WO2023238403A1 - 光変調器 - Google Patents

光変調器 Download PDF

Info

Publication number
WO2023238403A1
WO2023238403A1 PCT/JP2022/023525 JP2022023525W WO2023238403A1 WO 2023238403 A1 WO2023238403 A1 WO 2023238403A1 JP 2022023525 W JP2022023525 W JP 2022023525W WO 2023238403 A1 WO2023238403 A1 WO 2023238403A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor layer
type semiconductor
concentration
optical waveguide
optical
Prior art date
Application number
PCT/JP2022/023525
Other languages
English (en)
French (fr)
Inventor
健 都築
真 地蔵堂
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/023525 priority Critical patent/WO2023238403A1/ja
Publication of WO2023238403A1 publication Critical patent/WO2023238403A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction

Definitions

  • the present invention relates to an optical modulator, and more specifically, it is used in optical communication systems, optical information processing systems, etc., performs optical modulation operation at high speed, has excellent frequency characteristics and waveform quality, and is capable of long-distance optical communication.
  • This invention relates to an optical modulator capable of
  • An optical modulator that directly modulates an optical signal with a broadband baseband signal is one of the important devices.
  • a Mach-Zehnder (MZ) type optical modulator has a structure in which light incident on an optical waveguide is split into two waveguides with an intensity of 1:1, the split light is propagated for a certain length, and then recombined.
  • the phase of the two branched lights is changed by a phase modulation section provided in each of the two branched optical waveguides.
  • the intensity and phase of the light can be modulated by changing the interference conditions of the light when the two phase-changed lights are combined.
  • dielectrics such as LiNbO 3 and semiconductors such as InP, GaAs, and Si are used.
  • a modulated electrical signal By inputting a modulated electrical signal to an electrode placed near an optical waveguide made of these materials and applying a modulating voltage to the optical waveguide, the phase of light propagating through the optical waveguide is changed.
  • the Pockels effect As a mechanism for changing the phase of light in the MZ type optical modulator, when the material is LiNbO 3 , the Pockels effect is used. When the material is InP or GaAs, the Pockels effect and the Quantum Confined Stark Effect (QCSE) are used, and when the material is Si, the carrier plasma effect is mainly used.
  • QCSE Quantum Confined Stark Effect
  • an optical modulator with high modulation speed and low driving voltage is required. Specifically, it is required to perform optical modulation at a high speed of 10 Gbps or higher and with an amplitude voltage of several volts. To achieve this, it is necessary to match the speed of the high-speed electrical signal with the speed of light propagating through the phase modulator, so that the light and electrical signals interact as they propagate.
  • a wave electrode is required.
  • an optical modulator using a traveling wave electrode an optical modulator with an electrode length ranging from several mm to several tens of mm has been put into practical use, for example, as disclosed in Patent Document 1.
  • Optical modulators using traveling wave electrodes have low-loss, low-reflection electrode structures and optical waveguide structures that allow propagation without reducing both the amplitude of electrical signals and the intensity of light propagating through the waveguide. Desired. In other words, for electrical signals, an electrode structure with low reflection loss and propagation loss is required over a wide frequency band, and for light, a waveguide is required that has low reflection and can efficiently confine light and propagate it without loss. Structure is needed.
  • Si optical modulator in which the optical waveguide is made of Si, which is promising from the viewpoint of substrate material and manufacturing process.
  • a Si optical modulator is manufactured from an SOI (Silicon on Insulator) substrate in which a thin film of Si is pasted on an oxide film (BOX: Buried Oxide) layer obtained by thermally oxidizing the surface of the Si substrate.
  • SOI Silicon on Insulator
  • BOX oxide film
  • a Si thin film is processed into a thin wire so that light can be guided through the SOI layer, and then impurities are implanted so that a p-type semiconductor and an n-type semiconductor can be formed.
  • SiO 2 is deposited to become an optical cladding layer, and electrodes are formed and the like.
  • the optical waveguide must be designed and processed to reduce optical loss.
  • p-type and n-type impurity doping and electrode fabrication must be designed and processed to minimize optical loss, as well as reflection loss and propagation loss of high-speed electrical signals.
  • FIG. 1 shows a cross-sectional structure of an optical waveguide that is the basis of a conventional Si optical modulator.
  • FIG. 1 shows a cross section (xz plane) of an optical waveguide 200 configured on an SOI substrate taken perpendicularly to the direction in which light travels (y axis). Light propagates in a direction perpendicular to the paper (y-axis direction).
  • the optical waveguide 200 of the Si optical modulator is composed of a Si layer 2 sandwiched between upper and lower SiO 2 cladding layers 1 and 3.
  • the thin Si wire formed in the center of FIG. 1 for confining light has a structure called a rib waveguide with different thicknesses. That is, as shown in FIG.
  • the rib waveguide is composed of a thick central Si layer 201 and thin slab regions 202a and 202b on both sides thereof.
  • the thick Si layer 201 at the center of the Si layer 2 is used as the optical waveguide core, and the optical waveguide 200 is configured to confine light propagating in the direction perpendicular to the plane of the paper by using the difference in refractive index with the surrounding SiO 2 cladding layers 1 and 3. .
  • Thin slab regions 202a and 202b on both sides of the optical waveguide core of the thick Si layer 201 have a high concentration p-type semiconductor layer 211 and a high concentration n-type semiconductor layer 214, respectively. provided. Further, in the Si optical waveguide core 201 and its vicinity, a pn junction structure is formed by a low concentration p-type semiconductor layer 212 and a low concentration n-type semiconductor layer 213. As will be described later, a modulated electrical signal and a bias voltage are applied from both left and right ends of the Si layer 2 in FIG. 1 via electrodes (not shown).
  • a pin structure is formed in which an undoped i-type (intrinsic) semiconductor is sandwiched between the pn junction structure formed by the low concentration p-type semiconductor layer 212 and the low concentration n-type semiconductor layer 213. Also good.
  • the phase modulation operation in the optical waveguide 200 of the Si optical modulator can be explained as follows. Although not shown in FIG. 1, two metal electrodes are provided in contact with the high concentration p-type semiconductor layer 211 and the high concentration n-type semiconductor layer 214 at both ends of the Si layer 2, respectively. A reverse bias voltage is applied to the pn junction at the center of the core via two metal electrodes along with a radio frequency (RF) modulated electrical signal. That is, a voltage with the high concentration n-type semiconductor layer 214 side at a positive potential and the high concentration p-type semiconductor layer 211 side at a negative potential is applied from the right end to the left end of the optical waveguide 200 (in the x-axis direction).
  • RF radio frequency
  • the carrier density inside the thick Si optical waveguide core 201 is changed by the reverse bias voltage and the modulated electrical signal.
  • the phase of light propagating through the optical waveguide can be modulated by changing the refractive index of the Si optical waveguide core 201 by the carrier plasma effect by changing the carrier density.
  • the dimensions of the optical waveguide in the Si optical modulator depend on the refractive index of each material forming the core/cladding.
  • An example of a rib-type silicon waveguide structure including a thick Si optical waveguide core 201 and slab regions 202a and 202b on both sides thereof as shown in FIG. 1 will be listed below.
  • the width of the Si optical waveguide core 201 (x-axis direction) is 400 to 600 (nm)
  • the height of the core portion (z-axis direction) is 150 to 300 (nm)
  • the thickness of the slab region is 50 to 200 (nm).
  • the length of the optical waveguide (in the y-axis direction) is approximately several millimeters (mm).
  • the Si optical modulator One of the excellent features of the Si optical modulator is that there is a large difference in refractive index between the Si core through which light propagates and the SiO2 cladding layer, so a compact optical modulator can be constructed. Since the refractive index difference is large, it is possible to confine light to a small amount, and the bending radius of the optical waveguide can be made very small, about 10 ⁇ m. Therefore, the optical multiplexing/demultiplexing circuit portion of the Si optical modulator, which will be described next, can be configured to be small.
  • FIG. 2 shows a Si optical modulator that constitutes a conventional dual-electrode Mach-Zehnder optical modulator. This is a planar structure of the Si (SOI) substrate surface (xy plane) seen from above. Light input from the left optical modulator end is branched into two optical waveguides 7a and 7b, modulated, and then recombined and output as modulated light from the right optical modulator end. While the input light propagates in the y-axis direction through the two branched optical waveguides 7a and 7b, it is phase-modulated by modulated electrical signals (RF signals) applied to the RF electrodes 15a and 15b, respectively.
  • RF signals modulated electrical signals
  • the optical modulator has, for the optical waveguide 7a, a coplanar waveguide (CPW) consisting of two ground electrodes 16a and 17 sandwiching an RF electrode 15a.
  • the optical waveguide 7b has a CPW consisting of two ground electrodes 16b and 17 sandwiching the RF electrode 15b.
  • MZ type optical modulator It is called a dual electrode structure because one Mach-Zehnder (MZ) type optical modulator has two RF signal input sections.
  • the MZ type optical modulator shown in FIG. 2 has a symmetrical structure with respect to a center line that passes through the center of the ground electrode 17 and is parallel to the y-axis.
  • FIG. 3 shows a cross-sectional structure taken along line III-III' in FIG. 2, and shows only the phase modulation section including the CPW corresponding to one optical waveguide 7a undergoing modulation.
  • One phase modulation section is an optical waveguide having a cross-sectional structure similar to the optical waveguide 200 shown in FIG. 1. It includes an RF electrode 15a, which is a high frequency line that inputs one of a pair of differential modulated electric signals (RF signals), and two ground electrodes 16a and 17 provided to sandwich the RF electrode 15a.
  • RF electrode 15a which is a high frequency line that inputs one of a pair of differential modulated electric signals (RF signals)
  • RF signals differential modulated electric signals
  • One optical waveguide core 7a is provided between the RF electrode 15a and the ground electrode 16a, and within the optical waveguide 7a, a pn junction structure consisting of a low concentration p-type semiconductor layer 212 and a low concentration n-type semiconductor layer 213 is provided. It is formed.
  • the RF electrode 15a is in contact with the high concentration n-type semiconductor layer 214 via the via 19b.
  • the ground electrode 16a is in contact with the highly doped p-type semiconductor layer 211 via the via 19a.
  • the ground electrode 17 is not in contact with any semiconductor layer, together with the ground electrode 16a, it forms a high frequency transmission line (CPW) with a GSG (Ground Signal Ground) structure for the RF electrode 15a.
  • CPW high frequency transmission line
  • GSG Ground Signal Ground
  • the characteristic impedance of the RF electrode as a transmission line can be adjusted and the transmission characteristics can be improved.
  • the signal line formed by the RF electrode 15a is surrounded by the two ground electrodes 16a and 17, it is possible to form an optical modulator with less signal leakage and less crosstalk and propagation loss.
  • FIG. 3 shows a phase modulation section that includes an RF electrode 15a that is a high frequency line that inputs one of the modulated electric signals (RF signals) in a differential configuration, it also includes the other RF electrode 15b.
  • the phase modulation section also has the same configuration as that in FIG. 3, except that the arrangement order of the plurality of semiconductor regions in the x-axis direction is reversed with the z-axis as the axis of symmetry.
  • the characteristic impedance of the RF electrodes 15a, 15b of the Si optical modulator as a high frequency transmission line is greatly influenced by the capacitance of the pn junction of the Si layer optical waveguide cores 7a, 7b.
  • the capacitance between the RF electrode and the ground electrode also has an effect, in a Si modulator with a dual electrode structure, by adjusting the capacitance between the RF electrode 15a and the ground electrode 17, , it is relatively easy to adjust the characteristic impedance. It is possible to set the characteristic impedance to about 50 ⁇ in a single-ended drive configuration and to about 100 ⁇ in a differential drive configuration.
  • the RF electrode 15a is in contact with the high concentration n-type semiconductor layer 214, and the ground electrode 16a is in contact with the high concentration p-type semiconductor layer 211.
  • the direction of the pn junction may be reversed so that the RF electrode 15a is in contact with the high concentration p-type semiconductor layer and the ground electrode 16a is in contact with the high concentration n-type semiconductor layer.
  • the pn junction can be reverse biased by applying a negative voltage to the ground electrode 16a as a bias voltage superimposed on the RF signal and applied to the RF electrode 15a.
  • FIG. 4 shows a cross-sectional structure of an optical waveguide of a conventional Si optical modulator having a vertical pn junction.
  • FIG. 4 shows a cross section (xz plane) of an optical waveguide 200 configured on an SOI substrate, taken perpendicular to the direction in which light travels (y axis). Light propagates in a direction perpendicular to the paper (y-axis direction).
  • the method of configuring the optical waveguide of the Si optical modulator, the classification of impurity doping, the configuration of electrodes, the operating principle, etc. are the same as those of the conventional Si optical modulator shown in FIG.
  • the difference from the conventional structure is that the pn junction structure formed by the low concentration p-type semiconductor layer 212 and the low concentration n-type semiconductor layer 213 is arranged vertically (up and down in the figure). That is, the pn junction planes are arranged in the horizontal direction (left and right in the figure). Such a structure is called a vertical pn junction (for example, see Non-Patent Document 1).
  • the width of the Si optical waveguide core 201 is 400 to 600 (nm), the height of the core portion (z-axis direction) is 150 to 300 (nm), and the thickness of the slab region is 50 to 200 (nm).
  • the light propagating within the Si optical waveguide core 201 has a flat shape in the width (x-axis direction). Therefore, in a vertical pn junction optical waveguide having a pn junction surface in the horizontal direction, there is a large overlap between the pn junction portion where the carrier density changes due to the application of an electric field and the optical propagation mode. In other words, as shown in FIG.
  • the pn junction structure in a vertical pn junction optical waveguide, the pn junction structure is arranged horizontally (left and right in the figure), and the pn junction part The overlap between the light propagation mode and the light propagation mode becomes large.
  • the refractive index of the Si optical waveguide core 201 changes, thereby modulating the phase of light propagating through the core of the optical waveguide. Therefore, the vertical pn junction can modulate light even at a low voltage, and an optical modulator with high modulation efficiency can be realized.
  • Impurity doping into the Si optical modulator is performed by a method called ion implantation, commonly called implantation.
  • Ion implantation involves implanting ions with high velocity into a target material, so it is possible to change the characteristics of the material being implanted.
  • B boron
  • P phosphorous
  • As arsenic
  • the concentration and depth of ion implantation are controlled by the dose, which indicates the number of ions per unit area, the acceleration voltage, which is the energy used to accelerate ions, and the tilt of the wafer with respect to the direction of the ion beam. .
  • a thick Si layer 201 and a thin slab region 202 are formed on the SOI substrate by etching, and then P is etched to form a low concentration n-type semiconductor layer 213.
  • Impurities such as (phosphorus) and As (arsenic) are implanted by ion implantation.
  • a method is generally used in which an impurity such as B (boron) is implanted to a depth near the surface of the Si layer.
  • the Si optical waveguide core 201 ion implantation is performed so that the impurity that forms the n-type semiconductor layer and the impurity that forms the p-type semiconductor layer overlap, but the upper part of the optical waveguide portion becomes the low concentration p-type semiconductor layer.
  • the ion dose and accelerating voltage are adjusted so that.
  • the p-type semiconductor layer and the n-type semiconductor layer in the structure shown in FIG. 4 are reversed, so that the upper part of the Si optical waveguide core 201 becomes a low concentration n-type semiconductor layer, and the lower part becomes a low concentration p-type semiconductor layer. Good too.
  • ion implantation into a Si layer is generally more difficult than implanting impurities to make it a p-type semiconductor layer, and ion implantation deep from the substrate surface may damage the Si crystal. For this reason, it is more common to use the upper part as a p-type semiconductor layer and the lower part as an n-type semiconductor layer.
  • FIG. 5 is a top view of a part of the optical waveguide 200 configured on the SOI substrate, seen from a direction perpendicular to the substrate surface (xy plane).
  • FIG. 6 is a plane (xz plane) of the optical waveguide 200 configured on the SOI substrate taken perpendicular to the direction of propagation of light (y-axis), and is a cross-sectional view taken along VI-VI' in FIG. .
  • FIG. 7 is a cross-sectional view taken along VII-VII' in FIG.
  • the method of configuring the optical waveguide of the Si optical modulator, the classification of impurity doping, the configuration of electrodes, the operating principle, etc. are the same as those of the conventional Si optical modulator shown in FIG.
  • the difference from the conventional structure is that the doped region that occupies most of the Si optical waveguide core 201 along the light propagation direction (y-axis direction) is a low concentration p-type semiconductor layer 212 and a low concentration n-type semiconductor layer 213. and are arranged alternately.
  • Such a structure is called an interleaved pn junction (for example, see Non-Patent Document 2).
  • the overlap between the light propagating through the Si optical waveguide core 201 and the pn junction portion becomes larger. That is, as shown in FIG. 1, the pn The overlap between the junction and the light propagation mode increases.
  • the interleaved pn junction can modulate light even at a low voltage, and can realize an optical modulator with high modulation efficiency.
  • the layer 212 and the low concentration n-type semiconductor layer 213 may be in contact with each other.
  • the low concentration p-type semiconductor layer 212 and the low concentration n-type semiconductor layer 213 extend beyond the thick Si layer 201, and the low concentration p-type semiconductor layer 212 and the low concentration n-type semiconductor The layer 213 may be in contact with the layer 213.
  • the ion implantation pattern in the Si optical waveguide core 201 is such that the pn junction structure of the low concentration p-type semiconductor layer and the low concentration n-type semiconductor layer is arranged in the horizontal direction (left and right in the figure), and the pn junction structure in the vertical direction
  • the pn junction structure in the vertical direction
  • An object of the present invention is to provide an optical modulator that can improve optical modulation efficiency by having a structure in which the ion implantation pattern can be controlled with a wider range of options.
  • one embodiment of the present invention includes a semiconductor layer having a pn junction in an optical waveguide core, and applies a bias voltage to the semiconductor layer together with a radio frequency (RF) signal to generate an optical signal.
  • RF radio frequency
  • the optical waveguide core includes three layers: the low concentration p-type semiconductor layer, the medium concentration p-type semiconductor layer, and the low concentration n-type semiconductor layer. or three layers: the low concentration p-type semiconductor layer, the medium concentration n-type semiconductor layer, and the low concentration n-type semiconductor layer.
  • FIG. 1 is a diagram showing the cross-sectional structure of an optical waveguide that is the basis of a conventional Si optical modulator.
  • FIG. 2 is a plan view showing a Si optical modulator that constitutes a conventional dual-electrode Mach-Zehnder optical modulator;
  • FIG. 3 is a cross-sectional view showing a Si optical modulator constituting a conventional dual-electrode Mach-Zehnder optical modulator.
  • FIG. 4 is a diagram showing a cross-sectional structure of an optical waveguide of a conventional Si optical modulator having a vertical pn junction.
  • FIG. 5 is a plan view showing an optical waveguide of a Si optical modulator having a conventional interleaved pn junction;
  • FIG. 1 is a diagram showing the cross-sectional structure of an optical waveguide that is the basis of a conventional Si optical modulator.
  • FIG. 2 is a plan view showing a Si optical modulator that constitutes a conventional dual-electrode Mach-
  • FIG. 6 is a cross-sectional view showing an optical waveguide of a Si optical modulator having a conventional interleaved pn junction
  • FIG. 7 is a cross-sectional view showing an optical waveguide of a Si optical modulator having a conventional interleaved pn junction
  • FIG. 8 is a diagram showing a cross-sectional structure of an optical waveguide of a Si optical modulator according to Example 1 of the present invention
  • FIG. 9 is a plan view showing an optical waveguide of a Si optical modulator according to Example 2 of the present invention
  • FIG. 10 is a diagram showing the cross-sectional structure of the optical waveguide of the Si optical modulator of Example 2
  • FIG. 11 is a diagram showing the cross-sectional structure of the optical waveguide of the Si optical modulator of Example 2.
  • FIG. 8 shows a cross-sectional structure of an optical waveguide of a Si optical modulator according to Example 1 of the present invention.
  • FIG. 8 shows a cross section (xz plane) of an optical waveguide 200 configured on an SOI substrate taken perpendicularly to the direction of propagation of light (y axis). Light propagates in a direction perpendicular to the paper (y-axis direction).
  • the Si optical modulator of Example 1 is a Si optical modulator having a vertical pn junction, and the method of configuring the optical waveguide, classification of impurity doping, electrode configuration, operating principle, etc. of the Si optical modulator are the same as those of the conventional Si optical modulator. This is similar to a Si optical modulator.
  • the optical waveguide core 201 is a rib waveguide made of a Si layer sandwiched between SiO 2 cladding layers on a Si substrate, and is a thick Si layer in the center.
  • the difference from the conventional structure is that medium concentration p-type semiconductor layers 215a, 215b and medium concentration n-type semiconductor layer 216 are added.
  • the medium concentration p-type semiconductor layer 215a is ion-implanted into the slab region 202a, which is thinner than the Si optical waveguide core 201, overlapping the ion implantation pattern for forming the low-concentration p-type semiconductor layer 211.
  • the medium concentration n-type semiconductor layer 216 is ion-implanted into the slab region 202b, which is thinner than the Si optical waveguide core 201, overlapping the ion implantation pattern for forming the low-concentration n-type semiconductor layer 213.
  • the medium concentration p-type semiconductor layer 215a and the medium concentration n-type semiconductor layer 216 are also used to lower the electrical resistivity of the slab regions 202a and 202b. Lowering the electrical resistivity of the slab region 202 suppresses the loss of high-frequency electrical signals applied to the optical modulator, which is effective for high-speed operation of the optical modulator.
  • the purpose of the medium concentration p-type semiconductor layer 215a and the medium concentration n-type semiconductor layer 216 is to implant ions into the thin slab regions 202a and 202b. and is set smaller than when ions are implanted into the low concentration n-type semiconductor layer 213.
  • the conditions for implanting ions into the low concentration p-type semiconductor layer 212 and the low concentration n-type semiconductor layer 213 are that ions are implanted multiple times in a shallow region near the substrate surface and in a deep region deep from the substrate surface. In some cases, the acceleration voltage is approximately the same as that used for ion implantation into a shallow region.
  • ions are classified into three types: high concentration, medium concentration, and low concentration, and ion implantation into the medium concentration semiconductor layer is performed overlapping the pattern of low concentration ion implantation. Therefore, as a condition for ion implantation, the dose amount indicating the number of ions per unit area may be smaller than the condition for ion implantation into a low concentration semiconductor layer. This is because the gap between the high concentration p-type semiconductor layer 211 and the high concentration n-type semiconductor layer 214 is only about a few microns, which is small compared to the manufacturing precision of the ion implantation mask. This is because it is common to overprint a pattern with a lower density.
  • the medium concentration p-type semiconductor layer 215b extends also in a region close to the substrate surface of the Si optical waveguide core 201.
  • a mask used when forming a medium concentration p-type semiconductor layer is expanded to a portion overlapping with the Si optical waveguide core 201, and ions are implanted into a shallow region near the substrate surface.
  • the Si optical waveguide core 201 is composed of three layers: the lightly doped p-type semiconductor layer 212, the lightly doped n-type semiconductor layer 213, and the medium-doped p-type semiconductor layer 215b.
  • a pn junction structure consisting of a low concentration p-type semiconductor layer 212 and a low concentration n-type semiconductor layer 213 is arranged in the horizontal direction (left and right in the figure), and a medium concentration p-type semiconductor layer 215 and a low concentration n
  • a pn junction structure formed by the type semiconductor layer 213 is arranged vertically (up and down in the figure).
  • a modulated electrical signal and a bias voltage are applied via electrodes in contact with the highly doped p-type semiconductor layer 211 and the highly doped n-type semiconductor layer 214 at both ends of the Si layer 2.
  • the carrier density in the Si optical waveguide core 201 is changed by the modulated electrical signal and the reverse bias voltage.
  • the width of the Si optical waveguide core 201 is 400 to 600 (nm), the height of the core portion (z-axis direction) is 150 to 300 (nm), and the thickness of the slab region is 50 to 200 (nm).
  • the light propagating within the Si optical waveguide core 201 has a flat shape in the width (x-axis direction). Therefore, the horizontal pn junction surface formed in the Si optical waveguide core 201 increases the overlap between the pn junction portion where the carrier density changes due to the application of an electric field and the optical propagation mode. As the carrier density changes, the refractive index of the Si optical waveguide core 201 changes, thereby modulating the phase of light propagating through the core of the optical waveguide. Therefore, the Si optical modulator of Example 1 can modulate light even at a low voltage, and can realize an optical modulator with high modulation efficiency.
  • the low concentration p-type semiconductor layer 212 and the low concentration The boundary with the n-type semiconductor layer 213 is moved toward the slab region 202a.
  • a conventional vertical pn junction is composed of two layers: a low concentration p-type semiconductor layer 212 and a low concentration n-type semiconductor layer 213. Therefore, the ion-implanted semiconductor layer is not connected to the shallow region near the substrate surface at the boundary between the optical waveguide core 201 and the slab region 202, which may lead to electrical disconnection or increased resistance. Ta. In order to prevent this, in order to connect the ion-implanted semiconductor layers in a shallow region close to the substrate surface, it was necessary to set the pn junction plane in a deep region farther from the substrate surface.
  • a low concentration layer is formed between the medium concentration p-type semiconductor layer 215b formed in the shallow region of the optical waveguide core 201 and the medium concentration p-type semiconductor layer 215a formed in the slab region 202. Since the p-type semiconductor layer 212 is present, there is no concern that the medium concentration p-type semiconductor layer 215a215b will be disconnected, and the pn junction surface can be set at any position.
  • the medium concentration p-type semiconductor layer 215b is ion-implanted into a shallow region near the substrate surface of the optical waveguide core 201, but the medium concentration n-type semiconductor layer 216 is implanted into the substrate surface of the optical waveguide core 201. It is also possible to have a structure in which ions are implanted into a nearby shallow region. At this time, the pn junction portion is placed at the center of the optical waveguide core 201 where the distribution density of propagating light is high. Therefore, it is preferable that the boundary between the low concentration p-type semiconductor layer 212 and the low concentration n-type semiconductor layer 213 is not located at the center of the optical waveguide core 201, but is moved toward the slab region 202b. With this structure, an optical modulator with higher modulation efficiency can be realized.
  • FIG. 9 shows an optical waveguide of a Si optical modulator according to Example 2 of the present invention.
  • FIG. 9 is a top view of a part of the optical waveguide 200 configured on the SOI substrate, seen from a direction perpendicular to the substrate surface (xy plane).
  • FIG. 10 is a plane (xz plane) taken through the optical waveguide 200 configured on the SOI substrate perpendicular to the direction of light propagation (y-axis), and is a cross-sectional view taken along line XX' in FIG. .
  • FIG. 11 is a cross-sectional view taken along the line XI-XI' in FIG. 9, and light propagates in the direction perpendicular to the paper (y-axis direction).
  • the Si optical modulator of Example 2 is a Si optical modulator having an interleaved pn junction, and the configuration method of the optical waveguide, impurity doping classification, electrode configuration, operating principle, etc. of the Si optical modulator are shown in FIG. This is similar to the conventional Si optical modulator shown in FIG. The difference from the conventional structure is that medium concentration p-type semiconductor layers 215a, 215b and medium concentration n-type semiconductor layers 216a, 216b are added.
  • the mode of ion implantation for forming the medium concentration semiconductor layer is the same as that of the Si optical modulator of Example 1.
  • the doping region distributed in the region near the surface of the Si optical waveguide core 201 along the light propagation direction (y-axis direction) is a medium concentration p-type semiconductor layer 215b. and the medium concentration n-type semiconductor layer 216b are alternately replaced.
  • the boundary between the low concentration p-type semiconductor layer 212 and the low concentration n-type semiconductor layer 213 is not located at the center of the optical waveguide core 201, but is located closer to the slab region 202a, and in other cases the boundary is located closer to the slab region 202b.
  • the locations are alternately arranged. In this way, the interleaved pn junction is realized by a vertical pn junction.
  • the medium concentration n-type semiconductor layers 216a and 216b extend not only to the slab region 202b but also to a region near the substrate surface of the optical waveguide core 201, and the medium concentration p-type semiconductor layer
  • the layers 215a, 215b alternate with the waveguide extending not only to the slab region 202a but also to a region close to the substrate surface of the optical waveguide core 201.
  • the mask used when forming the medium concentration n-type semiconductor layer is expanded to the part that overlaps with the optical waveguide core 201, and the mask is used to form a part where ions are implanted in a shallow region near the substrate surface and when forming the medium concentration p-type semiconductor layer.
  • the optical waveguide core 201 includes a medium concentration p-type semiconductor layer 215b and a medium concentration p-type semiconductor layer 215b in addition to the low concentration p-type semiconductor layer 212 and the low concentration n-type semiconductor layer 213. It is composed of four layers of n-type semiconductor layer 216b.
  • a pn junction structure is formed in the optical waveguide core 201 of the Si optical modulator by a medium concentration p-type semiconductor layer 215b, a low concentration p-type semiconductor layer 212, a medium concentration n-type semiconductor layer 216b, and a low concentration n-type semiconductor layer 213. has been done.
  • a modulated electrical signal and a bias voltage are applied from both left and right ends of the Si layer 2 via electrodes (not shown).
  • the carrier density in the optical waveguide core 201 is changed by the modulated electrical signal and the reverse bias voltage.
  • the phase of light propagating through the core of the optical waveguide can be modulated by changing the refractive index of the core 201 of the optical waveguide by the carrier plasma effect by changing the carrier density.
  • the width of the Si optical waveguide core 201 is 400 to 600 (nm), the height of the core portion (z-axis direction) is 150 to 300 (nm), and the thickness of the slab region is 50 to 200 (nm).
  • the light propagating within the Si optical waveguide core 201 has a flat shape in the width (x-axis direction). Therefore, due to the horizontal pn junction surface formed in the Si optical waveguide core 201, the overlapping portion of the optical propagation mode with the pn junction portion where the carrier density changes due to the application of an electric field becomes large. As the carrier density changes, the refractive index of the Si optical waveguide core 201 changes, thereby modulating the phase of light propagating through the core of the optical waveguide. Therefore, in the Si optical modulator of Example 2 as well, light can be modulated even at a low voltage, and an optical modulator with high modulation efficiency can be realized.
  • the boundary between the medium concentration p-type semiconductor layer 215b and the medium concentration n-type semiconductor layer 216b formed in the shallow region of the optical waveguide core 201 also serves as a pn junction.
  • the overlapping portion between the light propagating through the optical waveguide core 201 and the pn junction portion is made larger than that of the Si optical modulator modulator optical waveguide of the optical waveguide embodiment 1 with the conventional vertical pn junction waveguide structure. I can do it. Therefore, the effect of changing the refractive index of the core 201 of the optical waveguide due to the change in carrier density can be more greatly enjoyed.
  • the present invention can be generally used in optical communication systems. In particular, it can be applied to an optical modulator in an optical transmitter of an optical communication system.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

イオン注入パターンを、より広い選択肢で制御できる構造とすることにより、光変調効率を高める。光導波路コアにpn接合を有する半導体層を含み、高周波(RF)信号とともにバイアス電圧を前記半導体層に印加して光信号を変調する光変調器において、前記pn接合を形成する低濃度p型半導体層と低濃度n型半導体層と、前記低濃度p型半導体層に追加された中濃度p型半導体層または前記低濃度n型半導体層に追加された中濃度n型半導体層とを備え、前記光導波路コアは、前記低濃度p型半導体層、前記中濃度p型半導体層および前記低濃度n型半導体層の3つの層、または前記低濃度p型半導体層、前記中濃度n型半導体層および前記低濃度n型半導体層の3つの層によって構成される。

Description

光変調器
 本発明は、光変調器に関し、より詳細には、光通信システム、光情報処理システム等において用いられ、高速で光変調動作をさせ、周波数特性および波形品質に優れ、かつ長距離への光通信が可能な光変調器に関する。
 高精細な動画配信サービスや移動体通信の普及などにより、ネットワークを流れるトラフィック量は膨大なものとなっており、さらに年々増加を続けている。このようなトラフィック需要に応え得る高速・大容量光ネットワークの構築に向け、各ノードにおいて使用される高速動作が可能な基本デバイスの開発が精力的に行われている。光信号を広帯域なベースバンド信号で直接変調する光変調器は、その重要なデバイスの1つである。
 マッハツェンダ(MZ)型光変調器は、光導波路に入射した光を2つの導波路に1:1の強度で分岐し、分岐した光を一定の長さ伝搬させた後に、再度合波させる構造を持つ。MZ型光変調器では、2つに分岐された光導波路にそれぞれ設けられた位相変調部によって、分岐した2つの光の位相を変化させる。2つの位相変化を受けた光が合波されるときの光の干渉条件を変えることにより、光の強度や位相を変調することができる。
 MZ型光変調器の光導波路を構成する材料としては、LiNbO等の誘電体、InP、GaAs、Si等の半導体が用いられる。これらの材料で構成された光導波路の近傍に配置された電極に変調電気信号を入力して、光導波路に変調電圧を印加することにより、光導波路を伝搬する光の位相を変化させる。
 MZ型光変調器において光の位相を変化させるメカニズムとしては、材料がLiNbOの場合にはポッケルス効果を利用する。材料がInP、GaAsの場合には、ポッケルス効果、量子閉じ込めシュタルク効果(Quantum Confined Stark Effect:QCSE)を利用し、材料がSiの場合には、キャリアプラズマ効果を主として用いる。
 高速で低消費電力な光通信を行うためには、変調速度が速く、駆動電圧の低い光変調器が必要となる。具体的には、10Gbps以上の高速で、かつ、数ボルトの振幅電圧で光変調を行うことが求められている。これを実現するためには、高速の電気信号の速度と、位相変調器の中を伝搬する光の速度とを整合させ、光と電気信号を伝搬させながら両者が相互作用を行うようにする進行波電極が必要となる。進行波電極を用いた光変調器としては、例えば特許文献1に開示されているように、電極の長さを数mmから数十mmに達する光変調器が実用化されている。
 進行波電極を用いた光変調器では、電気信号の振幅と導波路を伝搬する光の強度とをそれぞれ落とさずに伝搬させることができるよう、低損失で反射の少ない電極構造および光導波路構造が求められる。すなわち、電気信号については、広い周波数帯域に渡って反射損失および伝搬損失が少ない電極構造が必要であり、光については、反射が少なく効率良く光を閉じ込めて、損失無く伝搬させることができる導波路構造が必要である。
 MZ型光変調器には、基板材料および作製プロセスの観点から有望なものとして、光導波路をSiによって構成したSi光変調器がある。Si光変調器は、Si基板の表面を熱酸化した酸化膜(BOX:Buried Oxide)層上に、Siの薄膜を張り付けたSOI(Silicon on Insulator)基板から作製される。光導波路は、SOI層を光が導波できるようにSi薄膜を細線に加工した後、p型半導体およびn型半導体を構成できるように不純物を注入する。最後に、光のクラッド層となるSiOを堆積し、電極の形成等を行って、作製される。
 このとき、光の導波路は光損失が小さくなるように設計・加工する必要がある。具体的には、p型およびn型の不純物ドーピングおよび電極の作製は、光の損失を小さく抑えるとともに、高速電気信号の反射損失および伝搬損失も小さく抑えるように設計・加工する必要がある。
 図1に、従来技術のSi光変調器の基本となる光導波路の断面構造を示す。図1は、SOI基板上に構成された光導波路200を、光の進行方向(y軸)に垂直に切った断面(x-z面)を示している。光は紙面垂直方向(y軸方向)に伝搬する。Si光変調器の光導波路200は、上下のSiOクラッド層1、3に挟まれたSi層2で構成される。図1の中央に形成された、光を閉じ込めるためのSi細線は、厚さに差があるリブ導波路と呼ばれる構造である。すなわち、リブ導波路は、図1に示したように、中央部の厚いSi層201と、その両側にある薄いスラブ領域202a、202bとから構成されている。Si層2の中央の厚いSi層201を光導波路コアとし、周囲のSiOクラッド層1、3との屈折率差を利用して、紙面垂直方向に伝搬する光を閉じ込める光導波路200を構成する。
 厚いSi層201の光導波路コア(以下、Si光導波路コア201と称す)の両側にある薄いスラブ領域202a、202bには、それぞれ、高濃度p型半導体層211、高濃度n型半導体層214が設けられる。さらに、Si光導波路コア201およびその近傍には、低濃度p型半導体層212および低濃度n型半導体層213によるpn接合構造が形成されている。後述するように、図1のSi層2の左右両端から、図示していない電極を経由して、変調電気信号およびバイアス電圧が印加される。コアの中央部のpn接合に代えて、低濃度p型半導体層212および低濃度n型半導体層213によるpn接合構造の間にドーピングされていないi型(真性)半導体を挟んだ、pin構造としても良い。
 Si光変調器の光導波路200における位相変調動作は、次のように説明できる。図1には図示されていないが、Si層2の両端の高濃度p型半導体層211および高濃度n型半導体層214に、それぞれ接する2つの金属電極が設けられる。2つの金属電極を経由して、コアの中央のpn接合部に、高周波(RF:Radio Frequency)の変調電気信号とともに、逆バイアス電圧が印加される。すなわち高濃度n型半導体層214側をプラス電位、高濃度p型半導体層211側をマイナス電位とした電圧が、光導波路200の右端から左端へ(x軸方向)印加される。逆バイアス電圧および変調電気信号によって、厚いSi光導波路コア201内部のキャリア密度が変化させられる。キャリア密度の変化によって、Si光導波路コア201の屈折率をキャリアプラズマ効果によって変えることにより、光導波路を伝搬する光の位相を変調することができる。
 Si光変調器における光導波路の寸法は、コア/クラッドとなる各材料の屈折率に依存する。図1に示したような、厚いSi光導波路コア201およびその両側のスラブ領域202a、202bを備えたリブ型シリコン導波路構造の場合の一例を列挙する。Si光導波路コア201の幅(x軸方向)は400~600(nm)、コア部の高さ(z軸方向)は150~300(nm)、スラブ領域の厚さは50~200(nm)、光導波路の長さ(y軸方向)は数(mm)程度になる。
 Si光変調器の優れた特徴の1つは、光が伝搬するコアとなるSiとクラッド層のSiO2との屈折率差が大きいため、コンパクトな光変調器を構成できることである。屈折率差が大きいため、光を小さく閉じ込めることが可能で、光導波路の曲げ半径を10μm程度と非常に小さくすることができる。このため、次に説明をするSi光変調器における光の合分波回路部分を小さく構成することができる。
  (従来のデュアル電極型マッハツェンダ型光変調器)
 図2に、従来のデュアル電極型マッハツェンダ型光変調器を構成するSi光変調器を示す。Si(SOI)基板表面(x-y面)を上面から透視した平面構造である。左側の光変調器端部からの光入力が、2つの光導波路7a、7bに分岐され、変調された後、再び結合されて右側の光変調器端部から変調光として光出力される。入力光は、分岐した2つの光導波路7a、7bをy軸方向に伝搬する間に、RF電極15a、15bにそれぞれ印加される変調電気信号(RF信号)によって位相変調される。光変調器は、光導波路7aに対して、RF電極15aを挟む2つのグラウンド電極16a、17からなるコプレーナ線路(CPW:Coplanar Waveguide)を有している。同様に、光導波路7bに対して、RF電極15bを挟む2つのグラウンド電極16b、17からなるCPWを有している。
 1つのマッハツェンダ(MZ)型光変調器において2つのRF信号の入力部を持つ構成から、デュアル電極構造と呼ばれている。図2に示したMZ型光変調器は、グラウンド電極17の中央を通るy軸に平行な中心線に対して、対称な構造となっている。
 図3は、図2におけるIII-III’の断面構造を示し、変調を受ける一方の光導波路7aと対応するCPWを含む位相変調部のみを示している。1つの位相変調部は、図1に示した光導波路200と同様の断面構造を持つ光導波路である。1対の差動の変調電気信号(RF信号)の一方を入力する高周波線路であるRF電極15aと、RF電極15aを挟むように設けられた2つのグラウンド電極16a、17とが含まれる。RF電極15aとグラウンド電極16aの間には、1つの光導波路コア7aが設けられており、光導波路7a内に、低濃度p型半導体層212および低濃度n型半導体層213によるpn接合構造が形成されている。RF電極15aは、ビア19bを介して高濃度n型半導体層214に接している。また、グラウンド電極16aは、ビア19aを介して、高濃度p型半導体層211に接している。
 グラウンド電極17は、いずれの半導体層にも接していないが、グラウンド電極16aとともに、RF電極15aに対してGSG(Ground Signal Ground)構造の高周波伝送線路(CPW)を形成する。この伝送路構造によって、RF電極の伝送線路としての特性インピーダンスの調整を行い、伝送特性を向上させることができる。また、RF電極15aによる信号線路が、2つのグラウンド電極16a、17に囲われているため、信号の漏洩が少なく、クロストークや伝搬損失の少ない光変調器を形成することが可能となる。
 なお、図3は、差動構成の変調電気信号(RF信号)の内の一方を入力する高周波線路であるRF電極15aを含む位相変調部を示しているが、もう一方のRF電極15bを含む位相変調部も、複数の半導体領域のx軸方向の配置順序が、z軸を対称軸として逆になっていること以外は、図3と同様の構成を有している。
 Si光変調器のRF電極15a、15bにおける高周波伝送線路としての特性インピーダンスは、Si層の光導波路コア7a、7bのpn接合部の静電容量が大きく影響する。しかし、RF電極とグラウンド電極の間の静電容量も影響を与えるため、デュアル電極構造のSi変調器では、RF電極15aとグラウンド電極17との間の静電容量(キャパシタンス)を調整することによって、特性インピーダンスの調整が比較的容易である。特性インピーダンスを、シングルエンド駆動の構成で50Ω程度に、差動駆動の構成で100Ω程度にすることが可能である。
 ここでは、RF電極15aが高濃度n型半導体層214に、グラウンド電極16aが高濃度p型半導体層211にそれぞれ接する構成例で説明をした。これに対して、pn接合の向きを逆にして、RF電極15aが高濃度p型半導体層に、グラウンド電極16aが高濃度n型半導体層に、それぞれ接していても良い。この場合、RF信号に重畳してRF電極15aに与えるバイアス電圧として、グラウンド電極16aに対してマイナス電圧を印加することにより、pn接合部を逆バイアスにすることができる。
  (従来の縦型pn接合光変調器)
 図4に、従来の縦型pn接合を有するSi光変調器の光導波路の断面構造を示す。図4は、SOI基板上に構成された光導波路200を、光の進行方向(y軸)に垂直に切った断面(x-z面)を示している。光は紙面垂直方向(y軸方向)に伝搬する。Si光変調器の光導波路の構成方法、不純物ドーピングの区分、電極の構成、動作原理などは、図1に示した従来のSi光変調器と同様である。従来の構造との違いは、低濃度p型半導体層212および低濃度n型半導体層213によるpn接合構造が、垂直方向に(図の上下)に配置されている点である。すなわち、pn接合面は、水平方向(図の左右)に配置されている。このような構造は、縦型pn接合(Vertical pn junction)と呼ばれている(例えば、非特許文献1参照)。
 Si光導波路コア201の幅(x軸方向)は400~600(nm)、コア部の高さ(z軸方向)は150~300(nm)、スラブ領域の厚さは50~200(nm)であり、Si光導波路コア201内を伝搬する光は、幅(x軸方向)に扁平な形状となる。このため、水平方向にpn接合面を有する縦型pn接合の光導波路は、電界の印加によってキャリア密度が変化するpn接合部分と光の伝搬モードの重なり部分が大きくなる。すなわち、縦型pn接合の光導波路は、図1に示したように、pn接合構造が水平方向(図の左右)に配置され、垂直方向にpn接合面を有する光導波路よりも、pn接合部分と光の伝搬モードの重なり部分が大きくなる。キャリア密度の変化によって、Si光導波路コア201の屈折率が変化することにより、光導波路のコアを伝搬する光の位相が変調される。従って、縦型pn接合は、低い電圧でも光を変調することができ、変調効率の良い光変調器を実現することができる。
 Si光変調器への不純物ドーピングは、通称インプラと呼ばれる、イオン注入(ion implantation)という方法で行われる。イオン注入とは、速度を持ったイオンを対象の物質に打ち込むので、注入される物質の特性を変化させることができる。Siに、B(ボロン)を打ち込むとp型半導体に、P(リン)、As(ヒ素)を打ち込むとn型半導体の特性が得られる。イオンを注入する際の濃度や深さは、単位面積当たりのイオンの個数を示すドーズ量、イオンを加速する際のエネルギーである加速電圧、イオンビームの向きに対するウエハの傾き、などにより制御される。
 縦型pn接合の光導波路を作製する際には、SOI基板上にエッチングで厚いSi層201と、薄いスラブ領域202を形成してから、低濃度n型半導体層213を形成するために、P(リン)や、As(ヒ素)などの不純物をイオン注入により打ち込む。次に、低濃度p型半導体層212を形成するために、B(ボロン)などの不純物をSi層表面近くの深さに打ち込むという手段が一般的に用いられる。Si光導波路コア201では、n型半導体層を生成する不純物と、p型半導体層を形成する不純物が重複するようにイオン注入が行われるが、光導波路部分の上部が低濃度p型半導体層になるように、イオンのドーズ量、加速電圧が調整される。
 なお、図4に示した構造のp型半導体層とn型半導体層を逆転させて、Si光導波路コア201の上部を低濃度n型半導体層になるようにし、下部を低濃度p型半導体としてもよい。しかし、Si層へのイオン注入は一般的に、p型半導体層にするための不純物の注入の方が難しく、基板表面から深くまでのイオン注入は、Si結晶にダメージを与えることもある。このため、上部をp型半導体層にして、下部をn型半導体層にする方が一般的である。
  (従来のインターリーブドpn接合光変調器)
 図5-7を参照して、従来のインターリーブドpn接合を有するSi光変調器の光導波路を説明する。図5は、SOI基板上に構成された光導波路200の一部を、基板表面(x-y面)の垂直方向から透視した上面図である。図6は、SOI基板上に構成された光導波路200を光の進行方向(y軸)に垂直に切った面(x-z面)であり、図5のVI-VI’の断面図である。図7は、図5のVII-VII’の断面図であり、光は紙面垂直方向(y軸方向)に伝搬する。Si光変調器の光導波路の構成方法、不純物ドーピングの区分、電極の構成、動作原理などは、図1に示した従来のSi光変調器と同様である。従来の構造との違いは、光の伝搬方向(y軸方向)に沿って、Si光導波路コア201の大部分を占めるドーピング領域が、低濃度p型半導体層212と低濃度n型半導体層213とが交互に入れ替わって配置されている点である。このような構造は、インターリーブドpn接合(Interleaved pn junction)と呼ばれている(例えば、非特許文献2参照)。
 低濃度p型半導体層212と低濃度n型半導体層213とが入れ替わる間隔を短くすると、Si光導波路コア201を伝搬する光と、pn接合部分との重なり部分が大きくなる。すなわち、図1に示したように、Si光導波路コア201の中央付近に、低濃度p型半導体層212および低濃度n型半導体層213のpn接合面が配置されている光導波路よりも、pn接合部分と光の伝搬モードの重なり部分が大きくなる。キャリア密度の変化によって、Si光導波路コア201の屈折率が変化する効果をより大きく受けることができる。従って、インターリーブドpn接合は、低い電圧でも光を変調することができ、変調効率の良い光変調器を実現することができる。
 なお、図5に示した低濃度p型半導体層212と低濃度n型半導体層213とは、それぞれ厚いSi層201の側壁まで伸びているが、Si光導波路コア201内部で低濃度p型半導体層212と低濃度n型半導体層213とが接していてもよい。また、低濃度p型半導体層212と低濃度n型半導体層213とが、それぞれ厚いSi層201を超えて伸び、スラブ領域202a,202bにおいて、低濃度p型半導体層212と低濃度n型半導体層213とが接していてもよい。
 以上述べたように、Si光導波路コア201におけるイオン注入パターンは、低濃度p型半導体層および低濃度n型半導体層のpn接合構造が水平方向(図の左右)に配置され、垂直方向にpn接合面を有する構造のほか、縦型pn接合、インターリーブドpn接合がある。これらの構造は、光の位相変化をより低い電圧で行うことができ、高効率な光変調を実現することができる。光変調を高効率に行うことにより、光通信システムの低消費電力化、高速化、高機能化などが実現できる。
 しかしながら、従来のイオン注入パターンでは、Si光変調器の消費電力、速度、機能ともに限界があった。
特許第6499804号公報
Michael R. Watts, William A. Zortman, Student Member, IEEE, Douglas C. Trotter, Ralph W. Young, and Anthony L. Lentine, 「Low-voltage, compact, depletion-mode, silicon Mach-Zehnder modulator」 IEEE JSTQE, vol.16, no.1, pp.159-164, 2010. Z. Y. Li, D.-X. Xu, R. Mckinnon, S. Janz, J. H. Schmid, J. Lapointe, P. Cheben, and J.Z. Yu, 「Low Driving-Voltage Optical Modulator Based on Carrier Depletion in Silicon with Periodically Interleaved P-N Junctions」2008 5th IEEE International Conference on Group IV Photonics, 17-19 Sept. 2008, WA5, pp.13-15, 2008.
 本発明の目的は、イオン注入パターンを、より広い選択肢で制御できる構造とすることにより、光変調効率を高めることができる光変調器を提供することにある。
 本発明は、このような目的を達成するために、一実施態様は、光導波路コアにpn接合を有する半導体層を含み、高周波(RF)信号とともにバイアス電圧を前記半導体層に印加して光信号を変調する光変調器において、前記pn接合を形成する低濃度p型半導体層と低濃度n型半導体層と、前記低濃度p型半導体層に追加された中濃度p型半導体層または前記低濃度n型半導体層に追加された中濃度n型半導体層とを備え、前記光導波路コアは、前記低濃度p型半導体層、前記中濃度p型半導体層および前記低濃度n型半導体層の3つの層、または前記低濃度p型半導体層、前記中濃度n型半導体層および前記低濃度n型半導体層の3つの層によって構成されることを特徴とする。
図1は、従来技術のSi光変調器の基本となる光導波路の断面構造を示す図、 図2は、従来のデュアル電極型マッハツェンダ型光変調器を構成するSi光変調器を示す平面図、 図3は、従来のデュアル電極型マッハツェンダ型光変調器を構成するSi光変調器を示す断面図、 図4は、従来の縦型pn接合を有するSi光変調器の光導波路の断面構造を示す図、 図5は、従来のインターリーブドpn接合を有するSi光変調器の光導波路を示す平面図、 図6は、従来のインターリーブドpn接合を有するSi光変調器の光導波路を示す断面図、 図7は、従来のインターリーブドpn接合を有するSi光変調器の光導波路を示す断面図、 図8は、本発明の実施例1にかかるSi光変調器の光導波路の断面構造を示す図、 図9は、本発明の実施例2にかかるSi光変調器の光導波路を示す平面図、 図10は、実施例2のSi光変調器の光導波路の断面構造を示す図、 図11は、実施例2のSi光変調器の光導波路の断面構造を示す図である。
 以下、図面を参照しながら本発明の実施形態について詳細に説明する。
 図8に、本発明の実施例1にかかるSi光変調器の光導波路の断面構造を示す。図8は、SOI基板上に構成された光導波路200を、光の進行方向(y軸)に垂直に切った断面(x-z面)を示している。光は紙面垂直方向(y軸方向)に伝搬する。実施例1のSi光変調器は、縦型pn接合を有するSi光変調器であり、Si光変調器の光導波路の構成方法、不純物ドーピングの区分、電極の構成、動作原理などは、従来のSi光変調器と同様である。光導波路コア201は、Si基板上にSiOクラッド層に挟まれたSi層からなるリブ導波路であって、中央の厚いSi層である。従来の構造との違いは、中濃度p型半導体層215a,215b、および中濃度n型半導体層216が追加されている点である。
 中濃度p型半導体層215aは、Si光導波路コア201より薄いスラブ領域202aに、低濃度p型半導体層211を形成するためのイオン注入パターンと重複してイオン注入される。同様に、中濃度n型半導体層216は、Si光導波路コア201より薄いスラブ領域202bに、低濃度n型半導体層213を形成するためのイオン注入パターンと重複してイオン注入される。中濃度p型半導体層215aおよび中濃度n型半導体層216は、スラブ領域202a,202bの電気抵抗率を下げることにも使用される。スラブ領域202の電気抵抗率を下げることは、光変調器に印加する高周波電気信号の損失を抑えることになり、光変調器の高速動作のために有効となる。
 中濃度p型半導体層215aおよび中濃度n型半導体層216は、薄いスラブ領域202a,202bにイオンを注入することが目的であり、イオン注入の際の加速電圧は、低濃度p型半導体層212および低濃度n型半導体層213にイオンを注入する場合と比較して、小さく設定している。低濃度p型半導体層212および低濃度n型半導体層213にイオンを注入するときの条件は、基板表面に近い浅い領域と、基板表面から奥に入る深い領域の、複数回のイオン注入を行う場合には、浅い領域へのイオン注入の際の加速電圧と同程度の加速電圧で行われる。
 ここでは、高濃度・中濃度・低濃度の3種類に分類しているが、中濃度の半導体層へのイオン注入は、低濃度のイオン注入のパターンに重ねて行われる。このため、イオン注入の条件としては、単位面積当たりのイオンの個数を示すドーズ量が、低濃度の半導体層へのイオン注入条件より小さくてもよい。これは、高濃度p型半導体層211と高濃度n型半導体層214との間の間隔が数ミクロン程度しかなく、イオン注入マスクの作製精度に対して小さいため、高濃度、中濃度のイオン注入は、より低い濃度のパターンとの重ね打ちにすることが一般的だからである。
 実施例1のSi光変調器では、スラブ領域202aに加え、Si光導波路コア201の基板表面に近い領域にも中濃度p型半導体層215bが広がっている。中濃度p型半導体層を形成するときのマスクを、Si光導波路コア201と重なる部分まで広げておき、基板表面に近い浅い領域にイオン注入を行う。このようにして、Si光導波路コア201は、低濃度p型半導体層212および低濃度n型半導体層213に加え、中濃度p型半導体層215bの、3つの層によって構成される。
 Si光導波路コア201には、低濃度p型半導体層212および低濃度n型半導体層213によるpn接合構造が水平方向(図の左右)に配置され、中濃度p型半導体層215および低濃度n型半導体層213によるpn接合構造が垂直方向に(図の上下)に配置される。Si層2の両端の高濃度p型半導体層211および高濃度n型半導体層214に接する電極を経由して、変調電気信号およびバイアス電圧が印加される。変調電気信号および逆バイアス電圧によって、Si光導波路コア201のキャリア密度が変化させられる。キャリア密度の変化によって、Si光導波路コア201の屈折率をキャリアプラズマ効果によって変えることにより、光導波路のコアを伝搬する光の位相を変調することができる。
 Si光導波路コア201の幅(x軸方向)は400~600(nm)、コア部の高さ(z軸方向)は150~300(nm)、スラブ領域の厚さは50~200(nm)であり、Si光導波路コア201内を伝搬する光は、幅(x軸方向)に扁平な形状となる。このため、Si光導波路コア201に形成された水平方向のpn接合面によって、電界の印加によってキャリア密度が変化するpn接合部分と光の伝搬モードの重なり部分が大きくなる。キャリア密度の変化によって、Si光導波路コア201の屈折率が変化することにより、光導波路のコアを伝搬する光の位相が変調される。従って、実施例1のSi光変調器は、低い電圧でも光を変調することができ、変調効率の良い光変調器を実現することができる。
 また、伝搬する光の分布密度が高い、Si光導波路コア201の中心部にpn接合部分を配置するため、すなわち水平方向にpn接合面を大きくとるため、低濃度p型半導体層212と低濃度n型半導体層213との境界は、スラブ領域202aの方向へ寄せている。このような構造により、より変調効率の良い光変調器を実現することができる。
 従来の縦型pn接合は、低濃度p型半導体層212と低濃度n型半導体層213の、2つの層によって構成している。このため、光導波路コア201とスラブ領域202との境界で、基板表面に近い浅い領域に、イオン注入された半導体層が繋がらず、電気的に断線したり、抵抗が高くなったりすることがあった。これを防ぐために、基板表面に近い浅い領域においてイオン注入された半導体層を繋げるために、pn接合面を、より基板表面から遠い深い領域に設定する必要があった。
 実施例1のSi光変調器では、光導波路コア201の浅い領域に形成された中濃度p型半導体層215bと、スラブ領域202に形成された中濃度p型半導体層215aの間に、低濃度p型半導体層212があるため、中濃度p型半導体層215a215bが断線する懸念はなく、自由な位置にpn接合面を設定することができる。
 図8においては、中濃度p型半導体層215bが、光導波路コア201の基板表面に近い浅い領域にイオン注入されているが、中濃度n型半導体層216を、光導波路コア201の基板表面に近い浅い領域にイオン注入した構造としてもよい。このとき、伝搬する光の分布密度が高い、光導波路コア201の中心部にpn接合部分を配置する。このため、低濃度p型半導体層212と低濃度n型半導体層213との境界は、光導波路コア201の中央に位置させず、スラブ領域202bの方向へ寄せておくと良い。この構造により、より変調効率の良い光変調器を実現することができる。
 図9は、本発明の実施例2にかかるSi光変調器の光導波路を示す。図9は、SOI基板上に構成された光導波路200の一部を、基板表面(x-y面)の垂直方向から透視した上面図である。図10は、SOI基板上に構成された光導波路200を光の進行方向(y軸)に垂直に切った面(x-z面)であり、図9のX-X’の断面図である。図11は、図9のXI-XI’の断面図であり、光は紙面垂直方向(y軸方向)に伝搬する。
 実施例2のSi光変調器は、インターリーブドpn接合を有するSi光変調器であり、Si光変調器の光導波路の構成方法、不純物ドーピングの区分、電極の構成、動作原理などは、図1および図5に示した従来のSi光変調器と同様である。従来の構造との違いは、中濃度p型半導体層215a,215b、および中濃度n型半導体層216a,216bが追加されている点である。中濃度半導体層を形成するイオン注入の形態は、実施例1のSi光変調器と同様である。
 実施例1のSi光変調器との違いは、光の伝搬方向(y軸方向)に沿って、Si光導波路コア201の表面に近い領域に分布するドーピング領域が、中濃度p型半導体層215bと中濃度n型半導体層216bとが交互に入れ替わる点である。また、低濃度p型半導体層212と低濃度n型半導体層213との境界も、光導波路コア201の中央に位置させず、スラブ領域202aの側に寄っている場合と、スラブ領域202bの側へ寄っている場合とが、交互に入れ替わって配置されている。このように、インターリーブドpn接合を、縦型pn接合で実現している。
 実施例2のSi光変調器では、中濃度n型半導体層216a,216bがスラブ領域202bに加え、光導波路コア201の基板表面に近い領域にも広がっている導波路と、中濃度p型半導体層215a,215bがスラブ領域202aに加え、光導波路コア201の基板表面に近い領域にも広がっている導波路とが、交互に入れ替わっている。中濃度n型半導体層を形成するときのマスクを、光導波路コア201と重なる部分まで広げておき、基板表面に近い浅い領域にイオン注入を行う部分と、中濃度p型半導体層を形成するときのマスクを、光導波路コア201と重なる部分まで広げておき、基板表面に近い浅い領域にイオン注入を行う部分とに分けることにより形成できる。このように、実施例2のSi光変調器は、光導波路コア201が、低濃度p型半導体層212と、低濃度n型半導体層213に加え、中濃度p型半導体層215bと、中濃度n型半導体層216bの、4つの層によって構成される。
 Si光変調器の光導波路コア201には、中濃度p型半導体層215bおよび低濃度p型半導体層212と、中濃度n型半導体層216bおよび低濃度n型半導体層213によるpn接合構造が形成されている。Si層2の左右両端から、図示していない電極を経由して、変調電気信号およびバイアス電圧が印加される。変調電気信号および逆バイアス電圧によって、光導波路コア201のキャリア密度が変化させられる。キャリア密度の変化によって、光導波路のコア201の屈折率をキャリアプラズマ効果によって変えることにより、光導波路のコアを伝搬する光の位相を変調することができる。
 Si光導波路コア201の幅(x軸方向)は400~600(nm)、コア部の高さ(z軸方向)は150~300(nm)、スラブ領域の厚さは50~200(nm)であり、Si光導波路コア201内を伝搬する光は、幅(x軸方向)に扁平な形状となる。このため、Si光導波路コア201に形成された水平方向にpn接合面によって、電界の印加によってキャリア密度が変化するpn接合部分と光の伝搬モードの重なり部分が大きくなる。キャリア密度の変化によって、Si光導波路コア201の屈折率が変化することにより、光導波路のコアを伝搬する光の位相が変調される。従って、実施例2のSi光変調器においても、低い電圧でも光を変調することができ、変調効率の良い光変調器を実現することができる。
 さらに、実施例2のSi光変調器では、光導波路コア201の浅い領域に形成された中濃度p型半導体層215bと中濃度n型半導体層216bとの境界部分もpn接合部となる。このため、光導波路コア201を伝搬する光とpn接合部分との重なり部分を、従来の縦型pn接合導波路構造の光導波路実施例1のSi光変の調器光導波路よりも大きくすることができる。従って、キャリア密度の変化によって、光導波路のコア201の屈折率が変化する効果をより大きく受けることができる。実施例2のSi光変調器によれば、
光の伝搬方向(y軸方向)に沿って、このように、従来の縦型pn接合、インターリーブドpn接合の光変調器と比べて、より低い電圧でも光を変調することができ、変調効率の良い光変調器を実現することができる。
 本発明は、一般的に光通信システムに利用することができる。特に、光通信システムの光送信器における光変調器に適用することができる。

Claims (3)

  1.  光導波路コアにpn接合を有する半導体層を含み、高周波(RF)信号とともにバイアス電圧を前記半導体層に印加して光信号を変調する光変調器において、
     前記pn接合を形成する低濃度p型半導体層と低濃度n型半導体層と、
     前記低濃度p型半導体層に追加された中濃度p型半導体層または前記低濃度n型半導体層に追加された中濃度n型半導体層とを備え、
     前記光導波路コアは、前記低濃度p型半導体層、前記中濃度p型半導体層および前記低濃度n型半導体層の3つの層、または前記低濃度p型半導体層、前記中濃度n型半導体層および前記低濃度n型半導体層の3つの層によって構成されることを特徴とする光変調器。
  2.  光導波路コアにpn接合を有する半導体層を含み、高周波(RF)信号とともにバイアス電圧を前記半導体層に印加して光信号を変調する光変調器において、
     前記pn接合を形成する低濃度p型半導体層と低濃度n型半導体層と、
     前記低濃度p型半導体層に追加された中濃度p型半導体層または前記低濃度n型半導体層に追加された中濃度n型半導体層とを備え、
     前記光導波路コアは、前記低濃度p型半導体層、前記中濃度p型半導体層および前記低濃度n型半導体層の3つの層と、前記低濃度p型半導体層、前記中濃度n型半導体層および前記低濃度n型半導体層の3つの層とが、光の伝搬方向に沿って交互に入れ替わって配置されていることを特徴とする光変調器。
  3.  前記光導波路コアは、Si基板上にSiOクラッド層に挟まれたSi層からなるリブ導波路であって、中央の厚いSi層であることを特徴とする請求項1または2に記載の光変調器。
PCT/JP2022/023525 2022-06-10 2022-06-10 光変調器 WO2023238403A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/023525 WO2023238403A1 (ja) 2022-06-10 2022-06-10 光変調器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/023525 WO2023238403A1 (ja) 2022-06-10 2022-06-10 光変調器

Publications (1)

Publication Number Publication Date
WO2023238403A1 true WO2023238403A1 (ja) 2023-12-14

Family

ID=89117888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/023525 WO2023238403A1 (ja) 2022-06-10 2022-06-10 光変調器

Country Status (1)

Country Link
WO (1) WO2023238403A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100080504A1 (en) * 2008-09-30 2010-04-01 Yoel Shetrit Method and Apparatus for High Speed Silicon Optical Modulation Using PN Diode
US20160018677A1 (en) * 2014-07-16 2016-01-21 International Business Machines Corporation Integrated ldmos devices for silicon photonics
US20190018262A1 (en) * 2016-01-12 2019-01-17 Phoelex Ltd. An optical apparatus
US20210373363A1 (en) * 2019-04-19 2021-12-02 Source Photonics, Inc. Multi-Layer P-N Junction Based Phase Shifter and Methods of Manufacturing and Using the Same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100080504A1 (en) * 2008-09-30 2010-04-01 Yoel Shetrit Method and Apparatus for High Speed Silicon Optical Modulation Using PN Diode
US20160018677A1 (en) * 2014-07-16 2016-01-21 International Business Machines Corporation Integrated ldmos devices for silicon photonics
US20190018262A1 (en) * 2016-01-12 2019-01-17 Phoelex Ltd. An optical apparatus
US20210373363A1 (en) * 2019-04-19 2021-12-02 Source Photonics, Inc. Multi-Layer P-N Junction Based Phase Shifter and Methods of Manufacturing and Using the Same

Similar Documents

Publication Publication Date Title
JP6499804B2 (ja) 光変調器
CN110865470B (zh) 电光波导元件以及光模块
JP6586223B2 (ja) 光変調器
CN107924075B (zh) 光调制器
US20190285916A1 (en) Electroabsorption optical modulator
US20220317483A1 (en) Electro-optic Modulators that include Caps for Optical Confinement
JP6781618B2 (ja) 光変調器
JP6926499B2 (ja) 光変調器
JP2017173365A (ja) 光変調器
JP6348880B2 (ja) 半導体マッハツェンダ光変調器
US11275261B2 (en) Optical modulator
WO2023238403A1 (ja) 光変調器
JP6431493B2 (ja) 光変調器
WO2023238399A1 (ja) 光変調器
JP7224368B2 (ja) マッハツェンダ型光変調器
JP2018205343A (ja) 光送信機
JP6353474B2 (ja) 光変調器
WO2023248489A1 (ja) 光変調器
US20240134215A1 (en) Silicon optical phase shifter with a series of p-n junctions
WO2023248490A1 (ja) 光変調器
EP1230717A1 (en) A silicon mesa structure integrated in a glass-on-silicon waveguide, and a method of manufacturing it
KR20040017535A (ko) 저 유전율 기판을 이용한 저전압 광 변조기
CN115728970A (zh) 光电集成结构及其形成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22945901

Country of ref document: EP

Kind code of ref document: A1