KR20180122414A - 근적외선 차폐 재료 미립자 분산체, 근적외선 차폐체 및 근적외선 차폐용 적층 구조체 및 이들의 제조방법 - Google Patents

근적외선 차폐 재료 미립자 분산체, 근적외선 차폐체 및 근적외선 차폐용 적층 구조체 및 이들의 제조방법 Download PDF

Info

Publication number
KR20180122414A
KR20180122414A KR1020187029409A KR20187029409A KR20180122414A KR 20180122414 A KR20180122414 A KR 20180122414A KR 1020187029409 A KR1020187029409 A KR 1020187029409A KR 20187029409 A KR20187029409 A KR 20187029409A KR 20180122414 A KR20180122414 A KR 20180122414A
Authority
KR
South Korea
Prior art keywords
infrared ray
shielding material
fine particles
tungsten oxide
ray shielding
Prior art date
Application number
KR1020187029409A
Other languages
English (en)
Other versions
KR102371493B1 (ko
Inventor
히로키 나카야마
히로후미 츠네마츠
타케시 초난
Original Assignee
스미토모 긴조쿠 고잔 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=59851718&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=KR20180122414(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 스미토모 긴조쿠 고잔 가부시키가이샤 filed Critical 스미토모 긴조쿠 고잔 가부시키가이샤
Publication of KR20180122414A publication Critical patent/KR20180122414A/ko
Application granted granted Critical
Publication of KR102371493B1 publication Critical patent/KR102371493B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • C01G41/006Compounds containing, besides tungsten, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • C01G41/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3417Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials all coatings being oxide coatings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/04Compounds with a limited amount of crystallinty, e.g. as indicated by a crystallinity index
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/77Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values

Abstract

종래의 기술에 관한 텅스텐 산화물이나 복합 텅스텐 산화물을 포함하는 근적외선 차폐 재료 미립자 분산체, 근적외선 차폐 및 근적외선 차폐용 적층 구제체보다도 뛰어난 근적외선 차폐 기능을 발휘하는 복합 텅스텐 산화물을 포함하는 근적외선 차폐 재료 미립자 분산체, 근적외선 차폐체 및 근적외선 차폐용 적층 구조체, 및 이들의 제조방법을 제공한다. 근적외선 차폐 재료 미립자가 고체 용매에 분산한 근적외선 차폐 재료 미립자이며, 상기 근적외선 차폐 재료 미립자는 육방정의 결정 구조를 포함한 복합 텅스텐 산화물 미립자이며, 상기 복합 텅스텐 산화물 미립자의 격자 정수는 a축과 c축에서 a축이 7.3850Å 이상 7.4186Å 이하, c축이 7.5600Å 이상 7.6240Å 이하이며, 상기 근적외선 차폐 재료 미립자의 입자 지름이 100nm 이하인 근적외선 차폐 재료 미립자 분산체를 제공한다.

Description

근적외선 차폐 재료 미립자 분산체, 근적외선 차폐체 및 근적외선 차폐용 적층 구조체 및 이들의 제조방법
본 발명은 가시광선 영역에 있어 투명하고, 근적외선 영역에서는 흡수를 갖는 근적외선 차폐 재료 미립자 분산체, 근적외선 차폐체 및 근적외선 차폐용 적층 구조체 및 이들의 제조 방법에 관한 것이다.
창문재 등에 사용되는 차광 부재로서 특허 문헌 1에는, 가시광선 영역으로부터 근적외선 영역에 흡수가 있는 카본 블랙, 티탄 블랙 등의 무기 안료, 및, 가시광선 영역에만 강한 흡수가 있는 아닐린 블랙 등의 유기 안료 등을 포함한 흑색계 안료를 함유하는 차광 필름이 제안되고, 특허 문헌 2에는, 알루미늄 등의 금속을 증착한 하프 미러(half mirror) 타입의 차광 부재가 제안되고 있다.
특허 문헌 3에서는, 투명한 유리 기판상에, 기판측에서 제1층으로서 주기율표의 IIIa족, IVa족, Vb족, VIb족 및 VIIb족으로부터 이루어진 군으로부터 선택된 적어도 1종의 금속 이온을 함유하는 복합 텅스텐 산화물막을 설치하고, 상기 제1층상에 제2층으로서 투명 유전체막을 설치하고, 제2층 상에 제3층으로서 주기율표의 IIIa족, IVa족, Vb족, VIb족 및 VIIb족으로 이루어진 군으로부터 선택된 적어도 1종의 금속 이온을 함유하는 복합 텅스텐 산화물막을 설치하고, 또한, 상기 제2층의 투명 유전체막의 굴절률이 상기 제1층 및 상기 제3층의 복합 텅스텐 산화물막의 굴절률보다 낮게 함으로써, 높은 가시광선 투과율 및 양호한 열선 차단 성능이 요구되는 부위에 매우 적합하게 사용할 수 있는 열선 차단 유리가 제안되어 있다.
특허 문헌 4에서는, 특허 문헌 3과 동일한 방법으로, 투명한 유리 기판상에, 기판측에서 제1층으로서 제1 유전체막을 설치하고, 제1층 상에 제2층으로서 텅스텐 산화물막을 설치하고, 제2층 상에 제3층으로서 제2 유전체막을 설치한 열선 차단 유리가 제안되어 있다.
특허 문헌 5에서는, 특허 문헌 3과 동일한 방법으로, 투명한 기판 상에 기판측에서 제1층으로서 동일한 금속 원소를 함유하는 복합 텅스텐 산화물막을 설치하고, 상기 제1층상에 제2층으로서 투명 유전체막을 설치한 열선 차단 유리가 제안되어 있다.
특허 문헌 6에서는, 수소, 리튬, 나트륨 또는 칼륨 등의 첨가재료를 함유하는 삼산화 텅스텐(WO3), 삼산화 몰리브덴(MoO3), 5산화 니오브(Nb2O5), 5산화 탄 탈(Ta2O5), 오산화 바나듐(V2O5) 및 이산화 바나듐(VO2)의 1종 이상으로부터 선택된 금속 산화물막을, CVD법 또는 스프레이법으로 피복되어 250℃ 정도에서 열분해하여 형성된 태양광 차폐 특성을 갖는 태양광 제어 유리 시트가 제안되어 있다.
특허 문헌 7에는, 텅스텐산을 가수분해하여 얻어진 텅스텐 산화물을 사용하여 상기 텅스텐 산화물에, 폴리비닐 피롤리돈이라는 특정 구조의 유기 폴리머를 첨가함으로써, 태양광이 조사되면 광선 중의 자외선이, 상기 텅스텐 산화물에 흡수되어 여기 전자와 홀이 발생하고, 소량의 자외선량에 의해 5가의 텅스텐의 출현량이 현저하게 증가하여, 착색 반응이 빨라짐에 따라 착색 농도가 높아짐과 동시에, 광을 차단하는 것에 의해서 5가 텅스텐이 매우 신속하게 6가로 산화되고, 소색 반응이 빨라지는 특성을 사용하여 태양광에 대한 착색 및 소색 반응이 빠르고, 착색시 근적외역의 파장 1250nm에 흡수 피크가 나타나며, 태양광의 근적외선을 차단할 수 있는 태양광 가변 조광 단열재료가 얻어지는 것이 제안되어 있다.
본 발명자들은 특허 문헌 8에 6염화 텅스텐을 알코올에 용해하고, 그대로 용매를 증발시키거나, 또는 가열 환류한 후 용매를 증발시켜서, 그 후 100℃∼500℃로 가열함으로써, 삼산화 텅스텐 또는 그 수화물 또는 양자의 혼합물로 이루어진 분말을 얻는 것, 상기 텅스텐 산화물 미립자를 사용하여 일렉트로크로믹 소자가 얻어지는 것, 다층의 적층체를 구성하여 막중에 프로톤을 도입했을 때에 상기 막의 광학 특성을 변화시킬 수 있는 것, 등을 제안하고 있다.
특허 문헌 9에는 메타형 텅스텐산 암모늄과 수용성의 각종 금속염을 원료로 하여, 약 300∼700℃로 가열하면서, 그 혼합 수용액의 건고물에 대해서 불활성 가스(첨가량;약 50vol% 이상) 또는 수증기(첨가량; 약 15vol% 이하)를 첨가한 수소 가스를 공급함으로써, MxWO3(M원소는, 알칼리, 알칼리토류, 희토류 등의 금속 원소, 0<x<1)으로 나타내는 각종 텅스텐 브론즈의 제작방법이 제안되어 있다.
본 출원인은 특허 문헌 10에 적외선 재료 미립자가 매체 중에 분산하여 이루어진 적외선 차폐 재료 미립자 분산체로서, 상기 적외선 재료 미립자는 텅스텐 산화물 미립자 또는/및 복합 텅스텐 산화물 미립자를 함유하고, 상기 적외선 재료 미립자의 분산 입자 지름이 1nm 이상 800nm 이하인 적외선 차폐 재료 미립자 분산체를 개시하였다.
특허 문헌 1 JP 2003-029314 A 특허 문헌 2 JP H09-107815 A 특허 문헌 3 JP H08-59300 A 특허 문헌 4 JP H08-12378 A 특허 문헌 5 JP H08-283044 A 특허 문헌 6 JP 2000-119045 A 특허 문헌 7 JP H09-127559 A 특허 문헌 8 JP 2003-121884 A 특허 문헌 9 JP H08-73223 A 특허 문헌 10 WO 2005/037932 A
그러나 본 발명자들의 검토에 의하면 특허 문헌 1∼10에 기재된 제안이나 개시에는 이하와 같은 과제가 있는 것이 판명되었다.
특허 문헌 1에 기재된 흑색계 안료는 가시광선 영역에 큰 흡수가 있다. 이 때문에, 상기 흑색계 안료가 적용된 창문재 등은 색조가 어두워지기 때문에, 사용 방법이 한정된다고 생각되었다.
특허 문헌 2에 기재된 금속 증착막이 적용된 창문재 등은 외관이 하프 미러 형태가 된다. 이 때문에, 상기 금속 증착막이 적용된 창문재 등을 옥외에서 사용한 경우는 반사가 눈부셔 경관상 문제가 있다고 생각되었다.
특허 문헌 3∼5에 기재된 열선 차단재는 주로, 스퍼터링법, 증착법, 이온 도금법 및 화학 기상법(CVD법) 등의 진공 성막 방식에 의한 건식법을 사용한 방법으로 제조되고 있다. 이 때문에, 대형의 제조 장치를 필요로 하여 제조 비용이 높아진다는 과제가 있다.
또, 열선 차단재의 기재가 고온의 플라스마에 노출되거나 성막 후 가열이 필요하거나 하게 된다. 이 때문에, 필름 등의 수지를 기재로 하는 경우에는, 별도로, 설비상, 성막 조건상의 검토를 실시할 필요가 있었다.
또, 이들 특허 문헌 3∼5에 기재된 텅스텐 산화물막이나 복합 텅스텐 산화물막은 다른 투명 유전체막과의 다층막을 형성했을 때에, 소정의 기능을 발휘하는 막이며, 본 발명과는 다른 제안이라고 생각되었다.
특허 문헌 6에 기재된 태양광 제어 피복 유리 시트는 원료를, CVD법, 또는 스프레이법과 열분해법과의 병용에 의해 유리상에 피막 형성하는 것이다. 그러나 전구체가 되는 원료가 고가인 것, 고온으로 열분해하는 것 등의 제약이 있으며, 필름 등의 수지를 기재로 하는 경우에는, 별도로 성막 조건상의 검토를 실시할 필요가 있었다. 또, 2층 이상의 다층막을 형성했을 때에, 소정의 기능을 발휘하는 막이며 본 발명과는 다른 제안이다.
특허 문헌 7∼8에 기재된 태양광 가변 조광 단열재료, 일렉트로크로믹 소자는 자외선이나 전위차에 의해, 막의 색조를 변화시키는 재료이다. 이 때문에, 막의 구조가 복잡하고, 색조 변화가 바람직하지 않은 용도 분야에는 적용이 곤란하다고 생각되었다.
특허 문헌 9에는, 텅스텐 브론즈의 제작 방법이 기재되어 있다. 그러나 상기 문헌에는 얻어진 분체의 입자 직경이나, 광학 특성의 기재가 없다. 이것은 상기 문헌에서 상기 텅스텐 브론즈의 용도가 전해 장치나 연료 전지의 전극 재료나, 유기 합성의 촉매 재료이기 때문이라고 생각된다. 즉, 본 발명과는 다른 제안이라고 생각되었다.
특허 문헌 10은 상술한 과제를 해결하기 위해 이루어진 것이다. 그리고 가시광선을 충분히 투과하여, 하프 미러 형태의 외관을 갖지 않고, 기재로의 성막시에 대대적인 제조 장치를 필요로 하지 않으며, 성막시에 고온 열처리도 불필요하면서, 파장 780nm 이상의 눈에 보이지 않는 근적외선을 효율적으로 차폐하고, 투명하고 색조가 변화하지 않는 근적외선 차폐 재료 미립자, 근적외선 차폐 재료 미립자 분산체, 근적외선 차폐체, 및 근적외선 차폐 재료 미립자와 이의 제조 방법을 제공하는 것이었다. 그러나 근적외선 차폐체의 근적외선 차폐 기능에 대한 시장의 요구는 계속 높아져서 특허 문헌 10에 기재된 텅스텐 산화물 미립자 또는/및 복합 텅스텐 산화물 미립자를 가지고 해도, 상기 시장의 요구를 계속 만족시키는 것은 곤란해진다고 생각되었다.
본 발명은 상술한 상황하에서 이루어진 것이며, 그 해결하려고 하는 과제는 종래의 기술에 관한 텅스텐 산화물이나 복합 텅스텐 산화물을 포함한 근적외선 차폐 재료 미립자 분산체, 근적외선 차폐체 및 근적외선 차폐용 적층 구조체보다, 근적외선 영역의 광을 보다 효율 좋게 차폐하면서, 가시광선 영역의 고투과율을 유지하는 효과를 발휘하는 복합 텅스텐 산화물을 포함한 근적외선 차폐 재료 미립자 분산체, 근적외선 차폐체 및 근적외선 차폐용 적층 구조체, 및 이들의 제조 방법을 제공하는 것이다.
상술의 과제를 해결하기 위해, 본 발명자들은 연구를 실시했다.
일반적으로, 자유전자를 포함한 재료는 태양광선의 영역 주변인 파장 200nm에서 2600nm의 전자파에 대해 플라스마 진동에 의한 반사 흡수 응답을 나타내는 것이 알려졌다. 그리고 상기 재료의 분말을 광의 파장보다 작은 미립자로 하면, 가시광선 영역(파장 380nm에서 780nm)의 기하학 산란이 저감되고, 가시광선 영역의 투명성을 얻을 수 있는 것이 알려졌다. 또한, 본 발명에서 「투명성」이란, 가시광선 영역의 광에 대해서 산란이 적고 투과성이 높다고 하는 의미로 사용하고 있다.
한편, 일반식 WO3-x로 나타내는 텅스텐 산화물이나, 3산화 텅스텐에 Na 등의 양성 원소를 첨가한 이른바 텅스텐 브론즈는 도전성 재료이며, 자유전자를 갖는 재료인 것이 알려졌다. 그리고 이들 재료는 단결정등 의 분석에 의해, 적외선 영역의 광에 대한 자유전자의 응답이 시사되고 있다.
본 발명자들은 근적외선 차폐 재료 미립자인 복합 텅스텐 산화물 미립자에 서 포함되는 결정을 육방정으로 하고, 그 격자 정수에 대해 a축과 c축과의 값을, a축이 7.3850Å 이상 7.4186Å 이하, c축이 7.5600Å 이상 7.6240Å 이하로 하고, 상기 미립자의 입자 지름이 100nm 이하로 하는 구성에 상도하여 본 발명을 완성한 것이다.
즉, 상술의 과제를 해결하기 위한 제1 발명은,
근적외선 차폐 재료 미립자는 고체 매체에 분산한 근적외선 차폐 재료 미립자 분산체이며,
상기 근적외선 차폐 재료 미립자는 육방정의 결정 구조를 포함한 복합 텅스텐 산화물 미립자이며,
상기 복합 텅스텐 산화물 미립자의 격자 정수는 a축이 7.3850Å 이상 7.4186Å 이하, c축이 7.5600Å 이상 7.6240Å 이하이며,
상기 근적외선 차폐 재료 미립자의 입자 지름이 100nm 이하인 것을 특징으로 하는 근적외선 차폐 재료 미립자 분산체이다.
제2 발명은,
상기 복합 텅스텐 산화물 미립자의 격자 정수가 a축이 7.4031Å 이상 7.4111Å 이하, c축이 7.5891Å 이상 7.6240Å 이하인 것을 특징으로 하는 제1 발명에 기재된 근적외선 차폐 재료 미립자 분산체이다.
제3 발명은,
상기 복합 텅스텐 산화물 미립자의 격자 정수가 a축이 7.4031Å 이상 7.4186Å 이하, c축이 7.5830Å 이상 7.5950Å 이하인 것을 특징으로 하는 제1 발명에 기재된 근적외선 차폐 재료 미립자 분산체이다.
제4 발명은,
상기 근적외선 차폐 재료 미립자의 입자 지름이 10nm 이상 100nm 이하인 것을 특징으로 하는 근적외선 차폐 재료 미립자 분산체이다.
제5 발명은,
상기 복합 텅스텐 산화물 미립자가 일반식 MxWyOz(단, M원소는, H, He, 알칼리 금속, 알칼리토류 금속, 희토류 원소, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo, Ta, Re, Be, Hf, Os, Bi, I로부터 선택되는 1종류 이상의 원소이며, W는 텅스텐, O는 산소로, 0.20≤x/y≤0.37, 2.2≤z/y≤3.0)으로 표기되는 것을 특징으로 하는 근적외선 차폐 재료 미립자 분산체이다.
제6 발명은,
상기 M원소가 Cs, Rb로부터 선택되는 1종류 이상의 원소인 것을 특징으로 하는 근적외선 차폐 재료 미립자 분산체이다.
제7 발명은,
상기 근적외선 차폐 재료 미립자의 표면이 Si, Ti, Zr, Al로부터 선택되는 1종류 이상의 원소를 함유하는 산화물로 피복되어 있는 것을 특징으로 하는 근적외선 차폐 재료 미립자 분산체이다.
제8 발명은,
상기 고체 매체가 수지 또는 유리인 것을 특징으로 하는 근적외선 차폐 재료 미립자 분산체이다.
제9 발명은,
상기 수지가 폴리에틸렌 수지, 폴리염화비닐 수지, 폴리염화 비닐리덴 수지, 폴리비닐알코올 수지, 폴리스티렌 수지, 폴리프로필렌 수지, 에틸렌 초산비닐 공중합체, 폴리에스테르 수지, 폴리에틸렌테레프탈레이트 수지, 불소 수지, 아크릴 수지, 폴리카보네이트 수지, 폴리이미드 수지, 폴리비닐부티랄 수지로부터 선택되는 1종류 이상인 것을 특징으로 하는 근적외선 차폐 재료 미립자 분산체이다.
제10 발명은,
제1 내지 제9 발명 중 어느 하나에 기재된 근적외선 차폐 재료 미립자 분산체가 판 형태, 필름 형태, 박막 형태로부터 선택되는 어느 하나로 형성된 것을 특징으로 하는 근적외선 차폐체이다.
제11 발명은,
제1 내지 제9 발명 중 어느 하나에 기재된 근적외선 차폐 재료 미립자 분산체가 판 유리, 플라스틱판, 일사 차폐 기능을 갖는 미립자를 포함한 플라스틱판으로부터 선택되는, 2매 이상의 합판 사이에 존재하고 있는 것을 특징으로 하는 근적외선 차폐용 적층 구조체이다.
제12 발명은,
근적외선 차폐 재료 미립자 분산체의 제조 방법이며,
일반식 MxWyOz(단, M원소는, H, He, 알칼리 금속, 알칼리토류 금속, 희토류 원소, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo, Ta, Re, Be, Hf, Os, Bi, I로부터 선택되는 1 종류 이상의 원소이며, W는 텅스텐, O는 산소이며, 0.20≤x/y≤0.37, 2.2≤z/y≤3.0)으로 표기되는 육방정의 결정 구조를 포함한 복합 텅스텐 산화물을 제조하는 제1 공정과,
상기 제1 공정으로 얻어진 복합 텅스텐 산화물을 기계적으로 분쇄하고, 상기 육방정의 결정 구조에 있어서의 격자 정수에 대해 a축이 7.3850Å 이상 7.4186Å 이하, c축이 7.5600Å 이상 7.6240Å 이하이며, 입자 지름이 100nm 이하인 복합 텅스텐 산화물 미립자를 제조하는 제2 공정과,
제2 공정으로 얻어진 복합 텅스텐 산화물 미립자를, 고체 매체 중에 분산하고, 근적외선 차폐 재료 미립자 분산체를 얻는 제3 공정을 갖는 것을 특징으로 하는 근적외선 차폐 재료 미립자 분산체의 제조 방법이다.
제13 발명은,
상기 제2 공정에서, 육방정의 결정 구조에 있어서의 격자 정수에 대해 a축이 7.4031Å 이상 7.4111Å 이하, c축이 7.5891Å 이상 7.6240Å 이하이며, 입자 지름이 100nm 이하인 복합 텅스텐 산화물 미립자를 제조하는 것을 특징으로 하는 제12의 발명에 기재된 적외선 차폐 재료 미립자 분산체의 제조 방법이다.
제14 발명은,
상기 제2의 공정에서, 육방정의 결정 구조에 있어서의 격자 정수에 대해 a축이 7.4031Å 이상 7.4186Å 이하, c축이 7.5830Å 이상 7.5950Å 이하이며, 입자 지름이 100nm 이하인 복합 텅스텐 산화물 미립자를 제조하는 것을 특징으로 하는 제12 발명에 기재된 적외선 차폐 재료 미립자 분산체의 제조 방법이다.
제15 발명은,
상기 고체 매체가 수지 또는 유리인 것을 특징으로 하는 근적외선 차폐 재료 미립자 분산체의 제조 방법이다.
제16 발명은,
상기 수지가 폴리에틸렌 수지, 폴리염화비닐 수지, 폴리염화비닐리덴 수지, 폴리비닐알코올 수지, 폴리스티렌 수지, 폴리프로필렌 수지, 에틸렌 초산비닐 공중합체, 폴리에스테르 수지, 폴리에틸렌테레프탈레이트 수지, 불소 수지, 아크릴 수지, 폴리카보네이트 수지, 폴리이미드 수지, 폴리비닐부티랄 수지로부터 선택되는 1종류 이상인 것을 특징으로 하는 근적외선 차폐 재료 미립자 분산체의 제조 방법이다.
제17 발명은,
상기 제3의 공정이 상기 근적외선 차폐 재료 미립자 분산체를 판 형태, 필름형태, 박막 형태로부터 선택되는 어느 하나로 성형하는 제4 공정을 포함하는 것을 특징으로 하는 근적외선 차폐 재료 미립자 분산체의 제조 방법이다.
제18 발명은,
상기 제4의 공정이 상기 근적외선 차폐 재료 미립자 분산체를, 기재 표면에 형성하는 공정을 포함하는 것을 특징으로 하는 근적외선 차폐 재료 미립자 분산체의 제조 방법이다.
제19 발명은,
제17 또는 제18 발명에 기재된 어느 하나의 근적외선 차폐 재료 미립자 분산체의 제조 방법으로 얻어진 근적외선 차폐 재료 분산체를, 판유리, 플라스틱, 일사 차폐 기능을 갖는 미립자를 포함한 플라스틱으로부터 선택되는 2매 이상의 대향하는 투명 기재의 사이에 끼우는 제5 공정을 갖는 것을 특징으로 하는 근적외선 차폐용 적층 구조체의 제조 방법이다.
본 발명에 관한 근적외선 차폐 재료 미립자 분산체, 근적외선 차폐체 및 근적외선 차폐용 적층 구조체는 종래의 기술에 관한 근적외선 차폐 재료 미립자 분산체, 근적외선 차폐체 및 근적외선 차폐용 적층 구조체와 비교하여, 근적외선 영역의 광을 보다 효율 좋게 차폐하면서, 가시광선 영역의 고투과율을 유지하는 등, 뛰어난 광학 특성을 발휘했다.
본 발명에 관한 근적외선 차폐 재료 미립자 분산체는 복합 텅스텐 산화물 미립자이며 육방정의 결정 구조를 포함하고, 상기 미립자의 격자 정수는 a축이 7.3850Å 이상 7.4186Å 이하, c축이 7.5600Å 이상 7.6240Å 이하이며, 입자 지름이 100nm 이하인 근적외선 차폐 재료 미립자가, 고체 매체 중에 분산하고 있는 것이다.
또, 본 발명에 관한 근적외선 차폐용 적층 구조체는 본 발명에 관한 근적외선 차폐 재료 미립자 분산체가 판유리, 플라스틱판, 일사 차폐 기능을 갖는 미립자를 포함한 플라스틱판으로부터 선택되는 2매 이상의 합판 사이에 존재하고 있는 것이다.
이하, 본 발명에 대해서, 1. 근적외선 차폐 재료, 2. 근적외선 차폐 재료 미립자의 제조 방법, 3.근적외선 차폐 재료 미립자 분산액, 4. 근적외선 차폐 재료 미립자 분산체, 5. 근적외선 차폐 재료 미립자 분산체의 근적외선 차폐 효과, 6. 근적외선 차폐체, 7. 근적외선 차폐 재료 미립자 분산체 및 근적외선 차폐체의 제조 방법, 8. 근적외선 차폐용 적층 구조체 및 이의 제조 방법, 9.정리의 순서로 상세하게 설명한다.
1. 근적외선 차폐 재료
본 발명에 관한 근적외선 차폐 재료 미립자는 육방정의 결정 구조를 포함한 복합 텅스텐 산화물 미립자이며, 상기 육방정의 복합 텅스텐 산화물의 격자 정수는 a축이 7.3850Å 이상 7.4186Å 이하, c축이 7.5600Å 이상 7.6240Å 이하를 갖는 것이다. 또한, (c축의 격자 정수/a축의 격자 정수)에 관한 비의 값은 1.0221 이상, 1.0289 이하인 것이 바람직하다.
그리고 상기 육방정의 복합 텅스텐 산화물이 상술한 소정의 격자 정수를 취하는 것으로, 이 미립자를 매체에 분산한 근적외선 차폐 재료 미립자 분산체의 광의 투과율에서 파장 350nm∼600nm의 범위에 극대치를 가지고, 파장 800∼2100nm의 범위에 극소치를 갖는 투과율을 발휘하는 것이다. 보다 상세하게, 투과율의 극대치가 생기는 파장역과 극소치가 생기는 파장역에 대해 설명하면, 극대치는 파장 440∼600nm의 영역에 생기고, 극소치는 파장 1150∼2100nm의 영역에 생긴다. 즉, 투과율의 극대치는 가시광선 영역에 생기고, 투과율의 극소치는 근적외선 영역에 생긴다.
육방정의 복합 텅스텐 산화물이 상술한 소정의 격자 정수를 취하는 본 발명에 관한 근적외선 차폐 재료 미립자는 뛰어난 광학적 특성을 발휘하는 상세한 이유는 현재도 연구중이다. 여기서, 본 발명자들은 이하와 같이 연구를 진행시켜 고찰을 실시하였다.
일반적으로, 삼산화 텅스텐(WO3) 중에는 유효한 자유전자가 존재하지 않기 때문에 근적외선 영역의 흡수 반사 특성이 적고, 적외선 차폐 재료로서는 유효하지 않다. 여기서, 삼산화 텅스텐의 텅스텐에 대한 산소의 비율을 3보다 저감하는 것에 의해서, 상기 텅스텐 산화물 중에 자유전자가 생성되는 것이 알려졌지만, 본 발명자들은 상기 텅스텐 산화물에 있어서의 텅스텐과 산소와의 조성 범위의 특정 부분에서, 근적외선 차폐 재료로서 특히 유효한 범위가 있다는 것을 찾아냈다.
상기 텅스텐과 산소와의 조성 범위는 텅스텐에 대한 산소의 조성비가 3 이하이며, 또, 상기 텅스텐 산화물을 WyOz라고 표기했을 때, 2.2≤z/y≤2.999인 것이 바람직하다. 이 z/y의 값이, 2.2 이상이면, 상기 텅스텐 산화물 중에 목적 이외인 WO2의 결정상이 나타나는 것을 회피할 수 있음과 동시에, 재료로서의 화학적 안정성을 얻을 수 있으므로, 유효한 근적외선 차폐 재료로서 적용할 수 있기 때문이다.한편, 이 z/y의 값이, 2.999 이하이면, 상기 텅스텐 산화물 중에 필요하게 되는 양의 자유전자가 생성되고 효율좋게 근적외선 차폐 재료가 된다.
또, 상기 텅스텐 산화물을 미립자화한 텅스텐 산화물 미립자에서, 일반식 WyOz로 표기했을 때, 2.45≤z/y≤2.999로 나타내는 조성비를 갖는 소위 「마그넬리상」은 화학적으로 안정하며, 근적외선 영역의 흡수 특성도 좋기 때문에, 근적외선 차폐 재료로서 바람직하다.
또한, 상기 텅스텐 산화물에, M원소를 첨가하여 복합 텅스텐 산화물로 하는 것도 바람직하다. 상기 구성을 채용하는 것으로, 복합 텅스텐 산화물 중에 자유전자가 생성되어 근적외선 영역에 자유전자 유래의 흡수 특성이 발현하여 파장 1000nm 부근의 근적외선 흡수 재료로서 유효가 되기 때문이다.
여기서, M원소가 첨가된 상기 복합 텅스텐 산화물에 있어서의, 안정성의 관점에서 M원소는 H, He, 알칼리 금속, 알칼리토류 금속, 희토류 원소, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo, Ta, Re, Be, Hf, Os, Bi, I로부터 선택되는 1종류 이상의 원소인 것이 보다 바람직하다.
상기 복합 텅스텐 산화물에 대해, 상술한 산소량의 제어와 자유전자를 생성하는 원소의 첨가를 병용하는 것으로, 보다 효율이 좋은 근적외선 차폐 재료를 얻을 수 있다. 이 산소량의 제어와 자유전자를 생성하는 원소의 첨가를 병용한 근적외선 차폐 재료의 일반식을 MxWyOz(단, M원소는 상기 M원소, W는 텅스텐, O는 산소)라고 기재했을 때, 0.001≤x/y≤1, 바람직하게는 0.20≤x/y≤0.37의 관계를 만족한다.
여기서, M원소가 첨가된 상기 MxWyOz에 있어서의, 안정성의 관점에서는 M원소는, 알칼리 금속, 알칼리토류 금속, 희토류 원소, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo, Ta, Re로부터 선택되는 1종류 이상의 원소인 것이 보다 바람직하고, 근적외선 차폐 재료로서의 광학 특성, 내후성을 향상시키는 관점에서는, 상기 M원소에서 알칼리 금속, 알칼리토류 금속 원소, 전이 금속 원소, 4B족 원소, 5B족 원소에 속하는 것이 더욱 바람직하다.
이어서, 산소량의 제어를 나타내는 z/y의 값에 대해 설명한다. z/y의 값에 대해서는, MxWyOz로 표기되는 적외선 차폐 재료에서도, 상술한 WyOz로 표기되는 근적외선 차폐 재료와 같은 기구가 작용하는 것에 더하여 z/y=3.0에서도, 상술한 M원소의 첨가량에 의한 자유전자의 공급이 있기 때문에, 2.2≤z/y≤3.0이 바람직하다.
또한, 상술한 복합 텅스텐 산화물 미립자가 육방정의 결정 구조를 갖는 경우, 상기 미립자의 가시광선 영역의 투과율이 향상하여 근적외 영역의 흡수가 향상된다. 이 육방정의 결정 구조에서, WO6단위로 형성되는 8면체가 6개 집합하여 육각형의 공극(터널)이 구성되며, 상기 공극 중에 M원소가 배치되어 1개의 단위를 구성하고, 이 1개의 단위가 다수 집합하여 육방정의 결정 구조를 구성한다.
본 발명에 관한, 가시광선 영역의 투과를 향상시켜서 근적외 영역의 흡수를 향상시키는 효과를 얻기 위해서는, 복합 텅스텐 산화물 미립자 중에, 단위 구조(WO 6단위로 형성되는 8면체가 6개 집합하여 육각형의 공극이 구성되고, 상기 공극 중에 M원소가 배치한 구조)가 포함되어 있으면 된다.
이 육각형의 공극에 M원소의 양이온이 첨가되어 존재할 때, 근적외선 영역의 흡수가 향상된다. 여기서, 일반적으로는, 이온 반경이 큰 M원소를 첨가했을 때 상기 육방정이 형성되며, 구체적으로는, Cs, Rb, K, Tl, In, Ba, Li, Ca, Sr, Fe, Sn로부터 선택되는 1종류 이상을 첨가했을 때 육방정이 형성되기 쉬워 바람직하다.
또한, 이들 이온 반경이 큰 M원소 중에서도 Cs, Rb로부터 선택되는 1종류 이상을 첨가한 복합 텅스텐 산화물 미립자에서는, 근적외선 영역의 흡수와 가시광선 영역의 투과와의 양립을 달성할 수 있다.
M원소로서 Cs를 선택한 Cs텅스텐 산화물 미립자의 경우, 그 격자 정수는 a축이 7.4031Å 이상 7.4186 이하, c축이 7.5750Å 이상 7.6240Å 이하인 것이 바람직하다.
M원소로서 Rb를 선택한 Rb텅스텐 산화물 미립자의 경우, 그 격자 정수는 a축이 7.3850Å 이상 7.3950 이하, c축이 7.5600 이상 7.5700Å 이하인 것이 바람직하다.
M원소로서 Cs와 Rb를 선택한 CsRb 텅스텐 산화물 미립자의 경우, 그 격자 정수는, a축이 7.3850Å 이상 7.4186Å 이하, c축이 7.5600Å 이상 7.6240Å 이하인 것이 바람직하다.
또한, M원소가 상기 Cs나 Rb로 한정되는 것은 아니다. M원소가 Cs나 Rb 이외의 원소라도, WO6단위로 형성되는 육각형의 공극에 첨가 M원소로서 존재하면 된다.
육방정의 결정 구조를 갖는 복합 텅스텐 산화물 미립자가 균일한 결정 구조를 가질 때, 첨가 M원소의 첨가량은, 0.001≤x/y≤1, 바람직하게는 0.2≤x/y≤0.5, 더욱 바람직하게는 0.20≤x/y≤0.37, 가장 바람직하게는 x/y=0.33이다. 이것은, 이론상 z/y=3 때, x/y=0.33이 되는 것으로, 첨가 M원소가 육각형의 공극의 모두에 배치된다고 생각되기 때문이다.
여기서, 본 발명자들은 복합 텅스텐 산화물 미립자의 근적외선 차폐 기능을 더욱 향상시키는 것을 생각하고 검토를 거듭하여, 함유되는 자유전자의 양을 보다 증가시키는 구성에 상도하였다.
즉, 상기 자유전자량을 증가시키는 방책으로서 상기복합 텅스텐 산화물 미립자에 기계적인 처리를 더해서 포함되는 육방정에 적당한 뒤틀림이나 변형을 부여하는 것에 상도한 것이다. 상기 적당한 뒤틀림이나 변형이 부여된 육방정에서는, 결정자 구조를 구성하는 원자에 있어서의 전자 궤도의 중복 상태가 변화하여 자유전자의 양이 증가하는 것이라고 생각된다.
따라서, 소성 공정에 의해 생성한 복합 텅스텐 산화물의 입자로부터 근적외선 차폐 재료 미립자 분산액을 제조할 때의 분산 공정에서, 복합 텅스텐 산화물의 입자를 소정 조건하에서 분쇄하는 것으로써 결정 구조로 뒤틀림이나 변형을 부여하여 자유전자량을 증가시켜서 복합 텅스텐 산화물 미립자의 근적외선 차폐 기능을 더욱 향상시키는 것을 연구했다.
그리고 상기 연구로부터, 소성 공정을 거쳐 생성한 복합 텅스텐 산화물의 입자에 대해서 각각의 입자에 주목했다. 그러자, 상기 각각의 입자 사이에서, 격자 정수도, 구성 원소 조성도, 각각 격차가 생기고 있는 것을 지견했다.
새로운 연구의 결과, 상기 각각의 입자 간에 있어서의 격자 정수나 구성 원소 조성의 격차에도 관계없이, 최종적으로 얻어지는 복합 텅스텐 산화물 미립자에 서, 그 격자 정수가 소정의 범위 내에 있으면, 소망한 광학 특성을 발휘하는 것을 지견했다.
상술한 지견을 얻은 본 발명자들은 또한, 상기 복합 텅스텐 산화물 미립자의 결정 구조에 있어서의 격자 정수인 a축과 c축을 측정하는 것에 의해서, 상기 미립자의 결정 구조의 뒤틀림이나 변형의 정도를 파악하면서, 상기 미립자가 발휘하는 광학적 특성에 대해 연구했다.
그리고 상기 연구의 결과, 육방정의 복합 텅스텐 산화물 미립자에서, a축이 7.3850Å 이상 7.4186Å 이하, c축이 7.5600Å 이상 7.6240Å 이하일 때, 상기 미립자는 파장 350nm∼600nm의 범위에 극대치를 가지며, 파장 800nm∼2100nm의 범위에 극소치를 갖는 광의 투과율을 나타내고, 뛰어난 근적외선 차폐 효과를 발휘하는 근적외선 차폐 재료 미립자라는 지견을 얻어 본 발명을 완성했다.
또한, 본 발명에 관한 근적외선 차폐 재료 미립자의 a축이 7.3850Å 이상 7.4186Å 이하, c축이 7.5600Å 이상 7.6240Å 이하를 갖는 육방정의 복합 텅스텐 산화물 미립자에서 M원소의 첨가량을 나타내는 x/y의 값이 0.20≤x/y≤0.37의 범위내에 있을 때, 특별히 뛰어난 근적외선 차폐 효과를 발휘하는 것도 지견했다.
구체적으로는, 본 발명에 관한 근적외선 차폐 재료 미립자를 고체 매체에 분산시키고, 파장 550nm로의 투과율을 70% 이상으로 한 근적외선 차폐 재료 미립자 분산체는 파장 350nm∼600nm의 범위에 극대치를 가지며, 파장 800nm∼2100nm의 범위에 극소치를 갖는 투과율을 나타냈다. 그리고 상기 근적외선 차폐 재료 미립자 분산체는 상술한 투과율의 극대치와 극소치를 백분율로 표현했을 때, 극대치(%)-극소치(%)≥69(포인트), 즉, 상기 극대치와 극소치와의 차이를 백분율로 표기했을 때, 69포인트 이상의 특별히 뛰어난 광학적 특성을 발휘하는 것을 지견했다.
또, 본 발명에 관한 근적외선 차폐 재료 미립자는 그 입자 지름이 100nm 이하의 것이다. 그리고 보다 뛰어난 적외선 차폐 특성을 발휘시키는 관점에서 상기 입자 지름은 10nm 이상 100nm 이하인 것이 바람직하고, 보다 바람직하게는 10nm 이상 80nm 이하, 더욱 바람직하게는10nm 이상 60nm 이하, 가장 바람직하게는 10nm 이상 40nm 이하이다. 입자 지름이 10nm 이상 40nm 이하의 범위이면, 가장 뛰어난 적외선 차폐 특성이 발휘된다.
여기서, 입자 지름은 응집하고 있지 않은 개개의 근적외선 차폐 재료 미립자가 갖는 지름의 평균치이며, 후술하는 근적외선 차폐 재료 미립자 분산체에 포함되는 근적외선 차폐 재료 미립자의 평균 입자 지름이다.
한편, 입자 지름은 복합 텅스텐 산화물 미립자의 응집체의 지름을 포함하는 것이 아니고, 분산 입자 지름과는 다른 것이다.
또한, 평균 입자 지름은 근적외선 차폐 재료 미립자의 전자현미경상으로부터 산출된다.
근적외선 차폐 재료 미립자 분산체에 포함되는 복합 텅스텐 산화물 미립자의 평균 입자 지름은 단면 가공으로 꺼낸 복합 텅스텐 산화물 미립자 분산체의 박편화 시료의 투과형 전자현미경상으로부터, 복합 텅스텐 산화물 미립자 100개의 입자 지름을 화상 처리 장치를 사용하여 측정하고 그 평균값을 산출하는 것으로 구할 수 있다. 상기 박편화 시료를 꺼내기 위한 단면 가공에는, 마이크로톰, 크로스 섹션 폴리셔, 집속(集束) 이온 빔(FIB) 장치 등을 사용할 수 있다. 또한, 근적외선 차폐 재료 미립자 분산체에 포함되는 복합 텅스텐 산화물 미립자의 평균 입자 지름이란, 매트릭스인 고체 매체 중에서 분산하고 있는 복합 텅스텐 산화물 미립자의 입자 지름의 평균값이다.
또, 뛰어난 적외선 차폐 특성을 발휘시키는 관점에서, 복합 텅스텐 산화물 미립자의 결정자 지름은 10nm 이상 100nm 이하인 것이 바람직하고, 보다 바람직하게는 10nm 이상 80nm 이하, 더욱 바람직하게는 10nm 이상 60nm 이하, 가장 바람직하게는 10nm 이상 40nm 이하이다. 결정자 지름이 10nm 이상 40nm 이하의 범위이면, 가장 뛰어난 적외선 차폐 특성이 발휘되기 때문이다.
또한, 후술하는 해쇄 처리, 분쇄 처리 또는 분산 처리를 거친 후에 얻어지는 복합 텅스텐 산화물 미립자 분산액 중에 포함되는 복합 텅스텐 산화물 미립자의 격자 정수나 결정자 지름은, 상기 복합 텅스텐 산화물 미립자 분산액으로부터 휘발 성분을 제거하여 얻어진 복합 텅스텐 산화물 미립자나, 상기 복합 텅스텐 산화물 미립자 분산액으로부터 얻어지는 근적외선 차폐 재료 미립자 분산체 내에 포함되는 복합 텅스텐 산화물 미립자에서도 유지된다.
그 결과, 본 발명에 관한 복합 텅스텐 산화물 미립자 분산액이나 복합 텅스텐 산화물 미립자를 포함한 근적외선 차폐 재료 미립자 분산체에서도 본 발명의 효과는 발휘된다.
또, 근적외선 차폐 재료 미립자로서의 복합 텅스텐 산화물 미립자에 대해서는, 비정질(amorphous)상의 체적 비율이 50% 이하인 단결정인 것이 바람직하다.
복합 텅스텐 산화물 미립자가 비정질상의 체적 비율 50% 이하인 단결정이면, 격자 정수를 상술한 소정의 범위 내로 유지하면서, 결정자 지름을 10nm 이상 100nm 이하로 할 수 있기 때문이다.
이것에 대해, 복합 텅스텐 산화물 미립자에 대해 입자 지름이 100nm 이하이면, 비정질상이 체적 비율로 50%를 넘어 존재하는 경우나, 상기 미립자가 다결정의 경우, 격자 정수를 상술한 소정의 범위 내로 유지할 수 없는 경우가 있다. 이 경우, 상술한 파장 350nm∼600nm의 범위에 존재하는 광의 투과율 극대치와 파장 800nm∼2100nm의 범위에 존재하는 광의 극소치를 백분율로 표현했을 때, 상기 극대치와 극소치와의 차이에 대해 69포인트 이상을 담보할 수 없다. 그 결과, 근적외선 흡수 특성이 불충분해져서 근적외선 차폐 특성의 발현이 불충분해진다.
또한, 복합 텅스텐 산화물 미립자가 단결정인 것은, 투과형 전자현미경 등에 의한 전자현미경상에서, 각 미립자 내부에 결정 입계가 관찰되지 않고, 한결같은 격자무늬만이 관찰되는 것으로부터 확인할 수 있다. 또, 복합 텅스텐 산화물 미립자에 대해 비정질상의 체적 비율이 50% 이하인 것은, 동일한 투과형 전자현미경상에서, 미립자 전체에 한결같은 격자무늬가 관찰되어 격자무늬가 불명료한 개소가 대부분 관찰되지 않는 것으로부터 확인할 수 있다.
또한, 비정질상은 각 미립자 외주부에 존재하는 경우가 많기 때문에, 각 미립자 외주부에 주목하는 것으로, 비정질상의 체적 비율을 산출 가능한 경우가 많다. 예를 들면, 진구 형태의 복합 텅스텐 산화물 미립자에서, 격자무늬가 불명료한 비정질상이 상기 미립자 외주부에 층상에 존재하는 경우, 그 입자 지름의 10% 이하의 두께이면, 상기 복합 텅스텐 산화물 미립자에 있어서의 비정질상의 체적 비율은 50% 이하이다.
한편, 복합 텅스텐 산화물 미립자가 근적외선 차폐 재료 미립자 분산체를 구성하는 수지 등의 고체 매체의 매트릭스 중에서 분산하고 있는 경우, 상기 분산하고 있는 복합 텅스텐 산화물 미립자의 평균 입자 지름으로부터 결정자 지름을 뺀 값이, 상기 평균 입자 지름의 20% 이하면, 상기 복합 텅스텐 산화물 미립자는 비정질상의 체적 비율 50% 이하의 단결정이다고 말할 수 있다.
이상으로부터, 복합 텅스텐 산화물 미립자 분산체에 분산된 복합 텅스텐 산화물 미립자의 평균 입자 지름으로부터 결정자 지름을 뺀 값이, 상기 평균 입자 지름의 값의 20% 이하가 되도록, 복합 텅스텐 산화물 미립자의 합성 공정, 분쇄 공정, 분산 공정을 제조 설비에 따라 적절히 조정하는 것이 바람직하다.
또, 본 발명의 적외선 차폐 재료를 구성하는 미립자의 표면이, Si, Ti, Zr, Al의 1종류 이상을 함유하는 산화물로 피복되고 있는 것은, 상기 적외선 차폐 재료의 내후성의 향상의 관점에서 바람직하다.
또, 본 발명에 관한 복합 텅스텐 산화물 미립자를 함유하는 근적외선 차폐 재료 미립자 분산체는 근적외선 영역, 특히 파장 1000nm 부근의 광을 크게 흡수하기 때문에, 그 투과 색조는 청색계에서부터 녹색계가 되는 것이 많다. 상기 근적외선 차폐 재료 미립자의 분산 입자 지름은 그 사용 목적에 의해서 각각 선정할 수 있다. 우선, 투명성을 유지한 응용에 사용하는 경우는, 800nm 이하의 분산 입자 지름을 갖고 있는 것이 더욱 바람직하다. 이것은 분산 입자 지름이 800nm보다 작은 입자는 산란에 의해 광을 완전하게 차폐하는 일이 없고, 가시광선 영역의 시인성을 유지하여, 동시에 효율 좋게 투명성을 유지할 수 있기 때문이다. 특히 가시광선 영역의 투명성을 중시하는 경우는, 또한 입자에 의한 산란을 고려하는 것이 바람직하다.
또한, 상술한 근적외선 차폐 재료 미립자의 분산 입자 지름이란, 복합 텅스텐 산화물 미립자의 응집체의 지름을 포함한 개념이며, 상술한 본 발명에 관한 근적외선 차폐 재료 미립자의 입자 지름과는 다른 개념이다.
이 입자에 의한 산란의 저감을 중시할 때, 분산 입자 지름은 바람직하게는200nm 이하, 보다 바람직하게는 10nm 이상 200nm 이하가 좋고, 더욱 바람직하게는10nm 이상 100nm 이하이다. 상기 이유는 분산 입자 지름이 작으면, 기하학 산란 또는 미-산란에 의한, 파장 400nm∼780nm의 가시광선 영역의 광의 산란이 저감되는 결과, 적외선 차폐 막이 젖광 유리와 같이 되어, 선명한 투명성을 얻을 수 없게 되는 것을 회피할 수 있기 때문이다. 즉, 분산 입자 지름이 200nm 이하가 되면, 상기 기하학 산란 또는 미-산란이 저감되어 레일리 산란 영역이 된다. 레일리 산란 영역에서는 산란광은 분산 입자 지름의 6승에 비례하기 때문에, 분산 입자 지름의 감소에 수반하여 산란이 저감되어 투명성이 향상하기 때문이다. 또한, 분산 입자 지름이 100nm 이하가 되면 산란광은 매우 적게 되어 바람직하다. 광의 산란을 회피하는 관점에서는, 분산 입자 지름이 작은 것이 바람직하고, 분산 입자 지름이 10nm 이상 있으면 공업적인 제조는 용이하다.
상기 분산 입자 지름을 800nm 이하로 함으로써, 근적외선 차폐 재료 미립자를 매체 중에 분산시킨 근적외선 차폐 재료 미립자 분산체의 헤이즈값은 가시광선 투과율 85% 이하로 헤이즈를 10% 이하로 할 수 있다. 특히, 분산 입자 지름을 100nm 이하로 함으로써, 헤이즈를 1% 이하로 할 수 있다.
또한, 근적외선 차폐 재료 미립자 분산체의 광의 산란은 근적외선 차폐 재료 미립자의 응집을 고려할 필요가 있고, 분산 입자 지름으로 검토할 필요가 있다.
또한 상기 미립자를 적당한 매체 중 또는 매체 표면에 분산시켜 제조한 근적외선 차폐막은, 스퍼터링법, 증착법, 이온 도금법 및 화학 기상법(CVD법) 등의 진공 성막법 등의 건식법으로 제작한 막이나 CVD법이나 스프레이법으로 제작한 막과 비교하여 광의 간섭 효과를 사용하지 않고도, 태양광선, 특히 근적외선 영역의 광을 보다 효율 좋게 흡수하고, 동시에 가시광선 영역의 광을 투과시키는 것을 지견 한 것이다.
2.근적외선 차폐 재료 미립자의 제조 방법
본 발명에 관한 상기 일반식 MxWyOz로 표기되는 복합 텅스텐 산화물 미립자는 텅스텐 산화물 미립자의 출발 원료인 텅스텐 화합물을, 환원성 가스 분위기 또는 환원성 가스와 불활성 가스와의 혼합 가스 분위기 중, 또는, 불활성 가스 분위기 중에서 열처리하는 고상 반응법으로 제조할 수 있다. 상기 열처리를 거쳐서 소정의 입자 지름이 되도록 분쇄 처리 등으로 미립자화되어 얻어지는 복합 텅스텐 산화물 미립자는 충분한 근적외선 흡수력을 가지며, 근적외선 차폐 미립자로서 바람직한 성질을 갖고 있다.
본 발명에 관한 상기 일반식 MxWyOz로 표기되는 복합 텅스텐 산화물 미립자를 얻기 위한 출발 원료에는 삼산화 텅스텐 분말, 이산화 텅스텐 분말, 또는 텅스텐 산화물의 수화물, 또는, 6염화 텅스텐 분말, 또는 텅스텐산 암모늄 분말, 또는, 6염화 텅스텐을 알코올 중에 용해시킨 후 건조하여 얻어지는 텅스텐 산화물의 수화물 분말, 또는, 6염화 텅스텐을 알코올 중에 용해시킨 후 물을 첨가하여 침전시키고 이것을 건조하여 얻어진 텅스텐 산화물의 수화물 분말, 또는 텅스텐산암모늄 수용액을 건조하여 얻어진 텅스텐 화합물 분말, 금속 텅스텐 분말로부터 선택된 어느 1종류 이상의 분말과, 상기 M원소를 함유하는 단체 또는 화합물의 분말을 0.20≤x/y≤0.37의 비율로 혼합한 분말을 사용할 수 있다.
또한, 상기 복합 텅스텐 산화물 미립자를 얻기 위한 출발 원료인 텅스텐 화합물이 용액 또는 분산액이면 각 원소는 용이하게 균일 혼합 가능해진다.
상기 관점으로부터, 복합 텅스텐 산화물 미립자의 출발 원료가, 6염화 텅스텐의 알코올 용액 또는 텅스텐산 암모늄 수용액과, 상기 M원소를 함유하는 화합물의 용액을 혼합한 후 건조한 분말인 것이 더욱 바람직하다.
동일한 관점에서 복합 텅스텐 산화물 미립자의 출발 원료가 6염화 텅스텐을 알코올 중에 용해시킨 후, 물을 첨가하여 침전을 생성시킨 분산액과, 상기 M원소를 함유하는 단체 또는 화합물의 분말, 또는 상기 M원소를 함유하는 화합물의 용액을 혼합한 후, 건조한 분말인 것도 바람직하다.
상기 M원소를 함유하는 화합물로서는, M원소의 텅스텐산염, 염화물염, 질산염, 황산염, 옥살산염, 산화물, 탄산염, 수산화물 등을 들 수 있지만, 이들로 한정되지 않고, 용액상태가 되는 것이면 좋다. 또한, 상기 복합 텅스텐 산화물 미립자를 공업적으로 제조하는 경우에, 텅스텐 산화물의 수화물 분말이나 삼산화 텅스텐과 M원소의 탄산염이나 수산화물을 사용하면, 열처리 등의 단계에서 유해한 가스 등이 발생하는 것이 없어 바람직한 제조법이다.
여기서, 복합 텅스텐 산화물 미립자에 대한 환원성 분위기 중, 또는, 환원성 가스와 불활성 가스와의 혼합 가스 분위기 중에 있어서의 열처리 조건에 대해 설명한다.
우선 출발 원료를, 환원성 가스 분위기 중, 또는, 환원성 가스와 불활성 가스와의 혼합 가스 분위기 중에서 열처리한다. 이 열처리 온도는 복합 텅스텐 산화물 미립자가 결정화하는 온도보다 높은 것이 바람직하다. 구체적으로는, 500℃ 이상 1000℃ 이하가 바람직하고, 500℃ 이상 800℃ 이하가 보다 바람직하다. 소망에 의해, 또한, 불활성 가스 분위기 중에서 500℃ 이상 1200℃ 이하의 온도로 열처리할 수도 있다.
또, 환원성 가스는 특별히 한정되지 않지만 H2가 바람직하다. 또, 환원성 가스로서 H2를 사용하는 경우, 그 농도는 소성온도와 출발 원료의 물량에 따라 적절히 선택하면 되고 특별히 한정되지 않는다. 예를 들면, 20vol% 이하, 바람직하게는 10vol% 이하, 보다 바람직하게는 7vol% 이하이다. 환원성 가스의 농도가 20vol% 이하이면, 급속한 환원에 의한 일사 차폐 기능을 갖지 않는 WO2가 생성하는 것을 회피할 수 있기 때문이다.
상기 열처리에 의해, 복합 텅스텐 산화물에 대해 2.2≤z/y≤3.0으로 한다.
한편, 복합 텅스텐 산화물의 제조 방법은 고상 반응법으로 한정되지 않는다. 적절한 제조 조건을 설정함으로써 열플라스마법에서도 제조할 수 있다. 상기 적절하게 설정해야 할 제조 조건으로서 예를 들면, 열플라스마 중에 원료 공급할 때의 공급 속도, 원료 공급에 사용하는 캐리어 가스의 유량, 플라스마 영역을 유지하는 플라스마 가스의 유량, 및, 플라스마 영역의 바로 외측에 흐르는 쉬스 가스(sheath gas)의 유량 등을 들 수 있다.
이상 설명한, 복합 텅스텐 산화물이나 복합 텅스텐 산화물 입자를 얻는 열처리 공정을 본 발명에 관한 제1 공정이라고 기재하는 경우가 있다.
상술의 공정에서 얻어진 근적외선 차폐 재료 미립자의 표면을 Si, Ti, Zr, Al로부터 선택되는 1종류 이상의 금속을 함유하는 산화물로 피복 하는 것은 내후성의 향상의 관점에서 바람직하다. 피복 방법은 특별히 한정되지 않지만, 상기 근적외선 차폐 재료 미립자를 분산한 용액 중에, 상기 금속의 알콕시드를 첨가하는 것으로, 근적외선 차폐 재료 미립자의 표면을 피복하는 것이 가능하다.
복합 텅스텐 산화물의 벌크체나 입자의 미립자화는 후술하는 근적외선 차폐 재료 미립자 분산액을 거칠 수도 있다. 상기 근적외선 차폐 재료 미립자 분산액으로부터 복합 텅스텐 산화물 미립자를 얻으려면, 공지의 방법으로 용매를 제거하면 된다.
또, 복합 텅스텐 산화물의 벌크체나 입자의 미립자화는 제트 밀 등을 사용하는 건식의 미립자화도 가능하다. 다만, 건식의 미립자화라도 얻어지는 복합 텅스텐 산화물의 입자 지름, 결정자 지름, 격자 정수의 a축 길이나 c축 길이를 부여할 수 있는, 분쇄 조건(미립자화 조건)을 정하는 것은 물론이다. 예를 들면, 제트 밀을 사용한다면, 적절한 분쇄 조건이 되는 풍량이나 처리 시간이 되는 제트 밀을 선택할 수 있다.
이상 설명한, 복합 텅스텐 산화물이나 복합 텅스텐 산화물 입자를 미립자화하여 본 발명에 관한 근적외선 차폐 재료 미립자를 얻는 공정을, 본 발명에 관한 제2 공정이라고 기재하는 경우가 있다.
3. 근적외선 차폐 재료 미립자 분산액
상술한 복합 텅스텐 산화물 미립자를 적당한 용매 중에 혼합·분산한 것이 본 발명에 관한 근적외선 차폐 재료 미립자 분산액이다. 상기 용매는 특별히 한정되는 것이 아니고, 도포·반죽 조건, 도포·반죽 환경, 또한, 무기 바인더나 수지 바인더를 함유시켰을 때는, 상기 바인더에 맞추어 적절히 선택하면 된다. 예를 들면, 물, 에탄올, 프로판올, 부탄올, 이소프로필알코올, 이소부틸알코올, 디아세톤알코올 등의 알코올류, 메틸에테르, 에틸에테르, 프로필에테르 등의 에테르류, 에스테르류, 아세톤, 메틸에틸케톤, 디에틸 케톤, 시클로헥사논, 이소부틸케톤 등의 케톤류, 톨루엔 등의 방향족 탄화수소류라는 각종 유기 용매가 사용 가능하다.
또 필요에 따라서 산이나 알칼리를 첨가하고 상기 분산액의 pH조정을 할 수도 있다.
또한, 상기 용매에는 수지의 모노머나 올리고머를 사용할 수도 있다.
한편, 분산액 중에 있어서의 미립자의 분산 안정성을 더욱 향상시키기 위해서, 각종 분산제, 계면활성제, 커플링제 등의 첨가도 물론 가능하다. 또한, 상기 적외선 차폐 재료 미립자 분산액에서, 근적외선 차폐 재료 미립자 100중량부에 대해 용매를 80중량부 이상 포함하면, 분산액으로서의 보존성을 담보하기 쉽고, 그 후의 근적외선 차폐 재료 미립자 분산체를 제작할 때의 작업성도 확보할 수 있다.
복합 텅스텐 산화물 미립자의 용매에의 분산 방법은 미립자를 분산액 중에 균일하게 분산하는 방법이며, 상기 복합 텅스텐 산화물 미립자의 결정 구조에 대해 a축이 7.3850Å 이상 7.4186Å 이하, c축이 7.5600Å 이상 7.6240Å 이하의 범위를 담보하면서, 상기 복합 텅스텐 산화물 미립자의 입자 지름이 100nm 이하, 바람직하게는 10nm 이상 100nm 이하, 보다 바람직하게는 10nm 이상 80nm 이하, 더욱 바람직하게는 10nm 이상 60nm 이하, 가장 바람직하게는 10nm 이상 40nm 이하로 조제로 만드는 것이라면, 특별히 한정되지 않는다. 예를 들면, 비즈 밀, 볼 밀, 샌드 밀, 페인트 쉐이커, 초음파 호모지나이저 등을 들 수 있다.
이들 기재를 사용한 기계적인 분산 처리 공정에 의해서, 복합 텅스텐 산화물 미립자의 용매 중의 분산과 동시에 복합 텅스텐 산화물 입자끼리의 충돌 등에 의해 미립자화가 진행됨과 동시에, 상기 복합 텅스텐 산화물 입자에 포함되는 육방정의 결정 구조에 뒤틀림이나 변형을 부여하고, 상기 결정자 구조를 구성하는 원자에 있어서의 전자 궤도의 중복 상태가 변화하여 자유전자량의 증가가 진행한다.
또한, 상기 복합 텅스텐 산화물 입자의 미립자화 및 육방정의 결정 구조에 있어서의 격자 정수인 a축 길이나 c축 길이의 변동은 분쇄 장치의 장치 정수에 의해 다르다. 따라서, 미리, 시험적인 분쇄를 실시하여 복합 텅스텐 산화물 미립자에 소정의 입자 지름, 결정자 지름, 격자 정수의 a축 길이나 c축 길이를 부여할 수 있는 분쇄 장치, 분쇄 조건을 구해 두는 것이 중요하다.
특히, 복합 텅스텐 산화물 입자의 미립자화할 때의 조건에 따라서는, 복합 텅스텐 산화물 미립자의 격자 정수의 a축이 7.3850Å 이상 7.4186Å 이하, c축이 7.5600Å 이상 7.6240Å 이하를 만족하지 않은 경우가 생기기도 한다. 따라서, 복합 텅스텐 산화물 입자의 미립자화의 조건으로서 미립자화에 의해 얻어지는 복합 텅스텐 산화물 미립자의 격자 정수의 a축이 7.3850Å 이상 7.4186Å 이하, c축이 7.5600Å 이상 7.6240Å 이하를 담보하는 조건으로 설정하는 것이 중요하다. 본 발명에 관한 복합 텅스텐 산화물 미립자는 상술한 격자 정수를 만족하는 것에 의해서 충분한 근적외선 차폐 기능을 발휘하므로, 미립자화할 때의 조건 설정에 유의하는 것이 중요하다.
또한, 근적외선 차폐 재료 미립자 분산액을 거쳐 근적외선 차폐 재료 미립자의 미립자화를 실시하고, 그 후, 용매를 제거하여 근적외선 차폐 재료 미립자를 얻는 경우라도, 입자 지름, 결정자 지름, 격자 정수의 a축길이나 c축길이를 부여할 수 있는, 분쇄 조건(미립자화 조건)을 정하는 것은 물론이다.
본 발명에 관한 근적외선 차폐 재료 미립자 분산액 상태는, 텅스텐 산화물 미립자를 용매 중에 분산했을 때의 복합 텅스텐 산화물 미립자의 분산 상태를 측정하는 것으로 확인할 수 있다. 예를 들면, 본 발명에 관한 복합 텅스텐 산화물 미립자가 용매 중에서 미립자 및 미립자의 응집 상태로서 존재하는 액으로부터 시료를 샘플링하고, 시판되고 있는 여러 가지의 입도 분포계로 측정하는 것으로 확인할 수 있다. 입도 분포계로서는, 예를 들면, 동적 광산란법을 원리로 한 오오츠카덴시 가부시키가이샤사 제조 ELS-8000 등의 공지의 측정 장치를 사용할 수 있다.
또, 복합 텅스텐 산화물 미립자의 결정 구조나 격자 정수의 측정은 근적외선 차폐체 형성용 분산액의 용매를 제거하여 얻어지는 복합 텅스텐 산화물 미립자에 대해, X선 회절법에 의해 상기 미립자에 포함되는 결정 구조를 특정하고, 리트벨트법을 사용하는 것으로 격자 정수로서 a축 길이 및 c축 길이를 산출한다.
복합 텅스텐 산화물 미립자의 분산 입자 지름은 광학 특성의 관점에서 800nm 이하, 바람직하게는 200nm 이하, 보다 바람직하게는 100nm 이하까지, 충분히 세세한 것이 바람직하다. 또한, 상기 복합 텅스텐 산화물 미립자는 균일하게 분산하고 있는 것이 바람직하다.
복합 텅스텐 산화물 미립자의 분산 입자 지름이 800nm 이하, 바람직하게는200nm 이하, 보다 바람직하게는 10nm 이상 200nm 이하, 더욱 바람직하게는 10nm 이상 100nm 이하면, 제조되는 근적외선 차폐 막이나 성형체(판, 시트 등)가 단조롭게 투과율의 감소한 회색계의 것이 되어 버리는 것을 회피할 수 있기 때문이다.
또한, 본 발명에 관한 분산 입자 지름이란, 근적외선 차폐 재료 미립자 분산액 중에 분산한 복합 텅스텐 산화물 미립자의 단체 입자나, 상기 복합 텅스텐 산화물 미립자가 응집한 응집 입자의 입자 지름을 의미하는 개념이다. 상기 분산 입자 지름은 시판되고 있는 여러 가지의 입도 분포계로 측정할 수 있다. 예를 들면, 상기 복합 텅스텐 산화물 미립자 분산액의 샘플을 채취하고, 상기 샘플을 동적 광산란법에 근거하는 입경 측정 장치(오오츠카덴시 가부시키가이샤 제조 ELS-8000)를 사용하여 측정할 수 있다.
한편, 근적외선 차폐 재료 미립자 분산액에서, 복합 텅스텐 산화물 미립자가 응집하여 조대(粗大)한 응집체가 되고, 상기 조대화한 입자가 다수 존재하면, 상기 조대 입자가 광산란원이 된다. 그 결과, 상기 근적외선 차폐 재료 미립자 분산액이 근적외선 차폐 막이나 성형체가 되었을 때에 흐림(헤이즈)이 커져서, 가시광선 투과율이 감소하는 원인이 되기도 한다. 따라서, 복합 텅스텐 산화물 미립자의 조대 입자 생성을 회피하는 것이 바람직하다.
4. 근적외선 차폐 재료 미립자 분산체
본 발명에 관한 근적외선 차폐 재료 미립자 분산체는 상기 복합 텅스텐 산화물 미립자를 적당한 고체 매체 중에 분산하여 얻어진다.
본 발명에 관한 근적외선 차폐 재료 미립자 분산체는 복합 텅스텐 산화물 미립자를 소정 조건에 있어서의 기계적인 분쇄 후, 수지 등의 고체 매체 중에서 분산 상태를 유지하고 있으므로, 수지 재료 등의 내열 온도가 낮은 기재 재료로의 응용이 가능하고, 형성 시에 대형의 장치를 필요로 하지 않아 염가라는 이점이 있다.
이상 설명한, 본 발명에 관한 근적외선 차폐 재료 미립자를 고체 매체에 분산하여 근적외선 차폐 재료 미립자 분산체를 얻는 공정을 본 발명에 관한 제3 공정이라고 기재하는 경우가 있다. 또한, 제3 공정의 상세한 것에 대해서는 후술한다.
또, 본 발명에 관한 근적외선 차폐 재료는 도전성 재료이기 때문에, 연속적인 막으로서 사용했을 경우는, 휴대 전화 등의 전파를 흡수 반사하여 방해할 우려가 있다. 그러나 근적외선 차폐 재료를 미립자로서 고체 매체의 매트릭스 중에 분산했을 경우는, 입자 한 개 한 개가 고립한 상태로 분산하고 있기 때문에, 전파 투과성을 발휘하는 것으로부터 범용성을 갖는다.
또한, 근적외선 차폐 재료 미립자 분산체의 고체 매체의 매트릭스 중에 분산한 복합 텅스텐 산화물 미립자의 평균 입자 지름과, 상기 근적외선 차폐 재료 미립자 분산체를 형성하는데 사용한 근적외선 차폐 재료 미립자 분산액 중이나 근적외선 차폐체 형성용 분산액 중에 분산한 복합 텅스텐 산화물 미립자의 분산 입자 지름이 다른 경우가 있다. 이것은 근적외선 차폐 재료 미립자 분산액이나 근적외선 차폐체 형성용 분산액으로부터, 근적외선 차폐 재료 미립자 분산체를 얻을 때에, 상기 분산액 중에서 응집하고 있던 복합 텅스텐 산화물 미립자의 응집이 풀어지기 때문이다.
또, 근적외선 차폐 재료 미립자 분산체의 고체 매체로서 각종의 수지나 유리를 사용할 수 있다. 근적외선 차폐 재료 미립자 100중량부에 대해, 고체 매체를 80중량부 이상 포함하면, 근적외선 차폐 재료 미립자 분산체를 바람직하게 형성할 수 있다.
5. 근적외선 차폐 재료 미립자 분산체의 근적외선 차폐 효과
본 발명에 관한 근적외선 차폐 재료 미립자를 사용한 근적외선 차폐 재료 미립자 분산체는 광의 투과율에서 파장 350nm∼600nm의 범위에 극대치를, 파장 800nm∼2100nm의 범위에 극소치를 가지며, 투과율의 극대치와 극소치를 백분율로 표현했을 때, 극대치(%)-극소치(%)≥69(포인트), 즉, 극대치와 극소치와의 차이가 백분율로 69포인트 이상의 뛰어난 특성을 갖는 근적외선 차폐 재료 미립자 분산체를 얻을 수 있다.
근적외선 차폐 재료 미립자 분산체에 있어서의 투과율의 극대치와 극소치와의 차이가 69포인트 이상으로 큰 것은, 상기 분산체의 근적외선 차폐 특성이 뛰어난 것을 나타낸다.
6. 근적외선 차폐체
본 발명에 관한 근적외선 차폐체는 본 발명에 관한 근적외선 차폐 재료 미립자 분산체가 판 형태, 필름 형태, 박막 형태로부터 선택되는 어느 하나로 형성된 것이다.
이상 설명한, 본 발명에 관한 근적외선 차폐 재료 미립자 분산체를 근적외선 차폐체에 성형하는 공정을 본 발명에 관한 제4 공정이라고 기재하는 경우가 있다. 또한, 제4 공정에는 기재의 표면에 근적외선 차폐체를 형성하는 것도 포함된다.
7. 근적외선 차폐 재료 미립자 분산체 및 근적외선 차폐체의 제조 방법
근적외선 차폐 재료 미립자 분산체의 제조 방법, 및 상기 근적외선 차폐 재료 미립자 분산체를 판 형태, 필름 형태, 박막 형태로부터 선택되는 어느 하나로 형성하여 근적외선 차폐체를 제조하는 방법의 예로서 (a) 미립자를 고체 매체 중에 분산하여 기재 표면에 형성하는 방법, (b) 미립자를 고체 매체 중에 분산하여 성형하는 방법에 대해서 설명한다.
(a) 미립자를 고체 매체 중에 분산하여 기재 표면에 형성하는 방법
얻어진 근적외선 차폐 재료 미립자 분산액에 고체 매체를 구성하는 수지를 첨가하여 근적외선 차폐체 형성용 분산액을 얻은 후, 기재 표면에 근적외선 차폐체 형성용 분산액을 코팅하여 용매를 증발시켜 소정의 방법으로 수지를 경화시키면, 기재 표면에 근적외선 차폐 재료 미립자 분산체가 성막된 근적외선 차폐체가 얻어진다.
또, 본 발명에 관한 근적외선 차폐 재료 미립자 분산액의 용매에는 경화에 의해 고체 매체가 되는 수지의 모노머를 사용할 수도 있다. 용매에 수지의 모노머를 사용하면, 코팅 방법은 기재 표면에 근적외선 차폐 재료 미립자 분산체가 균일하게 코트할 수 있으면 되고, 특별히 한정되지 않지만, 예를 들면, 바 코트법, 그라비야코트법, 스프레이 코트법, 딥 코트법 등을 들 수 있다. 또, 근적외선 차폐 재료 미립자를 직접 바인더 수지 중에 분산한 근적외선 차폐 재료 미립자 분산체는 기재 표면에 도포 후, 용매를 증발시킬 필요가 없어, 환경적, 공업적으로 바람직하다.
상술한 고체 매체는 예를 들면, 수지로서 UV경화 수지, 열경화 수지, 전자선 경화 수지, 상온 경화 수지, 열가소 수지 등이 목적에 따라 선정 가능하다. 구체적으로는, 폴리에틸렌 수지, 폴리염화비닐 수지, 폴리염화 비닐리덴 수지, 폴리비닐 알코올 수지, 폴리스티렌 수지, 폴리프로필렌 수지, 에틸렌초산비닐 공중합체, 폴리에스테르 수지, 폴리에틸렌테레프탈레이트 수지, 불소 수지, 폴리카보네이트 수지, 아크릴 수지, 폴리비닐부티랄 수지를 들 수 있다. 이들 수지는 단독 사용이거나 혼합 사용일 수 있다.
또, 고체 매체로서 금속 알콕시드를 사용한 바인더의 이용도 가능하다. 상기 금속 알콕시드로서는, Si, Ti, Al, Zr 등의 알콕시드가 대표적이다. 이들 금속 알콕시드를 사용한 바인더는 가열 등에 의해 가수분해·중축합 반응시키는 것으로, 산화물막을 형성하는 것이 가능하다.
한편, 상술한 근적외선 차폐체의 기재로서는, 소망에 의해 필름일 수 있고, 보드일 수도 있으며, 형상은 한정되지 않는다. 투명 기재 재료로서는 PET, 아크릴, 우레탄, 폴리카보네이트, 폴리에틸렌, 에틸렌산화 비닐 공중합체, 염화비닐, 불소 수지 등이 각종 목적에 따라 사용 가능하다. 또, 수지 이외에서는 유리를 사용할 수 있다.
(b) 미립자를 고체 매체 중에 분산하여 성형하는 방법
본 발명에 관한 근적외선 차폐 재료를 미립자로서 응용하는 다른 방법으로서 소정 조건에 있어서의 기계적 분쇄 후, 근적외선 차폐 재료 미립자를 기재인 매체중에 분산시킬 수도 있다.
상기 미립자를 매체 중에 분산시키려면, 매체 표면으로부터 침투시켜도 되지만, 폴리카보네이트 수지 등 매체를, 그 용해 온도 이상으로 온도를 올려 용해 시킨 후, 상기 미립자와 매체를 혼합하여 근적외선 차폐 재료 미립자 분산체를 얻는다. 이와 같이 하여 얻어진 근적외선 차폐 재료 미립자 분산체를 소정의 방법으로 필름이나 판(보드) 형태로 형성하여 근적외선 차폐체를 얻을 수 있다.
예를 들면, PET 수지에 근적외선 차폐 재료 미립자를 분산하는 방법으로서 우선 PET 수지와 소정 조건에 있어서의 기계적 분쇄 후의 근적외선 차폐 재료 미립자 분산액을 혼합하여 분산 용매를 증발시키고 나서, PET 수지의 용해 온도인 300℃ 정도에서 가열하고, PET 수지를 용해시켜서 혼합하여 냉각하는 것으로, 근적외선 차폐 재료 미립자를 분산한 근적외선 차폐체의 제작이 가능해진다.
8. 근적외선 차폐용 적층 구조체 및 이의 제조 방법
본 발명에 관한 근적외선 차폐용 적층 구조체는 본 발명에 관한 근적외선 차폐 재료 미립자 분산체가 판 형태, 플라스틱판, 일사 차폐 기능을 갖는 미립자를 포함한 플라스틱판으로부터 선택되는 2매 이상의 적층판 사이에 존재하고 있는 것이다.
본 발명에 관한 열선 차폐 막을 사용한 열선 차폐 적층 투명 기재에는 여러가지 형태가 있다.
예를 들면, 투명 기재로서 무기 유리를 사용한 열선 차폐 적층 무기 유리는 열선 차폐 막을 사이에 두어 존재시킨 대향하는 복수매의 무기 유리를, 공지의 방법으로 붙여 맞추어 일체화하는 것에 의해 얻어진다. 얻어진 열선 차폐 적층 무기 유리는 주로 자동차의 프런트 무기 유리나 건물의 창으로서 사용할 수 있다.
이상 설명한, 본 발명에 관한 근적외선 차폐체를 2매 이상의 대향하는 투명 기재의 사이에 끼우는 공정을 본 발명에 관한 제5 공정이라고 기재하는 경우가 있다.
투명 기재로서 투명 수지를 사용하여 상술한 무기 유리를 사용했을 경우와 동일하게, 판 유리, 플라스틱, 일사 차폐 기능을 갖는 미립자를 포함한 플라스틱으로부터 선택되는 2매 이상의 대향하는 투명 기재의 사이에 열선 차폐 막을 사이에 끼워 존재시키는 것으로, 열선 차폐 적층 투명 기재를 얻을 수 있다. 용도는 열선 차폐 적층 무기 유리와 같다. 또한, 용도에 따라서는 열선 차폐 막단체로서 사용하는 것, 무기 유리나 투명 수지 등의 투명 기재의 한 면 또는 양면에 열선 차폐 막을 존재시켜 사용하는 것도 물론 가능하다.
9. 정리
본 발명에 관한 근적외선 차폐 재료 미립자 분산체, 근적외선 차폐체 및 근적외선 차폐용 적층 구조체는 종래의 기술에 관한 근적외선 차폐 재료 미립자 분산체, 근적외선 차폐체 및 근적외선 차폐용 적층 구조체와 비교하여, 태양광선, 특히 근적외선 영역의 광을 보다 효율 좋게 차폐하고, 동시에 가시광선 영역의 고투과율을 유지하는 등, 뛰어난 광학 특성을 발휘했다.
그리고 근적외선 차폐 재료 미립자가 고체 매체 중에 분산하고 있는 본 발명에 관한 근적외선 차폐 재료 미립자 분산체를 사용하여 매체 표면에 성막한 근적외선 차폐막은 스퍼터링법, 증착법, 이온 도금법 및 화학 기상법(CVD법) 등의 진공 성막법 등의 건식법으로 제작한 막이나 CVD법이나 스프레이법으로 제작한 막과 비교해도 태양광선, 특히 근적외선 영역의 광을 보다 효율 좋게 차폐하고, 동시에 가시광선 영역의 고투과율을 유지하는 등, 뛰어난 광학 특성을 발휘했다.
또, 본 발명에 관한 근적외선 차폐체 및 근적외선 차폐용 적층 구조체는 진공 장치 등의 대대적인 장치를 사용하지 않고 염가로 제조 가능하고, 공업적으로 유용하다.
실시예
이하, 실시예를 들어 본 발명을 보다 구체적으로 설명하지만, 본 발명은 이것으로 한정되는 것은 아니다.
또, 본 발명에 관한 복합 텅스텐 산화물 미립자의 결정 구조, 격자 정수, 결정자 지름의 측정에는 근적외선 차폐체 형성용 분산액으로부터 용매를 제거하여 얻어지는 복합 텅스텐 산화물 미립자를 사용했다. 그리고 상기 복합 텅스텐 산화물 미립자의 X선 회절 패턴을, 분말 X선 회절 장치(스펙트리스 가부시키가이샤PANalytical제 X‘Pert-PRO/MPD)를 사용하여 분말 X선 회절법(θ―2θ법)에 의해 측정했다. 얻어진 X선 회절 패턴으로부터 상기 미립자에 포함되는 결정 구조를 특정하고, 또한, 리트베르트법을 사용하여 격자 정수와 결정자 지름을 산출했다.
(실시예 1)
물 6.70kg에 탄산 세슘(Cs2CO3) 7.43kg을 용해하여 용액을 얻었다. 상기 용액을 텅스텐산(H2WO4) 34.57kg에 첨가하여 충분히 교반 혼합한 후, 교반하면서 건조했다(W와 Cs와의 몰비가 1:0.33 상당함). 상기 건조물을 N2 가스를 캐리어로 한 5체적% H2 가스를 공급하면서 가열하고, 800℃의 온도로 5.5시간 소성하였다. 그 후, 상기 공급 가스를 N2 가스로만 바꾸고, 실온까지 강온하여 Cs텅스텐 산화물 입자 a를 얻었다.
상기 Cs텅스텐 산화물 입자 a20 질량%와, 관능기로서 아민을 함유하는 기를 갖는 아크릴계 고분자 분산제(아민값 48 mgKOH/g, 분해 온도 250℃의 아크릴계 분산제)(이하, 「분산제 a」라고 기재함) 8질량%와, 초산 부틸 72질량%를 칭량하여 0.3mmφZrO2 비즈를 넣은 페인트 쉐이커(아사다테코사 제조)에 장전하여, 20시간 분쇄·분산 처리하는 것에 의해서 근적외선 차폐 재료 미립자 분산액(A-1액)을 조제했다.
여기서, 근적외선 차폐 재료 미립자 분산액(A-1액) 내에 있어서의 Cs텅스텐 산화물 미립자 a의 분산 입자 지름을 동적 광산란법에 근거하는 입경 측정 장치(오오츠카덴시 가부시키가이샤 제조 ELS-8000)에 의해 측정한 바 70nm였다. 또, 상기 (A-1액)으로부터 용매를 제거한 후의, Cs텅스텐 산화물 미립자 a의 격자 정수를 측정한 바, a축이 7.4071Å, c축이 7.6188Å이었다. 또, 결정자 지름은 24nm였다.
또한, 상기 (A-1액)의 광학 특성으로서 가시광선 투과율과 근적외선 차폐 특성을, (주) 히타치 세이사쿠쇼 제조의 분광 광도계 U-4000을 사용하여 측정했다. 측정에는 분광 광도계의 측정용 유리 셀에서 상기 (A-1액)을 초산 부틸로 가시광선 투과율이 70% 전후가 되도록 희석한 분산액을 사용했다. 또, 상기 측정에서 분광 광도계의 광의 입사 방향은 측정용 유리 셀에 수직인 방향으로 했다. 또한, 상기 측정용 유리 셀에 용매의 초산 부틸만을 넣은 블랭크액에 대해서도 광의 투과율을 측정하고, 광의 투과율의 베이스 라인으로 했다.
여기서, 가시광선 투과율은 JIS R 3106에 준거하여 구하고, 근적외선 차폐 특성은 상기 가시광선 영역에 있어서의 투과율의 백분율의 극대치와 근적외선 광영역에 있어서의 투과율의 백분율의 극소치와의 차이의 값을 포인트로서 구했다. 그 결과, 가시광선 투과율 70.0%, 투과율의 극대치와 극소치와의 차이 76.8포인트의 결과를 얻었다.
이어서, 얻어진 분산액 (A-1액)과 UV경화 수지를 중량비로 1:9가 되도록 칭량하여, 혼합·교반하고, 근적외선 차폐체 형성용 분산액(AA-1액)을 조제했다.
그리고, 바 No16의 바 코터를 사용하여 두께 3mm의 소다 석회 유리 기판 상에 근적외선 차폐체 형성용 분산액(AA-1액)을 도포한 후, 70℃, 1분간의 조건으로 건조시켜서 고압 수은 램프를 조사하고, 실시예 1에 관한 근적외선 차폐 재료 미립자 분산체인 근적외선 차폐체 A를 얻었다.
여기서, 근적외선 차폐체 A에 대해서, 상술한 근적외선 차폐 재료 미립자 분산액(A-1액)과 동일하게 광학 특성을 측정했다. 그 결과, 가시광선 투과율 69.7%, 투과율의 극대치와 극소치와의 차이 74.1포인트였다. 또한, 파장 550nm, 1000nm, 1500nm의 광에 대한 투과율을 측정했다. 또, (주) 히타치 하이테크노로지즈 제조의 FIB 가공 장치 FB2200를 사용한 단면 가공에 의해, 근적외선 차폐체 A의 박편화 시료를 제작하고, (주) 히타치 하이테크노로지즈 제조의 투과형 전자현미경 HF-2200을 사용한 TEM 관찰에 의해, 근적외선 차폐체 A중에 분산된 Cs텅스텐 산화물 미립자 100개의 평균 입자 지름을 산출한 바 25nm였다.
이하, 실시예 2-17 및 비교예 1-9에 대해서도 같은 측정을 실시했다. 그리고, 실시예 1-17의 결과를 표 1에 나타내고, 비교예 1-9의 결과를 표 2에 나타낸다.
(실시예 2)
실시예 1에서 설명한 텅스텐산과 탄산 세슘을 W와 Cs의 몰비가 1:0.31이 되도록 소정량을 칭량한 것 이외는 실시예 1과 동일하게 하고, 실시예 2에 관한 근적외선 차폐 재료 미립자 분산액(A-2액), Cs텅스텐 산화물 미립자 b, 근적외선 차폐체 B를 얻었다.
근적외선 차폐 재료 미립자 분산액(A-2액) 내에 있어서의, Cs텅스텐 산화물 미립자 b의 분산 입자 지름은 70nm였다. 그리고 Cs텅스텐 산화물 미립자 b의 격자 정수는 a축이 7.4100Å이며, c축이 7.6138Å이었다. 또, 결정자 지름은 24nm였다.
그리고 근적외선 차폐체 B의 가시광선 투과율과 근적외선 차폐 특성을 측정한 결과, 가시광선 투과율 69.8%, 투과율의 극대치와 극소치와의 차이 73.0포인트의 값을 얻었다. TEM 관찰에 의해, 근적외선 차폐체 B에 분산된 Cs텅스텐 산화물 미립자의 평균 입자 지름을 구하면 25nm였다. 이 결과를 표 1에 나타낸다.
(실시예 3)
실시예 1에서 텅스텐산과 탄산 세슘을 W와 Cs의 몰비가 1:0.35가 되도록 소정량 칭량한 것 이외는 실시예 1과 동일하게 하여 실시예 3에 관한 근적외선 차폐 재료 미립자 분산액(A-3액), Cs텅스텐 산화물 미립자 c, 근적외선 차폐체 C를 얻었다.
근적외선 차폐 재료 미립자 분산액(A-3액) 내에 있어서의 Cs텅스텐 산화물 미립자 c의 분산 입자 지름은 70nm였다. Cs텅스텐 산화물 미립자 c의 격자 정수는 a축이 7.4065Å이며, c축이 7.6203Å이었다. 또, 결정자 지름은 24nm였다.
그리고 근적외선 차폐체 C의 가시광선 투과율과 근적외선 차폐 특성을 측정한 결과, 가시광선 투과율 69.8%, 투과율의 극대치와 극소치와의 차이 73.6포인트의 값을 얻었다. TEM 관찰에 의해, 근적외선 차폐체 C에 분산된 Cs텅스텐 산화물 미립자의 평균 입자 지름을 구하면 24nm였다. 이 결과를 표 1에 나타낸다.
(실시예 4)
실시예 1에서 텅스텐산과 탄산 세슘을 W와 Cs의 몰비가 1:0.37이 되도록 소정량 칭량한 것 이외는 실시예 1과 동일하게 하여, 실시예 4에 관한 근적외선 차폐체 형성용 분산액(A-4액), Cs텅스텐 산화물 미립자 d, 근적외선 차폐체 D를 얻었다.
적외선 차폐 재료 미립자 분산액(A-4액) 내에 있어서의 Cs텅스텐 산화물 미립자 d의 분산 입자 지름은 70nm였다. Cs텅스텐 산화물 미립자 d의 격자 정수는 a축이 7.4066Å이며, c축이 7.6204Å였다. 또, 결정자 지름은 24nm였다. 그리고 근적외선 차폐체 D의 가시광선 투과율과 근적외선 차폐 특성을 측정한 결과, 가시광선 투과율 69.8%, 투과율의 극대치와 극소치와의 차이 73.6포인트의 값을 얻었다. TEM 관찰에 의해, 근적외선 차폐체 D에 분산된 Cs텅스텐 산화물 미립자의 평균 입자 지름을 구하면 25nm였다. 이 결과를 표 1에 나타낸다.
(실시예 5)
실시예 1에서 메타 텅스텐산 암모늄 수용액(WO3 환산으로 50wt%)과 탄산 세슘을, W와 Cs의 몰비가 1:0.33이 되도록 소정량 칭량한 것 이외는 실시예 1과 동일하게 하여, 실시예 5에 관한 근적외선 차폐 재료 미립자 분산액(A-5액), Cs텅스텐 산화물 미립자 e, 근적외선 차폐체 E를 얻었다.
근적외선 차폐 재료 미립자 분산액(A-5액) 내에 있어서의 Cs텅스텐 산화물 미립자 e의 분산 입자 지름은 70nm였다. Cs텅스텐 산화물 미립자 e의 격자 정수는 a축이 7.4065Å이며, c축이 7.6193Å이었다. 또, 결정자 지름은 24nm였다.
그리고 근적외선 차폐체 E의 가시광선 투과율과 근적외선 차폐 특성을 측정한 결과, 가시광선 투과율 71.7%, 투과율의 극대치와 극소치와의 차이 70.0포인트의 값을 얻었다. TEM 관찰에 의해, 근적외선 차폐체 E에 분산된 Cs텅스텐 산화물 미립자의 평균 입자 지름을 구하면 25nm였다. 이 결과를 표 1에 나타낸다.
(비교예 1)
실시예 1에서 텅스텐산과 탄산 세슘을 W와 Cs의 몰비가 1:0.11이 되도록 소정량 칭량한 것 이외는 실시예 1과 동일하게 하여 비교예 1에 관한 근적외선 차폐 재료 미립자 분산액(A-6액), Cs텅스텐 산화물 미립자 f, 근적외선 차폐체 F를 얻었다.
근적외선 차폐 재료 미립자 분산액(A-6액) 내에 있어서의 Cs텅스텐 산화물 미립자 f의 분산 입자 지름은 70nm였다. Cs텅스텐 산화물 미립자 f의 격자 정수는 a축이 7.4189Å이며, c축이 7.5825Å였다. 또, 결정자 지름은 24nm였다.
그리고 근적외선 차폐체 F의 가시광선 투과율과 근적외선 차폐 특성을 측정한 결과, 가시광선 투과율 69.3%, 투과율의 극대치와 극소치와의 차이 63.4포인트로 69포인트 미만이었다. TEM 관찰에 의해, 근적외선 차폐체 F에 분산된 Cs텅스텐 산화물 미립자의 평균 입자 지름을 구하면 24nm였다. 이 결과를 표 2에 나타낸다.
(비교예 2)
실시예 1에서 텅스텐산과 탄산 세슘을 W와 Cs의 몰비가 1:0.15가 되도록 소정량 칭량한 것 이외는 실시예 1과 동일하게 하여, 비교예 2에 관한 근적외선 차폐 재료 미립자 분산액(A-7액), Cs텅스텐 산화물 미립자 g, 근적외선 차폐체 G를 얻었다.
근적외선 차폐 재료 미립자 분산액(A-7액) 내에 있어서의 Cs텅스텐 산화물 미립자 g의 분산 입자 지름은 70nm였다. Cs텅스텐 산화물 미립자 g의 격자 정수는 a축이 7.4188Å이며, c축이 7.5826Å이었다. 또, 결정자 지름은 24nm였다.
그리고 근적외선 차폐체 G의 가시광선 투과율과 근적외선 차폐 특성을 측정한 결과, 가시광선 투과율 69.4%, 투과율의 극대치와 극소치와의 차이 66.1포인트로 69포인트 미만이었다. TEM 관찰에 의해, 근적외선 차폐체 G에 분산된 Cs텅스텐 산화물 미립자의 평균 입자 지름을 구하면 25nm였다. 이 결과를 표 2에 나타낸다.
(비교예 3)
실시예 1에서 텅스텐산과 탄산 세슘을 W와 Cs의 몰비가 1:0.39가 되도록 소정량 칭량한 것 이외는 실시예 1과 동일하게 하여, 비교예 2에 관한 근적외선 차폐 재료 미립자 분산액(A-8액), Cs텅스텐 산화물 미립자 h, 근적외선 차폐체 H를 얻었다.
근적외선 차폐 재료 미립자 분산액(A-8액) 내에 있어서의 Cs텅스텐 산화물 미립자 g의 분산 입자 지름은 70nm였다. Cs텅스텐 산화물 미립자 g의 격자 정수는 a축이 7.4025Å이며, c축이 7.6250Å이었다. 또, 결정자 지름은 24nm였다.
그리고 근적외선 차폐체 G의 가시광선 투과율과 근적외선 차폐 특성을 측정한 결과, 가시광선 투과율 69.6%, 투과율의 극대치와 극소치와의 차이 67.2포인트로 69포인트 미만이었다. TEM 관찰에 의해, 근적외선 차폐체 H에 분산된 Cs텅스텐 산화물 미립자의 평균 입자 지름을 구하면 25nm였다. 이 결과를 표 2에 나타낸다.
(실시예 6)
실시예 1에서 메타 텅스텐산 암모늄 수용액(WO3 환산으로 50wt%)과 탄산 세슘을 W와 Cs의 몰비가 1:0.21이 되도록 소정량 칭량한 것 이외는 실시예 1과 동일하게 하여 실시예 6에 관한 근적외선 차폐 재료 미립자 분산액(A-9액), Cs텅스텐 산화물 미립자 i, 근적외선 차폐체 I를 얻었다.
근적외선 차폐 재료 미립자 분산액(A-9액) 내에 있어서의 Cs텅스텐 산화물 미립자 i의 분산 입자 지름은 70nm였다. Cs텅스텐 산화물 미립자 i의 격자 정수는 a축이 7.4186Å이며, c축이 7.5825Å였다. 또, 결정자 지름은 24nm였다.
그리고 근적외선 차폐체 E의 가시광선 투과율과 근적외선 차폐 특성을 측정한 결과, 가시광선 투과율 69.4%, 투과율의 극대치와 극소치와의 차이 69.3포인트의 값을 얻었다. TEM 관찰에 의해, 근적외선 차폐체 I에 분산된 Cs텅스텐 산화물 미립자의 평균 입자 지름을 구하면 24nm였다. 이 결과를 표 1에 나타낸다.
(실시예 7)
실시예 1에서, 메타 텅스텐산 암모늄 수용액(WO3 환산으로 50wt%)과 탄산 세슘을 W와 Cs의 몰비가 1:0.23이 되도록 소정량 칭량한 것 이외는 실시예 1과 동일하게 하여, 실시예 7에 관한 근적외선 차폐 재료 미립자 분산액(A-10액), Cs텅스텐 산화물 미립자 j, 근적외선 차폐체 J를 얻었다.
근적외선 차폐 재료 미립자 분산액(A-10액) 내에 있어서의 Cs텅스텐 산화물 미립자 j의 분산 입자 지름은 70nm였다. Cs텅스텐 산화물 미립자 j의 격자 정수는 a축이 7.4184Å이며, c축이 7.5823Å이었다. 또, 결정자 지름은 24nm였다.
그리고 근적외선 차폐체 J의 가시광선 투과율과 근적외선 차폐 특성을 측정한 결과, 가시광선 투과율 69.8%, 투과율의 극대치와 극소치와의 차이 70.5포인트의 값을 얻었다. TEM 관찰에 의해, 근적외선 차폐체 J에 분산된 Cs텅스텐 산화물 미립자의 평균 입자 지름을 구하면 25nm였다. 이 결과를 표 1에 나타낸다.
(실시예 8)
실시예 1에서 메타 텅스텐산 암모늄 수용액(WO3 환산으로 50wt%)과 탄산 세슘을, W와 Cs의 몰비가 1:0.25가 되도록 소정량 칭량한 것 이외는 실시예 1과 동일하게 하여, 실시예 8에 관한 근적외선 차폐 재료 미립자 분산액(A-11액), Cs텅스텐 산화물 미립자 k, 근적외선 차폐체 K를 얻었다.
근적외선 차폐 재료 미립자 분산액(A-11액) 내에 있어서의 Cs텅스텐 산화물 미립자 k의 분산 입자 지름은 70nm였다. Cs텅스텐 산화물 미립자 k의 격자 정수는 a축이 7.4165Å이며, c축이 7.5897Å이었다. 또, 결정자 지름은 24nm였다.
그리고 근적외선 차폐체 K의 가시광선 투과율과 근적외선 차폐 특성을 측정한 결과, 가시광선 투과율 69.8%, 투과율의 극대치와 극소치와의 차이 73.2포인트의 값을 얻었다. TEM 관찰에 의해, 근적외선 차폐체 K에 분산된 Cs텅스텐 산화물 미립자의 평균 입자 지름을 구하면 24nm였다. 이 결과를 표 1에 나타낸다.
(실시예 9)
실시예 1에서 메타 텅스텐산 암모늄 수용액(WO3 환산으로 50wt%)과 탄산 세슘을, W와 Cs의 몰비가 1:0.27이 되도록 소정량 칭량한 것 이외는 실시예 1과 동일하게 하여, 실시예 9에 관한 근적외선 차폐 재료 미립자 분산액(A-12액), Cs텅스텐 산화물 미립자 l, 근적외선 차폐체 L를 얻었다.
근적외선 차폐 재료 미립자 분산액(A-12액) 내에 있어서의 Cs텅스텐 산화물 미립자 l의 분산 입자 지름은 70nm였다. Cs텅스텐 산화물 미립자 l의 격자 정수는 a축이 7.4159Å이며, c축이 7.5919Å였다. 또, 결정자 지름은 24nm였다.
그리고 근적외선 차폐체 L의 가시광선 투과율과 근적외선 차폐 특성을 측정한 결과, 가시광선 투과율 69.5%, 투과율의 극대치와 극소치와의 차이 72.4포인트의 값을 얻었다. TEM 관찰에 의해, 근적외선 차폐체 L에 분산된 Cs텅스텐 산화물 미립자의 평균 입자 지름을 구하면 25nm였다. 이 결과를 표 1에 나타낸다.
(실시예 10)
실시예 1에서 메타 텅스텐산 암모늄 수용액(WO3 환산으로 50wt%)과 탄산 세슘을, W와 Cs의 몰비가 1:0.29가 되도록 소정량 칭량한 것 이외는 실시예 1과 동일하게 하여 실시예 10에 관한 근적외선 차폐 재료 미립자 분산액(A-13액), Cs텅스텐 산화물 미립자 m, 근적외선 차폐체 M을 얻었다.
근적외선 차폐 재료 미립자 분산액(A-13액) 내에 있어서의 Cs텅스텐 산화물 미립자 m의 분산 입자 지름은 70nm였다. Cs텅스텐 산화물 미립자 m의 격자 정수는 a축이 7.4133Å이며, c축이 7.6002Å였다. 또, 결정자 지름은 24nm였다.
그리고 근적외선 차폐체 M의 가시광선 투과율과 근적외선 차폐 특성을 측정한 결과, 가시광선 투과율 69.9%, 투과율의 극대치와 극소치와의 차이 72.8포인트의 값을 얻었다. TEM 관찰에 의해, 근적외선 차폐체 M에 분산된 Cs텅스텐 산화물 미립자의 평균 입자 지름을 구하면 25nm였다. 이 결과를 표 1에 나타낸다.
(실시예 11)
실시예 1에서 메타 텅스텐산 암모늄 수용액(WO3 환산으로 50wt%)과 탄산 세슘을, W와 Cs의 몰비가 1:0.30이 되도록 소정량 칭량한 것 이외는 실시예 1과 동일하게 하여, 실시예 11에 관한 근적외선 차폐 재료 미립자 분산액(A-14액), Cs텅스텐 산화물 미립자 n, 근적외선 차폐체 N을 얻었다.
근적외선 차폐 재료 미립자 분산액(A-14액) 내에 있어서의 Cs텅스텐 산화물 미립자 n의 분산 입자 지름은 70nm였다. Cs텅스텐 산화물 미립자 n의 격자 정수는 a축이 7.4118Å이며, c축이 7.6082Å였다. 또, 결정자 지름은 24nm였다.
그리고 근적외선 차폐체 N의 가시광선 투과율과 근적외선 차폐 특성을 측정한 결과, 가시광선 투과율 69.7%, 투과율의 극대치와 극소치와의 차이 72.3포인트의 값을 얻었다. TEM 관찰에 의해, 근적외선 차폐체 N에 분산된 Cs텅스텐 산화물 미립자의 평균 입자 지름을 구하면 24nm였다. 이 결과를 표 1에 나타낸다.
(실시예 12)
실시예 1에서, N2 가스를 캐리어로 한 5% H2 가스를 공급하면서 550℃의 온도로 9.0시간 소성한 것 이외는 실시예 1과 동일하게 하여 실시예 12에 관한 근적외선 차폐 재료 미립자 분산액(A-15액), Cs텅스텐 산화물 미립자 o, 근적외선 차폐체 O를 얻었다.
근적외선 차폐 재료 미립자 분산액(A-15액) 내에 있어서의 Cs텅스텐 산화물 미립자 o의 분산 입자 지름은 70nm였다. Cs텅스텐 산화물 미립자 o의 격자 정수는 a축이 7.4068Å이며, c축이 7.6190Å이었다. 또, 결정자 지름은 24nm였다.
그리고 근적외선 차폐체 O의 가시광선 투과율과 근적외선 차폐 특성을 측정한 결과, 가시광선 투과율 69.9%, 투과율의 극대치와 극소치와의 차이 74.0포인트의 값을 얻었다. TEM 관찰에 의해, 근적외선 차폐체 O에 분산된 Cs텅스텐 산화물 미립자의 평균 입자 지름을 구하면 25nm였다. 이 결과를 표 1에 나타낸다.
(실시예 13)
물 6.70kg에, 탄산 루비듐(Rb2CO3) 5.56 kg를 용해하여 용액을 얻었다. 상기 용액을 텅스텐산(H2WO4) 36.44kg에 첨가하여 충분히 교반 혼합한 후, 교반하면서 건조했다(W와 Rb와의 몰비가 1:0.33 상당함). 상기 건조물을 N2 가스를 캐리어로 한 5% H2 가스를 공급하면서 가열하고, 800℃의 온도로 5.5시간 소성한 후, 상기 공급 가스를 N2 가스로만 바꾸어, 실온까지 강온하여 Rb텅스텐 산화물 입자를 얻었다.
Cs텅스텐 산화물 입자 대신에, 얻어진 Rb텅스텐 산화물 입자를 사용한 것 이외는 실시예 1과 동일하게 하여, 실시예 13에 관한 근적외선 차폐 재료 미립자 분산액(B-1액), Rb텅스텐 산화물 미립자 a, 근적외선 차폐체 B1를 얻었다.
근적외선 차폐 재료 미립자 분산액(B-1액) 내에 있어서의 Rb텅스텐 산화물 미립자 a의 분산 입자 지름은 70nm였다. Rb텅스텐 산화물 미립자 a의 격자 정수는 a축이 7.3898Å이며, c축이 7.5633Å이었다. 또, 결정자 지름은 24nm였다.
그리고 근적외선 차폐체 B1의 가시광선 투과율과 근적외선 차폐 특성을 측정한 결과, 가시광선 투과율 69.6%, 투과율의 극대치와 극소치와의 차이 69.5포인트의 값을 얻었다. TEM 관찰에 의해, 근적외선 차폐체 B1에 분산된 Rb텅스텐 산화물 미립자의 평균 입자 지름을 구하면 25nm였다. 이 결과를 표 1에 나타낸다.
(실시예 14)
물 6.70kg에 탄산 세슘(Cs2CO3) 0.709kg과 탄산 루비듐(Rb2CO3) 5.03kg를 용해하여 용액을 얻었다. 상기 용액을 텅스텐산(H2WO4) 36.26kg에 첨가하여 충분히 교반 혼합한 후, 교반하면서 건조했다(W와 Cs와의 몰비가 1:0.03 상당, W와 Rb와의 몰비가 1:0.30 상당함). 상기 건조물을, N2 가스를 캐리어로 한 5% H2 가스를 공급하면서 가열하고, 800℃의 온도로 5.5시간 소성한 후, 상기 공급 가스를 N2 가스로만 바꾸고, 실온까지 강온하여 CsRb 텅스텐 산화물 입자 a를 얻었다.
Cs텅스텐 산화물 입자 대신에, 얻어진 CsRb 텅스텐 산화물 입자 a를 사용한 이외는, 실시예 1과 동일하게 하여, 실시예 14에 관한 근적외선 차폐 재료 미립자 분산액(C-1액), CsRb 텅스텐 산화물 미립자 a, 근적외선 차폐체 C1를 얻었다.
근적외선 차폐 재료 미립자 분산액(C-1액) 내에 있어서의 CsRb 텅스텐 산화물 미립자 a의 분산 입자 지름은 70nm였다. CsRb 텅스텐 산화물 미립자 a의 격자 정수는, a축이 7.3925Å이며, c축이 7.5730Å이었다. 또, 결정자 지름은 24nm였다.
그리고 근적외선 차폐체의 가시광선 투과율과 근적외선 차폐 특성을 측정한 결과, 가시광선 투과율 69.7%, 투과율의 극대치와 극소치와의 차이 70.4포인트의 값을 얻었다. TEM 관찰에 의해, 근적외선 차폐체 C1에 분산된 CsRb 텅스텐 산화물 미립자의 평균 입자 지름을 구하면 24nm였다. 이 결과를 표 1에 나타낸다.
(실시예 15)
물 6.70kg에 탄산 세슘(Cs2CO3) 4.60kg과 탄산 루비듐(Rb2CO3) 2.12kg을 용해하여 용액을 얻었다. 상기 용액을 텅스텐산(H2WO4) 35.28kg에 첨가하여 충분히 교반 혼합한 후, 교반하면서 건조했다(W와 Cs와의 몰비가 1:0.20 상당, W와 Rb와의 몰비가 1:0.13 상당함). 상기 건조물을, N2 가스를 캐리어로 한 5% H2 가스를 공급하면서 가열하고, 800℃의 온도에서 5.5시간 소성한 후, 상기 공급 가스를 N2 가스로만 바꾸어 실온까지 강온하여 CsRb 텅스텐 산화물 입자 b를 얻었다.
Cs텅스텐 산화물 입자 대신에, 얻어진 CsRb 텅스텐 산화물 입자 b를 이용한 이외는, 실시예 1과 동일하게 하여 실시예 15에 관한 근적외선 차폐 재료 미립자 분산액(C-2액), CsRb 텅스텐 산화물 미립자 b, 근적외선 차폐체 C2를 얻었다.
근적외선 차폐 재료 미립자 분산액(C-2액) 내에 있어서의 CsRb 텅스텐 산화물 미립자 b의 분산 입자 지름은 70nm였다. CsRb 텅스텐 산화물 미립자 b의 격자 정수는, a축이 7.4026Å이며, c축이 7.6035Å였다. 또, 결정자 지름은 24nm였다.
그리고, 근적외선 차폐체 C2의 가시광선 투과율과 근적외선 차폐 특성을 측정한 결과, 가시광선 투과율 69.7%, 투과율의 극대치와 극소치와의 차이 71.5포인트의 값을 얻었다. TEM 관찰에 의해, 근적외선 차폐체 C2에 분산된 CsRb 텅스텐 산화물 미립자의 평균 입자 지름을 구하면 24nm였다. 이 결과를 표 1에 나타낸다.
(실시예 16)
물 6.70kg에 탄산 세슘(Cs2CO3) 5.71kg과 탄산 루비듐(Rb2CO3) 1.29kg을 용해하여 용액을 얻었다. 상기 용액을 텅스텐산(H2WO4) 35.00kg에 첨가하여 충분히 교반 혼합한 후, 교반하면서 건조했다(W와 Cs와의 몰비가 1:0.25 상당, W와 Rb와의 몰비가 1:0.08 상당함). 상기 건조물을 N2 가스를 캐리어로 한 5% H2 가스를 공급하면서 가열하고, 800℃의 온도에서 5.5시간 소성한 후, 상기 공급 가스를 N2 가스로만 바꾸어, 실온까지 강온하여 CsRb 텅스텐 산화물 입자 c를 얻었다.
Cs텅스텐 산화물 입자 대신에, 얻어진 CsRb 텅스텐 산화물 입자 c를 사용한 것 이외는 실시예 1과 동일하게 하여, 실시예 16에 관한 근적외선 차폐 재료 미립자 분산액(C-3액), CsRb 텅스텐 산화물 미립자 c, 근적외선 차폐체 C3를 얻었다.
근적외선 차폐 재료 미립자 분산액 내(C-3액)에 있어서의 CsRb 텅스텐 산화물 미립자 c의 분산 입자 지름은 70nm였다. CsRb 텅스텐 산화물 미립자 c의 격자 정수는 a축이 7.4049Å이며, c축이 7.6083Å이었다. 또, 결정자 지름은 24nm였다.
그리고 근적외선 차폐체의 가시광선 투과율과 근적외선 차폐 특성을 측정한 결과, 가시광선 투과율 69.7%, 투과율의 극대치와 극소치와의 차이 71.5포인트의 값을 얻었다. TEM 관찰에 의해, 근적외선 차폐체 C3에 분산된 CsRb 텅스텐 산화물 미립자의 평균 입자 지름을 구하면 25nm였다. 이 결과를 표 1에 나타낸다.
(실시예 17)
물 6.70kg에 탄산 세슘(Cs2CO3) 6.79kg과 탄산 루비듐(Rb2CO3) 0.481kg을 용해하여 용액을 얻었다. 상기 용액을 텅스텐산(H2WO4) 34.73kg에 첨가하여 충분히 교반 혼합한 후, 교반하면서 건조했다(W와 Cs와의 몰비가 1: 0.30 상당, W와 Rb와의 몰비가 1: 0.03 상당함). 상기 건조물을 N2 가스를 캐리어로 한 5% H2 가스를 공급하면서 가열하고, 800℃의 온도로 5.5시간 소성한 후, 상기 공급 가스를 N2 가스로만 바꾸고, 실온까지 강온하여 CsRb 텅스텐 산화물 입자 d를 얻었다.
Cs텅스텐 산화물 입자 대신에, 얻어진 CsRb 텅스텐 산화물 입자 d를 사용한 이외는 실시예 1과 동일하게 하여 실시예 17에 관한 근적외선 차폐 재료 미립자 분산액(C-4액), CsRb 텅스텐 산화물 미립자 d, 근적외선 차폐체 C4를 얻었다.
근적외선 차폐 재료 미립자 분산액 내(C-4액)에 있어서의 CsRb 텅스텐 산화물 미립자 d의 분산 입자 지름은 70nm였다. CsRb 텅스텐 산화물 미립자 d의 격자 정수는, a축이 7.4061Å이며, c축이 7.6087Å이었다. 또, 결정자 지름은 24nm였다.
그리고, 근적외선 차폐체 C4의 가시광선 투과율과 근적외선 차폐 특성을 측정한 결과, 가시광선 투과율 69.5%, 투과율의 극대치와 극소치와의 차이 72.1포인트의 값을 얻었다. TEM 관찰에 의해, 근적외선 차폐체 C4에 분산된 CsRb 텅스텐 산화물 미립자의 평균 입자 지름을 구하면 25nm였다. 이 결과를 표 1에 나타낸다.
(비교예 4, 5)
실시예 1에서 텅스텐산과 탄산 세슘을, W와 Cs의 몰비가 1:0.21(비교예 4), 1:0.23(비교예 5)이 되도록 소정량 칭량하고 400℃의 온도에서 5.5시간 소성한 것 이외는 실시예 1과 동일하게 하여 비교예 4 및 5에 관한 근적외선 차폐체 형성용 분산액(A-16액 및 A-17액), Cs텅스텐 산화물 미립자 p 및 q, 근적외선 차폐체 P 및 Q를 얻었다. 근적외선 차폐 재료 미립자 분산액(A-16액)에 있어서의, Cs텅스텐 산화물 미립자 p의 분산 입자 지름은 70nm, (A-17액)에 있어서의, Cs텅스텐 산화물 미립자 q의 분산 입자 지름은 70nm였다. 근적외선 차폐 재료 미립자 분산액(A-16액 및 A-17액), Cs텅스텐 산화물 미립자 p 및 q, 근적외선 차폐체 P 및 Q를 실시예 1과 동일하게 평가했다. 이 결과를 표 2에 나타낸다.
(비교예 6)
실시예 1에 관한 Cs텅스텐 산화물 입자 a에 대해 페인트 쉐이커의 회전 속도를 실시예 1의 0.8배로 한 것과 100시간 분쇄·분산 처리한 것 이외는 실시예 1과 동일하게 근적외선 차폐 재료 분산액(A-18액), Cs텅스텐 산화물 미립자 r, 근적외선 차폐체 R을 얻었다. 근적외선 차폐 재료 미립자 분산액(A-18액)에 있어서의, Cs텅스텐 산화물 미립자 r의 분산 입자 지름은 50nm였다. 근적외선 차폐 재료 미립자 분산액(A-18액), Cs텅스텐 산화물 미립자 r, 근적외선 차폐체 R을 실시예 1과 동일하게 평가했다. 이 결과를 표 2에 나타낸다.
(비교예 7)
실시예 1에 관한 Cs텅스텐 산화물 입자 a에서, N2 가스를 캐리어로 한 3체적% H2 가스를 공급하면서 440℃의 온도에서 5.5시간 소성한 것 이외는 실시예 1과 동일하게 비교예 7에 관한 근적외선 차폐 재료 분산액(A-19액), Cs텅스텐 산화물 미립자 s, 근적외선 차폐체 S를 얻었다. 근적외선 차폐 재료 미립자 분산액(A-19액)에 있어서의, Cs텅스텐 산화물 미립자 s의 분산 입자 지름은 75nm였다. 근적외선 차폐 재료 미립자 분산액(A-19액), Cs텅스텐 산화물 미립자 s, 근적외선 차폐체 S를 실시예 1과 같게 평가했다. 이 결과를 표 2에 나타낸다.
(비교예 8)
실시예 1에 관한 Cs텅스텐 산화물 입자 a20질량%와, 분산제 a8질량%와, 초산 부틸 72질량%를 칭량하여 10분간의 초음파의 진동으로 혼합하고 근적외선 차폐 재료 분산액(A-20액), Cs텅스텐 산화물 입자 a, 근적외선 차폐체 T를 얻었다. 즉, 근적외선 차폐 재료 분산액(A-20액)에 포함되는 Cs텅스텐 산화물 입자 a는 분쇄되어 있지 않다. 근적외선 차폐 재료 분산액(A-20액)에 있어서의, Cs텅스텐 산화물 미립자 a의 분산 입자 지름은 150nm였다. 근적외선 차폐 재료 미립자 분산액(A-20액), Cs텅스텐 산화물 입자 a, 근적외선 차폐체 T를 실시예 1과 동일하게 평가했다. 이 결과를 표 2에 나타낸다.
(비교예 9)
실시예 1에 관한 Cs텅스텐 산화물 입자 a에 대해 페인트 쉐이커의 회전 속도를 실시예 1의 1.15배로 한 것과 50시간 분쇄·분산 처리 프로세싱한 것 이외는 실시예 1과 동일하게 근적외선 차폐 재료 분산액(A-21액), Cs텅스텐 산화물 미립자 u, 근적외선 차폐체 U를 얻었다. 근적외선 차폐 재료 미립자 분산액(A-21액)에 있어서의, Cs텅스텐 산화물 미립자 u의 분산 입자 지름은 110nm였다. 근적외선 차폐 재료 미립자 분산액(A-21액), Cs텅스텐 산화물 미립자 u, 근적외선 차폐체 U를 실시예 1과 동일하게 평가했다. 이 결과를 표 2에 나타낸다.
(정리)
표 1, 2로부터 분명한 바와 같이, 실시예 1에서부터 17에 관한 근적외선 차폐 재료 미립자를 포함한 근적외선 차폐 재료 미립자 분산액을 사용하여 제조한 근적외선 차폐체는 비교예 1에서부터 9에 관한 근적외선 차폐 재료 미립자를 포함한 근적외선 차폐 재료 미립자 분산액을 사용하여 제조한 근적외선 차폐체와 비교하여, 태양광선, 특히 근적외선 영역의 광을 보다 효율 좋게 차폐하고, 동시에 가시광선 영역의 고투과율을 유지하고 있는 것이 판명되었다.
특히, 실시예 1에서부터 17에 관한 근적외선 차폐체에서, 광의 투과율의 극대치와 극소치와의 차이는 모두 69포인트를 넘었다. 이것에 대해, 비교예 1에서부터 9에 관한 근적외선 차폐체에 대해 모두 69포인트 미만이었다.
이상으로부터, 본 발명에 관한 근적외선 차폐 재료 미립자 분산체, 근적외선 차폐체 및 이들을 사용하여 제조된 본 발명에 관한 근적외선 차폐용 적층 구조체는 종래의 기술에 관한 근적외선 차폐 재료 미립자 분산체, 근적외선 차폐체 및 근적외선 차폐용 적층 구조체와 비교하여, 근적외선 영역의 광을 보다 효율 좋게 차폐 하면서, 가시광선 영역의 고투과율을 유지하는 등 뛰어난 광학 특성을 발휘하는 것인 것이 판명되었다.
Figure pct00001
Figure pct00002
본 발명은, 빌딩, 사무소, 일반 주택 등의 건축 분야, 차량 등의 수송 분야, 비닐 시트인 그 농업 분야, 전화 박스, 카 포토, 쇼윈도우, 조명용 램프, 투명 케이스, 섬유 등에 근적외선 차폐 재료 미립자를 사용하여 근적외 차폐 효과를 부여할 때, 적절하게 적용된다.

Claims (19)

  1. 근적외선 차폐 재료 미립자는 고체 매체에 분산한 근적외선 차폐 재료 미립자 분산체이며,
    상기 근적외선 차폐 재료 미립자는 육방정의 결정 구조를 포함한 복합 텅스텐 산화물 미립자이며,
    상기 복합 텅스텐 산화물 미립자의 격자 정수는 a축이 7.3850Å 이상 7.4186Å 이하, c축이 7.5600Å 이상 7.6240Å 이하이며, 상기 근적외선 차폐 재료 미립자의 입자 지름이 100nm 이하인 것을 특징으로 하는 근적외선 차폐 재료 미립자 분산체.
  2. 청구항 1에 있어서,
    상기 복합 텅스텐 산화물 미립자의 격자 정수가 a축이 7.4031Å 이상 7.4111Å 이하, c축이 7.5891Å 이상 7.6240Å 이하인 것을 특징으로 하는 근적외선 차폐 재료 미립자 분산체.
  3. 청구항 1에 있어서,
    상기 복합 텅스텐 산화물 미립자의 격자 정수가 a축이 7.4031Å 이상 7.4186Å 이하, c축이 7.5830Å 이상 7.5950Å 이하인 것을 특징으로 하는 근적외선 차폐 재료 미립자 분산체.
  4. 청구항 1 내지 3 중 어느 한 항에 있어서,
    상기 근적외선 차폐 재료 미립자의 입자 지름이 10nm 이상 100nm 이하인 것을 특징으로 하는 근적외선 차폐 재료 미립자 분산체.
  5. 청구항 1 내지 4 중 어느 한 항에 있어서,
    상기 복합 텅스텐 산화물 미립자가 일반식 MxWyOz(단, M원소는, H, He, 알칼리 금속, 알칼리토류 금속, 희토류 원소, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo, Ta, Re, Be, Hf, Os, Bi, I로부터 선택되는 1종류 이상의 원소이며, W는 텅스텐, O는 산소로, 0.20≤x/y≤0.37, 2.2≤z/y≤3.0)으로 표기되는 것을 특징으로 하는 근적외선 차폐 재료 미립자 분산체.
  6. 청구항 5에 있어서,
    상기 M원소가 Cs, Rb로부터 선택되는 1종류 이상의 원소인 것을 특징으로 하는 근적외선 차폐 재료 미립자 분산체.
  7. 청구항 1 내지 6 중 어느 한 항에 있어서,
    상기 근적외선 차폐 재료 미립자의 표면이 Si, Ti, Zr, Al로부터 선택되는 1종류 이상의 원소를 함유하는 산화물로 피복되어 있는 것을 특징으로 하는 근적외선 차폐 재료 미립자 분산체.
  8. 청구항 1 내지 7 중 어느 한 항에 있어서,
    상기 고체 매체가 수지 또는 유리인 것을 특징으로 하는 근적외선 차폐 재료 미립자 분산체.
  9. 청구항 8에 있어서,
    상기 수지가 폴리에틸렌 수지, 폴리염화비닐 수지, 폴리염화 비닐리덴 수지, 폴리비닐 알코올 수지, 폴리스티렌 수지, 폴리프로필렌 수지, 에틸렌 초산비닐 공중합체, 폴리에스테르 수지, 폴리에틸렌테레프탈레이트 수지, 불소 수지, 아크릴 수지, 폴리카보네이트 수지, 폴리이미드 수지, 폴리비닐부티랄 수지로부터 선택되는 1종류 이상인 것을 특징으로 하는 근적외선 차폐 재료 미립자 분산체.
  10. 청구항 1 내지 9 중 어느 한 항에 기재된 근적외선 차폐 재료 미립자 분산체가, 판 형태, 필름 형태, 박막 형태로부터 선택되는 어느 하나로 형성된 것을 특징으로 하는 근적외선 차폐체.
  11. 청구항 1 내지 9 중 어느 한 항에 기재된 근적외선 차폐 재료 미립자 분산체가 판 유리, 플라스틱판, 일사 차폐 기능을 갖는 미립자를 포함한 플라스틱판으로부터 선택되는, 2매 이상의 합판 사이에 존재하고 있는 것을 특징으로 하는 근적외선 차폐용 적층 구조체.
  12. 근적외선 차폐 재료 미립자 분산체의 제조 방법이며,
    일반식 MxWyOz(단, M원소는, H, He, 알칼리 금속, 알칼리토류 금속, 희토류 원소, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo, Ta, Re, Be, Hf, Os, Bi, I로부터 선택되는 1 종류 이상의 원소이며, W는 텅스텐, O는 산소이며, 0.20≤x/y≤0.37, 2.2≤z/y≤3.0)으로 표기되는 육방정의 결정 구조를 포함한 복합 텅스텐 산화물을 제조하는 제1 공정과,
    상기 제1 공정으로 얻어진 복합 텅스텐 산화물을 기계적으로 분쇄하고, 상기 육방정의 결정 구조에 있어서의 격자 정수에 대해 a축이 7.3850Å 이상 7.4186Å 이하, c축이 7.5600Å 이상 7.6240Å 이하이며, 입자 지름이 100nm 이하인 복합 텅스텐 산화물 미립자를 제조하는 제2 공정과,
    제2 공정으로 얻어진 복합 텅스텐 산화물 미립자를, 고체 매체 중에 분산하고, 근적외선 차폐 재료 미립자 분산체를 얻는 제3 공정을 갖는 것을 특징으로 하는 근적외선 차폐 재료 미립자 분산체의 제조 방법.
  13. 청구항 12에 있어서,
    상기 제2 공정에서, 육방정의 결정 구조에 있어서의 격자 정수에 대해 a축이 7.4031Å 이상 7.4111Å 이하, c축이 7.5891Å 이상 7.6240Å 이하이며, 입자 지름이 100nm 이하인 복합 텅스텐 산화물 미립자를 제조하는 것을 특징으로 하는 적외선 차폐 재료 미립자 분산체의 제조 방법.
  14. 청구항 12에 있어서,
    상기 제2의 공정에서, 육방정의 결정 구조에 있어서의 격자 정수에 대해 a축이 7.4031Å 이상 7.4186Å 이하, c축이 7.5830Å 이상 7.5950Å 이하이며, 입자 지름이 100nm 이하인 복합 텅스텐 산화물 미립자를 제조하는 것을 특징으로 하는 적외선 차폐 재료 미립자 분산체의 제조 방법.
  15. 청구항 12 내지 14 중 어느 한 항에 있어서,
    상기 고체 매체가 수지 또는 유리인 것을 특징으로 하는 근적외선 차폐 재료 미립자 분산체의 제조 방법.
  16. 청구항 15에 있어서,
    상기 수지가 폴리에틸렌 수지, 폴리염화비닐 수지, 폴리염화비닐리덴 수지, 폴리비닐알코올 수지, 폴리스티렌 수지, 폴리프로필렌 수지, 에틸렌 초산비닐 공중합체, 폴리에스테르 수지, 폴리에틸렌테레프탈레이트 수지, 불소 수지, 아크릴 수지, 폴리카보네이트 수지, 폴리이미드 수지, 폴리비닐부티랄 수지로부터 선택되는 1종류 이상인 것을 특징으로 하는 근적외선 차폐 재료 미립자 분산체의 제조 방법.
  17. 청구항 12 내지 16 중 어느 한 항에 있어서,
    상기 제3의 공정이 상기 근적외선 차폐 재료 미립자 분산체를 판 형태, 필름형태, 박막 형태로부터 선택되는 어느 하나로 성형하는 제4 공정을 포함하는 것을 특징으로 하는 근적외선 차폐 재료 미립자 분산체의 제조 방법.
  18. 청구항 17에 있어서,
    상기 제4의 공정이 상기 근적외선 차폐 재료 미립자 분산체를, 기재 표면에 형성하는 공정을 포함하는 것을 특징으로 하는 근적외선 차폐 재료 미립자 분산체의 제조 방법.
  19. 청구항 17 또는 18에 기재된 근적외선 차폐 재료 미립자 분산체의 제조 방법으로 얻어진 근적외선 차폐 재료 분산체를, 판유리, 플라스틱, 일사 차폐 기능을 갖는 미립자를 포함한 플라스틱으로부터 선택되는 2매 이상의 대향하는 투명 기재의 사이에 끼우는 제5 공정을 갖는 것을 특징으로 하는 근적외선 차폐용 적층 구조체의 제조 방법.
KR1020187029409A 2016-03-16 2017-03-16 근적외선 차폐 재료 미립자 분산체, 근적외선 차폐체 및 근적외선 차폐용 적층 구조체 및 이들의 제조방법 KR102371493B1 (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2016052560 2016-03-16
JPJP-P-2016-052561 2016-03-16
JPJP-P-2016-052560 2016-03-16
JP2016052561 2016-03-16
PCT/JP2017/010687 WO2017159791A1 (ja) 2016-03-16 2017-03-16 近赤外線遮蔽材料微粒子分散体、近赤外線遮蔽体および近赤外線遮蔽用合わせ構造体、並びに、それらの製造方法

Publications (2)

Publication Number Publication Date
KR20180122414A true KR20180122414A (ko) 2018-11-12
KR102371493B1 KR102371493B1 (ko) 2022-03-07

Family

ID=59851718

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020187029409A KR102371493B1 (ko) 2016-03-16 2017-03-16 근적외선 차폐 재료 미립자 분산체, 근적외선 차폐체 및 근적외선 차폐용 적층 구조체 및 이들의 제조방법

Country Status (14)

Country Link
US (1) US10562786B2 (ko)
EP (1) EP3431565A4 (ko)
JP (1) JP6825619B2 (ko)
KR (1) KR102371493B1 (ko)
CN (1) CN109312208B (ko)
AU (1) AU2017232748B2 (ko)
BR (1) BR112018068657A2 (ko)
IL (1) IL261773B (ko)
MX (1) MX2018011190A (ko)
MY (1) MY193596A (ko)
PH (1) PH12018501975A1 (ko)
SG (1) SG11201807946RA (ko)
TW (1) TWI709533B (ko)
WO (1) WO2017159791A1 (ko)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018235839A1 (ja) * 2017-06-19 2018-12-27 住友金属鉱山株式会社 近赤外線吸収繊維とその製造方法、およびこれを用いた繊維製品
TWI758543B (zh) * 2017-09-14 2022-03-21 日商住友金屬礦山股份有限公司 光熱轉換層、使用該光熱轉換層之施體片材及其等之製造方法
WO2019054478A1 (ja) * 2017-09-14 2019-03-21 住友金属鉱山株式会社 近赤外線硬化型インク組成物、近赤外線硬化膜、およびそれらの製造方法、並びに光造形法
US20210070961A1 (en) * 2018-02-08 2021-03-11 Sumitomo Metal Mining Co., Ltd. Near-infrared absorbing material fine particle dispersion body, near-infrared absorbing body, near-infrared absorbing substance laminated body and combined structure for near infrared absorption
BR112020023266A2 (pt) * 2018-05-15 2021-02-23 Sicpa Holding Sa recursos de segurança legíveis por máquina
JP7225678B2 (ja) * 2018-10-25 2023-02-21 住友金属鉱山株式会社 セシウムタングステン酸化物焼結体及びその製造方法、セシウムタングステン酸化物ターゲット
JP7292586B2 (ja) * 2019-01-21 2023-06-19 住友金属鉱山株式会社 表面処理赤外線吸収微粒子、表面処理赤外線吸収微粒子粉末、当該表面処理赤外線吸収微粒子を用いた赤外線吸収微粒子分散液、赤外線吸収微粒子分散体、および、赤外線吸収基材
JP6743226B1 (ja) * 2019-03-27 2020-08-19 三井金属鉱業株式会社 近赤外線吸収性材料、近赤外線吸収性層及び近赤外線吸収性部材
CN111763428B (zh) * 2019-04-01 2022-12-13 律胜科技股份有限公司 聚酰亚胺薄膜及使用其的柔性显示装置覆盖基板
WO2020199085A1 (zh) * 2019-04-01 2020-10-08 律胜科技股份有限公司 聚酰亚胺薄膜及使用其的柔性显示装置覆盖基板
WO2021132450A1 (ja) * 2019-12-25 2021-07-01 住友金属鉱山株式会社 近赤外線吸収材料粒子、近赤外線吸収材料粒子分散液、近赤外線吸収材料粒子分散体
BR112022014518A2 (pt) * 2020-01-31 2022-09-20 Sumitomo Metal Mining Co Partículas absorventes de onda eletromagnética, líquido de dispersão de partícula absorvente de onda eletromagnética e método para fabricação de partículas absorventes de onda eletromagnética
EP4310586A1 (en) * 2021-03-17 2024-01-24 Kabushiki Kaisha Toshiba Tungsten oxide powder and electrochromic element using same

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0812378A (ja) 1994-06-30 1996-01-16 Nissan Motor Co Ltd 熱線遮断ガラス及びその製造方法
JPH0859300A (ja) 1994-08-25 1996-03-05 Nissan Motor Co Ltd 熱線遮断ガラス
JPH0873223A (ja) 1994-09-08 1996-03-19 Agency Of Ind Science & Technol タングステンブロンズおよびその被覆複合体の製造方法
JPH08283044A (ja) 1995-04-11 1996-10-29 Asahi Glass Co Ltd 熱線遮断ガラス
JPH09107815A (ja) 1995-10-16 1997-04-28 Kanebo Ltd 保温用シート
JPH09127559A (ja) 1995-10-27 1997-05-16 Teiji Haniyu 太陽光可変調光断熱材料
JP2000119045A (ja) 1998-10-13 2000-04-25 Glaverbel Sa 太陽光制御被覆ガラス
JP2003029314A (ja) 2001-07-17 2003-01-29 Somar Corp 遮光フィルム
JP2003121884A (ja) 2001-10-17 2003-04-23 Sumitomo Metal Mining Co Ltd エレクトロクロミック特性を示す酸化タングステン微粒子の製造方法、その微粒子を含む塗布液及びエレクトロクロミック素子
WO2005037932A1 (ja) 2003-10-20 2005-04-28 Sumitomo Metal Mining Co., Ltd. 赤外線遮蔽材料微粒子分散体、赤外線遮蔽体、及び赤外線遮蔽材料微粒子の製造方法、並びに赤外線遮蔽材料微粒子
JP2011065000A (ja) * 2009-09-18 2011-03-31 Sumitomo Metal Mining Co Ltd プラズマディスプレイパネル用近赤外線吸収フィルターとその製造方法およびプラズマディスプレイパネル
JP2011063484A (ja) * 2009-09-18 2011-03-31 Sumitomo Metal Mining Co Ltd 近赤外線遮蔽材料微粒子とその製造方法および近赤外線遮蔽材料微粒子分散体と近赤外線遮蔽体
JP2011063740A (ja) * 2009-09-18 2011-03-31 Sumitomo Metal Mining Co Ltd 熱線遮蔽樹脂シート材と熱線遮蔽樹脂シート材積層体およびこれ等を用いた建築構造体
JP2013173642A (ja) * 2012-02-24 2013-09-05 Sumitomo Metal Mining Co Ltd 日射遮蔽体形成用複合タングステン酸化物微粒子とその製造方法、および日射遮蔽体形成用複合タングステン酸化物微粒子分散液、並びに日射遮蔽体

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102282229B (zh) * 2008-11-13 2015-05-06 住友金属矿山株式会社 红外线屏蔽用微粒及其制造方法、以及使用该红外线屏蔽用微粒的红外线屏蔽用微粒分散体、红外线屏蔽用基体材料
JP2011063739A (ja) * 2009-09-18 2011-03-31 Sumitomo Metal Mining Co Ltd 近赤外線遮蔽材料微粒子とその製造方法および近赤外線遮蔽材料微粒子分散体と近赤外線遮蔽体
JP2011063741A (ja) * 2009-09-18 2011-03-31 Sumitomo Metal Mining Co Ltd 熱線遮蔽樹脂シート材と熱線遮蔽樹脂シート材積層体およびこれ等を用いた建築構造体
US10450471B2 (en) * 2012-07-11 2019-10-22 Sumitomo Metal Mining Co., Ltd. Method for producing heat-ray shielding dispersion body, heat-ray shielding dispersion body, and heat-ray shielding body
EP3034294B1 (en) * 2013-04-03 2023-01-04 Sumitomo Metal Mining Co., Ltd. Heat-ray-shielding resin sheet material, vehicle, and building
WO2016121843A1 (ja) * 2015-01-27 2016-08-04 住友金属鉱山株式会社 近赤外線吸収微粒子分散液とその製造方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0812378A (ja) 1994-06-30 1996-01-16 Nissan Motor Co Ltd 熱線遮断ガラス及びその製造方法
JPH0859300A (ja) 1994-08-25 1996-03-05 Nissan Motor Co Ltd 熱線遮断ガラス
JPH0873223A (ja) 1994-09-08 1996-03-19 Agency Of Ind Science & Technol タングステンブロンズおよびその被覆複合体の製造方法
JPH08283044A (ja) 1995-04-11 1996-10-29 Asahi Glass Co Ltd 熱線遮断ガラス
JPH09107815A (ja) 1995-10-16 1997-04-28 Kanebo Ltd 保温用シート
JPH09127559A (ja) 1995-10-27 1997-05-16 Teiji Haniyu 太陽光可変調光断熱材料
JP2000119045A (ja) 1998-10-13 2000-04-25 Glaverbel Sa 太陽光制御被覆ガラス
JP2003029314A (ja) 2001-07-17 2003-01-29 Somar Corp 遮光フィルム
JP2003121884A (ja) 2001-10-17 2003-04-23 Sumitomo Metal Mining Co Ltd エレクトロクロミック特性を示す酸化タングステン微粒子の製造方法、その微粒子を含む塗布液及びエレクトロクロミック素子
WO2005037932A1 (ja) 2003-10-20 2005-04-28 Sumitomo Metal Mining Co., Ltd. 赤外線遮蔽材料微粒子分散体、赤外線遮蔽体、及び赤外線遮蔽材料微粒子の製造方法、並びに赤外線遮蔽材料微粒子
JP2011065000A (ja) * 2009-09-18 2011-03-31 Sumitomo Metal Mining Co Ltd プラズマディスプレイパネル用近赤外線吸収フィルターとその製造方法およびプラズマディスプレイパネル
JP2011063484A (ja) * 2009-09-18 2011-03-31 Sumitomo Metal Mining Co Ltd 近赤外線遮蔽材料微粒子とその製造方法および近赤外線遮蔽材料微粒子分散体と近赤外線遮蔽体
JP2011063740A (ja) * 2009-09-18 2011-03-31 Sumitomo Metal Mining Co Ltd 熱線遮蔽樹脂シート材と熱線遮蔽樹脂シート材積層体およびこれ等を用いた建築構造体
JP2013173642A (ja) * 2012-02-24 2013-09-05 Sumitomo Metal Mining Co Ltd 日射遮蔽体形成用複合タングステン酸化物微粒子とその製造方法、および日射遮蔽体形成用複合タングステン酸化物微粒子分散液、並びに日射遮蔽体

Also Published As

Publication number Publication date
SG11201807946RA (en) 2018-10-30
US10562786B2 (en) 2020-02-18
TWI709533B (zh) 2020-11-11
AU2017232748A1 (en) 2018-10-04
BR112018068657A2 (pt) 2019-02-05
WO2017159791A1 (ja) 2017-09-21
US20190077676A1 (en) 2019-03-14
IL261773A (en) 2018-10-31
KR102371493B1 (ko) 2022-03-07
JPWO2017159791A1 (ja) 2019-01-31
MX2018011190A (es) 2019-05-16
CN109312208B (zh) 2021-12-17
MY193596A (en) 2022-10-19
EP3431565A1 (en) 2019-01-23
PH12018501975A1 (en) 2019-07-01
IL261773B (en) 2022-04-01
CN109312208A (zh) 2019-02-05
AU2017232748B2 (en) 2021-08-19
TW201802032A (zh) 2018-01-16
JP6825619B2 (ja) 2021-02-03
EP3431565A4 (en) 2019-08-07

Similar Documents

Publication Publication Date Title
TWI709533B (zh) 近紅外線遮蔽材料微粒子分散體、近紅外線遮蔽體及近紅外線遮蔽用夾層構造體,暨該等之製造方法
US10533100B2 (en) Near-infrared shielding material fine particles and method for producing the same, and near-infrared shielding material fine particle dispersion liquid
KR100701735B1 (ko) 적외선 차폐재료 미립자 분산체, 적외선 차폐체, 및 적외선차폐재료 미립자의 제조방법, 및 적외선 차폐재료 미립자
US11661350B2 (en) Near-infrared absorbing material fine particle dispersion, near-infrared absorber, near-infrared absorber laminate, and laminated structure for near-infrared absorption
TW201934338A (zh) 日照遮蔽用夾層構造體及其製造方法
TW201600466A (zh) 光遮蔽體材料、光遮蔽結構及其製造方法
KR102575326B1 (ko) 근적외선 흡수 재료 미립자 분산체, 근적외선 흡수체, 근적외선 흡수물 적층체 및 근적외선 흡수용 접합 구조체
KR20200086672A (ko) 적외선 흡수체
JP2017039880A (ja) 赤外線遮蔽材料微粒子とその製造方法、および、赤外線遮蔽材料微粒子分散体とこの分散体から製造された赤外線遮蔽体

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant