WO2020199085A1 - 聚酰亚胺薄膜及使用其的柔性显示装置覆盖基板 - Google Patents

聚酰亚胺薄膜及使用其的柔性显示装置覆盖基板 Download PDF

Info

Publication number
WO2020199085A1
WO2020199085A1 PCT/CN2019/080843 CN2019080843W WO2020199085A1 WO 2020199085 A1 WO2020199085 A1 WO 2020199085A1 CN 2019080843 W CN2019080843 W CN 2019080843W WO 2020199085 A1 WO2020199085 A1 WO 2020199085A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide film
blue
polyimide
infrared absorber
display device
Prior art date
Application number
PCT/CN2019/080843
Other languages
English (en)
French (fr)
Inventor
赖柏宏
颜智德
黄堂杰
Original Assignee
律胜科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 律胜科技股份有限公司 filed Critical 律胜科技股份有限公司
Priority to PCT/CN2019/080843 priority Critical patent/WO2020199085A1/zh
Priority to US16/619,093 priority patent/US11359093B2/en
Publication of WO2020199085A1 publication Critical patent/WO2020199085A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1039Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • C08G73/1071Wholly aromatic polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0041Optical brightening agents, organic pigments
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0091Complexes with metal-heteroatom-bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3442Heterocyclic compounds having nitrogen in the ring having two nitrogen atoms in the ring
    • C08K5/3445Five-membered rings
    • C08K5/3447Five-membered rings condensed with carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2231Oxides; Hydroxides of metals of tin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2258Oxides; Hydroxides of metals of tungsten
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K3/2279Oxides; Hydroxides of metals of antimony
    • C08K2003/2282Antimonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/10Transparent films; Clear coatings; Transparent materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/206Applications use in electrical or conductive gadgets use in coating or encapsulating of electronic parts
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a polyimide film and a flexible display device cover substrate using the same, and in particular to a polyimide film containing a blue infrared absorber and a flexible display device cover using the same Substrate.
  • Polyimide polymer is a plastic material with thermal stability, high mechanical strength and chemical resistance. However, due to the molecular structure relationship, it is easy to cause charge transfer within and between molecules, resulting in a yellowish polyimide film, which limits its application.
  • linkage groups can be introduced to make the main chain flexible, or some larger groups can be introduced to destroy the stacking situation, and the effect can also be achieved.
  • the above descriptions such as: (—O—), (—CO—), (—CH 2 —), (—CF 3 CCF 3 —), etc., or introduce an alicyclic structure into the polyimide. Although these methods can make the polyimide transparent, when the thickness of the polyimide film increases, the yellow index YI of the film will also increase, causing the appearance of a slightly yellowish phenomenon.
  • polyimide Since polyimide needs to undergo an imidization step in the film forming process, whether it is thermal imidization or chemical imidization, it must be baked at a high temperature of 250°C to 400°C. In order to increase production efficiency and reduce baking Baking time, currently the industry will choose to use infrared heating. However, fluorine-containing functional groups and alicyclic structures are introduced for transparency, so that the polyimide will not absorb in the infrared region, and the infrared heating process cannot be used.
  • the present invention provides a polyimide film and a flexible display device cover substrate using the polyimide film.
  • the polyimide film contains a blue infrared absorber with infrared absorption and light-to-heat conversion effects. Therefore, it can be irradiated with infrared rays. Increase the surface temperature of the polyimide resin, thereby shortening the baking time.
  • the polyimide film of the present invention includes polyimide and a blue infrared absorber, and the blue infrared absorber includes cesium tungsten oxide, tungsten oxide, Prussian blue or tin antimony oxide.
  • the polyimide film has an absorption peak at a wavelength of 800 nm to 4000 nm.
  • the thickness of the polyimide film is 10 ⁇ m to 100 ⁇ m, the total light transmittance is over 85%, and the yellow index YI is less than 2.
  • the absorption wavelength of the blue infrared absorber is 500 nm to 4000 nm, and the heat conversion efficiency of the blue infrared absorber is greater than 50%.
  • the particle size of the blue infrared absorber is less than 100 nm.
  • the content of the blue infrared absorber is 0.05 wt% to 0.5 wt%.
  • the polyimide film further includes a hue adjusting material, the hue adjusting material includes a blue dye, a blue pigment, a fluorescent dye having an absorption wavelength of 360nm to 430nm and an emission wavelength of 430nm to 530nm or Fluorescent pigments.
  • the hue adjusting material includes a blue dye, a blue pigment, a fluorescent dye having an absorption wavelength of 360nm to 430nm and an emission wavelength of 430nm to 530nm or Fluorescent pigments.
  • the content of the blue dye or blue pigment is 0.001 wt% to 0.01 wt%.
  • the content of the fluorescent dye or fluorescent pigment is 0.001 wt% to 0.5 wt%.
  • the blue infrared absorber has a hue adjustment effect.
  • the present invention also provides a flexible display device cover substrate, including the above-mentioned polyimide film and a device protection layer.
  • the device protection layer is formed of a hydrophobic hard coating layer and is disposed on at least one surface of the polyimide film.
  • the total light transmittance of the substrate covered by the flexible display device is 85% or more, and the thickness is 50 ⁇ m to 200 ⁇ m.
  • the thickness of the hydrophobic hard coating is 5 ⁇ m to 30 ⁇ m, and the hardness is 7H to 9H.
  • the hydrophobic hard coat layer contains a blue infrared absorber and a hue adjusting material.
  • the hue adjusting material includes blue dyes and blue pigments with an absorption wavelength of 360nm to 430nm and an emission wavelength of 430nm Fluorescent dyes or fluorescent pigments up to 530nm.
  • the content of the blue infrared absorber is 0.05 wt% to 0.5 wt%.
  • the content of the blue dye or blue pigment is 0.001 wt% to 0.01 wt%.
  • the content of the fluorescent dye or fluorescent pigment is 0.001 wt% to 0.5 wt%.
  • the polyimide film of the present invention contains a blue infrared absorber with infrared absorption and light-to-heat conversion effects. Therefore, the surface temperature of the polyimide resin can be increased by infrared radiation, thereby shortening the baking time, Reduce energy consumption and increase production rate. It can also reduce the yellow index YI of polyimide at the same time and improve the visual yellowish phenomenon of appearance.
  • Example 1 is a schematic diagram of the transmittance and wavelength of Example 4, Example 6, Comparative Example 1, and Comparative Example 3.
  • the present invention provides a polyimide film, which can be used for the cover substrate of a flexible display device.
  • a polyimide film which can be used for the cover substrate of a flexible display device.
  • the specific embodiments are cited as examples on which the present invention can be implemented. However, these embodiments are illustrative, and the present disclosure is not limited thereto.
  • the present invention provides a polyimide film, which includes polyimide and a blue infrared absorber.
  • the blue infrared absorber has infrared absorption and light-to-heat conversion effects, and also has a hue adjustment effect.
  • the heat conversion efficiency is about greater than 50%, the surface temperature of the polyimide resin can be increased by infrared radiation. After infrared radiation, the surface temperature of the polyimide film can reach over 300°C, shortening the baking time.
  • the polyimide film of the present invention has an absorption peak at a wavelength of about 800 nm to about 4000 nm, the thickness is, for example, 10 ⁇ m to 100 ⁇ m, the total light transmittance is, for example, 85% or more, and the yellow index YI is, for example, less than 2. Based on the total weight of the polyimide film, the content of the infrared absorber is, for example, 0.05 wt% to 0.5 wt%.
  • the above-mentioned various components will be described in detail.
  • the infrared absorber of the present invention is, for example, composed of inorganic nanoparticles, preferably, for example, powder, which is a blue infrared absorber with a particle size of less than 100 nm, and may include cesium tungsten oxide, tungsten oxide, Prussian blue or tin oxide antimony. Nano-particles can be synthesized by sol-gel method, hydrothermal method, fusion heat method, microwave synthesis method, etc., or sintered into micron powder by powder metallurgy, and then dry or wet grinding to obtain nanoparticles.
  • the blue infrared absorber can also be used as a hue adjuster and ultraviolet absorber, which can reduce the yellow index of transparent polyimide and reduce yellowing caused by long-term UV irradiation, and has a hue adjustment effect.
  • the polyimide of the present invention may be composed of the unit represented by the following chemical formula (1):
  • X represents the part derived from the dianhydride
  • the dianhydride may include but is not limited to: 2,2'-bis-(3,4-dicarboxyphenyl)hexafluoropropane dianhydride (6FDA), 4,4'-Diphenyl ether tetracarboxylic anhydride (ODPA), biphenyl tetracarboxylic dianhydride (BPDA), benzophenone tetracarboxylic dianhydride (BTDA), cyclobutane tetracarboxylic dianhydride (CBDA), cyclopentane tetracarboxylic dianhydride (CPDA), 3,3',4,4'-diphenylsulfone tetraacid anhydride (DSDA), 4,4'-(4,4'-isopropyl Diphenoxy) bis(phthalic anhydride) (BPADA) and 2,2-bis[4-(3,4-dicarboxyphenyl)hex
  • Y represents the moiety derived from diamine
  • the diamine may include but not limited to: bis[4-(4-aminophenoxy)phenyl]sulfone (BAPS), 2,2 '-Bis[4-(4-aminophenoxy)phenyl]propane (BAPP), 2,2-bis[4-(4-aminophenoxy)phenyl]-1,1,1,3, 3,3-hexafluoropropane (APHF), 2,2'-bis(trifluoromethyl)benzidine (TFMB), 4,4'-diaminodiphenyl ether (ODA), diaminodiphenyl Sulfone (3DDS, 4DDS) and 2,2-bis(4-aminophenyl)hexafluoropropane (BISAF), cyclohexanediamine (CHDA), 1,3-bis(3-aminophenoxy)benzene ( TPE-M), 1,3-bis(4-aminophen
  • the polymerization method can use a solvent to dissolve the dianhydride monomer and diamine monomer, and then mix and react the dissolved dianhydride monomer and diamine monomer to obtain a polyamic acid resin (polyimide resin precursor).
  • the solvent can be, for example, aprotic solvents such as N,N-dimethylacetamide, N,N-diethylacetamide, N,N-dimethylformamide and N-methyl-2-pyrrolidone, but not It is not limited to this, and other suitable aprotic solvents can also be selected.
  • the method of imidization can use high temperature curing, for example, heating the polyamic acid resin (polyimide resin precursor) continuously or stepwise. If you want to make polyimide resin into a film or insulating layer, you can first apply polyamic acid resin (polyimide resin precursor) on the substrate, and then send the entire substrate to an oven for heating for curing .
  • Chemical method of ring closure can also be used, that is, under nitrogen or oxygen, unrestricted alkaline reagents such as pyridine, triethylamine or N,N-diisopropylethylamine and dehydrating reagent acetic anhydride are added to polyamic acid After the reaction, the colloid is washed and filtered to obtain polyimide powder, which is then dissolved in a solvent; in addition, a heating method can be used to add polyamic acid to the azeotropic reagent (not limited Toluene or xylene, etc.), the temperature is raised to 180°C, the water and azeotropic reagents generated by the ring closure of the polyamic acid are removed, and the polyimide solution can be prepared after the reaction is completed.
  • unrestricted alkaline reagents such as pyridine, triethylamine or N,N-diisopropylethylamine and dehydrating reagent
  • the polyimide film may also include a hue adjusting material, which may include blue dyes, blue pigments, and absorption wavelengths of 360nm to 430nm and Fluorescent dyes or fluorescent pigments with emission wavelengths of 430nm to 530nm.
  • a hue adjusting material may include blue dyes, blue pigments, and absorption wavelengths of 360nm to 430nm and Fluorescent dyes or fluorescent pigments with emission wavelengths of 430nm to 530nm.
  • the blue dyes and blue pigments may include ultramarine; metal phthalocyanines such as Pigment 15, pigment 15:1, pigment 15:2, pigment 15:3, and pigment 15:3 produced by Lansco Colors. Pigment 15:4; onion quinone pigments such as Pigment blue 60; indigo pigments such as Indigo. Based on the total weight of the polyimide film, the content of the blue dye or blue pigment is, for example, 0.001 wt% to 0.01 wt%.
  • the blue dye and blue pigment are mechanically milled and dispersed, for example, through high-speed collision and shearing of milling media such as zirconia, aluminum oxide, silicon carbide, etc., so that the material can be suspended and dispersed in In an organic solvent, and after grinding, the secondary particle size of the material can be less than 200 nanometers.
  • the mechanical grinding and dispersion method can be ball mill, attritor mill, high-performance bead mill, etc.
  • the organic solvent can be ethyl acetate, n-butyl acetate, ⁇ -butyl Solvents such as lactone, ethanol, isopropanol, propylene glycol, acetone, methyl ethyl ketone and cyclopentanone.
  • the fluorescent dyes and fluorescent pigments may include Coumarin series, such as Coumarin 1, Coumarin 2, Coumarin 4, Coumarin 7, Coumarin 30, Coumarin 47.
  • the content of the fluorescent dye or fluorescent pigment is, for example, 0.001 wt% to 0.5 wt%.
  • the polyimide film of the present invention may be added with one kind or two or more kinds of ultraviolet absorbers.
  • the ultraviolet absorber may be selected from materials commonly used as ultraviolet absorbers for general plastics, and may also include photocompounds or inorganic nanomaterials with an absorption wavelength of 400 nm or less.
  • As the ultraviolet absorber benzophenone-based compounds, salicylate-based compounds, benzotriazole-based compounds, and triazine-based compounds can be exemplified, and at least one of them can be selected.
  • the addition of the ultraviolet absorber can prevent the polyimide resin from yellowing and deterioration due to ultraviolet radiation.
  • the present invention also provides a flexible display device cover substrate, which includes the above-mentioned polyimide film and a device protection layer.
  • the device protection layer can be formed by a hydrophobic hard coating layer and is disposed on at least one surface of the polyimide film.
  • the total light transmittance of the cover substrate of the flexible display device of the present invention is 85% or more, and the thickness is, for example, 50 ⁇ m to 200 ⁇ m.
  • the thickness of the hydrophobic hard coat layer is, for example, 5 ⁇ m to 30 ⁇ m, and the hardness is, for example, 7H to 9H.
  • the hydrophobic hard layer can be coated on any side of the polyimide film and cured by ultraviolet light or heating.
  • the hydrophobic hard layer can be prepared by coating methods in the prior art, including slit coating, spin coating, or inkjet printing, but is not limited thereto.
  • the hydrophobic hard layer is composed of compounds with more than 3 reactive functional groups, initiators (initiators), elastic oligomers (oligomers), and nano-inorganic modified particles.
  • a blue infrared absorber and a hue adjusting agent can be added to the hydrophobic hard layer to adjust the yellow index YI of the covering substrate.
  • the hue adjusting material can include blue dyes, blue pigments, and absorption wavelengths such as 360nm to 430nm and
  • the emission wavelength is, for example, a fluorescent dye or a fluorescent pigment of 430 nm to 530 nm.
  • the content of the blue infrared absorber is, for example, 0.05 wt% to 0.5 wt%.
  • the content of the blue dye or blue pigment is, for example, 0.001 wt% to 0.01 wt%.
  • the content of the fluorescent dye or fluorescent pigment is, for example, 0.001 wt% to 0.5 wt%.
  • Examples of the above-mentioned compounds with more than 3 reactive functional groups include but are not limited to dipentaerythritol hexaacrylate, pentaerythritol triacrylate (pentaerythritol triacrylate), dipentaerythritol triacrylate (dipentaerythritol triacrylate), dipentaerythritol acrylate (dipentaerythritolacrylate), pentaerythritol Pentaerythritolhexaacrylate, trimethylolpropane triacrylate, trimethylallyl isocyanurate, triallyl isocyanurate, tetramethyltetravinyl cyclotetrasiloxane Alkane, ethoxylated trimethylolpropane triacrylate (TMPEOTA), propoxylated glycerol triacrylate (GPTA), pentaerythritol tetraacrylate (PETA), penta
  • the initiator may be a photoinitiator or a thermal initiator, and may be used alone or as a mixture of two or more.
  • the compounding amount of the compound with more than 3 reactive functional groups and the initiator is not particularly limited. Generally speaking, the composition ratio of the compound with more than 3 reactive functional groups to the initiator is 5:1 to 100: 1. Based on the total weight of the hard coating, the content of the compound with more than 3 reactive functional groups and the initiator is, for example, 10% to 60% by weight. If the amount of the initiator is above the lower limit, the degree of polymerization is maintained at a certain level, and the polymer formed by the monomer retains the polymer characteristics.
  • the polymer formed by the monomer does not have the problem of excessive polymerization and brittleness. If the amount of the monomer with unsaturated bonds is too low, the degree of crosslinking of the polymer is insufficient and cannot be cured. If the proportion of monomers with unsaturated bonds is too high, the polymer will be brittle.
  • Photoinitiators suitable for use in the present invention include but are not limited to: acetophenones, such as 2-methyl-1-(4-(methylthiol)phenyl-2-morphinyl propyl ketone (2 -methyl-1-(4-(methylthio)phenyl)-2-morpholino-propane), 1-hydroxycyclohexyl phenylketone, diethoxyacetophenone, 2-hydroxy -2-Methyl-1-phenyl-1-acetone (2-hydroxy-2-methyl-1-phenylpropane-1-one), 2-methylphenyl-2-(dimethylamino)-1-[ 4-(morpholinyl)phenyl]-1-butyl-1-one (2-benzyl-2-(dimethylamino)-1-[4-(morpholinyl)phenyl]-1-butanone), other suitable benzene Ethyl ketone; Benzoins, such as benzoin, benzoin methyl ether, benzyl
  • two or more kinds of initiators can also be used in combination, depending on the needs of the user.
  • isopropylthioxanthone and 2-methylphenyl-2-( Dimethylamino)-1-[4-(morphinyl)phenyl]-1-butyl-1-one is mixed and used as a photoinitiator.
  • Thermal initiators suitable for the present invention include, but are not limited to: azos, such as 2,2'-azobis(2,4-dimethyl-valeronitrile) (2,2'-azobis(2, 4-dimethyl valeronitrile)), dimethyl-2,2'-azobis(2-methylpropionate)), 2,2-azobis(2-methylpropionate) Isobutyronitrile (2,2-azobisisobutyronitrile, AIBN), 2,2-azobis(2-methylisobutyronitrile) (2,2-azobis(2-methylisobutyronitrile)), 1,1'-azobis (Cyclohexane-1-carbonitrile)(1,1'-azobis(cyclohexane-1-carbonitrile)), 2,2'-azobis[N-2-propyl-2-methylpropionamide](2 ,2'-azobis[N-(2-propenyl)-2-methylpropionamide]), 1-[(cyano-1-methylethyl)-azo]formamide (1-
  • the elastic oligomer may be an oligomer of urethane (meth)acrylic acid, which may be formed by the reaction of hydroxyl (meth)acrylate and diisocyanate.
  • hydroxyl (meth)acrylate can be synthesized from (meth)acrylate or propylene group and polyol
  • (meth)acrylate can be methyl (meth)acrylate, ethyl (meth)acrylate, ( Isopropyl meth)acrylate, butyl (meth)acrylate, cyclohexyl (meth)acrylate).
  • Polyol can be ethylene glycol, 1,3-propanediol, diethylene glycol, neopentyl glycol, 1,4-butanediol, 1,6-hexanediol, 1,5-pentanediol , Trimethylolpropane, glycerin, 1,3,5-triol, pentaerythritol, dipentaerythritol, etc.
  • the diisocyanate can be hexamethylene diisocyanate, 2,4-toluene diisocyanate, xylene diisocyanate, trimethyl hexamethylene diisocyanate, 4-diphenylmethane diisocyanate, 1,5-naphthalene diisocyanate Wait.
  • the molecular weight of the added elastic oligomer is 500 g/mol to 5000 g/mol, and based on the total weight of the hard coating, the content is, for example, 0.1 wt% to 10 wt%.
  • the modified nano-inorganic particles can be obtained by reacting the reaction components containing the unmodified (unmodified) nano-inorganic particles and the modifying agent (modifier).
  • the content of nano-inorganic particles is preferably 90 to 98% by weight; the content of the modifier is preferably 2 to 10% by weight.
  • Nano-inorganic particles suitable for the present invention include, but are not limited to, nano-inorganic metal oxide particles such as titanium dioxide, silicon dioxide, zirconium oxide, zinc oxide, and aluminum oxide.
  • the modifier suitable for the present invention may be a silane coupling agent, which is an organosilicon compound containing chlorosilane, alkoxysilane or silazane.
  • the functional group contained in the silane coupling agent may include vinyl, methacryloxy, acryloxy, amino, ureido, chloropropyl, mercapto, polysulfide or isocyanate, but is not limited thereto .
  • Examples of the silane coupling agent may include but are not limited to: vinyl trichlorosilane, vinyl trimethoxy silane, vinyl triethoxy silane, 3-methacryloxypropyl-methyldimethoxy silane , 3-methacryloxypropyl-trimethoxysilane, 3-methacryloxypropyl-methyldiethoxysilane, 3-methacryloxypropyl-triethoxysilane, 3-acryloxypropyltrimethoxysilane, N-2-aminoethyl-3-aminopropylmethyldimethoxysilane, N-2-aminoethyl-3-aminopropyltrimethoxysilane , N-2-aminoethyl-3
  • the mixing method of the modified nano-inorganic particles and the mixture of unsaturated bond monomers and initiators is not particularly limited. Generally, they can be uniformly mixed by ball milling, screw, planetary mixing or stirring. Based on the total weight of the hard coating, the content of the modified nano inorganic particles is, for example, 40 wt% to 80 wt%.
  • TFMB 2,2'-bis(trifluoromethyl)benzidine
  • ODA 4,4'-diaminodiphenyl ether
  • DMAc Dimethylacetamide
  • the polyimide is precipitated with a methanol/water (volume ratio 1:2) solution, and the powder is collected by filtration and dried to obtain polyimide powder. Finally, the powder is dissolved in a dimethylacetamide solvent to form a 20wt% polyimide solution.
  • the polyimide solution of Synthesis Example 1 was coated on a glass substrate with a doctor blade and placed in an oven for surface drying, and the surface drying temperature was 100°C. Then, heat and bake for 10 minutes at an infrared wavelength of 800 nm to 3000 nm in a nitrogen environment to obtain a polyimide film.
  • the polyimide solution of Synthesis Example 1 was coated on a glass substrate with a doctor blade and placed in an oven for surface drying, and the surface drying temperature was 100°C. Then, it was heated to 280°C by hot-air baking in a nitrogen environment for 60 minutes.
  • the yellow index YI is the tristimulus value (x, y, z) measured by measuring the transmittance of 400-700 nm light with a spectrophotometer, and the YI is calculated by the following formula.
  • the polyimide film is soaked in methyl ethyl ketone at room temperature. After 1 minute, it is confirmed whether there is white fog on the film surface. If there is no white fog, it is judged as ⁇ , and if there is white fog, it is judged as ⁇ .
  • Example 1 to Example 5 and Comparative Example 1 show that when a blue infrared absorber is added to the polyimide film, it can be produced by the absorption of the blue infrared absorber between 500-700nm The blue color is toned with the yellow color of the polyimide film, so adding different blue infrared absorbers can reduce the yellow index of the polyimide film to less than 2. And after adding blue infrared absorber, it can increase the absorption ability in infrared, as shown in Figure 1, and then increase the heating efficiency of infrared radiation, so the surface temperature can reach 280°C or more under infrared radiation, and with the addition amount Increasing the temperature tends to rise.
  • Example 1 and Comparative Example 2 show that when the particle size of the blue infrared absorber is too large, the ability to absorb infrared rays will decrease and the photothermal conversion efficiency will decrease, resulting in no significant temperature under the same infrared radiation. As a result, the solvent resistance of the polyimide film is insufficient.
  • Examples 4 and 5 and Comparative Examples 4 and 5 show that when the concentration of the infrared absorber is less than 0.05%, the yellow index of the polyimide film is greater than 2, and the surface temperature of the film cannot be effectively increased under infrared irradiation. There is little difference in temperature from Comparative Example 1 without adding infrared absorber.
  • the addition amount of the infrared absorber is greater than 0.5%, although the yellow index of the polyimide can be reduced to less than 1, but also due to the visible light absorption of the infrared absorber, the light transmittance of the polyimide film is less than 85 %.
  • Comparative Example 1 and Comparative Example 6 show that when the polyimide film without adding infrared absorber is heated to 280°C for 60 minutes in a hot air circulation oven, the polyimide film can also withstand methyl ethyl The erosion of ketones.
  • the lowest ring-closing temperature is 250°C. If the temperature is too low, the ring-closure will be incomplete and chemical resistance will deteriorate. If it is chemically closed, although it has been completely imidized, it will form an isoimide structure under the catalysis of a chemical catalyst (catalyst), which will make the polyimide's chemical resistance worse.
  • a chemical catalyst catalyst
  • a hue modifier can also be added to adjust the yellow index YI of the polyimide film.
  • Examples 6 and 7 show that the addition of PB15 and Coumarin fluorescent materials can effectively reduce the yellow index of the polyimide film.
  • the hue modifier is added, the material only has yellow to orange absorption, which does not help infrared absorption, so it will not produce photothermal effect under infrared irradiation, as shown in Figure 1, so the film surface temperature is the same as that of the unadded The results of Comparative Example 1 were the same.
  • the hard coating composition can be hardened by heating or light to form a coating with high hardness.
  • the modified nano-inorganic particles in the hard coat layer are obtained by mixing 1 part by weight of nano-silica particle solution and 0.01 parts by weight of 3-methacryloxypropyl-trimethoxysilane, and Heat at 50°C under nitrogen to react for 4 hours for upgrading synthesis. After the reaction is completed, it is reduced to room temperature, and 1 part by weight of the modified nanoparticle solution is added to 0.133 parts by weight of pentaerythritol hexaacrylate and 0.133 parts by weight of elastic oligomer UA160-TM. After stirring for 30 minutes, the solution is transferred according to the required solvent. phase.
  • Examples 9 and 10 show that infrared absorbing materials and hue adjustment materials can be added to the hard coat layer to reduce the yellow index YI of the cover laminate, and the results from Example 9 and Comparative Example 1 show that when the hue adjustment material When the particle size is larger (>200nm), because the particle size is too large, defects will occur in the HC due to the agglomeration phenomenon, which will affect the overall strength and surface smoothness of the HC, and cause the cover substrate to break when folded.
  • the polyimide film of the present invention contains an infrared absorber with infrared absorption and light-to-heat conversion effects. Therefore, the surface temperature of the polyimide resin can be increased by infrared radiation, thereby shortening the baking time and reducing Energy consumption and increased production rate.
  • infrared absorbers can also be used as hue modifiers and ultraviolet light absorbers, which can reduce the yellow index of transparent polyimide, reduce yellowing caused by long-term UV irradiation, and improve the visual yellowish phenomenon of appearance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)

Abstract

一种聚酰亚胺薄膜及使用其的柔性显示装置覆盖基板,该聚酰亚胺薄膜包括聚酰亚胺以及蓝色的红外线吸收剂,蓝色的红外线吸收剂包括氧化铯钨、氧化钨、普鲁士蓝或氧化锡锑。蓝色的红外线吸收剂具有红外线吸收与光热转换效果,可经由红外线照射提升聚酰亚胺树脂的表面温度,缩短烘烤时间。

Description

聚酰亚胺薄膜及使用其的柔性显示装置覆盖基板 【技术领域】
本发明是有关于一种聚酰亚胺薄膜及使用其的柔性显示装置覆盖基板,且特别是有关于一种含有蓝色的红外线吸收剂的聚酰亚胺薄膜及使用其的柔性显示装置覆盖基板。
【背景技术】
随着显示器的发展,薄型化及轻量化甚至可挠曲化为目前显示器的开发方向,如何将玻璃基板薄型化及轻量化甚至以塑胶基板取代玻璃基板是目前业界考量的重要方向。
聚酰亚胺高分子是一种具热稳定性、高机械强度以及耐化学性质的塑胶材料。然而,因分子结构关系容易造成分子内与分子间的电荷转移,导致聚酰亚胺薄膜呈现黄色,使得在应用上受限。为了降低电荷转移的现象,一般可引入链锁基团(linkage group),使主链具有柔软性,或是可以引入一些较大的基团,破坏其堆迭的情况,亦能达到效果。以上叙述如:(—O—)、(-CO—)、(-CH 2—)、(—CF 3CCF 3—)等,或是导入脂环族结构至聚酰亚胺中。虽然这些方法可使聚酰亚胺透明化,但当聚酰亚胺薄膜厚度增加时,薄膜的黄色指数YI也会随之变高,而使外观视觉上产生微黄现象。
由于聚酰亚胺在成膜加工过程中需经过亚胺化的步骤,不管是热亚胺化或化学亚胺化皆需经过250℃至400℃的高温烘烤,为了增加生产效率并减少烘烤时间,目前工业上会选择以红外线加热方式进行。然而,为了透明化而导入含氟官能基与脂环族结构,使得聚酰亚胺在红外线区域不会吸收,导致无法使用红外线加热制程。
基于上述,发展出一种聚酰亚胺薄膜,可经由红外线照射以提升聚酰亚胺树脂表面温度,进而缩短烘烤时间,为目前所需研究的重要课题。
【发明内容】
本发明提供一种聚酰亚胺薄膜及使用其的柔性显示装置覆盖基板,该聚酰亚胺薄膜包含具有红外线吸收与光热转换效果的蓝色的红外线吸收剂,因此,可经由红外线照射以提升聚酰亚胺树脂表面温度,进而缩短烘烤时间。
本发明的聚酰亚胺薄膜包括聚酰亚胺以及蓝色的红外线吸收剂,蓝色的红外线吸收剂包括氧化铯钨、氧化钨、普鲁士蓝或氧化锡锑。
在本发明的一实施例中,聚酰亚胺薄膜在波长800nm至4000nm具有吸收峰。
在本发明的一实施例中,聚酰亚胺薄膜的厚度为10μm至100μm,全光线透过率为85%以上,黄色指数YI小于2。
在本发明的一实施例中,蓝色的红外线吸收剂的吸收波长为500nm至4000nm,且蓝色的红外线吸收剂的热转换效率大于50%。
在本发明的一实施例中,蓝色的红外线吸收剂的粒径大小为小于100nm。
在本发明的一实施例中,以聚酰亚胺薄膜的总重量计,蓝色的红外线吸收剂的含量为0.05wt%至0.5wt%。
在本发明的一实施例中,聚酰亚胺薄膜还包括色相调节材料,该色相调节材料包括蓝色染料、蓝色颜料、吸收波长为360nm至430nm且发射波长为430nm至530nm的荧光染料或荧光颜料。
在本发明的一实施例中,以聚酰亚胺薄膜的总重量计,蓝色染料或蓝色颜料的含量为0.001wt%至0.01wt%。
在本发明的一实施例中,以聚酰亚胺薄膜的总重量计,荧光染料或荧光颜料的含量为0.001wt%至0.5wt%。
本发明的一实施例中,蓝色的红外线吸收剂具有色相调节作用。
本发明也提出一种柔性显示装置覆盖基板,包括上述聚酰亚胺薄膜以及装置保护层。装置保护层由疏水性硬质涂层所形成,配置于聚酰亚胺薄膜的至少一面上。
在本发明的一实施例中,柔性显示装置覆盖基板的全光线透过率为85%以上,厚度为50μm至200μm。
在本发明的一实施例中,疏水性硬质涂层的厚度为5μm至30μm,硬度为7H至9H。
在本发明的一实施例中,疏水性硬质涂层含有蓝色的红外线吸收剂及色相调节材料,色相调节材料包括蓝色染料、蓝色颜料、吸收波长为360nm至430nm且发射波长为430nm至530nm的荧光染料或荧光颜料。
在本发明的一实施例中,以疏水性硬质涂层的总重量计,蓝色的红外线吸收剂的含量为0.05wt%至0.5wt%。
在本发明的一实施例中,以疏水性硬质涂层的总重量计,蓝色染料或蓝色颜料的含量为0.001wt%至0.01wt%。
在本发明的一实施例中,以疏水性硬质涂层的总重量计,荧光染料或荧光颜料的含量为0.001wt%至0.5wt%。
基于上述,本发明的聚酰亚胺薄膜包含具有红外线吸收与光热转换效果的蓝色的红外线吸收剂,因此,可经由红外线照射以提升聚酰亚胺树脂表面温度,进而缩短烘烤时间、降低能源损耗与提高生产速率,更可同时降低聚酰亚胺的黄色指数YI,改善外观视觉上的微黄现象。
为让本发明的上述特征和优点能更明显易懂,下文特举实施例,并详细说明如下。
【附图说明】
图1为实施例4、实施例6、比较例1及比较例3的穿透率与波长示意图。
【具体实施方式】
在本文中,由“一数值至另一数值”表示的范围,是一种避免在说明书中一一列举该范围中的所有数值的概要性表示方式。因此,某一特定数值范围的记载,涵盖该数值范围内的任意数值以及由该数值范围内的任意数值界定出的较小数值范围,如同在说明书中明文写出该任意数值和该较小数值范围一样。
本发明提出一种聚酰亚胺薄膜,可用于柔性显示装置的覆盖基板。以下,特举实施方式作为本发明确实能够据以实施的范例。然而,这些实施例为例示性,且本发明揭露不限于此。
<聚酰亚胺薄膜>
本发明提出一种聚酰亚胺薄膜,包括聚酰亚胺以及蓝色的红外线吸收剂,蓝色的红外线吸收剂具有红外线吸收与光热转换效果,还具有色相调节作用,热转换效率约大于50%,可经由红外线照射提升聚酰亚胺树脂的表面温度,经红外线照射后聚酰亚胺薄膜的表面温度可达300℃以上,缩短烘烤时间。本发明的聚酰亚胺薄膜在波长约800nm至约4000nm具有吸收峰,厚度例如是10μm至100μm,全光线透过率例如是85%以上,黄色指数YI例如是小于2。以聚酰亚胺薄膜的总重量计,红外线吸收剂的含量例如是0.05wt%至0.5wt%。以下,将对上述各种组分进行详细说明。
<蓝色的红外线吸收剂>
本发明的红外线吸收剂例如是由无机纳米粒子所构成,优选例如是粉体,为蓝色的红外线吸收剂,粒径大小为小于100nm,可包括氧化铯钨、氧化钨、普鲁士蓝或氧化锡锑。可经由溶胶凝胶法、水热法、溶热法、微波合成法等方式合成出纳米粒子,也可以经过粉末冶金方式烧结成微米粉末,再经过干式或湿式研磨方式得到纳米粒子。蓝色的红外线吸收剂亦可作为色相调节剂与紫外光吸收剂,可降低透明聚酰亚胺的黄色指数,以及降低UV长时间照射所产生的黄变,具有色相调节作用。
<聚酰亚胺>
本发明的聚酰亚胺可由以下化学式(1)所示的单元组成:
Figure PCTCN2019080843-appb-000001
在上述化学式(1)中,X表示为得自二酸酐的部分,所述二酸酐可包括但不限于:2,2'-双-(3,4-二羧苯基)六氟丙烷二酐(6FDA),4,4'-二苯醚四酸酐(ODPA)、联苯四羧酸二酐(BPDA)、二苯甲酮四羧酸二酐(BTDA)、环丁烷四羧酸二酐(CBDA)、环戊烷四羧酸二酐(CPDA)、3,3',4,4'-二苯基砜四酸酐(DSDA)、4,4’-(4,4’-异丙基二苯氧基)双(邻苯二甲酸酐)(BPADA)及2,2-双[4-(3,4-二羧基苯氧基)苯基]六氟异丙烷二酐(HFBPADA)、乙二醇双脱水偏苯三酸酯(TMEG)、丙二醇双(偏苯三酸酐)(TMPG)、双环[2.2.1]庚烷-2,3,5,6-四羧酸二酐(BHDA)、双环[2.2.2]辛-7-烯-2,3,5,6-四羧酸二酐(BOTDA)、双环[2.2.2]辛烷-2,3,5,6-四羧酸二酐(BODA)、或前述两种以上的混合物。
在上述化学式(1)中,Y表示得自二胺的部分,所述二胺可包括但不限于:双[4-(4-氨基苯氧基)苯基]砜(BAPS)、2,2’-双[4-(4-氨基苯氧基)苯基]丙烷(BAPP)、2,2-双[4-(4-氨基苯氧基)苯基]-1,1,1,3,3,3-六氟丙烷(APHF)、2,2’-双(三氟甲基)联苯胺(TFMB)、4,4’-二胺基二苯基醚(ODA)、二胺基二苯砜(3DDS、4DDS)及2,2-双(4-氨基苯基)六氟丙烷(BISAF)、环己烷二胺(CHDA)、1,3-双(3-氨基苯氧基)苯(TPE-M)、1,3-双(4-氨基苯氧基)苯(TPE-R)、1,4-双(3-氨基苯氧基)苯、1,4-双(4-氨基苯氧基)苯(TPE-Q)、或前述两种以上的混合物。
聚合的方法可用溶剂溶解二酐单体及二胺单体,再将经溶解的二酐单体与二胺单体混合反应,便可得到聚酰胺酸树脂(聚酰亚胺树脂前驱物)。溶剂例如可为N,N-二甲基乙酰胺、N,N-二乙基乙酰胺、N,N-二甲基甲酰胺及N-甲基-2-吡咯烷酮等非质子性溶剂,但并不限定为此,亦可选用其他适合的非质子性溶剂。
酰亚胺化的方法可使用高温熟化,例如连续或分段将聚酰胺酸树脂(聚酰亚胺树脂前驱物)进行加热。若要将聚酰亚胺树脂制成薄膜或绝缘层时,则可先将聚酰胺酸树脂(聚酰亚胺树脂前驱物)涂抹在基材上,再将整个基材送入烘箱加热进行熟化。亦可使用化学方式的闭环方法,即于氮气或氧气下,将不限定的碱性试剂吡啶、三乙胺或N,N-二异丙基乙基胺等和脱水试剂醋酸酐加入聚酰胺酸中,反应结束后,胶体经由水洗过滤,即可得到聚酰亚胺粉末,再将此粉末溶解于溶剂中;另外,可使用加热方式的闭环方法,将聚酰胺酸加入共沸试剂(不限定甲苯或二甲苯等),升温至180℃,将聚酰胺酸闭环产生的水及共沸试剂去除,反应结束后,即可制得聚酰亚胺溶液。
<色相调节材料>
在本发明中,除了添加红外线吸收剂降低薄膜黄色指数YI之外,聚酰亚胺薄膜还可包括色相调节材料,色相调节材料可包括蓝色染料、蓝色颜料、吸收波长为360nm至430nm且发射波长为430nm至530nm的荧光染料或荧光颜料。
在本实施例中,蓝色染料及蓝色颜料可包括群青(Ultramarine);金属酞菁如Lansco Colors公司生产的颜料(Pigment)15、颜料15:1、颜料15:2、颜料15:3、颜料15:4;葱醌系颜料如颜料蓝(Pigment blue)60;靛蓝系颜料如Indigo。以聚酰亚胺薄膜的总重量计,蓝色染料或蓝色颜料的含量例如是0.001wt%至0.01wt%。
在本实施例中,蓝色染料与蓝色颜料例如是以机械研磨与分散方式,藉由研磨介质如氧化锆、氧化铝、碳化硅等经高速碰撞与剪切,以使材料能悬浮分散于有机溶剂中,且经过研磨后,其材料的二次粒径可小于200纳米。机械研磨与分散方式可为球磨法(Ball mill)、磨碎法(Attritor mill)、高效能珠磨法((Media mill)等,有机溶剂可为乙酸乙酯、乙酸正丁酯、γ-丁内酯、乙醇、异丙醇、丙二醇、丙酮、甲乙酮及环戊酮等溶剂。
在本实施例中,荧光染料及荧光颜料可包括香豆素(Coumarin)系列,如 香豆素1、香豆素2、香豆素4、香豆素7、香豆素30、香豆素47、香豆素102、香豆素151、香豆素152、香豆素152A、香豆素153、香豆素307、香豆素314、香豆素500、香豆素510、香豆素522、香豆素6H;Pilot 512、Fluorol 7GA、Pyridine 1、Carbazole等。以聚酰亚胺薄膜的总重量计,荧光染料或荧光颜料的含量例如是0.001wt%至0.5wt%。
<紫外线吸收剂>
本发明的聚酰亚胺薄膜也可添加一种或两种以上的紫外线吸收剂。紫外线吸收剂可以从常被用于一般塑料的紫外线吸收剂的材料中选择,也可以是包含吸收波长400nm以下的光化合物或无机纳米材料等。作为紫外线吸收剂,可举例二苯甲酮类化合物、水杨酸酯类化合物、苯并三唑类化合物与三嗪类化合物,可选用其中的至少一种化合物。通过紫外线吸收剂的添加,可抑制聚酰亚胺树脂因紫外线照射而使材料黄变与劣化。
<柔性显示装置覆盖基板>
本发明也提供一种柔性显示装置覆盖基板,包括上述聚酰亚胺薄膜以及装置保护层。装置保护层可由疏水性硬质涂层所形成,配置于聚酰亚胺薄膜的至少一面上。本发明的柔性显示装置覆盖基板的全光线透过率为85%以上,厚度例如是50μm至200μm。疏水性硬质涂层的厚度例如是5μm至30μm,硬度例如是7H至9H。
在本实施例中,疏水性硬质层可涂布于聚酰亚胺薄膜的任一面,并经由紫外光或加热进行固化。疏水性硬质层可利用现有技术的涂布方法制得,包括狭缝涂布、旋转涂布或喷墨印刷方式,但不限于此。在本发明中,疏水性硬质层是由具3个以上反应性官能基的化合物、起始剂(引发剂)、弹性寡聚物(低聚物)、纳米无机改质粒子所组成,亦可在疏水性硬质层中添加蓝色的红外线吸收剂与色相调节剂,以调整覆盖基板的黄色指数YI,色相调节材料可包括蓝色染料、蓝色颜料、吸收波长例如是360nm至430nm且发射波长例如是430nm至530nm的荧光染料或荧光颜料。更详细而言,以疏水性硬质涂层的总重量计,蓝色的红外线吸收剂的含量例如是0.05wt%至0.5wt%。以疏水性硬质涂层的总重量计,蓝色染料或蓝色颜料的含量例如是0.001wt%至0.01wt%。以疏水性硬质涂层的总重量计,荧光染料或荧光颜料的含量例如是0.001wt%至0.5wt%。
上述的具3个以上反应性官能基的化合物的实例包括但不限于二季戊四醇 六丙烯酸酯、季戊四醇三丙烯酸酯(pentaerythritoltriacrylate)、二季戊四醇三丙烯酸酯(dipentaerythritoltriacrylate)、二季戊四醇丙烯酸酯(dipentaerythritolacrylate)、季戊四醇六丙烯酸酯(pentaerythritolhexaacrylate)、三羟甲基丙烷三丙烯酸酯、三甲基烯丙基异三聚氰酸酯、三烯丙基异三聚氰酸酯、四甲基四乙烯基环四硅氧烷、乙氧基化三羟甲基丙烷三丙烯酸酯(TMPEOTA)、丙氧基化甘油三丙烯酸酯(GPTA)、季戊四醇四丙烯酸酯(PETA)、季戊四醇三(甲基)丙烯酸酯、季戊四醇四(甲基)丙烯酸酯、二季戊四醇五(甲基)丙烯酸酯、季戊四醇三(甲基)丙烯酸酯、二季戊四醇五(甲基)丙烯酸酯、三季戊四醇七(甲基)丙烯酸酯。具3个以上反应性官能基的化合物可单独使用,亦可混合2种以上使用,应视需要而定。
起始剂可为光起始剂或热起始剂,可单独使用亦可混合2种以上使用。具3个以上反应性官能基的化合物及起始剂的调配量并无特别限制,一般而言,具3个以上反应性官能基的化合物与起始剂的组成比例为5:1至100:1,且以硬质涂料的总重量计,具3个以上反应官能基的化合物与起始剂的含量例如是10wt%至60wt%。若起始剂的用量在下限值以上,则聚合度保持于一定程度,而使单体所形成的聚合物保有高分子特性。若起始剂的用量在上限值以下,则单体所形成的聚合物无聚合度过高而易脆的问题。若具不饱和键的单体的用量过低,则聚合物的交联程度不足而无法固化。若具不饱和键的单体的比例过高,则聚合物易脆。
适用于本发明的光起始剂包括但不限于:苯乙酮类,如2-甲基-1-(4-(甲基硫醇基)苯基-2-吗林基丙基酮(2-methyl-1-(4-(methylthio)phenyl)-2-morpholino-propane)、1-羟基环己基苯基酮(1-hydroxycyclohexyl phenyl ketone)、二苯乙氧基酮(diethoxyacetophenone)、2-羟基-2-甲基-1-苯基-1-丙酮(2-hydroxy-2-methyl-1-phenylpropane-1-one)、2-甲苯基-2-(二甲基胺基)-1-[4-(吗林基)苯基]-1-丁基-1-酮(2-benzyl-2-(dimethylamino)-1-[4-(morpholinyl)phenyl]-1-butanone)、其他合适的苯乙酮;安息香类,如安息香(benzoin)、安息香甲基醚(benzoin methyl ether)、安息香二甲醚(benzyl dimethyl ketal)、其他合适的安息香;二苯基酮类,如二苯基酮(benzophenone)、4-苯基二苯基酮(4-phenyl benzophenone)、羟基二苯基酮(hydroxyl benzophenone)、或其他合适的二苯基酮;噻吨酮类,如异丙基噻吨酮(isopropyl thioxanthone)、2-氯基噻吨酮(2-chlorothioxanthone)、或其他合适的 噻吨酮;蒽醌类,如2-乙基蒽醌(2-ethylanthraquinone)、或其他合适的蒽醌。上述光起始剂除可单一使用外,亦可混合2种以上使用,应视使用者需求。例如:为得到较快的感光速度,可将异丙基噻吨酮与2-甲苯基-2-(二甲基胺基)-1-[4-(吗林基)苯基]-1-丁基-1-酮混合,当作光起始剂使用。
适用于本发明的热起始剂包括但不限于:偶氮类,如2,2’-偶氮二双(2,4-二甲基正戊腈)(2,2’-azobis(2,4-dimethyl valeronitrile))、二甲基-2,2’-偶氮双(2-丙酸甲酯)(dimethyl-2,2’-azobis(2-methylpropionate))、2,2-偶氮双异丁腈(2,2-azobisisobutyronitrile,AIBN)、2,2-偶氮双(2-甲基异丁腈)(2,2-azobis(2-methylisobutyronitrile))、1,1’-偶氮双(环己烷-1-腈)(1,1’-azobis(cyclohexane-1-carbonitrile))、2,2’-偶氮双[N-2-丙基-2-甲基丙酰胺](2,2’-azobis[N-(2-propenyl)-2-methyl propionamide])、1-[(氰基-1-甲基乙基)-偶氮基]甲酰胺(1-[(cyano-1-methylethyl)azo]formamide)、2,2’-偶氮双(N-丁基-2-甲基丙酰胺)(2,2’-azobis(N-butyl-2-methylpropionamide))、2,2’-偶氮双(N-环己基-2-甲基丙酰胺)(2,2’-azobis(N-cyclohexyl-2-methylpropionamide)、或其他合适的偶氮类起始剂;过氧化物类,如苯甲酰基过氧化物(benzoyl peroxide)、1,1-双(叔丁基过氧基)环己烷(1,1-bis(tert-butylperoxy)cyclohexane)、2,5-双(叔丁基过氧基)-2,5-二甲基环己烷(2,5-bis(tert-butylperoxy)-2,5-dimethylcyclohexane)、2,5-双(叔丁基过氧基)-2,5-二甲基-3-环己炔(2,5-bis(tert-butylperoxy)-2,5-dimethyl-3-cyclohexyne)、双(1-(叔丁基过氧基)-1-甲基乙基)苯(bis(1-(tert-butylpeorxy)-1-methyethyl)benzene)、叔丁基过氧化氢(tert-butyl hydroperoxide)、叔丁基过氧化物(tert-butyl peroxide)、叔丁基过氧基苯甲酸酯(tert-butyl peroxybenzoate)、茴香基过氧化氢(cumene hydroperoxide)、环己酮基过氧化物(cyclohexanone peroxide)、二茴香基过氧化物(dicumyl peroxide)、月桂基过氧化物(lauroyl peroxide)、或其他合适的过氧化物。上述热起始剂除可单一使用外,亦可混合2种以上使用,应视需要而定。
弹性寡聚物可为氨基甲酸酯(甲基)丙烯酸的寡聚物,其可由羟基(甲基)丙烯酸酯与二异氰酸酯反应而成。其中羟基(甲基)丙烯酸酯可由(甲基)丙烯酸酯或丙烯基和多元醇合成得到,而(甲基)丙烯酸酯可为(甲基)丙烯酸甲酯、(甲基)丙烯酸乙酯、(甲基)丙烯酸异丙酯、(甲基)丙烯酸丁酯、(甲基)丙烯酸环己酯)。多元醇可为乙二醇、1,3-丙二醇、一缩二乙二醇、新戊二醇、1,4-丁二醇、1,6-己二醇、1,5-戊烷二醇、三羟甲基丙烷、甘油、1,3,5-三醇、季戊四醇、二季戊 四醇等。而二异氰酸酯可为六亚甲基二异氰酸酯、2,4-甲苯二异氰酸酯、二甲苯二异氰酸酯、三甲基六亚甲苯二异氰酸酯、4-二苯基甲烷二异氰酸酯、1,5-萘二异氰酸酯等。亦可使用氨基甲酸酯(甲基)丙烯酸寡聚物的商品如新中村化学生产的U-2PPA、U10-HA、U10-PA、UA-1100H、UA-15HA、UA-33H、U-200PA、UA-290TM、UA-160TM、UA-122P等。日盛化工生产的UO22-081、UO26-001、UO22-162、UO52-002、UO26-012、UO22-312等。所添加的弹性寡聚物的分子量为500g/mol至5000g/mol,且以硬质涂料的总重量计,含量例如是0.1wt%至10wt%。
经改质的纳米无机粒子可由包含未改质的(未改性的)纳米无机粒子与改质剂(改性剂)的反应成分反应而得。在反应成分中,纳米无机粒子的含量优选为90~98重量%;该改质剂的含量优选为2~10重量%。适用于本发明的纳米无机粒子包括但不限于:二氧化钛、二氧化硅、氧化锆、氧化锌、氧化铝等纳米无机金属氧化粒子。适用于本发明的改质剂可为硅烷偶联剂,其为包含氯硅烷、烷氧硅烷或硅氮烷的有机硅化合物。硅烷偶联剂所含的官能基可包含乙烯基、甲基丙烯酰氧基、丙烯酰氧基、胺基、脲基、氯丙基、巯基、聚硫或异氰酸盐,但不限于此。硅烷偶联剂的实例可包含但不限于:乙烯基三氯硅烷、乙烯基三甲氧基硅烷、乙烯基三乙氧基硅烷、3-甲基丙烯酰氧丙基-甲基二甲氧基硅烷、3-甲基丙烯酰氧丙基-三甲氧基硅烷、3-甲基丙烯酰氧丙基-甲基二乙氧基硅烷、3-甲基丙烯酰氧丙基-三乙氧基硅烷、3-丙烯酰氧丙基三甲氧基硅烷、N-2-胺乙基-3-胺丙基甲基二甲氧基硅烷、N-2-胺乙基-3-胺丙基三甲氧基硅烷、N-2-胺乙基-3-胺丙基三乙氧基硅烷、3-胺丙基三甲氧基硅烷、3-胺丙基三乙氧基硅烷、N-苯基-3-胺丙基三甲氧基硅烷、3-氯丙基三乙氧基硅烷、3-巯基丙基三甲氧基硅烷、双(三乙氧基甲硅烷基丙基)四硫化物、3-异氰酸基丙基三乙氧基硅烷。
经改质的纳米无机粒子与具不饱和键的单体及起始剂的混合物的混合方式并无特别限制,一般可藉由球磨、螺杆、行星式混合或搅拌方式使之均匀混合。以硬质涂料的总重量计,经改质的纳米无机粒子的含量例如是40wt%至80wt%。
以下,藉由实验例来详细说明上述实施例的聚酰亚胺薄膜。然而,下述实验例并非用以限制本发明。
实验例
为了证明本发明的聚酰亚胺薄膜具有良好性能,以下特别作此实验例。
制备聚酰亚胺溶液
合成例1
将8.97g(0.028mole)的2,2’-双(三氟甲基)联苯胺(TFMB)、2.40g(0.012mole)的4,4’-二氨基二苯基醚(ODA)及100g的二甲基乙酰胺(DMAc)置入三颈烧瓶内。于30℃下搅拌至完全溶解后,加入8.8g(0.02mole)的2,2'-双-(3,4-二羧苯基)六氟丙烷二酐(6FDA)与5.88g(0.02mole)的联苯四羧酸二酐(BPDA),接着持续搅拌并于25℃下反应24小时,可得到聚酰胺酸溶液。之后,再添加7.46g(0.06mole)的吡啶及12.252g(0.12mole)的醋酸酐,接着持续搅拌并于室温下反应24小时。反应结束后,以甲醇/水(体积比1:2)溶液进行聚酰亚胺沉淀,并过滤收集粉末且烘干获得聚酰亚胺粉体。最后将粉体溶解于二甲基乙酰胺溶剂中,以形成20wt%聚酰亚胺溶液。
制备聚酰亚胺薄膜
实施例1
取合成例1的聚酰亚胺溶液100克添加0.86克氧化铯钨CsWO 3(粒径50nm,分散于二甲基乙酰胺,浓度为5wt%),经过30分钟的搅拌混合后,刮刀涂布于玻璃基板并置于烘箱进行表干,表干温度为100℃。接着于氮气环境下以红外线波长800nm至3000nm进行10分钟的加热烘烤,即可得到聚酰亚胺薄膜。
实施例2
取合成例1的聚酰亚胺溶液100克添加0.9克普鲁士蓝(粒径20nm,分散于二甲基乙酰胺,浓度为5wt%),经过30分钟的搅拌混合后,刮刀涂布于玻璃基板并置于烘箱进行表干,表干温度为100℃。接着于氮气环境下以红外线波长800nm至3000nm进行10分钟的加热烘烤,即可得到聚酰亚胺薄膜。
实施例3
取合成例1的聚酰亚胺溶液100克添加0.9克氧化钨WO 3(粒径20nm, 分散于二甲基乙酰胺,浓度为5wt%),经过30分钟的搅拌混合后,刮刀涂布于玻璃基板并置于烘箱进行表干,表干温度为100℃。接着于氮气环境下以红外线波长800nm至3000nm进行10分钟的加热烘烤,即可得到聚酰亚胺薄膜。
实施例4
取合成例1的聚酰亚胺溶液100克添加1.68克氧化铯钨CsWO 3(粒径50nm分散于二甲基乙酰胺,浓度为5wt%),经过30分钟的搅拌混合后,刮刀涂布于玻璃基板并置于烘箱进行表干,表干温度为100℃。接着于氮气环境下以红外线波长800nm至3000nm进行10分钟的加热烘烤,即可得到聚酰亚胺薄膜。
实施例5
取合成例1的聚酰亚胺溶液100克添加0.2克氧化铯钨CsWO 3(粒径50nm,分散于二甲基乙酰胺,浓度为5wt%),经过30分钟的搅拌混合后,刮刀涂布于玻璃基板并置于烘箱进行表干,表干温度为100℃。接着于氮气环境下以红外线波长800nm至3000nm进行10分钟的加热烘烤,即可得到聚酰亚胺薄膜。
实施例6
取合成例1的聚酰亚胺溶液100克添加0.9克普鲁士蓝(粒径20nm,分散于二甲基乙酰胺,浓度为5wt%)与0.2g颜料蓝15(粒径100nm分散于二甲基乙酰胺,浓度为0.1wt%),经过30分钟的搅拌混合后,刮刀涂布于玻璃基板并置于烘箱进行表干,表干温度为100℃。接着于氮气环境下以红外线波长800nm至3000nm进行10分钟的加热烘烤,即可得到聚酰亚胺薄膜。
实施例7
取合成例1的聚酰亚胺溶液100克添加0.9克普鲁士蓝(Prussian blue)(粒径20nm,分散于二甲基乙酰胺,浓度为5wt%)与0.2g香豆素7(Coumarin 7)(溶解于甲基乙酰胺,浓度为0.1wt%),经过30分钟的搅拌混合后,刮刀涂布于玻璃基板并置于烘箱进行表干,表干温度为100℃。接着于氮气环境下以红外线波长800nm至3000nm进行10分钟的加热烘烤,即可得到聚酰亚胺薄膜。
比较例1
取合成例1的聚酰亚胺溶液以刮刀涂布于玻璃基板并置于烘箱进行表干,表干温度为100℃。接着于氮气环境下以红外线波长800nm至3000nm进行10分钟的加热烘烤,即可得到聚酰亚胺薄膜。
比较例2
取合成例1的聚酰亚胺溶液100克添加2克氧化铯钨CsWO 3(粒径300nm分散于二甲基乙酰胺,浓度为5wt%),经过30分钟的搅拌混合后,刮刀涂布于玻璃基板并置于烘箱进行表干,表干温度为100℃。接着于氮气环境下以红外线波长800nm至3000nm进行10分钟的加热烘烤,即可得到聚酰亚胺薄膜。
比较例3
取合成例1的聚酰亚胺溶液100克添加1克颜料蓝15(粒径100nm分散于二甲基乙酰胺,浓度为0.1wt%),经过30分钟的搅拌混合后,刮刀涂布于玻璃基板并置于烘箱进行表干,表干温度为100℃。接着于氮气环境下以红外线波长800nm至3000nm进行10分钟的加热烘烤,即可得到聚酰亚胺薄膜。
比较例4
取合成例1的聚酰亚胺溶液100克添加2克氧化铯钨CsWO 3(粒径50nm分散于二甲基乙酰胺,浓度为5wt%),经过30分钟的搅拌混合后,刮刀涂布于玻璃基板并置于烘箱进行表干,表干温度为100℃。接着于氮气环境下以红外线波长800nm至3000nm进行10分钟的加热烘烤,即可得到聚酰亚胺薄膜。
比较例5
取合成例1的聚酰亚胺溶液100克添加0.11克氧化铯钨CsWO 3(粒径50nm分散于二甲基乙酰胺,浓度为5wt%),经过30分钟的搅拌混合后,刮刀涂布于玻璃基板并置于烘箱进行表干,表干温度为100℃。接着于氮气环境下以红外线波长800nm至3000nm进行10分钟的加热烘烤,即可得到聚酰亚胺薄膜。
比较例6
取合成例1的聚酰亚胺溶液以刮刀涂布于玻璃基板并置于烘箱进行表干,表干温度为100℃。接着于氮气环境下以热风烘烤方式加热至280℃,烘烤时间60分钟。
性能评估
厚度测量
利用厚度计接触测量每一个塑胶基板的厚度,再以Alpha Step测量塑胶基板上的硬涂层厚度。
全光光穿透率(%)测定
根据ASTM D1007使用Nippon Denshoku DOH 5500测量覆盖基板的全光光穿透率和雾度。
黄色色度测定
根据ASTM E313使用Nippon Denshoku DOH 5500测量覆盖基板的黄色指数YI值。黄色指数YI是利用分光光度计针对400-700nm的光进行透过率测定而测得三刺激值(x,y,z),并通过下式计算出YI。
YI=100×(1.2769x-1.0592z)/y
IR照射表面温度测量
以波长800nm至3000nm红外光照射聚酰亚胺薄膜表面,测量表面温度变化。
耐化性评价
甲基乙基酮于室温下浸泡聚酰亚胺薄膜,经过1分钟后确认膜面有无白雾,无白雾则判定○,有白雾则判定╳。
前述性能评估的测试结果记录于表1中。
表1
Figure PCTCN2019080843-appb-000002
Figure PCTCN2019080843-appb-000003
从实施例1至实施例5和比较例1结果显示,当添加蓝色的红外线吸收剂于聚酰亚胺薄膜中时,可藉由蓝色的红外线吸收剂在500-700nm间的吸收产生的蓝色而与聚酰亚胺薄膜的黄色进行调色,故再添加不同的蓝色的红外线吸收剂皆能将聚酰亚胺薄膜的黄色指数降低至2以下。且在添加蓝色的红外线吸收剂后,能提升在红外线的吸光能力,如图1所示,进而提升红外线照射的升温效率,故在红外线照射下表面温度可达到280℃以上,随着添加量增加温度有上升的趋势。
从实施例1与比较例2结果显示,当添加蓝色的红外线吸收剂的粒径太大时,会因吸收红外线的能力下降,使光热转换效率降低,导致在相同红外线照射下温度无明显提升,使得聚酰亚胺薄膜的耐溶剂性程度不足。
从实施例4、5与比较例4、5结果显示,当红外线吸收剂浓度低于0.05%时,其聚酰亚胺薄膜的黄色指数大于2,且薄膜经红外线照射下表面温度无法有效提升,与比较例1无添加红外线吸收剂的温度差异不大。而当红外线吸收剂添加量大于0.5%时,虽然能够将聚酰亚胺的黄色指数降至1以下,但也因为红外线吸收剂的可见光吸收原因,导致聚酰亚胺薄膜的透光率小于85%。
从比较例1与比较例6结果显示,当无添加红外线吸收剂的聚酰亚胺薄膜在热风循环烘箱内加热至280℃60分钟,此时的聚酰亚胺薄膜也能承受甲基乙基酮的侵蚀。从亚胺化的角度来看,当聚酰亚胺以热亚胺化进行闭环时,最低的闭环温度为250℃,温度太低则闭环不完全,耐化性会变差。若以化学闭环方式,虽然已经完全亚胺化,然而会因为化学触媒(催化剂)催化下而形成异酰亚胺结构,使得聚酰亚胺的耐化性变差,一般皆需进行热定型步骤,使得异酰亚胺转成酰亚胺结构,提高耐化性。故在红外线加热下,若表面温度无法超过250℃,则聚酰亚胺的耐化性会受影响。
此外,也可添加色相调节剂来调整聚酰亚胺薄膜的黄色指数YI,从实施例6与实施例7显示在加入PB15与Coumarin荧光材料皆能有效降低聚酰亚胺薄膜的黄色指数。但若只添加色相调节剂,因此材料仅具有黄色至橘色吸收,对红外线吸收没有帮助,故在红外线照射下并不会产生光热效应,如图1所示,故薄膜表面温度与未添加的比较例1结果相同。
制备例1
制备硬涂层组合物,均可经由加热硬化或光硬化后形成具高硬度的涂层。硬涂层中经改质的纳米无机粒子藉由以下方式获得:将1重量份的纳米二氧化硅粒子溶液与0.01重量份的3-甲基丙烯酰氧丙基-三甲氧基硅烷混合,并于氮气下加热50℃反应4小时进行改质合成。反应完成降至室温,将1重量份改质完的纳米粒子溶液加入0.133重量份的季戊四醇六丙烯酸酯与0.133重量份的弹性寡聚物UA160-TM搅拌30分钟后,依照所需溶剂进行溶液转相。最后再将1.5重量份的经改质的纳米无机粒子与具不饱和键的单体混合而成的溶液与0.03重量份的2-甲基-1-(4-(甲基硫醇基)苯基-2-吗林基丙基酮,以及0.01重量份流平剂混合,并以溶剂乙酸乙酯调整最终固型份(固体含量)为55%。添加适当浓度的色相调节材料而获得后续实施例及比较例所需的组合物。
实施例8
取上述硬涂层组合物20g,以250rpm旋涂10秒于实施例1所产出的聚酰亚胺薄膜的表面,以80℃软烤5分钟,再于500mJ/cm 2曝光,最后使用180℃硬烤30分钟。
实施例9
取上述硬涂层组合物20g,并添加1g PB15(0.25%混合于乙酸正丁酯,粒径为100nm),经过30分钟的搅拌混合后,以250rpm旋涂10秒于实施例1所产出的聚酰亚胺薄膜的表面,以80℃软烤5分钟,再于500mJ/cm 2曝光,最后使用180℃硬烤30分钟。
实施例10
取上述硬涂层组合物20g,0.11g香豆素1(1%溶于乙酸乙酯),经过30分钟的搅拌混合后,以250rpm旋涂10秒于实施例1所产出的聚酰亚胺薄膜的表面,以80℃软烤5分钟,再于500mJ/cm 2曝光,最后使用180℃硬烤30分钟。
比较例7
取上述硬涂层组合物20g,并添加1g PB15(0.25%混合于乙酸正丁酯,粒径为400nm),经过30分钟的搅拌混合后,以250rpm旋涂10秒于实施例1所产出的聚酰亚胺薄膜的表面,以80℃软烤5分钟,再于500mJ/cm 2曝光,最后使用180℃硬烤30分钟。
铅笔硬度测定
使用电子铅笔硬度测试仪,用三菱测试铅笔以30mm/min的速度在750g的负荷下,在每一个覆盖基板上画五次10mm长的线,再观察表面划痕比对铅笔硬度。
弯曲性能
将覆盖基板贴于折迭测试机(YUASA System U-shape Folding)以R=1mm进行折迭100,000次,先观察覆盖基板有无断裂,接着以肉眼和显微镜观察硬涂层有无裂痕。有任何覆盖基板断裂或硬涂层有裂痕的情况都标记为不合格(X), 没有断裂及裂痕的情况则标记为合格(O)。
将上述性能测试结果表示于以下表2中。
表2
Figure PCTCN2019080843-appb-000004
从实施例9与实施例10显示,可于硬涂层中添加红外线吸收材料与色相调整材料来降低覆盖积板的黄色指数YI,且从实施例9与比较例1结果显示,当色相调整材料粒径越大时(>200nm),因粒径太大在HC中会因为团聚现象而产生缺陷,使得HC整体的强度和表面光滑性受到影响,导致折迭时覆盖基版会产生断裂现象。
综上所述,本发明的聚酰亚胺薄膜包含具有红外线吸收与光热转换效果的红外线吸收剂,因此,可经由红外线照射以提升聚酰亚胺树脂表面温度,进而缩短烘烤时间、降低能源损耗与提高生产速率。此外,红外线吸收剂亦可作为色相调节剂与紫外光吸收剂,可降低透明聚酰亚胺的黄色指数,降低UV长时间照射所产生的黄变,改善外观视觉上的微黄现象。
虽然本发明已以实施例揭露如上,然其并非用以限定本发明,任何所属技术领域的技术人员,在不脱离本发明的精神和范围内,应可作些许的更动与润饰,故本发明的保护范围应视所附权利要求书所界定的范围为准。

Claims (14)

  1. 一种聚酰亚胺薄膜,包括:
    聚酰亚胺;以及
    蓝色的红外线吸收剂,包括氧化铯钨、氧化钨、普鲁士蓝或氧化锡锑。
  2. 如权利要求1所述的聚酰亚胺薄膜,其中所述聚酰亚胺薄膜在波长800nm至4000nm具有吸收峰。
  3. 如权利要求1所述的聚酰亚胺薄膜,其中所述聚酰亚胺薄膜的厚度为10μm至100μm,全光线透过率为85%以上,黄色指数YI小于2。
  4. 如权利要求1所述的聚酰亚胺薄膜,其中所述蓝色的红外线吸收剂的吸收波长为500nm至4000nm,且所述蓝色的红外线吸收剂的热转换效率大于50%。
  5. 如权利要求1所述的聚酰亚胺薄膜,其中所述蓝色的红外线吸收剂的粒径大小为小于100nm。
  6. 如权利要求1所述的聚酰亚胺薄膜,其中以所述聚酰亚胺薄膜的总重量计,所述蓝色的红外线吸收剂的含量为0.05wt%至0.5wt%。
  7. 如权利要求1所述的聚酰亚胺薄膜,还包括色相调节材料,所述色相调节材料包括蓝色染料、蓝色颜料、吸收波长为360nm至430nm且发射波长为430nm至530nm的荧光染料或荧光颜料。
  8. 如权利要求7所述的聚酰亚胺薄膜,其中以所述聚酰亚胺薄膜的总重量计,所述蓝色染料或所述蓝色颜料的含量为0.001wt%至0.01wt%。
  9. 如权利要求7所述的聚酰亚胺薄膜,其中以所述聚酰亚胺薄膜的总重量计,所述荧光染料或所述荧光颜料的含量为0.001wt%至0.5wt%。
  10. 如权利要求1所述的聚酰亚胺薄膜,其中所述蓝色的红外线吸收剂具有色相调节作用。
  11. 一种柔性显示装置覆盖基板,包括:
    如权利要求1至10中任一项所述的聚酰亚胺薄膜;以及
    装置保护层,由疏水性硬质涂层所形成,配置于所述聚酰亚胺薄膜的至少一面上。
  12. 如权利要求11所述的柔性显示装置覆盖基板,其中所述柔性显示装置覆盖基板的全光线透过率为85%以上,厚度为50μm至200μm。
  13. 如权利要求11所述的柔性显示装置覆盖基板,其中所述疏水性硬质涂层的厚度为5μm至30μm,硬度为7H至9H。
  14. 如权利要求11所述的柔性显示装置覆盖基板,其中所述疏水性硬质涂层含有蓝色的红外线吸收剂及色相调节材料,所述色相调节材料包括蓝色染料、蓝色颜料、吸收波长为360nm至430nm且发射波长为430nm至530nm的荧光染料或荧光颜料。
PCT/CN2019/080843 2019-04-01 2019-04-01 聚酰亚胺薄膜及使用其的柔性显示装置覆盖基板 WO2020199085A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/080843 WO2020199085A1 (zh) 2019-04-01 2019-04-01 聚酰亚胺薄膜及使用其的柔性显示装置覆盖基板
US16/619,093 US11359093B2 (en) 2019-04-01 2019-04-01 Polyimide film and flexible display device cover substrate using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/080843 WO2020199085A1 (zh) 2019-04-01 2019-04-01 聚酰亚胺薄膜及使用其的柔性显示装置覆盖基板

Publications (1)

Publication Number Publication Date
WO2020199085A1 true WO2020199085A1 (zh) 2020-10-08

Family

ID=72664500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/080843 WO2020199085A1 (zh) 2019-04-01 2019-04-01 聚酰亚胺薄膜及使用其的柔性显示装置覆盖基板

Country Status (2)

Country Link
US (1) US11359093B2 (zh)
WO (1) WO2020199085A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230032069A (ko) * 2021-08-30 2023-03-07 에스케이이노베이션 주식회사 폴리이미드 필름 형성용 조성물의 제조방법, 이로부터 제조된 폴리이미드 필름 형성용 조성물 및 이의 용도

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013138258A1 (en) * 2012-03-11 2013-09-19 Mark Larson Improved radiation window with support structure
CN106095156A (zh) * 2015-04-29 2016-11-09 三星显示有限公司 显示装置及其制造方法
CN108779381A (zh) * 2015-12-18 2018-11-09 住友金属矿山株式会社 近红外线屏蔽超微粒子分散体、日照屏蔽用中间膜、红外线屏蔽夹层结构体及近红外线屏蔽超微粒子分散体的制造方法
CN208200811U (zh) * 2018-03-14 2018-12-07 武汉依麦德新材料科技有限责任公司 一种聚酰亚胺窗膜
CN109312208A (zh) * 2016-03-16 2019-02-05 住友金属矿山株式会社 近红外线屏蔽材料微粒分散体、近红外线屏蔽体和近红外线屏蔽用夹层结构体、以及它们的制造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020192445A1 (en) * 2001-05-03 2002-12-19 Ezzell Stephen A. Plastic substrate for display applications
JP2008197158A (ja) * 2007-02-08 2008-08-28 Hitachi Chem Co Ltd 感光性樹脂組成物及び硬化体
US20090130451A1 (en) * 2007-11-19 2009-05-21 Tony Farrell Laser-weldable thermoplastics, methods of manufacture, and articles thereof
KR101115075B1 (ko) 2007-12-26 2012-02-28 주식회사 엘지화학 위상차 필름, 이를 포함하는 편광판 및 액정 표시 장치
KR102213882B1 (ko) 2013-04-03 2021-02-08 스미토모 긴조쿠 고잔 가부시키가이샤 열선 차폐막, 열선 차폐 적층 투명기재, 열선 차폐 수지 시트재, 자동차 및 건조물
JP6299559B2 (ja) 2014-10-30 2018-03-28 住友金属鉱山株式会社 熱線遮蔽粒子、熱線遮蔽粒子分散液、熱線遮蔽粒子分散体、熱線遮蔽粒子分散体合わせ透明基材、赤外線吸収透明基材、熱線遮蔽粒子の製造方法
JPWO2017169651A1 (ja) 2016-03-30 2019-02-14 コニカミノルタ株式会社 表示装置表面部材及びその製造方法
TWI635359B (zh) 2017-06-02 2018-09-11 律勝科技股份有限公司 感光性聚醯亞胺樹脂組合物及應用其之覆蓋膜的製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013138258A1 (en) * 2012-03-11 2013-09-19 Mark Larson Improved radiation window with support structure
CN106095156A (zh) * 2015-04-29 2016-11-09 三星显示有限公司 显示装置及其制造方法
CN108779381A (zh) * 2015-12-18 2018-11-09 住友金属矿山株式会社 近红外线屏蔽超微粒子分散体、日照屏蔽用中间膜、红外线屏蔽夹层结构体及近红外线屏蔽超微粒子分散体的制造方法
CN109312208A (zh) * 2016-03-16 2019-02-05 住友金属矿山株式会社 近红外线屏蔽材料微粒分散体、近红外线屏蔽体和近红外线屏蔽用夹层结构体、以及它们的制造方法
CN208200811U (zh) * 2018-03-14 2018-12-07 武汉依麦德新材料科技有限责任公司 一种聚酰亚胺窗膜

Also Published As

Publication number Publication date
US11359093B2 (en) 2022-06-14
US20210171769A1 (en) 2021-06-10

Similar Documents

Publication Publication Date Title
JP5876085B2 (ja) 着色ポリイミド艶消し粉末を組み込んだポリイミドフィルム及びその製造
US9630208B2 (en) Coating composition, coating film, laminate, and process for manufacturing the laminate
JP2019077194A (ja) 樹脂フィルム、積層フィルム、光学部材、表示部材、前面板、及び積層フィルムの製造方法
Wang et al. Synthesis, properties, and anti-reflective applications of new colorless polyimide-inorganic hybrid optical materials
CN105176293B (zh) 超亲水涂料及其制备方法和超亲水涂层及制备方法
WO2007120448A1 (en) Composite transparencies
JP6820354B2 (ja) 塗布組成物、反射防止膜及びその製造方法、積層体、並びに、太陽電池モジュール
WO2020199086A1 (zh) 柔性显示覆盖基板
WO2020199085A1 (zh) 聚酰亚胺薄膜及使用其的柔性显示装置覆盖基板
JP4706820B2 (ja) ブラックマトリックス用黒色着色材料、ブラックマトリックス用黒色組成物、ブラックマトリックス並びにカラーフィルター
TWI776038B (zh) 聚醯亞胺薄膜及使用其的柔性顯示裝置覆蓋基板
CN111849007B (zh) 柔性显示覆盖基板
CN111763428B (zh) 聚酰亚胺薄膜及使用其的柔性显示装置覆盖基板
TWI832356B (zh) 具有多層結構之光學膜以及包括其之顯示裝置
TW202037685A (zh) 柔性顯示覆蓋基板
KR20210085963A (ko) 폴리이미드계 필름
US20240027653A1 (en) Optical Multilayer Structure and Method for Manufacturing the Same
JP2012058506A (ja) 光学材料と酸化スズ微粒子分散液及び酸化スズ微粒子分散塗料並びに光学材料の製造方法、高屈折率膜、帯電防止膜
KR20190059075A (ko) 콜로이드 실리카를 이용한 uv 경화형 친수성 코팅 도막 및 이의 제조방법
Li et al. Effect of titanium dioxide (TiO 2) distribution and minute amounts of carbon black on the opacity of PVDF based white composite films
JP2009242722A (ja) 有色微細着色材及び該有色微細着色材を含有するカラーフィルター用透明着色組成物並びにカラーフィルター
JP2009215380A (ja) 有色微細複合着色材及び該有色微細複合着色材を含有するカラーフィルター用透明着色組成物並びにカラーフィルター
TW202317681A (zh) 柔性顯示覆蓋基板
CN117050444A (zh) 一种光屏蔽红外发射膜及其制备方法和应用
TW202406983A (zh) 聚醯亞胺前驅物組合物及使用彼所形成的光學多層結構體

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19923045

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19923045

Country of ref document: EP

Kind code of ref document: A1