower is more preferable.
  • heat treatment may be performed at a temperature of 500 ° C. or higher and 1200 ° C. or lower in an inert gas atmosphere.
  • the reducing gas is not particularly limited H 2 is preferable. Further, when H 2 is used as the reducing gas, the concentration thereof is not particularly limited as long as it is appropriately selected according to the firing temperature and the amount of the starting material. For example, it is 20 vol% or less, preferably 10 vol% or less, more preferably 7 vol% or less. This is because if the concentration of the reducing gas is 20 vol% or less, it is possible to avoid the generation of WO 2 that does not have a solar radiation shielding function due to rapid reduction. By the heat treatment, 2.2 ⁇ z / y ⁇ 3.0 is set in the composite tungsten oxide.
  • the method for producing the composite tungsten oxide is not limited to the solid phase reaction method. It can also be manufactured by a thermal plasma method by setting appropriate manufacturing conditions.
  • the manufacturing conditions to be set as appropriate include, for example, the supply speed when supplying the raw material into the thermal plasma, the flow rate of the carrier gas used for supplying the raw material, the flow rate of the plasma gas that holds the plasma region, and just outside the plasma region. For example, the flow rate of the sheath gas.
  • the heat treatment step for obtaining composite tungsten oxide or composite tungsten oxide particles as described above may be referred to as a first step according to the present invention.
  • the surface of the near-infrared shielding material fine particles obtained in the above process with an oxide containing one or more kinds of metals selected from Si, Ti, Zr, and Al. preferable.
  • the coating method is not particularly limited, the surface of the near-infrared shielding material fine particles can be coated by adding the metal alkoxide to the solution in which the near-infrared shielding material fine particles are dispersed.
  • the bulk of the composite tungsten oxide and the particles may be made fine by passing through a near-infrared shielding material fine particle dispersion described later.
  • the solvent may be removed by a known method.
  • the bulk of composite tungsten oxide and particles can be made fine by dry type using a jet mill or the like.
  • pulverization conditions micronization conditions
  • a jet mill that provides an appropriate air volume and processing time for the pulverization condition may be selected.
  • the step of obtaining the near-infrared shielding material fine particles according to the present invention by making the composite tungsten oxide or the composite tungsten oxide particles into fine particles as described above may be referred to as a second step according to the present invention.
  • the above-described composite tungsten oxide fine particles are mixed and dispersed in an appropriate solvent to obtain the near-infrared shielding material fine particle dispersion.
  • the said solvent is not specifically limited, What is necessary is just to select suitably according to the said binder, when an application
  • alcohols such as water, ethanol, propanol, butanol, isopropyl alcohol, isobutyl alcohol, diacetone alcohol, methyl ether, ethyl ether, propyl ether, etc.
  • organic solvents such as ethers, esters, acetone, methyl ethyl ketone, diethyl ketone, cyclohexanone, ketones such as isobutyl ketone, and aromatic hydrocarbons such as toluene can be used.
  • an acid or alkali may be added to adjust the pH of the dispersion.
  • a resin monomer or oligomer may be used as the solvent.
  • various dispersants, surfactants, coupling agents and the like can of course be added.
  • the solvent is included in an amount of 80 parts by weight or more with respect to 100 parts by weight of the near infrared shielding material fine particles, the preservability as the dispersion is easily secured, and the near infrared shielding material fine particle dispersion thereafter The workability at the time of manufacturing can also be secured.
  • the method of dispersing the composite tungsten oxide fine particles in the solvent is a method of uniformly dispersing the fine particles in the dispersion, wherein the a-axis in the crystal structure of the composite tungsten oxide fine particles is 7.3850 mm or more and 7.4186 mm or less,
  • the particle diameter of the composite tungsten oxide fine particles is 100 nm or less, preferably 10 nm or more and 100 nm or less, more preferably 10 nm or more and 80 nm or less, and further preferably 10 nm while ensuring the range of the c-axis from 7.5600 mm to 7.6240 mm.
  • examples thereof include a bead mill, a ball mill, a sand mill, a paint shaker, and an ultrasonic homogenizer.
  • the composite tungsten oxide particles are dispersed in the solvent, and at the same time, the fine particles are formed by collision of the composite tungsten oxide particles. Strain and deformation are imparted to the included hexagonal crystal structure, the state of overlap of electron orbits in the atoms constituting the crystallite structure changes, and the amount of free electrons increases.
  • the a-axis of the lattice constant of the composite tungsten oxide fine particles is 7.3850 mm or more and 7.4186 mm or less, and the c axis is 7.5600 mm or more and 7.6240 mm or less.
  • the conditions for making the composite tungsten oxide particles fine the a-axis of the lattice constant of the composite tungsten oxide fine particles obtained by making the fine particles is 7.3850 mm or more and 7.4186 mm or less, and the c axis is 7.5600 mm or more and 7.6240 mm. It is important to set the following conditions. Since the composite tungsten oxide fine particles according to the present invention exhibit a sufficient near-infrared shielding function by satisfying the above-described lattice constant, it is important to pay attention to the setting of conditions when making fine particles.
  • the particle diameter, crystallite diameter, lattice Even when the near-infrared shielding material fine particles are made into fine particles through the near-infrared shielding material fine particle dispersion and then the solvent is removed to obtain near-infrared shielding material fine particles, the particle diameter, crystallite diameter, lattice
  • pulverization conditions fine particle formation conditions that can provide constant a-axis length and c-axis length can be determined.
  • the state of the near-infrared shielding material fine particle dispersion according to the present invention can be confirmed by measuring the dispersion state of the composite tungsten oxide fine particles when the tungsten oxide fine particles are dispersed in a solvent.
  • the composite tungsten oxide fine particles according to the present invention can be confirmed by sampling a sample from a liquid in which a fine particle and an aggregated state of fine particles are present in a solvent, and measuring the sample with various commercially available particle size distribution analyzers. it can.
  • the particle size distribution meter for example, a known measuring device such as ELS-8000 manufactured by Otsuka Electronics Co., Ltd. based on the dynamic light scattering method can be used.
  • the measurement of the crystal structure and lattice constant of the composite tungsten oxide fine particles is included in the fine particles of the composite tungsten oxide fine particles obtained by removing the solvent of the dispersion for forming the near-infrared shield by X-ray diffraction.
  • the crystal structure to be identified is specified, and the a-axis length and the c-axis length are calculated as lattice constants by using the Rietveld method.
  • the dispersed particle diameter of the composite tungsten oxide fine particles is preferably sufficiently fine from the viewpoint of optical properties to 800 nm or less, preferably 200 nm or less, more preferably 100 nm or less. Furthermore, it is preferable that the composite tungsten oxide fine particles are uniformly dispersed.
  • the dispersed particle diameter of the composite tungsten oxide fine particles is 800 nm or less, preferably 200 nm or less, more preferably 10 nm or more and 200 nm or less, and further preferably 10 nm or more and 100 nm or less, a near-infrared shielding film or a molded body (plate, This is because it is possible to avoid that the sheet, etc., becomes a gray type with a monotonous decrease in transmittance.
  • the dispersed particle diameter according to the present invention means the particle diameter of a single particle of composite tungsten oxide fine particles dispersed in the near-infrared shielding material fine particle dispersion or an aggregated particle in which the composite tungsten oxide fine particles are aggregated. It is a concept.
  • the dispersed particle size can be measured with various commercially available particle size distribution analyzers. For example, a sample of the composite tungsten oxide fine particle dispersion can be collected, and the sample can be measured using a particle size measuring apparatus (ELS-8000 manufactured by Otsuka Electronics Co., Ltd.) based on a dynamic light scattering method.
  • ELS-8000 manufactured by Otsuka Electronics Co., Ltd.
  • the composite tungsten oxide fine particles aggregate to form coarse aggregates, and when a large number of the coarse particles exist, the coarse particles serve as a light scattering source.
  • the near-infrared shielding material fine particle dispersion becomes a near-infrared shielding film or a molded body, haze increases, which may cause a reduction in visible light transmittance. Therefore, it is preferable to avoid the generation of coarse particles of the composite tungsten oxide fine particles.
  • the near-infrared shielding material fine particle dispersion according to the present invention is obtained by dispersing the composite tungsten oxide fine particles in an appropriate solid medium.
  • the near-infrared shielding material fine particle dispersion according to the present invention maintains the dispersed state in a solid medium such as a resin after mechanically pulverizing the composite tungsten oxide fine particles under a predetermined condition. It can be applied to a base material having a low heat-resistant temperature, and there is an advantage that a large-sized device is not required for formation and it is inexpensive.
  • the step of obtaining the near-infrared shielding material fine particle dispersion by dispersing the near-infrared shielding material fine particles according to the present invention in the solid medium as described above may be referred to as a third step according to the present invention. Details of the third step will be described later.
  • the near-infrared shielding material according to the present invention is a conductive material, when used as a continuous film, there is a risk of absorbing and reflecting radio waves from a mobile phone or the like.
  • the near-infrared shielding material is dispersed as fine particles in the matrix of the solid medium, since each particle is dispersed in an isolated state, it has versatility because it exhibits radio wave permeability.
  • the average particle diameter of the composite tungsten oxide fine particles dispersed in the matrix of the solid medium of the near-infrared shielding material fine particle dispersion and the near-infrared shielding material fine particle dispersion used to form the near-infrared shielding material fine particle dispersion may be different. This is because when the near-infrared shielding material fine particle dispersion is obtained from the near-infrared shielding material fine particle dispersion or the near-infrared shielding body dispersion, the composite tungsten oxide fine particles aggregated in the dispersion are aggregated. It is to be understood.
  • various resins and glasses can be used as the solid medium of the near-infrared shielding material fine particle dispersion. If 80 parts by weight or more of the solid medium is included with respect to 100 parts by weight of the near-infrared shielding material fine particles, a near-infrared shielding material fine particle dispersion can be preferably formed.
  • Near-infrared shielding material fine particle dispersion of near-infrared shielding material fine particle dispersion has a maximum value in the wavelength range of 350 nm to 600 nm in terms of light transmittance.
  • the maximum value (%) minus the minimum value (%) ⁇ 69 (points) that is, the maximum value and the minimum value
  • a near-infrared shielding material fine particle dispersion having excellent characteristics with a difference of 69% or more in percentage is obtained.
  • the difference between the maximum value and the minimum value of the transmittance in the near-infrared shielding material fine particle dispersion being as large as 69 points or more indicates that the near-infrared shielding property of the dispersion is excellent.
  • the near-infrared shielding body according to the present invention is formed by forming the near-infrared shielding material fine particle dispersion according to the present invention into any one selected from a plate shape, a film shape, and a thin film shape.
  • the above-described step of molding the near-infrared shielding material fine particle dispersion according to the present invention into the near-infrared shielding may be referred to as a fourth step according to the present invention.
  • the fourth step includes forming a near-infrared shield on the surface of the substrate.
  • Near-infrared shielding material fine particle dispersion and method for producing near-infrared shielding material are selected from a plate shape, a film shape, and a thin film shape
  • the near-infrared shielding material in which the dispersion of the near-infrared shielding material fine particles is formed on the surface of the substrate is coated by coating the dispersion for forming the near-infrared shielding on the surface of the substrate, evaporating the solvent and curing the resin by a predetermined method. The body is obtained.
  • the solvent of the near-infrared shielding material fine particle dispersion according to the present invention a resin monomer that becomes a solid medium by curing may be used. If a resin monomer is used as the solvent, the coating method is not particularly limited as long as the near-infrared shielding material fine particle dispersion can be uniformly coated on the substrate surface. For example, a bar coating method, a gravure coating method, a spray coating method can be used. And a dip coating method.
  • a near-infrared shielding material fine particle dispersion in which near-infrared shielding material fine particles are directly dispersed in a binder resin does not require evaporation of the solvent after coating on the substrate surface, and is environmentally and industrially preferable.
  • a UV curable resin, a thermosetting resin, an electron beam curable resin, a room temperature curable resin, a thermoplastic resin, or the like can be selected according to the purpose.
  • These resins may be used alone or in combination.
  • a binder using a metal alkoxide as a solid medium.
  • the metal alkoxide include alkoxides such as Si, Ti, Al, and Zr. Binders using these metal alkoxides can form oxide films by hydrolysis and condensation polymerization by heating or the like.
  • the base material of the above-mentioned near-infrared shield may be a film or a board as desired, and the shape is not limited.
  • the transparent substrate material PET, acrylic, urethane, polycarbonate, polyethylene, ethylene vinyl acetate copolymer, vinyl chloride, fluorine resin, and the like can be used according to various purposes.
  • glass other than resin can be used.
  • the near infrared shielding material fine particles are formed on a substrate. It may be dispersed in a certain medium. In order to disperse the fine particles in the medium, it may be permeated from the surface of the medium, but after the medium such as polycarbonate resin is melted at a temperature higher than its melting temperature, the fine particles and the medium are mixed, A near-infrared shielding material fine particle dispersion is obtained.
  • the near-infrared shielding material fine particle dispersion obtained as described above can be formed into a film or a plate shape by a predetermined method to obtain a near-infrared shielding body.
  • a PET resin and a near-infrared shielding material fine particle dispersion after mechanical pulverization under predetermined conditions are mixed, and after the dispersion solvent is evaporated, PET Heating to about 300 ° C., which is the melting temperature of the resin, melting the PET resin, mixing, and cooling makes it possible to produce a near-infrared shielding body in which fine particles of near-infrared shielding material are dispersed.
  • the near-infrared shielding material fine particle dispersion according to the present invention includes a plate glass, a plastic plate, and fine particles having a solar radiation shielding function. It exists between two or more laminated plates selected from plastic plates.
  • the heat ray shielding laminated transparent base material using the heat ray shielding film according to the present invention has various forms.
  • heat-shielding laminated inorganic glass using inorganic glass as a transparent substrate can be obtained by pasting and integrating a plurality of opposing inorganic glasses that are sandwiched between heat-shielding films by a known method.
  • the obtained heat ray shielding laminated inorganic glass can be used mainly as a front inorganic glass for automobiles or windows for buildings.
  • the step of sandwiching the near-infrared shield according to the present invention described above between two or more opposing transparent base materials may be described as a fifth step according to the present invention.
  • a heat ray is formed between two or more opposing transparent substrates selected from plate glass, plastic, and plastic containing fine particles having solar radiation shielding function.
  • a transparent substrate with heat ray shielding can be obtained by sandwiching the shielding film.
  • the use is the same as that of heat-shielding laminated inorganic glass.
  • the near-infrared shielding material fine particle dispersion, the near-infrared shielding body, and the near-infrared shielding combined structure according to the present invention are a near-infrared shielding material fine particle dispersion, a near-infrared shielding body, and a near-infrared shielding combined structure according to the related art. Compared with the structure, it exhibited excellent optical properties such as more efficiently shielding sunlight rays, particularly near-infrared light, and simultaneously maintaining high transmittance in the visible light region.
  • the near-infrared shielding film formed on the surface of the medium using the near-infrared shielding material fine particle dispersion according to the present invention in which the near-infrared shielding material fine particles are dispersed in a solid medium includes a sputtering method, a vapor deposition method, and an ion plate.
  • a sputtering method such as the coating method and chemical vapor deposition method (CVD method) and films produced by CVD methods and spray methods
  • light in the near infrared region It has excellent optical properties such as more efficient shielding and at the same time maintaining high transmittance in the visible light region.
  • the near-infrared shielding body and the near-infrared shielding laminated structure according to the present invention can be manufactured at low cost without using a large-scale apparatus such as a vacuum apparatus, and are industrially useful.
  • Example 1 In 6.70 kg of water, 7.43 kg of cesium carbonate (Cs 2 CO 3 ) was dissolved to obtain a solution. The solution was added to 34.57 kg of tungstic acid (H 2 WO 4 ), sufficiently stirred and mixed, and then dried with stirring (the molar ratio of W to Cs is equivalent to 1: 0.33). The dried product was heated while supplying 5 volume% H 2 gas with N 2 gas as a carrier, and calcined at a temperature of 800 ° C. for 5.5 hours, and then the supply gas was switched to N 2 gas only. Then, the temperature was lowered to room temperature to obtain Cs tungsten oxide particles a.
  • Cs 2 CO 3 cesium carbonate
  • Acrylic polymer dispersant having 20% by mass of Cs tungsten oxide particles a and a group containing amine as a functional group (an acrylic dispersant having an amine value of 48 mgKOH / g and a decomposition temperature of 250 ° C.) (hereinafter referred to as “dispersant” a) ”) Weighed 8% by mass and 72% by mass of butyl acetate, loaded in a paint shaker (manufactured by Asada Tekko Co., Ltd.) containing 0.3 mm ⁇ ZrO 2 beads, and pulverized and dispersed for 20 hours. Thus, a near-infrared shielding material fine particle dispersion (liquid A-1) was prepared.
  • the dispersed particle size of the Cs tungsten oxide fine particles a in the near-infrared shielding material fine particle dispersion (A-1 solution) is determined by a particle size measuring device (ELS- manufactured by Otsuka Electronics Co., Ltd.). 8000) and it was 70 nm. Further, when the lattice constant of the Cs tungsten oxide fine particles a after removing the solvent from the (A-1 solution) was measured, the a axis was 7.4071 mm and the c axis was 7.6188 mm. The crystallite diameter was 24 nm.
  • the visible light transmittance and the near-infrared shielding characteristic as optical characteristics of the (A-1 solution) were measured using a spectrophotometer U-4000 manufactured by Hitachi, Ltd.
  • a dispersion obtained by diluting the (A-1 solution) with butyl acetate so as to have a visible light transmittance of about 70% in a glass cell for measurement of a spectrophotometer was used.
  • the incident direction of the light of the spectrophotometer was made into the direction perpendicular
  • the light transmittance was measured for a blank solution in which only butyl acetate as a solvent was placed in the glass cell for measurement, and a baseline of light transmittance was obtained.
  • the visible light transmittance is obtained according to JISR3106, and the near-infrared shielding characteristic is the difference between the maximum value of the percentage of transmittance in the visible light region and the minimum value of the percentage of transmittance in the near-infrared light region. The value of was obtained as a point.
  • a visible light transmittance of 70.0% and a difference of 76.8 points between the maximum value and the minimum value of the transmittance were obtained.
  • the obtained dispersion liquid (A-1 liquid) and the UV curable resin were weighed so as to have a weight ratio of 1: 9, mixed and stirred, and the near-infrared shield-forming dispersion liquid (AA) -1 solution) was prepared.
  • a dispersion for forming a near-infrared shield (AA-1 solution) was applied onto a 3 mm thick soda-lime glass substrate, and then dried at 70 ° C. for 1 minute.
  • a high-pressure mercury lamp was irradiated to obtain a near-infrared shielding body A which is a near-infrared shielding material fine particle dispersion according to Example 1.
  • the optical properties of the near-infrared shield A were measured in the same manner as the above-described near-infrared shielding material fine particle dispersion (A-1 solution).
  • the visible light transmittance was 69.7%, and the difference between the maximum value and the minimum value of transmittance was 74.1 points.
  • the transmittance for light with wavelengths of 550 nm, 1000 nm, and 1500 nm was measured.
  • a thinned sample of the near-infrared shield A was prepared by cross-section processing using an FIB processing apparatus FB2200 manufactured by Hitachi High-Technologies Corporation, and a transmission electron microscope HF-2200 manufactured by Hitachi High-Technologies Corporation was prepared.
  • Example 2-17 When the average particle diameter of 100 Cs tungsten oxide fine particles dispersed in the near-infrared shielding material A was calculated by TEM observation used, it was 25 nm.
  • Example 2-17 When the same measurement was performed in Example 2-17 and Comparative Example 1-9.
  • the results of Example 1-17 are shown in Table 1, and the results of Comparative Example 1-9 are shown in Table 2.
  • Example 2 was made in the same manner as Example 1 except that a predetermined amount of tungstic acid and cesium carbonate described in Example 1 was weighed so that the molar ratio of W to Cs was 1: 0.31.
  • a near-infrared shielding material fine particle dispersion (liquid A-2), Cs tungsten oxide fine particles b, and a near-infrared shielding material B were obtained.
  • the dispersed particle diameter of the Cs tungsten oxide fine particles b in the near-infrared shielding material fine particle dispersion (liquid A-2) was 70 nm.
  • the lattice constant of the Cs tungsten oxide fine particles b was 7.4100 mm and the c-axis was 7.6138 mm.
  • the crystallite diameter was 24 nm.
  • the visible light transmittance is 69.8%, and the difference between the maximum value and the minimum value of the transmittance is 73.0 points. Obtained.
  • the average particle diameter of the Cs tungsten oxide fine particles dispersed in the near-infrared shield B was found to be 25 nm by TEM observation. The results are shown in Table 1.
  • Example 3 The near infrared ray according to Example 3 is the same as Example 1 except that a predetermined amount of tungstic acid and cesium carbonate is weighed so that the molar ratio of W and Cs is 1: 0.35.
  • a shielding material fine particle dispersion (A-3 liquid), Cs tungsten oxide fine particles c, and a near infrared shielding body C were obtained.
  • the dispersed particle diameter of the Cs tungsten oxide fine particles c in the near-infrared shielding material fine particle dispersion (A-3 solution) was 70 nm.
  • the lattice constant of the Cs tungsten oxide fine particles c the a-axis was 7.4065 and the c-axis was 7.6203.
  • the crystallite diameter was 24 nm.
  • the visible light transmittance is 69.8%, and the difference between the maximum value and the minimum value of the transmittance is 73.6 points. Obtained.
  • the average particle diameter of the Cs tungsten oxide fine particles dispersed in the near-infrared shield C was found to be 24 nm by TEM observation. The results are shown in Table 1.
  • Example 4 The near infrared ray according to Example 4 is the same as Example 1, except that a predetermined amount of tungstic acid and cesium carbonate is weighed so that the molar ratio of W and Cs is 1: 0.37. A dispersion for forming a shielding body (liquid A-4), Cs tungsten oxide fine particles d, and a near-infrared shielding body D were obtained.
  • the dispersion particle diameter of the Cs tungsten oxide fine particles d in the infrared shielding material fine particle dispersion (A-4 solution) was 70 nm.
  • the lattice constant of the Cs tungsten oxide fine particles d the a-axis was 7.4066 and the c-axis was 7.6204.
  • the crystallite diameter was 24 nm.
  • the visible light transmittance and near infrared shielding characteristics of the near-infrared shield D the visible light transmittance is 69.8%, and the difference between the maximum value and the minimum value of the transmittance is 73.6 points. Obtained.
  • the average particle diameter of the Cs tungsten oxide fine particles dispersed in the near-infrared shield D was determined to be 25 nm by TEM observation. The results are shown in Table 1.
  • Example 1 is the same as Example 1 except that a predetermined amount of ammonium metatungstate aqueous solution (50 wt% in terms of WO 3 ) and cesium carbonate were weighed so that the molar ratio of W to Cs was 1: 0.33. Similarly, a near-infrared shielding material fine particle dispersion (liquid A-5), Cs tungsten oxide fine particles e, and a near-infrared shielding body E according to Example 5 were obtained.
  • the dispersed particle diameter of the Cs tungsten oxide fine particles e in the near-infrared shielding material fine particle dispersion (A-5 solution) was 70 nm.
  • the lattice constant of the Cs tungsten oxide fine particles e the a-axis was 7.4065 and the c-axis was 7.6193.
  • the crystallite diameter was 24 nm.
  • the visible light transmittance is 71.7%, and the difference between the maximum value and the minimum value of the transmittance is 70.0 points. Obtained.
  • the average particle diameter of the Cs tungsten oxide fine particles dispersed in the near-infrared shield E was determined to be 25 nm by TEM observation. The results are shown in Table 1.
  • Example 1 near-infrared rays according to Comparative Example 1 were obtained in the same manner as in Example 1 except that a predetermined amount of tungstic acid and cesium carbonate was weighed so that the molar ratio of W to Cs was 1: 0.11.
  • the dispersed particle diameter of the Cs tungsten oxide fine particles f in the near-infrared shielding material fine particle dispersion (A-6 solution) was 70 nm.
  • the lattice constant of the Cs tungsten oxide fine particle f was 7.4189 ⁇ for the a-axis and 7.5825 ⁇ for the c-axis.
  • the crystallite diameter was 24 nm.
  • the visible light transmittance is 69.3%
  • the difference between the maximum value and the minimum value of the transmittance is 63.4 points
  • the average particle size of the Cs tungsten oxide fine particles dispersed in the near-infrared shield F was determined to be 24 nm by TEM observation. The results are shown in Table 2.
  • Example 2 near-infrared rays according to Comparative Example 2 were obtained in the same manner as Example 1 except that a predetermined amount of tungstic acid and cesium carbonate was weighed so that the molar ratio of W and Cs was 1: 0.15.
  • the dispersed particle diameter of the Cs tungsten oxide fine particles g in the near-infrared shielding material fine particle dispersion (A-7 solution) was 70 nm.
  • the lattice constant of the Cs tungsten oxide fine particles g was 7.4188 mm for the a axis and 7.5826 mm for the c axis.
  • the crystallite diameter was 24 nm.
  • the visible light transmittance is 69.4%
  • the difference between the maximum value and the minimum value of the transmittance is 66.1 points
  • the average particle size of the Cs tungsten oxide fine particles dispersed in the near-infrared shield G was found to be 25 nm by TEM observation. The results are shown in Table 2.
  • Example 3 near-infrared rays according to Comparative Example 2 were obtained in the same manner as in Example 1 except that a predetermined amount of tungstic acid and cesium carbonate was weighed so that the molar ratio of W to Cs was 1: 0.39.
  • the dispersed particle diameter of the Cs tungsten oxide fine particles g in the near-infrared shielding material fine particle dispersion (A-8 solution) was 70 nm.
  • the lattice constant of the Cs tungsten oxide fine particles g the a-axis was 7.4025 mm and the c-axis was 7.6250 mm.
  • the crystallite diameter was 24 nm.
  • the visible light transmittance is 69.6%
  • the difference between the maximum value and the minimum value of the transmittance is 67.2 points
  • the average particle size of the Cs tungsten oxide fine particles dispersed in the near-infrared shield H was determined to be 25 nm by TEM observation. The results are shown in Table 2.
  • Example 6 is the same as Example 1 except that a predetermined amount of ammonium metatungstate aqueous solution (50 wt% in terms of WO 3 ) and cesium carbonate were weighed so that the molar ratio of W to Cs was 1: 0.21. Similarly, a near-infrared shielding material fine particle dispersion (liquid A-9), Cs tungsten oxide fine particles i, and a near-infrared shielding material I according to Example 6 were obtained.
  • the dispersed particle diameter of the Cs tungsten oxide fine particles i in the near-infrared shielding material fine particle dispersion (A-9 solution) was 70 nm.
  • the lattice constant of the Cs tungsten oxide fine particles i the a-axis was 7.4186 ⁇ and the c-axis was 7.5825 ⁇ .
  • the crystallite diameter was 24 nm.
  • the visible light transmittance is 69.4%, and the difference between the maximum value and the minimum value of the transmittance is 69.3 points. Obtained.
  • the average particle size of the Cs tungsten oxide fine particles dispersed in the near-infrared shield I was found to be 24 nm by TEM observation. The results are shown in Table 1.
  • Example 1 is the same as Example 1 except that a predetermined amount of ammonium metatungstate aqueous solution (50 wt% in terms of WO 3 ) and cesium carbonate were weighed so that the molar ratio of W to Cs was 1: 0.23. Similarly, a near-infrared shielding material fine particle dispersion (A-10 liquid), Cs tungsten oxide fine particles j, and a near-infrared shielding body J according to Example 7 were obtained.
  • A-10 liquid near-infrared shielding material fine particle dispersion
  • Cs tungsten oxide fine particles j Cs tungsten oxide fine particles j
  • a near-infrared shielding body J were obtained.
  • the dispersed particle diameter of the Cs tungsten oxide fine particles j in the near-infrared shielding material fine particle dispersion (A-10 solution) was 70 nm.
  • the lattice constant of the Cs tungsten oxide fine particles j the a-axis was 7.4184 ⁇ and the c-axis was 7.5823 ⁇ .
  • the crystallite diameter was 24 nm.
  • the visible light transmittance is 69.8%, and the difference between the maximum value and the minimum value of the transmittance is 70.5 points. Obtained.
  • the average particle size of the Cs tungsten oxide fine particles dispersed in the near-infrared shield J was determined to be 25 nm by TEM observation. The results are shown in Table 1.
  • Example 1 is the same as Example 1 except that a predetermined amount of ammonium metatungstate aqueous solution (50 wt% in terms of WO 3 ) and cesium carbonate were weighed so that the molar ratio of W to Cs was 1: 0.25. Similarly, a near-infrared shielding material fine particle dispersion (A-11 solution), Cs tungsten oxide fine particles k, and a near-infrared shielding material K according to Example 8 were obtained.
  • the dispersed particle diameter of the Cs tungsten oxide fine particles k in the near-infrared shielding material fine particle dispersion (A-11 solution) was 70 nm.
  • the lattice constant of the Cs tungsten oxide fine particles k was 7.4165a for the a-axis and 7.5897 ⁇ for the c-axis.
  • the crystallite diameter was 24 nm.
  • the visible light transmittance is 69.8%, and the difference between the maximum value and the minimum value of the transmittance is 73.2 points. Obtained.
  • the average particle size of the Cs tungsten oxide fine particles dispersed in the near-infrared shield K was determined to be 24 nm by TEM observation. The results are shown in Table 1.
  • Example 9 Example 1 is the same as Example 1 except that a predetermined amount of an ammonium metatungstate aqueous solution (50 wt% in terms of WO 3 ) and cesium carbonate were weighed so that the molar ratio of W to Cs was 1: 0.27. Similarly, a near-infrared shielding material fine particle dispersion (liquid A-12), Cs tungsten oxide fine particles 1 and a near-infrared shielding body L according to Example 9 were obtained.
  • an ammonium metatungstate aqueous solution 50 wt% in terms of WO 3
  • cesium carbonate were weighed so that the molar ratio of W to Cs was 1: 0.27.
  • a near-infrared shielding material fine particle dispersion liquid A-12
  • Cs tungsten oxide fine particles 1 and a near-infrared shielding body L according to Example 9 were obtained.
  • the dispersed particle diameter of the Cs tungsten oxide fine particles 1 in the near-infrared shielding material fine particle dispersion (A-12 solution) was 70 nm.
  • the lattice constant of the Cs tungsten oxide fine particles 1 the a-axis was 7.4159 ⁇ and the c-axis was 7.5919 ⁇ .
  • the crystallite diameter was 24 nm.
  • the visible light transmittance is 69.5%, and the difference between the maximum value and the minimum value of the transmittance is 72.4 points. Obtained.
  • the average particle size of the Cs tungsten oxide fine particles dispersed in the near-infrared shield L was found to be 25 nm by TEM observation. The results are shown in Table 1.
  • Example 1 is the same as Example 1 except that a predetermined amount of ammonium metatungstate aqueous solution (50 wt% in terms of WO 3 ) and cesium carbonate were weighed so that the molar ratio of W to Cs was 1: 0.29. Similarly, a near-infrared shielding material fine particle dispersion (A-13 solution), Cs tungsten oxide fine particles m, and a near-infrared shielding material M according to Example 10 were obtained.
  • A-13 solution near-infrared shielding material fine particle dispersion
  • Cs tungsten oxide fine particles m Cs tungsten oxide fine particles m
  • a near-infrared shielding material M according to Example 10 were obtained.
  • the dispersed particle diameter of the Cs tungsten oxide fine particles m in the near-infrared shielding material fine particle dispersion (A-13 solution) was 70 nm.
  • the lattice constant of the Cs tungsten oxide fine particles m the a-axis was 7.4133 ⁇ and the c-axis was 7.6002 ⁇ .
  • the crystallite diameter was 24 nm.
  • the visible light transmittance is 69.9%, and the difference between the maximum value and the minimum value of the transmittance is 72.8 points. Obtained.
  • the average particle size of the Cs tungsten oxide fine particles dispersed in the near-infrared shield M was found to be 25 nm by TEM observation. The results are shown in Table 1.
  • Example 11 Example 1 is the same as Example 1 except that a predetermined amount of ammonium metatungstate aqueous solution (50 wt% in terms of WO 3 ) and cesium carbonate were weighed so that the molar ratio of W to Cs was 1: 0.30. Similarly, a near-infrared shielding material fine particle dispersion (A-14 solution), Cs tungsten oxide fine particles n, and a near-infrared shielding body N according to Example 11 were obtained.
  • A-14 solution near-infrared shielding material fine particle dispersion
  • Cs tungsten oxide fine particles n Cs tungsten oxide fine particles n
  • a near-infrared shielding body N were obtained.
  • the dispersed particle diameter of the Cs tungsten oxide fine particles n in the near-infrared shielding material fine particle dispersion (A-14 solution) was 70 nm.
  • the lattice constant of the Cs tungsten oxide fine particles n the a-axis was 7.4118 ⁇ and the c-axis was 7.6082 ⁇ .
  • the crystallite diameter was 24 nm.
  • the visible light transmittance is 69.7%, and the difference between the maximum value and the minimum value of the transmittance is 72.3 points. Obtained.
  • the average particle size of the Cs tungsten oxide fine particles dispersed in the near-infrared shield N was determined to be 24 nm by TEM observation. The results are shown in Table 1.
  • Example 12 In Example 1, similar to Example 1, except that baking was performed at a temperature of 550 ° C. for 9.0 hours while supplying 5% H 2 gas using N 2 gas as a carrier. Infrared shielding material fine particle dispersion (A-15 liquid), Cs tungsten oxide fine particles o, and near infrared shielding material O were obtained.
  • the dispersed particle diameter of the Cs tungsten oxide fine particles o in the near-infrared shielding material fine particle dispersion (A-15 solution) was 70 nm.
  • the lattice constant of the Cs tungsten oxide fine particles o the a-axis was 7.4068 ⁇ and the c-axis was 7.6190 ⁇ .
  • the crystallite diameter was 24 nm.
  • the visible light transmittance is 69.9%, and the difference between the maximum value and the minimum value of the transmittance is 74.0 points. Obtained.
  • the average particle diameter of the Cs tungsten oxide fine particles dispersed in the near-infrared shield O was found to be 25 nm by TEM observation. The results are shown in Table 1.
  • Example 13 In 6.70 kg of water, 5.56 kg of rubidium carbonate (Rb 2 CO 3 ) was dissolved to obtain a solution. The solution was added to 36.44 kg of tungstic acid (H 2 WO 4 ), sufficiently stirred and mixed, and then dried with stirring (the molar ratio of W to Rb is equivalent to 1: 0.33). The dried product was heated while supplying 5% H 2 gas with N 2 gas as a carrier, and calcined at a temperature of 800 ° C. for 5.5 hours, and then the supply gas was switched to only N 2 gas, The temperature was lowered to room temperature to obtain Rb tungsten oxide particles.
  • H 2 WO 4 tungstic acid
  • Rb tungsten oxide fine particles a and a near-infrared shield B1 were obtained.
  • the dispersion particle diameter of the Rb tungsten oxide fine particles a in the near-infrared shielding material fine particle dispersion (B-1 solution) was 70 nm.
  • the lattice constant of the Rb tungsten oxide fine particles a the a-axis was 7.3898 ⁇ and the c-axis was 7.5633 ⁇ .
  • the crystallite diameter was 24 nm.
  • the visible light transmittance is 69.6%, and the difference between the maximum value and the minimum value of the transmittance is 69.5 points. Obtained.
  • the average particle diameter of the Rb tungsten oxide fine particles dispersed in the near-infrared shield B1 was found to be 25 nm by TEM observation. The results are shown in Table 1.
  • Example 14 In 6.70 kg of water, 0.709 kg of cesium carbonate (Cs 2 CO 3 ) and 5.03 kg of rubidium carbonate (Rb 2 CO 3 ) were dissolved to obtain a solution. The solution was added to 36.26 kg of tungstic acid (H 2 WO 4 ), sufficiently stirred and mixed, and then dried with stirring (the molar ratio of W to Cs was equivalent to 1: 0.03, W and Rb Is equivalent to 1: 0.30). The dried product was heated while supplying 5% H 2 gas with N 2 gas as a carrier, and calcined at a temperature of 800 ° C.
  • Cs 2 CO 3 cesium carbonate
  • Rb 2 CO 3 rubidium carbonate
  • CsRb tungsten oxide particles a were obtained.
  • C-1 solution Near-infrared shielding material fine particle dispersion (C-1 solution) according to Example 14 in the same manner as in Example 1, except that the obtained CsRb tungsten oxide particles a were used instead of the Cs tungsten oxide particles.
  • CsRb tungsten oxide fine particles a and a near-infrared shield C1 were obtained.
  • the dispersed particle diameter of the CsRb tungsten oxide fine particles a in the near-infrared shielding material fine particle dispersion (C-1 solution) was 70 nm.
  • the lattice constant of the CsRb tungsten oxide fine particles a the a-axis was 7.3925 ⁇ and the c-axis was 7.5730 ⁇ .
  • the crystallite diameter was 24 nm.
  • the visible light transmittance is 69.7%, and the difference between the maximum value and the minimum value of the transmittance is 70.4 points. It was.
  • the average particle diameter of the CsRb tungsten oxide fine particles dispersed in the near-infrared shield C1 was found to be 24 nm by TEM observation. The results are shown in Table 1.
  • Example 15 In 6.70 kg of water, 4.60 kg of cesium carbonate (Cs 2 CO 3 ) and 2.12 kg of rubidium carbonate (Rb 2 CO 3 ) were dissolved to obtain a solution. The solution was added to 35.28 kg of tungstic acid (H 2 WO 4 ), sufficiently mixed with stirring, and then dried with stirring (the molar ratio of W to Cs was equivalent to 1: 0.20, W and Rb Is equivalent to 1: 0.13). The dried product was heated while supplying 5% H 2 gas with N 2 gas as a carrier, and calcined at a temperature of 800 ° C.
  • Cs 2 CO 3 cesium carbonate
  • Rb 2 CO 3 rubidium carbonate
  • CsRb tungsten oxide particles b were obtained.
  • C-2 liquid Near-infrared shielding material fine particle dispersion (C-2 liquid) according to Example 15 in the same manner as in Example 1 except that the obtained CsRb tungsten oxide particles b were used instead of the Cs tungsten oxide particles.
  • CsRb tungsten oxide fine particles b and a near-infrared shield C2 were obtained.
  • the dispersed particle diameter of the CsRb tungsten oxide fine particles b in the near-infrared shielding material fine particle dispersion (C-2 solution) was 70 nm.
  • the lattice constant of the CsRb tungsten oxide fine particles b the a-axis was 7.4026 ⁇ and the c-axis was 7.6035 ⁇ .
  • the crystallite diameter was 24 nm.
  • the visible light transmittance is 69.7%, and the difference between the maximum value and the minimum value of the transmittance is 71.5 points. Obtained.
  • the average particle diameter of the CsRb tungsten oxide fine particles dispersed in the near-infrared shield C2 was found to be 24 nm by TEM observation. The results are shown in Table 1.
  • Example 16 A solution was obtained by dissolving 5.71 kg of cesium carbonate (Cs 2 CO 3 ) and 1.29 kg of rubidium carbonate (Rb 2 CO 3 ) in 6.70 kg of water. The solution was added to 35.00 kg of tungstic acid (H 2 WO 4 ), sufficiently stirred and mixed, and then dried with stirring (the molar ratio of W to Cs was equivalent to 1: 0.25, W and Rb Is equivalent to 1: 0.08). The dried product was heated while supplying 5% H 2 gas with N 2 gas as a carrier, and calcined at a temperature of 800 ° C.
  • Cs 2 CO 3 cesium carbonate
  • Rb 2 CO 3 rubidium carbonate
  • the dispersed particle diameter of the CsRb tungsten oxide fine particles c in the near-infrared shielding material fine particle dispersion (C-3 solution) was 70 nm.
  • the lattice constant of the CsRb tungsten oxide fine particles c the a-axis was 7.4049 mm and the c-axis was 7.6083 mm.
  • the crystallite diameter was 24 nm.
  • the visible light transmittance is 69.7%, and the difference between the maximum value and the minimum value of the transmittance is 71.5 points. It was.
  • the average particle diameter of the CsRb tungsten oxide fine particles dispersed in the near-infrared shield C3 was found to be 25 nm by TEM observation. The results are shown in Table 1.
  • Example 17 A solution was obtained by dissolving 6.79 kg of cesium carbonate (Cs 2 CO 3 ) and 0.481 kg of rubidium carbonate (Rb 2 CO 3 ) in 6.70 kg of water. The solution was added to 34.73 kg of tungstic acid (H 2 WO 4 ), sufficiently stirred and mixed, and then dried with stirring (the molar ratio of W to Cs was equivalent to 1: 0.30, W and Rb Is equivalent to 1: 0.03). The dried product was heated while supplying 5% H 2 gas with N 2 gas as a carrier, and calcined at a temperature of 800 ° C.
  • Cs 2 CO 3 cesium carbonate
  • Rb 2 CO 3 rubidium carbonate
  • CsRb tungsten oxide particles d were obtained.
  • C-4 solution Near-infrared shielding material fine particle dispersion (C-4 solution) according to Example 17 in the same manner as in Example 1, except that the obtained CsRb tungsten oxide particles d were used instead of the Cs tungsten oxide particles.
  • CsRb tungsten oxide fine particles d and a near-infrared shield C4 were obtained.
  • the dispersed particle diameter of the CsRb tungsten oxide fine particles d in the near-infrared shielding material fine particle dispersion (C-4 solution) was 70 nm.
  • the lattice constant of the CsRb tungsten oxide fine particles d the a-axis was 7.4061 ⁇ and the c-axis was 7.6087 ⁇ .
  • the crystallite diameter was 24 nm.
  • the visible light transmittance is 69.5%, and the difference between the maximum value and the minimum value of the transmittance is 72.1 points. Obtained.
  • the average particle diameter of the CsRb tungsten oxide fine particles dispersed in the near-infrared shield C4 was found to be 25 nm by TEM observation. The results are shown in Table 1.
  • Example 4 In Example 1, a predetermined amount of tungstic acid and cesium carbonate were weighed so that the molar ratio of W to Cs was 1: 0.21 (Comparative Example 4) and 1: 0.23 (Comparative Example 5). Except for baking at 400 ° C. for 5.5 hours, in the same manner as in Example 1, the near-infrared shielding body dispersions (A-16 and A-17) according to Comparative Examples 4 and 5, Cs tungsten Oxide fine particles p and q and near-infrared shields P and Q were obtained.
  • the dispersed particle diameter of Cs tungsten oxide fine particles p was 70 nm
  • the dispersed particle diameter of Cs tungsten oxide fine particles q was 70 nm. It was.
  • Near-infrared shielding material fine particle dispersions (A-16 solution and A-17 solution), Cs tungsten oxide fine particles p and q, and near-infrared shielding materials P and Q were evaluated in the same manner as in Example 1. The results are shown in Table 2.
  • Example 6 Dispersion of near-infrared shielding material in the same manner as in Example 1 except that the rotation speed of the paint shaker in the Cs tungsten oxide particles a according to Example 1 was 0.8 times that of Example 1 and pulverized and dispersed for 100 hours.
  • Solution (A-18 solution), Cs tungsten oxide fine particles r, and near-infrared shield R were obtained.
  • the dispersed particle diameter of the Cs tungsten oxide fine particles r was 50 nm.
  • the near-infrared shielding material fine particle dispersion (liquid A-18), Cs tungsten oxide fine particles r, and near-infrared shielding R were evaluated in the same manner as in Example 1. The results are shown in Table 2.
  • Example 7 The Cs tungsten oxide particles a according to Example 1 were the same as Example 1 except that firing was performed at a temperature of 440 ° C. for 5.5 hours while supplying 3 volume% H 2 gas using N 2 gas as a carrier.
  • the dispersed particle diameter of the Cs tungsten oxide fine particles s was 75 nm.
  • the near-infrared shielding material fine particle dispersion (liquid A-19), Cs tungsten oxide fine particles s, and near-infrared shielding material S were evaluated in the same manner as in Example 1. The results are shown in Table 2.
  • Example 8 Cs tungsten oxide particles a 20% by mass according to Example 1, a dispersing agent a 8% by mass, and butyl acetate 72% by mass are weighed and mixed by ultrasonic vibration for 10 minutes, and a near-infrared shielding material dispersion liquid ( A-20 liquid), Cs tungsten oxide particles a, and near-infrared shielding T were obtained. That is, the Cs tungsten oxide particles a contained in the near-infrared shielding material dispersion liquid (A-20 liquid) are not pulverized. In the near-infrared shielding material dispersion liquid (A-20 liquid), the dispersed particle diameter of the Cs tungsten oxide fine particles a was 150 nm. Near-infrared shielding material fine particle dispersion (A-20 solution), Cs tungsten oxide particles a, and near-infrared shielding T were evaluated in the same manner as in Example 1. The results are shown in Table 2.
  • Example 9 Dispersion of near-infrared shielding material in the same manner as in Example 1 except that the rotation speed of the paint shaker in Cs tungsten oxide particles a according to Example 1 was 1.15 times that of Example 1 and pulverized and dispersed for 50 hours.
  • Solution A-21 solution
  • Cs tungsten oxide fine particles u, and near-infrared shield U were obtained.
  • the dispersed particle diameter of the Cs tungsten oxide fine particles u was 110 nm.
  • the near-infrared shielding material fine particle dispersion (A-21 liquid), Cs tungsten oxide fine particles u, and the near-infrared shielding body U were evaluated in the same manner as in Example 1. The results are shown in Table 2.
  • the near-infrared shielding material produced using the near-infrared shielding material fine particle dispersion containing the near-infrared shielding material fine particles according to Examples 1 to 17 is the near-infrared shielding material according to Comparative Examples 1 to 9.
  • near-infrared shield manufactured using near-infrared shielding material fine particle dispersion containing infrared shielding material fine particles more efficiently shield sunlight, especially light in the near-infrared region, and at the same time high transmission in the visible light region It turns out that the rate is retained.
  • the difference between the maximum value and the minimum value of light transmittance exceeded 69 points.
  • the near-infrared shields according to Comparative Examples 1 to 9 all were less than 69 points.
  • the shielding material fine particle dispersion, near-infrared shield, and near-infrared shielding laminated structure it has excellent properties such as maintaining high transmittance in the visible light region while blocking light in the near-infrared region more efficiently. It has been found that it exhibits optical properties.
  • the present invention relates to the construction field of buildings, offices, ordinary houses, transportation field of vehicles, the agricultural field of vinyl sheets, telephone boxes, carports, show windows, lighting lamps, transparent cases, textiles.
  • a near-infrared shielding effect using the near-infrared shielding material fine particles, etc.

Abstract

従来の技術に係るタングステン酸化物や複合タングステン酸化物を含む近赤外線遮蔽材料微粒子分散体、近赤外線遮蔽体および近赤外線遮蔽用合わせ構造体よりも、優れた近赤外線遮蔽機能を発揮する複合タングステン酸化物を含む近赤外線遮蔽材料微粒子分散体、近赤外線遮蔽体および近赤外線遮蔽用合わせ構造体、並びにそれらの製造方法を提供する。近赤外線遮蔽材料微粒子が、固体媒体に分散した近赤外線遮蔽材料微粒子分散体であって、前記近赤外線遮蔽材料微粒子が、六方晶の結晶構造を含む複合タングステン酸化物微粒子であり、前記複合タングステン酸化物微粒子の格子定数のa軸長とc軸長とにおいて、a軸が7.3850Å以上7.4186Å以下、c軸が7.5600Å以上7.6240Å以下であり、前記近赤外線遮蔽材料微粒子の粒子径が100nm以下である近赤外線遮蔽材料微粒子分散体を提供する。

Description

近赤外線遮蔽材料微粒子分散体、近赤外線遮蔽体および近赤外線遮蔽用合わせ構造体、並びに、それらの製造方法
 本発明は、可視光領域においては透明で、近赤外線領域においては吸収を持つ近赤外線遮蔽材料微粒子分散体、近赤外線遮蔽体および近赤外線遮蔽用合わせ構造体、並びに、それらの製造方法に関する。
 窓材等に使用される遮光部材として、特許文献1には、可視光領域から近赤外線領域に吸収があるカーボンブラック、チタンブラック等の無機顔料、および、可視光領域のみに強い吸収のあるアニリンブラック等の有機顔料等を含む黒色系顔料を含有する遮光フィルムが提案され、特許文献2には、アルミ等の金属を蒸着したハーフミラータイプの遮光部材が提案されている。
 特許文献3では、透明なガラス基板上に、基板側より第1層として周期律表のIIIa族、IVa族、Vb族、VIb族及びVIIb族から成る群から選ばれた少なくとも1種の金属イオンを含有する複合タングステン酸化物膜を設け、前記第1層上に第2層として透明誘電体膜を設け、該第2層上に第3層として周期律表のIIIa族、IVa族、Vb族、VIb族及びVIIb族から成る群から選ばれた少なくとも1種の金属イオンを含有する複合タングステン酸化物膜を設け、かつ前記第2層の透明誘電体膜の屈折率が前記第1層及び前記第3層の複合タングステン酸化物膜の屈折率よりも低くすることにより、高い可視光線透過率及び良好な熱線遮断性能が要求される部位に好適に使用することができる熱線遮断ガラスが提案されている。
 特許文献4では、特許文献3と同様の方法で、透明なガラス基板上に、基板側より第1層として第1の誘電体膜を設け、該第1層上に第2層としてタングステン酸化物膜を設け、該第2層上に第3層として第2の誘電体膜を設けた熱線遮断ガラスが提案されている。
 特許文献5では、特許文献3と同様な方法で、透明な基板上に、基板側より第1層として同様の金属元素を含有する複合タングステン酸化物膜を設け、前記第1層上に第2層として透明誘電体膜を設けた熱線遮断ガラスが提案されている。
 特許文献6では、水素、リチウム、ナトリウム又はカリウム等の添加材料を含有する三酸化タングステン(WO)、三酸化モリブデン(MoO)、五酸化ニオブ(Nb)、五酸化タンタル(Ta)、五酸化バナジウム(V)及び二酸化バナジウム(VO)の1種以上から選択された金属酸化物膜を、CVD法あるいはスプレー法で被覆され250℃程度で熱分解して形成された太陽光遮蔽特性を有する太陽光制御ガラスシートが提案されている。
 特許文献7には、タングステン酸を加水分解して得られたタングステン酸化物を用い、該タングステン酸化物に、ポリビニルピロリドンという特定の構造の有機ポリマーを添加することにより、太陽光が照射されると光線中の紫外線が、該タングステン酸化物に吸収され、励起電子とホールとが発生し、少量の紫外線量により5価のタングステンの出現量が著しく増加して、着色反応が速くなることに伴って着色濃度が高くなると共に、光を遮断することによって5価タングステンが極めて速やかに6価に酸化されて、消色反応が速くなる特性を用い、太陽光に対する着色及び消色反応が速く、着色時近赤外域の波長1250nmに吸収ピークが現れ、太陽光の近赤外線を遮断することができる太陽光可変調光断熱材料が得られることが提案されている。
 本発明者等は、特許文献8に、六塩化タングステンをアルコールに溶解し、そのまま溶媒を蒸発させるか、若しくは加熱還流した後溶媒を蒸発させ、その後100℃~500℃で加熱することにより、三酸化タングステン若しくはその水和物又は両者の混合物からなる粉末を得ること、該タングステン酸化物微粒子を用いてエレクトロクロミック素子が得られること、多層の積層体を構成し膜中にプロトンを導入したときに当該膜の光学特性を変化させることができること、等を提案している。
 特許文献9には、メタ型タングステン酸アンモニウムと水溶性の各種金属塩とを原料とし、約300~700℃に加熱しながら、その混合水溶液の乾固物に対して不活性ガス(添加量;約50vol%以上)または水蒸気(添加量;約15vol%以下)を添加した水素ガスを供給することにより、MWO(M元素は、アルカリ、アルカリ土類、希土類などの金属元素、0<x<1)で表される種々のタングステンブロンズの作製方法が提案されている。
 本出願人は、特許文献10に、赤外線材料微粒子が媒体中に分散してなる赤外線遮蔽材料微粒子分散体であって、当該赤外線材料微粒子は、タングステン酸化物微粒子または/および複合タングステン酸化物微粒子を含有し、当該赤外線材料微粒子の分散粒子径が1nm以上800nm以下である赤外線遮蔽材料微粒子分散体を開示した。
特開2003-029314号公報 特開平9-107815号公報 特開平8-59300号公報 特開平8-12378号公報 特開平8-283044号公報 特開2000-119045号公報 特開平9-127559号公報 特開2003-121884号公報 特開平8-73223号公報 国際公開公報WO2005/037932
 しかしながら、本発明者らの検討によると特許文献1~10に記載の提案や開示には、以下のような課題があることが判明した。
 特許文献1に記載された黒色系顔料は、可視光領域に大きな吸収がある。この為、当該黒色系顔料が適用された窓材等は色調が暗くなる為、使用方法が限られると考えられた。
 特許文献2に記載された金属蒸着膜が適用された窓材等は、外観がハーフミラー状となる。この為、当該金属蒸着膜が適用された窓材等を屋外で用いた場合は、反射がまぶしく景観上問題があると考えられた。
 特許文献3~5に記載の熱線遮断材は、主に、スパッタリング法、蒸着法、イオンプレーティング法及び化学気相法(CVD法)等の真空成膜方式による乾式法を用いた方法で製造されている。この為、大型の製造装置を必要とし製造コストが高くなるという課題がある。
 また、熱線遮断材の基材が高温のプラズマに曝されたり、成膜後加熱を必要としたりすることになる。この為、フィルム等の樹脂を基材とする場合には、別途に、設備上、成膜条件上の検討を行う必要があった。
 また、これら特許文献3~5に記載されたタングステン酸化物膜や複合タングステン酸化物膜は、他の透明誘電体膜との多層膜を形成したときに、所定の機能を発揮する膜であって、本発明とは異なる提案であると考えられた。
 特許文献6に記載の太陽光制御被覆ガラスシートは、原料を、CVD法、またはスプレー法と熱分解法との併用によりガラス上に被膜形成するものである。しかし、前駆体となる原料が高価であること、高温で熱分解すること等の制約があり、フィルム等の樹脂を基材とする場合には、別途に、成膜条件上の検討を行う必要があった。また、2層以上の多層膜を形成したときに、所定の機能を発揮する膜であって本発明とは異なる提案である。
 特許文献7~8に記載の太陽光可変調光断熱材料、エレクトロクロミック素子は、紫外線や電位差により、膜の色調を変化させる材料である。この為、膜の構造が複雑であり、色調変化が望まれない用途分野には適用が困難であると考えられた。
 特許文献9には、タングステンブロンズの作製方法が記載されている。しかし、当該文献には、得られた粉体の粒子直径や、光学特性の記載がない。これは当該文献において、当該タングステンブロンズの用途が、電解装置や燃料電池の電極材料や、有機合成の触媒材料である為と考えられる。即ち、本発明とは異なる提案であると考えられた。
 特許文献10は、上述の課題解決する為になされたものである。そして、可視光線を十分に透過し、ハーフミラー状の外観を有さず、基材への成膜に際し大掛かりな製造装置を必要とせず、成膜時に高温熱処理も不要でありながら、波長780nm以上の目に見えない近赤外線を効率よく遮蔽し、透明で色調の変化しない近赤外線遮蔽材料微粒子、近赤外線遮蔽材料微粒子分散体、近赤外線遮蔽体、および近赤外線遮蔽材料微粒子と、その製造方法を提供するものであった。しかしながら、近赤外線遮蔽体の近赤外線遮蔽機能に対する市場の要求は高まり続け、特許文献10に記載のタングステン酸化物微粒子または/および複合タングステン酸化物微粒子をもってしても、当該市場の要求を満足させ続けることは、困難になることが考えられた。
 本発明は上述の状況の下で為されたものであり、その解決しようとする課題は、従来の技術に係るタングステン酸化物や複合タングステン酸化物を含む近赤外線遮蔽材料微粒子分散体、近赤外線遮蔽体および近赤外線遮蔽用合わせ構造体よりも、近赤外線領域の光をより効率良く遮蔽しながら、可視光領域の高透過率を保持する効果を発揮する複合タングステン酸化物を含む近赤外線遮蔽材料微粒子分散体、近赤外線遮蔽体および近赤外線遮蔽用合わせ構造体、並びにそれらの製造方法を提供することである。
 上述の課題を解決する為、本発明者らは研究を行った。
 一般に、自由電子を含む材料は、太陽光線の領域周辺である波長200nmから2600nmの電磁波に対しプラズマ振動による反射吸収応答を示すことが知られている。そして、当該材料の粉末を、光の波長より小さい微粒子とすると、可視光領域(波長380nmから780nm)の幾何学散乱が低減されて、可視光領域の透明性が得られることが知られている。尚、本発明において「透明性」とは、可視光領域の光に対して散乱が少なく透過性が高いという意味で用いている。
 一方、一般式WO3-xで表されるタングステン酸化物や、3酸化タングステンにNa等の陽性元素を添加したいわゆるタングステンブロンズは、導電性材料であり、自由電子を持つ材料であることが知られている。そして、これらの材料は、単結晶等の分析により、赤外線領域の光に対する自由電子の応答が示唆されている。
 本発明者らは、近赤外線遮蔽材料微粒子である複合タングステン酸化物微粒子において、含まれる結晶を六方晶とし、その格子定数においてa軸とc軸との値を、a軸が7.3850Å以上7.4186Å以下、c軸が7.5600Å以上7.6240Å以下とし、当該微粒子の粒子径が100nm以下とする構成に想到し、本発明を完成したものである。
 即ち、上述の課題を解決する為の第1の発明は、
 近赤外線遮蔽材料微粒子が、固体媒体に分散した近赤外線遮蔽材料微粒子分散体であって、
 前記近赤外線遮蔽材料微粒子が、六方晶の結晶構造を含む複合タングステン酸化物微粒子であり、
 前記複合タングステン酸化物微粒子の格子定数は、a軸が7.3850Å以上7.4186Å以下、c軸が7.5600Å以上7.6240Å以下であり、
 前記近赤外線遮蔽材料微粒子の粒子径が100nm以下であることを特徴とする近赤外線遮蔽材料微粒子分散体である。
 第2の発明は、
 前記複合タングステン酸化物微粒子の格子定数が、a軸が7.4031Å以上7.4111Å以下、c軸が7.5891Å以上7.6240Å以下であることを特徴とする第1の発明に記載の近赤外線遮蔽材料微粒子分散体である。
 第3の発明は、
 前記複合タングステン酸化物微粒子の格子定数が、a軸が7.4031Å以上7.4186Å以下、c軸が7.5830Å以上7.5950Å以下であることを特徴とする第1の発明に記載の近赤外線遮蔽材料微粒子分散体である。
 第4の発明は、
 前記近赤外線遮蔽材料微粒子の粒子径が、10nm以上100nm以下であることを特徴とする近赤外線遮蔽材料微粒子分散体である。
 第5の発明は、
 前記複合タングステン酸化物微粒子が、一般式MxWyOz(但し、M元素は、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、Iから選択される1種類以上の元素で、Wはタングステン、Oは酸素で、0.20≦x/y≦0.37、2.2≦z/y≦3.0)で表記されることを特徴とする近赤外線遮蔽材料微粒子分散体である。
 第6の発明は、
 前記M元素が、Cs、Rbから選択される1種類以上の元素であることを特徴とする近赤外線遮蔽材料微粒子分散体である。
 第7の発明は、
 前記近赤外線遮蔽材料微粒子の表面が、Si、Ti、Zr、Alから選択される1種類以上の元素を含有する酸化物で被覆されていることを特徴とする近赤外線遮蔽材料微粒子分散体である。
 第8の発明は、
 前記固体媒体が、樹脂またはガラスであることを特徴とする近赤外線遮蔽材料微粒子分散体である。
 第9の発明は、
 前記樹脂が、ポリエチレン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリビニルアルコール樹脂、ポリスチレン樹脂、ポリプロピレン樹脂、エチレン酢酸ビニル共重合体、ポリエステル樹脂、ポリエチレンテレフタレート樹脂、フッ素樹脂、アクリル樹脂、ポリカーボネート樹脂、ポリイミド樹脂、ポリビニルブチラール樹脂から選択される1種類以上であることを特徴とする近赤外線遮蔽材料微粒子分散体である。
 第10の発明は、
 第1から第9の発明のいずれかに記載の近赤外線遮蔽材料微粒子分散体が、板状、フィルム状、薄膜状から選択されるいずれかに形成されたものであることを特徴とする近赤外線遮蔽体である。
 第11の発明は、
 第1から第9の発明のいずれかに記載の近赤外線遮蔽材料微粒子分散体が、板ガラス、プラスチック板、日射遮蔽機能を有する微粒子を含むプラスチック板から選択される、2枚以上の合わせ板間に存在していることを特徴とする近赤外線遮蔽用合わせ構造体である。
 第12の発明は、
 近赤外線遮蔽材料微粒子分散体の製造方法であって、
 一般式MxWyOz(但し、M元素は、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、Iから選択される1種類以上の元素で、Wはタングステン、Oは酸素で、0.20≦x/y≦0.37、2.2≦z/y≦3.0)で表記される六方晶の結晶構造を含む複合タングステン酸化物を製造する第1の工程と、
 前記第1の工程で得られた複合タングステン酸化物を機械的に粉砕し、前記六方晶の結晶構造における格子定数においてa軸が7.3850Å以上7.4186Å以下、c軸が7.5600Å以上7.6240Å以下であり、粒子径が100nm以下である複合タングステン酸化物微粒子を製造する第2の工程と、
 第2の工程で得られた複合タングステン酸化物微粒子を、固体媒体中に分散して、近赤外線遮蔽材料微粒子分散体を得る第3の工程とを、有することを特徴とする近赤外線遮蔽材料微粒子分散体の製造方法である。
 第13の発明は、
 前記第2の工程において、六方晶の結晶構造における格子定数においてa軸が7.4031Å以上7.4111Å以下、c軸が7.5891Å以上7.6240Å以下であり、粒子径が100nm以下である複合タングステン酸化物微粒子を製造することを特徴とする第12の発明に記載の赤外線遮蔽材料微粒子分散体の製造方法である。
 第14の発明は、
 前記第2の工程において、六方晶の結晶構造における格子定数においてa軸が7.4031Å以上7.4186Å以下、c軸が7.5830Å以上7.5950Å以下であり、粒子径が100nm以下である複合タングステン酸化物微粒子を製造することを特徴とする第12の発明に記載の赤外線遮蔽材料微粒子分散体の製造方法である。
 第15の発明は、
 前記固体媒体が、樹脂またはガラスであることを特徴とする近赤外線遮蔽材料微粒子分散体の製造方法である。
 第16の発明は、
 前記樹脂が、ポリエチレン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリビニルアルコール樹脂、ポリスチレン樹脂、ポリプロピレン樹脂、エチレン酢酸ビニル共重合体、ポリエステル樹脂、ポリエチレンテレフタレート樹脂、フッ素樹脂、アクリル樹脂、ポリカーボネート樹脂、ポリイミド樹脂、ポリビニルブチラール樹脂から選択される1種類以上であることを特徴とする近赤外線遮蔽材料微粒子分散体の製造方法である。
 第17の発明は、
 前記第3の工程が、前記近赤外線遮蔽材料微粒子分散体を、板状、フィルム状、薄膜状から選択されるいずれかに成形する第4の工程を含むことを特徴とする近赤外線遮蔽材料微粒子分散体の製造方法である。
 第18の発明は、
 前記第4の工程が、前記近赤外線遮蔽材料微粒子分散体を、基材表面に形成する工程を含むことを特徴とする近赤外線遮蔽材料微粒子分散体の製造方法である。
 第19の発明は、
 第17または第18の発明に記載のいずれかの近赤外線遮蔽材料微粒子分散体の製造方法で得られた近赤外線遮蔽材料分散体を、板ガラス、プラスチック、日射遮蔽機能を有する微粒子を含むプラスチックから選ばれる2枚以上の対向する透明基材の間に挟み込む第5の工程とを、有することを特徴とする近赤外線遮蔽用合わせ構造体の製造方法である。
 本発明に係る近赤外線遮蔽材料微粒子分散体、近赤外線遮蔽体および近赤外線遮蔽用合わせ構造体は、従来の技術に係る近赤外線遮蔽材料微粒子分散体、近赤外線遮蔽体および近赤外線遮蔽用合わせ構造体と比較して、近赤外線領域の光をより効率良く遮蔽しながら、可視光領域の高透過率を保持する等、優れた光学特性を発揮した。
 本発明に係る近赤外線遮蔽材料微粒子分散体は、複合タングステン酸化物微粒子であって六方晶の結晶構造を含み、当該微粒子の格子定数は、a軸が7.3850Å以上7.4186Å以下、c軸が7.5600Å以上7.6240Å以下であり、粒子径が100nm以下である近赤外線遮蔽材料微粒子が、固体媒体中に分散しているものである。
 また、本発明に係る近赤外線遮蔽用合わせ構造体は、本発明に係る近赤外線遮蔽材料微粒子分散体が、板ガラス、プラスチック板、日射遮蔽機能を有する微粒子を含むプラスチック板から選択される、2枚以上の合わせ板間に存在しているものである。
 以下、本発明について、1.近赤外線遮蔽材料、2.近赤外線遮蔽材料微粒子の製造方法、3.近赤外線遮蔽材料微粒子分散液、4.近赤外線遮蔽材料微粒子分散体、5.近赤外線遮蔽材料微粒子分散体の近赤外線遮蔽効果、6.近赤外線遮蔽体、7.近赤外線遮蔽材料微粒子分散体および近赤外線遮蔽体の製造方法、8.近赤外線遮蔽用合わせ構造体およびその製造方法、9.まとめ、の順で詳細に説明する。
1.近赤外線遮蔽材料
 本発明に係る近赤外線遮蔽材料微粒子は、六方晶の結晶構造を含む複合タングステン酸化物微粒子であり、当該六方晶の複合タングステン酸化物の格子定数は、a軸が7.3850Å以上7.4186Å以下、c軸が7.5600Å以上7.6240Å以下を有するものである。さらに、(c軸の格子定数/a軸の格子定数)に係る比の値は、1.0221以上、1.0289以下であることが好ましい。
 そして、当該六方晶の複合タングステン酸化物が上述した所定の格子定数をとることで、この微粒子を媒体に分散した近赤外線遮蔽材料微粒子分散体の光の透過率において、波長350nm~600nmの範囲に極大値を有し、波長800~2100nmの範囲に極小値を有する透過率を発揮するものである。より詳しく、透過率の極大値が生じる波長域と極小値が生じる波長域について説明すると、極大値は波長440~600nmの領域に生じ、極小値は波長1150~2100nmの領域に生じる。すなわち、透過率の極大値は可視光領域に生じ、透過率の極小値は近赤外線領域に生じる。
 六方晶の複合タングステン酸化物が上述した所定の格子定数をとる本発明に係る近赤外線遮蔽材料微粒子が、優れた光学的特性を発揮する詳細な理由は現在も研究中である。ここで、本発明者らは以下のように研究を進め考察をおこなった。
 一般に、三酸化タングステン(WO)中には有効な自由電子が存在しないため近赤外線領域の吸収反射特性が少なく、赤外線遮蔽材料としては有効ではない。ここで、三酸化タングステンのタングステンに対する酸素の比率を3より低減することによって、当該タングステン酸化物中に自由電子が生成されることが知られているが、本発明者らは、当該タングステン酸化物におけるタングステンと酸素との組成範囲の特定部分において、近赤外線遮蔽材料として特に有効な範囲があることを見出した。
 前記タングステンと酸素との組成範囲は、タングステンに対する酸素の組成比が3以下であり、さらには、当該タングステン酸化物をWyOzと表記したとき、2.2≦z/y≦2.999であることが好ましい。このz/yの値が、2.2以上であれば、当該タングステン酸化物中に目的以外であるWOの結晶相が現れるのを回避することが出来ると伴に、材料としての化学的安定性を得ることが出来るので、有効な近赤外線遮蔽材料として適用できるからである。一方、このz/yの値が、2.999以下であれば、当該タングステン酸化物中に必要とされる量の自由電子が生成され、効率よい近赤外線遮蔽材料となる。
 また、前記タングステン酸化物を微粒子化したタングステン酸化物微粒子において、一般式WyOzと表記したとき、2.45≦z/y≦2.999で表される組成比を有する所謂「マグネリ相」は化学的に安定であり、近赤外線領域の吸収特性も良いので、近赤外線遮蔽材料として好ましい。
 さらに、当該タングステン酸化物へ、M元素を添加して、複合タングステン酸化物とすることも好ましい。当該構成を採ることで、複合タングステン酸化物中に自由電子が生成され、近赤外線領域に自由電子由来の吸収特性が発現し、波長1000nm付近の近赤外線吸収材料として有効となるためである。
 ここで、M元素を添加された前記複合タングステン酸化物における、安定性の観点から、M元素は、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、Iから選択される1種類以上の元素であることがより好ましい。
 当該複合タングステン酸化物に対し、上述した酸素量の制御と、自由電子を生成する元素の添加とを併用することで、より効率の良い近赤外線遮蔽材料を得ることが出来る。この酸素量の制御と、自由電子を生成する元素の添加とを併用した近赤外線遮蔽材料の一般式を、MxWyOz(但し、M元素は、前記M元素、Wはタングステン、Oは酸素)と記載したとき、0.001≦x/y≦1、好ましくは0.20≦x/y≦0.37の関係を満たす。
 ここで、M元素を添加された当該MxWyOzにおける、安定性の観点からは、M元素は、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Reから選択される1種類以上の元素であることがより好ましく、近赤外線遮蔽材料としての光学特性、耐候性を向上させる観点からは、前記M元素においてアルカリ金属、アルカリ土類金属元素、遷移金属元素、4B族元素、5B族元素に属するものが、さらに好ましい。
 次に、酸素量の制御を示すz/yの値について説明する。z/yの値については、MxWyOzで表記される赤外線遮蔽材料においても、上述したWyOzで表記される近赤外線遮蔽材料と同様の機構が働くことに加えz/y=3.0においても、上述したM元素の添加量による自由電子の供給があるため、2.2≦z/y≦3.0が好ましい。
 さらに、上述の複合タングステン酸化物微粒子が六方晶の結晶構造を有する場合、当該微粒子の可視光領域の透過率が向上し、近赤外領域の吸収が向上する。この六方晶の結晶構造において、WO単位にて形成される8面体が、6個集合して六角形の空隙(トンネル)が構成され、当該空隙中にM元素が配置して1箇の単位を構成し、この1箇の単位が多数集合して六方晶の結晶構造を構成する。
 本発明に係る、可視光領域の透過を向上させ、近赤外領域の吸収を向上させる効果を得るためには、複合タングステン酸化物微粒子中に、単位構造(WO単位で形成される8面体が6個集合して六角形の空隙が構成され、当該空隙中にM元素が配置した構造)が含まれていれば良い。
 この六角形の空隙にM元素の陽イオンが添加されて存在するとき、近赤外線領域の吸収が向上する。ここで、一般的には、イオン半径の大きなM元素を添加したとき当該六方晶が形成され、具体的には、Cs、Rb、K、Tl、In、Ba、Li、Ca、Sr、Fe、Snから選択される1種類以上を添加したとき六方晶が形成され易く好ましい。
 さらに、これらイオン半径の大きなM元素のうちでもCs、Rbから選択される1種類以上を添加した複合タングステン酸化物微粒子においては、近赤外線領域の吸収と可視光線領域の透過との両立が達成できる。
 M元素としてCsを選択したCsタングステン酸化物微粒子の場合、その格子定数は、a軸が7.4031Å以上7.4186以下、c軸が7.5750Å以上7.6240Å以下であることが好ましい。
 M元素としてRbを選択したRbタングステン酸化物微粒子の場合、その格子定数は、a軸が7.3850Å以上7.3950下、c軸が7.5600以上7.5700Å以下であることが好ましい。
 M元素としてCsとRbとを選択したCsRbタングステン酸化物微粒子の場合、その格子定数は、a軸が7.3850Å以上7.4186Å以下、c軸が7.5600Å以上7.6240Å以下であることが好ましい。
 尤も、M元素が上記CsやRbに限定される訳ではない。M元素がCsやRb以外の元素であっても、WO単位で形成される六角形の空隙に添加M元素として存在すれば良い。
 六方晶の結晶構造を有する複合タングステン酸化物微粒子が均一な結晶構造を有するとき、添加M元素の添加量は、0.001≦x/y≦1、好ましくは0.2≦x/y≦0.5、更に好ましくは0.20≦x/y≦0.37、最も好ましくはx/y=0.33である。これは、理論上z/y=3のとき、x/y=0.33となることで、添加M元素が六角形の空隙の全てに配置されると考えられた為である。
 ここで、本発明者らは、複合タングステン酸化物微粒子の近赤外線遮蔽機能をより向上させることを考えて検討を重ね、含有される自由電子の量をより増加させる構成に想到した。
 即ち、当該自由電子量を増加させる方策として、当該複合タングステン酸化物微粒子へ機械的な処理を加え、含まれる六方晶へ適宜な歪や変形を付与することに想到したものである。当該適宜な歪や変形を付与された六方晶においては、結晶子構造を構成する原子における電子軌道の重なり状態が変化し、自由電子の量が増加するものと考えられる。
 そこで、焼成工程により生成した複合タングステン酸化物の粒子から近赤外線遮蔽材料微粒子分散液を製造する際の分散工程において、複合タングステン酸化物の粒子を所定条件下にて粉砕することにより結晶構造へ歪や変形を付与し、自由電子量を増加させて、複合タングステン酸化物微粒子の近赤外線遮蔽機能をさらに向上させることを研究した。
 そして当該研究から、焼成工程を経て生成した複合タングステン酸化物の粒子について、各々の粒子に着目した。すると、当該各々の粒子間において、格子定数も、構成元素組成も、各々ばらつきが生じていることを知見した。
 さらなる研究の結果、当該各々の粒子間における格子定数や構成元素組成のばらつきにも拘わらず、最終的に得られる複合タングステン酸化物微粒子において、その格子定数が所定の範囲内にあれば、所望の光学特性を発揮することを知見した。
 上述した知見を得た本発明者らは、さらに、当該複合タングステン酸化物微粒子の結晶構造における格子定数であるa軸とc軸とを測定することによって、当該微粒子の結晶構造の歪や変形の度合いを把握しつつ、当該微粒子が発揮する光学的特性について研究した。
 そして当該研究の結果、六方晶の複合タングステン酸化物微粒子において、a軸が7.3850Å以上7.4186Å以下、c軸が7.5600Å以上7.6240Å以下であるとき、当該微粒子は、波長350nm~600nmの範囲に極大値を有し、波長800nm~2100nmの範囲に極小値を有する光の透過率を示し、優れた近赤外線遮蔽効果を発揮する近赤外線遮蔽材料微粒子であるとの知見を得て、本発明を完成した。
 さらに、本発明に係る近赤外線遮蔽材料微粒子のa軸が7.3850Å以上7.4186Å以下、c軸が7.5600Å以上7.6240Å以下を有する六方晶の複合タングステン酸化物微粒子において、M元素の添加量を示すx/yの値が0.20≦x/y≦0.37の範囲内にあるとき、特に優れた近赤外線遮蔽効果を発揮することも知見した。
 具体的には、本発明に係る近赤外線遮蔽材料微粒子を固体媒体に分散させて、波長550nmでの透過率を70%以上とした近赤外線遮蔽材料微粒子分散体は、波長350nm~600nmの範囲に極大値を有し、波長800nm~2100nmの範囲に極小値を有する透過率を示した。そして、当該近赤外線遮蔽材料微粒子分散体は、上述した透過率の極大値と極小値とを百分率で表現したとき、極大値(%)-極小値(%)≧69(ポイント)、即ち、当該極大値と極小値との差を百分率で表記したとき、69ポイント以上の特に優れた光学的特性を発揮することを知見した。
 また、本発明に係る近赤外線遮蔽材料微粒子は、その粒子径が100nm以下のものである。そして、より優れた赤外線遮蔽特性を発揮させる観点から、当該粒子径は10nm以上100nm以下であるのが好ましく、より好ましくは10nm以上80nm以下、さらに好ましくは10nm以上60nm以下、最も好ましくは10nm以上40nm以下である。粒子径が10nm以上40nm以下の範囲であれば、最も優れた赤外線遮蔽特性が発揮される。
 ここで、粒子径とは凝集していない個々の近赤外線遮蔽材料微粒子がもつ径の平均値であり、後述する近赤外線遮蔽材料微粒子分散体に含まれる近赤外線遮蔽材料微粒子の平均粒子径である。
 一方、粒子径は、複合タングステン酸化物微粒子の凝集体の径を含むものではなく、分散粒子径とは異なるものである。
 尚、平均粒子径は近赤外線遮蔽材料微粒子の電子顕微鏡像から算出される。
 近赤外線遮蔽材料微粒子分散体に含まれる複合タングステン酸化物微粒子の平均粒子径は、断面加工で取り出した複合タングステン酸化物微粒子分散体の薄片化試料の透過型電子顕微鏡像から、複合タングステン酸化物微粒子100個の粒子径を、画像処理装置を用いて測定し、その平均値を算出することで求めることが出来る。当該薄片化試料を取り出すための断面加工には、ミクロトーム、クロスセクションポリッシャ、集束イオンビーム(FIB)装置等を用いることが出来る。尚、近赤外線遮蔽材料微粒子分散体に含まれる複合タングステン酸化物微粒子の平均粒子径とは、マトリックスである固体媒体中で分散している複合タングステン酸化物微粒子の粒子径の平均値である。
 また、優れた赤外線遮蔽特性を発揮させる観点から、複合タングステン酸化物微粒子の結晶子径は10nm以上100nm以下であることが好ましく、より好ましくは10nm以上80nm以下、さらに好ましくは10nm以上60nm以下、最も好ましくは10nm以上40nm以下である。結晶子径が10nm以上40nm以下の範囲であれば、最も優れた赤外線遮蔽特性が発揮されるからである。
 尚、後述する解砕処理、粉砕処理または分散処理を経た後に得られる複合タングステン酸化物微粒子分散液中に含まれる複合タングステン酸化物微粒子の格子定数や結晶子径は、当該複合タングステン酸化物微粒子分散液から揮発成分を除去して得られた複合タングステン酸化物微粒子や、当該複合タングステン酸化物微粒子分散液から得られる近赤外線遮蔽材料微粒子分散体中に含まれる複合タングステン酸化物微粒子においても維持される。
 この結果、本発明に係る複合タングステン酸化物微粒子分散液や複合タングステン酸化物微粒子を含む近赤外線遮蔽材料微粒子分散体においても本発明の効果は発揮される。
 また、近赤外線遮蔽材料微粒子としての複合タングステン酸化物微粒子においては、アモルファス相の体積比率が50%以下である単結晶であることが好ましい。
 複合タングステン酸化物微粒子が、アモルファス相の体積比率50%以下である単結晶であると、格子定数を上述した所定の範囲内に維持しながら、結晶子径を10nm以上100nm以下とすることが出来るからである。
 これに対し、複合タングステン酸化物微粒子において粒子径が100nm以下ではあるが、アモルファス相が体積比率で50%を超えて存在する場合や、当該微粒子が多結晶の場合、格子定数を上述した所定の範囲内に維持できない場合がある。この場合、上述した波長350nm~600nmの範囲に存在する光の透過率極大値と、波長800nm~2100nmの範囲に存在する光の極小値とを百分率で表現したとき、当該極大値と極小値との差において69ポイント以上を担保出来ない。この結果、近赤外線吸収特性が不十分となり、近赤外線遮蔽特性の発現が不十分となる。
 尚、複合タングステン酸化物微粒子が単結晶であることは、透過型電子顕微鏡等による電子顕微鏡像において、各微粒子内部に結晶粒界が観察されず、一様な格子縞のみが観察されることから確認することができる。また、複合タングステン酸化物微粒子においてアモルファス相の体積比率が50%以下であることは、同じく透過型電子顕微鏡像において、微粒子全体に一様な格子縞が観察され、格子縞が不明瞭な箇所が殆ど観察されないことから確認することができる。
 さらに、アモルファス相は各微粒子外周部に存在する場合が多いので、各微粒子外周部に着目することで、アモルファス相の体積比率を算出可能な場合が多い。例えば、真球状の複合タングステン酸化物微粒子において、格子縞が不明瞭なアモルファス相が当該微粒子外周部に層状に存在する場合、その粒子径の10%以下の厚さであれば、当該複合タングステン酸化物微粒子におけるアモルファス相の体積比率は、50%以下である。
 一方、複合タングステン酸化物微粒子が、近赤外線遮蔽材料微粒子分散体を構成する樹脂等の固体媒体のマトリックス中で分散している場合、当該分散している複合タングステン酸化物微粒子の平均粒子径から結晶子径を引いた値が、当該平均粒子径の20%以下であれば、当該複合タングステン酸化物微粒子は、アモルファス相の体積比率50%以下の単結晶であると言える。
 以上のことから、複合タングステン酸化物微粒子分散体に分散された複合タングステン酸化物微粒子の平均粒子径から結晶子径を引いた値が、当該平均粒子径の値の20%以下になるように、複合タングステン酸化物微粒子の合成工程、粉砕工程、分散工程を、製造設備に応じて適宜調整することが好ましい。
 また、本発明の赤外線遮蔽材料を構成する微粒子の表面が、Si、Ti、Zr、Alの一種類以上を含有する酸化物で被覆されていることは、当該赤外線遮蔽材料の耐候性の向上の観点から好ましい。
 また、本発明に係る複合タングステン酸化物微粒子を含有する近赤外線遮蔽材料微粒子分散体は近赤外線領域、特に波長1000nm付近の光を大きく吸収するため、その透過色調は青色系から緑色系となる物が多い。当該近赤外線遮蔽材料微粒子の分散粒子径は、その使用目的によって、各々選定することができる。まず、透明性を保持した応用に使用する場合は、800nm以下の分散粒子径を有していることがさらに好ましい。これは、分散粒子径が800nmよりも小さい粒子は、散乱により光を完全に遮蔽することが無く、可視光線領域の視認性を保持し、同時に効率良く透明性を保持することができるからである。特に可視光領域の透明性を重視する場合は、さらに粒子による散乱を考慮することが好ましい。
 尚、上述した近赤外線遮蔽材料微粒子の分散粒子径とは、複合タングステン酸化物微粒子の凝集体の径を含む概念であり、上述した本発明に係る近赤外線遮蔽材料微粒子の粒子径とは異なる概念である。
 この粒子による散乱の低減を重視するとき、分散粒子径は好ましくは200nm以下、より好ましくは10nm以上200nm以下が良く、さらに好ましくは10nm以上100nm以下である。当該理由は、分散粒子径が小さければ、幾何学散乱もしくはミー散乱による、波長400nm~780nmの可視光線領域の光の散乱が低減される結果、赤外線遮蔽膜が曇りガラスのようになり、鮮明な透明性が得られなくなるのを回避できるからである。即ち、分散粒子径が200nm以下になると、上記幾何学散乱もしくはミー散乱が低減し、レイリー散乱領域になる。レイリー散乱領域では、散乱光は分散粒子径の6乗に比例するため、分散粒子径の減少に伴い散乱が低減し透明性が向上するからである。さらに分散粒子径が100nm以下になると、散乱光は非常に少なくなり好ましい。光の散乱を回避する観点からは、分散粒子径が小さい方が好ましく、分散粒子径が10nm以上あれば工業的な製造は容易である。
 上記分散粒子径を800nm以下とすることにより、近赤外線遮蔽材料微粒子を媒体中に分散させた近赤外線遮蔽材料微粒子分散体のヘイズ値は可視光透過率85%以下でヘイズを10%以下とすることができる。特に、分散粒子径を100nm以下とすることにより、ヘイズを1%以下とすることができる。
 なお、近赤外線遮蔽材料微粒子分散体の光の散乱は、近赤外線遮蔽材料微粒子の凝集を考慮する必要があり、分散粒子径で検討する必要がある。
 さらに、当該微粒子を、適宜な媒体中または媒体表面に分散させて製造した近赤外線遮蔽膜は、スパッタリング法、蒸着法、イオンプレーティング法及び化学気相法(CVD法)などの真空成膜法等の乾式法で作製した膜やCVD法やスプレー法で作製した膜と比較して、光の干渉効果を用いずとも、太陽光線、特に近赤外線領域の光をより効率良く吸収し、同時に可視光領域の光を透過させることを知見したものである。
2.近赤外線遮蔽材料微粒子の製造方法
 本発明に係る前記一般式MxWyOzで表記される複合タングステン酸化物微粒子は、タングステン酸化物微粒子の出発原料であるタングステン化合物を、還元性ガス雰囲気もしくは還元性ガスと不活性ガスとの混合ガス雰囲気中、または、不活性ガス雰囲気中で熱処理する固相反応法で製造することができる。当該熱処理を経て、所定の粒子径となるように粉砕処理等で微粒子化されて得られた複合タングステン酸化物微粒子は、十分な近赤外線吸収力を有し、近赤外線遮蔽微粒子として好ましい性質を有している。
 本発明に係る前記一般式MxWyOzで表記される複合タングステン酸化物微粒子を得るための出発原料には、三酸化タングステン粉末、二酸化タングステン粉末、もしくはタングステン酸化物の水和物、もしくは、六塩化タングステン粉末、もしくはタングステン酸アンモニウム粉末、もしくは、六塩化タングステンをアルコール中に溶解させた後乾燥して得られるタングステン酸化物の水和物粉末、もしくは、六塩化タングステンをアルコール中に溶解させたのち水を添加して沈殿させこれを乾燥して得られるタングステン酸化物の水和物粉末、もしくはタングステン酸アンモニウム水溶液を乾燥して得られるタングステン化合物粉末、金属タングステン粉末から選ばれたいずれか一種類以上の粉末と、前記M元素を含有する単体または化合物の粉末とを、0.20≦x/y≦0.37の割合で混合した粉末を用いることが出来る。
 さらに、当該複合タングステン酸化物微粒子を得るための出発原料であるタングステン化合物が、溶液または分散液であると、各元素は容易に均一混合可能となる。
 当該観点より、複合タングステン酸化物微粒子の出発原料が、六塩化タングステンのアルコール溶液またはタングステン酸アンモニウム水溶液と、前記M元素を含有する化合物の溶液とを、混合した後乾燥した粉末であることがさらに好ましい。
 同様の観点より、複合タングステン酸化物微粒子の出発原料が、六塩化タングステンをアルコール中に溶解させた後、水を添加して沈殿を生成させた分散液と、前記M元素を含有する単体または化合物の粉末、または、前記M元素を含有する化合物の溶液とを、混合した後、乾燥した粉末であることも好ましい。
 前記M元素を含有する化合物としては、M元素のタングステン酸塩、塩化物塩、硝酸塩、硫酸塩、シュウ酸塩、酸化物、炭酸塩、水酸化物、等が挙げられるが、これらに限定されず、溶液状になるものであればよい。さらに、当該複合タングステン酸化物微粒子を工業的に製造する場合に、タングステン酸化物の水和物粉末や三酸化タングステンと、M元素の炭酸塩や水酸化物とを用いると、熱処理等の段階で有害なガス等が発生することが無く、好ましい製造法である。
 ここで、複合タングステン酸化物微粒子に対する還元性雰囲気中、または、還元性ガスと不活性ガスとの混合ガス雰囲気中における熱処理条件について説明する。
 まず出発原料を、還元性ガス雰囲気中、または、還元性ガスと不活性ガスとの混合ガス雰囲気中にて熱処理する。この熱処理温度は、複合タングステン酸化物微粒子が結晶化する温度よりも高いことが好ましい。具体的には、500℃以上1000℃以下が好ましく、500℃以上800℃以下がより好ましい。所望により、さらに不活性ガス雰囲気中で500℃以上1200℃以下の温度で熱処理しても良い。
 また、還元性ガスは特に限定されないがHが好ましい。また、還元性ガスとしてHを用いる場合、その濃度は焼成温度と出発原料の物量に応じて適宜選択すればよく特に限定されない。例えば、20vol%以下、好ましくは10vol%以下、より好ましくは7vol%以下である。還元性ガスの濃度が20vol%以下であれば、急速な還元による日射遮蔽機能を有しないWOが生成するのを回避できるからである。
 当該熱処理により、複合タングステン酸化物において2.2≦z/y≦3.0とする。
 一方、複合タングステン酸化物の製造方法は、固相反応法に限定されない。適宜な製造条件を設定することにより、熱プラズマ法でも製造することができる。当該適宜に設定すべき製造条件として、例えば、熱プラズマ中に原料供給する際の供給速度、原料供給に用いるキャリアガスの流量、プラズマ領域を保持するプラズマガスの流量、および、プラズマ領域のすぐ外側を流すシースガスの流量等、が挙げられる。
 以上説明した、複合タングステン酸化物や複合タングステン酸化物粒子を得る熱処理工程を、本発明に係る第1の工程と記載する場合がある。
 上述の工程にて得られた近赤外線遮蔽材料微粒子の表面をSi、Ti、Zr、Alから選択される一種類以上の金属を含有する酸化物で被覆することは、耐候性の向上の観点から好ましい。被覆方法は特に限定されないが、当該近赤外線遮蔽材料微粒子を分散した溶液中へ、上記金属のアルコキシドを添加することで、近赤外線遮蔽材料微粒子の表面を被覆することが可能である。
 複合タングステン酸化物のバルク体や粒子の微粒子化は、後述する近赤外線遮蔽材料微粒子分散液を経てもよい。当該近赤外線遮蔽材料微粒子分散液から複合タングステン酸化物微粒子を得るには、公知の方法で溶媒を除去すればよい。
 また、複合タングステン酸化物のバルク体や粒子の微粒子化は、ジェットミルなどを用いる乾式の微粒子化も可能である。ただし、乾式の微粒子化であっても、得られる複合タングステン酸化物の粒子径、結晶子径、格子定数のa軸長やc軸長を付与できる、粉砕条件(微粒子化条件)を定めることはもちろんである。例えば、ジェットミルを用いるならば、適切な粉砕条件となる風量や処理時間となるジェットミルを選択すればよい。
 以上説明した、複合タングステン酸化物や複合タングステン酸化物粒子を微粒子化して、本発明に係る近赤外線遮蔽材料微粒子を得る工程を、本発明に係る第2の工程と記載する場合がある。
3.近赤外線遮蔽材料微粒子分散液
 上述した複合タングステン酸化物微粒子を、適宜な溶媒中に混合・分散したものが、本発明に係る近赤外線遮蔽材料微粒子分散液である。当該溶媒は特に限定されるものではなく、塗布・練り込み条件、塗布・練り込み環境、さらに、無機バインダーや樹脂バインダーを含有させたときは、当該バインダーに合わせて適宜選択すればよい。例えば、水、エタノ-ル、プロパノ-ル、ブタノ-ル、イソプロピルアルコ-ル、イソブチルアルコ-ル、ジアセトンアルコ-ルなどのアルコ-ル類、メチルエ-テル、エチルエ-テル、プロピルエ-テルなどのエ-テル類、エステル類、アセトン、メチルエチルケトン、ジエチルケトン、シクロヘキサノン、イソブチルケトンなどのケトン類、トルエンなどの芳香族炭化水素類といった各種の有機溶媒が使用可能である。
 また必要に応じて酸やアルカリを添加して、当該分散液のpH調整をしてもよい。
 さらに、当該溶媒には、樹脂のモノマーやオリゴマーを用いてもよい。
 一方、分散液中における微粒子の分散安定性を一層向上させるために、各種の分散剤、界面活性剤、カップリング剤などの添加も勿論可能である。
 なお、当該赤外線遮蔽材料微粒子分散液において、近赤外線遮蔽材料微粒子100重量部に対し溶媒を80重量部以上含めば、分散液としての保存性を担保し易く、その後の近赤外線遮蔽材料微粒子分散体を作製する際の作業性も確保できる。
 複合タングステン酸化物微粒子の溶媒への分散方法は、微粒子を分散液中へ均一に分散する方法であって、当該複合タングステン酸化物微粒子の結晶構造においてa軸が7.3850Å以上7.4186Å以下、c軸が7.5600Å以上7.6240Å以下の範囲を担保しながら、当該複合タングステン酸化物微粒子の粒子径が100nm以下、好ましくは10nm以上100nm以下、より好ましくは10nm以上80nm以下、さらに好ましくは10nm以上60nm以下、最も好ましくは10nm以上40nm以下に調製で出来るものであれば、特に限定されない。例えば、ビ-ズミル、ボ-ルミル、サンドミル、ペイントシェーカー、超音波ホモジナイザ-などが挙げられる。
 これらの器材を用いた機械的な分散処理工程によって、複合タングステン酸化物微粒子の溶媒中への分散と同時に複合タングステン酸化物粒子同士の衝突などにより微粒子化が進むとともに、当該複合タングステン酸化物粒子に含まれる六方晶の結晶構造へ歪や変形を付与し、当該結晶子構造を構成する原子における電子軌道の重なり状態が変化して、自由電子量の増加が進行する。
 尚、当該複合タングステン酸化物粒子の微粒子化、および、六方晶の結晶構造における格子定数であるa軸長やc軸長の変動は、粉砕装置の装置定数により異なる。従って、予め、試験的な粉砕を実施して、複合タングステン酸化物微粒子へ所定の粒子径、結晶子径、格子定数のa軸長やc軸長を付与できる粉砕装置、粉砕条件を求めておくことが肝要である。
 特に、複合タングステン酸化物粒子の微粒子化の際の条件によっては、複合タングステン酸化物微粒子の格子定数のa軸が7.3850Å以上7.4186Å以下、c軸が7.5600Å以上7.6240Å以下を満たさない場合が生じることがある。そこで、複合タングステン酸化物粒子の微粒子化の条件として、微粒子化により得られる複合タングステン酸化物微粒子の格子定数のa軸が7.3850Å以上7.4186Å以下、c軸が7.5600Å以上7.6240Å以下を担保する条件に設定することが肝要である。
 本発明に係る複合タングステン酸化物微粒子は、上述した格子定数を満たすことによって十分な近赤外線遮蔽機能を発揮するので、微粒子化の際の条件設定に留意することが肝要である。
 尚、近赤外線遮蔽材料微粒子分散液を経て近赤外線遮蔽材料微粒子の微粒子化を行い、その後、溶媒を除去して近赤外線遮蔽材料微粒子を得る場合であっても、粒子径、結晶子径、格子定数のa軸長やc軸長を付与できる、粉砕条件(微粒子化条件)を定めることは勿論である。
 本発明に係る近赤外線遮蔽材料微粒子分散液の状態は、タングステン酸化物微粒子を溶媒中に分散した時の複合タングステン酸化物微粒子の分散状態を測定することで確認することができる。例えば、本発明に係る複合タングステン酸化物微粒子が、溶媒中において微粒子および微粒子の凝集状態として存在する液から試料をサンプリングし、市販されている種々の粒度分布計で測定することで確認することができる。粒度分布計としては、例えば、動的光散乱法を原理とした大塚電子(株)社製ELS-8000等の公知の測定装置を用いることができる。
 また、複合タングステン酸化物微粒子の結晶構造や格子定数の測定は、近赤外線遮蔽体形成用分散液の溶媒を除去して得られる複合タングステン酸化物微粒子に対し、X線回折法により当該微粒子に含まれる結晶構造を特定し、リートベルト法を用いることにより格子定数としてa軸長およびc軸長を算出する。
 複合タングステン酸化物微粒子の分散粒子径は、光学特性の観点から800nm以下、好ましくは200nm以下、より好ましくは100nm以下まで、十分細かいことが好ましい。さらに、当該複合タングステン酸化物微粒子は均一に分散していることが好ましい。
 複合タングステン酸化物微粒子の分散粒子径が800nm以下、好ましくは200nm以下、より好ましくは10nm以上200nm以下、さらに好ましくは10nm以上100nm以下であれば、製造される近赤外線遮蔽膜や成形体(板、シ-トなど)が、単調に透過率の減少した灰色系のものになってしまうのを回避できるからでる。
 尚、本発明に係る分散粒子径とは、近赤外線遮蔽材料微粒子分散液中に分散した複合タングステン酸化物微粒子の単体粒子や、当該複合タングステン酸化物微粒子が凝集した凝集粒子の粒子径を意味する概念である。当該分散粒子径は、市販されている種々の粒度分布計で測定することができる。例えば、当該複合タングステン酸化物微粒子分散液のサンプルを採取し、当該サンプルを動的光散乱法に基づく粒径測定装置(大塚電子株式会社製ELS-8000)を用いて測定することができる。
 一方、近赤外線遮蔽材料微粒子分散液において、複合タングステン酸化物微粒子が凝集して粗大な凝集体となり、当該粗大化した粒子が多数存在すると、当該粗大粒子が光散乱源となる。この結果、当該近赤外線遮蔽材料微粒子分散液が、近赤外線遮蔽膜や成形体となったときに曇り(ヘイズ)が大きくなり、可視光透過率が減少する原因となることがある。従って、複合タングステン酸化物微粒子の粗大粒子生成を回避することが好ましい。
4.近赤外線遮蔽材料微粒子分散体
 本発明に係る近赤外線遮蔽材料微粒子分散体は、上記複合タングステン酸化物微粒子を適宜な固体媒体中に分散して得られる。
 本発明に係る近赤外線遮蔽材料微粒子分散体は、複合タングステン酸化物微粒子を、所定条件における機械的な粉砕の後、樹脂などの固体媒体中において分散状態を維持しているので、樹脂材料等の耐熱温度の低い基材材料への応用が可能であり、形成の際に大型の装置を必要とせず安価であるという利点がある。
 以上説明した、本発明に係る近赤外線遮蔽材料微粒子を固体媒体に分散して、近赤外線遮蔽材料微粒子分散体を得る工程を、本発明に係る第3の工程と記載する場合がある。尚、第3の工程の詳細については後述する。
 また、本発明に係る近赤外線遮蔽材料は導電性材料であるため、連続的な膜として使用した場合は、携帯電話等の電波を吸収反射して妨害する恐れがある。しかし、近赤外線遮蔽材料を微粒子として固体媒体のマトリックス中に分散した場合は、粒子一個一個が孤立した状態で分散しているため、電波透過性を発揮することから汎用性を有する。
 尚、近赤外線遮蔽材料微粒子分散体の固体媒体のマトリックス中に分散した複合タングステン酸化物微粒子の平均粒子径と、当該近赤外線遮蔽材料微粒子分散体を形成するのに用いた近赤外線遮蔽材料微粒子分散液中や近赤外線遮蔽体形成用分散液中に分散した、複合タングステン酸化物微粒子の分散粒子径とが異なる場合がある。これは、近赤外線遮蔽材料微粒子分散液や近赤外線遮蔽体形成用分散液から、近赤外線遮蔽材料微粒子分散体を得る際に、当該分散液中で凝集していた複合タングステン酸化物微粒子の凝集が解される為である。
 また、近赤外線遮蔽材料微粒子分散体の固体媒体として、各種の樹脂やガラスを用いることができる。近赤外線遮蔽材料微粒子100重量部に対し、固体媒体を80重量部以上含めば、近赤外線遮蔽材料微粒子分散体を好ましく形成できる。
5.近赤外線遮蔽材料微粒子分散体の近赤外線遮蔽効果
 本発明にかかる近赤外線遮蔽材料微粒子を用いた近赤外線遮蔽材料微粒子分散体は、光の透過率において波長350nm~600nmの範囲に極大値を、波長800nm~2100nmの範囲に極小値を持ち、透過率の極大値と極小値とを百分率で表現したとき、極大値(%)-極小値(%)≧69(ポイント)、すなわち、極大値と極小値との差が百分率で69ポイント以上の優れた特性を有する近赤外線遮蔽材料微粒子分散体が得られる。
 近赤外線遮蔽材料微粒子分散体における透過率の極大値と極小値との差が、69ポイント以上と大きいことは、当該分散体の近赤外線遮蔽特性が優れることを示す。
6.近赤外線遮蔽体
 本発明に係る近赤外線遮蔽体は、本発明に係る近赤外線遮蔽材料微粒子分散体が、板状、フィルム状、薄膜状から選択されるいずれかに形成されたものである。
 以上説明した、本発明に係る近赤外線遮蔽材料微粒子分散体を近赤外線遮蔽体に成型する工程を、本発明に係る第4の工程と記載する場合がある。尚、第4の工程には、基材の表面に近赤外線遮蔽体を形成することも含まれる。
7.近赤外線遮蔽材料微粒子分散体および近赤外線遮蔽体の製造方法
 近赤外線遮蔽材料微粒子分散体の製造方法、および、当該近赤外線遮蔽材料微粒子分散体を、板状、フィルム状、薄膜状から選択されるいずれかに形成して近赤外線遮蔽体を製造する方法の例として、(a)微粒子を固体媒体中に分散し基材表面に形成する方法、(b)微粒子を固体媒体中に分散し成形する方法、について説明する。
(a)微粒子を固体媒体中に分散し基材表面に形成する方法
 得られた近赤外線遮蔽材料微粒子分散液に固体媒体を構成する樹脂を添加し近赤外線遮蔽体形成用分散液を得た後、基材表面に近赤外線遮蔽体形成用分散液をコーティングし溶媒を蒸発させ所定の方法で樹脂を硬化させれば、基材表面に近赤外線遮蔽材料微粒子分散体が成膜された近赤外線遮蔽体が得られる。
 また、本発明に係る近赤外線遮蔽材料微粒子分散液の溶媒には、硬化により固体媒体となる樹脂のモノマーを用いてもよい。溶媒に樹脂のモノマーを用いれば、コーティングの方法は、基材表面に近赤外線遮蔽材料微粒子分散体が均一にコートできればよく、特に限定されないが、例えば、バーコート法、グラビヤコート法、スプレーコート法、ディップコート法等が挙げられる。また、近赤外線遮蔽材料微粒子を直接バインダー樹脂中に分散した近赤外線遮蔽材料微粒子分散体は、基材表面に塗布後、溶媒を蒸発させる必要が無く、環境的、工業的に好ましい。
 上述した固体媒体は、例えば、樹脂としてUV硬化樹脂、熱硬化樹脂、電子線硬化樹脂、常温硬化樹脂、熱可塑樹脂等が目的に応じて選定可能である。具体的には、ポリエチレン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリビニルアルコール樹脂、ポリスチレン樹脂、ポリプロピレン樹脂、エチレン酢酸ビニル共重合体、ポリエステル樹脂、ポリエチレンテレフタレート樹脂、ふっ素樹脂、ポリカーボネート樹脂、アクリル樹脂、ポリビニルブチラール樹脂が挙げられる。これらの樹脂は、単独使用であっても混合使用であっても良い。
 また、固体媒体として、金属アルコキシドを用いたバインダーの利用も可能である。上記金属アルコキシドとしては、Si、Ti、Al、Zr等のアルコキシドが代表的である。これら金属アルコキシドを用いたバインダーは、加熱等により加水分解・縮重合させることで、酸化物膜を形成することが可能である。
 一方、上述した近赤外線遮蔽体の基材としては、所望によりフィルムでもボードでも良く、形状は限定されない。透明基材材料としては、PET、アクリル、ウレタン、ポリカーボネート、ポリエチレン、エチレン酢酸ビニル共重合体、塩化ビニル、ふっ素樹脂等が、各種目的に応じて使用可能である。また、樹脂以外ではガラスを用いることができる。
(b)微粒子を固体媒体中に分散し成形する方法
 本発明に係る近赤外線遮蔽材料を微粒子として応用する別の方法として、所定条件における機械的粉砕の後、近赤外線遮蔽材料微粒子を基材である媒体中に分散させても良い。
当該微粒子を媒体中に分散させるには、媒体表面から浸透させても良いが、ポリカーボネート樹脂等媒体を、その溶融温度以上に温度を上げて溶融させた後、当該微粒子と媒体とを混合し、近赤外線遮蔽材料微粒子分散体を得る。このようにして得られた近赤外線遮蔽材料微粒子分散体を所定の方法でフィルムや板(ボード)状に形成し、近赤外線遮蔽体を得ることが出来る。
 例えば、PET樹脂に近赤外線遮蔽材料微粒子を分散する方法として、まずPET樹脂と、所定条件における機械的粉砕後の近赤外線遮蔽材料微粒子分散液とを混合し、分散溶媒を蒸発させてから、PET樹脂の溶融温度である300℃程度に加熱して、PET樹脂を溶融させ混合し冷却することで、近赤外線遮蔽材料微粒子を分散した近赤外線遮蔽体の作製が可能となる。
8.近赤外線遮蔽用合わせ構造体およびその製造方法
 本発明に係る近赤外線遮蔽用合わせ構造体は、本発明に係る近赤外線遮蔽材料微粒子分散体が、板ガラス、プラスチック板、日射遮蔽機能を有する微粒子を含むプラスチック板から選択される、2枚以上の合わせ板間に存在しているものである。
 本発明に係る熱線遮蔽膜を用いた熱線遮蔽合わせ透明基材には、様々な形態がある。
 例えば、透明基材として無機ガラスを用いた熱線遮蔽合わせ無機ガラスは、熱線遮蔽膜を挟み込んで存在させた対向する複数枚の無機ガラスを、公知の方法で張り合わせ一体化するよって得られる。得られた熱線遮蔽合わせ無機ガラスは、主に自動車のフロント無機ガラスや建物の窓として使用することが出来る。
 以上説明した、本発明に係る近赤外線遮蔽体を2枚以上の対向する透明基材の間に挟み込む工程を、本発明に係る第5の工程と記載する場合がある。
 透明基材として透明樹脂を用い、上述した無機ガラスを用いた場合と同様に、板ガラス、プラスチック、日射遮蔽機能を有する微粒子を含むプラスチックから選ばれる2枚以上の対向する透明基材の間に熱線遮蔽膜を挟み込んで存在させることで、熱線遮蔽合わせ透明基材を得ることが出来る。用途は、熱線遮蔽合わせ無機ガラスと同様である。
 さらに、用途によっては、熱線遮蔽膜単体として使用すること、無機ガラスや透明樹脂等の透明基材の片面または両面に熱線遮蔽膜を存在させて使用することも、勿論可能である。
9.まとめ
 本発明に係る近赤外線遮蔽材料微粒子分散体、近赤外線遮蔽体および近赤外線遮蔽用合わせ構造体は、従来の技術に係る近赤外線遮蔽材料微粒子分散体、近赤外線遮蔽体および近赤外線遮蔽用合わせ構造体と比較して、太陽光線、特に近赤外線領域の光をより効率良く遮蔽し、同時に可視光領域の高透過率を保持する等、優れた光学特性を発揮した。
 そして、近赤外線遮蔽材料微粒子が固体媒体中に分散している本発明に係る近赤外線遮蔽材料微粒子分散体を用いて媒体表面に成膜した近赤外線遮蔽膜は、スパッタリング法、蒸着法、イオンプレーティング法及び化学気相法(CVD法)などの真空成膜法等の乾式法で作製した膜やCVD法やスプレー法で作製した膜に比較しても、太陽光線、特に近赤外線領域の光をより効率良く遮蔽し、同時に可視光領域の高透過率を保持する等、優れた光学特性を発揮した。
 また、本発明に係る近赤外線遮蔽体および近赤外線遮蔽用合わせ構造体は、真空装置等の大掛かりな装置を使用することなく安価に製造可能であり、工業的に有用である。
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はこれに限定されるものではない。
 また、本発明に係る複合タングステン酸化物微粒子の結晶構造、格子定数、結晶子径の測定には、近赤外線遮蔽体形成用分散液から溶媒を除去して得られる複合タングステン酸化物微粒子を用いた。そして当該複合タングステン酸化物微粒子のX線回折パターンを、粉末X線回折装置(スペクトリス株式会社PANalytical製X‘Pert-PRO/MPD)を用いて粉末X線回折法(θ―2θ法)により測定した。得られたX線回折パターンから当該微粒子に含まれる結晶構造を特定し、さらにリートベルト法を用いて格子定数と結晶子径とを算出した。
(実施例1)
 水6.70kgに、炭酸セシウム(CsCO)7.43kgを溶解して、溶液を得た。当該溶液を、タングステン酸(HWO)34.57kgに添加して十分撹拌混合した後、撹拌しながら乾燥した(WとCsとのモル比が1:0.33相当である。)。当該乾燥物を、Nガスをキャリア-とした5体積%Hガスを供給しながら加熱し、800℃の温度で5.5時間焼成した、その後、当該供給ガスをNガスのみに切り替えて、室温まで降温してCsタングステン酸化物粒子aを得た。
 当該Csタングステン酸化物粒子a20質量%と、官能基としてアミンを含有する基を有するアクリル系高分子分散剤(アミン価48mgKOH/g、分解温度250℃のアクリル系分散剤)(以下、「分散剤a」と記載する。)8質量%と、酢酸ブチル72質量%とを秤量し、0.3mmφZrOビ-ズを入れたペイントシェーカー(浅田鉄工社製)に装填し、20時間粉砕・分散処理することによって近赤外線遮蔽材料微粒子分散液(A-1液)を調製した。
 ここで、近赤外線遮蔽材料微粒子分散液(A-1液)内におけるCsタングステン酸化物微粒子aの分散粒子径を、動的光散乱法に基づく粒径測定装置(大塚電子(株)製ELS-8000)により測定したところ70nmであった。また、当該(A-1液)から溶媒を除去した後の、Csタングステン酸化物微粒子aの格子定数を測定したところ、a軸が7.4071Å、c軸が7.6188Åであった。また、結晶子径は24nmであった。
 さらに当該(A-1液)の光学特性として可視光透過率と近赤外線遮蔽特性とを、(株)日立製作所製の分光光度計U-4000を用い測定した。測定には、分光光度計の測定用ガラスセルにて当該(A-1液)を酢酸ブチルで可視光透過率が70%前後になるように希釈した分散液を用いた。また、当該測定において、分光光度計の光の入射方向は測定用ガラスセルに垂直な方向とした。さらには、当該測定用ガラスセルに溶媒の酢酸ブチルのみを入れたブランク液についても光の透過率測定し、光の透過率のベースラインとした。
 ここで、可視光透過率はJISR3106に準拠して求め、近赤外線遮蔽特性は、当該可視光領域における透過率の百分率の極大値と、近赤外線光領域における透過率の百分率の極小値との差の値をポイントとして求めた。その結果、可視光透過率70.0%、透過率の極大値と極小値との差76.8ポイントとの結果を得た。
 次に、得られた分散液(A-1液)とUV硬化樹脂とを、重量比で1:9となるように秤量し、混合・撹拌して、近赤外線遮蔽体形成用分散液(AA-1液)を調製した。
 そして、バ-No16のバーコーターを用い、厚さ3mmのソーダ石灰ガラス基板上へ近赤外線遮蔽体形成用分散液(AA-1液)を塗布した後、70℃、1分間の条件で乾燥させ、高圧水銀ランプを照射し、実施例1に係る近赤外線遮蔽材料微粒子分散体である近赤外線遮蔽体Aを得た。
 ここで、近赤外線遮蔽体Aに対して、上述した近赤外線遮蔽材料微粒子分散液(A-1液)と同様に光学特性を測定した。その結果、可視光透過率69.7%、透過率の極大値と極小値との差74.1ポイントであった。さらに、波長550nm、1000nm、1500nmの光に対する透過率を測定した。また、(株)日立ハイテクノロジーズ製のFIB加工装置FB2200を用いた断面加工により、近赤外線遮蔽体Aの薄片化試料を作製し、(株)日立ハイテクノロジーズ製の透過型電子顕微鏡HF-2200を用いたTEM観察により、近赤外線遮蔽体A中に分散されたCsタングステン酸化物微粒子100個の平均粒子径を算出したところ25nmであった。
 以下、実施例2-17および比較例1-9においても同様の測定を行った。そして、実施例1-17の結果を表1に示し、比較例1-9の結果を表2に示す。
(実施例2)
 実施例1にて説明したタングステン酸と炭酸セシウムとを、WとCsのモル比が1:0.31となるように所定量を秤量した以外は実施例1と同様にして、実施例2に係る近赤外線遮蔽材料微粒子分散液(A-2液)、Csタングステン酸化物微粒子b、近赤外線遮蔽体Bを得た。
 近赤外線遮蔽材料微粒子分散液(A-2液)内における、Csタングステン酸化物微粒子bの分散粒子径は70nmであった。そして、Csタングステン酸化物微粒子bの格子定数は、a軸が7.4100Åで、c軸が7.6138Åであった。また、結晶子径は24nmであった。
 そして、近赤外線遮蔽体Bの可視光透過率と近赤外線遮蔽特性とを測定した結果、可視光透過率69.8%、透過率の極大値と極小値との差73.0ポイントの値を得た。TEM観察により、近赤外線遮蔽体Bに分散されたCsタングステン酸化物微粒子の平均粒子径を求めると25nmであった。この結果を表1に示す。
(実施例3)
 実施例1において、タングステン酸と炭酸セシウムとを、WとCsのモル比が1:0.35となるように所定量秤量した以外は実施例1と同様にして、実施例3に係る近赤外線遮蔽材料微粒子分散液(A-3液)、Csタングステン酸化物微粒子c、近赤外線遮蔽体Cを得た。
 近赤外線遮蔽材料微粒子分散液(A-3液)内におけるCsタングステン酸化物微粒子cの分散粒子径は、70nmであった。Csタングステン酸化物微粒子cの格子定数は、a軸が7.4065Åで、c軸が7.6203Åであった。また、結晶子径は24nmであった。
 そして、近赤外線遮蔽体Cの可視光透過率と近赤外線遮蔽特性とを測定した結果、可視光透過率69.8%、透過率の極大値と極小値との差73.6ポイントの値を得た。TEM観察により、近赤外線遮蔽体Cに分散されたCsタングステン酸化物微粒子の平均粒子径を求めると24nmであった。この結果を表1に示す。
(実施例4)
 実施例1において、タングステン酸と炭酸セシウムとを、WとCsのモル比が1:0.37となるように所定量秤量した以外は実施例1と同様にして、実施例4に係る近赤外線遮蔽体形成用分散液(A-4液)、Csタングステン酸化物微粒子d、近赤外線遮蔽体Dを得た。
 赤外線遮蔽材料微粒子分散液(A-4液)内におけるCsタングステン酸化物微粒子dの分散粒子径は、70nmであった。Csタングステン酸化物微粒子dの格子定数は、a軸が7.4066Åで、c軸が7.6204Åであった。また、結晶子径は24nmであった。そして、近赤外線遮蔽体Dの可視光透過率と近赤外線遮蔽特性とを測定した結果、可視光透過率69.8%、透過率の極大値と極小値との差73.6ポイントの値を得た。TEM観察により、近赤外線遮蔽体Dに分散されたCsタングステン酸化物微粒子の平均粒子径を求めると25nmであった。この結果を表1に示す。
(実施例5)
 実施例1において、メタタングステン酸アンモニウム水溶液(WO換算で50wt%)と炭酸セシウムとを、WとCsのモル比が1:0.33となるように所定量秤量した以外は実施例1と同様にして、実施例5に係る近赤外線遮蔽材料微粒子分散液(A-5液)、Csタングステン酸化物微粒子e、近赤外線遮蔽体Eを得た。
 近赤外線遮蔽材料微粒子分散液(A-5液)内におけるCsタングステン酸化物微粒子eの分散粒子径は、70nmであった。Csタングステン酸化物微粒子eの格子定数は、a軸が7.4065Åで、c軸が7.6193Åであった。また、結晶子径は24nmであった。
 そして、近赤外線遮蔽体Eの可視光透過率と近赤外線遮蔽特性とを測定した結果、可視光透過率71.7%、透過率の極大値と極小値との差70.0ポイントの値を得た。TEM観察により、近赤外線遮蔽体Eに分散されたCsタングステン酸化物微粒子の平均粒子径を求めると25nmであった。この結果を表1に示す。
(比較例1)
 実施例1において、タングステン酸と炭酸セシウムとを、WとCsのモル比が1:0.11となるように所定量秤量した以外は実施例1と同様にして、比較例1に係る近赤外線遮蔽材料微粒子分散液(A-6液)、Csタングステン酸化物微粒子f、近赤外線遮蔽体Fを得た。
 近赤外線遮蔽材料微粒子分散液(A-6液)内におけるCsタングステン酸化物微粒子fの分散粒子径は、70nmであった。Csタングステン酸化物微粒子fの格子定数は、a軸が7.4189Åで、c軸が7.5825Åであった。また、結晶子径は24nmであった。
 そして、近赤外線遮蔽体Fの可視光透過率と近赤外線遮蔽特性とを測定した結果、可視光透過率69.3%、透過率の極大値と極小値との差63.4ポイントと、69ポイント未満であった。TEM観察により、近赤外線遮蔽体Fに分散されたCsタングステン酸化物微粒子の平均粒子径を求めると24nmであった。この結果を表2に示す。
(比較例2)
 実施例1において、タングステン酸と炭酸セシウムとを、WとCsのモル比が1:0.15となるように所定量秤量した以外は実施例1と同様にして、比較例2に係る近赤外線遮蔽材料微粒子分散液(A-7液)、Csタングステン酸化物微粒子g、近赤外線遮蔽体Gを得た。
 近赤外線遮蔽材料微粒子分散液(A-7液)内におけるCsタングステン酸化物微粒子gの分散粒子径は、70nmであった。Csタングステン酸化物微粒子gの格子定数は、a軸が7.4188Åで、c軸が7.5826Åであった。また、結晶子径は24nmであった。
 そして、近赤外線遮蔽体Gの可視光透過率と近赤外線遮蔽特性とを測定した結果、可視光透過率69.4%、透過率の極大値と極小値との差66.1ポイントと、69ポイント未満であった。TEM観察により、近赤外線遮蔽体Gに分散されたCsタングステン酸化物微粒子の平均粒子径を求めると25nmであった。この結果を表2に示す。
(比較例3)
 実施例1において、タングステン酸と炭酸セシウムとを、WとCsのモル比が1:0.39となるように所定量秤量した以外は実施例1と同様にして、比較例2に係る近赤外線遮蔽材料微粒子分散液(A-8液)、Csタングステン酸化物微粒子h、近赤外線遮蔽体Hを得た。
 近赤外線遮蔽材料微粒子分散液(A-8液)内におけるCsタングステン酸化物微粒子gの分散粒子径は、70nmであった。Csタングステン酸化物微粒子gの格子定数は、a軸が7.4025Åで、c軸が7.6250Åであった。また、結晶子径は24nmであった。
 そして、近赤外線遮蔽体Gの可視光透過率と近赤外線遮蔽特性とを測定した結果、可視光透過率69.6%、透過率の極大値と極小値との差67.2ポイントと、69ポイント未満であった。TEM観察により、近赤外線遮蔽体Hに分散されたCsタングステン酸化物微粒子の平均粒子径を求めると25nmであった。この結果を表2に示す。
(実施例6)
 実施例1において、メタタングステン酸アンモニウム水溶液(WO換算で50wt%)と炭酸セシウムとを、WとCsのモル比が1:0.21となるように所定量秤量した以外は実施例1と同様にして、実施例6に係る近赤外線遮蔽材料微粒子分散液(A-9液)、Csタングステン酸化物微粒子i、近赤外線遮蔽体Iを得た。
 近赤外線遮蔽材料微粒子分散液(A-9液)内におけるCsタングステン酸化物微粒子iの分散粒子径は、70nmであった。Csタングステン酸化物微粒子iの格子定数は、a軸が7.4186Åで、c軸が7.5825Åであった。また、結晶子径は24nmであった。
 そして、近赤外線遮蔽体Eの可視光透過率と近赤外線遮蔽特性とを測定した結果、可視光透過率69.4%、透過率の極大値と極小値との差69.3ポイントの値を得た。TEM観察により、近赤外線遮蔽体Iに分散されたCsタングステン酸化物微粒子の平均粒子径を求めると24nmであった。この結果を表1に示す。
(実施例7)
 実施例1において、メタタングステン酸アンモニウム水溶液(WO換算で50wt%)と炭酸セシウムとを、WとCsのモル比が1:0.23となるように所定量秤量した以外は実施例1と同様にして、実施例7に係る近赤外線遮蔽材料微粒子分散液(A-10液)、Csタングステン酸化物微粒子j、近赤外線遮蔽体Jを得た。
 近赤外線遮蔽材料微粒子分散液(A-10液)内におけるCsタングステン酸化物微粒子jの分散粒子径は、70nmであった。Csタングステン酸化物微粒子jの格子定数は、a軸が7.4184Åで、c軸が7.5823Åであった。また、結晶子径は24nmであった。
 そして、近赤外線遮蔽体Jの可視光透過率と近赤外線遮蔽特性とを測定した結果、可視光透過率69.8%、透過率の極大値と極小値との差70.5ポイントの値を得た。TEM観察により、近赤外線遮蔽体Jに分散されたCsタングステン酸化物微粒子の平均粒子径を求めると25nmであった。この結果を表1に示す。
(実施例8)
 実施例1において、メタタングステン酸アンモニウム水溶液(WO換算で50wt%)と炭酸セシウムとを、WとCsのモル比が1:0.25となるように所定量秤量した以外は実施例1と同様にして、実施例8に係る近赤外線遮蔽材料微粒子分散液(A-11液)、Csタングステン酸化物微粒子k、近赤外線遮蔽体Kを得た。
 近赤外線遮蔽材料微粒子分散液(A-11液)内におけるCsタングステン酸化物微粒子kの分散粒子径は、70nmであった。Csタングステン酸化物微粒子kの格子定数は、a軸が7.4165Åで、c軸が7.5897Åであった。また、結晶子径は24nmであった。
 そして、近赤外線遮蔽体Kの可視光透過率と近赤外線遮蔽特性とを測定した結果、可視光透過率69.8%、透過率の極大値と極小値との差73.2ポイントの値を得た。TEM観察により、近赤外線遮蔽体Kに分散されたCsタングステン酸化物微粒子の平均粒子径を求めると24nmであった。この結果を表1に示す。
(実施例9)
 実施例1において、メタタングステン酸アンモニウム水溶液(WO換算で50wt%)と炭酸セシウムとを、WとCsのモル比が1:0.27となるように所定量秤量した以外は実施例1と同様にして、実施例9に係る近赤外線遮蔽材料微粒子分散液(A-12液)、Csタングステン酸化物微粒子l、近赤外線遮蔽体Lを得た。
 近赤外線遮蔽材料微粒子分散液(A-12液)内におけるCsタングステン酸化物微粒子lの分散粒子径は、70nmであった。Csタングステン酸化物微粒子lの格子定数は、a軸が7.4159Åで、c軸が7.5919Åであった。また、結晶子径は24nmであった。
 そして、近赤外線遮蔽体Lの可視光透過率と近赤外線遮蔽特性とを測定した結果、可視光透過率69.5%、透過率の極大値と極小値との差72.4ポイントの値を得た。TEM観察により、近赤外線遮蔽体Lに分散されたCsタングステン酸化物微粒子の平均粒子径を求めると25nmであった。この結果を表1に示す。
(実施例10)
 実施例1において、メタタングステン酸アンモニウム水溶液(WO換算で50wt%)と炭酸セシウムとを、WとCsのモル比が1:0.29となるように所定量秤量した以外は実施例1と同様にして、実施例10に係る近赤外線遮蔽材料微粒子分散液(A-13液)、Csタングステン酸化物微粒子m、近赤外線遮蔽体Mを得た。
 近赤外線遮蔽材料微粒子分散液(A-13液)内におけるCsタングステン酸化物微粒子mの分散粒子径は、70nmであった。Csタングステン酸化物微粒子mの格子定数は、a軸が7.4133Åで、c軸が7.6002Åであった。また、結晶子径は24nmであった。
 そして、近赤外線遮蔽体Mの可視光透過率と近赤外線遮蔽特性とを測定した結果、可視光透過率69.9%、透過率の極大値と極小値との差72.8ポイントの値を得た。TEM観察により、近赤外線遮蔽体Mに分散されたCsタングステン酸化物微粒子の平均粒子径を求めると25nmであった。この結果を表1に示す。
(実施例11)
 実施例1において、メタタングステン酸アンモニウム水溶液(WO換算で50wt%)と炭酸セシウムとを、WとCsのモル比が1:0.30となるように所定量秤量した以外は実施例1と同様にして、実施例11に係る近赤外線遮蔽材料微粒子分散液(A-14液)、Csタングステン酸化物微粒子n、近赤外線遮蔽体Nを得た。
 近赤外線遮蔽材料微粒子分散液(A-14液)内におけるCsタングステン酸化物微粒子nの分散粒子径は、70nmであった。Csタングステン酸化物微粒子nの格子定数は、a軸が7.4118Åで、c軸が7.6082Åであった。また、結晶子径は24nmであった。
 そして、近赤外線遮蔽体Nの可視光透過率と近赤外線遮蔽特性とを測定した結果、可視光透過率69.7%、透過率の極大値と極小値との差72.3ポイントの値を得た。TEM観察により、近赤外線遮蔽体Nに分散されたCsタングステン酸化物微粒子の平均粒子径を求めると24nmであった。この結果を表1に示す。
(実施例12)
 実施例1において、Nガスをキャリア-とした5%Hガスを供給しながら550℃の温度で9.0時間焼成した以外は、実施例1と同様にして、実施例12に係る近赤外線遮蔽材料微粒子分散液(A-15液)、Csタングステン酸化物微粒子o、近赤外線遮蔽体Oを得た。
 近赤外線遮蔽材料微粒子分散液(A-15液)内におけるCsタングステン酸化物微粒子oの分散粒子径は、70nmであった。Csタングステン酸化物微粒子oの格子定数は、a軸が7.4068Åで、c軸が7.6190Åであった。また、結晶子径は24nmであった。
 そして、近赤外線遮蔽体Oの可視光透過率と近赤外線遮蔽特性とを測定した結果、可視光透過率69.9%、透過率の極大値と極小値との差74.0ポイントの値を得た。TEM観察により、近赤外線遮蔽体Oに分散されたCsタングステン酸化物微粒子の平均粒子径を求めると25nmであった。この結果を表1に示す。
(実施例13)
 水6.70kgに、炭酸ルビジウム(RbCO)5.56kgを溶解して、溶液を得た。当該溶液を、タングステン酸(HWO)36.44kgに添加して十分撹拌混合した後、撹拌しながら乾燥した(WとRbとのモル比が1:0.33相当である。)。当該乾燥物を、Nガスをキャリア-とした5%Hガスを供給しながら加熱し、800℃の温度で5.5時間焼成した後、当該供給ガスをNガスのみに切り替えて、室温まで降温してRbタングステン酸化物粒子を得た。
 Csタングステン酸化物粒子の代わりに、得られたRbタングステン酸化物粒子を用いた以外は、実施例1と同様にして、実施例13に係る近赤外線遮蔽材料微粒子分散液(B-1液)、Rbタングステン酸化物微粒子a、近赤外線遮蔽体B1を得た。
 近赤外線遮蔽材料微粒子分散液(B-1液)内におけるRbタングステン酸化物微粒子aの分散粒子径は、70nmであった。Rbタングステン酸化物微粒子aの格子定数は、a軸が7.3898Åで、c軸が7.5633Åであった。また、結晶子径は24nmであった。
 そして、近赤外線遮蔽体B1の可視光透過率と近赤外線遮蔽特性とを測定した結果、可視光透過率69.6%、透過率の極大値と極小値との差69.5ポイントの値を得た。TEM観察により、近赤外線遮蔽体B1に分散されたRbタングステン酸化物微粒子の平均粒子径を求めると25nmであった。この結果を表1に示す。
(実施例14)
 水6.70kgに、炭酸セシウム(CsCO)0.709kgと炭酸ルビジウム(RbCO)5.03kgを溶解して、溶液を得た。当該溶液を、タングステン酸(HWO)36.26kgに添加して十分撹拌混合した後、撹拌しながら乾燥した(WとCsとのモル比が1:0.03相当、WとRbとのモル比が1:0.30相当である。)。当該乾燥物を、Nガスをキャリア-とした5%Hガスを供給しながら加熱し、800℃の温度で5.5時間焼成した後、当該供給ガスをNガスのみに切り替えて、室温まで降温してCsRbタングステン酸化物粒子aを得た。
 Csタングステン酸化物粒子の代わりに、得られたCsRbタングステン酸化物粒子aを用いた以外は、実施例1と同様にして、実施例14に係る近赤外線遮蔽材料微粒子分散液(C-1液)、CsRbタングステン酸化物微粒子a、近赤外線遮蔽体C1を得た。
 近赤外線遮蔽材料微粒子分散液(C-1液)内におけるCsRbタングステン酸化物微粒子aの分散粒子径は、70nmであった。CsRbタングステン酸化物微粒子aの格子定数は、a軸が7.3925Åで、c軸が7.5730Åであった。また、結晶子径は24nmであった。
 そして、近赤外線遮蔽体の可視光透過率と近赤外線遮蔽特性とを測定した結果、可視光透過率69.7%、透過率の極大値と極小値との差70.4ポイントの値を得た。TEM観察により、近赤外線遮蔽体C1に分散されたCsRbタングステン酸化物微粒子の平均粒子径を求めると24nmであった。この結果を表1に示す。
(実施例15)
 水6.70kgに、炭酸セシウム(CsCO)4.60kgと炭酸ルビジウム(RbCO)2.12kgを溶解して、溶液を得た。当該溶液を、タングステン酸(HWO)35.28kgに添加して十分撹拌混合した後、撹拌しながら乾燥した(WとCsとのモル比が1:0.20相当、WとRbとのモル比が1:0.13相当である。)。当該乾燥物を、Nガスをキャリア-とした5%Hガスを供給しながら加熱し、800℃の温度で5.5時間焼成した後、当該供給ガスをNガスのみに切り替えて、室温まで降温してCsRbタングステン酸化物粒子bを得た。
 Csタングステン酸化物粒子の代わりに、得られたCsRbタングステン酸化物粒子bを用いた以外は、実施例1と同様にして、実施例15に係る近赤外線遮蔽材料微粒子分散液(C-2液)、CsRbタングステン酸化物微粒子b、近赤外線遮蔽体C2を得た。
 近赤外線遮蔽材料微粒子分散液(C-2液)内におけるCsRbタングステン酸化物微粒子bの分散粒子径は、70nmであった。CsRbタングステン酸化物微粒子bの格子定数は、a軸が7.4026Åで、c軸が7.6035Åであった。また、結晶子径は24nmであった。
 そして、近赤外線遮蔽体C2の可視光透過率と近赤外線遮蔽特性とを測定した結果、可視光透過率69.7%、透過率の極大値と極小値との差71.5ポイントの値を得た。TEM観察により、近赤外線遮蔽体C2に分散されたCsRbタングステン酸化物微粒子の平均粒子径を求めると24nmであった。この結果を表1に示す。
(実施例16)
 水6.70kgに、炭酸セシウム(CsCO)5.71kgと炭酸ルビジウム(RbCO)1.29kgを溶解して、溶液を得た。当該溶液を、タングステン酸(HWO)35.00kgに添加して十分撹拌混合した後、撹拌しながら乾燥した(WとCsとのモル比が1:0.25相当、WとRbとのモル比が1:0.08相当である。)。当該乾燥物を、Nガスをキャリア-とした5%Hガスを供給しながら加熱し、800℃の温度で5.5時間焼成した後、当該供給ガスをNガスのみに切り替えて、室温まで降温してCsRbタングステン酸化物粒子cを得た。
 Csタングステン酸化物粒子の代わりに、得られたCsRbタングステン酸化物粒子cを用いた以外は、実施例1と同様にして、実施例16に係る近赤外線遮蔽材料微粒子分散液(C-3液)、CsRbタングステン酸化物微粒子c、近赤外線遮蔽体C3を得た。
 近赤外線遮蔽材料微粒子分散液内(C-3液)におけるCsRbタングステン酸化物微粒子cの分散粒子径は、70nmであった。CsRbタングステン酸化物微粒子cの格子定数は、a軸が7.4049Åで、c軸が7.6083Åであった。また、結晶子径は24nmであった。
 そして、近赤外線遮蔽体の可視光透過率と近赤外線遮蔽特性とを測定した結果、可視光透過率69.7%、透過率の極大値と極小値との差71.5ポイントの値を得た。TEM観察により、近赤外線遮蔽体C3に分散されたCsRbタングステン酸化物微粒子の平均粒子径を求めると25nmであった。この結果を表1に示す。
(実施例17)
 水6.70kgに、炭酸セシウム(CsCO)6.79kgと炭酸ルビジウム(RbCO)0.481kgを溶解して、溶液を得た。当該溶液を、タングステン酸(HWO)34.73kgに添加して十分撹拌混合した後、撹拌しながら乾燥した(WとCsとのモル比が1:0.30相当、WとRbとのモル比が1:0.03相当である。)。当該乾燥物を、Nガスをキャリア-とした5%Hガスを供給しながら加熱し、800℃の温度で5.5時間焼成した後、当該供給ガスをNガスのみに切り替えて、室温まで降温してCsRbタングステン酸化物粒子dを得た。
 Csタングステン酸化物粒子の代わりに、得られたCsRbタングステン酸化物粒子dを用いた以外は、実施例1と同様にして、実施例17に係る近赤外線遮蔽材料微粒子分散液(C-4液)、CsRbタングステン酸化物微粒子d、近赤外線遮蔽体C4を得た。
 近赤外線遮蔽材料微粒子分散液内(C-4液)におけるCsRbタングステン酸化物微粒子dの分散粒子径は、70nmであった。CsRbタングステン酸化物微粒子dの格子定数は、a軸が7.4061Åで、c軸が7.6087Åであった。また、結晶子径は24nmであった。
 そして、近赤外線遮蔽体C4の可視光透過率と近赤外線遮蔽特性とを測定した結果、可視光透過率69.5%、透過率の極大値と極小値との差72.1ポイントの値を得た。TEM観察により、近赤外線遮蔽体C4に分散されたCsRbタングステン酸化物微粒子の平均粒子径を求めると25nmであった。この結果を表1に示す。
(比較例4、5)
 実施例1において、タングステン酸と炭酸セシウムとを、WとCsのモル比が1:0.21(比較例4)、1:0.23(比較例5)となるように所定量秤量し、400℃の温度で5.5時間焼成した以外は実施例1と同様にして、比較例4および5に係る近赤外線遮蔽体形成用分散液(A-16液およびA-17液)、Csタングステン酸化物微粒子pおよびq、近赤外線遮蔽体PおよびQを得た。近赤外線遮蔽材料微粒子分散液(A-16液)における、Csタングステン酸化物微粒子pの分散粒子径は70nm、(A-17液)における、Csタングステン酸化物微粒子qの分散粒子径は70nmであった。近赤外線遮蔽材料微粒子分散液(A-16液およびA-17液)、Csタングステン酸化物微粒子pおよびq、近赤外線遮蔽体PおよびQを実施例1と同様に評価した。この結果を表2に示す。
(比較例6)
 実施例1に係るCsタングステン酸化物粒子aにおいてペイントシェーカーの回転速度を実施例1の0.8倍にしたことと100時間粉砕・分散処理した以外は実施例1と同様に近赤外線遮蔽材料分散液(A-18液)、Csタングステン酸化物微粒子r、近赤外線遮蔽体Rを得た。近赤外線遮蔽材料微粒子分散液(A-18液)における、Csタングステン酸化物微粒子rの分散粒子径は50nmであった。近赤外線遮蔽材料微粒子分散液(A-18液)、Csタングステン酸化物微粒子r、近赤外線遮蔽体Rを実施例1と同様に評価した。この結果を表2に示す。
(比較例7)
 実施例1に係るCsタングステン酸化物粒子aにおいて、Nガスをキャリア-とした3体積%Hガスを供給しながら440℃の温度で5.5時間焼成した以外は実施例1と同様に比較例7に係る近赤外線遮蔽材料分散液(A-19液)、Csタングステン酸化物微粒子s、近赤外線遮蔽体Sを得た。近赤外線遮蔽材料微粒子分散液(A-19液)における、Csタングステン酸化物微粒子sの分散粒子径は75nmであった。近赤外線遮蔽材料微粒子分散液(A-19液)、Csタングステン酸化物微粒子s、近赤外線遮蔽体Sを実施例1と同様に評価した。この結果を表2に示す。
(比較例8)
 実施例1に係るCsタングステン酸化物粒子a20質量%と、分散剤a8質量%と、酢酸ブチル72質量%とを秤量し、10分間の超音波の振動で混合して近赤外線遮蔽材料分散液(A-20液)、Csタングステン酸化物粒子a、近赤外線遮蔽体Tを得た。すなわち、近赤外線遮蔽材料分散液(A-20液)に含まれるCsタングステン酸化物粒子aは粉砕されていない。近赤外線遮蔽材料分散液(A-20液)における、Csタングステン酸化物微粒子aの分散粒子径は150nmであった。近赤外線遮蔽材料微粒子分散液(A-20液)、Csタングステン酸化物粒子a、近赤外線遮蔽体Tを実施例1と同様に評価した。この結果を表2に示す。
(比較例9)
 実施例1に係るCsタングステン酸化物粒子aにおいてペイントシェーカーの回転速度を実施例1の1.15倍にしたことと50時間粉砕・分散処理した以外は実施例1と同様に近赤外線遮蔽材料分散液(A-21液)、Csタングステン酸化物微粒子u、近赤外線遮蔽体Uを得た。近赤外線遮蔽材料微粒子分散液(A-21液)における、Csタングステン酸化物微粒子uの分散粒子径は110nmであった。近赤外線遮蔽材料微粒子分散液(A-21液)、Csタングステン酸化物微粒子u、近赤外線遮蔽体Uを実施例1と同様に評価した。この結果を表2に示す。
(まとめ)
 表1、2から明らかなように、実施例1から17に係る近赤外線遮蔽材料微粒子を含む近赤外線遮蔽材料微粒子分散液を用いて製造した近赤外線遮蔽体は、比較例1から9に係る近赤外線遮蔽材料微粒子を含む近赤外線遮蔽材料微粒子分散液を用いて製造した近赤外線遮蔽体と比較して、太陽光線、特に近赤外線領域の光をより効率良く遮蔽し、同時に可視光領域の高透過率を保持していることが判明した。
 特に、実施例1から17に係る近赤外線遮蔽体において、光の透過率の極大値と極小値との差はいずれも69ポイントを超えた。これに対し、比較例1から9に係る近赤外線遮蔽体においてはいずれも69ポイント未満であった。
 以上のことから、本発明に係る近赤外線遮蔽材料微粒子分散体、近赤外線遮蔽体、およびこれらを用いて製造された本発明に係る近赤外線遮蔽用合わせ構造体は、従来の技術に係る近赤外線遮蔽材料微粒子分散体、近赤外線遮蔽体および近赤外線遮蔽用合わせ構造体と比較して、近赤外線領域の光をより効率良く遮蔽しながら、可視光領域の高透過率を保持する等、優れた光学特性を発揮するものであることが判明した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 本発明は、ビル、事務所、一般住宅などの建築分野、車両などの輸送分野、ビニルシ-トなその農業分野、電話ボックス、カーポート、ショーウィンドー、照明用ランプ、透明ケ-ス、繊維等へ、近赤外線遮蔽材料微粒子を用いて近赤外遮蔽効果を付与する際、好個に適用される。

Claims (19)

  1.  近赤外線遮蔽材料微粒子が、固体媒体に分散した近赤外線遮蔽材料微粒子分散体であって、
     前記近赤外線遮蔽材料微粒子が、六方晶の結晶構造を含む複合タングステン酸化物微粒子であり、
     前記複合タングステン酸化物微粒子の格子定数は、a軸が7.3850Å以上7.4186Å以下、c軸が7.5600Å以上7.6240Å以下であり、
     前記近赤外線遮蔽材料微粒子の粒子径が100nm以下であることを特徴とする近赤外線遮蔽材料微粒子分散体。
  2.  前記複合タングステン酸化物微粒子の格子定数が、a軸が7.4031Å以上7.4111Å以下、c軸が7.5891Å以上7.6240Å以下であることを特徴とする請求項1に記載の近赤外線遮蔽材料微粒子分散体。
  3.  前記複合タングステン酸化物微粒子の格子定数が、a軸が7.4031Å以上7.4186Å以下、c軸が7.5830Å以上7.5950Å以下であることを特徴とする請求項1に記載の近赤外線遮蔽材料微粒子分散体。
  4.  前記近赤外線遮蔽材料微粒子の粒子径が、10nm以上100nm以下であることを特徴とする請求項1から3のいずれかに記載の近赤外線遮蔽材料微粒子分散体。
  5.  前記複合タングステン酸化物微粒子が、一般式MxWyOz(但し、M元素は、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、Iから選択される1種類以上の元素で、Wはタングステン、Oは酸素で、0.20≦x/y≦0.37、2.2≦z/y≦3.0)で表記されることを特徴とする請求項1から4のいずれかに記載の近赤外線遮蔽材料微粒子分散体。
  6.  前記M元素が、Cs、Rbから選択される1種類以上の元素であることを特徴とする請求項5に記載の近赤外線遮蔽材料微粒子分散体。
  7.  前記近赤外線遮蔽材料微粒子の表面が、Si、Ti、Zr、Alから選択される1種類以上の元素を含有する酸化物で被覆されていることを特徴とする請求項1から6のいずれかに記載の近赤外線遮蔽材料微粒子分散体。
  8.  前記固体媒体が、樹脂またはガラスであることを特徴とする請求項1から7のいずれかに記載の近赤外線遮蔽材料微粒子分散体。
  9.  前記樹脂が、ポリエチレン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリビニルアルコール樹脂、ポリスチレン樹脂、ポリプロピレン樹脂、エチレン酢酸ビニル共重合体、ポリエステル樹脂、ポリエチレンテレフタレート樹脂、フッ素樹脂、アクリル樹脂、ポリカーボネート樹脂、ポリイミド樹脂、ポリビニルブチラール樹脂から選択される1種類以上であることを特徴とする請求項8に記載の近赤外線遮蔽材料微粒子分散体。
  10.  請求項1から9のいずれかに記載の近赤外線遮蔽材料微粒子分散体が、板状、フィルム状、薄膜状から選択されるいずれかに形成されたものであることを特徴とする近赤外線遮蔽体。
  11.  請求項1から9のいずれかに記載の近赤外線遮蔽材料微粒子分散体が、板ガラス、プラスチック板、日射遮蔽機能を有する微粒子を含むプラスチック板から選択される、2枚以上の合わせ板間に存在していることを特徴とする近赤外線遮蔽用合わせ構造体。
  12.  近赤外線遮蔽材料微粒子分散体の製造方法であって、
     一般式MxWyOz(但し、M元素は、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、Iから選択される1種類以上の元素で、Wはタングステン、Oは酸素で、0.20≦x/y≦0.37、2.2≦z/y≦3.0)で表記される六方晶の結晶構造を含む複合タングステン酸化物を製造する第1の工程と、
     前記第1の工程で得られた複合タングステン酸化物を機械的に粉砕し、前記六方晶の結晶構造における格子定数においてa軸が7.3850Å以上7.4186Å以下、c軸が7.5600Å以上7.6240Å以下であり、粒子径が100nm以下である複合タングステン酸化物微粒子を製造する第2の工程と、
     第2の工程で得られた複合タングステン酸化物微粒子を、固体媒体中に分散して、近赤外線遮蔽材料微粒子分散体を得る第3の工程とを、有することを特徴とする近赤外線遮蔽材料微粒子分散体の製造方法。
  13.  前記第2の工程において、六方晶の結晶構造における格子定数においてa軸が7.4031Å以上7.4111Å以下、c軸が7.5891Å以上7.6240Å以下であり、粒子径が100nm以下である複合タングステン酸化物微粒子を製造することを特徴とする請求項12に記載の赤外線遮蔽材料微粒子分散体の製造方法。
  14.  前記第2の工程において、六方晶の結晶構造における格子定数においてa軸が7.4031Å以上7.4186Å以下、c軸が7.5830Å以上7.5950Å以下であり、粒子径が100nm以下である複合タングステン酸化物微粒子を製造することを特徴とする請求項12に記載の赤外線遮蔽材料微粒子分散体の製造方法。
  15.  前記固体媒体が、樹脂またはガラスであることを特徴とする請求項12から14のいずれかに記載の近赤外線遮蔽材料微粒子分散体の製造方法。
  16.  前記樹脂が、ポリエチレン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリビニルアルコール樹脂、ポリスチレン樹脂、ポリプロピレン樹脂、エチレン酢酸ビニル共重合体、ポリエステル樹脂、ポリエチレンテレフタレート樹脂、フッ素樹脂、アクリル樹脂、ポリカーボネート樹脂、ポリイミド樹脂、ポリビニルブチラール樹脂から選択される1種類以上であることを特徴とする請求項15に記載の近赤外線遮蔽材料微粒子分散体の製造方法。
  17.  前記第3の工程が、前記近赤外線遮蔽材料微粒子分散体を、板状、フィルム状、薄膜状からから選択されるいずれかに成形する第4の工程を含むことを特徴とする請求項12から16に記載の近赤外線遮蔽材料微粒子分散体の製造方法。
  18.  前記第4の工程が、前記近赤外線遮蔽材料微粒子分散体を、基材表面に形成する工程を含むことを特徴とする請求項17に記載の近赤外線遮蔽材料微粒子分散体の製造方法。
  19.  請求項17または18に記載のいずれかの近赤外線遮蔽材料微粒子分散体の製造方法で得られた近赤外線遮蔽材料分散体を、板ガラス、プラスチック、日射遮蔽機能を有する微粒子を含むプラスチックから選ばれる2枚以上の対向する透明基材の間に挟み込む第5の工程とを、有することを特徴とする近赤外線遮蔽用合わせ構造体の製造方法。
     
PCT/JP2017/010687 2016-03-16 2017-03-16 近赤外線遮蔽材料微粒子分散体、近赤外線遮蔽体および近赤外線遮蔽用合わせ構造体、並びに、それらの製造方法 WO2017159791A1 (ja)

Priority Applications (12)

Application Number Priority Date Filing Date Title
AU2017232748A AU2017232748B2 (en) 2016-03-16 2017-03-16 Near-infrared shielding material fine particle dispersion body, near-infrared shielding body and near-infrared shielding laminated structure, and method for producing the same
US16/084,949 US10562786B2 (en) 2016-03-16 2017-03-16 Near-infrared shielding material fine particle dispersion body, near-infrared shielding body and near-infrared shielding laminated structure, and method for producing the same
JP2018506006A JP6825619B2 (ja) 2016-03-16 2017-03-16 近赤外線遮蔽材料微粒子分散体、近赤外線遮蔽体および近赤外線遮蔽用合わせ構造体、並びに、それらの製造方法
EP17766787.0A EP3431565A4 (en) 2016-03-16 2017-03-16 DISPERSION OF MICROPARTICLES OF MATERIAL BLOCKING INFRARED RAYS CLOSED, BODIES BLOCKING THE INFRARED RAYS CLOSED AS WELL AS LAMINATE STRUCTURE FOR LOCKING OF INFRARED RAYS PROCHES, AND METHODS OF MANUFACTURE THEREOF
MX2018011190A MX2018011190A (es) 2016-03-16 2017-03-16 Cuerpo de dispersion de particulas finas de material de proteccion de infrarrojo cercano, cuerpo de proteccion de infrarrojo cercano y estructura laminada de proteccion de infrarrojo cercano y metodo de produccion de los mismos.
MYPI2018703288A MY193596A (en) 2016-03-16 2017-03-16 Near-infrared shielding material fine particle dispersion body, near-infrared shielding body and near-infrared shielding laminated structure, and method for producing the same
SG11201807946RA SG11201807946RA (en) 2016-03-16 2017-03-16 Near-infrared shielding material fine particle dispersion body, near-infrared shielding body and near-infrared shielding laminated structure, and method for producing the same
BR112018068657A BR112018068657A2 (pt) 2016-03-16 2017-03-16 corpo de dispersão de partícula fina de material de proteção próxima do infravermelho, corpo de proteção próxima do infravermelho, estrutura laminada de proteção próxima do infravermelho, e, métodos para produzir um corpo de dispersão de partícula fina de material de proteção próxima do infravermelho e uma estrutura laminada de proteção próxima do infravermelho.
KR1020187029409A KR102371493B1 (ko) 2016-03-16 2017-03-16 근적외선 차폐 재료 미립자 분산체, 근적외선 차폐체 및 근적외선 차폐용 적층 구조체 및 이들의 제조방법
CN201780017764.3A CN109312208B (zh) 2016-03-16 2017-03-16 近红外线屏蔽材料微粒分散体、近红外线屏蔽体和近红外线屏蔽用夹层结构体、以及它们的制造方法
IL261773A IL261773B (en) 2016-03-16 2018-09-13 A thin particle dispersion body of a near-infrared protective material, a near-infrared protective body and a layered structure for near-infrared protection, and a method for preparing them
PH12018501975A PH12018501975A1 (en) 2016-03-16 2018-09-13 Near-infrared shielding material fine particle dispersion body, near-infrared shielding body and near-infrared shielding laminated structure, and method for producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016052560 2016-03-16
JP2016-052561 2016-03-16
JP2016052561 2016-03-16
JP2016-052560 2016-03-16

Publications (1)

Publication Number Publication Date
WO2017159791A1 true WO2017159791A1 (ja) 2017-09-21

Family

ID=59851718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/010687 WO2017159791A1 (ja) 2016-03-16 2017-03-16 近赤外線遮蔽材料微粒子分散体、近赤外線遮蔽体および近赤外線遮蔽用合わせ構造体、並びに、それらの製造方法

Country Status (14)

Country Link
US (1) US10562786B2 (ja)
EP (1) EP3431565A4 (ja)
JP (1) JP6825619B2 (ja)
KR (1) KR102371493B1 (ja)
CN (1) CN109312208B (ja)
AU (1) AU2017232748B2 (ja)
BR (1) BR112018068657A2 (ja)
IL (1) IL261773B (ja)
MX (1) MX2018011190A (ja)
MY (1) MY193596A (ja)
PH (1) PH12018501975A1 (ja)
SG (1) SG11201807946RA (ja)
TW (1) TWI709533B (ja)
WO (1) WO2017159791A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018235839A1 (ja) * 2017-06-19 2018-12-27 住友金属鉱山株式会社 近赤外線吸収繊維とその製造方法、およびこれを用いた繊維製品
WO2019054478A1 (ja) * 2017-09-14 2019-03-21 住友金属鉱山株式会社 近赤外線硬化型インク組成物、近赤外線硬化膜、およびそれらの製造方法、並びに光造形法
WO2019054480A1 (ja) * 2017-09-14 2019-03-21 住友金属鉱山株式会社 光熱変換層、当該光熱変換層を用いたドナーシート、およびそれらの製造方法
JP2020066558A (ja) * 2018-10-25 2020-04-30 住友金属鉱山株式会社 セシウムタングステン酸化物焼結体及びその製造方法、セシウムタングステン酸化物ターゲット
WO2021132450A1 (ja) * 2019-12-25 2021-07-01 住友金属鉱山株式会社 近赤外線吸収材料粒子、近赤外線吸収材料粒子分散液、近赤外線吸収材料粒子分散体
WO2022196454A1 (ja) * 2021-03-17 2022-09-22 株式会社 東芝 酸化タングステン粉末およびそれを用いたエレクトロクロミック素子

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210070961A1 (en) * 2018-02-08 2021-03-11 Sumitomo Metal Mining Co., Ltd. Near-infrared absorbing material fine particle dispersion body, near-infrared absorbing body, near-infrared absorbing substance laminated body and combined structure for near infrared absorption
DK3794083T3 (da) * 2018-05-15 2022-09-12 Sicpa Holding Sa Maskinlæsbare sikkerhedsfunktioner
JP7292586B2 (ja) * 2019-01-21 2023-06-19 住友金属鉱山株式会社 表面処理赤外線吸収微粒子、表面処理赤外線吸収微粒子粉末、当該表面処理赤外線吸収微粒子を用いた赤外線吸収微粒子分散液、赤外線吸収微粒子分散体、および、赤外線吸収基材
JP6743226B1 (ja) * 2019-03-27 2020-08-19 三井金属鉱業株式会社 近赤外線吸収性材料、近赤外線吸収性層及び近赤外線吸収性部材
WO2020199085A1 (zh) * 2019-04-01 2020-10-08 律胜科技股份有限公司 聚酰亚胺薄膜及使用其的柔性显示装置覆盖基板
CN111763428B (zh) * 2019-04-01 2022-12-13 律胜科技股份有限公司 聚酰亚胺薄膜及使用其的柔性显示装置覆盖基板
EP4098619A4 (en) * 2020-01-31 2023-08-09 Sumitomo Metal Mining Co., Ltd. ELECTROMAGNETIC WAVE ABSORBING PARTICLES, ELECTROMAGNETIC WAVE ABSORBING PARTICLE DISPERSION AND PROCESS FOR PRODUCTION OF ELECTROMAGNETIC WAVE ABSORBING PARTICLES

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011063484A (ja) * 2009-09-18 2011-03-31 Sumitomo Metal Mining Co Ltd 近赤外線遮蔽材料微粒子とその製造方法および近赤外線遮蔽材料微粒子分散体と近赤外線遮蔽体
JP2011063739A (ja) * 2009-09-18 2011-03-31 Sumitomo Metal Mining Co Ltd 近赤外線遮蔽材料微粒子とその製造方法および近赤外線遮蔽材料微粒子分散体と近赤外線遮蔽体
JP2011063740A (ja) * 2009-09-18 2011-03-31 Sumitomo Metal Mining Co Ltd 熱線遮蔽樹脂シート材と熱線遮蔽樹脂シート材積層体およびこれ等を用いた建築構造体
JP2013173642A (ja) * 2012-02-24 2013-09-05 Sumitomo Metal Mining Co Ltd 日射遮蔽体形成用複合タングステン酸化物微粒子とその製造方法、および日射遮蔽体形成用複合タングステン酸化物微粒子分散液、並びに日射遮蔽体

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0812378A (ja) 1994-06-30 1996-01-16 Nissan Motor Co Ltd 熱線遮断ガラス及びその製造方法
JPH0859300A (ja) 1994-08-25 1996-03-05 Nissan Motor Co Ltd 熱線遮断ガラス
JP2535790B2 (ja) 1994-09-08 1996-09-18 工業技術院長 タングステンブロンズおよびその被覆複合体の製造方法
JPH08283044A (ja) 1995-04-11 1996-10-29 Asahi Glass Co Ltd 熱線遮断ガラス
JPH09107815A (ja) 1995-10-16 1997-04-28 Kanebo Ltd 保温用シート
JPH09127559A (ja) 1995-10-27 1997-05-16 Teiji Haniyu 太陽光可変調光断熱材料
GB9822338D0 (en) 1998-10-13 1998-12-09 Glaverbel Solar control coated glass
JP5220973B2 (ja) 2001-07-17 2013-06-26 ソマール株式会社 遮光フィルム
JP4110762B2 (ja) 2001-10-17 2008-07-02 住友金属鉱山株式会社 エレクトロクロミック特性を有する酸化タングステン微粒子の製造方法
EP1676890B1 (en) 2003-10-20 2019-06-26 Sumitomo Metal Mining Co., Ltd. Infrared shielding material microparticle dispersion, infrared shield, process for producing infrared shielding material microparticle, and infrared shielding material microparticle
WO2010055570A1 (ja) * 2008-11-13 2010-05-20 住友金属鉱山株式会社 赤外線遮蔽微粒子及びその製造方法、並びにそれを用いた赤外線遮蔽微粒子分散体、赤外線遮蔽基材
JP2011063741A (ja) * 2009-09-18 2011-03-31 Sumitomo Metal Mining Co Ltd 熱線遮蔽樹脂シート材と熱線遮蔽樹脂シート材積層体およびこれ等を用いた建築構造体
JP2011065000A (ja) * 2009-09-18 2011-03-31 Sumitomo Metal Mining Co Ltd プラズマディスプレイパネル用近赤外線吸収フィルターとその製造方法およびプラズマディスプレイパネル
KR101795191B1 (ko) * 2012-07-11 2017-11-07 스미토모 긴조쿠 고잔 가부시키가이샤 열선 차폐 분산체의 제조방법, 열선 차폐 분산체, 및 열선 차폐체
CN105307996B (zh) * 2013-04-03 2021-02-26 住友金属矿山株式会社 热线屏蔽膜、热线屏蔽夹层透明基材、热线屏蔽树脂片材、汽车及建筑物
JP6508224B2 (ja) * 2015-01-27 2019-05-08 住友金属鉱山株式会社 近赤外線吸収微粒子分散液とその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011063484A (ja) * 2009-09-18 2011-03-31 Sumitomo Metal Mining Co Ltd 近赤外線遮蔽材料微粒子とその製造方法および近赤外線遮蔽材料微粒子分散体と近赤外線遮蔽体
JP2011063739A (ja) * 2009-09-18 2011-03-31 Sumitomo Metal Mining Co Ltd 近赤外線遮蔽材料微粒子とその製造方法および近赤外線遮蔽材料微粒子分散体と近赤外線遮蔽体
JP2011063740A (ja) * 2009-09-18 2011-03-31 Sumitomo Metal Mining Co Ltd 熱線遮蔽樹脂シート材と熱線遮蔽樹脂シート材積層体およびこれ等を用いた建築構造体
JP2013173642A (ja) * 2012-02-24 2013-09-05 Sumitomo Metal Mining Co Ltd 日射遮蔽体形成用複合タングステン酸化物微粒子とその製造方法、および日射遮蔽体形成用複合タングステン酸化物微粒子分散液、並びに日射遮蔽体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3431565A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018235839A1 (ja) * 2017-06-19 2018-12-27 住友金属鉱山株式会社 近赤外線吸収繊維とその製造方法、およびこれを用いた繊維製品
WO2019054478A1 (ja) * 2017-09-14 2019-03-21 住友金属鉱山株式会社 近赤外線硬化型インク組成物、近赤外線硬化膜、およびそれらの製造方法、並びに光造形法
WO2019054480A1 (ja) * 2017-09-14 2019-03-21 住友金属鉱山株式会社 光熱変換層、当該光熱変換層を用いたドナーシート、およびそれらの製造方法
JPWO2019054478A1 (ja) * 2017-09-14 2020-10-29 住友金属鉱山株式会社 近赤外線硬化型インク組成物、近赤外線硬化膜、およびそれらの製造方法、並びに光造形法
JPWO2019054480A1 (ja) * 2017-09-14 2020-10-29 住友金属鉱山株式会社 光熱変換層、当該光熱変換層を用いたドナーシート、およびそれらの製造方法
JP7156290B2 (ja) 2017-09-14 2022-10-19 住友金属鉱山株式会社 光熱変換層、当該光熱変換層を用いたドナーシート、およびそれらの製造方法
JP7200942B2 (ja) 2017-09-14 2023-01-10 住友金属鉱山株式会社 近赤外線硬化型インク組成物、近赤外線硬化膜、およびそれらの製造方法、並びに光造形法
US11912054B2 (en) 2017-09-14 2024-02-27 Sumitomo Metal Mining Co., Ltd. Light to heat conversion layer, donor sheet using light to heat conversion layer, and method for producing light to heat conversion layer
JP2020066558A (ja) * 2018-10-25 2020-04-30 住友金属鉱山株式会社 セシウムタングステン酸化物焼結体及びその製造方法、セシウムタングステン酸化物ターゲット
JP7225678B2 (ja) 2018-10-25 2023-02-21 住友金属鉱山株式会社 セシウムタングステン酸化物焼結体及びその製造方法、セシウムタングステン酸化物ターゲット
WO2021132450A1 (ja) * 2019-12-25 2021-07-01 住友金属鉱山株式会社 近赤外線吸収材料粒子、近赤外線吸収材料粒子分散液、近赤外線吸収材料粒子分散体
WO2022196454A1 (ja) * 2021-03-17 2022-09-22 株式会社 東芝 酸化タングステン粉末およびそれを用いたエレクトロクロミック素子

Also Published As

Publication number Publication date
IL261773A (en) 2018-10-31
PH12018501975A1 (en) 2019-07-01
US10562786B2 (en) 2020-02-18
BR112018068657A2 (pt) 2019-02-05
JPWO2017159791A1 (ja) 2019-01-31
TW201802032A (zh) 2018-01-16
AU2017232748A1 (en) 2018-10-04
US20190077676A1 (en) 2019-03-14
JP6825619B2 (ja) 2021-02-03
CN109312208B (zh) 2021-12-17
EP3431565A4 (en) 2019-08-07
MY193596A (en) 2022-10-19
AU2017232748B2 (en) 2021-08-19
MX2018011190A (es) 2019-05-16
KR20180122414A (ko) 2018-11-12
SG11201807946RA (en) 2018-10-30
TWI709533B (zh) 2020-11-11
KR102371493B1 (ko) 2022-03-07
EP3431565A1 (en) 2019-01-23
CN109312208A (zh) 2019-02-05
IL261773B (en) 2022-04-01

Similar Documents

Publication Publication Date Title
US10533100B2 (en) Near-infrared shielding material fine particles and method for producing the same, and near-infrared shielding material fine particle dispersion liquid
JP6825619B2 (ja) 近赤外線遮蔽材料微粒子分散体、近赤外線遮蔽体および近赤外線遮蔽用合わせ構造体、並びに、それらの製造方法
KR100701735B1 (ko) 적외선 차폐재료 미립자 분산체, 적외선 차폐체, 및 적외선차폐재료 미립자의 제조방법, 및 적외선 차폐재료 미립자
JP4626284B2 (ja) 日射遮蔽体形成用タングステン酸化物微粒子の製造方法、および日射遮蔽体形成用タングステン酸化物微粒子
WO2014084353A1 (ja) 近赤外線吸収フィルタおよび撮像素子
US11661350B2 (en) Near-infrared absorbing material fine particle dispersion, near-infrared absorber, near-infrared absorber laminate, and laminated structure for near-infrared absorption
JP4904714B2 (ja) 赤外線遮蔽材料微粒子分散体、赤外線遮蔽体、及び赤外線遮蔽材料微粒子の製造方法、並びに赤外線遮蔽材料微粒子
JP2008230954A (ja) 日射遮蔽体形成用アンチモン含有酸化錫微粒子の製造方法、日射遮蔽体形成用分散液、日射遮蔽体、および、日射遮蔽用基材
CN113039159B (zh) 红外线吸收材料微粒分散液及其制造方法
JP2012082109A (ja) 高耐熱性熱線遮蔽体形成用タングステン酸化物微粒子の製造方法、高耐熱性熱線遮蔽体形成用タングステン酸化物微粒子および高耐熱性熱線遮蔽体形成用分散液、並びに高耐熱性熱線遮蔽体
JP2023107349A (ja) 赤外線吸収材料微粒子分散液と赤外線吸収材料微粒子分散体
JP2017039880A (ja) 赤外線遮蔽材料微粒子とその製造方法、および、赤外線遮蔽材料微粒子分散体とこの分散体から製造された赤外線遮蔽体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018506006

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11201807946R

Country of ref document: SG

Ref document number: MX/A/2018/011190

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017232748

Country of ref document: AU

Date of ref document: 20170316

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187029409

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018068657

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2017766787

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017766787

Country of ref document: EP

Effective date: 20181016

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17766787

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112018068657

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180914