WO2017159651A1 - 光変調器 - Google Patents

光変調器 Download PDF

Info

Publication number
WO2017159651A1
WO2017159651A1 PCT/JP2017/010084 JP2017010084W WO2017159651A1 WO 2017159651 A1 WO2017159651 A1 WO 2017159651A1 JP 2017010084 W JP2017010084 W JP 2017010084W WO 2017159651 A1 WO2017159651 A1 WO 2017159651A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
optical modulator
optical
signal
ground
Prior art date
Application number
PCT/JP2017/010084
Other languages
English (en)
French (fr)
Inventor
都築 健
百合子 川村
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to CN201780017852.3A priority Critical patent/CN108780235B/zh
Priority to US16/084,128 priority patent/US10852618B2/en
Priority to JP2018505933A priority patent/JP6499804B2/ja
Priority to EP17766650.0A priority patent/EP3432058B1/en
Priority to SG11201807888XA priority patent/SG11201807888XA/en
Priority to CA3017845A priority patent/CA3017845C/en
Publication of WO2017159651A1 publication Critical patent/WO2017159651A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
    • G02F1/025Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/225Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure
    • G02F1/2255Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure controlled by a high-frequency electromagnetic component in an electric waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/225Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure
    • G02F1/2257Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure the optical waveguides being made of semiconducting material
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/06Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 integrated waveguide
    • G02F2201/063Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 integrated waveguide ridge; rib; strip loaded
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/121Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode common or background

Definitions

  • the present invention relates to an optical modulator used in an optical communication system or an optical information processing system. More specifically, the present invention relates to a structure of an optical modulator that can perform an optical modulation operation at high speed and has excellent frequency characteristics.
  • a Mach-Zehnder (MZ) type optical modulator has a structure in which light incident on an optical waveguide is split into two waveguides at an intensity of 1: 1, the branched light is propagated for a certain length, and then multiplexed again. Have.
  • the phases of the two lights branched by the phase modulators provided in the optical waveguides branched in two are changed.
  • the light intensity and phase can be modulated by changing the light interference condition when the light subjected to the two phase changes is combined.
  • a dielectric such as LiNbO 3 or a semiconductor such as InP, GaAs, or Si is used.
  • a phase of light propagating through the optical waveguide is changed by inputting a modulated electric signal to an electrode arranged in the vicinity of the optical waveguide made of these materials and applying a modulation voltage to the optical waveguide.
  • the Pockels effect is achieved when the material is LiNbO 3 , the Pockels effect or the quantum confined Stark effect (QCSE) is achieved with InP and GaAs,
  • the carrier plasma effect is mainly used.
  • an optical modulator having a high modulation speed and a low driving voltage is required. Specifically, it is required to perform optical modulation at a high speed of 10 Gbps or more and with an amplitude voltage of several volts. To achieve this, the speed of high-speed electrical signals and the speed of light propagating in the phase modulator are matched so that the two interact with each other while propagating light and electrical signals.
  • a wave electrode is required.
  • an optical modulator using a traveling wave electrode for example, as disclosed in Non-Patent Document 1, an electrode having a length of several mm to several tens of mm has been put into practical use.
  • An optical modulator using a traveling wave electrode is required to have an electrode structure and an optical waveguide structure with low loss and low reflection so that the electric signal and the intensity of light propagating through the waveguide can be propagated without dropping.
  • an electrical signal requires an electrode structure with little reflection loss and propagation loss over a wide frequency band, and for light, a waveguide structure that can efficiently confine light and propagate without loss with little reflection. is required.
  • a Si optical modulator in which an optical waveguide is made of Si is promising from the viewpoint of a substrate material and a manufacturing process.
  • the Si optical modulator is manufactured from an SOI (Silicon on Insulator) substrate in which a Si thin film is pasted on an oxide film (BOX: Buried Oxide) layer obtained by thermally oxidizing the surface of a Si substrate.
  • SOI Silicon on Insulator
  • BOX oxide film
  • the optical waveguide after processing the Si thin film into a thin line so that light can be guided through the SOI layer, impurities are implanted so that a p-type semiconductor and an n-type semiconductor can be formed, and SiO 2 serving as a light cladding layer is formed. It is produced by depositing and forming electrodes.
  • FIG. 1 is a diagram showing a cross-sectional structure of an optical waveguide that is the basis of a conventional Si optical modulator.
  • FIG. 1 shows a cross section (xz plane) obtained by cutting an optical waveguide 200 formed on an SOI substrate perpendicularly to the light traveling direction (y-axis). The light is perpendicular to the drawing (y-axis direction). ).
  • the optical waveguide 200 of the Si optical modulator is composed of an Si layer 2 sandwiched between upper and lower SiO 2 cladding layers 1 and 3.
  • the thin Si wire for confining light in the center of FIG. 1 has a structure called a rib waveguide having a difference in thickness.
  • the rib waveguide is composed of a thick Si layer 201 at the center and thin slab regions 202a and 202b on both sides thereof as shown in FIG.
  • the optical waveguide 200 that confines the light propagating in the direction perpendicular to the paper surface is formed using the difference in refractive index with the surrounding SiO 2 cladding layers 1 and 3.
  • a high concentration p-type semiconductor layer 211 and a high concentration n-type semiconductor layer 214 are provided in the thin slab regions 202a and 202b on both sides of the optical waveguide core of the thick Si layer 201, respectively. Further, in the optical waveguide core of the Si layer 201 and in the vicinity thereof, a pn junction structure is formed by the medium concentration p-type semiconductor layer 212 and the medium concentration n-type semiconductor layer 213. As will be described later, a modulated electric signal and a bias voltage are applied from both left and right ends of the Si layer 2 in FIG. 1 via electrodes (not shown).
  • a pin structure is formed in which an undoped i-type (intrinsic) semiconductor is sandwiched between pn junction structures of the medium-concentration p-type semiconductor layer 212 and the medium-concentration n-type semiconductor layer 213. Also good.
  • the phase modulation operation in the optical waveguide 200 of the Si optical modulator can be explained as follows. Although not shown in FIG. 1, two metal electrodes in contact with the high-concentration p-type semiconductor layer 211 and the high-concentration n-type semiconductor layer 214 at both ends of the Si layer 2 are provided. A reverse bias voltage is applied to the pn junction at the center of the core together with a high frequency (RF: Radio Frequency) modulated electric signal via two metal electrodes. That is, a voltage with the high concentration n-type semiconductor layer 214 side as a positive potential and the high concentration p-type semiconductor layer 211 as a negative potential is applied from the right end to the left end of the optical waveguide 200 (x-axis direction).
  • RF Radio Frequency
  • the carrier density inside the core of the thick Si layer 201 is changed by the reverse bias voltage and the modulated electric signal.
  • the phase of light propagating through the core of the optical waveguide can be modulated by changing the refractive index of the core 201 of the optical waveguide by the carrier plasma effect due to the change in the carrier density.
  • the size of the optical waveguide in the Si optical modulator depends on the refractive index of each material that becomes the core / cladding.
  • An example of a rib-type silicon waveguide structure having a thick Si layer 201 core portion and slab regions 202a and 202b on both sides thereof as shown in FIG. Direction) is 400 to 600 (nm), the height of the core (z-axis direction) is 150 to 300 (nm), the thickness of the slab region is 50 to 200 (nm), the length of the optical waveguide (y-axis direction) ) Is about several millimeters.
  • One of the excellent features of the Si optical modulator is that a compact optical modulator can be configured because the refractive index difference between Si, which is a core through which light propagates, and SiO 2 of the cladding layer is large. Since the difference in refractive index is large, light can be confined small, and the bending radius of the optical waveguide can be made very small, such as about 10 ⁇ m. For this reason, the optical multiplexing / demultiplexing circuit portion in the Si optical modulator to be described next can be made small.
  • FIG. 2 is a diagram showing a Si optical modulator constituting a conventional MZ type optical modulator having a dual electrode structure.
  • FIG. 2 is a top view of the Si (SOI) substrate surface (xy plane) on which the electrodes are formed as viewed perpendicularly, and it also shows through elements that are configured inside the substrate and are difficult to see directly.
  • the optical input 22 from the left optical modulator end in FIG. 2 is input to the optical waveguide, branched into two optical waveguides 7a and 7b, and merged again, so that the modulated light 23 is transmitted from the right optical modulator end. Is output.
  • the input light 22 is phase-modulated by modulated electric signals (RF signals) applied to the upper RF electrodes 15a and 15b, respectively, while propagating in the y-axis direction through the two branched optical waveguides 7a and 7b.
  • a coplanar line (CPW: Coplanar Waveguide) is configured by the RF electrode 15a located above the drawing and the two ground electrodes 16a and 17 sandwiching the RF electrode 15a.
  • the CPW is constituted by the RF electrode 15b at the bottom of the drawing and the two ground electrodes 16b and 17 sandwiching the RF electrode 15b.
  • the optical modulator of FIG. 2 is also referred to as a dual electrode structure because one MZ type optical modulator has two RF signal input portions.
  • the optical modulator of FIG. 2 has a symmetric structure with respect to a center line passing through the center of the ground electrode 17 and parallel to the y-axis.
  • FIG. 3 is a diagram showing a cross section including the III-III line of the conventional Si optical modulator shown in FIG.
  • the cross-sectional structure diagram of FIG. 3 shows a phase modulation unit including a CPW corresponding to one optical waveguide 7a to be modulated.
  • One phase modulation unit includes an RF electrode 15a that is a high-frequency line that inputs one of differentially modulated electric signals (RF signals) to a rib waveguide having a cross-sectional structure similar to that of FIG. 1, and an RF electrode 15a. And two ground electrodes 16a and 17 provided so as to sandwich them.
  • RF signals differentially modulated electric signals
  • One optical waveguide core 7a is provided between the RF electrode 15a and the ground electrode 16a, and a pn junction structure including a medium-concentration p-type semiconductor layer 212 and a medium-concentration n-type semiconductor layer 213 is provided in the optical waveguide 7a. Is formed.
  • the RF electrode 15a is in contact with the high-concentration n-type semiconductor layer 214 through the via 19b.
  • the ground electrode 16a is in contact with the high-concentration p-type semiconductor layer 211 through the via 19a.
  • the other ground electrode 17 is not in contact with any semiconductor layer, but forms a high-frequency transmission line (CPW) having a GSG (Ground Signal Ground) structure with respect to the RF electrode 15a together with the ground electrode 16a.
  • CPW high-frequency transmission line
  • GSG Ground Signal Ground
  • the signal line formed by the RF electrode 15a is surrounded by the two ground electrodes 16a and 17, it is possible to form an optical modulator with less signal leakage and less crosstalk and propagation loss.
  • 3 has the same configuration as that of FIG. 3 except that the z axis is reversed with respect to the symmetry axis.
  • the characteristic impedance of the RF electrodes 15a and 15b of the Si optical modulator as a high-frequency transmission line is greatly influenced by the capacitance of the pn junctions of the Si waveguide cores 7a and 7b.
  • the characteristic impedance can be adjusted relatively easily by adjusting the electrostatic capacitance (capacitance) between the RF electrode 15 a and the ground electrode 17.
  • the characteristic impedance can be about 50 ⁇ in the single-end driving configuration and about 100 ⁇ in the differential driving configuration.
  • the RF electrode 15 a is in contact with the high-concentration n-type semiconductor layer 214 and the ground electrode 16 a is in contact with the high-concentration p-type semiconductor layer 211.
  • 15a may be in contact with the high concentration p-type semiconductor layer, and the ground electrode 16a may be in contact with the high concentration n-type semiconductor layer.
  • the pn junction can be reverse-biased by applying a negative voltage to the ground electrode 16a as a bias voltage that is superimposed on the RF signal and applied to the RF electrode 15a.
  • an optical modulator capable of modulating light at high speed.
  • the optical modulator is required to have a frequency characteristic that can operate over a wide frequency band from several hundred kHz to several tens GHz.
  • FIG. 4 is a diagram schematically illustrating an ideal modulation signal propagation state in a dual-electrode Si optical modulator having a CPW structure.
  • the upper RF electrode 15a in FIG. 4 is configured by the CPW sandwiched between the two ground electrodes 16a and 17.
  • a high frequency signal propagates on the RF electrode 15a in a state where one RF electrode 15a is sandwiched between the ground electrodes 16a and 17 on both sides.
  • Electromagnetic propagation of a high-frequency signal can be described as a model in which a dense part of charge and a sparse part of charge move like a wave on a high-frequency propagation line, for example, the RF electrode 15a.
  • FIG. 4 illustrates the propagation state of the modulation signal based on the above-described charge transfer model.
  • the CPW is one of unbalanced lines in which the charge of the RF line is balanced with the charge of opposite polarity induced in each of the two ground electrodes.
  • positive charges 26 and negative charges appear alternately on the RF electrode 15a at a certain point in the y-axis direction, which is the propagation direction of the electric signal.
  • the dense portion of the positive charge 26 on the RF electrode 15a the dense portions 24, 25 having negative charges of opposite polarity appear on the two ground electrodes 16a, 17 respectively.
  • the charges on the two ground electrodes 16a and 17 are aligned with the charges on the RF electrode 15a and propagate in the y-axis direction.
  • the charge in the x-axis direction is as shown in the distribution 27.
  • the polarity of the charge of each electrode changes with time.
  • An RF input signal 21a input from the left end of the figure propagates while applying modulation to the optical waveguide 7a and is terminated by a terminating resistor connected to the right end of the RF electrode 15a (not shown).
  • the modulation signal 21a cannot be efficiently applied to the RF electrode 15a.
  • FIG. 5 is a diagram schematically illustrating an actual propagation state of a modulation signal in a dual electrode Si optical modulator having a CPW structure.
  • the dual-electrode Si optical modulator there is a ground electrode 16a on one side of the RF line 15a with the optical waveguide 7a interposed therebetween, and a ground electrode 17 on which the corresponding optical waveguide does not exist on the other side.
  • the ground electrode 17 is necessary to perform the function of adjusting the characteristic impedance of the RF line 15a. In general, it is a region that determines the electrostatic capacity (capacitance) of the RF line that affects the Coulomb force that is caused by the electric charge propagating through the RF line in the transmission line.
  • the pn junction portion (depletion layer) of the Si optical waveguide mainly determines the capacitance.
  • the capacitance between the RF electrode 15a and the second ground electrode 17 is determined mainly by the distance between these electrodes.
  • the depletion layer of the pn junction is extremely thin, so that the capacitance is very large.
  • the latter second ground electrode 17 has a small capacitance because the distance between the electrodes is larger than the thickness of the depletion layer. Since the capacitance of the first ground electrode 16a and the capacitance of the second ground electrode 17 are greatly different, the speeds of the charges propagating through the two ground electrodes 16a and 17 are also greatly different.
  • the charge propagating on the ground electrode 16a is relatively slower than the charge propagating on the ground electrode 17. While there are two positive charge dense portions on the ground electrode 17, there are three positive charge dense portions on the ground electrode 16a. On the ground electrode 16a, a wave having a higher wave number input in the past remains without passing through the transmission line, indicating that the charge propagation speed is slow. As in the example of the model of FIG. 5, if the propagation speed of charges is different between the two ground electrodes, the two high-frequency signals are induced from the charges on the RF electrode 15 a as they propagate on the RF electrode 15 a. The opposite polarity charges propagating through the ground electrodes 16a and 17 respectively enlarge the phase difference.
  • the state is the same as when no voltage is applied.
  • the RF input signal 21a from the left end of the optical modulator is in the same state as not being applied uniformly to the optical waveguide 7a over the entire length of the RF electrode 15a, and the optical waveguide 7a is The efficiency of undergoing phase modulation is also reduced.
  • FIG. 6A and 6B are diagrams showing the S parameter measurement results of the electrical signal path in the conventional dual electrode Si optical modulator.
  • S parameter measurement is performed with one end (for example, the left end) of the RF electrode 15a as an input and the other end as an output, and FIG.
  • the parameter (S 21 ) is shown, and the S parameter (S 11 ) of the reflection characteristic is shown in FIG. 6B.
  • the length of the RF electrode in the y-axis direction of the optical modulator is 6 mm.
  • the phase difference of charge propagation between the ground electrode 16a and the ground electrode 17 is ⁇ , and the frequency at which the output signal from the RF electrode 15a is always 0 is the entire RF electrode.
  • the phase velocity difference between the signal (charge) propagating between the RF electrode 15a and the ground electrode 16a and the signal (charge) propagating between the RF electrode 15a and the ground electrode 17 depends on. In other words, it varies depending on the difference in capacitance value between the two ground electrodes 15a and 17 respectively.
  • the transmission signal is greatly attenuated in the vicinity of 11 GHz, and the characteristic impedance is also greatly changed because the propagation mode is changed.
  • the reflection characteristic (S 11 ) shown in FIG. The amount of reflection is large. Furthermore, similarly, near 31 GHz where the phase difference is 3 ⁇ , a decrease in transmitted energy and an increase in reflection amount can be observed.
  • Such a large variation depending on the frequency in the transmission characteristics and reflection characteristics of the RF signal input to the RF electrode is originally an optical modulation that requires a flat response operation over a wide frequency band from several hundred kHz to several tens GHz. It becomes a big problem for the vessel.
  • the phase difference of the propagating charge between the two ground electrodes 16a and 17, that is, the phase difference of the ground current In order to prevent from becoming ⁇ , the following method has been adopted.
  • One method is to shorten the overall length of the light modulator and terminate the propagation of the high frequency signal on the modulator electrode before the phase difference between the two ground electrodes 16a and 17 occurs. It is.
  • the modulator length is shortened, the distance for effective phase modulation is shortened, resulting in a decrease in modulation efficiency.
  • the required amplitude of the modulated RF signal becomes large. This is contrary to the demand for low voltage driving of the optical modulator.
  • Another method suppresses the difference between the capacitance of the pn junction between the RF electrode 15a and the ground electrode 16a of the Si optical waveguide and the capacitance due to the electrode spacing between the RF electrode 15a and the ground electrode 17. That is.
  • the difference in the speed of the propagating charge can be reduced.
  • the electrostatic capacitance with the smaller electrode spacing between the RF electrode 15a and the ground electrode 17 is further increased.
  • the electrostatic capacitance related to the ground electrode 17 is increased, there is a problem that the electric field applied to the optical waveguide is reduced and the modulation efficiency is lowered.
  • FIG. 7A and FIG. 7B are diagrams showing a structure example of an air bridge that short-circuits two ground electrodes in the prior art.
  • FIG. 7A shows an air bridge 30 that connects the two ground electrodes on either side of the signal electrode to short circuit.
  • the air bridge 30 can equalize the potential between the ground electrodes of the connected portions.
  • a phase difference occurs in the waves of charges flowing on the two ground electrodes. Since this phase difference is also a potential difference, by short-circuiting the two ground electrodes with the air bridge 30, the phase difference is eliminated and deterioration of the electric signal propagating through the signal electrode can be suppressed.
  • FIG. 7B shows a cross section of an air bridge 31 used in a monolithic microwave integrated circuit (MMIC).
  • MMIC monolithic microwave integrated circuit
  • the air bridge is made of plated wiring or the like (Non-Patent Document 2). Since the MMIC enables multi-layer electric wiring, it is possible to fabricate intersecting electrode wirings separated by an interlayer insulating film. The reason for wiring by the air bridge 31 in the MMIC is that the high-frequency signal propagates through the signal electrode, so that the ground wiring cannot be arranged close to the signal electrode.
  • MMIC interlayer wiring separated by a very close distance from submicron to about 1 to 2 ⁇ m by an interlayer insulation film with a relative dielectric constant of about 2.5 to 4.0 to short-circuit the two ground electrodes
  • the characteristics of the high-frequency signal are affected.
  • it is not the MMIC interlayer wiring, but is separated from the air by several ⁇ m to ten and several ⁇ m and separated by air. It is necessary to use the bridge 31.
  • the air bridge is mainly made of Au wiring by plating, and is difficult to manufacture in a CMOS compatible process used for manufacturing the Si modulator.
  • the Si CMOS process is optimized with the demand for fine processing, and Au wiring that cannot be patterned by etching is not generally used.
  • the Au wiring is formed by a lift-off process or plating, but there are problems such as burrs and the inability to form a fine pattern. For this reason, when an air bridge for short-circuiting two grounds is to be manufactured in the Si optical modulator, it is necessary to bridge the ground electrodes by wire wiring after the optical modulator element is manufactured.
  • the present invention has been made in view of such a problem, and an object of the present invention is to eliminate a phase difference between return currents propagating through two ground electrodes in a dual electrode Si optical modulator having a CPW structure. Another object of the present invention is to provide a broadband optical modulator that suppresses deterioration of frequency response characteristics at a low cost.
  • each Si optical modulator having at least two coplanar lines (CPW) formed on a substrate, each including a signal electrode to which a radio frequency (RF) signal is applied.
  • the CPW is disposed on the other side of the signal electrode, the first ground electrode disposed on one side of the signal electrode with an optical waveguide formed inside the substrate interposed therebetween, and the other side of the signal electrode.
  • a second ground electrode, and the optical waveguide is a rib waveguide having a central core and slab regions on both sides thereof, and the first ground electrode is connected to one of the slab regions by an interlayer connection wiring.
  • the signal electrode is connected to the other of the slab regions by an interlayer connection wiring, and the first ground electrode and the second ground electrode are arranged in the thickness direction of the substrate.
  • the optical modulator By one or more wire electrodes passing between the No. electrodes of the optical waveguide, the optical modulator, characterized in that connected to each other it is disclosed.
  • a wide-band optical modulator that eliminates the phase difference between the return currents propagating through the two ground electrodes and suppresses the deterioration of frequency response characteristics is provided at low cost. it can.
  • FIG. 1 is a diagram showing a cross-sectional structure of an optical waveguide of a conventional Si optical modulator.
  • FIG. 2 is a top view showing a conventional Si optical modulator having a dual electrode structure.
  • FIG. 3 is a diagram showing a cross section of the prior art Si optical modulator shown in FIG.
  • FIG. 4 is a diagram for explaining an ideal propagation state of a modulation signal in a dual electrode Si optical modulator having a CPW structure.
  • FIG. 5 is a diagram for explaining an actual propagation state of a modulation signal in a dual electrode Si optical modulator having a CPW structure.
  • FIG. 6A is a diagram illustrating a measurement result of an S parameter S 21 of an electric signal path in a conventional dual electrode Si optical modulator.
  • FIG. 1 is a diagram showing a cross-sectional structure of an optical waveguide of a conventional Si optical modulator.
  • FIG. 2 is a top view showing a conventional Si optical modulator having a dual electrode structure.
  • FIG. 6B is a diagram showing the S parameter S 11 measurement result of the electric signal path in the conventional dual electrode Si optical modulator.
  • FIG. 7A is a diagram showing a structure example of an air bridge for short-circuiting a ground electrode in the prior art.
  • FIG. 7B is a diagram showing another structural example of an air bridge for short-circuiting a ground electrode in the prior art.
  • FIG. 8 is a diagram illustrating a configuration of the dual-electrode Si optical modulator according to the first embodiment.
  • FIG. 9A is a cross-sectional view of a portion of the Si optical modulator of Example 1 that does not include a wiring electrode.
  • FIG. 9B is a cross-sectional view of a portion including the wiring electrode of the Si optical modulator according to the first embodiment.
  • FIG. 10 is a diagram illustrating the S parameter measurement result of the electrical signal path in the Si optical modulator according to the first embodiment of the present invention.
  • FIG. 11 is a diagram showing the electric field distribution around the pn junction when a modulated electric signal is applied to the Si optical waveguide.
  • FIG. 12 is a diagram illustrating a configuration of a dual-electrode Si optical modulator according to the second embodiment.
  • the optical modulator of the present invention is a dual-electrode Si optical modulator having a CPW electrode structure, and eliminates a phase difference between return currents propagating through two ground electrodes by wiring between the two ground electrodes.
  • An optical modulator structure in which deterioration of frequency response characteristics is suppressed using a CMOS compatible process is provided. Wirings between the ground electrodes are made by a CMOS compatible process rather than a conventional air bridge or wire wiring. As a result, it is possible to provide an optical modulator that is low in manufacturing cost, suppresses high-frequency signal deterioration, and has good waveform quality during high-speed modulation.
  • FIG. 8 is a diagram showing the configuration of the dual-electrode Si optical modulator according to the first embodiment of the present invention.
  • FIG. 8 is a top view of the Si (SOI) substrate surface (xy plane) on which the electrodes are formed as viewed perpendicularly, and it also shows through elements that are configured inside the substrate and are difficult to see directly.
  • the optical input 22 from the left optical modulator end in FIG. 8 is input to the optical waveguide, branched into two optical waveguides 7a and 7b, and merged again, so that the modulated light 23 is transmitted from the right optical modulator end. Is output.
  • the configuration of the optical modulator in FIG. 8 is substantially the same as the configuration of the conventional optical modulator shown in FIG.
  • a CPW is constituted by an RF electrode 15a located above the drawing and two ground electrodes 16a and 17 sandwiching the RF electrode 15a, and an RF electrode 15b located below the drawing and 2 sandwiching the RF electrode 15b.
  • the CPW is constituted by the two ground electrodes 16b and 17 as well.
  • each of the RF electrodes 15a and 15b formed of CPW is between the two ground electrodes 16a and 17 sandwiching the RF electrode and between the two ground electrodes 16b and 17 is the wiring electrode 41a. It is different from the prior art in that it has a structure connected at a plurality of locations by ⁇ 41h. This wiring electrode will be described in more detail with reference to the following sectional view.
  • the RF electrode is also referred to as a signal electrode.
  • FIG. 9A and FIG. 9B are diagrams showing cross sections in each part of the dual electrode Si optical modulator of Example 1 of the present invention.
  • FIG. 9A shows a configuration of a cross section passing through the line IXA-IXA or a cross section passing through the line IXA′-IXA ′ of FIG. 8 and perpendicular to the optical waveguide.
  • FIG. 9B shows a configuration of a cross section (xz plane) passing through the line IXB-IXB in FIG. 8 and perpendicular to the optical waveguide including the wiring electrode.
  • FIG. 9A shows the same structure as that of the conventional dual electrode structure Si optical modulator shown in FIG.
  • one optical waveguide core 7a is provided between the RF electrode 15a and the ground electrode 16a, and a pn junction is formed in the optical waveguide core 7a by the intermediate concentration p-type semiconductor layer 212 and the intermediate concentration n-type semiconductor layer 213.
  • a structure is formed.
  • the RF electrode 15a is in contact with the high-concentration n-type semiconductor layer 214 through the via 42b.
  • the ground electrode 16a is in contact with the high-concentration p-type semiconductor layer 211 through the via 42a.
  • the via 42b and the via 42a can be cylindrical or prismatic vias. Therefore, a plurality of these vias can be arranged in the y-axis direction along the optical waveguide 7a.
  • the vias 42b and 42a may be continuous vias that are continuously formed in a wall shape in the light propagation direction (y-axis direction) of the optical waveguide 7a.
  • a plurality of interlayer wiring vias 42a are arranged in the y-axis direction, for example, a plurality of vias having a prismatic shape or a cylindrical shape may be used.
  • the diameter or one side can be 0.5 ⁇ m
  • the interval can be 0.5 ⁇ m (repetition period is 1 ⁇ m).
  • FIG. 9B shows a cross section including the wiring electrode 41b, and the two ground electrodes 16a and 17 are connected by a wiring electrode 41b formed in the SiO 2 cladding layer 3 of the substrate.
  • the wiring electrode 41b may be a straight line, so that the two ground electrodes 16a and 17 are formed by the wiring electrode 41b without forming a via connected from the RF electrode 15a to the Si semiconductor layer 214. Connecting. Therefore, the wiring electrode 41b that connects the two ground electrodes 16a and 17 is not in contact with the RF electrode 15a and the via 42b that is connected to the semiconductor region 214 from the RF electrode 15a.
  • the two ground electrodes 16a and 17 are induced by being induced on the two ground electrodes 16a and 17 by a high-frequency electric signal on the RF electrode 15a.
  • the phase difference of the propagating return current (the phase difference of the charge propagating through the ground electrode) is eliminated.
  • a broadband Si optical modulator that suppresses the deterioration of the transmission / reflection characteristics of the input high-frequency signal 21a at the RF electrode 15a can be manufactured.
  • the present invention relates to a Si optical modulator in which at least two sets of coplanar lines (CPW) are formed on a substrate, each including a signal electrode to which a radio frequency (RF) signal is applied.
  • the optical waveguide is a rib waveguide having a central core and slab regions on both sides thereof, and the first ground electrode is connected to one of the slab regions by an interlayer connection wiring, and the signal An electrode is connected to the other of the slab regions by an interlayer connection wiring, and the first ground electrode and the second ground electrode are connected to the signal electrode in the thickness direction of the substrate.
  • the CPW including the other RF electrode 15b and the two ground electrodes 16b and 17 and the optical waveguide 7b in the MZ type optical modulator also have the same configuration as described above with reference to FIGS. 9A and 9B.
  • the arrangement of each element in the x-axis direction perpendicular to the light propagation direction of the optical waveguide is symmetrical with respect to the center line parallel to the y-axis of the center ground electrode 17 in the top view of FIG. It has become.
  • the arrangement order of the elements is reversed between the two CPWs in the x-axis direction.
  • the operations and effects of the wiring electrodes 41e to 41h in the lower CPW of FIG. 8 are exactly the same as the wiring electrodes 41a to 41d of the upper CPW.
  • the electric field of the high-frequency signal propagating through the RF electrode 15a is concentrated on the pn junction portion in the optical waveguide 7a of the Si optical modulator. Yes.
  • the MMIC of the prior art shown in FIG. 7B if a short circuit between two grounds is performed by a bridge wiring between the ground electrodes by the interlayer wiring, the interlayer wiring and the RF electrode are very close to each other. Occurred. In order to avoid this deterioration, the MMIC according to the prior art had to short-circuit between the grounds by an air bridge or wire wiring in which the electrodes were separated from the RF electrodes by air having a low relative dielectric constant.
  • the Si optical modulator of the present invention most of the electric field applied to the RF electrode 15a is concentrated on the pn junction formed in the Si optical waveguide. Therefore, if the wiring electrode 41b connecting the two ground electrodes is located away from the pn junction formed in the Si optical waveguide core 7a where the electric field is concentrated, the deterioration of the high frequency characteristics is suppressed. Wiring electrodes can be formed. That is, it is not necessary to increase the distance between the RF electrode 15a on the substrate surface and the wiring electrode, and the wiring electrode for the ground electrode is set at a distance that does not cause deterioration of the high frequency characteristics with the Si optical waveguide core 7a. What is necessary is just to form.
  • FIG. 11 is a diagram showing the electric field distribution around the pn junction when a modulated electric signal is applied to the Si optical waveguide.
  • the simulation results are shown.
  • the Si optical modulator light propagating through the optical waveguide is strongly confined in the core 7a of the rib portion of the Si layer. However, since the high frequency electric field is also concentrated at the pn junction, the electric field distribution in the RF electrode 15a is limited.
  • the wiring electrode 41b in FIG. 9B at a position about 1.0 ⁇ m away from the Si optical waveguide core 7a in the layer thickness (z-axis direction), it is possible to suppress the deterioration of the high frequency characteristics.
  • the electric field spreads to a position approximately 0.6 ⁇ m away from the uppermost part of the Si optical waveguide 7a, and the wiring electrode 41 is formed so that the high-frequency characteristics of the modulation signal are not deteriorated. In other words, it is necessary to install at a position separated by 0.6 ⁇ m or more from the uppermost surface of the rib waveguide.
  • the wiring electrodes 41a to 41h can be formed with a structure in which it is difficult to ensure high frequency characteristics with MMIC or the like.
  • the wiring electrodes 41a to 41h may normally be bridge-type electrodes that linearly connect the two ground electrodes 16a and 17 as shown in FIG.
  • the wiring electrodes are not of a straight simple shape.
  • the wiring electrodes 41b are located immediately before or behind the RF electrode 15a. It is also possible to avoid the via 42b by making a detour shape (in the y-axis direction). Then, the via 42b that connects the RF electrode 15a and the high-concentration n-type semiconductor layer 214 is not formed as shown in FIG. 9B, but the via 42b can be left as it is.
  • the cross-sectional configuration shown in FIGS. 9A and 9B is only an example of the wiring electrode in the present invention.
  • the arrangement interval in the y-axis direction of the wiring electrodes 41a to 41h shown in FIG. 8 is the phase of the RF signal (return current) that propagates between the RF electrode 15a and each of the two ground electrodes 16a and 17. It varies depending on the speed difference (capacitance difference) and the required operating frequency band of the optical modulator.
  • FIG. 10 is a diagram showing the results of measuring the S parameter of the electrical signal path of the RF electrode in the dual-electrode Si optical modulator in which the bridge wiring of Example 1 of the present invention is performed.
  • the transmission characteristic (S 21 ) and the reflection characteristic (S 11 ) are obtained by using one end (for example, the left end) of the RF electrode 15a as an input and the other end as an output. Indicated.
  • the length of the RF electrode in the y-axis direction of the optical modulator is 6 mm. Each case of 1 mm and 2 mm is shown with the arrangement interval of the wiring electrodes in the y-axis direction as a parameter.
  • the distance between the wiring electrodes may be approximately 1 ⁇ 2 or less of the wavelength with respect to the maximum frequency of the modulation signal (RF signal).
  • the transmission power of the modulation signal at the RF electrode, the return loss, etc. As shown in FIG. 10, according to the dual electrode Si optical modulator in which the bridge wiring is performed between the two grounds by the wiring electrode as in the present embodiment, the transmission power of the modulation signal at the RF electrode, the return loss, etc. It can be seen that the frequency band characteristics of are significantly improved compared to the prior art.
  • FIG. 12 is a diagram showing a configuration of a dual electrode Si optical modulator of Example 2 of the present invention. Also in the optical modulator of the second embodiment shown in FIG. 12, two sets of high-frequency electrodes formed of CPW have two ground electrodes 16a and 17 sandwiching the RF electrode 15a connected at a plurality of locations by wiring electrodes 41a to 41d. The two ground electrodes 16b and 17 sandwiching the RF electrode 15b are connected to each other at a plurality of locations by wiring electrodes 41e to 41h, which is the same as in the first embodiment.
  • the x-axis is on the right side.
  • the arrangement of the plurality of semiconductor regions on the x-axis and the position relationship on the left side or the left side are arranged to be the same in each of the two RF electrodes 15a and 15b. That is, the p-type and n-type semiconductors are arranged so that the conductivity type and the doping state such as polarity are the same in each of the two optical waveguides.
  • the rib waveguide has a semiconductor polarity and conductivity in the width direction (x direction) of the optical waveguide when the cross section (xz plane) of the optical waveguide is viewed.
  • the plurality of semiconductor regions of the core related to the optical waveguide 7a in FIG. 12 includes a high-concentration p-type semiconductor layer 211a, a medium-concentration p-type semiconductor layer 212a, from the top to the bottom in FIG.
  • the order is the medium concentration n-type semiconductor layer 213a and the high concentration n-type semiconductor layer 214a.
  • the core semiconductor region relating to the other optical waveguide 7b is similarly formed in the x-axis direction from the top to the bottom in FIG. 12, from the high concentration p-type semiconductor layer 211b and the medium concentration p-type semiconductor layer 212b.
  • the intermediate concentration n-type semiconductor layer 213b and the high concentration n-type semiconductor layer 214b are arranged in this order.
  • a plurality of semiconductor regions on the x axis so that the positions of the respective optical waveguides 7a and 7b coincide with the positions of the respective boundaries (pn junctions) of the medium concentration p-type semiconductor layer 212 and the medium concentration n-type semiconductor layer 213. Is arranged.
  • the arrangement of the semiconductor regions of the optical waveguides 7a and 7b is in contrast to the arrangement of the semiconductor regions symmetrically with respect to the y axis passing through the center of the center ground electrode 17.
  • each of the cross section passing through the IXA-IXA line in FIG. 12, the cross section passing through the IXA′-IXA ′ line, and the cross section passing through the IXB-IXB line is the same as the structure shown in FIGS. It has become. Furthermore, it should be noted that the arrangement order of the plurality of semiconductor regions in the x-axis direction is the same in the two optical waveguides 7a and 7b. Similar to the first embodiment, the potential between the two ground electrodes is equalized by the wiring electrode connecting the two ground electrodes.
  • phase difference of the return current (phase difference of the electric charge propagating through the ground electrode) that is induced on each ground electrode by the high-frequency electric signal input to the RF electrode and propagates through each ground electrode is eliminated.
  • the optical waveguides 7a and 7b when the optical waveguides 7a and 7b are viewed in the traveling direction (y-axis direction) of the high-frequency electrical signal, the optical waveguide is positioned on the right or left side with respect to the x-axis with respect to the RF electrodes 15a and 15b. Even when the relationship is the same and the arrangement order of the plurality of semiconductor regions on the x-axis is the same for each of the two sets of CPW and optical waveguide, Influenced by balance. Depending on whether the optical waveguide is on the right side or the left side on the x axis with respect to the traveling direction of the high-frequency electric signal (y-axis direction), the central ground electrode 17 has the charge even in the same ground electrode 17. The speed varies greatly. When there is no wiring electrode between two ground electrodes as in the optical modulator of the present invention, it causes a large deterioration in the propagation characteristics of high-frequency signals.
  • the structure of the second embodiment it is possible to prevent the deterioration of the modulation characteristics due to the pn junction position shift (offset amount) due to the mask shift during implantation.
  • the Si optical modulator if a pn junction position shift due to a mask shift or the like occurs in an implantation process for injecting a p-type or n-type impurity, a light modulation characteristic deteriorates.
  • a pn junction position shift for example, the vertical x-axis direction in FIG. 2 showing the prior art and the left and right x-axis directions in the cross-sectional view of FIG.
  • the mask displacement at the time of device fabrication in the CMSO compatible process is an accuracy of about ⁇ 30 nm even at the best at present, and the mask displacement cannot be avoided normally. Deviations of several tens of nm are even difficult to measure, and it is difficult to guarantee the fabrication accuracy of ⁇ 50 nm or less at the present time.
  • the implantation masks are shifted in the same direction in the optical waveguide 7a and the optical waveguide 7b. Therefore, a difference in modulation efficiency between the two optical waveguides constituting the Mach-Zehnder optical modulator does not occur, and an optical modulator with good signal quality can be realized.
  • the cross section (xz plane) of the high-frequency signal propagation direction (y-axis direction) corresponds to one RF electrode.
  • the relative positional relationship with the optical waveguide and the arrangement order of the plurality of semiconductor regions constituting the optical waveguide core are arranged so as to be the same between the two sets of CPWs. For this reason, it is possible to prevent deterioration of the modulation characteristics due to the shift of the pn junction position caused by the mask shift at the time of implantation.
  • the RF electrode formed in the CPW structure has a structure in which the two ground electrodes sandwiching the RF electrode are connected at a plurality of positions by the wiring electrode, transmission of the modulation signal due to the asymmetry of the CPW structure. It is possible to prevent the characteristics / reflection characteristics from deteriorating and to realize a wide band modulation characteristic.
  • the connection wiring connecting the two grounds can be manufactured using a CMOS compatible process, and Au plating or wire wiring is not necessary.
  • the optical modulator of the present invention includes the following various aspects.
  • the first signal electrode and the second signal electrode of the two sets of CPW are configured substantially in parallel, and the interlayer connection wiring may be a via.
  • the interlayer connection wiring of the signal electrode is a continuous via formed in a wall shape continuously in the length direction of the signal electrode, or is arranged in the length direction of the signal electrode.
  • Electrodes can also be configured to be connected by the one or more wiring electrodes.
  • the one or more wiring electrodes may be bridge-type electrodes that linearly connect the first ground electrode and the second ground electrode.
  • the bridge electrode is preferably arranged so as to be perpendicular to the first ground electrode and the second ground electrode.
  • the one or more wiring electrodes can be separated from the rib waveguide to such an extent that high frequency characteristics are not deteriorated. Further, the one or more wiring electrodes are preferably separated from the rib waveguide by 0.6 ⁇ m or more.
  • the one or more wiring electrodes are plural, and that the interval between them is not more than 1 ⁇ 2 of the wavelength with respect to the maximum frequency of the RF signal.
  • the rib waveguide has a semiconductor polarity and conductivity in the width direction of the optical waveguide when the cross section of the optical waveguide is viewed. It is comprised by several area
  • the influence of the charge imbalance due to the asymmetry of the structure of the CPW is suppressed, the deterioration of the transmission characteristic and reflection characteristic of the modulation signal is prevented, and wideband modulation is performed. Characteristics can be realized. Therefore, in the optical modulator of the present invention, it is not necessary to shorten the electrode length as in the conventional optical modulator.
  • the RF modulation electrode is lengthened, it is not preferable in terms of increasing the chip size. However, if the RF modulation electrode can be lengthened, the following new effect is caused by the effect of decreasing the modulation voltage.
  • the power consumption of the signal generator can be reduced.
  • the light ON-OFF ratio can be increased when performing light intensity modulation.
  • the effect that the RF modulation electrode can be lengthened by the optical modulator of the present invention provides an effect that exceeds the disadvantage of increasing the chip size as the entire optical modulator.
  • the wiring electrode in the present invention can be manufactured using a CMOS-compatible process as it is, it propagates through the two ground electrodes to take advantage of various advantages of the Si optical modulator that can be reduced in size at low cost.
  • a broadband optical modulator that eliminates the phase difference of the return current and suppresses the deterioration of the frequency response characteristic can be provided at low cost. It is possible to provide an excellent optical modulator that solves the problems of the prior art.
  • the present invention can be generally used for an optical communication system.
  • the present invention relates to an optical modulator in an optical transmitter of an optical communication system.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

従来技術のCPW電極構造を持つデュアル電極のSi光変調器では、2つのグラウンド電極を伝搬するリターン電流位相差により、変調周波数特性が劣化した。これを防ぐため、変調器長を短くして位相差が生じる前に信号伝搬を終了させたり、光導波路pn接合部容量と、RF電極と光導波路を介さないグラウンド電極間容量の差を小さくしたりして、位相差を減らしていた。しかし変調器長が短いと光導波路への印加電界が減少し変調効率が低下した。エア・ブリッジやワイヤ配線はCMOS互換プロセスと不整合だった。本発明の光変調器は、基板内のRF電極と光導波路との間に配置された、2つのグラウンド電極を接続するブリッジ配線を備える。ブリッジ配線によりCPWの2つのグラウンド電極間の電位が等しくなり、RF電極への高周波電気信号によって誘起され2つのグラウンド電極を伝搬するリターン電流位相差を解消する。高周波特性劣化を抑えたSi光変調器を作製できる。作製工程のインプラ時マスクずれの問題にも対応する。

Description

光変調器
 本発明は、光通信システムや光情報処理システムにおいて用いられる光変調器に関する。より詳細には、高速で光変調動作が可能で周波数特性に優れた光変調器の構造に関する。
 高精細な動画配信サービスや移動体通信の普及などにより、ネットワークを流れるトラフィック量は膨大なものとなっており、さらに年々増加を続けている。このようなトラフィック需要に応え得る高速・大容量光ネットワークの構築に向け、各ノードにおいて使用される高速動作が可能な基本デバイスの開発が精力的に行われている。光信号を広帯域なベースバンド信号で直接変調する光変調器は、その重要なデバイスの1つである。
 マッハツェンダ(MZ)型光変調器は、光導波路に入射した光を2つの導波路に1:1の強度で分岐し、分岐した光を一定の長さ伝搬させた後に、再度合波させる構造を持つ。MZ型光変調器では、2つに分岐された光導波路にそれぞれ設けられた位相変調部によって分岐した2つの光の位相を変化さる。2つの位相変化を受けた光が合波されるときの光の干渉条件を変えて、光の強度や位相を変調することができる。
 MZ型光変調器の光導波路を構成する材料としては、LiNbO等の誘電体、InP、GaAs、Si等の半導体が用いられる。これらの材料で構成された光導波路近傍に配置した電極に変調電気信号を入力して、光導波路に変調電圧を印加することで、光導波路を伝搬する光の位相を変化させる。
 MZ型光変調器において光の位相を変化させるメカニズムとしては、材料がLiNbOの場合ではポッケルス効果が、InP、GaAsではポッケルス効果や量子閉じ込めシュタルク効果(Quantum Confined Stark Effect:QCSE)が、Siではキャリアプラズマ効果がそれぞれ主に用いられる。
 高速で低消費電力な光通信を行うためには、変調速度が速く、駆動電圧の低い光変調器が必要となる。具体的には、10Gbps以上の高速で、かつ、数ボルトの振幅電圧で光変調を行うことが求められている。これを実現するためには、高速の電気信号の速度と、位相変調器の中を伝搬する光の速度とを整合させ、光と電気信号を伝搬させながら両者が相互作用を行うようにする進行波電極が必要となる。進行波電極を用いた光変調器としては、例えば非特許文献1に開示されているように、電極の長さを数mmから数十mmにしたものが実用化されている。
 進行波電極を用いた光変調器では、電気信号および導波路を伝搬する光の強度をそれぞれ落とさずに伝搬させることができるよう、低損失で反射の少ない電極構造および光導波路構造が求められる。すなわち、電気信号については、広い周波数帯域に渡って反射損失および伝搬損失が少ない電極構造が必要であり、光については、反射が少なく効率良く光を閉じ込めて損失無く伝搬させることができる導波路構造が必要である。
 マッハツェンダ型光変調器には、基板材料および作製プロセスの観点から有望なものとして、光導波路をSiによって構成したSi光変調器がある。Si光変調器は、Si基板の表面を熱酸化した酸化膜(BOX:Buried Oxide)層上にSiの薄膜を張り付けたSOI(Silicon on Insulator)基板から作製される。光導波路は、SOI層を光が導波できるようにSi薄膜を細線に加工した後で、p型半導体およびn型半導体を構成できるように不純物を注入し、光のクラッド層となるSiOを堆積し、電極の形成等を行って、作製される。
 このとき、光の導波路は光損失が小さくなるように設計・加工する必要がある。具体的には、p型およびn型の不純物ドーピング並びに電極の作製は、光の損失発生を小さく抑えるとともに、高速電気信号の反射や損失も小さく抑えるように設計・加工する必要がある。
 図1は、従来技術のSi光変調器の基本となる光導波路の断面構造を示す図である。図1は、SOI基板上に構成された光導波路200を光の進行方向(y軸)に垂直に切った断面(x-z面)を示しており、光は図面に垂直方向(y軸方向)に伝搬するものとする。Si光変調器の光導波路200は、上下のSiOクラッド層1、3に挟まれたSi層2で構成される。図1の中央の光を閉じ込めるためのSi細線は、厚さに差があるリブ導波路と呼ばれる構造を取っている。すなわち、リブ導波路は、図1に示したように、中央部の厚いSi層201と、その両側にある薄いスラブ領域202a、202bから構成されている。Si層2の中央の厚いSi層201をコアとし、周囲のSiOクラッド層1、3との屈折率差を利用して紙面垂直方向に伝搬する光を閉じ込める光導波路200を構成する。
 厚いSi層201の光導波路コアの両側にある薄いスラブ領域202a、202bには、それぞれ、高濃度p型半導体層211、高濃度n型半導体層214が設けられる。さらに、Si層201の光導波路コアおよびその近傍には、中濃度p型半導体層212および中濃度n型半導体層213によるpn接合構造が形成されている。後述するように図1のSi層2の左右両端から、図示していない電極を経由して、変調電気信号およびバイアス電圧が印加される。コアの中央部のpn接合に代えて、中濃度p型半導体層212および中濃度n型半導体層213によるpn接合構造の間にドーピングされていないi型(真性)半導体を挟んだ、pin構造としても良い。
 Si光変調器の光導波路200における位相変調動作は、次のように説明できる。図1には図示されていないが、Si層2の両端の高濃度p型半導体層211および高濃度n型半導体層214に、それぞれに接する2つの金属電極が設けられる。2つの金属電極を経由して、コアの中央のpn接合部に、高周波(RF:Radio Frequency)の変調電気信号とともに逆バイアス電圧が印加される。すなわち高濃度n型半導体層214側をプラス電位、高濃度p型半導体層211をマイナス電位とした電圧が、光導波路200の右端から左端へ(x軸方向)印加される。逆バイアス電圧および変調電気信号によって、厚いSi層201のコア内部のキャリア密度が変化させられる。キャリア密度の変化によって、光導波路のコア201の屈折率をキャリアプラズマ効果によって変えることで、光導波路のコアを伝搬する光の位相を変調することができる。
 Si光変調器における光導波路の寸法はコア/クラッドとなる各材料の屈折率に依存する。図1に示したような、厚いSi層201のコア部分およびその両側のスラブ領域202a、202bを備えたリブ型シリコン導波路構造の場合の一例を挙げると、光導波路コア201の幅(x軸方向)は400~600(nm)、コア部の高さ(z軸方向)は150~300(nm)、スラブ領域の厚さは50~200(nm)、光導波路の長さ(y軸方向)は数(mm)程度になる。
 Si光変調器の優れた特徴の1つは、光が伝搬するコアとなるSiとクラッド層のSiOとの屈折率差が大きいため、コンパクトな光変調器を構成できることである。屈折率差が大きいため、光を小さく閉じ込めることが可能で、光導波路の曲げ半径を10μm程度と非常に小さくすることができる。このため、次に説明をするSi光変調器における光の合分波回路部分を小さく構成することができる。
 図2は、従来技術のデュアル電極構造のMZ型光変調器を構成するSi光変調器を示す図である。図2は、電極が形成されるSi(SOI)基板表面(x-y面)を垂直に見た上面図で、基板の内部に構成されて直接は見難い要素も透視して描いてある。図2の左側の光変調器端部からの光入力22が、光導波路に入力され、2つの光導波路7a、7bに分岐され、再び合流して変調光23が右側の光変調器端部から出力される。入力光22は、分岐した2つの光導波路7a、7bをy軸方向に伝搬する間に、上方のRF電極15a、15bにそれぞれ印加される変調電気信号(RF信号)によって位相変調される。光変調器は、図面の上方にあるRF電極15aと、RF電極15aを挟む2つのグラウンド電極16a、17とによって、コプレーナ線路(CPW:Coplanar Waveguide)が構成されている。また、図面の下方にあるRF電極15bと、RF電極15bを挟む2つのグラウンド電極16b、17とによって、CPWが構成されている。1つのMZ型光変調器において2つのRF信号の入力部を持つ構成から、図2のMZ型光変調器は、デュアル電極構造とも呼ばれている。光変調器の全体を見ると、図2の光変調器は、グラウンド電極17の中央を通るy軸に平行な中心線に対して、対称な構造となっている。2つの光導波路7a、7bの近傍には、基板の内部に構成されている、対応する2組の半導体領域211a、212a、213a、214aおよび半導体領域211b、212b、213b、214bがある。
 図3は、図2に示した従来技術のSi光変調器のIII-III線を含む断面を示す図である。図3の断面構造図は、変調を受ける一方の光導波路7aと対応するCPWを含む位相変調部を示している。1つの位相変調部は、図1と同様の断面構造を持つリブ導波路へ差動構成の変調電気信号(RF信号)の内の一方を入力する高周波線路であるRF電極15aと、RF電極15aを挟むように設けられた2つのグラウンド電極16a、17とが含まれる。RF電極15aとグラウンド電極16aの間には、1つの光導波路コア7aが設けられており、光導波路7a内に、中濃度p型半導体層212および中濃度n型半導体層213によるpn接合構造が形成されている。RF電極15aは、ビア19bを介して高濃度n型半導体層214に接している。また、グラウンド電極16aは、ビア19aを介して、高濃度p型半導体層211に接している。
 もう一方のグラウンド電極17はいずれの半導体層にも接していないが、グラウンド電極16aとともに、RF電極15aに対してGSG(Ground Signal Ground)構造の高周波伝送線路(CPW)を形成する。この伝送路構造によって、RF電極の伝送線路としての特性インピーダンスの調整を行い、伝送特性を向上させることができる。また、RF電極15aによる信号線路が、2つのグラウンド電極16a、17に囲われているため、信号の漏洩が少なく、クロストークや伝搬損失の少ない光変調器を形成することが可能となる。尚、図3は高周波線路である一方のRF電極15aを含む位相変調部を示しているが、もう一方のRF電極15bを含む位相変調部も、複数の半導体領域のx軸方向の配置順序が、z軸を対称軸として逆になっていること以外は、図3と同様の構成を持つ。
 Si光変調器のRF電極15a、15bにおける高周波伝送線路としての特性インピーダンスは、Si層の光導波路コア7a、7bのpn接合部の静電容量が大きく影響する。デュアル電極構造のSi変調器では、RF電極15aとグラウンド電極17との間の静電容量(キャパシタンス)を調整することによって、特性インピーダンスの調整が比較的容易である。特性インピーダンスを、シングルエンド駆動の構成で50Ω程度に、差動駆動の構成で100Ω程度にすることが可能である。
 図3では、RF電極15aが高濃度n型半導体層214に、グラウンド電極16aが高濃度p型半導体層211にそれぞれ接する構成例で説明をしたが、pn接合の向きを逆にして、RF電極15aが高濃度p型半導体層に、グラウンド電極16aが高濃度n型半導体層に、それぞれ接していても良い。この場合、RF信号に重畳してRF電極15aに与えるバイアス電圧として、グラウンド電極16aに対してマイナス電圧を印加することで、pn接合部を逆バイアスにすることができる。
五井一宏,小田研二,日下裕幸,小川 憲介,Tsung-Yang Liow,Xiaoguang Tu,Guo-Qiang Lo, Dim-Lee Kwong,「Si Mach-Zehnderプッシュプル変調器の20Gbps二値位相変調特性」 2012年電子情報通信学会エレクトロニクスソサイエティ大会,C-3-50,2012年 電子情報通信学会 知識の森、10群 集積回路、7編 モノリシックマイクロ波集積回路:URL http://www.ieice-hbkb.org/files/10/10gun_07hen_01.pdf
 大容量の光通信を実現するためには、高速で光を変調することができる光変調器が必要となる。高速な光変調を行うためには、光変調器に対して、数百kHzから数十GHzの広い周波数帯域に渡って動作可能な周波数特性が必要とされる。
 図4は、CPW構造を持つデュアル電極のSi光変調器における理想的な変調信号の伝搬状態を模式的に説明する図である。上述のように、図4の上方のRF電極15aは、2つのグラウンド電極16a、17で挟まれたCPWによって構成されている。CPWでは、1本のRF電極15aが両脇のグラウンド電極16a、17に挟まれた状態で、RF電極15a上を高周波信号が伝搬する。電磁気学的に高周波信号の伝搬は、高周波伝搬線路、例えばRF電極15a上を、電荷の密な部分および電荷の疎な部分が波のように移動するモデルとして説明できる。電荷の密な部分が伝搬する際、このモデルでは、グラウンド電極上または差動線路の対となるRF電極上に、クーロン相互作用によって正負の極性が逆の電荷の密な部分が誘起され、高周波信号と同様に移動する動作として理解することができる。
 図4は、上述の電荷移動モデルによる変調信号の伝搬状態を説明している。CPWは、RF線路の電荷が、2本のグラウンド電極にそれぞれに誘起された極性が逆の電荷と釣り合う、不平衡線路の1つである。図4では、RF信号21aが入力されることによって、ある時点におけるRF電極15a上には、電気信号の伝搬方向であるy軸方向にプラスの電荷26とマイナスの電荷が交互に現われている。上記RF電極15a上の例えばプラス電荷26の密な部分に対応して、2つのグラウンド電極16a、17のそれぞれで、逆極性のマイナス電荷の密な部分24、25が現われる。
 理想的なCPWにおいては、図4のように、2つのグラウンド電極16a、17上の各電荷が、RF電極15a上の電荷と揃って、y軸方向を伝搬する。例えば、ある時刻における光変調器の出力端のX-X´線上では、x軸方向の電荷は、分布27のようになる。X-X´線上では、時間の経過とともに、各電極の電荷の極性が変化してゆく。図の左端から入力されるRF入力信号21aは、光導波路7aに対して変調作用を加えながら伝搬して、図示していないRF電極15aの右端に接続される終端抵抗で終端される。しかしながら、実際のSi光変調器におけるCPWでは、伝送線路の非対称性があるため電荷の移動に非対称性が生じ、変調信号21aを効率的にRF電極15aに印加できない問題があった。
 図5は、CPW構造を持つデュアル電極Si光変調器における変調信号の実際の伝搬状態を模式的に説明する図である。デュアル電極のSi光変調器では、RF線路15aの一方の側に光導波路7aを挟んでグラウンド電極16aがあり、他方の側には対応する光導波路が存在しないグラウンド電極17がある。グラウンド電極17は、RF線路15aの特性インピーダンスの調整の機能を担うために必要である。一般に、伝送路においてRF線路を伝搬する電荷によって働くクーロン力に影響を与えるのは、RF線路の静電容量(キャパシタンス)を決める領域である。したがって、RF電極15aと第1のグラウンド電極16aとの間では、主にSi光導波路のpn接合部分(空乏層)が静電容量を決める。一方、RF電極15aと第2のグラウンド電極17との間では、主にこれらの電極の間隔によって静電容量が決定される。前者の第1のグラウンド電極16aに関しては、pn接合の空乏層が極めて薄いため、静電容量は非常に大きい。一方、後者の第2のグラウンド電極17に関しては、空乏層の厚さに比べて電極間距離がけた違いに大きいため、静電容量は小さい。第1のグラウンド電極16aのキャパシタンスおよび第2のグラウンド電極17のキャパシタンスは大きく異なるため、2つのグラウンド電極16a、17を伝搬するそれぞれの電荷の速度も大きく異なる。
 図5を参照すれば、グラウンド電極16a上を伝搬する電荷のほうが、グラウンド電極17を伝搬する電荷よりも相対的に遅い状態を示している。グラウンド電極17上で正の電荷の密な部分が2箇所あるのに対して、グラウンド電極16a上には、正の電荷の密な部分が3箇所ある。グラウンド電極16a上では過去に入力された、より多い波数の波が伝送線路を通過しきれずに残っているということになり、電荷の伝搬速度が遅いことを示している。図5のモデルの例のように、2つのグラウンド電極間で電荷の伝搬速度が異なれば、高周波信号がRF電極15a上を伝搬するに応じて、RF電極15a上の電荷から誘起されて2つのグラウンド電極16a、17をそれぞれ伝搬する逆極性の電荷は、その位相の差を拡大させる。その結果、ある周波数の電気信号がRF電極15a上をy軸上に一定距離を伝搬すると、図5に示すように一方の側のグラウンド電極16a上に「正」の電荷32が誘起され、他方の側のグラウンド電極17上に「負」の電荷33が誘起される状態となる。
 この状態では、2つのグラウンド電極16a、17の電荷がつりあって、RF電極15a上では電荷が0となり、図5のy軸上のX-X´線上における、x軸方向の電荷は、分布28のようになる。このように、RF電極15aの特定の位置で電荷が0(節)となる電荷分布を生じさせる周波数では、伝搬するRF信号の位相が時間と供に変わっても、RF電極15a上の電荷は常に0となっている。このため、RF電極15aのX-X´線の位置では電圧振幅は常に0で、RF信号が出力されていない状態となる。実質的には、RF電極15aの出力端近傍では、電圧が印加されていないのと同じ状態になる。結果としてある特定の周波数では、光変調器の左端からのRF入力信号21aは、光導波路7aに、RF電極15aの全長に渡って均一に掛っていないのと同じ状態になり、光導波路7aが位相変調を受ける効率も低下する。
 図6Aおよび図6Bは、従来技術のデュアル電極Si光変調器における電気信号経路のSパラメータ測定結果を示す図である。従来技術の図2のデュアル電極Si光変調器において、RF電極15aの一方の端部(例えば、左端)を入力として、他方の端部を出力としてSパラメータ測定し、図6Aに透過特性のSパラメータ(S21)を、図6Bに反射特性のSパラメータ(S11)を示した。光変調器のy軸方向のRF電極の長さは6mmである。
 RF電極15aの出力端(左端)において、グラウンド電極16aおよびグラウンド電極17の間で電荷の伝搬の位相差がπとなり、RF電極15aからの出力信号が常に0となる周波数は、RF電極の全体の長さ、および、RF電極15aとグラウンド電極16aとの間で伝搬する信号(電荷)と、RF電極15aとグラウンド電極17との間で伝搬する信号(電荷)との間の位相速度の差に依存する。すなわち、2つのグラウンド電極15a、17のそれぞれ関する静電容量値の差によって変わってくる。
 図6Aに示した透過特性(S21)では、11GHz付近で透過信号が大きく減衰するとともに、伝搬モードが変わっているため特性インピーダンスも大きく変化し、図6Bに示した反射特性(S11)でも反射量が大きくなっている。さらに、位相差が3πとなる31GHz付近でも同様に、透過エネルギーの減少と、反射量の増大が観察できる。このようなRF電極に入力されるRF信号の透過特性および反射特性における周波数に依存した大きな変動は、本来、数100kHzから数10GHzの広い周波数帯域に渡ってフラットな応答動作が要求される光変調器にとって大きな問題となる。
 従来技術の光変調器では、図5に示したように、CPW構造を持つ変調電極の出力端において、2つのグラウンド電極16a、17の間の伝搬する電荷の位相差、すなわちグラウンド電流の位相差がπとなるのを防ぐため、次のような方法が採られていた。1つの方法は、光変調器の全体の長さを短くして、2つのグラウンド電極16aおよびグラウンド電極17の間に位相差が生じる前に変調器電極上での高周波信号の伝搬を終了させることである。しかしながら、変調器長を短くすると実効的に位相変調を受ける距離が短くなってしまうため、変調効率が下がる。光導波路のコアにおいて必要な屈折率変化を生じさせるためには、変調RF信号の所要振幅が大きくなってしまう。これは、光変調器の低電圧駆動の要請に反することになる。
 もう1つの方法は、Si光導波路のRF電極15aとグラウンド電極16aの間のpn接合部分の静電容量と、RF電極15aとグラウンド電極17との間の電極間隔による静電容量の差を抑えることである。2つの静電容量の差異を小さく抑えることで、伝搬する電荷の速度の差を小さくすることができる。具体的には、RF電極15aとグラウンド電極17との間の電極間隔の小さいほうの静電容量をより増加させることになる。しかしながら、グラウンド電極17に関する静電容量を増加させると、光導波路に印加される電界が減少し、変調効率が低下するなどの問題があった。
 このような、グラウンド電極上の電荷のアンバランスによる問題は、CPW線路の曲げ部分でも生じる。従来技術のSOI以外の基板を用いる高周波配線では、シグナル電極とグラウンド電極の間隔が非対称なCPWや、CPW線路の曲げ部分で発生するグラウンド電流の位相差を解消する構造が使用されていた。
 図7Aおよび図7Bは、従来技術における2つのグラウンド電極を短絡するエア・ブリッジの構造例を示す図である。図7Aは、シグナル電極の両脇にある2つのグラウンド電極を短絡するよう接続するエア・ブリッジ30を示している。エア・ブリッジ30によって、接続した部分のグラウンド電極間の電位を等しくすることができる。シグナル電極とグラウンド電極の間隔が非対称なCPWや、CPW線路の曲げ部分では、2つのグラウンド電極上を流れる電荷の波に位相差が生じる。この位相の差は電位の差でもあるため、2つのグラウンド電極間をエア・ブリッジ30で短絡することで、位相差が解消されシグナル電極を伝搬する電気信号の劣化を抑えることができる。
 図7Bは、モノリシックマイクロ波集積回路(MMIC)で使用されるエア・ブリッジ31の断面を示しており、MMIC内ではエア・ブリッジはメッキ配線などで作製される(非特許文献2)。MMICは、多層の電気配線が可能であるため、層間絶縁膜で分離された交差する電極配線などを作製可能である。MMICにおいてエア・ブリッジ31による配線をする理由は、高周波信号がシグナル電極を伝搬するため、グラウンド配線をシグナル電極に近接して配置できないためである。2つのグラウンド電極の短絡のため、比誘電率2.5~4.0程度の層間絶縁膜によって、サブミクロンから1~2μm程度の非常に近接した距離で分離されているMMICの層間配線を使用すると、高周波信号の特性に影響を与えてしまう。2つのグラウンドの短絡電極がシグナル電極を伝搬する高周波信号に影響を与えないようにするには、MMICの層間配線ではなく、数μmから十数μm離れており、空気で分離されているエア・ブリッジ31を用いる必要がある。
 しかしながら、エア・ブリッジはメッキによるAu配線が主であり、Si変調器の作製で用いられるCMOS互換のプロセスの中では作製困難である。SiのCMOSプロセスは、微細加工の要請とともに最適化されており、エッチングによるパターン形成ができないAu配線は一般的に使用されていない。また、図7BのMMICの作製工程では、リフトオフによるプロセスやメッキによってAu配線を形成しているが、バリがある、微細パターンが形成できないなどの問題がある。このため、Si光変調器において2つのグラウンドの短絡のためのエア・ブリッジを作製しようとすると、光変調器素子を作製後にワイヤ配線でグラウンド電極間を架橋配線する必要がある。ワイヤ配線でグラウンド電極間を短絡させるには、数十μmのワイヤ長を制御する必要があり、複数本のワイヤを配線する作業にコストがかかる。さらに、ワイヤボンディング工程で生じ得る光変調器の電極へのダメージによって、素子歩留まりが低下するなどの点が問題となる。したがって、コンパクトな光変調器を構成できる特徴を持ち、安価なCMOS互換のプロセスを利用するSi光変調器には、図7Aおよび図7Bに示したような各ブリッジ構造をそのまま適用することは難しい。
 本発明はこのような問題に鑑みてなされたもので、その目的とするところは、CPW構造を持つデュアル電極のSi光変調器において、2つのグラウンド電極を伝搬するリターン電流の位相差を解消し、周波数応答特性の劣化を抑えた広帯域な光変調器を安価に提供することにある。
 本発明の1つの側面によれば、各々に、高周波(RF)信号が印加される信号電極を含む、少なくとも2組のコプレーナ線路(CPW)が基板上に形成されたSi光変調器において、各CPWは、前記信号電極と、前記信号電極の一方の側に、前記基板の内部に構成された光導波路を挟んで配置された第1のグラウンド電極と、前記信号電極の他方の側に配置された第2のグラウンド電極とを備え、前記光導波路は、中央コアとその両側のスラブ領域とを有するリブ導波路からなり、前記第1のグラウンド電極は、層間接続配線によって前記スラブ領域の一方に接続され、前記信号電極は、層間接続配線によって前記スラブ領域の他方に接続され、前記第1のグラウンド電極および前記第2のグラウンド電極が、前記基板の厚さ方向で前記信号電極と前記光導波路との間を通る1つ以上の配線電極によって、相互に接続されていることを特徴とする光変調器が開示される。
 本発明により、CPW構造を持つデュアル電極のSi光変調器において、2つのグラウンド電極を伝搬するリターン電流の位相差を解消し、周波数応答特性の劣化を抑えた広帯域な光変調器を安価に提供できる。
図1は、従来技術のSi光変調器の光導波路の断面構造を示す図である。 図2は、従来技術のデュアル電極構造のSi光変調器を示す上面図である。 図3は、図2に示した従来技術のSi光変調器の断面を示す図である。 図4は、CPW構造を持つデュアル電極Si光変調器における変調信号の理想的な伝搬状態を説明する図である。 図5は、CPW構造を持つデュアル電極Si光変調器における変調信号の実際の伝搬状態を説明する図である。 図6Aは、従来技術のデュアル電極Si光変調器における電気信号経路のSパラメータS21測定結果を示す図である。 図6Bは、従来技術のデュアル電極Si光変調器における電気信号経路のSパラメータS11測定結果を示す図である。 図7Aは、従来技術におけるグラウンド電極を短絡するエア・ブリッジの構造例を示す図である。 図7Bは、従来技術におけるグラウンド電極を短絡するエア・ブリッジの別の構造例を示す図である。 図8は、実施例1のデュアル電極Si光変調器の構成を示す図である。 図9Aは、実施例1のSi光変調器の配線電極を含まない部分の断面図である。 図9Bは、実施例1のSi光変調器の配線電極を含む部分の断面図である。 図10は、本発明の実施例1のSi光変調器における電気信号経路のSパラメータ測定結果を示す図である。 図11は、Si光導波路に変調電気信号を印加時のpn接合部周辺の電界分布を示す図である。 図12は、実施例2のデュアル電極Si光変調器の構成を示す図である。
 本発明の光変調器は、CPW電極構造を持つデュアル電極のSi光変調器であって、2つのグラウンド電極を伝搬するリターン電流の位相差を、2つのグラウンド電極間の配線によって解消する。CMOS互換のプロセスを使用して、周波数応答特性の劣化を抑えた光変調器の構造を提供する。グラウンド電極間の配線を、従来技術のエア・ブリッジやワイヤ配線ではなく、CMOS互換のプロセスによって作製する。これによって、作製コストが低く、高周波信号劣化を抑え、高速変調時の波形品質が良い光変調器を提供できる。
 以下、本発明の光変調器の具体的な実施形態について、図面とともに詳細に説明する。
 図8は、本発明の実施例1のデュアル電極Si光変調器の構成を示す図である。図8は、電極が形成されるSi(SOI)基板表面(x-y面)を垂直に見た上面図で、基板の内部に構成されて直接は見難い要素も透視して描いてある。図8の左側の光変調器端部からの光入力22が、光導波路に入力され、2つの光導波路7a、7bに分岐され、再び合流して変調光23が右側の光変調器端部から出力される。図8の光変調器の構成は、図2に示した従来技術の光変調器の構成とほぼ同じである。光変調器は、図面の上方にあるRF電極15aと、RF電極15aを挟む2つのグラウンド電極16a、17とによってCPWが構成され、図面の下方にあるRF電極15bと、RF電極15bを挟む2つのグラウンド電極16b、17とによってCPWが構成されているのも同じである。本発明の光変調器では、CPWで形成されたRF電極15a、15bのそれぞれの、RF電極を挟む2つのグラウンド電極16a、17間、および、2つのグラウンド電極16b、17間が、配線電極41a~41hにより複数の箇所で接続された構造となっている点で、従来技術と相違している。この配線電極について、次の断面図によってさらに詳細に説明する。以下の説明では、RF電極を信号電極とも呼ぶ。
 図9Aおよび図9Bは、本発明の実施例1のデュアル電極Si光変調器の各部における断面を示す図である。図9Aは、図8のIXA-IXA線を通る断面またはIXA´-IXA´線を通る断面であって、光導波路に垂直な断面の構成を示す。図9Bは、図8のIXB-IXB線を通り、配線電極を含む光導波路に垂直な断面(x-z面)の構成を示す。図9Aは、図2に示した従来技術のデュアル電極構造Si光変調器と同様の構造である。すなわち、RF電極15aとグラウンド電極16aの間には1つの光導波路コア7aが設けられており、光導波路コア7a内に、中濃度p型半導体層212および中濃度n型半導体層213によるpn接合構造が形成されている。RF電極15aは、ビア42bを介して高濃度n型半導体層214に接している。また、グラウンド電極16aは、ビア42aを介して、高濃度p型半導体層211に接している。ここで、ビア42b、ビア42a、は、円柱状または角柱状のビアとすることができる。したがって、これらのビアは光導波路7aに沿って、複数個、y軸方向に配置することができる。また、ビア42b、ビア42a、は、光導波路7aの光伝搬方向(y軸方向)に連続的に壁状に形成された連続ビアであっても良い。層間配線のビア42aは、複数個y軸方向に配置する場合、例えば、角柱状または、円柱状の複数のビアであり得る。例えば、直径または一辺が0.5μmで、間隔が0.5μm(繰り返し周期は1μm)で配置することができる。
 図9Bは、配線電極41bを含む断面を示しており、2つのグラウンド電極16a、17の間が、基板のSiOクラッド層3内に構成された配線電極41bによって接続されている。通常、この配線電極41bとしては直線状のもの使用すれば良いので、RF電極15aからSiの半導体層214に接続されるビアを形成せずに、配線電極41bで2つのグラウンド電極16a、17を接続する。したがって、2つのグラウンド電極16a、17を接続する配線電極41bは、RF電極15a、および、RF電極15aから半導体領域214に接続されるビア42bには接触していない。この配線電極41bにより、2つのグラウンド電極16a、17間の電位が等しくなるため、RF電極15a上の高周波電気信号によって2つのグラウンド電極16a、17上に誘起され、2つのグラウンド電極16a、17を伝搬するリターン電流の位相差(グラウンド電極を伝搬する電荷の位相差)が解消される。RF電極15aにおける入力高周波信号21aの透過・反射特性の劣化を抑えた、広帯域なSi光変調器を作製することができる。
 したがって本発明は、各々に、高周波(RF)信号が印加される信号電極を含む、少なくとも2組のコプレーナ線路(CPW)が基板上に形成されたSi光変調器において、各CPWは、前記信号電極と、前記信号電極の一方の側に、前記基板の内部に構成された光導波路を挟んで配置された第1のグラウンド電極と、前記信号電極の他方の側に配置された第2のグラウンド電極とを備え、前記光導波路は、中央コアとその両側のスラブ領域とを有するリブ導波路からなり、前記第1のグラウンド電極は、層間接続配線によって前記スラブ領域の一方に接続され、前記信号電極は、層間接続配線によって前記スラブ領域の他方に接続され、前記第1のグラウンド電極および前記第2のグラウンド電極が、前記基板の厚さ方向で前記信号電極と前記光導波路との間を通る1つ以上の配線電極によって、相互に接続されていることを特徴とする光変調器として実施できる。
 MZ型光変調器におけるもう一方のRF電極15b、2つのグラウンド電極16b、17からなるCPWおよび光導波路7bについても、上述の図9Aおよび図9Bの説明と同様の構成を持つ。ただし、光導波路の光伝播方向に垂直なx軸方向における各要素の配置は、2つのCPW間で、図8の上面図では、中心のグラウンド電極17のy軸に平行な中心線に関して対称となっている。また、図9Aおよび図9Bの断面図では、2つのCPW間で、x軸方向について、各要素の配置の順が逆になっている。図8の下側のCPWにおける配線電極41e~41hの作用・効果は、上側のCPWの配線電極41a~41d全く同様である。
 図8、図9Aおよび図9Bに示した本発明によるSi光変調器の構造では、RF電極15aを伝搬する高周波信号の電界は、Si光変調器の光導波路7aにおけるpn接合部分に集中している。図7Bで示した従来技術のMMICでは、層間配線によってグラウンド電極間のブリッジ配線で2つのグラウンド間の短絡を行うと、層間配線とRF電極とが非常に近接してしまうため、高周波特性の劣化が生じた。この劣化を避けるため、従来技術のMMICでは、RF電極から離して比誘電率の小さい空気で電極間を分離したエア・ブリッジまたはワイヤ配線によりグラウンド間を短絡する必要があった。
 一方、本発明のSi光変調器では、RF電極15aに印加される電界は、その大部分がSi光導波路中に形成されたpn接合部に集中している。したがって、2つのグラウンド電極間を接続する配線電極41bを、電界が集中するSi光導波路コア7a中に形成されたpn接合部に対して離れた位置とすれば、高周波特性の劣化を抑えたままで配線電極を形成することが可能になる。つまり、基板表面のRF電極15aと配線電極との距離を離す必要性は低く、グラウンド電極の配線電極を、Si光導波路コア7aとの間で高周波特性の劣化が生じないような距離をとって形成すれば良い。
 図11は、Si光導波路に変調電気信号を印加したときのpn接合部周辺の電界分布を示す図である。光導波路のリブ部分の高さを0.22μm、幅を600nmとし、pn接合部に形成される空乏層厚を200nm、pn接合に1Vが印可された状態の電界分布を、有限要素法を用いてシミュレーションした結果を示している。Si光変調器では、光導波路を伝搬する光はSi層のリブ部分のコア7aに強く閉じ込められている。しかしながら、高周波電界もpn接合部分に集中しているため、RF電極15a内での電界分布は限定されたものになる。そこで、図9Bにおける配線電極41bを、Si光導波路コア7aより、層厚(z軸方向)で1.0μm程度離れた位置に形成することで、高周波特性の劣化を抑えることができる。図11に示したように、電界は、Si光導波路7aの最上部より、おおよそ0.6μm程度離れた位置まで広がっており、変調信号の高周波特性が劣化しないように配線電極41を形成するためには、リブ導波路の最上面から0.6μm以上離れた位置に設置する必要があることが分かる。RF電極15aと配線電極41との間の層間距離(z軸方向)も、サブミクロンから1~2μm程度離しておけば、変調信号の高周波特性の劣化を十分に抑えることができる。本発明のSi光変調器は、MMICなどでは高周波特性の確保が困難な構造によって、配線電極41a~41hを形成することができる。
 配線電極41a~41hは、通常は、図8に示したように、2つのグラウンド電極16a、17間を直線的に接続するブリッジ型電極で良い。しかしながら、ビアを使用する場合には、配線電極は直線的な単純な形状のものでなく、例えば、図9Bで見たときにRF電極15aの直下において、配線電極41bを図面上の手前または奥に(y軸方向に)迂回するような形状にして、ビア42bを避けるようにすることもできる。そうすれば、図9BのようにRF電極15aおよび高濃度n型半導体層214を接続するビア42bを未形成とするのではなく、ビア42bをそのまま残すこともできる。また、配線電極によって、2つのグラウンド電極16a、17のy軸と垂直の方向で、2つのグラウンド電極16a、17を伝搬するリターン電流の位相差を解消させる必要がある。このため配線電極は、第1のグラウンド16a電極および第2のグラウンド電極17からそれぞれ垂直に延びて、ビアを避けるために迂回する構造を取ったとしても、y軸と垂直な位置関係がほぼ等しく構成されるのが望ましい。したがって、図9Aおよび図9Bに示した断面構成は本発明における配線電極の一例に過ぎない。また、図8に示した配線電極41a~41hのy軸方向の配置間隔は、RF電極15aと2本のグラウンド電極16a、17の各々との間で、伝搬するRF信号(リターン電流)の位相速度の差(静電容量の差)、および、光変調器の所要動作周波数帯域などによって変わってくる。
 図10は、本発明の実施例1のブリッジ配線を行ったデュアル電極Si光変調器においてRF電極の電気信号経路のSパラメータを測定した結果を示す図である。図8のデュアル電極Si光変調器において、RF電極15aの一方の端部(例えば、左端)を入力として、他方の端部を出力として、透過特性(S21)および反射特性(S11)を示した。光変調器のy軸方向のRF電極の長さは6mmである。配線電極のy軸方向の配置間隔をパラメータとして、1mmおよび2mmの各場合を示している。
 40GHz程度までの周波数帯域で動作させる光変調器では、配線電極が2mm間隔で配置された場合、従来技術の図6Aで観察されたような透過損失の急激な増加や大きな波打ちもなく、透過特性S21の大きな劣化は見られなくなった。反射特性についても、概ね40GHzまでの全帯域で-10dB以下の反射損失に抑えられ、配線電極がさらに狭い1mm間隔で配置された場合、-15dB以下の反射損失となっている。配線電極の配置間隔が0.5mm以下の場合では、リターン電流の位相ずれによる周波数特性の劣化の改善量は飽和した。したがって、配線電極の間隔は、概ね変調信号(RF信号)の最大周波数に対する波長の1/2以下の長さになっていれば良い。
 図10に示したように、本実施例のような配線電極によって2つのグラウンド間でブリッジ配線を行ったデュアル電極Si光変調器によれば、RF電極における変調信号の透過電力、反射減衰量などの周波数帯域特性が従来技術と比べて大幅に改善されることがわかる。
 図12は、本発明の実施例2のデュアル電極Si光変調器の構成を示す図である。図12の実施例2の光変調器でも、CPWで形成された2組の高周波電極は、RF電極15aを挟む2つのグラウンド電極16a、17が、配線電極41a~41dにより複数の箇所で接続され、RF電極15bを挟む2つのグラウンド電極16b、17が、配線電極41e~41hにより複数の箇所で接続された構造となっており、実施例1と同様である。
 実施例2のMZ型光変調器では、RF電極15a、15bに対して、対応する光導波路7a、7bが高周波電気信号の進行方向(y軸方向)を見たときに、x軸について右側にあるかまたは左側にあるかの位置関係、並びに、複数の半導体領域のx軸上の配置順序が、2本のRF電極15a、15b各々で同一となるように配置されている。すなわち、p型、n型などの半導体の導電型および極性などのドーピング状態は、2つの光導波路の各々で同一となるように配置されている。したがって、本実施例の光変調器は、リブ導波路は、光導波路の断面(x-z面)を見たときに、前記光導波路の幅方向(x方向)に、半導体の極性および導電率が異なる複数の領域(211、212、213、214)で構成されており、前記2組のCPWの各々の前記リブ導波路における前記複数の領域の配置が同一であるものとして実施できる。
 具体的には、図12の光導波路7aに関するコアの複数の半導体領域は、x軸方向に図12の上から下に向かって、高濃度p型半導体層211a、中濃度p型半導体層212a、中濃度n型半導体層213a、高濃度n型半導体層214aの順となっている。本実施例では、もう1つの光導波路7bに関するコアの半導体領域も、同様に、x軸方向に図12の上から下に向かって、高濃度p型半導体層211b、中濃度p型半導体層212b、中濃度n型半導体層213b、高濃度n型半導体層214bの順となっている。それぞれの光導波路7a、7bの位置と、中濃度p型半導体層212および中濃度n型半導体層213の各境界(pn接合)の位置とが一致するように、x軸上で複数の半導体領域が配置されている。実施例1では、光導波路7a、7bの各々の半導体領域の配置が、中心のグラウンド電極17の中心を通るy軸に関して対称に配置されているのと対照的である。
 したがって、図12のIXA-IXA線を通る断面またはIXA´-IXA´線を通る断面、IXB-IXB線を通る断面の各構造は、実施例1の図9Aおよび図9Bとそれぞれ同様の構造になっている。さらに、2つの光導波路7a、7bにおいて、複数の半導体領域のx軸方向の配置順序が同じであることに留意されたい。実施例1と同様に、2つのグラウンド電極を接続する配線電極により、2つのグラウンド電極間の電位が等しくなる。このため、RF電極へ入力される高周波電気信号によって各グラウンド電極上に誘起され、各グラウンド電極を伝搬するリターン電流の位相差(グラウンド電極の伝搬する電荷の位相差)が解消される。このため、RF電極15a、15bにおける入力高周波信号22の透過・反射特性の劣化を抑えたSi光変調器を作製することができる。
 本実施例のように、高周波電気信号の進行方向(y軸方向)に光導波路7a、7bを見たとき、光導波路がRF電極15a、15bに対してx軸について右側かまたは左側かの位置関係が同一であって、かつ、複数の半導体領域のx軸上の配置順序が2組のCPWおよび光導波路の各々で同一となるように配置されている場合も、2つのグランド電極における電荷アンバランスの影響を受ける。中央のグラウンド電極17では高周波電気信号の進行方向(y軸方向)に対して、光導波路がx軸上の右側にあるか左側にあるかによって、同一のグラウンド電極17内であっても電荷の速度は大きく異なる。本発明の光変調器のように2つのグラウンド電極間の配線電極が無い場合には、高周波信号の伝搬特性の劣化を大きくさせる原因となる。
 さらに、本実施例2の構造では、インプラ時のマスクずれによるpn接合位置のずれ(offset量)による変調特性の劣化を防止することができる。Si光変調器では、p型またはn型の不純物を注入するインプラ(implantation)工程で、マスクずれなどに起因するpn接合位置のずれが発生すると光変調特性が劣化する要因となる。デュアル電極構成の光変調器において、マスクずれによるpn接合位置のずれ(例えば従来技術を示した図2では上下のx軸方向、図3の断面図では左右のx軸方向)が発生した場合、2本の光導波路間で、pn接合の構造に大きな誤差が生じる。マッハツェンダ変調器を構成する2本の光導波路でドーピング構造が中央のグラウンド電極17に対して鏡映対称である場合、一方の光導波路ではp型層が大きくなり、もう一方の光導波路ではp型層が小さくなる。このような状況では、2本の光導波路間で変調効率に著しい差が生じ、変調される光信号は位相変動などのチャープを持ち、光信号波形の劣化を発生させることになる。
 CMSO互換プロセスにおける素子作製時のマスクずれは、現状で最良時でも±30nm程度の精度であって、通常マスクずれを避けることはできない。数10nmのずれは測定すら難しく、現時点で±50nm以下の作製精度を保証することは困難である。ところが本発明の実施例2の光変調器の構造によれば、光導波路7aおよび光導波路7bでインプラマスクは同一方向にずれる。このため、マッハツェンダ光変調器を構成する2本の光導波路での変調効率の差は発生せず、信号品質の良い光変調器の実現が可能となる。
 このように、本発明の実施例2の光変調器の構造によれば、高周波信号の伝搬方向(y軸方向)を見た断面(x-z面)で、1本のRF電極と対応する光導波路との相対的な位置関係、および、光導波路コアを構成する複数の半導体領域の配置順序が2組のCPW間で同一となるように配置されている。このため、インプラ時のマスクずれに起因するpn接合位置のずれによる変調特性の劣化を防止することができる。さらに、CPW構造で形成された高周波電極で、RF電極を挟む2つのグラウンド電極が、配線電極により複数の箇所で接続された構造となっているため、CPWの構造の非対称性による変調信号の透過特性・反射特性の劣化を防止し、広帯域な変調特性を実現することができる。2つのグラウンド間を接続する接続配線は、CMOS互換のプロセスを用いて作製可能であって、Auメッキやワイヤ配線は不要である。
 本発明の光変調器では、以下のような様々な側面のものを含む。
 好ましくは、前記2組のCPWの第1の信号電極および第2の信号電極が概ね平行に構成され、前記層間接続配線は、ビアとすることができる。
 また別の側面によれば、前記信号電極の前記層間接続配線は、前記信号電極の長さ方向に連続的に壁状に形成された連続ビア、または、前記信号電極の長さ方向に配置された複数のビアであり、前記信号電極の少なくとも一部において、前記連続ビアまたは前記複数のビアを形成せずにギャップを形成し、前記ギャップを通して、前記第1のグラウンド電極および前記第2のグラウンド電極を前記1つ以上の配線電極によって接続するよう構成されることもできる。
 好ましくは、前記1つ以上の配線電極は、前記第1のグラウンド電極および前記第2のグラウンド電極間を直線的に接続するブリッジ型電極であり得る。また、前記ブリッジ型電極は、前記第1のグラウンド電極および前記第2のグラウンド電極と垂直となるように配置されるのが好ましい。
 さらに好ましくは、前記1つ以上の配線電極は、高周波特性が劣化しない程度に前記リブ導波路から離間して構成することができる。さらに前記1つ以上の配線電極は、リブ導波路から0.6μm以上離れているのが好ましい。
 また、前記1つ以上の配線電極は複数個であって、それぞれの間隔が前記RF信号の最大周波数に対する波長の1/2以下とするのが好ましい。
 さらに本発明の光変調器の別の側面(実施例2)によれば、前記リブ導波路は、前記光導波路の断面を見たときに、前記光導波路の幅方向に、半導体の極性および導電率が異なる複数の領域で構成されており、前記2組のCPWの各々の前記リブ導波路における前記複数の領域の配置を同一とすることもできる。
 上述の実施例1および実施例2のいずれの場合でも、CPWの構造の非対称性に起因する電荷のアンバランスの影響を抑え、変調信号の透過特性・反射特性の劣化を防止し、広帯域な変調特性を実現することができる。したがって、本発明の光変調器では、従来技術の光変調器のように電極長を短くしておく必要がない。RF変調電極を長くするとチップサイズが大きくなる点では好ましくないが、RF変調電極を長くできれば、変調電圧が下がる効果によって次の新たな効果を生じる。
 第1に、信号発生器の消費電力を下げることができる。
 第2に、十分な変調電圧を与えることができるので、光の強度変調を行う際に、光のON-OFF比を大きくとることができる。
 第3に、十分な変調電圧を与えることができるので、光の位相変調を行う際に、光の損失を小さく抑えることができる。
 したがって、本発明の光変調器によりRF変調電極を長くできる効果は、光変調器全体としては、チップサイズが大きくなる欠点を越える効果を与える。本発明における配線電極はCMOS互換のプロセスをそのまま利用して作製することができるので、低コストで小型化が可能なSi光変調器の様々なメリットを生かしままで、2つのグラウンド電極を伝搬するリターン電流の位相差を解消し、周波数応答特性の劣化を抑えた広帯域な光変調器を安価に提供できる。従来技術の問題を解消した優れた光変調器を提供することができる。
 本発明は、一般的に光通信システムに利用することができる。特に、光通信システムの光送信器における光変調器に関する。

Claims (9)

  1.  各々に、高周波(RF)信号が印加される信号電極を含む、少なくとも2組のコプレーナ線路(CPW)が基板上に形成されたSi光変調器において、
     各CPWは、
      前記信号電極と、
      前記信号電極の一方の側に、前記基板の内部に構成された光導波路を挟んで配置された第1のグラウンド電極と、
      前記信号電極の他方の側に配置された第2のグラウンド電極と
    を備え、
     前記光導波路は、中央コアとその両側のスラブ領域とを有するリブ導波路からなり、
     前記第1のグラウンド電極は、層間接続配線によって前記スラブ領域の一方に接続され、
     前記信号電極は、層間接続配線によって前記スラブ領域の他方に接続され、
     前記第1のグラウンド電極および前記第2のグラウンド電極が、前記基板の厚さ方向で前記信号電極と前記光導波路との間を通る1つ以上の配線電極によって、相互に接続されていること
     を特徴とする光変調器。
  2.  前記2組のCPWの第1の信号電極および第2の信号電極が概ね平行に構成され、
     前記層間接続配線は、ビアであることを特徴とする請求項1に記載の光変調器。
  3.  前記2組のCPWの第1の信号電極および第2の信号電極が概ね平行に構成され、
     前記信号電極の前記層間接続配線は、
      前記信号電極の長さ方向に連続的に壁状に形成された連続ビア、または、
      前記信号電極の長さ方向に配置された複数のビアであり、
     前記信号電極の少なくとも一部において、前記連続ビアまたは前記複数のビアを形成せずにギャップを形成し、前記ギャップを通して、前記第1のグラウンド電極および前記第2のグラウンド電極を前記1つ以上の配線電極によって接続するよう構成されていること
     を特徴とする請求項1に記載の光変調器。
  4.  前記1つ以上の配線電極は、前記第1のグラウンド電極および前記第2のグラウンド電極間を直線的に接続するブリッジ型電極であることを特徴とする請求項1乃至3いずれかに記載の光変調器。
  5.  前記ブリッジ型電極は、前記第1のグラウンド電極および前記第2のグラウンド電極と垂直となるように配置されることを特徴とする請求項4に記載の光変調器。
  6.  前記1つ以上の配線電極は、高周波特性が劣化しない程度に前記リブ導波路から離間して構成されていることを特徴とする請求項1乃至5いずれかに記載の光変調器。
  7.  前記1つ以上の配線電極は、リブ導波路から0.6μm以上離れていることを特徴とする請求項1乃至6いずれかに記載の光変調器。
  8.  前記1つ以上の配線電極は複数個であって、それぞれの間隔が前記RF信号の最大周波数に対する波長の1/2以下になっていることを特徴とする請求項1乃至7いずれかに記載の光変調器。
  9.  前記リブ導波路は、前記光導波路の断面を見たときに、前記光導波路の幅方向に、半導体の極性および導電率が異なる複数の領域で構成されており、前記2組のCPWの各々の前記リブ導波路における前記複数の領域の配置が同一であることを特徴とする請求項1乃至8いずれかに記載の光変調器。
PCT/JP2017/010084 2016-03-18 2017-03-14 光変調器 WO2017159651A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201780017852.3A CN108780235B (zh) 2016-03-18 2017-03-14 光调制器
US16/084,128 US10852618B2 (en) 2016-03-18 2017-03-14 Optical modulator having interconnecting ground electrodes for coplanar waveguides
JP2018505933A JP6499804B2 (ja) 2016-03-18 2017-03-14 光変調器
EP17766650.0A EP3432058B1 (en) 2016-03-18 2017-03-14 Optical modulator
SG11201807888XA SG11201807888XA (en) 2016-03-18 2017-03-14 Optical modulator
CA3017845A CA3017845C (en) 2016-03-18 2017-03-14 Optical modulator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016055646 2016-03-18
JP2016-055646 2016-03-18

Publications (1)

Publication Number Publication Date
WO2017159651A1 true WO2017159651A1 (ja) 2017-09-21

Family

ID=59852147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/010084 WO2017159651A1 (ja) 2016-03-18 2017-03-14 光変調器

Country Status (7)

Country Link
US (1) US10852618B2 (ja)
EP (1) EP3432058B1 (ja)
JP (1) JP6499804B2 (ja)
CN (1) CN108780235B (ja)
CA (1) CA3017845C (ja)
SG (1) SG11201807888XA (ja)
WO (1) WO2017159651A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114063321A (zh) * 2022-01-06 2022-02-18 成都明夷电子科技有限公司 一种双差分电极的硅光子推挽麦克詹达调制器

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3432058B1 (en) * 2016-03-18 2020-08-05 Nippon Telegraph And Telephone Corporation Optical modulator
US11460724B2 (en) 2017-04-28 2022-10-04 Ciena Corporation Optical modulator robust to fabrication errors through an RF electrical crossing
JP6770549B2 (ja) * 2018-05-16 2020-10-14 日本電信電話株式会社 光変調器
US11982919B2 (en) * 2018-12-06 2024-05-14 Mitsubishi Electric Corporation Mach-Zehnder type optical modulator
JP7124741B2 (ja) * 2019-02-06 2022-08-24 日本電信電話株式会社 光送信器
EP4191325A4 (en) * 2020-07-29 2024-03-27 Nippon Telegraph & Telephone OPTICAL SEMICONDUCTOR MODULATOR
US11429006B2 (en) 2020-11-05 2022-08-30 Electronics And Telecommunications Research Institute Silicon photonics-based optical transmission apparatus
CN113093411A (zh) * 2021-04-23 2021-07-09 南京刻得不错光电科技有限公司 电光调制器和电光器件
US11740533B2 (en) * 2021-09-14 2023-08-29 Ciena Corporation Providing a drive signal for optical modulator portions
CN116699881A (zh) * 2022-02-25 2023-09-05 苏州极刻光核科技有限公司 电光调制器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007510180A (ja) * 2003-10-28 2007-04-19 フィルトロニク パブリック リミテッド カンパニー 共平面導波管線路
US20150043866A1 (en) * 2013-08-09 2015-02-12 Sifotonics Technologies Co., Ltd. Electro-Optic Silicon Modulator With Capacitive Loading In Both Slots Of Coplanar Waveguides
JP2016014697A (ja) * 2014-06-30 2016-01-28 株式会社フジクラ 高周波回路及び光変調器

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2457505A1 (fr) * 1979-05-23 1980-12-19 Thomson Csf Modulateur d'intensite lumineuse a commande numerique en optique integree et convertisseur numerique analogique comprenant un tel modulateur
US5005932A (en) * 1989-11-06 1991-04-09 Hughes Aircraft Company Electro-optic modulator
US5119447A (en) * 1990-11-06 1992-06-02 General Instrument Corporation Apparatus and method for externally modulating an optical carrier
FR2678455B1 (fr) * 1991-06-27 1993-09-03 Thomson Csf Dispositif de modulation electrooptique integre.
JPH08125412A (ja) * 1994-10-19 1996-05-17 Mitsubishi Electric Corp 伝送線路,及びその製造方法
US6584239B1 (en) * 1998-05-22 2003-06-24 Bookham Technology Plc Electro optic modulator
GB2348293A (en) * 1999-03-25 2000-09-27 Bookham Technology Ltd Optical phase modulator
US6381379B1 (en) * 2000-02-10 2002-04-30 Codeon Corporation Optical modulator having coplanar electrodes for controlling chirp
GB2375614B (en) * 2000-04-06 2003-07-16 Bookham Technology Plc Optical modulator with pre-determined frequency chirp
GB2367142B (en) * 2000-08-11 2003-02-12 Bookham Technology Plc An electro optic device
JP4698888B2 (ja) * 2001-06-21 2011-06-08 三菱電機株式会社 光変調器、光変調器の実装基板および光変調器の駆動方法
US20030118267A1 (en) * 2001-12-21 2003-06-26 Kimber Eric M. Isolation of microwave transmission lines
GB2384570B (en) * 2002-01-19 2005-06-29 Marconi Optical Components Ltd Modulators
JP4162515B2 (ja) * 2002-03-25 2008-10-08 セイコーインスツル株式会社 半導体装置およびその製造方法
JP3936256B2 (ja) * 2002-07-18 2007-06-27 富士通株式会社 光半導体装置
JP3801550B2 (ja) * 2002-09-12 2006-07-26 ユーディナデバイス株式会社 光変調器及びその製造方法
US7116853B2 (en) * 2003-08-15 2006-10-03 Luxtera, Inc. PN diode optical modulators fabricated in rib waveguides
US7136544B1 (en) * 2003-08-15 2006-11-14 Luxtera, Inc. PN diode optical modulators fabricated in strip loaded waveguides
US7085443B1 (en) * 2003-08-15 2006-08-01 Luxtera, Inc. Doping profiles in PN diode optical modulators
US7492979B2 (en) * 2004-09-27 2009-02-17 Hewlett-Packard Development Company, L.P. Photonic crystal laser sensors and methods
US7187813B2 (en) * 2005-01-20 2007-03-06 Intel Corporation Optical transistor
EP1691415A1 (en) * 2005-02-14 2006-08-16 Seiko Epson Corporation Semiconductor device with implanted passive elements
JP5433919B2 (ja) * 2005-12-27 2014-03-05 日本電気株式会社 光機能素子、その駆動方法及び製造方法
US7277603B1 (en) * 2006-02-22 2007-10-02 Nortel Networks Limited Integrated optical waveform modulation
WO2008114349A1 (ja) 2007-03-16 2008-09-25 Fujitsu Limited 光導波路デバイス
WO2008152642A1 (en) * 2007-06-13 2008-12-18 Ramot At Tel Aviv University Ltd. Linearised optical digital modulator
US8149493B2 (en) * 2008-09-06 2012-04-03 Sifotonics Technologies (Usa) Inc. Electro-optic silicon modulator
US8320720B2 (en) * 2009-08-19 2012-11-27 Mark Webster Advanced modulation formats for silicon-based optical modulators
JP5729303B2 (ja) * 2009-10-09 2015-06-03 日本電気株式会社 光変調器モジュール及び光信号の変調方法
US8238017B2 (en) * 2009-12-18 2012-08-07 Alcatel Lucent Photonic match filter
US8643929B2 (en) * 2010-01-12 2014-02-04 Alcatel Lucent Nested Mach-Zehnder modulator
JP5515927B2 (ja) * 2010-03-24 2014-06-11 住友電気工業株式会社 半導体光素子
KR101070409B1 (ko) * 2010-08-02 2011-10-06 한국전자통신연구원 마하-젠더 광 변조기
JP5067464B2 (ja) 2010-09-30 2012-11-07 住友大阪セメント株式会社 光制御素子
SG10201403629TA (en) * 2010-12-29 2014-10-30 Agency Science Tech & Res An optical modulator and a method of forming the same
US8929689B2 (en) * 2011-03-08 2015-01-06 Cisco Technology, Inc. Optical modulator utilizing unary encoding and auxiliary modulator section for load balancing
EP2538272B1 (en) * 2011-06-20 2014-01-01 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Electro-optic Mach-Zehnder modulator and method for fabricating an electro-optic Mach-Zehnder modulator
JPWO2013042753A1 (ja) * 2011-09-23 2015-03-26 日本電気株式会社 光変調器モジュール及び光信号の変調方法
SG11201401800PA (en) 2011-10-26 2014-09-26 Fujikura Ltd Optical element and mach-zehnder optical waveguide element
US10133141B2 (en) * 2011-12-30 2018-11-20 Infinera Corporation Mach-Zehnder interferometer having bended waveguides
JP5413865B1 (ja) * 2012-12-27 2014-02-12 株式会社フジクラ 光導波路素子及び光変調器
US9036953B2 (en) * 2013-03-04 2015-05-19 Rwth Aachen University Electro-optical modulator based on carrier depletion or carrier accumulation in semiconductors with advanced electrode configuration
JP2014236093A (ja) * 2013-05-31 2014-12-15 サンケン電気株式会社 シリコン系基板、半導体装置、及び、半導体装置の製造方法
JP2015172682A (ja) * 2014-03-12 2015-10-01 富士通オプティカルコンポーネンツ株式会社 光モジュール
JP6299337B2 (ja) 2014-03-28 2018-03-28 富士通株式会社 位相変調装置及びその制御方法
JP5991339B2 (ja) 2014-03-31 2016-09-14 住友大阪セメント株式会社 光制御素子
JP6327197B2 (ja) * 2015-04-28 2018-05-23 住友大阪セメント株式会社 光変調器
CN105044931B (zh) * 2015-09-10 2018-10-09 中国科学院半导体研究所 硅基集成化的差分电光调制器及其制备方法
JP6350563B2 (ja) * 2016-02-29 2018-07-04 住友大阪セメント株式会社 光変調器、及び光変調器を用いた光送信装置
EP3432058B1 (en) * 2016-03-18 2020-08-05 Nippon Telegraph And Telephone Corporation Optical modulator
US10120210B2 (en) * 2016-06-03 2018-11-06 International Business Machines Corporation Feed-forward optical equalization using an electro-optic modulator with a multi-segment electrode and distributed drivers
JP2018036399A (ja) * 2016-08-30 2018-03-08 株式会社フジクラ 基板型光導波路及び基板型光変調器
EP3503317B1 (en) * 2017-12-22 2024-03-27 IMEC vzw Multimode interference based vpin diode waveguides
US10241354B1 (en) * 2018-03-14 2019-03-26 International Business Machines Corporation Electro-optic modulator with a periodic junction arrangement

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007510180A (ja) * 2003-10-28 2007-04-19 フィルトロニク パブリック リミテッド カンパニー 共平面導波管線路
US20150043866A1 (en) * 2013-08-09 2015-02-12 Sifotonics Technologies Co., Ltd. Electro-Optic Silicon Modulator With Capacitive Loading In Both Slots Of Coplanar Waveguides
JP2016014697A (ja) * 2014-06-30 2016-01-28 株式会社フジクラ 高周波回路及び光変調器

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Monolithic Microwave Integrated Circuit", IEICE, FOREST OF KNOWLEDGE, vol. 7, Retrieved from the Internet <URL:http://www.ieice-hbkb.org/files/10/10gun_07hen _01.pdf>
DING,J. ET AL.: "Low-voltage,high extinction ratio carrier-depletion Mach-Zehnder silicon optical modulator", SPIE-OSA- IEEE, vol. 8308, November 2011 (2011-11-01), pages 83081P-1 - 83081P-6, XP055545013 *
KAZUHIRO GOI; KENJI ODA; HIROYUKI KUSAKA; KENSUKE OGAWA; TSUNG-YANG LIOW; XIAOGUANG TU; GUO-QIANG LO; DIM-LEE KWONG: "20 Gbps binary phase shift keying using silicon Mach-Zehnder push-pull modulator", SOCIETY CONFERENCE OF IEICE 2012, 2012, pages C-3 - 50

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114063321A (zh) * 2022-01-06 2022-02-18 成都明夷电子科技有限公司 一种双差分电极的硅光子推挽麦克詹达调制器
CN114063321B (zh) * 2022-01-06 2022-04-22 成都明夷电子科技有限公司 一种双差分电极的硅光子推挽麦克詹达调制器

Also Published As

Publication number Publication date
CA3017845C (en) 2020-12-22
JPWO2017159651A1 (ja) 2018-07-12
CN108780235B (zh) 2021-12-14
CA3017845A1 (en) 2017-09-21
JP6499804B2 (ja) 2019-04-10
SG11201807888XA (en) 2018-10-30
EP3432058A4 (en) 2019-11-06
US20200292908A1 (en) 2020-09-17
CN108780235A (zh) 2018-11-09
EP3432058A1 (en) 2019-01-23
US10852618B2 (en) 2020-12-01
EP3432058B1 (en) 2020-08-05

Similar Documents

Publication Publication Date Title
JP6499804B2 (ja) 光変調器
JP6586223B2 (ja) 光変調器
JP6983908B2 (ja) 半導体光変調器
JP6475838B2 (ja) 光変調器
JP6781618B2 (ja) 光変調器
JP6926499B2 (ja) 光変調器
JP6348880B2 (ja) 半導体マッハツェンダ光変調器
JP2017173365A (ja) 光変調器
JP6823619B2 (ja) 光変調器
JP6431493B2 (ja) 光変調器
JP2020134689A (ja) 光変調器
JP2018205343A (ja) 光送信機
WO2023238403A1 (ja) 光変調器
WO2023238399A1 (ja) 光変調器
JP6353474B2 (ja) 光変調器
WO2023248490A1 (ja) 光変調器
WO2023248489A1 (ja) 光変調器

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018505933

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 11201807888X

Country of ref document: SG

ENP Entry into the national phase

Ref document number: 3017845

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017766650

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017766650

Country of ref document: EP

Effective date: 20181018

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17766650

Country of ref document: EP

Kind code of ref document: A1