WO2017150958A1 - 무선 통신 시스템에서 단말에 의해 수행되는 v2x 전송 자원 선택 방법 및 상기 방법을 이용하는 단말 - Google Patents

무선 통신 시스템에서 단말에 의해 수행되는 v2x 전송 자원 선택 방법 및 상기 방법을 이용하는 단말 Download PDF

Info

Publication number
WO2017150958A1
WO2017150958A1 PCT/KR2017/002413 KR2017002413W WO2017150958A1 WO 2017150958 A1 WO2017150958 A1 WO 2017150958A1 KR 2017002413 W KR2017002413 W KR 2017002413W WO 2017150958 A1 WO2017150958 A1 WO 2017150958A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
terminal
sensing
transmission
resource pool
Prior art date
Application number
PCT/KR2017/002413
Other languages
English (en)
French (fr)
Inventor
이승민
서한별
채혁진
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US16/082,207 priority Critical patent/US11147044B2/en
Publication of WO2017150958A1 publication Critical patent/WO2017150958A1/ko
Priority to US17/465,591 priority patent/US11678301B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • H04W52/346TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading distributing total power among users or channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/383TPC being performed in particular situations power control in peer-to-peer links
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • H04W52/281TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission taking into account user or data type priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to wireless communication, and more particularly, to a V2X transmission resource selection method performed by a terminal in a wireless communication system and a terminal using the method.
  • ITU-R International Telecommunication Union Radio communication sector
  • IP Internet Protocol
  • 3rd Generation Partnership Project is a system standard that meets the requirements of IMT-Advanced.
  • Long Term Evolution is based on Orthogonal Frequency Division Multiple Access (OFDMA) / Single Carrier-Frequency Division Multiple Access (SC-FDMA) transmission.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • LTE-A LTE-Advanced
  • LTE-A is one of the potential candidates for IMT-Advanced.
  • D2D Device-to-Device
  • D2D is drawing attention as a communication technology for a public safety network.
  • Commercial communication networks are rapidly changing to LTE, but current public safety networks are mainly based on 2G technology in terms of cost and conflict with existing communication standards. This gap in technology and the need for improved services have led to efforts to improve public safety networks.
  • Public safety networks have higher service requirements (reliability and security) than commercial communication networks, and require direct signal transmission and reception, or D2D operation, between devices, especially when cellular coverage is not available or available. .
  • D2D operation may have various advantages in that it transmits and receives signals between adjacent devices.
  • the D2D user equipment has a high data rate and low delay and can perform data communication.
  • the D2D operation may distribute traffic that is driven to the base station, and may also serve to extend the coverage of the base station if the terminal performing the D2D operation serves as a relay.
  • V2D communication can be extended and applied to signal transmission and reception between vehicles, and communication related to vehicle (VEHICLE) is specifically called V2X (VEHICLE-TO-EVERYTHING) communication.
  • V2X VEHICLE-TO-EVERYTHING
  • V2X the term 'X' can be referred to as PEDESTRIAN (COMMUNICATION BETWEEN A VEHICLE AND A DEVICE CARRIED BY AN INDIVIDUAL (e.g. HANDHELD TERMINAL CARRIED BY A PEDESTRIAN, CYCLIST, DRIVER OR PASSENGER), where V2X can be referred to as V2P).
  • V2V VEHICLE
  • INFRASTRUCTURE / NETWORK COMMUNICATION BETWEEN A VEHICLE AND A ROADSIDE UNIT (RSU) / NETWORK (e.g.) OR A STATIONARY UE)) (V2I / N).
  • a device possessed by a pedestrian (or person) is named "P-UE", and a device installed in a vehicle VEHICLE (V2X communication) is named "V-UE”.
  • V-UE a device installed in a vehicle VEHICLE (V2X communication)
  • the term 'entity' may be interpreted as at least one of P-UE, V-UE, and RSU (/ NETWORK / INFRASTRUCTURE).
  • V2X communication it may be a question of how and what resource to select when the P-UE tries to transmit the V2X signal.
  • P-UE has a feature that is sensitive to battery consumption, unlike the terminal installed in the vehicle.
  • V2X communication it may be important to transmit a signal periodically and not to interfere with other terminals. In view of these points, it is necessary to determine a transmission resource selection method of the P-UE.
  • the technical problem to be solved by the present invention is to provide a V2X transmission resource selection method performed by a terminal in a wireless communication system and a terminal using the same.
  • a method of selecting a vehicle-to-everything (V2X) transmission resource performed by a terminal in a wireless communication system receives type information indicating a type of a resource pool, and based on the type information, at least one of resource selection based on random selection and partial sensing in the resource pool. It characterized in that to perform.
  • V2X vehicle-to-everything
  • the type information may indicate whether partial sensing is allowed when the terminal selects a resource from the resource pool and whether random selection is allowed when the terminal selects a resource from the resource pool.
  • the partial sensing is a sensing technique of sensing only some subframes among subframes in a sensing window and selecting a specific subframe in a select window as a V2X transmission subframe based on the sensing. Can be.
  • the sensing window may consist of 1000 consecutive subframes, and the selection window may consist of 100 consecutive subframes located after the sensing window.
  • the terminal When the type of the resource pool is a type that allows only resource selection based on partial sensing, the terminal semi-persistent selects a resource selected through resource selection based on partial sensing. It can be reserved.
  • the terminal may not reserve the resources selected through the random selection semi-statically.
  • the terminal may reserve the randomly selected resources semi-statically.
  • the terminal may be a terminal in communication with another terminal installed in the vehicle.
  • a user equipment includes a Radio Frequency (RF) unit for transmitting and receiving a radio signal and a processor operating in conjunction with the RF unit, wherein the processor includes a resource pool. And receiving type information indicating the type of the terminal and performing at least one of resource selection based on random selection and partial sensing in the resource pool based on the type information.
  • RF Radio Frequency
  • the network allows a pedestrian terminal to select only a random selection, a resource selection based on partial sensing, or a random selection and partial sensing when selecting a resource pool type, that is, a resource capable of transmitting a V2X signal. I can tell you if it works.
  • the pedestrian terminal performs an appropriate operation according to the type of resource pool, thereby reducing interference to other terminals.
  • different types of resource pools overlap, it defines how the terminal operates. For example, unlike the operation in a resource pool in which only random selection is allowed, the terminal randomly selecting a resource in the resource pool based on partial sensing reserves the randomly selected resource semi-statically for a certain period of time. It is possible to operate according to the characteristics of the resource pool that allows resource selection based on partial sensing.
  • FIG. 1 illustrates a wireless communication system to which the present invention can be applied.
  • FIG. 2 is a block diagram illustrating a radio protocol architecture for a user plane.
  • FIG. 3 is a block diagram illustrating a radio protocol structure for a control plane.
  • FIG 5 shows examples of arrangement of terminals and cell coverage for ProSe direct communication.
  • FIG. 6 shows a user plane protocol stack for ProSe direct communication.
  • FIG. 10 illustrates a V2X transmission resource selection method according to a partial sensing operation according to ⁇ proposed method # 2>.
  • FIG. 11 illustrates a method of determining a V2X transmission subframe according to ⁇ proposed method # 2>.
  • FIG. 12 illustrates a communication method between a walking terminal (P-UE), a vehicle terminal (V-UE), and a network according to ⁇ Proposed Method # 2>.
  • Example 13 illustrates a method of selecting a V2X transmission resource according to Example # 4-1.
  • FIG. 14 illustrates a V2X transmission resource selection method according to example # 4-1.
  • FIG. 16 illustrates a method of selecting a V2X resource pool when there are a plurality of types of resource pools.
  • FIG. 17 illustrates an operation of a terminal that selects a resource by a random selection method on a resource pool in which (partial) sensing is allowed.
  • FIG. 18 is a flowchart illustrating a method for transmitting a V2X message by a terminal having limited reception capability according to an embodiment of the present invention.
  • 19 is a flowchart illustrating a method for transmitting a V2X message by a terminal having limited reception capability according to another embodiment of the present invention.
  • 20 is a flowchart illustrating a method for transmitting a V2X message by a terminal having limited reception capability according to another embodiment of the present invention.
  • 21 is a flowchart illustrating a V2X transmission method when a WAN transmission operation and a V2X transmission operation overlap in a time domain according to an embodiment of the present invention.
  • FIG. 22 schematically illustrates an example in which V2X transmission operations and WAN (UL) transmission operations performed on different carriers overlap (some or all) in the time domain.
  • FIG. 23 is a flowchart of a V2X transmission method when a WAN transmission operation and a V2X transmission operation overlap in a time domain according to another embodiment of the present invention.
  • FIG. 24 schematically illustrates an example of a method of prioritizing V2X transmission operations (overlapping in the time domain with WAN (UL) transmission operations on the same (and / or different) carrier) over WAN (UL) transmissions.
  • 25 is a flowchart illustrating a V2X transmission method when a WAN transmission operation and a V2X transmission operation overlap in a time domain according to another embodiment of the present invention.
  • 26 is a block diagram illustrating a terminal in which an embodiment of the present invention is implemented.
  • E-UTRAN Evolved-UMTS Terrestrial Radio Access Network
  • LTE Long Term Evolution
  • the E-UTRAN includes a base station (BS) 20 that provides a control plane and a user plane to a user equipment (UE).
  • the terminal 10 may be fixed or mobile and may be called by other terms such as a mobile station (MS), a user terminal (UT), a subscriber station (SS), a mobile terminal (MT), a wireless device (Wireless Device), and the like.
  • the base station 20 refers to a fixed station communicating with the terminal 10, and may be referred to by other terms such as an evolved-NodeB (eNB), a base transceiver system (BTS), an access point, and the like.
  • eNB evolved-NodeB
  • BTS base transceiver system
  • access point and the like.
  • the base stations 20 may be connected to each other through an X2 interface.
  • the base station 20 is connected to a Serving Gateway (S-GW) through an MME (Mobility Management Entity) and an S1-U through an Evolved Packet Core (EPC) 30, more specifically, an S1-MME through an S1 interface.
  • S-GW Serving Gateway
  • MME Mobility Management Entity
  • EPC Evolved Packet Core
  • EPC 30 is composed of MME, S-GW and P-GW (Packet Data Network-Gateway).
  • the MME has access information of the terminal or information on the capability of the terminal, and this information is mainly used for mobility management of the terminal.
  • S-GW is a gateway having an E-UTRAN as an endpoint
  • P-GW is a gateway having a PDN as an endpoint.
  • Layers of the Radio Interface Protocol between the terminal and the network are based on the lower three layers of the Open System Interconnection (OSI) reference model, which is widely known in communication systems.
  • L2 second layer
  • L3 third layer
  • the RRC Radio Resource Control
  • the RRC layer located in the third layer plays a role of controlling radio resources between the terminal and the network. To this end, the RRC layer exchanges an RRC message between the terminal and the base station.
  • FIG. 2 is a block diagram illustrating a radio protocol architecture for a user plane.
  • 3 is a block diagram illustrating a radio protocol structure for a control plane.
  • the user plane is a protocol stack for user data transmission
  • the control plane is a protocol stack for control signal transmission.
  • a physical layer (PHY) layer provides an information transfer service to a higher layer using a physical channel.
  • the physical layer is connected to a medium access control (MAC) layer, which is an upper layer, through a transport channel. Data is moved between the MAC layer and the physical layer through the transport channel. Transport channels are classified according to how and with what characteristics data is transmitted over the air interface.
  • MAC medium access control
  • the physical channel may be modulated by an orthogonal frequency division multiplexing (OFDM) scheme and utilizes time and frequency as radio resources.
  • OFDM orthogonal frequency division multiplexing
  • the functions of the MAC layer include mapping between logical channels and transport channels and multiplexing / demultiplexing into transport blocks provided as physical channels on transport channels of MAC service data units (SDUs) belonging to the logical channels.
  • the MAC layer provides a service to a Radio Link Control (RLC) layer through a logical channel.
  • RLC Radio Link Control
  • RLC layer Functions of the RLC layer include concatenation, segmentation, and reassembly of RLC SDUs.
  • QoS Quality of Service
  • the RLC layer has a transparent mode (TM), an unacknowledged mode (UM), and an acknowledged mode (Acknowledged Mode).
  • TM transparent mode
  • UM unacknowledged mode
  • Acknowledged Mode acknowledged mode
  • AM Three modes of operation (AM).
  • AM RLC provides error correction through an automatic repeat request (ARQ).
  • the RRC (Radio Resource Control) layer is defined only in the control plane.
  • the RRC layer is responsible for the control of logical channels, transport channels, and physical channels in connection with configuration, re-configuration, and release of radio bearers.
  • RB means a logical path provided by the first layer (PHY layer) and the second layer (MAC layer, RLC layer, PDCP layer) for data transmission between the terminal and the network.
  • PDCP Packet Data Convergence Protocol
  • Functions of the Packet Data Convergence Protocol (PDCP) layer in the user plane include delivery of user data, header compression, and ciphering.
  • the functionality of the Packet Data Convergence Protocol (PDCP) layer in the control plane includes the transfer of control plane data and encryption / integrity protection.
  • the establishment of the RB means a process of defining characteristics of a radio protocol layer and a channel to provide a specific service, and setting each specific parameter and operation method.
  • RB can be further divided into SRB (Signaling RB) and DRB (Data RB).
  • SRB is used as a path for transmitting RRC messages in the control plane
  • DRB is used as a path for transmitting user data in the user plane.
  • the UE If an RRC connection is established between the RRC layer of the UE and the RRC layer of the E-UTRAN, the UE is in an RRC connected state, otherwise it is in an RRC idle state.
  • the downlink transmission channel for transmitting data from the network to the UE includes a BCH (Broadcast Channel) for transmitting system information and a downlink shared channel (SCH) for transmitting user traffic or control messages.
  • Traffic or control messages of a downlink multicast or broadcast service may be transmitted through a downlink SCH or may be transmitted through a separate downlink multicast channel (MCH).
  • the uplink transport channel for transmitting data from the terminal to the network includes a random access channel (RACH) for transmitting an initial control message and an uplink shared channel (SCH) for transmitting user traffic or control messages.
  • RACH random access channel
  • SCH uplink shared channel
  • BCCH broadcast control channel
  • PCCH paging control channel
  • CCCH common control channel
  • MCCH multicast control channel
  • MTCH multicast traffic
  • the physical channel is composed of several OFDM symbols in the time domain and several sub-carriers in the frequency domain.
  • One sub-frame consists of a plurality of OFDM symbols in the time domain.
  • the RB is a resource allocation unit and includes a plurality of OFDM symbols and a plurality of subcarriers.
  • each subframe may use specific subcarriers of specific OFDM symbols (eg, the first OFDM symbol) of the corresponding subframe for the physical downlink control channel (PDCCH), that is, the L1 / L2 control channel.
  • Transmission Time Interval is a unit time of subframe transmission.
  • ProSe proximity based services
  • ProSe has ProSe communication and ProSe direct discovery.
  • ProSe direct communication refers to communication performed between two or more neighboring terminals.
  • the terminals may perform communication using a user plane protocol.
  • ProSe-enabled UE refers to a terminal that supports a procedure related to the requirements of ProSe.
  • ProSe capable terminals include both public safety UEs and non-public safety UEs.
  • the public safety terminal is a terminal that supports both a public safety-specific function and a ProSe process.
  • a non-public safety terminal is a terminal that supports a ProSe process but does not support a function specific to public safety.
  • ProSe direct discovery is a process for ProSe capable terminals to discover other ProSe capable terminals that are adjacent to each other, using only the capabilities of the two ProSe capable terminals.
  • EPC-level ProSe discovery refers to a process in which an EPC determines whether two ProSe capable terminals are in proximity and informs the two ProSe capable terminals of their proximity.
  • ProSe direct communication may be referred to as D2D communication
  • ProSe direct discovery may be referred to as D2D discovery.
  • a reference structure for ProSe includes a plurality of terminals including an E-UTRAN, an EPC, a ProSe application program, a ProSe application server, and a ProSe function.
  • EPC represents the E-UTRAN core network structure.
  • the EPC may include MME, S-GW, P-GW, policy and charging rules function (PCRF), home subscriber server (HSS), and the like.
  • PCRF policy and charging rules function
  • HSS home subscriber server
  • ProSe application server is a user of ProSe ability to create application functions.
  • the ProSe application server may communicate with an application program in the terminal.
  • An application program in the terminal may use a ProSe capability for creating an application function.
  • the ProSe function may include at least one of the following, but is not necessarily limited thereto.
  • PC1 This is a reference point between a ProSe application in a terminal and a ProSe application in a ProSe application server. This is used to define signaling requirements at the application level.
  • PC2 Reference point between ProSe application server and ProSe function. This is used to define the interaction between the ProSe application server and ProSe functionality. An application data update of the ProSe database of the ProSe function may be an example of the interaction.
  • PC3 Reference point between the terminal and the ProSe function. Used to define the interaction between the UE and the ProSe function.
  • the setting for ProSe discovery and communication may be an example of the interaction.
  • PC4 Reference point between the EPC and ProSe functions. It is used to define the interaction between the EPC and ProSe functions. The interaction may exemplify when establishing a path for 1: 1 communication between terminals, or when authenticating a ProSe service for real time session management or mobility management.
  • PC5 Reference point for using the control / user plane for discovery and communication, relay, and 1: 1 communication between terminals.
  • PC6 Reference point for using features such as ProSe discovery among users belonging to different PLMNs.
  • SGi can be used for application data and application level control information exchange.
  • ProSe direct communication is a communication mode that allows two public safety terminals to communicate directly through the PC 5 interface. This communication mode may be supported both in the case where the terminal receives service within the coverage of the E-UTRAN or in the case of leaving the coverage of the E-UTRAN.
  • FIG 5 shows examples of arrangement of terminals and cell coverage for ProSe direct communication.
  • UEs A and B may be located outside cell coverage.
  • UE A may be located within cell coverage and UE B may be located outside cell coverage.
  • UEs A and B may both be located within a single cell coverage.
  • UE A may be located within the coverage of the first cell and UE B may be located within the coverage of the second cell.
  • ProSe direct communication may be performed between terminals in various locations as shown in FIG.
  • IDs may be used for ProSe direct communication.
  • Source Layer-2 ID This ID identifies the sender of the packet on the PC 5 interface.
  • Destination Layer-2 ID This ID identifies the target of the packet on the PC 5 interface.
  • SA L1 ID This ID is the ID in the scheduling assignment (SA) in the PC 5 interface.
  • FIG. 6 shows a user plane protocol stack for ProSe direct communication.
  • the PC 5 interface is composed of a PDCH, RLC, MAC, and PHY layers.
  • the MAC header may include a source layer-2 ID and a destination layer-2 ID.
  • a ProSe capable terminal can use the following two modes for resource allocation for ProSe direct communication.
  • Mode 1 is a mode for scheduling resources for ProSe direct communication from a base station.
  • the UE In order to transmit data in mode 1, the UE must be in an RRC_CONNECTED state.
  • the terminal requests the base station for transmission resources, and the base station schedules resources for scheduling allocation and data transmission.
  • the terminal may transmit a scheduling request to the base station and may transmit a ProSe BSR (Buffer Status Report). Based on the ProSe BSR, the base station determines that the terminal has data for ProSe direct communication and needs resources for this transmission.
  • ProSe BSR Buffer Status Report
  • Mode 2 is a mode in which the terminal directly selects a resource.
  • the terminal selects a resource for direct ProSe direct communication from a resource pool.
  • the resource pool may be set or predetermined by the network.
  • the terminal when the terminal has a serving cell, that is, the terminal is in the RRC_CONNECTED state with the base station or located in a specific cell in the RRC_IDLE state, the terminal is considered to be within the coverage of the base station.
  • mode 2 may be applied. If the terminal is in coverage, mode 1 or mode 2 may be used depending on the configuration of the base station.
  • the terminal may change the mode from mode 1 to mode 2 or from mode 2 to mode 1 only when the base station is configured.
  • ProSe direct discovery refers to a procedure used by a ProSe capable terminal to discover other ProSe capable terminals, and may also be referred to as D2D direct discovery or D2D discovery. At this time, the E-UTRA radio signal through the PC 5 interface may be used. Information used for ProSe direct discovery is referred to as discovery information hereinafter.
  • the PC 5 interface is composed of a MAC layer, a PHY layer, and a higher layer, ProSe Protocol layer.
  • the upper layer deals with the permission for the announcement and monitoring of discovery information, and the content of the discovery information is transparent to the access stratum (AS). )Do.
  • the ProSe Protocol ensures that only valid discovery information is sent to the AS for the announcement.
  • the MAC layer receives discovery information from a higher layer (ProSe Protocol).
  • the IP layer is not used for sending discovery information.
  • the MAC layer determines the resources used to announce the discovery information received from the upper layer.
  • the MAC layer creates a MAC protocol data unit (PDU) that carries discovery information and sends it to the physical layer.
  • PDU MAC protocol data unit
  • the base station provides the UEs with a resource pool configuration for discovery information announcement.
  • This configuration may be included in a system information block (SIB) and signaled in a broadcast manner.
  • SIB system information block
  • the configuration may be provided included in a terminal specific RRC message.
  • the configuration may be broadcast signaling or terminal specific signaling of another layer besides the RRC message.
  • the terminal selects a resource from the indicated resource pool by itself and announces the discovery information using the selected resource.
  • the terminal may announce the discovery information through a randomly selected resource during each discovery period.
  • the UE in the RRC_CONNECTED state may request a resource for discovery signal announcement from the base station through the RRC signal.
  • the base station may allocate resources for discovery signal announcement with the RRC signal.
  • the UE may be allocated a resource for monitoring the discovery signal within the configured resource pool.
  • the base station 1) may inform the SIB of the type 1 resource pool for discovery information announcement.
  • ProSe direct UEs are allowed to use the Type 1 resource pool for discovery information announcement in the RRC_IDLE state.
  • the base station may indicate that the base station supports ProSe direct discovery through 2) SIB, but may not provide a resource for discovery information announcement. In this case, the terminal must enter the RRC_CONNECTED state for the discovery information announcement.
  • the base station may set whether the terminal uses a type 1 resource pool or type 2 resource for discovery information announcement through an RRC signal.
  • the D2D operation may have various advantages in that it transmits and receives signals between adjacent devices.
  • the D2D user equipment has a high data rate and low delay and can perform data communication.
  • the D2D operation may distribute traffic that is driven to the base station, and may also serve to extend the coverage of the base station if the terminal performing the D2D operation serves as a relay.
  • the above-mentioned extension of D2D communication, including the transmission and reception of signals between vehicles, is particularly referred to as V2X (VEHICLE-TO-X) communication.
  • V2X V2X
  • PEDESTRIAN COMPUNICATION BETWEEN A VEHICLE AND A DEVICE CARRIED BY AN INDIVIDUAL (example) HANDHELD TERMINAL CARRIED BY A PEDESTRIAN, CYCLIST, DRIVER OR PASSENGER)
  • V2P VEHICLE
  • V2V VEHICLE
  • INFRASTRUCTURE / NETWORK COMPIT
  • RSU ROADSIDE UNIT
  • RSU ROADSIDE UNIT
  • NETWORK example
  • a device (related to V2P communication) possessed by a pedestrian (or person) is called “P-UE", and a device (related to V2X communication) installed in VEHICLE is " V-UE ".
  • the term 'ENTITY' may be interpreted as P-UE and / or V-UE and / or RSU (/ NETWORK / INFRASTRUCTURE).
  • a terminal that provides (or supports) the above-described D2D operation may be referred to as a D2D terminal, and a terminal that provides (or supports) the above-described V2X operation may be referred to as a V2X terminal.
  • a terminal that provides (or supports) the above-described V2X operation may be referred to as a V2X terminal.
  • embodiments of the present invention will be mainly described in terms of a V2X terminal, but the description of the corresponding V2X terminal may be applied to the D2D terminal.
  • the V2X terminal may perform message (or channel) transmission on a predefined (or signaled) resource pool (RESOURCE POOL).
  • the resource pool may mean a predefined resource (s) to perform the V2X operation (or to perform the V2X operation).
  • the resource pool may be defined in terms of time-frequency, for example.
  • 'V2X communication' and 'other communication e.g.' DSRC / IEEE 802.11P SERVICE ',' (other NUMEROLOGY based) NEW RAT on predefined (signaled) same channel (/ band).
  • NR eV2X SERVICE '
  • 'channel (/ band / resource)' used in the present invention may be interpreted to mean 'CARRIER (/ FREQUENCY / POOL)'.
  • V2X UE (S) participating in 'V2X Communication' skips the channel / signal transmission operation (related to V2X communication) on a specific (time / frequency) resource previously defined (/ signaled) (It can be interpreted as a kind of 'SILENCING PERIOD'), and can perform 'MEASUREMENT' operation.
  • the (setting) related (setting) parameters e.g., period, (time / frequency) resource location (/ length), hopping pattern, etc.
  • the (setting) related (setting) parameters are 'CARRIER (/ POOL) -SPECIFIC'. It can be specified in the form (PRE) CONFIGURATION '.
  • the V2X UE (S) is configured to 'different communication (eg,' DSRC / IEEE 802.11) within an adjacent distance (and / or the same channel (/ band)).
  • P SERVICE ',' NR eV2X SERVICE '(based on other NUMEROLOGY)' can be determined.
  • V2X UE (s): (A) 'V2X communication' on that channel (/ band). Rules are defined to abort (for a predefined (/ signaled) time) and / or (B) 'V2X communication' is performed according to a predefined (/ signaled) (rule (/) priority) Rules to change the 'resource (/ channel / band)' and / or to perform 'V2X communication' (for a predetermined time period (pre-signaled)) on another resource (/ channel / band) This may be defined.
  • the V2X UE (S) continues to 'V2X communication (without interruption) on that channel (/ band). 'Will be performed.
  • (predefined (/ signaled) (time (/ frequency))) resources e.g., 'SILENCING PERIOD'
  • 'SILENCING PERIOD' used to detect 'other communications' (and / or 'OTHER RAT'
  • bitmaps of preset length (/ signaled) length
  • the (predefined (/ signaled) (time (/ frequency))) resource used for detecting 'other communication' (and / or 'OTHER RAT') is a V2X resource pool. It can also be interpreted as being excluded from the setting.
  • 'other communication' is detected when its location information (and / or '(location-based resource pool (TDM (/ FDM)) partitioning operation is set (/ signaling)) is detected.
  • Resource pool (/ carrier / channel / band) (index) information ') may be included.
  • a (serving) base station (/ RSU) that has received this information is a V2X UE (S) (eg, on a (reported) adjacent (or same) location (/ area)) (eg, 'P-UE').
  • S) ' may inform the corresponding information (for example, via a predefined signal (for example, (WAN) DL (/ PDSCH))).
  • the (serving) base station (/ RSU) receiving the information (from the V-UE (S)) is a (adjacent or identical) location (/ area) (and / or pool) where 'other communication' was detected.
  • 'ACTIVATION / DEACTIVATION' the resource pool (related) to the V2X UE (S) (e.g. 'P-UE (S)') on (/ carrier / channel / band) and / or 'V2X communication' Interrupting (and / or 'V2X MESSAGE TX Operation') and / or switching to another carrier (/ channel / band / full) that has been pre-set (/ signaled) Can be indicated.
  • the V2X UE (S) (eg, 'P-UE (S)') that has received the corresponding information (from the (serving) base station (/ RSU)) has its (current) location ( And / or consider / compare the pool (/ carrier / channel / band) on which the (current) V2X MESSAGE TX operation is performed to maintain the V2X MESSAGE TX operation on the existing pool (/ carrier / channel / band) ( Switching to another carrier (/ channel / band / pool) and / or other resources (/ channel /) as defined (/ signaled) (depending on the rule (/ (priority) order)) It is possible to determine (/ determin) whether or not to perform 'V2X communication' (and / or 'V2X MESSAGE TX operation') on a band (for a predetermined time (pre-signaled)).
  • the rule is defined such that the reporting (/ signaling) operation of the corresponding information (of V2X UE (S)) is performed only when the 'measurement' value is higher than a predefined (/ signaling) threshold.
  • the (serving) base station (RSU) that has received (or received) detection information of 'other communication' from the V2X UE (S) is (A) a 'CARRIER ( / Channel (/ band)) '(based on pre-defined (/ signaled) rules (/ (priority) order)) and / or (B) to change to' UU-based V2X communication '. have.
  • the V2X UE S which has received the detection information of 'other communication' from the (adjacent) neighboring V2X UE S, (as well) has a predefined (/ signaled) rule (/ (priority) rank) in advance. Change the 'channel (/ band / CARRIER)' in which 'V2X communication' is performed and / or set 'V2X communication' on the corresponding channel (/ band / CARRIER) (during the pre-defined (/ signaled) time).
  • a V2X UE (eg, P-UE (S)) causes a (serving) base station (/ RSU) (and / or (other) V2X UE (S)) to (re) transmit ( 'WAKE-UP' and 'WAKE-UP' according to a predefined (/ signaled) period (/ pattern) for the efficient reception of the ('other communication' detection) information. / Or 'receiving the corresponding channel (/ signal) attempt' can be performed.
  • a V2X UE (eg, P-UE (S)) transfers a resource (or its own transmission operation (timepoint)) that it has selected (/ reserved) for V2X MESSAGE TX use.
  • the nearest (or prior to the (timed / timing) offset value previously set (/ signaled) from the resource selected (/ reserved) for the purpose of the V2X MESSAGE TX (or your own send operation (time)).
  • the V2X UE may cause the 'LTE SIGNAL (/ signaled)' (pre-set (/ signaled)) on a specific (time / frequency) resource previously defined (/ signaled).
  • CHANNEL ' is not detected and (meaning) the' measurement 'value is higher than the predefined (/ signaling) threshold, the' other communication 'within adjacent distances (and / or the same channel (/ band)).
  • 'DSRC / IEEE 802.11P SERVICE', 'NR eV2X SERVICE' (based on other NUMEROLOGY)) may be defined to determine that is being performed.
  • a (serving) base station (/ RSU) (and / or (other) V2X UE (S)) that has received 'other communication' detection (whether) information from a particular V2X UE (S) may (in coverage or connection).
  • a nearby (other) V2X UE (S) e.g., 'P-UE (S)'
  • a base station (/ RSU) that has a predefined channel (/ signal). You can also tell me.
  • this information is predefined (/ reported) 'location (/ identifier) information of a specific V2X UE (S)' (and / or '(location based resource pool (TDM (/ FDM))).
  • S V2X UE
  • TDM resource pool
  • additional information such as resource pool (/ carrier / channel / band) (index) information and / or '(energy) measurement information') where 'different communication' is detected. May be sent.
  • 'V2X communication' on the existing channel (/ band) interrupted 'V2X communication' (and / or other resources (/ channel / band)) for a predefined time (/ signaling time).
  • V2X UE (s) that performed ' perform' (energy) measurement 'operation again on a specific (time / frequency) resource (on an existing channel (/ band)) previously defined (/ signaled)
  • a rule may be defined to re-perform 'V2X communication' (in an existing channel (/ band)).
  • the 'V2X communication' re-execution on the existing channel (/ band) may be performed when (A) 'other communication' is not detected (as a result of the 'measurement' operation) and / or (B) in advance. If the backoff (/ counter) value defined (/ signaled) at is less than or equal to '0' (or selected (/ drawn) random (real)) value ('X' in the range '0 ⁇ X ⁇ 1') The rule may be defined so that)) is performed only when () is less than or equal to a predefined (/ signaled) probability value.
  • the backoff value is defined by a predefined (/ signaled) value (for example, '1') whenever 'other communication' is not detected (when performing 'measurement' operation). Can be reduced.
  • the 'measurement' behavior for detecting 'other communications e.g.' DSRC / IEEE 802.11P SERVICE ',' NR eV2X SERVICE '(based on other NUMEROLOGY)
  • the V2X UE (S) (located within the / signaled distance) needs to perform at the same time.
  • the 'V2X communication' may be excessively interrupted by mistaken 'V2X communication' (performed within adjacent distance (and / or on the same channel (/ band))) as 'other communication'. have.
  • (time / frequency) resource related information (e.g., period, subframe offset, (hopping) pattern, etc.) on which the 'measurement' operation is performed is not ('LOCAL TIME')
  • Rules are defined to be set (/ signaled) and applied based on 'GPS (GLOBAL POSITIONING SYSTEM) TIME (or UTC (COORDINATED UNIVERSAL TIME))' (or '(serving) time of base station (/ RSU)').
  • 'GPS GLOBAL POSITIONING SYSTEM
  • UTC COORDINATED UNIVERSAL TIME
  • the (time / frequency) resource related information in which the 'measurement' operation is performed may include 'V2X MESSAGE TYPE (for example,' PERIODIC 'or' EVENT-TRIGGERD 'V2X MESSAGE) and / or' V2X '.
  • MESSAGE PRIORITY 'and / or' V2X UE DENSITY (/ SPEED) 'and / or' V2X MESSAGE PRIORITY 'and / or' V2X UE TYPE ' may be considered (differently or independently).
  • the 'measurement' operation may be performed (directly) by the (serving) base station (/ RSU) (as well as the V2X UE (S)).
  • 'CROSS CARRIER (/ POOL) SCHEDULING' is performed for various purposes / reasons (for example, CONGESTION COTROL) (e.g., performed in a CARRIER (/ POOL) with different SA transmission and DATA transmission, DATA (/ SA)
  • CONGESTION COTROL e.g., performed in a CARRIER (/ POOL) with different SA transmission and DATA transmission, DATA (/ SA)
  • CONGESTION COTROL e.g., performed in a CARRIER (/ POOL) with different SA transmission and DATA transmission, DATA (/ SA)
  • PHY FORMAT may be different.
  • V2X UE on a channel (e.g., PSCCH) previously defined (/ signaled) to which PHY FORMAT (e.g., 'RS STRUCTURE') the V2X UE will transmit on a particular CARRIER (e.g., 'RS STRUCTURE'). You can also inform (via other) V2X UE (S) via the (new) field.
  • PHY FORMAT e.g., 'RS STRUCTURE'
  • CARRIER e.g., 'RS STRUCTURE'
  • the PHY FORMAT of a channel (eg, PSCCH) used for transmission of 'scheduling / control information (and / or PHY FORMAT information used)' is the same (or in common) among different CARRIER (/ POOL). May be defined.
  • V2X UE (S) may be to perform the (transmission) resource (re) selection as follows.
  • Table 1 shows an example of the (trans) resource (re) selection operation, 2.
  • Table 2 shows an example of the transmission resource (re) reservation (/ selection) operation of the V2X TX UE (S) The contents are explained in Table 2.
  • V2X UE S
  • V2X UE S
  • a rule for different communication
  • NR eV2X SERVICE ' When NR eV2X SERVICE ') is detected and' channel (/ band / carrier) switching (/ change) operation 'is performed, the' sensing operation 'and / or' resource (re) selection operation 'related to V2X communication are effectively performed.
  • NR eV2X SERVICE ' When NR eV2X SERVICE ') is detected and' channel (/ band / carrier) switching (/ change) operation 'is performed, the' sensing operation 'and / or' resource (re) selection operation 'related to V2X communication are effectively performed.
  • the wording of “sensing” may be a pre-defined (/ signaled) reference signal (REFERENCE SIGNAL ( RS )) and / or an energy measurement operation for the channel (eg, in conjunction with (decoded PSCCH)). It may be interpreted as a DM-RS RSRP and / or S-RSSI) of the PSSCH or a decoding operation for a channel (eg, PSCCH (PHYSICAL SIDELINK CONTROL CHANNEL)) previously defined (/ signaled).
  • these (some) coexistence methods are defined in advance, because the 'CONGESTION LEVEL' of a particular channel (/ band / carrier) on which V2X communication is being performed (higher than a preset threshold).
  • the V2X UE (S) may perform a 'channel (/ band / carrier) switching (/ change) operation'. It can also be extended.
  • 'channel (/ band / carrier) switching (/ change) operation' may be interpreted as a condition that triggers (/ perform) a kind of (transmission) resource (re) selection.
  • the resources randomly (re) selected according to the rule are (the number of times the signal is preset (/ signaled) after the 'channel (/ band / carrier) switching (/ change) operation' is performed (for example, ' 1 ') is used only for' TB (TRANSPORT BLOCK) 'transfers) (for future (multiple)' TB 'transfers) or' reserved '(/' SPS (SEMI-PERSISTENT SCHEDULING) ') or future It can also be used to prevent (reserved) the (frequency) resources used for (multiple) 'TB' transmissions.
  • randomly (re) selected resources are (exceptionally) ((plural (or pre-set (/ signaling))) Number of times)) to allow for 'scheduled' (/ 'SPS'), or for future 'TB' transfers (multiple (or preset (/ signaled))) It can also be used (/ reserved) as a (frequency) resource.
  • the V2X UE S may perform (sensingly) perform a 'sensing' operation during a pre-set (/ signaled) time interval on a switched (/ changed) channel (/ band / carrier). Then, based on the result, it may be possible to (re) select the (optimal) resources to be used for V2X communication.
  • M total ”related count / ratio values e.g., the minimum number of (candidate) resources that must remain (in the set of S A ) (during total (candidate) resources) after STEP 5 of SECTION 2.3.
  • PSSCH-RSRP MEASUREMENT applied when the minimum number of (candidate) resources that must remain in the S A set (among all (candidate) resources) after performing STEP 5 of SECTION 2.3.
  • Eg “3DB” and / or sensing operations eg STEP 2 in Table 2 SECTION 2.3
  • Is an energy measurement operation e.g., the period value used in STEP 8 of SECTION 2.3.
  • '1000MS' may be set (/ signaled) differently (e.g., a relatively small (or larger) value) (or the same).
  • C resel value eg, “[10 * SL_RESOURCE_RESELECTION_COUNTER]”
  • V2X message priority e.g., “[10 * SL_RESOURCE_RESELECTION_COUNTER]
  • V2X message priority and / or V2X resource pool (and / or (V2X) carrier e.g., “[10 * SL_RESOURCE_RESELECTION_COUNTER]”
  • Value and / or P_STEP value and / or transmission power related (OPEN-LOOP) parameters / values) (e.g., "P O ", "ALPHA”, etc.) are changed to 'channel (/ band / carrier) switching (/ change). May be set (/ signaled) differently (or the same
  • Example # 3-1 'Channel (/ Band / Carrier) Switching (/ Change)', but if (transmitted or created) on '(LOW LAYER) Buffer' (and / or 'PDCP LAYER') If there are no packets (/ messages) (or no packets (/ messages) are generated), the V2X UE (S) causes the V2X RESOURCE POOL on the switched channel (/ band / carrier). It may also be possible to (partially) perform a 'sensing' operation.
  • the '(partial) sensing' operation may have a packet (/ message) (/ delivered) (/ reached) on its (LOW LAYER) buffer '(and / or' PDCP LAYER '). ), Or until a packet (/ message) is generated (or only during a pre-set (/ signaled) time interval).
  • the V2X UE S
  • the V2X UE finally performs 'V2X RESOURCE POOL' on (switched (/ changed) channel (/ band / carrier)) based on the result of '(partial) sensing' operation.
  • (Re) selects the most appropriate (transmission) resource.
  • the V2X UE (S) may be able to (re) select (re) selecting its (transmission) resource only (limitedly) within the resource (area) where the 'partial sensing' operation is performed.
  • 'reserve' (/ 'SPS') (frequency) resources (related to (multiple) 'TB' transmissions) only when '(partial) sensing' operation is performed.
  • V2X UE S It is also possible to (partially) perform a 'sensing' operation on a 'V2X RESOURCE POOL' on a switched channel (/ band / carrier).
  • Example # 3-2 (In (Example # 3-1) above), the V2X UE S according to whether or not a condition set in advance (/ signaling) is satisfied, (A) '(partial) sensing' It may be able to perform (/ select) one of operation-based resource (re) selection and (B) 'random' based resource (re) selection.
  • Example # 3-3 When the V2X UE (S) performs 'channel (/ band / carrier) switching (/ change)', the 'V2X RESOURCE POOL' on the existing channel (/ band / carrier) If the selected resource-related '(RESELCTION) COUNTER' value is greater than (or less than or equal to) a preset (/ signaled) threshold (e.g.
  • the rule is limitedly applied only when the existing channel (/ band / carrier) and the 'RESOURCE POOL CONFIGURATION (/ BANDWIDTH)' related to V2X communication on the switched channel (/ band / carrier) are the same. Can also be.
  • the V2X UE (S) is the 'channel (/ band / carrier) switching (/ change)' and the ((/ change) V2X communication related (transmission) resource location on the switched (/ band / carrier) existing
  • the sensing result on the channel (/ band / carrier) is set using (re), between the existing channel (/ band / carrier) and the switched (/ changed) channel (/ band / carrier) (on the logical resource area)
  • the V2X UE (S), 'channel (/ band / carrier) switching (/ change)' and ((/ change) 'V2X communication related (transmission) resource location on the switched channel (/ band / carrier) If (Re) is used to set the sensing result on the existing channel (/ band / carrier), it is possible to set the (transmission) by using (Re) the sensing result on the existing channel (/ band / carrier).
  • V2X MESSSAGE Resource location occupied by (already) another V2X UE (s) on a switched channel (/ band / carrier) (e.g., channel where the V2X UE (s) is switched (/ changed) ( / Band / carrier), which can be interpreted as a case where (A) is performed beforehand (A) reselecting (and / or randomly selecting) the corresponding (transmitted) resource and / or (B) Only the remaining non-conflicting (transporting) resources can be used for (V2X MESSSAGE) transmission purposes.
  • a switched channel e.g., channel where the V2X UE (s) is switched (/ changed) ( / Band / carrier
  • a V2X UE (s) (with multiple channel (/ band / carrier) related reception (/ sensing) capability) may be configured to sense (/ receive) multiple channels (/ band / carrier). And / or perform other communications (e.g., 'DSRC / IEEE 802.11P SERVICE', 'NR eV2X SERVICE' (based on other NUMEROLOGY)) and are currently transmitting (V2X) messages. If other communication is detected on the channel (/ band / carrier) that performs the operation, the sensing (/ receive) operation (and / or other communication detection operation) is performed (except the corresponding channel (/ band / carrier)). One of a plurality of channels (/ band / carrier) may be selected to perform a channel (/ band / carrier) switching (/ change) operation.
  • (A) CONGESTION LEVEL (and / or sensed energy measurement) is (relatively) low among channels (/ band / carrier) and / or ( B) a channel (/ band / carrier) that has (relatively) less resources occupied by other V2X UE (S) and / or (C) a channel (/ band / carrier) for which no other communication has been detected and / or (E ) Selects (relatively) low (or high) indexed channels (/ bands / carriers) preferentially (and / or (high (or low) (priority) according to a preset (priority) priority)
  • the channel (/ band / carrier) of the priority) may be preferentially selected or randomly selected.
  • the V2X UE (S) uses a specific carrier (/ channel (/ band)) (pre-set (/ signaled)) for (V2X MESSAGE) transmission and then (pre-set (/ signaled))
  • a specific carrier / channel (/ band)
  • pre-set (/ signaled) for (V2X MESSAGE) transmission and then (pre-set (/ signaled))
  • another carrier / channel (/ band)
  • Switching may cause system instability.
  • a timer for maintaining (V2X MESSAGE) transmission on (/ channel (/ band)) is set (/ signaled) and / or (B) a different carrier (/ channel (/ Band)) and / or a threshold (for example, 'CONGESTION LEVEL' (and / or 'LOAD LEVEL') Relevant) switching action to another carrier (/ channel (/ band)) (only of relatively low 'CONGESTION LEVEL' (and / or 'LOAD LEVEL')) is exceeded when it can be interpreted as 'HYSTERESIS'. Limited).
  • V2X the 'RAT' of the UE (S) a (relatively) set at a lower priority (/ signaling) the resources (RES_L) and (relatively) the set to high priority (/ signaling) resources (RES_H) Suppose you have this (see Table 3).
  • the V2X UE (S) performs V2X communication on 'RES_H' and then the threshold ( CL_RSC_H ) (/ measured) that the (measured) 'CONGESTION LEVEL' value is previously set (/ signaled) ( For example, when 'CL_RSC_H' is larger than the threshold associated with 'RES_H', considering the switching (/ offloading) to 'RES_L', the 'RES_L' related (measured) 'CONGESTION LEVEL' value (Actual) ('RES_H' to 'RES_H' only when smaller than this preset (/ signaled) threshold ( CL_RSC_L ) (for example, 'CL_RSC_L' can be viewed as the threshold associated with 'RES_L') Switching may be allowed.
  • 'CL_RSC_H' and 'CL_RSC_L' may be set (/ signaled) to different values (eg, 'CL_RSC_H> CL_RSC_L').
  • a V2X UE may be configured to operate on a (external) resource region (preconfigured / signaled) that is not a V2X resource pool (specified in the form 'CARRIER (/ CELL) -SPEICIFC NETWORK (PRE) CONFIGURATION').
  • 'CONGESTION LEVEL' and / or 'LOAD LEVEL'
  • And / or 'OTHER RAT' detection operation).
  • the corresponding 'CONGESTION LEVEL' (and / or 'LOAD LEVEL') measurement (and / or 'other communication' (and / or 'OTHER RAT') detection for that ((external) resource zone) is a dictionary. It may be performed in (separate) subchannels (on (external) resource zones) set in (/ signaling) and / or in all bands (on (external) resource zones).
  • the (S-RSSI) measurement operation (related to the 'CONGESTION LEVEL' (and / or 'LOAD LEVEL') measurement) may be performed in the V2X resource (s) without distinguishing the V2X resource pool.
  • the corresponding ('CONGESTION LEVEL' (and / or 'LOAD LEVEL') measurement) (S-RSSI) measurement operation is of the form ((V2X) POOL-SPECIFIC '(or' (V2X) POOL-COMMON). It is also possible to measure the area other than (V2X) POOL separately.
  • the measurement operation in the V2X resource (s) may be performed only at the (V2X) TX POOL (and / or (V2X) RX POOL).
  • a V2X TX UE (S) is configured (in accordance with a pre-set (/ signaled) rule (/ (priority) order)) (relative to 'V2X communication' (and / or 'V2X MESSAGE TX operation')).
  • a pre-set (/ signaled) rule (/ (priority) order)
  • the channel eg 'PSCCH (/ PSSCH)' and / or ' PSBCH) '
  • the (specific) carrier (/ channel / band / full) to which a channel of a corresponding purpose is transmitted may be set (/ signaled) in advance (in a 'UE-COMMON' form).
  • Table 3 shows how 'V2X communication' and 'other communication (e.g.,' DSRC / IEEE 802.11P SERVICE ',' NR eV2X SERVICE '(based on other NUMEROLOGY)) coexist efficiently. .
  • 'V2X communication' and 'other communication e.g.,' DSRC / IEEE 802.11P SERVICE ',' NR eV2X SERVICE '(based on other NUMEROLOGY)
  • coexistence method described above may also be included as one of the implementation methods of the present invention, it is obvious that it can be regarded as a kind of coexistence methods.
  • coexistence methods may be independently implemented, some coexistence methods may be implemented in combination (or merge).
  • the coexistence method has been described for the convenience of description based on the 3GPP LTE system, but the scope of the system to which the coexistence method is applied can be extended to other systems besides the 3GPP LTE system.
  • D2D communication means that the UE communicates directly with another UE using a wireless channel, where, for example, the UE means a terminal of a user, but network equipment such as a base station is used for communication between UEs. Therefore, when transmitting / receiving a signal, it can also be regarded as a kind of UE.
  • the coexistence methods of the present invention may be limitedly applied only to the MODE 2 V2X operation (and / or the MODE 1 V2X operation). Also, as an example, the coexistence methods of the present invention are (DEDICATED) RX (/ TX) for V-UE (S) (or P-UE (S)) (and / or V2X carrier (/ channel (/ band)). It may be limitedly applied only to the V2X UE (S) having a CHAIN.
  • the terminal may be a terminal with a limited capability.
  • the terminal may be a terminal with limited receive (/ transmit) circuit capability (LIMITED RX (/ TX) CHAIN / CIRCUIT CAPABILITY) and / or a terminal with limited battery capacity (/ duration / consumption).
  • the terminal may be a terminal having only one receiver (/ transmitter), and thus it is impossible to simultaneously receive (/ transmit) a signal according to WAN communication at a first frequency and a signal according to V2X communication at a second frequency.
  • the terminal is a pedestrian terminal (PE-DESTRIAN UE: P-UE, pedestrians possessing relatively high constraints in hardware implementation cost / complexity / battery consumption (compared to a vehicle installed in a vehicle (VEHICLE-UE: V-UE)).
  • the terminal may also be referred to as a walking terminal).
  • the terminal P-UE # K has one receiving circuit (RX CHAIN / CIRCUIT) capability and two transmitting circuits (TX CHAIN / CIRCUIT) capability. .
  • P-UE # K performs WAN DL / UL communication on a wide area network (WAN) DL / UL carrier #X (which can be interpreted as carriers for which WAN DL / UL communication is set), and V2X on V2X carrier #Y.
  • WAN wide area network
  • DL / UL carrier #X which can be interpreted as carriers for which WAN DL / UL communication is set
  • V2X on V2X carrier #Y.
  • the proposed schemes of the present invention are not only applicable to this situation but also to various cases (eg, when more than the reception / transmission capability of the V2X UE is required).
  • the P-UE # K may be interpreted as having no 'DEDICATED RX (/ TX) CHAIN / CIRCUIT' on the V2X carrier #Y through which V2X communication is performed. That is, it can be interpreted that there is only 'TX (/ RX) CHAIN / CIRCUIT' on the V2X carrier #Y.
  • the " transmission resource collision avoidance operation (ie, sensing method)" between different V2X terminals helps to improve V2X communication performance compared to a random method in which V2X terminals randomly select / reselect transmission resources.
  • the sensing operation is performed by (A) decoding a 'SCHEDULING ASSIGNMENT (SA) channel (e.g., PSCCH)' and / or 'DATA channel (e.g., PSSCH)' associated with the (and corresponding) decoded PSCCH. Measurement on a predefined channel / reference signal (REFERENCE SIGNAL: RS, e.g. 'DM-RS') (e.g., 'PSSCH-RSRP') and / or (B) energy measurement (e.g. For example, it may be performed through 'S-RSSI'.
  • SA 'SCHEDULING ASSIGNMENT
  • RS predefined channel / reference signal
  • RS e.g. 'DM-RS'
  • 'PSSCH-RSRP' e.g., 'PSSCH-RSRP'
  • B energy measurement (e.g. For example, it may be performed through 'S-RSSI'.
  • P-UE # K (with limited reception circuit capability) performs a WAN downlink receive operation (WAN DL CARRIER # X) when performing a V2X message transmit operation on V2X carrier #Y.
  • WAN DL CARRIER # X WAN downlink receive operation
  • V2X message transmit operation V2X carrier #Y.
  • a V2X message is sent (periodically) based on a periodic value (determined at a higher layer of the terminal) and / or (re) selected / reserved (periodically based on that periodic value). ) Can be transmitted based on resources.
  • P-UE # K transport block (TB) related) (data / scheduling allocation) when the transmission resource (re) selection (/ reservation), the previous (cycle (/ transmission resource (re)) Select (/ Reservation))) (Re) Select (/ Reservation) (TB related) (Data / Scheduling Allocation) Selected (Re) Restriction (/ Reservation) in the remaining subframes except the subframe to which the transmission resource belongs (HALF DUPLEX problem mitigation effect).
  • P-UE # K is a transmission resource (re) selection (/ reservation)
  • (re) selection (/) consisting of 100 subframes (assuming that the 100 subframes are indexed from 0 to 99) Reservation) within a candidate resource
  • the next transmission resource (re) selection At the time of / reservation, a specific subframe can be randomly selected from the remaining subframes except for the Nth subframe (in the (re) selection (/ reservation) candidate resource).
  • the P-UE # K may perform a V2X message transmission operation using a 'UU interface' or a WAN uplink (when a sensing operation is set). This behavior can also be interpreted as switching between PC5 and UU (or WAN uplink).
  • P-UE # K (with limited receive circuitry capability) is a pre-configured or signaled time / frequency resource (e.g., before performing a V2X message transfer (resource (re) select (/ reserved)) operation) On a time / frequency resource in front of the V2X transmission resource pool and / or on a V2X message transmission (resource (re) selection (/ reservation)) on the time / frequency resource before the (scheduling allocation) period (/ time), etc.).
  • the "sensing gap or receiving gap” wording may be referred to as a partial sensing gap (hereinafter, the same).
  • the "sensing gap” may mean a resource that the terminal should perform sensing to (re) select (reserve) a resource (eg, a subframe) to be used for V2X signal transmission.
  • the sensing gap may be referred to as a sensing resource.
  • a “receive gap” may mean a resource (and / or a resource that needs to perform PSSCH-RSRP / S-RSSI measurement) for which the UE should receive (/ decode) a signal (/ channel) in order to perform the sensing.
  • the reception gap may be referred to as a reception resource.
  • the "partial sensing gap” may refer to a (partial) resource set to perform the sensing, and in this respect, the partial sensing gap may be referred to as a partial sensing resource.
  • P-UE # K is used for WAN downlink reception operation (WAN DL carrier #X). It may switch (or borrow) its own receiving circuit and / or perform a sensing operation (or partial sensing operation).
  • the sensing operation may include, for example, 1) obtaining decoding information on scheduling allocation channels transmitted by another V2X terminal to obtain information on occupied resources, and 2) receiving a pre-defined channel / reference signal ( Energy) to perform at least one of an operation of performing a measurement operation (eg, PSSCH-RSRP, S-RSSI) to obtain information on resources with high interference or resources occupied by another V2X terminal. Can be.
  • a measurement operation eg, PSSCH-RSRP, S-RSSI
  • FIG. 10 illustrates a V2X transmission resource (re) selection (/ reservation) method according to a partial sensing operation according to ⁇ proposed method # 2>.
  • a terminal may be determined (/ triggered) of (re) selecting (/ reserving) a resource for V2X signal transmission (according to whether a predefined condition is satisfied).
  • the UE may (re) select (reserve) a resource for V2X signal transmission in the subframe period from subframe # m + T1 to # m + T2.
  • the subframe section from the subframes # m + T1 to # m + T2 is hereinafter referred to as a selection window.
  • the selection window may consist of, for example, 100 consecutive subframes.
  • the UE may select at least Y subframes as candidate resources within the selection window. That is, the terminal may consider at least Y subframes as candidate resources in the selection window.
  • the Y value may be a preset value or a value set by a network.
  • how to select the Y subframes in the selection window may be a problem of the terminal implementation. That is, when the Y value is, for example, 50, the UE may select which 50 subframes from 100 subframes constituting the selection window. For example, the UE may select 50 subframes having an odd subframe number from the 100 subframes or select 50 subframes having an even subframe number. Alternatively, 50 subframes may be selected by an arbitrary rule.
  • the UE in order to (re) select (/ reserve) a specific subframe, for example, subframe #N (SF # N) from among the Y subframes as a V2X transmission subframe capable of transmitting a V2X signal, the UE It may be necessary to sense at least one subframe linked to or associated with subframe #N.
  • the (whole) subframe period defined for sensing is called a sensing window, and may be composed of, for example, 1000 subframes. That is, the sensing window may consist of 1000 milliseconds (ms) or 1 second.
  • the terminal may be a set of elements in the subframe # N-100 * k (where k is a range of [1, 10], and may be a value preset or set by a network). ) May sense subframes.
  • the UE senses subframes # N-1000, # N-700, # N-500, # N-300, and # N-100 to determine whether subframe #N is being used by another V2X terminal (and / Alternatively, it is possible to estimate / determine whether there is a relatively high interference (or above a preset (/ signaled) threshold) on subframe #N) and select (finally) subframe #N accordingly. have. Since the walking terminal is more sensitive to battery consumption than the vehicle terminal, instead of sensing all subframes in the sensing window, only the partial subframes are sensed, that is, partial sensing.
  • FIG. 11 illustrates a method of (re) determining (/ selecting (/ reserving)) a V2X transmission subframe (/ resource) according to ⁇ proposed method # 2>.
  • the terminal receives pattern information used to determine a (partial) sensing pattern (S191).
  • the pattern information may be provided by a network through an RRC (or SIB) message.
  • the following table illustrates an example of pattern information.
  • 'minNumCandidateSF' represents the minimum number of subframes that should be included in possible candidate resources. As described above, the UE should consider at least Y subframes as candidate resources in the selection window, where 'minNumCandidateSF' may indicate the Y value.
  • 'gapCandidateSensing' indicates which subframe should be sensed when any subframe is considered as a candidate resource.
  • subframe #N SF # N
  • 'gapCandidateSensing' may indicate the k value through a 10-bit bit string. For example, when the k value is ⁇ 1, 3, 5, 7, 10 ⁇ , it may be represented as "1001010101".
  • the terminal senses some subframes determined based on the pattern information among the subframes in the sensing window (S192). That is, the terminal performs partial sensing.
  • the partial sensing has been described in detail with reference to FIG. 10.
  • the terminal selects a specific subframe in the selection window as a V2X transmission subframe based on the sensing (S193).
  • FIG. 12 illustrates a communication method between a walking terminal (P-UE), a vehicle terminal (V-UE), and a network according to ⁇ Proposed Method # 2>.
  • P-UE walking terminal
  • V-UE vehicle terminal
  • FIG. 12 it is assumed that the P-UE transmits a V2X signal to the V-UE, but in general, the V2X signal transmitted by the P-UE is not only a V-UE but also other entities (eg, For example, P-UE, V-UE, (UE-TYPE) RSU, etc.) may be targeted.
  • the network provides (sensing) pattern information to a walking terminal (S201). Pattern information has been described in detail in Table 4.
  • the walking terminal performs partial sensing based on the (sensing) pattern information and selects a V2X transmission subframe according to the result (S202).
  • the walking terminal transmits a V2X signal in the selected V2X transmission subframe (S203).
  • the P-UE # K may receive information about a sensing gap (/ resource) or a reception gap (/ resource) or partial sensing gap (/ resource) of a form or pattern that is preferred. Report to the network via WAN uplink).
  • the corresponding sensing gap (/ resource) or receiving gap (/ resource) or partial sensing gap (/ resource) information may be in bitmap form and / or (sensing gap (/ resource) (/ receive gap (/ resource)).
  • Partial sensing gap (/ resource)) may be a form that informs the period / offset value.
  • the preferred sensing gap (/ resource) (/ receive gap (/ resource) / partial sensing gap (/ resource)) shape / pattern is measured by the P-UE # K (on a pre-set or signaled time / frequency resource interval). After performing the (/ sensing) operation, it may include some time / frequency resource regions having relatively low energy measurement results (and / or 'CONGESTION LEVEL' results).
  • the sensing gap (/ resource) (or received gap (/ resource) or partial sensing gap (/ resource)) pattern (received from the base station) (if applying the proposed method # 3 described above) is a (V2X message transmission operation). If this does not cover all of the (previous) time / frequency resource (/ pool) areas for which the sensing operation is to be performed (or above the previously set (thresholding) ratio value), For example, if the corresponding sensing gap (/ resource) (/ receive gap (/ resource) / partial sensing gap (/ resource) pattern covers only some resources (/ subframe) within the sensing window)), The V2X message transmission operation may be performed.
  • the sensing operation for the corresponding V2X transmission resource pool #J is the previous time.
  • Frequency resource for example, it can be performed on V2X transmission resource pool # (J-1) (linked to scheduling assignment / period # (J-1)).
  • the sensing gap (/ resource) A sensing operation based on (or a receiving gap (/ resource)) may be interpreted as 'partial sensing operation'.
  • Example # 4-1 On the sensing gap (/ resource) (or received gap (/ resource) or partial sensing gap (/ resource), pattern below) pattern (received from the base station), the sensing information obtained (e.g., By using only resource information occupied by another V2X terminal and resource information with high interference), a transmission resource collision avoidance operation with another V2X terminal may be performed.
  • a sensing gap (/ resource) (/ receive gap (/ resource) / partial sensing gap (/ resource)) is (one) repetition period (or sensing If the P-UE does not cover all of its windows), the P-UE can only find its optimal transmission resource within the resource where the sensing was performed through the sensing gap (/ resource) It can be operated to (re) select (/ reserve).
  • the energy when (re) selecting (/ reserving) the resource with the lowest energy, the energy is among the resources in the sensing gap (/ resource) (or receiving gap (/ resource) or partial sensing gap (/ resource)). It can be limited to (re) selecting (reserving) low resources.
  • a sensing gap For example, when a resource occupied by another terminal is identified through scheduling allocation channel decoding of another terminal, scheduling belonging to a sensing gap (/ resource) (/ receive gap (/ resource) / partial sensing gap (/ resource)) Only 'data resources' that can be scheduled in a resource can be restricted to (re) selected (/ reserved).
  • P-UE # K is the same as the current transmission resource (re) selection (/ reservation) (period), (transfer block related) (data or scheduling allocation, hereinafter same) when the transmission resource (re) selection (/ reservation) (Re) Selection (/ Reservation) At (Cycle), (Re) Selection (/ Reservation) (Transfer block related) (Data or scheduling assignment) Except for the subframe to which the transmission resource belongs, You can select (/ reserved). This can alleviate the HALF DUPLEX problem (under incomplete sensing information-based transmission resource (re) selection (/ reservation) operating environment).
  • the half duplex problem is that since the terminal cannot simultaneously transmit and receive a signal, when the same resource (for example, a frequency resource) is repeatedly used for transmitting / receiving a signal, the resource is repeatedly received / transmitted in the resource. It means not being able to.
  • the same resource for example, a frequency resource
  • FIG. 13 illustrates a method of (re) selecting / reserving a V2X transmission resource according to Example # 4-1.
  • the terminal may select the first subframe 223 in the first selection window 222.
  • the linked subframes to which sensing should be performed are represented as sensing resources in the first sensing window 221.
  • the terminal may select the second subframe 226 in the second selection window 225.
  • the second subframe 226 is a subframe that does not overlap the subframe 227 at the same position (/ ORDER) as the first subframe 223 (within the selection window). That is, in selecting the second subframe 226, the remaining subframes except for the subframe having the same position / subframe ORDER (/ number) as the first subframe 223 in the second selection window.
  • the second subframe 226 is selected from among them. Interlinked subframes that require sensing to select the second subframe 226 are represented as sensing resources in the second sensing window 224.
  • the half duplex problem can be alleviated.
  • Sensing resource associated with (/ linked) excluded subframe (/ resource) sensing operation (even if included in sensing gap (/ resource) (/ receive gap (/ resource) / partial sensing gap (/ resource))) May be omitted and / or not included in the sensing gap (by P-UE # K reporting the relevant information to the base station).
  • FIG. 14 illustrates a V2X transmission resource (re) selection (reservation) method according to example # 4-1.
  • the terminal selects a second subframe that does not overlap the first subframe selected in the first selection window as a candidate resource in the second selection window (S211).
  • the terminal senses subframes linked / linked to the second subframe in a second sensing window (S212).
  • the UE may select the second subframe as a V2X transmission subframe according to the sensing result (S213).
  • a transmission resource (re) selection operation may be performed by another method previously defined or signaled, for example, a random method.
  • a V2X message transmission operation may be performed using a 'UU interface' or a WAN uplink. This operation may be interpreted as switching between PC5 and UU (or WAN uplink).
  • sensing gap (/ resource) or receiving gap (/ resource) or partial sensing gap (/ resource) pattern information is not received from the base station
  • P-UE # K Sensing operation is Even if set, it is possible to (re) select (/ reserve) the transmission resources in another way (/ fallback method) (e.g. random method) predefined or signaled.
  • the V2X message transmission operation may be performed using the 'UU interface' (or WAN uplink).
  • the P-UE causes the sensing operation to be too long, for example, the WAN downlink reception performance may be degraded (due to WAN DL RX CHAIN / CIRCUIT switching), and / or the battery consumption may be reduced. May not be good at Or short (or limited) sensing of (partial) sensing only for a fixed (or (semi)) static time / frequency resource domain, e.g., deterioration of energy sensing accuracy and transmission resource collision avoidance May occur.
  • parameters related to (partial) sensing operation for example, SENSING DURATION in which the (partial) sensing operation is performed, and (partial) sensing pattern (type in which the sensing operation is performed (/ pattern) / Period / offset, etc., which can be provided in the form of a bitmap) can be set to be '(time) hopping' and / or 'randomized' according to a predefined rule.
  • '(Time) hopping (pattern)' and / or 'randomization (pattern)' may be randomized between different V2X terminals.
  • at least one of input parameters such as an ID of a transmitting terminal, an ID of a receiving terminal, a (period) index (of a resource / pool) on which a V2X message transmission operation is performed, and a scheduling (period) index of a scheduling (resource / pool) It can be randomized by a predefined function based on one.
  • the UE may have only limited TX CHAIN / CIRCUIT CAPABILITY for a plurality of carriers (although there are receiving circuits / capabilities).
  • the terminal performs a sensing operation on a sensing resource interworked with a resource belonging to a transmission gap (TX GAP) previously defined or signaled (with a resource belonging to the transmission gap), and based on the result You may (re) select your own optimal transmission resources on a limited basis.
  • TX GAP transmission gap
  • the transmission gap may be interpreted as a resource region in which V2V message transmission has a higher priority than WAN uplink transmission.
  • the V2X terminal selects (/ reserves) the resource (s) that do not belong to the transmission gap for V2X message transmission purposes, thereby overlapping with the WAN uplink transmission (on the same (or different) carrier), It can alleviate the omission (or drop) of V2X message transmissions (and / or allocation of transmission power subordinated).
  • P-UE # K with limited transmission circuit capability transmits transmission gap information of its preferred type (/ pattern) (e.g., 'bitmap / period / offset') to the network (via WAN uplink). You can report it.
  • / pattern e.g., 'bitmap / period / offset'
  • the preferred transmission gap shape (/ pattern) is relative after the P-UE # K performs a measurement (/ sensing) operation (on a pre-set (/ signaled) (time (/ frequency)) resource (interval)). As such, it may include a (partial) (time (/ frequency)) resource region with a low (energy) measurement result (and / or a 'CONGESTION LEVEL' result).
  • the transmission gap may be commonly applied between carriers on which V2X communication is performed.
  • the transmission gap is set (/ applied) (commonly between the carriers), when 'WAN uplink transmission' and 'V2X message transmission' occur simultaneously on different carriers or when some overlap in the time domain, It is possible to alleviate the 'V2X communication performance degradation problem' caused by high priority transmission power distribution for WAN uplink transmission.
  • the transmission gap transmits V2X message transmission at a higher priority than WAN uplink transmission in the transmission gap. It can also be interpreted as allocating / distributing power. When such a rule is applied, a low allocation (/ distribution) of transmission power related to V2X message transmission can alleviate the performance degradation of V2X communication (or PUBLIC SAFTY (PS) communication).
  • V2X communication or PUBLIC SAFTY (PS) communication
  • V2X message transmission may be allocated (/ distributed) at a higher priority than the WAN uplink transmission, but the transmission power value of the predefined or signaled signal for the WAN uplink transmission may be guaranteed. If these rules are applied, the performance related to WAN uplink communication can be guaranteed to a minimum.
  • a V2X terminal capable of performing (partially) a sensing operation (based on scheduling allocation decoding / energy measurement), for example, a V-UE and / or a P-UE is a Type # A terminal (TYPE # A_UE).
  • the type #A terminal is a terminal capable of performing (partial) sensing.
  • a V2X terminal (eg, P-UE) that cannot perform a sensing operation (based on scheduling allocation decoding / energy measurement) may be referred to as a type #B terminal (TYPE # B_UE). That is, a type #B terminal is a terminal that cannot perform (partial) sensing.
  • V2X transmission resource pool there may be various types of V2X transmission resource pool.
  • the V2X transmission resource pool #A may be a resource pool in which only (partial) sensing is allowed.
  • the terminal should select the V2X transmission resource after performing (partial) sensing, and random selection may not be allowed.
  • the V2X transmission resources selected by the (partial) sensing are semi-statically maintained at regular intervals as shown in FIG.
  • the base station may be configured to perform (partly) a sensing operation (based on scheduling allocation decoding / energy measurement). This may be interpreted as 'random selection' of transmission resources not allowed on the V2X transmission resource pool #A, and '(partial) sensing' based transmission resource selection (only) is performed (/ allowed). Can be interpreted as The setting may be made by the base station.
  • the V2X transmission resource pool #B may be a resource pool that allows only random selection.
  • the UE may randomly select the V2X transmission resource in the selection window without performing (partial) sensing.
  • the selected resource may be set (/ signaled) so as not to be reserved semi-statically.
  • the base station may be configured such that the terminal does not perform a sensing operation (based on scheduling allocation decoding / energy measurement) to perform a V2X message transmission operation on the V2X transmission resource pool #B. This may be interpreted as transmission resource 'random selection' (only) is performed (/ allowed) and / or '(partial) sensing' based transmission resource selection is not allowed on the V2X transmission resource pool #B.
  • a resource pool capable of both (partial) sensing and random selection may also exist.
  • the base station may inform that it is possible to select V2X resources in this resource pool by either of the partial sensing and the random selection (by terminal implementation).
  • FIG. 16 illustrates a method of selecting a V2X resource pool when there are a plurality of types of resource pools.
  • the terminal receives type information indicating a type of resource pool (S300).
  • the following table is an example of type information.
  • 'partialSensing' indicates that partial sensing is allowed for the UE to select resources in the corresponding resource pool.
  • 'randomSelection' indicates that the UE is allowed to randomly select a resource in the resource pool. That is, the type information indicates how the UE can select a V2X transmission resource in a specific resource pool, so that the type of the specific resource pool (for example, a resource pool in which only partial sensing based transmission resource selection is allowed, is random). Only the selection based transmission resource selection may inform the resource pool allowed, the partial resource sensing and the resource pool which allows the random selection based transmission resource selection).
  • the terminal performs at least one of random selection and resource selection based on partial sensing in the resource pool based on the type information (S310).
  • the base station transmits the resource allocation / scheduling based on the sensing operation (based on scheduling allocation decoding / energy measurement) on the V2X transmission resource pool #A to the Type # A terminal through predefined signaling (the type information).
  • V2X message transmission operation, etc., and V2X transmission resource pool #B allows transmission resource allocation / scheduling without scheduling operation (based on scheduling allocation decoding / energy measurement) (or random selection based), V2X message transmission operation. can do.
  • the base station is a terminal capable of performing a sensing operation (based on scheduling allocation decoding / energy measurement) (via predefined signaling), (scheduling allocation decoding / energy measurement (on V2X transmission resource pool #A) Transmission resource allocation / scheduling based on sensing operations, V2X message transmission operations, as well as transmission resource allocation / scheduling (based on scheduling allocation decoding / energy measurement) (on V2X transmission resource pool #B), V2X messages May allow for a transmission operation (eg, a random selection technique).
  • the type # A terminal (( Use a V2X transmission resource pool that must perform / apply a sensing operation (based on scheduling allocation decoding / energy measurement) and / or (based on scheduling allocation decoding / energy measurement) (on V2X transmission resource pool #A).
  • a transmission resource allocation / scheduling based on a sensing operation and a V2X message transmission operation may be set.
  • V2X transmission resource pool for a V2X terminal having a relatively poor sensing related capability to a V2X terminal having a relatively good sensing related capability.
  • / or V2X terminal with relatively good sensing-related capability and V2X terminal with relatively poor sensing-related capability use (/ share) the same V2X transmission resource pool, so that V2X communication performance of V2X terminal with relatively good sensing related capability is improved. It can be interpreted to prevent degradation due to transmission resource collision.
  • the base station allows the type #B terminal to perform (/ allow) a 'random selection' operation of the transmission resources only on the V2X transmission resource pool #B or on the V2X transmission resource pool #A. It can tell whether to perform (/ allow) the 'random selection' operation.
  • the selected transmission resource may be set (/ signaled) for a predetermined time after the (partial sensing) based transmission resource selection.
  • / or on the V2X transmission resource pool #B may be set / signaled so as not to maintain (/ reserved) the selected transmission resource for a predetermined time after the transmission resource 'random selection'.
  • the V2X terminal (for example, only the P-UE) may be set (/ signaled) to maintain (/ reserve) the selected transmission resource for a predetermined time after 'random selection' selection of the transmission resource.
  • What type of V2X UEs are shared between transmissions of V2X UEs for each V2X transmission resource pool may be set / signaled. For example, a particular resource pool may be set up (/ signaled) to be shared between the V-terminal and the P-terminal, while other resource pools may be set up (/ signaling) for use only by the V-terminal (or P-terminal).
  • I_VALUE May be implicitly identified as a range value.
  • the specific resource pool is transmitted. Only a terminal (eg, P-terminal) that 'random selects' a resource may be interpreted as a resource pool configured (/ signaled) for use.
  • a particular resource pool is configured to be shared between transmissions of the V-terminal and the P-terminal, and / or the resource pool (used by the V-terminal) and (partially used by the V-terminal) that allow for 'random selection'.
  • Sensing-based resource pools may be configured (/ signaled) to overlap some or all.
  • the (P-) terminal performing the 'random selection' operation may allow the transmission resource 'random selection' on the corresponding resource pool to be maintained (/ reserved) for a predetermined time.
  • a resource pool (used by the V-terminal) and a resource pool (used by the V-terminal) that are not configured to be shared between the transmission of the V-terminal and the P-terminal, and / or allow for 'random selection' When (partial) sensing-based resource pools are not set (/ signaled) to overlap some or all of them, a (P-) terminal performing a 'random selection' operation causes a (P-) terminal to perform a 'random selection' transmission resource on the resource pool. You may also choose not to maintain (/ reserve) for a period of time.
  • FIG. 17 illustrates an operation of a terminal that selects a resource by a random selection method on a resource pool in which (partial) sensing is allowed.
  • the UE may select the V2X transmission resource 312 through random selection from a resource pool in which (partial) sensing is allowed. For example, when the resource pool allowed for (partial) sensing overlaps with the resource pool allowed for random selection (and / or when both random selection and (partial) sensing are allowed on a specific pool), the terminal may sense (partial) sensing. V2X transmission resources can be selected through random selection from this allowed resource pool.
  • the terminal may reserve resources 313 having the same frequency as the V2X transmission resource 312 semi-statically. That is, over a specific interval, the randomly selected resources are repeatedly reserved at regular intervals.
  • the UE actually selects a resource in a random selection scheme, but when the resource pool that selects the resource overlaps with a resource pool that is allowed for (partial) sensing (and / or the resource pool that selects the resource allows both random selection and (partial) sensing). In this case, it can be interpreted that the operation is similar to the (partial sensing operation) terminal in the resource pool where the (partial) sensing is allowed.
  • a V2X terminal eg, a P-terminal
  • a sensing operation based on scheduling allocation decoding / energy measurement
  • a limited time (/ frequency) resource interval (/ region) that is preset (/ signaled) ) (Limited / Partially Sensing Terminal (LIMITED (/ PARTIAL) SENSING_UE))
  • LIMITED / PARTIAL SENSING_UE
  • Type # A terminal or Type # B terminal.
  • the Type #A terminal may not perform (or perform) a sensing operation (based on scheduling allocation decoding / energy measurement) to perform a V2X message transmission operation on the V2X transmission resource pool #B.
  • V2X CARRIER # Y where V2X communication is performed
  • the P-UE (S) is located near ( Or another V2X UE (S) (e.g., 'V-UE (S)') is called 'ITS (sidelink) SERVICE (related V2X MESSAGE TX operation)' and / or ' PS (PUBLIC SAFTY) SERVICE (related).
  • V2X MESSAGE TX operation, etc. ') (e.g., efficiently (or quickly)).
  • '(limited) CAPABILITY (/ CHAIN / CIRCUIT)' e.g., 'LIMITED SENSING_UE' form, 'TYPE # B_UE' form, 'LIMITED RX CHAIN / CIRCUIT' form ( Or P-UE (S), in the form of 'NO RX CHAIN / CIRCUIT' or 'TX CHAIN / CIRCUIT' only, is located at the adjacent distance on the same channel (/ band / carrier) (where V2X communication is performed).
  • CAPABILITY (/ CHAIN / CIRCUIT)' e.g., 'LIMITED SENSING_UE' form, 'TYPE # B_UE' form, 'LIMITED RX CHAIN / CIRCUIT' form ( Or P-UE (S), in the form of 'NO RX CHAIN / CIRCUIT' or 'TX CHAIN / CIRCUIT' only, is located at the adjacent distance on the same channel (/ band
  • the P-UE (S) that is aware (/ detected) that there is a 'other communication' (in an adjacent distance on the same channel (/ band / carrier) (V2X communication is performed)) is the 'suggestions'.
  • Efficient coexistence (/ a collision avoidance) according to the (some) rules described in the section "Coexistence Methods" (in particular, "How to Make V2X Communications and Other Communications Coexist”). .
  • a P-UE that is, a terminal (eg, the aforementioned 'LIMITED SENSING_UE') lacking (or limited) sensing capability or (B) a terminal having no sensing capability (for example, the above-mentioned 'B) through the drawings.
  • TYPE # B_UE ' or (C) a terminal with limited RX CHAIN / CIRCUIT (eg,' LIMITED RX CHAIN / CIRCUIT) because there is no 'DEDICATED RX CHAIN / CIRCUIT' on V2X CARRIER # Y where V2X communication is performed.
  • V2X vehicle to X
  • FIG. 18 is a flowchart illustrating a method for transmitting a V2X message by a terminal having limited reception capability according to an embodiment of the present invention.
  • the terminal may receive information indicating that another communication is performed (/ detected) on a vehicle to X (V2X) carrier (S1010).
  • the terminal having a limited ability to detect that the other communication is performed may be a terminal having limited sensing capability, a terminal without sensing capability, or a terminal without a reception chain dedicated to the V2X resource.
  • the terminal may be a P-UE.
  • the terminal may receive information indicating that another communication is performed (/ detected) on a vehicle to X (V2X) carrier from (A) other V2X terminals or (B) from a base station.
  • the information indicating that other communication is performed (/ detected) on the V2X resource may be information indicating the type of sidelink service being performed on the V2X resource.
  • the information indicating that another communication is performed (/ detected) on the V2X resource may be information indicating whether a service being performed on the V2X resource is a public safety (PS) service.
  • the information indicating that other communication is performed (/ detected) on the V2X resource may be information indicating whether communication based on a RAT different from a radio access technology (RAT) of V2X communication is performed on the V2X resource. .
  • RAT radio access technology
  • such a rule would allow the P-UE (S) to send the relevant information as' (SIDELINK) SYNCHRONIZATION SIGNAL ( SLSS ) '(e.g.' Type of ITS service (/ content) 'and / or' PS ( Or 'NON-PS) service-related information' is mapped to 'SLSS SEQUENCE (/ ID)' (and / or when a different 'SLSS SEQUENCE (/ ID)' is used for different service (/ communication)).
  • SLSS SYNCHRONIZATION SIGNAL
  • SLSS SYNCHRONIZATION SIGNAL
  • 'SLSS' wording may be interpreted as 'PSSS' (or 'SSSS').
  • 'service type (/ type / content) (information)' (for example, 'type of ITS service' and / or 'PS (or NON-PS) service', etc.) Information) is mapped to 'SLSS SEQUENCE (/ ID)' (and / or when a different 'SLSS SEQUENCE (/ ID)' is used for different services (/ communications)), the perimeter of the P-UE (S) Located at (or adjacent to) (A) another V2X UE (S) (e.g., 'V-UE (S)') and / or (B) (serving) base station, the detected 'SLSS SEQUENCE (/ ID) 'can be informed to (P-UE (S)) (via a pre-set (/ signaled) channel).
  • V2X UE e.g., 'V-UE (S)'
  • B serving
  • transmitting the V2X message based on the information may include determining a V2X transmission message transmission resource based on the information and transmitting the V2X message on the determined transmission resource.
  • transmitting the V2X message based on the information may include determining a V2X transmission message transmission resource based on the information and transmitting the V2X message on the determined transmission resource.
  • the V2X terminal switches the transmission resource of the V2X message to a V2X resource different from the V2X resource, and the terminal is on the switched other V2X resources. This may mean transmitting the V2X message.
  • the terminal may transmit the V2X message for a preset time on the other switched V2X resources, and the switched V2X resources may be subframes other than the subframe used in the transmission block previously transmitted by the terminal.
  • the P-UE (S) is configured with a 'SIDELINK SYNCHRONIZATION (/ PSBCH) RESOURCE that is pre-set (/ signaled).
  • P-UE causes (A) 'V2X communication' (and / or 'V2X MESSAGE TX operation) on the existing pool (/ carrier / channel / band) Rules are defined to abort ') and / or (B) the' V2X communication '(and / or' V2X MESSAGE TX behavior ') is defined according to the predefined (/ signaled) rules (/ (priority) order).
  • V2X UE located near (or adjacent to) the P-UE (S)
  • the 'V-UE (S)' allows the identified (or detected) 'current type of ITS service (/ content)' and / or 'PS (or NON-PS) services to operate.
  • Presence of another communication e.g. 'DSRC / IEEE 802.11P SERVICE', 'existence of NR eV2X SERVICE' (based on another NUMEROLOGY)
  • '' and / or to the (serving) base station e.g. 'DSRC / IEEE 802.11P SERVICE', 'existence of NR eV2X SERVICE' (based on another NUMEROLOGY)
  • the (serving) base station receiving such information sends the information (predefined signal) to the P-UE (S) (on the (reported) adjacent (or same) location (/ area)). (For example, through (WAN) DL (/ PDSCH))).
  • the (serving) base station receiving the information is a location (/ area) (and / or a pool (/ carrier /) where 'other communication' has been detected (or adjacent).
  • Channel / band to 'ACTIVATION / DEACTIVATION' of the (relevant) resource pool and / or to 'V2X communication' (and / or 'V2X MESSAGE TX operation') to the P-UE (S)
  • it may instruct switching to another carrier (/ channel / band / full) which is set (/ signaled) in advance (in accordance with a rule (/ (priority) order)).
  • the P-UE (S) receiving the corresponding information (from the (serving) base station) is the pool (where the (current) location (and / or) it performs (current) V2X MESSAGE TX operation) (Carrier / channel / band)) to maintain (/ suspend) V2X MESSAGE TX operation on an existing pool (/ carrier / channel / band) and / or predefined (/ signaled) rules Switching to a different carrier (/ channel / band / full) (depending on the (priority)) and on a different resource (/ channel / band) (perhaps pre-set (/ signaled) for a certain amount of time) on ' V2X communication '(and / or' V2X MESSAGE TX operation ') can be determined (/ judged).
  • the P-UE (S) need not (directly) attempt to detect 'SLSS (SEQUENCE (/ ID)) (/ PSBCH)'.
  • 'SLSS' wording may be interpreted as 'PSSS' (or 'SSSS').
  • the '(limited) CAPABILITY (/ CHAIN / CIRCUIT)' described above eg, 'LIMITED SENSING_UE', 'TYPE # B_UE', 'LIMITED RX CHAIN / CIRCUIT' (or 'NO RX').
  • PARTIAL SENSING 'operation (during pre-set (/ signaled) (time (frequency) resource) section) for detection (/ grasp) purpose, ( To reduce the (average) 'PARTIAL SENSING' time required to detect successfully (or to increase the probability of detecting 'other communications' when the 'PARTIAL SENSING' operation is performed), and (adjacent) another V2X UE (S) ) (E.g.
  • 'V-UE (S)') (and / or (serving) base station (/ RSU)) allows the 'PARTIAL SENSING' (preset (/ signaled)) (V2X) during the (Resource) section Seen associated) can also be interpreted to be in a channel / signal transfer operations is omitted (a kind of 'SILENCING PERIOD').
  • a P-UE (with limited receive / transmit circuit capability) is (A) sensing any type (/ type) (e.g. 'PARTIAL SENSING', 'FULL SENSING'). According to whether to perform an operation and / or (B) (without sensing operation) (transmission resource) random selection, the 'SLSS transmission (/ reception (/ monitoring)) (perform) condition' is differently set (/ signaling). Can be.
  • the following (some) parameters may be set differently (or independently) when compared to V-UE (S): (/ Signaling).
  • Example # 1 A finite number of subframes (of a resource reservation (interval) period) assumed (/ used) when performing transmission resource (re) reservation (/ selection) (and / or (invention document) proposed coexistence)
  • V2X message priority (e.g. can be set (/ signaled) to a relatively low (or high) priority) and / or (invention document) proposed coexistence method: Table 2 SECTION 2.3 "PSSCH-RSRP MEASUREMENT" threshold on STEP 5 (and / or (invention document) proposed coexistence method: Table 2 SECTION 2.3. "0.2 * M total " related factor (/ ratio on STEP 6 (/ 8)) Value (for example, (invention document) proposed coexistence method: Table 2) minimum number of (candidate) resources that must remain (in a total of (candidate) resources) (in a set of S A ) after STEP 5 of SECTION 2.3.
  • Example # 3 I_VALUE (range) value and / or P_STEP value selectable (/ allowed) on the V2X resource pool (and / or (V2X) carrier).
  • Transmission power related (OPEN-LOOP) parameters (/ values) (eg "P O ", "ALPHA”, etc.) and / or V2X resource pool (/ carrier).
  • the 'V2X MESSAGE) transmit operation' (and / or '(transmit) resource selection (/ reservation) of the P-UE (S) (with limited receive / transmit circuit capability) ) Operation can be efficiently supported.
  • 19 is a flowchart illustrating a method for transmitting a V2X message by a terminal having limited reception capability according to another embodiment of the present invention.
  • the terminal may receive information indicating that another communication is performed (/ detected) on a vehicle to X (V2X) carrier from another V2X terminal (S1110).
  • V2X vehicle to X
  • the other V2X terminal may mean a V-UE.
  • receiving information indicating that another communication is performed (/ detected) on a vehicle to X (V2X) carrier is, as described above, being operated (or detected).
  • ) 'Type of ITS service (/ content)' and / or 'Whether it is PS (or NON-PS) service' (and / or 'Other communications may indicate information to (P-UE (S)) (via a preset channel (/ signaling)). Since a detailed description of the present example is as described above, detailed descriptions thereof will be omitted for convenience of description.
  • the terminal may determine a transmission resource of the V2X message based on the information (S1120).
  • P-UE S
  • A 'V2X communication' (and / or) on the existing pool (/ carrier / channel / band)
  • Rules are defined to abort 'V2X MESSAGE TX operation') and / or (B) 'V2X communication' (and / or 'V2X MESSAGE') according to a predefined (/ signaled) (rule (/) priority).
  • the 'V2X MESSAGE) transmission operation' (and / or '(transmission) resource selection (/ reservation) operation') of the P-UE (S) (with limited reception (/ transmission) circuit capability) may be performed. It can support you efficiently. Since a detailed description of the present example is as described above, detailed descriptions thereof will be omitted for convenience of description.
  • the terminal may transmit the V2X message on the determined transmission resource (S1130).
  • a specific example of transmitting the V2X message on the transmission resource determined by the terminal is as described above.
  • 20 is a flowchart illustrating a method for transmitting a V2X message by a terminal having limited reception capability according to another embodiment of the present invention.
  • the base station may receive information indicating that another communication is performed (/ detected) on a vehicle to X (V2X) carrier from a V2X terminal (different from the P-UE) (S1210).
  • V2X vehicle to X
  • the other V2X terminal may mean a V-UE.
  • receiving information indicating that another communication is performed (/ detected) on a vehicle to X (V2X) carrier is, as described above, being operated (or detected).
  • ) 'Type of ITS service (/ content)' and / or 'Whether it is PS (or NON-PS) service' (and / or 'Other communications may indicate information to (P-UE (S)) (via a preset channel (/ signaling)). Since a detailed description of the present example is as described above, detailed descriptions thereof will be omitted for convenience of description.
  • another V2X UE (S) (e.g., 'V-UE (S)' located in the vicinity of (or adjacent to) the P-UE (S)) may be identified (or detected).
  • the 'type of ITS service (/ content)' and / or ' is it a PS (or NON-PS) service' and / or 'other communication (e.g.' DSRC / IEEE 802.11P SERVICE '
  • PS or NON-PS
  • 'other communication e.g.' DSRC / IEEE 802.11P SERVICE '
  • the terminal may receive information indicating that another communication is performed (/ detected) on a vehicle to X (V2X) carrier (S1220). That is, the terminal may receive information indicating that another communication is performed (/ detected) on a V2X carrier transmitted by another V2X terminal from the base station. Alternatively, the terminal may receive information from the base station indicating that other communication is performed (/ detected) on a V2X carrier generated by the base station.
  • V2X vehicle to X
  • receiving information indicating that another communication is performed (/ detected) on a vehicle to X (V2X) carrier is, as described above, being operated (or detected).
  • ) 'Type of ITS service (/ content)' and / or 'Whether it is PS (or NON-PS) service' (and / or 'Other communications may indicate information to (P-UE (S)) (via a preset channel (/ signaling)). Since a detailed description of the present example is as described above, detailed descriptions thereof will be omitted for convenience of description.
  • the terminal may determine a transmission resource of the V2X message based on the information (S1230).
  • P-UE S
  • A 'V2X communication' (and / or) on the existing pool (/ carrier / channel / band)
  • Rules are defined to abort 'V2X MESSAGE TX operation') and / or (B) 'V2X communication' (and / or 'V2X MESSAGE') according to a predefined (/ signaled) (rule (/) priority).
  • the 'V2X MESSAGE) transmission operation' (and / or '(transmission) resource selection (/ reservation) operation') of the P-UE (S) (with limited reception (/ transmission) circuit capability) may be performed. It can support you efficiently. Since a detailed description of the present example is as described above, detailed descriptions thereof will be omitted for convenience of description.
  • the terminal may transmit the V2X message on the determined transmission resource (S1240).
  • a specific example of transmitting the V2X message on the transmission resource determined by the terminal is as described above.
  • the WAN transmission operation may not always be prioritized over the V2X transmission operation.
  • 21 is a flowchart illustrating a V2X transmission method when a WAN transmission operation and a V2X transmission operation overlap in a time domain according to an embodiment of the present invention.
  • the terminal may determine whether the V2X transmission operation and the WAN transmission operation are performed on the same carrier (S1310).
  • the terminal may be the above-described V2X terminal.
  • the terminal may perform a V2X transmission operation based on the determination (S1320). More specifically, the UE may (A) efficiently determine the V2X transmission power when the V2X transmission operation performed on different carriers and the WAN (UL) transmission operation overlap (in part or all) in the time domain, and / or (B A more specific method of prioritizing V2X transmission operations (overlapping in the time domain with WAN (UL) transmission operations on the same (and / or different) carrier) is preferred over WAN (UL) transmissions.
  • A A method for efficiently determining V2X transmission power when V2X transmission operations performed on different carriers and WAN (UL) transmission operations overlap (some or all) in the time domain.
  • FIG. 22 schematically illustrates an example in which V2X transmission operations and WAN (UL) transmission operations performed on different carriers overlap (some or all) in the time domain.
  • the terminal may perform V2X transmission on a V2X carrier having a frequency f0 at time t0, and the terminal may perform WAN transmission on a WAN carrier having a f1 frequency at time t0.
  • the terminal should adjust the sidelink transmission power so that the total transmission power does not exceed P CMAX in the overlapped portion.
  • the WAN TX may be prioritized over the SL TX in terms of power allocation.
  • the terminal may allocate more power to the WAN TX (rather than the SL TX).
  • V2X transmissions performed by V2X terminals moving at relatively high speeds often require more urgent transmission operations than D2D transmissions, and thus WAN transmission operations always take precedence over V2X transmission operations. You may not be mad.
  • FIG. 23 is a flowchart of a V2X transmission method when a WAN transmission operation and a V2X transmission operation overlap in a time domain according to another embodiment of the present invention.
  • the terminal may determine a transmission power applied to the V2X transmission operation (S1410).
  • the terminal may mean a V2X terminal. More specifically, the following options may be provided.
  • V2V performance reduction can be effectively prevented by giving V2V TX a higher priority than (WAN TX) in power allocation.
  • V2V TX occurs in a time domain set as 'V2V gap' or V2V TX with ProSe prioiry per packet (PPP) is performed
  • PPP ProSe prioiry per packet
  • Option 1 preferentially allocate power to V2V TX, and surplus power to WAN TX
  • V2X MESSAGE TX and WAN UL TX overlap (in some and / or all) on the time domain (on a specific (one) V2X UE perspective) on different (and / or identical) carriers (or frequencies)
  • the following (partial) rules apply to the performance of (relatively high PPPP) V2X MESSAGE TX and / or (relatively significant) WAN UL TX (e.g., PUCCH (/ PRACH) (/ PUSCH / SRS)).
  • PUCCH Physical Uplink Control
  • PRACH Physical channels dedicated to Physical channels
  • the following (some) rule may be limitedly applied only when the (time) synchronization difference between the V2X MESSAGE TX and the WAN UL TX is greater than a preset (/ signaled) threshold.
  • applying a pre-set (signaled) G_MINPOWER value on a WAN UL TX (and / or V2X MESSAGE TX) may be (in time domain) (part or all) overlapping PPPP (ProSe) of the V2X MESSAGE TX.
  • the value of prioiry per packet is greater than the preset (/ signaled) threshold (for example, if the PPPP value of the V2X MESSAGE TX is less than the preset (/ signaled) threshold, Power allocation takes precedence) (and / or the sum of the (required) V2X MESSAGE TX POWER value and the (required) WAN UL TX POWER value exceeds the maximum transmit power value of the terminal (e.g., '23 DBM ') If only) may be limited to.
  • the G_MINPOWER value associated with the WAN UL TX (and / or V2X MESSAGE TX) may be set differently (or independently) by the PPPP value of the V2X MESSAGE TX (in some or all) overlap (in the time domain). Signaling).
  • Example # 2 Omit WAN UL TX (for example, V2X MESSAGE TX) if the PPPP value of the (some or all) overlapping V2X MESSAGE TX is greater than a preset (/ signaled) threshold (on time domain). If the PPPP value of V2X MESSAGE TX is less than the preset (/ signaled) threshold value can be omitted.
  • V2X MESSAGE TX for example, V2X MESSAGE TX
  • the rule is limited only in the case of WAN UL TX except for the (important) channel (/ signal) (eg PUCCH (/ PRACH) (/ PUSCH / SRS)) set in advance (/ signaled). It can also be applied.
  • Example # 1 In the case of the (important) channel (/ signal) (for example, PUCCH (/ PRACH) (/ PUSCH / SRS)) previously set (/ signaled), (Example # 1) (Example For example, G_MINPOWER) may be applied (exceptionally) (e.g., it may be interpreted to avoid skipping the (important) (important) channel (/ signal)) and / or V2X MESSAGE TX (exceptional) May be omitted).
  • the (important) channel (/ signal) for example, PUCCH (/ PRACH) (/ PUSCH / SRS)
  • G_MINPOWER may be applied (exceptionally) (e.g., it may be interpreted to avoid skipping the (important) (important) channel (/ signal)) and / or V2X MESSAGE TX (exceptional) May be omitted).
  • Proposal In summary, the following two options can support SL TX prioritization over WAN TX in power allocation.
  • Option 1 preferentially allocate power to V2V TX, and remaining power to WAN TX
  • FIG. 24 schematically illustrates an example of a method of prioritizing V2X transmission operations (overlapping in the time domain with WAN (UL) transmission operations on the same (and / or different) carrier) over WAN (UL) transmissions.
  • the terminal may perform V2X transmission and WAN transmission on the same carrier having the frequency f0 at time t0.
  • FIG. 24 schematically illustrates V2X transmission and WAN transmission on the same carrier for the convenience of description of the present invention. However, the embodiment of the present invention below may be performed even when performing V2X transmission and WAN transmission on different carriers. Can be applied.
  • sidelink open loop power control can be reused for SL TX for V2V.
  • SL TX for V2V may be prioritized over WAN TX.
  • the SL TX for V2V described above may apply the above-described D2D operation (eg, mode 1 and / or mode 2).
  • the priority may be managed by the base station eNB.
  • the same receiver function of the D2D communication terminal may be assumed for the V2V terminal. That is, when the terminal is configured to receive V2V, the RX chain may always receive V2V signals without affecting WAN reception.
  • 25 is a flowchart illustrating a V2X transmission method when a WAN transmission operation and a V2X transmission operation overlap in a time domain according to another embodiment of the present invention.
  • the terminal may determine the priority of the V2X transmission operation (S1510). .
  • the terminal may be the above-described V2X terminal. More specifically, the following options may be applied.
  • SL TX prioritization over WAN TX is important to ensure the V2V performance of TM4 in a shared carrier case (ie SL TX and WAN TX on the same carrier).
  • One possible option to support this behavior is to reuse the 'ProSe gap' (e.g., the time interval in which the D2D TX set by the network takes precedence over the WAN TX), with additional modifications optimized for V2V traffic patterns. Can be considered
  • a V2V TX with a preset PPPP is always prioritized over a WAN TX.
  • the V2V TX and the WAN TX overlap in terms of time on the same carrier, the V2V TX with another PPPP may be dropped.
  • Proposal One of the following options may be selected to support SL TX prioritization over WAN TX.
  • Option 1 After applying some mandatory modifications (e.g. introducing additional cycles appropriate for V2V traffic patterns), the 'ProSe gap' related to the Rel-13 eD2D search can be reused.
  • the V2X associated with PPPP (or preset PP signal (pre-signaling)) above the threshold (/ signaling) set in advance ( MESSAGE) only TX may be prioritized over WAN UL TX.
  • V2V TX with (pre) configured PPPP can always be prioritized over WAN TX.
  • Proposal One of the following options can be selected to support SL TX prioritization over WAN TX.
  • Option 1 After applying some mandatory modifications (e.g. introducing an additional period suitable for V2V traffic patterns), the 'ProSe gap' related to the Rel-13 eD2D search can be reused.
  • V2V TX with (pre) configured PPPP can always be prioritized over WAN TX.
  • the P-UE (S) that is performing (/) the ("(PARTIAL) SENSING-BASED RESOURCE SELECTION BEHAVIOUR (/ POOL)" is ( )) If “CONGESTION LEVEL” exceeds the preset (/ signaled) threshold, you can have "RAMDOM RESOURCE SELECTION BEHAVIOUR (/ POOL)" performed (/ used).
  • the present invention has been described a proposal method based on the 3GPP LTE system for convenience of description, the scope of the system to which the proposed method is applied can be extended to other systems besides the 3GPP LTE system.
  • D2D communication means that the UE communicates directly with another UE using a wireless channel, where, for example, the UE means a terminal of a user, but network equipment such as a base station is used for communication between UEs. Therefore, when transmitting / receiving a signal, it can also be regarded as a kind of UE.
  • the proposed schemes of the present invention may be limitedly applied only to the MODE 2 V2X operation (and / or the MODE 1 V2X operation).
  • the proposed schemes of the present invention not only P-UE (S) with limited receive (/ transmit) circuit capability, but also VEHICLE UE (S) ( V- UE (S) ) (and / or receive (/) It is also applicable to P-UE (S), which is not limited in transmission) circuit capability.
  • the proposed schemes may be extended even when WAN UL TX and V2X MESSAGE TX overlap (partly) in the time domain in different CARRIER (S).
  • the proposed schemes of the present invention may be described as “SENSING GAP (/ RESOURCE) (or RX GAP () received from a network (or base station) by a P-UE (S) (with limited receiving / transmitting circuit capability). / RESOURCE) or PARTIAL SENSING GAP (/ RESOURCE)) "when performing” PARTIAL SENSING "(for (partly) resource intervals (/ area)) and / or without receiving relevant relevant information
  • extension can be applied.
  • the proposed schemes of the present invention allow the P-UE (S) (with limited receive / transmit) circuit capability to perform a 'PARTIAL SENSING' (and / or 'FULL SENSING') operation (based transmission resource selection). ) And / or (if the transmission resource random selection (without the sensing operation)) can be limited only.
  • the proposed schemes of the present invention may be performed on different (and / or identical) carriers (or frequencies) (in terms of a specific (one) V2X UE), so that the V2X MESSAGE TX and WAN UL TX are in the time domain (some and / Or all) may only be limited if overlapping.
  • 26 is a block diagram illustrating a terminal in which an embodiment of the present invention is implemented.
  • the terminal 1100 includes a processor 1110, a memory 1120, and an RF unit 1130.
  • the processor 1110 may execute a function / operation / method described by the present invention. For example, the processor 1110 receives type information indicating a type of a resource pool, and based on the type information, the processor 1110 receives random selection and partial sensing in the resource pool. At least one of the resource selection may be performed.
  • the processor 1110 reserves semi-persistent resources selected through partial resource selection based on partial sensing. reservation).
  • the processor 1110 may not reserve the resources selected through the random selection semi-statically.
  • the processor 1110 is a type that allows resource selection based on partial sensing. When random selection is performed in the resource pool, the processor 1110 may reserve the randomly selected resources semi-statically. Semi-statically reserved resources have been described with reference to FIG. 17.
  • the RF unit 1130 is connected to the processor 1110 to transmit and receive a radio signal.
  • the processor may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, and / or data processing devices.
  • the memory may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium and / or other storage device.
  • the RF unit may include a baseband circuit for processing a radio signal.
  • the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
  • the module may be stored in memory and executed by a processor.
  • the memory may be internal or external to the processor and may be coupled to the processor by various well known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

무선 통신 시스템에서 단말에 의해 수행되는 V2X(vehicle-to-everything) 전송 자원 선택 방법 및 상기 방법을 이용하는 단말을 제공한다. 상기 방법은 자원 풀(resource pool)의 타입을 알려주는 타입 정보를 수신하고, 상기 타입 정보에 기반하여 상기 자원 풀에서 랜덤 선택(random selection) 및 부분 센싱(partial sensing)에 기반한 자원 선택 중 적어도 하나를 수행하는 것을 특징으로 한다.

Description

무선 통신 시스템에서 단말에 의해 수행되는 V2X 전송 자원 선택 방법 및 상기 방법을 이용하는 단말
본 발명은 무선 통신에 관한 것으로서, 보다 상세하게는, 무선 통신 시스템에서 단말에 의해 수행되는 V2X 전송 자원 선택 방법 및 이 방법을 이용하는 단말에 관한 것이다.
ITU-R(International Telecommunication Union Radio communication sector)에서는 3세대 이후의 차세대 이동통신 시스템인 IMT(International Mobile Telecommunication)-Advanced의 표준화 작업을 진행하고 있다. IMT-Advanced는 정지 및 저속 이동 상태에서 1Gbps, 고속 이동 상태에서 100Mbps의 데이터 전송률로 IP(Internet Protocol)기반의 멀티미디어 서비스 지원을 목표로 한다.
3GPP(3rd Generation Partnership Project)는 IMT-Advanced의 요구 사항을 충족시키는 시스템 표준으로 OFDMA(Orthogonal Frequency Division Multiple Access)/SC-FDMA(Single Carrier-Frequency Division Multiple Access) 전송방식 기반인 LTE(Long Term Evolution)를 개선한 LTE-Advanced(LTE-A)를 준비하고 있다. LTE-A는 IMT-Advanced를 위한 유력한 후보 중의 하나이다.
최근 장치들 간 직접통신을 하는 D2D (Device-to-Device)기술에 대한 관심이 높아지고 있다. 특히, D2D는 공중 안전 네트워크(public safety network)을 위한 통신 기술로 주목 받고 있다. 상업적 통신 네트워크는 빠르게 LTE로 변화하고 있으나 기존 통신 규격과의 충돌 문제와 비용 측면에서 현재의 공중 안전 네트워크는 주로 2G 기술에 기반하고 있다. 이러한 기술 간극과 개선된 서비스에 대한 요구는 공중 안전 네트워크를 개선하고자 하는 노력으로 이어지고 있다.
공중 안전 네트워크는 상업적 통신 네트워크에 비해 높은 서비스 요구 조건(신뢰도 및 보안성)을 가지며 특히 셀룰러 통신의 커버리지가 미치지 않거나 이용 가능하지 않은 경우에도, 장치들 간의 직접 신호 송수신 즉, D2D 동작도 요구하고 있다.
일례로, 일반적으로 D2D 동작은 근접한 기기들 간의 신호 송수신이라는 점에서 다양한 장점을 가질 수 있다. 예를 들어, D2D 단말은 높은 전송률 및 낮은 지연을 가지며 데이터 통신을 할 수 있다. 또한, D2D 동작은 기지국에 몰리는 트래픽을 분산시킬 수 있으며, D2D 동작을 수행하는 단말이 중계기 역할을 한다면 기지국의 커버리지를 확장시키는 역할도 할 수 있다.
상술한 D2D 통신을 확장하여 차량 간의 신호 송수신에 적용할 수 있으며, 차량 (VEHICLE)과 관련된 통신을 특별히 V2X(VEHICLE-TO-EVERYTHING) 통신이라고 부른다.
V2X에서 'X'라는 용어는 PEDESTRIAN (COMMUNICATION BETWEEN A VEHICLE AND A DEVICE CARRIED BY AN INDIVIDUAL(예: HANDHELD TERMINAL CARRIED BY A PEDESTRIAN, CYCLIST, DRIVER OR PASSENGER), 이 때, V2X는 V2P로 표시할 수 있다), VEHICLE (COMMUNICATION BETWEEN VEHICLES) (V2V), INFRASTRUCTURE/NETWORK (COMMUNICATION BETWEEN A VEHICLE AND A ROADSIDE UNIT (RSU)/NETWORK (예) RSU IS A TRANSPORTATION INFRASTRUCTURE ENTITY (예) AN ENTITY TRANSMITTING SPEED NOTIFICATIONS) IMPLEMENTED IN AN eNB OR A STATIONARY UE)) (V2I/N) 등을 의미한다.
보행자(혹은 사람)가 소지한 (V2P 통신 관련) 디바이스를 "P-UE"로 명명하고, 차량(VEHICLE)에 설치된 (V2X 통신 관련) 디바이스를 "V-UE"로 명명한다. 본 발명에서 '엔티티(ENTITY)' 용어는 P-UE, V-UE, RSU(/NETWORK/INFRASTRUCTURE) 중 적어도 하나로 해석될 수 있다.
한편, V2X 통신에서, P-UE가 V2X 신호를 전송하려고 할 때 어떤 자원을 어떻게 선택할 것인지가 문제될 수 있다. P-UE는 차량에 설치된 단말과 달리 배터리 소모에 민감한 특징이 있다. 또한, V2X 통신에서는 주로 주기적으로 신호를 전송하고, 다른 단말에게 간섭을 미치지 않는 것이 중요할 수 있다. 이러한 점들을 고려하여, P-UE의 전송 자원 선택 방법을 결정할 필요가 있다.
본 발명이 해결하고자 하는 기술적 과제는 무선 통신 시스템에서 단말에 의해 수행되는 V2X 전송 자원 선택 방법 및 이를 이용하는 단말을 제공하는 것이다.
일 측면에서, 무선 통신 시스템에서 단말에 의해 수행되는 V2X(vehicle-to-everything) 전송 자원 선택 방법을 제공한다. 상기 방법은 자원 풀(resource pool)의 타입을 알려주는 타입 정보를 수신하고, 상기 타입 정보에 기반하여 상기 자원 풀에서 랜덤 선택(random selection) 및 부분 센싱(partial sensing)에 기반한 자원 선택 중 적어도 하나를 수행하는 것을 특징으로 한다.
상기 타입 정보는 상기 단말이 상기 자원 풀에서 자원 선택을 할 때 부분 센싱이 허용되는지 여부 및 상기 단말이 상기 자원 풀에서 자원 선택을 할 때 랜덤 선택이 허용되는지 여부를 지시할 수 있다.
상기 부분 센싱은, 센싱 윈도우(sensing window) 내의 서브프레임들 중에서 일부 서브프레임들만을 센싱하고, 상기 센싱에 기반하여 선택 윈도우(selectin window) 내의 특정 서브프레임을 V2X 전송 서브프레임으로 선택하는 센싱 기법일 수 있다.
상기 센싱 윈도우는 연속하는 1000개의 서브프레임들로 구성되고, 상기 선택 윈도우는 상기 센싱 윈도우 다음에 위치하는 100개의 연속하는 서브프레임들로 구성될 수 있다.
상기 단말은 상기 자원 풀의 타입이 부분 센싱(partial sensing)에 기반한 자원 선택만 허용되는 타입인 경우, 상기 부분 센싱(partial sensing)에 기반한 자원 선택을 통해 선택한 자원을 반정적(semi-persistent)으로 유보(reservation)할 수 있다.
상기 단말은 상기 자원 풀의 타입이 랜덤 선택만 허용되는 타입인 경우, 상기 랜덤 선택을 통해 선택한 자원을 반정적으로 유보하지 않을 수 있다.
상기 자원 풀의 타입이 부분 센싱(partial sensing)에 기반한 자원 선택이 허용되는 타입이고 상기 단말이 상기 자원 풀에서 랜덤 선택을 수행하는 경우, 상기 단말은 상기 랜덤 선택한 자원을 반정적으로 유보할 수 있다.
상기 단말은 차량에 설치된 다른 단말과 통신하는 단말일 수 있다.
다른 측면에서 제공되는 단말(User equipment; UE)은, 무선 신호를 송신 및 수신하는 RF(Radio Frequency) 부 및 상기 RF부와 결합하여 동작하는 프로세서를 포함하되, 상기 프로세서는, 자원 풀(resource pool)의 타입을 알려주는 타입 정보를 수신하고, 상기 타입 정보에 기반하여 상기 자원 풀에서 랜덤 선택(random selection) 및 부분 센싱(partial sensing)에 기반한 자원 선택 중 적어도 하나를 수행하는 것을 특징으로 한다.
본 발명에 따르면, 네트워크는 보행자 단말에게 자원 풀의 타입 즉, V2X 신호를 전송할 수 있는 자원을 선택할 때 랜덤 선택만 허용되는지, 부분 센싱에 기반한 자원 선택만 허용되는지, 랜덤 선택과 부분 센싱 둘 다 허용되는지를 알려줄 수 있다. 보행자 단말은 자원 풀의 타입에 따라 적절한 동작을 수행하므로 다른 단말에게 미치는 간섭을 줄일 수 있다. 또한, 서로 다른 타입의 자원 풀이 겹치는 경우, 단말이 어떠한 방식으로 동작하는지를 규정한다. 예를 들어, 부분 센싱에 기반한 자원 선택이 허용되는 자원 풀에서 랜덤 선택을 하는 단말은, 랜덤 선택만 허용되는 자원 풀에서의 동작과는 달리, 랜덤 선택한 자원을 일정 기간 동안 반정적으로 유보하여, 부분 센싱에 기반한 자원 선택이 허용되는 자원 풀의 특성에 맞는 동작을 할 수 있다.
도 1은 본 발명이 적용될 수 있는 무선통신 시스템을 예시한다.
도 2는 사용자 평면(user plane)에 대한 무선 프로토콜 구조(radio protocol architecture)를 나타낸 블록도이다.
도 3은 제어 평면(control plane)에 대한 무선 프로토콜 구조를 나타낸 블록도이다.
도 4는 ProSe를 위한 기준 구조를 나타낸다.
도 5는 ProSe 직접 통신을 수행하는 단말들과 셀 커버리지의 배치 예들을 나타낸다.
도 6은 ProSe 직접 통신을 위한 사용자 평면 프로토콜 스택을 나타낸다.
도 7은 D2D 발견을 위한 PC 5 인터페이스를 나타낸다.
도 8은 짧은 시퀀스의 시간 반복을 이용한 LTE SL V2V 검출 신호의 일례다.
도 9는 주파수 영역에서 시퀀스 매칭을 이용한 LTE SL V2V 검출 신호의 일례다.
도 10은 <제안 방법 #2>에 따른 부분 센싱 동작에 따른 V2X 전송 자원 선택 방법을 예시한다.
도 11은 <제안 방법 #2>에 따른 V2X 전송 서브프레임을 결정하는 방법을 예시한다.
도 12는 <제안 방법 #2>에 따른, 보행 단말(P-UE), 차량 단말(V-UE) 및 네트워크 간의 통신 방법을 예시한다.
도 13은 예시#4-1에 따라 V2X 전송 자원을 선택하는 방법을 예시한다.
도 14는 예시#4-1에 따른 V2X 전송 자원 선택 방법을 나타낸다.
도 15는 V2X 전송 자원 풀의 타입을 예시한다.
도 16은 복수 타입의 자원 풀들이 존재하는 상황에서, V2X 자원 풀을 선택하는 방법을 예시한다.
도 17은 (부분) 센싱이 허용된 자원 풀 상에서 랜덤 선택 방식으로 자원을 선택한 단말의 동작을 예시한다.
도 18은 본 발명의 일 실시예에 따른, 한정된 수신 능력을 가지는 단말이 V2X 메시지를 전송하는 방법의 순서도다.
도 19는 본 발명의 다른 실시예에 따른, 한정된 수신 능력을 가지는 단말이 V2X 메시지를 전송하는 방법의 순서도다.
도 20은 본 발명의 또 다른 실시예에 따른, 한정된 수신 능력을 가지는 단말이 V2X 메시지를 전송하는 방법의 순서도다.
도 21은 본 발명의 일 실시예에 따른, WAN 전송 동작과 V2X 전송 동작이 시간 영역에서 겹치는 경우, V2X 전송 방법의 순서도다.
도 22는 상이한 케리어 상에서 수행되는 V2X 전송 동작과 WAN (UL) 전송 동작이 시간 영역에서 (일부 혹은 모두) 겹치는 일례를 개략적으로 도시한 것이다.
도 23은 본 발명의 다른 실시예에 따른, WAN 전송 동작과 V2X 전송 동작이 시간 영역에서 겹치는 경우, V2X 전송 방법의 순서도다.
도 24는 (동일 (그리고/혹은 상이한) 케리어 상에서 WAN (UL) 전송 동작과 시간 영역에서 겹치는) V2X 전송 동작을 WAN (UL) 전송에 비해, 우선시 시키는 방법에 대한 일례를 개략적으로 도시한 것이다.
도 25는 본 발명의 또 다른 실시예에 따른, WAN 전송 동작과 V2X 전송 동작이 시간 영역에서 겹치는 경우, V2X 전송 방법의 순서도다.
도 26은 본 발명의 실시예가 구현되는 단말을 나타낸 블록도이다.
도 1은 본 발명이 적용될 수 있는 무선통신 시스템을 예시한다. 이는 E-UTRAN(Evolved-UMTS Terrestrial Radio Access Network), 또는 LTE(Long Term Evolution)/LTE-A 시스템이라고도 불릴 수 있다.
E-UTRAN은 단말(10; User Equipment, UE)에게 제어 평면(control plane)과 사용자 평면(user plane)을 제공하는 기지국(20; Base Station, BS)을 포함한다. 단말(10)은 고정되거나 이동성을 가질 수 있으며, MS(Mobile station), UT(User Terminal), SS(Subscriber Station), MT(mobile terminal), 무선기기(Wireless Device) 등 다른 용어로 불릴 수 있다. 기지국(20)은 단말(10)과 통신하는 고정된 지점(fixed station)을 말하며, eNB(evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다.
기지국(20)들은 X2 인터페이스를 통하여 서로 연결될 수 있다. 기지국(20)은 S1 인터페이스를 통해 EPC(Evolved Packet Core, 30), 보다 상세하게는 S1-MME를 통해 MME(Mobility Management Entity)와 S1-U를 통해 S-GW(Serving Gateway)와 연결된다.
EPC(30)는 MME, S-GW 및 P-GW(Packet Data Network-Gateway)로 구성된다. MME는 단말의 접속 정보나 단말의 능력에 관한 정보를 가지고 있으며, 이러한 정보는 단말의 이동성 관리에 주로 사용된다. S-GW는 E-UTRAN을 종단점으로 갖는 게이트웨이이며, P-GW는 PDN을 종단점으로 갖는 게이트웨이이다.
단말과 네트워크 사이의 무선인터페이스 프로토콜 (Radio Interface Protocol)의 계층들은 통신시스템에서 널리 알려진 개방형 시스템간 상호접속 (Open System Interconnection; OSI) 기준 모델의 하위 3개 계층을 바탕으로 L1 (제1계층), L2 (제2계층), L3(제3계층)로 구분될 수 있는데, 이 중에서 제1계층에 속하는 물리계층은 물리채널(Physical Channel)을 이용한 정보전송서비스(Information Transfer Service)를 제공하며, 제 3계층에 위치하는 RRC(Radio Resource Control) 계층은 단말과 네트워크 간에 무선자원을 제어하는 역할을 수행한다. 이를 위해 RRC 계층은 단말과 기지국간 RRC 메시지를 교환한다.
도 2는 사용자 평면(user plane)에 대한 무선 프로토콜 구조(radio protocol architecture)를 나타낸 블록도이다. 도 3은 제어 평면(control plane)에 대한 무선 프로토콜 구조를 나타낸 블록도이다. 사용자 평면은 사용자 데이터 전송을 위한 프로토콜 스택(protocol stack)이고, 제어 평면은 제어신호 전송을 위한 프로토콜 스택이다.
도 2 및 3을 참조하면, 물리계층(PHY(physical) layer)은 물리채널(physical channel)을 이용하여 상위 계층에게 정보 전송 서비스(information transfer service)를 제공한다. 물리계층은 상위 계층인 MAC(Medium Access Control) 계층과는 전송채널(transport channel)을 통해 연결되어 있다. 전송채널을 통해 MAC 계층과 물리계층 사이로 데이터가 이동한다. 전송채널은 무선 인터페이스를 통해 데이터가 어떻게 어떤 특징으로 전송되는가에 따라 분류된다.
서로 다른 물리계층 사이, 즉 송신기와 수신기의 물리계층 사이는 물리채널을 통해 데이터가 이동한다. 상기 물리채널은 OFDM(Orthogonal Frequency Division Multiplexing) 방식으로 변조될 수 있고, 시간과 주파수를 무선자원으로 활용한다.
MAC 계층의 기능은 논리채널과 전송채널간의 맵핑 및 논리채널에 속하는 MAC SDU(service data unit)의 전송채널 상으로 물리채널로 제공되는 전송블록(transport block)으로의 다중화/역다중화를 포함한다. MAC 계층은 논리채널을 통해 RLC(Radio Link Control) 계층에게 서비스를 제공한다.
RLC 계층의 기능은 RLC SDU의 연결(concatenation), 분할(segmentation) 및 재결합(reassembly)를 포함한다. 무선베어러(Radio Bearer; RB)가 요구하는 다양한 QoS(Quality of Service)를 보장하기 위해, RLC 계층은 투명모드(Transparent Mode, TM), 비확인 모드(Unacknowledged Mode, UM) 및 확인모드(Acknowledged Mode, AM)의 세 가지의 동작모드를 제공한다. AM RLC는 ARQ(automatic repeat request)를 통해 오류 정정을 제공한다.
RRC(Radio Resource Control) 계층은 제어 평면에서만 정의된다. RRC 계층은 무선 베어러들의 설정(configuration), 재설정(re-configuration) 및 해제(release)와 관련되어 논리채널, 전송채널 및 물리채널들의 제어를 담당한다. RB는 단말과 네트워크간의 데이터 전달을 위해 제1 계층(PHY 계층) 및 제2 계층(MAC 계층, RLC 계층, PDCP 계층)에 의해 제공되는 논리적 경로를 의미한다.
사용자 평면에서의 PDCP(Packet Data Convergence Protocol) 계층의 기능은 사용자 데이터의 전달, 헤더 압축(header compression) 및 암호화(ciphering)를 포함한다. 제어 평면에서의 PDCP(Packet Data Convergence Protocol) 계층의 기능은 제어 평면 데이터의 전달 및 암호화/무결정 보호(integrity protection)를 포함한다.
RB가 설정된다는 것은 특정 서비스를 제공하기 위해 무선 프로토콜 계층 및 채널의 특성을 규정하고, 각각의 구체적인 파라미터 및 동작 방법을 설정하는 과정을 의미한다. RB는 다시 SRB(Signaling RB)와 DRB(Data RB) 두가지로 나누어 질 수 있다. SRB는 제어 평면에서 RRC 메시지를 전송하는 통로로 사용되며, DRB는 사용자 평면에서 사용자 데이터를 전송하는 통로로 사용된다.
단말의 RRC 계층과 E-UTRAN의 RRC 계층 사이에 RRC 연결(RRC Connection)이 확립되면, 단말은 RRC 연결(RRC connected) 상태에 있게 되고, 그렇지 못할 경우 RRC 아이들(RRC idle) 상태에 있게 된다.
네트워크에서 단말로 데이터를 전송하는 하향링크 전송채널로는 시스템정보를 전송하는 BCH(Broadcast Channel)과 그 이외에 사용자 트래픽이나 제어메시지를 전송하는 하향링크 SCH(Shared Channel)이 있다. 하향링크 멀티캐스트 또는 브로드캐스트 서비스의 트래픽 또는 제어메시지의 경우 하향링크 SCH를 통해 전송될 수도 있고, 또는 별도의 하향링크 MCH(Multicast Channel)을 통해 전송될 수도 있다. 한편, 단말에서 네트워크로 데이터를 전송하는 상향링크 전송채널로는 초기 제어메시지를 전송하는 RACH(Random Access Channel)와 그 이외에 사용자 트래픽이나 제어메시지를 전송하는 상향링크 SCH(Shared Channel)가 있다.
전송채널 상위에 있으며, 전송채널에 매핑되는 논리채널(Logical Channel)로는 BCCH(Broadcast Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast Traffic Channel) 등이 있다.
물리채널(Physical Channel)은 시간 영역에서 여러 개의 OFDM 심벌과 주파수 영역에서 여러 개의 부반송파(Sub-carrier)로 구성된다. 하나의 서브프레임(Sub-frame)은 시간 영역에서 복수의 OFDM 심벌(Symbol)들로 구성된다. 자원블록은 자원 할당 단위로, 복수의 OFDM 심벌들과 복수의 부반송파(sub-carrier)들로 구성된다. 또한 각 서브프레임은 PDCCH(Physical Downlink Control Channel) 즉, L1/L2 제어채널을 위해 해당 서브프레임의 특정 OFDM 심벌들(예, 첫번째 OFDM 심볼)의 특정 부반송파들을 이용할 수 있다. TTI(Transmission Time Interval)는 서브프레임 전송의 단위시간이다.
이제 D2D 동작에 대해 설명한다. 3GPP LTE-A에서는 D2D 동작과 관련한 서비스를 근접성 기반 서비스(Proximity based Services: ProSe)라 칭한다. 이하 ProSe는 D2D 동작과 동등한 개념이며 ProSe는 D2D 동작과 혼용될 수 있다. 이제, ProSe에 대해 기술한다.
ProSe에는 ProSe 직접 통신(communication)과 ProSe 직접 발견(direct discovery)이 있다. ProSe 직접 통신은 근접한 2 이상의 단말들 간에서 수행되는 통신을 말한다. 상기 단말들은 사용자 평면의 프로토콜을 이용하여 통신을 수행할 수 있다. ProSe 가능 단말(ProSe-enabled UE)은 ProSe의 요구 조건과 관련된 절차를 지원하는 단말을 의미한다. 특별한 다른 언급이 없으면 ProSe 가능 단말은 공용 안전 단말(public safety UE)와 비-공용 안전 단말(non-public safety UE)를 모두 포함한다. 공용 안전 단말은 공용 안전에 특화된 기능과 ProSe 과정을 모두 지원하는 단말이고, 비-공용 안전 단말은 ProSe 과정은 지원하나 공용 안전에 특화된 기능은 지원하지 않는 단말이다.
ProSe 직접 발견(ProSe direct discovery)은 ProSe 가능 단말이 인접한 다른 ProSe 가능 단말을 발견하기 위한 과정이며, 이 때 상기 2개의 ProSe 가능 단말들의 능력만을 사용한다. EPC 차원의 ProSe 발견(EPC-level ProSe discovery)은 EPC가 2개의 ProSe 가능 단말들의 근접 여부를 판단하고, 상기 2개의 ProSe 가능 단말들에게 그들의 근접을 알려주는 과정을 의미한다.
이하, 편의상 ProSe 직접 통신은 D2D 통신, ProSe 직접 발견은 D2D 발견이라 칭할 수 있다.
도 4는 ProSe를 위한 기준 구조를 나타낸다.
도 4를 참조하면, ProSe를 위한 기준 구조는 E-UTRAN, EPC, ProSe 응용 프로그램을 포함하는 복수의 단말들, ProSe 응용 서버(ProSe APP server), 및 ProSe 기능(ProSe function)을 포함한다.
EPC는 E-UTRAN 코어 네트워크 구조를 대표한다. EPC는 MME, S-GW, P-GW, 정책 및 과금 규칙(policy and charging rules function:PCRF), 가정 가입자 서버(home subscriber server:HSS)등을 포함할 수 있다.
ProSe 응용 서버는 응용 기능을 만들기 위한 ProSe 능력의 사용자이다. ProSe 응용 서버는 단말 내의 응용 프로그램과 통신할 수 있다. 단말 내의 응용 프로그램은 응용 기능을 만들기 위한 ProSe 능력을 사용할 수 있다.
ProSe 기능은 다음 중 적어도 하나를 포함할 수 있으나 반드시 이에 제한되는 것은 아니다.
- 제3자 응용 프로그램을 향한 기준점을 통한 인터워킹(Interworking via a reference point towards the 3rd party applications)
- 발견 및 직접 통신을 위한 인증 및 단말에 대한 설정(Authorization and configuration of the UE for discovery and direct communication)
- EPC 차원의 ProSe 발견의 기능(Enable the functionality of the EPC level ProSe discovery)
- ProSe 관련된 새로운 가입자 데이터 및 데이터 저장 조정, ProSe ID의 조정(ProSe related new subscriber data and handling of data storage, and also handling of ProSe identities)
- 보안 관련 기능(Security related functionality)
- 정책 관련 기능을 위하여 EPC를 향한 제어 제공(Provide control towards the EPC for policy related functionality)
- 과금을 위한 기능 제공(Provide functionality for charging (via or outside of EPC, e.g., offline charging))
이하에서는 ProSe를 위한 기준 구조에서 기준점과 기준 인터페이스를 설명한다.
- PC1: 단말 내의 ProSe 응용 프로그램과 ProSe 응용 서버 내의 ProSe 응용 프로그램 간의 기준 점이다. 이는 응용 차원에서 시그널링 요구 조건을 정의하기 위하여 사용된다.
- PC2: ProSe 응용 서버와 ProSe 기능 간의 기준점이다. 이는 ProSe 응용 서버와 ProSe 기능 간의 상호 작용을 정의하기 위하여 사용된다. ProSe 기능의 ProSe 데이터베이스의 응용 데이터 업데이트가 상기 상호 작용의 일 예가 될 수 있다.
- PC3: 단말과 ProSe 기능 간의 기준점이다. 단말과 ProSe 기능 간의 상호 작용을 정의하기 위하여 사용된다. ProSe 발견 및 통신을 위한 설정이 상기 상호 작용의 일 예가 될 수 있다.
- PC4: EPC와 ProSe 기능 간의 기준점이다. EPC와 ProSe 기능 간의 상호 작용을 정의하기 위하여 사용된다. 상기 상호 작용은 단말들 간에 1:1 통신을 위한 경로를 설정하는 때, 또는 실시간 세션 관리나 이동성 관리를 위한 ProSe 서비스 인증하는 때를 예시할 수 있다.
- PC5: 단말들 간에 발견 및 통신, 중계, 1:1 통신을 위해서 제어/사용자 평면을 사용하기 위한 기준점이다.
- PC6: 서로 다른 PLMN에 속한 사용자들 간에 ProSe 발견과 같은 기능을 사용하기 위한 기준점이다.
- SGi: 응용 데이터 및 응용 차원 제어 정보 교환을 위해 사용될 수 있다.
<ProSe 직접 통신(D2D 통신): ProSe Direct Communication>.
ProSe 직접 통신은 2개의 공용 안전 단말들이 PC 5 인터페이스를 통해 직접 통신을 할 수 있는 통신 모드이다. 이 통신 모드는 단말이 E-UTRAN의 커버리지 내에서 서비스를 받는 경우나 E-UTRAN의 커버리지를 벗어난 경우 모두에서 지원될 수 있다.
도 5는 ProSe 직접 통신을 수행하는 단말들과 셀 커버리지의 배치 예들을 나타낸다.
도 5 (a)를 참조하면, 단말 A, B는 셀 커버리지 바깥에 위치할 수 있다. 도 5 (b)를 참조하면, 단말 A는 셀 커버리지 내에 위치하고, 단말 B는 셀 커버리지 바깥에 위치할 수 있다. 도 5 (c)를 참조하면, 단말 A, B는 모두 단일 셀 커버리지 내에 위치할 수 있다. 도 5 (d)를 참조하면, 단말 A는 제1 셀의 커버리지 내에 위치하고, 단말 B는 제2 셀의 커버리지 내에 위치할 수 있다.
ProSe 직접 통신은 도 5와 같이 다양한 위치에 있는 단말들 간에 수행될 수 있다.
한편, ProSe 직접 통신에는 다음 ID들이 사용될 수 있다.
소스 레이어-2 ID: 이 ID는 PC 5 인터페이스에서 패킷의 전송자를 식별시킨다.
목적 레이어-2 ID: 이 ID는 PC 5 인터페이스에서 패킷의 타겟을 식별시킨다.
SA L1 ID: 이 ID는 PC 5 인터페이스에서 스케줄링 할당(scheduling assignment: SA)에서의 ID이다.
도 6은 ProSe 직접 통신을 위한 사용자 평면 프로토콜 스택을 나타낸다.
도 6을 참조하면, PC 5 인터페이스는 PDCH, RLC, MAC 및 PHY 계층으로 구성된다.
ProSe 직접 통신에서는 HARQ 피드백이 없을 수 있다. MAC 헤더는 소스 레이어-2 ID 및 목적 레이어-2 ID를 포함할 수 있다.
<ProSe 직접 통신을 위한 무선 자원 할당>.
ProSe 가능 단말은 ProSe 직접 통신을 위한 자원 할당에 대해 다음 2가지 모드들을 이용할 수 있다.
1. 모드 1
모드 1은 ProSe 직접 통신을 위한 자원을 기지국으로부터 스케줄링 받는 모드이다. 모드 1에 의하여 단말이 데이터를 전송하기 위해서는 RRC_CONNECTED 상태이여야 한다. 단말은 전송 자원을 기지국에게 요청하고, 기지국은 스케줄링 할당 및 데이터 전송을 위한 자원을 스케줄링한다. 단말은 기지국에게 스케줄링 요청을 전송하고, ProSe BSR(Buffer Status Report)를 전송할 수 있다. 기지국은 ProSe BSR에 기반하여, 상기 단말이 ProSe 직접 통신을 할 데이터를 가지고 있으며 이 전송을 위한 자원이 필요하다고 판단한다.
2. 모드 2
모드 2는 단말이 직접 자원을 선택하는 모드이다. 단말은 자원 풀(resource pool)에서 직접 ProSe 직접 통신을 위한 자원을 선택한다. 자원 풀은 네트워크에 의하여 설정되거나 미리 정해질 수 있다.
한편, 단말이 서빙 셀을 가지고 있는 경우 즉, 단말이 기지국과 RRC_CONNECTED 상태에 있거나 RRC_IDLE 상태로 특정 셀에 위치한 경우에는 상기 단말은 기지국의 커버리지 내에 있다고 간주된다.
단말이 커버리지 밖에 있다면 상기 모드 2만 적용될 수 있다. 만약, 단말이 커버리지 내에 있다면, 기지국의 설정에 따라 모드 1 또는 모드 2를 사용할 수 있다.
다른 예외적인 조건이 없다면 기지국이 설정한 때에만, 단말은 모드 1에서 모드 2로 또는 모드 2에서 모드 1로 모드를 변경할 수 있다.
<ProSe 직접 발견(D2D 발견): ProSe direct discovery>
ProSe 직접 발견은 ProSe 가능 단말이 근접한 다른 ProSe 가능 단말을 발견하는데 사용되는 절차를 말하며 D2D 직접 발견 또는 D2D 발견이라 칭하기도 한다. 이 때, PC 5 인터페이스를 통한 E-UTRA 무선 신호가 사용될 수 있다. ProSe 직접 발견에 사용되는 정보를 이하 발견 정보(discovery information)라 칭한다.
도 7은 D2D 발견을 위한 PC 5 인터페이스를 나타낸다.
도 7을 참조하면, PC 5인터페이스는 MAC 계층, PHY 계층과 상위 계층인 ProSe Protocol 계층으로 구성된다. 상위 계층(ProSe Protocol)에서 발견 정보(discovery information)의 알림(anouncement: 이하 어나운스먼트) 및 모니터링(monitoring)에 대한 허가를 다루며, 발견 정보의 내용은 AS(access stratum)에 대하여 투명(transparent)하다. ProSe Protocol은 어나운스먼트를 위하여 유효한 발견 정보만 AS에 전달되도록 한다.
MAC 계층은 상위 계층(ProSe Protocol)로부터 발견 정보를 수신한다. IP 계층은 발견 정보 전송을 위하여 사용되지 않는다. MAC 계층은 상위 계층으로부터 받은 발견 정보를 어나운스하기 위하여 사용되는 자원을 결정한다. MAC 계층은 발견 정보를 나르는 MAC PDU(protocol data unit)를 만들어 물리 계층으로 보낸다. MAC 헤더는 추가되지 않는다.
발견 정보 어나운스먼트를 위하여 2가지 타입의 자원 할당이 있다.
1. 타입 1
발견 정보의 어나운스먼트를 위한 자원들이 단말 특정적이지 않게 할당되는 방법으로, 기지국이 단말들에게 발견 정보 어나운스먼트를 위한 자원 풀 설정을 제공한다. 이 설정은 시스템 정보 블록(system information block: SIB)에 포함되어 브로드캐스트 방식으로 시그널링될 수 있다. 또는 상기 설정은 단말 특정적 RRC 메시지에 포함되어 제공될 수 있다. 또는 상기 설정은 RRC 메시지 외 다른 계층의 브로드캐스트 시그널링 또는 단말 특정정 시그널링이 될 수도 있다.
단말은 지시된 자원 풀로부터 스스로 자원을 선택하고 선택한 자원을 이용하여 발견 정보를 어나운스한다. 단말은 각 발견 주기(discovery period) 동안 임의로 선택한 자원을 통해 발견 정보를 어나운스할 수 있다.
2. 타입 2
발견 정보의 어나운스먼트를 위한 자원들이 단말 특정적으로 할당되는 방법이다. RRC_CONNECTED 상태에 있는 단말은 RRC 신호를 통해 기지국에게 발견 신호 어나운스먼트를 위한 자원을 요청할 수 있다. 기지국은 RRC 신호로 발견 신호 어나운스먼트를 위한 자원을 할당할 수 있다. 단말들에게 설정된 자원 풀 내에서 발견 신호 모니터링을 위한 자원이 할당될 수 있다.
RRC_IDLE 상태에 있는 단말에 대하여, 기지국은 1) 발견 정보 어나운스먼트를 위한 타입 1 자원 풀을 SIB로 알려줄 수 있다. ProSe 직접 발견이 허용된 단말들은 RRC_IDLE 상태에서 발견 정보 어나운스먼트를 위하여 타입 1 자원 풀을 이용한다. 또는 기지국은 2) SIB를 통해 상기 기지국이 ProSe 직접 발견은 지원함을 알리지만 발견 정보 어나운스먼트를 위한 자원은 제공하지 않을 수 있다. 이 경우, 단말은 발견 정보 어나운스먼트를 위해서는 RRC_CONNECTED 상태로 들어가야 한다.
RRC_CONNECTED 상태에 있는 단말에 대하여, 기지국은 RRC 신호를 통해 상기 단말이 발견 정보 어나운스먼트를 위하여 타입 1 자원 풀을 사용할 것인지 아니면 타입 2 자원을 사용할 것인지를 설정할 수 있다.
전술한 바와 같이, 일반적으로 D2D 동작은 근접한 기기들 간의 신호 송수신이라는 점에서 다양한 장점을 가질 수 있다. 예를 들어, D2D 단말은 높은 전송률 및 낮은 지연을 가지며 데이터 통신을 할 수 있다. 또한, D2D 동작은 기지국에 몰리는 트래픽을 분산시킬 수 있으며, D2D 동작을 수행하는 단말이 중계기 역할을 한다면 기지국의 커버리지를 확장시키는 역할도 할 수 있다. 상술한 D2D 통신의 확장으로 차량 간의 신호 송수신을 포함하여, 차량 (VEHICLE)과 관련된 통신을 특별히 V2X(VEHICLE-TO-X) 통신이라고 부른다.
여기서, 일례로, V2X (VEHICLE-TO-X)에서 'X' 용어는 PEDESTRIAN (COMMUNICATION BETWEEN A VEHICLE AND A DEVICE CARRIED BY AN INDIVIDUAL (예) HANDHELD TERMINAL CARRIED BY A PEDESTRIAN, CYCLIST, DRIVER OR PASSENGER)) (V2P), VEHICLE (COMMUNICATION BETWEEN VEHICLES) (V2V), INFRASTRUCTURE/NETWORK (COMMUNICATION BETWEEN A VEHICLE AND A ROADSIDE UNIT (RSU)/NETWORK (예) RSU IS A TRANSPORTATION INFRASTRUCTURE ENTITY (예) AN ENTITY TRANSMITTING SPEED NOTIFICATIONS) IMPLEMENTED IN AN eNB OR A STATIONARY UE)) (V2I/N) 등을 의미한다. 또한, 일례로, 제안 방식에 대한 설명의 편의를 위해서, 보행자 (혹은 사람)가 소지한 (V2P 통신 관련) 디바이스를 "P-UE"로 명명하고, VEHICLE에 설치된 (V2X 통신 관련) 디바이스를 "V-UE"로 명명한다. 또한, 일례로, 본 발명에서 '엔티티(ENTITY)' 용어는 P-UE 그리고/혹은 V-UE 그리고/혹은 RSU(/NETWORK/INFRASTRUCTURE)로 해석될 수 가 있다.
전술한 D2D 동작을 제공 (혹은 지원)하는 단말은 D2D 단말이라고 명명할 수 있으며, 전술한 V2X 동작을 제공 (혹은 지원)하는 단말은 V2X 단말이라고 명명할 수 있다. 이하에서는 설명의 편의를 위해 본 발명의 실시예들을 주로 V2X 단말 관점에서 서술 하도록 하겠으나, 해당 V2X 단말에 대한 내용은 상기 D2D 단말에도 적용될 수 있다.
V2X 단말은 사전에 정의된(혹은 시그널링된) 리소스 풀 (RESOURCE POOL) 상에서 메시지(혹은 채널) 전송을 수행할 수 있다. 여기서 리소스 풀은 단말이 V2X 동작을 수행하도록 (혹은 V2X 동작을 수행할 수 있는) 사전에 정의된 자원(들)을 의미할 수 있다. 이때, 리소스 풀은 예컨대 시간-주파수 측면에서 정의될 수도 있다.
<'V2X 통신'과 '다른 통신'이 공존하도록 하는 방법>
아래 공존 방법들은 사전에 정의(/시그널링)된 동일 채널(/밴드) 상에서 'V2X 통신'과 '다른 통신 (예를 들어, 'DSRC/IEEE 802.11P SERVICE', '(다른 NUMEROLOGY 기반의) NEW RAT (NR) eV2X SERVICE')'이 효율적으로 공존하도록 하는 방법을 제시한다.
여기서, 일례로, 하기 규칙(/방법)들이 적용될 경우, 상이한 통신들 간에, '채널(/밴드) 사용률(/점유율)'에 대한 'FAIRNESS'를 효과적으로 달성할 수 도 있다.
일례로, 본 발명에서 사용하는 '채널(/밴드/자원)' 용어는 'CARRIER(/FREQUENCY/POOL)'의 의미로 해석될 수 도 있다.
[공존 방법#1] 'V2X 통신'에 참여하는 V2X UE(S)로 하여금, 사전에 정의(/시그널링)된 특정 (시간/주파수) 자원 상에서, (V2X 통신 관련) 채널/시그널 전송 동작을 생략 (일종의 'SILENCING PERIOD'로 해석 가능)하고, '(에너지) 측정 (MEASUREMENT)' 동작을 수행하도록 할 수 있다.
여기서, 일례로, (해당) 'SILENCING PERIOD' 관련 (설정) 파라미터들 (예를 들어, 주기, (시간/주파수) 자원 위치(/길이), 홉핑 패턴 등)은 'CARRIER(/POOL)-SPECIFIC (PRE)CONFIGURATION' 형태로 지정될 수 있다.
여기서, 일례로, 해당 '(에너지) 측정' 동작을 통해서, V2X UE(S)은 인접한 거리 (그리고/혹은 동일 채널(/밴드)) 내에서 '다른 통신 (예를 들어, 'DSRC/IEEE 802.11P SERVICE', '(다른 NUMEROLOGY 기반의) NR eV2X SERVICE')'이 수행되고 있는지를 판단할 수 있다.
여기서, 일례로, 만약 '(에너지) 측정' 값이 사전에 정의(/시그널링)된 임계값보다 높다면, V2X UE(S)로 하여금, (A) 해당 채널(/밴드) 상에서 'V2X 통신'을 (사전에 정의(/시그널링)된 시간 동안) 중단하도록 규칙이 정의되거나 그리고/혹은 (B) 사전에 정의(/시그널링)된 (규칙(/(우선) 순위)에 따라 'V2X 통신'이 수행되는 '자원(/채널/밴드)'를 변경 그리고/혹은) (해당 변경된) 다른 자원(/채널/밴드) 상에서 (사전에 설정(/시그널링)된 일정 시간 동안) 'V2X 통신'을 수행하도록 규칙이 정의될 수 도 있다.
여기서, 일례로, 만약 '(에너지) 측정' 값이 사전에 정의(/시그널링)된 임계값보다 낮다면, V2X UE(S)는 해당 채널(/밴드) 상에서 (중단없이) 계속해서 'V2X 통신'을 수행하게 된다.
여기서, 일례로, ‘다른 통신' (그리고/혹은 'OTHER RAT') 검출에 사용되는 (사전에 정의(/시그널링)된) (시간(/주파수)) 자원 (예를 들어, 'SILENCING PERIOD')은 V2X 자원 풀 설정 관련 (사전에 설정(/시그널링)된 길이의) 비트맵이 적용되지 않도록 할 수 있다.
여기서, 일례로, 해당 규칙이 적용될 경우, ‘다른 통신' (그리고/혹은 'OTHER RAT') 검출에 사용되는 (사전에 정의(/시그널링)된) (시간(/주파수)) 자원은 V2X 자원 풀 설정에서 제외되는 것으로 해석할 수 도 있다.
일례로, V2X UE(S)로 하여금, 사전에 정의(/시그널링)된 시그널(/채널)을 통해서, '다른 통신'의 검출 (여부) 정보를 자신의 주변 'V2X UE(S)' (그리고/혹은 '(서빙) 기지국(/RSU)')에게 알려주도록 규칙이 정의될 수 도 있다.
여기서, 일례로, 해당 정보 보고시, 자신의 위치 정보 (그리고/혹은 '(위치 기반의 자원 풀 (TDM(/FDM)) 분할 동작이 설정(/시그널링)된 경우) '다른 통신'이 검출된 자원 풀(/케리어/채널/밴드) (인덱스) 정보')가 포함될 수 도 있다.
여기서, 일례로, 이러한 정보를 수신한 (서빙) 기지국(/RSU)은 ((보고받은) 인접 (혹은 동일) 위치(/영역) 상의) V2X UE(S) (예를 들어, 'P-UE(S)')에게 해당 정보를 (사전에 정의된 시그널을 (예를 들어, (WAN) DL(/PDSCH))를 통해) 알려줄 수 있다.
여기서, 일례로, (V-UE(S)로부터) 상기 정보를 수신한 (서빙) 기지국(/RSU)은 '다른 통신'이 검출된 (인접 혹은 동일) 위치(/영역) (그리고/혹은 풀(/케리어/채널/밴드)) 상의 V2X UE(S) (예를 들어, 'P-UE(S)')에게 (관련) 자원 풀을 'ACTIVATION/DEACTIVATION' 시키거나 그리고/혹은 'V2X 통신' (그리고/혹은 'V2X MESSAGE TX 동작')을 중단시키거나 그리고/혹은 사전에 설정(/시그널링)된 (규칙(/(우선) 순위)에 따라) 다른 케리어(/채널/밴드/풀)로의 스위칭을 지시할 수 있다.
여기서, 또 다른 일례로, ((서빙) 기지국(/RSU)으로부터) 해당 정보를 수신한 V2X UE(S) (예를 들어, 'P-UE(S)')는 자신의 (현재) 위치 (그리고/혹은 자신이 (현재) V2X MESSAGE TX 동작을 수행하는 풀(/케리어/채널/밴드))를 고려(/비교)하여, 기존 풀(/케리어/채널/밴드) 상의 V2X MESSAGE TX 동작 유지(/중단) 여부 그리고/혹은 사전에 정의(/시그널링)된 (규칙(/(우선) 순위)에 따라) 다른 케리어(/채널/밴드/풀)로의 스위칭 및 (해당 변경된) 다른 자원(/채널/밴드) 상에서 (사전에 설정(/시그널링)된 일정 시간 동안) 'V2X 통신' (그리고/혹은 'V2X MESSAGE TX 동작') 수행 여부 등을 결정(/판단)할 수 있다.
여기서, 일례로, (V2X UE(S)의) 해당 정보의 보고(/시그널링) 동작은 '(에너지) 측정' 값이 사전에 정의(/시그널링)된 임계값보다 높은 경우에만 수행되도록 규칙이 정의될 수도 있다.
여기서, 일례로, V2X UE(S)로부터 '다른 통신'의 검출 정보를 수신한 (혹은 보고 받은) '(서빙) 기지국(/RSU)'은 (A) 'V2X 통신'이 수행되는 'CARRIER(/채널(/밴드))'를 (사전에 정의(/시그널링)된 규칙(/(우선) 순위)에 따라) 변경해주거나 그리고/혹은 (B) 'UU 기반의 V2X 통신'으로 변경할 것을 지시할 수도 있다.
여기서, 일례로, (인접한) 주변 V2X UE(S)로부터 '다른 통신'의 검출 정보를 수신한 V2X UE(S)도 (마찬가지로) 사전에 정의(/시그널링)된 규칙(/(우선) 순위)에 따라 'V2X 통신'이 수행되는 '채널(/밴드/CARRIER)'를 변경하거나 그리고/혹은 해당 채널(/밴드/CARRIER) 상에서 'V2X 통신'을 (사전에 정의(/시그널링)된 시간 동안) 중단 (그리고/혹은 사전에 정의(/시그널링)된 (규칙(/(우선) 순위)에 따라 변경된) 채널(/밴드/CARRIER/자원) 상에서 (사전에 설정(/시그널링)된 일정 시간 동안) 'V2X 통신'을 수행)하게 된다.
일례로, V2X UE(S) (예를 들어, P-UE(S))로 하여금, (서빙) 기지국(/RSU) (그리고/혹은 (다른) V2X UE(S))가 (재)전송(/릴레이)해주는 상기 ('다른 통신' 검출) 정보의 효율적인 수신을 위해서, ('RRC_IDLE STATE'에 상관없이) 사전에 정의(/시그널링)된 주기(/패턴)에 따라, 'WAKE-UP' 그리고/혹은 '해당 용도 채널(/시그널) 수신 시도'를 수행하도록 할 수도 있다.
여기서, 일례로, V2X UE(S) (예를 들어, P-UE(S))로 하여금, 자신이 V2X MESSAGE TX 용도로 선택(/예약)한 자원 (혹은 자신의 전송 동작 (시점)) 이전의 (혹은 자신이 V2X MESSAGE TX 용도로 선택(/예약)한 자원 (혹은 자신의 전송 동작 (시점))으로부터 사전에 설정(/시그널링)된 (시간(/타이밍)) 오프셋 값 이전의) 가장 가까운 (주기) 시점에서 전송되는 '((가장) 최신 정보가 반영(/포함)된) 상기 (해당) 용도 채널(/시그널)'(만)을 ('WAKE-UP' 하여) 수신한 후, 해당 (최신) 정보에 따라 (최종) 'V2X 통신' (그리고/혹은 'V2X MESSAGE TX 동작') 수행 여부를 결정(/판단)하도록 할 수 있다.
일례로, V2X UE(S)로 하여금, 만약 사전에 정의(/시그널링)된 특정 (시간/주파수) 자원 상에서 ('V2X 통신' 관련) (사전에 설정(/시그널링)된) 'LTE SIGNAL(/CHANNEL)'이 검출되지 않고 (동시에) '(에너지) 측정' 값이 사전에 정의(/시그널링)된 임계값보다 높다면, 인접한 거리 (그리고/혹은 동일 채널(/밴드)) 내에서 '다른 통신 (예를 들어, 'DSRC/IEEE 802.11P SERVICE', '(다른 NUMEROLOGY 기반의) NR eV2X SERVICE')'이 수행되고 있는 것으로 판단하도록 규칙이 정의될 수 도 있다.
일례로, 특정 V2X UE(S)로부터 '다른 통신' 검출 (여부) 정보를 수신한 (서빙) 기지국(/RSU) (그리고/혹은 (다른) V2X UE(S))는 (커버리지 안의 혹은 커넥션을 맺고 있는) 주변 (다른) V2X UE(S) (예를 들어, 'P-UE(S)') (그리고/혹은 기지국(/RSU))에게 해당 정보를 사전에 정의된 채널(/시그널)을 통해서 알려줄 수 도 있다.
여기서, 일례로, 이러한 정보는 사전에 정의된(/보고된) '특정 V2X UE(S)의 위치(/식별자) 정보' (그리고/혹은 '(위치 기반의 자원 풀 (TDM(/FDM)) 분할 동작이 설정(/시그널링)된 경우) '다른 통신'이 검출된 자원 풀(/케리어/채널/밴드) (인덱스) 정보' 그리고/혹은 '(에너지) 측정 정보') 등의 추가적인 정보와 함께 전송될 수 도 있다.
일례로, 상기 규칙에 따라, (사전에 정의(/시그널링)된 시간 동안) 기존 채널(/밴드) 상에서 'V2X 통신'을 중단한 (그리고/혹은 다른 자원(/채널/밴드) 상에서 'V2X 통신'을 수행한) V2X UE(S)의 경우, 사전에 정의(/시그널링)된 (기존 채널(/밴드) 상의) 특정 (시간/주파수) 자원 상에서 '(에너지) 측정' 동작을 다시 수행한 후, 만약 '다른 통신'이 검출되지 않는다면, (기존 채널(/밴드)에서) 'V2X 통신'을 재수행하도록 규칙이 정의될 수 있다.
추가적인 일례로, 기존 채널(/밴드) 상에서의 'V2X 통신' 재수행은 (A) ('(에너지) 측정' 동작의 결과로) '다른 통신'이 검출되지 않은 경우 그리고/혹은 (B) 사전에 정의(/시그널링)된 백오프(/카운터) 값이 '0' 보다 작거나 같게 된 경우 (혹은 '0 ≤ X ≤ 1'의 범위에서 선택한(/뽑은) 랜덤 (실수) 값 ('X')이 사전에 정의(/시그널링)된 확률 값보다 작거나 같은 경우)에만 수행되도록 규칙이 정의될 수 도 있다.
여기서, 일례로, 백오프 값은 ('(에너지) 측정' 동작 수행 시) '다른 통신'이 검출되지 않을 때마다 사전에 정의(/시그널링)된 값 (예를 들어, '1') 만큼씩 감소될 수 있다.
일례로, '다른 통신 (예를 들어, 'DSRC/IEEE 802.11P SERVICE', '(다른 NUMEROLOGY 기반의) NR eV2X SERVICE')' 검출을 위한 '(에너지) 측정' 동작은 (최소한 사전에 정의(/시그널링)된 거리 내에 위치한) V2X UE(S)이 동시에 수행할 필요가 있다.
만약 그렇지 않다면, 일례로, (인접한 거리 (그리고/혹은 동일 채널(/밴드)) 내에서 수행되는) 'V2X 통신'을 '다른 통신'으로 오인하여, 'V2X 통신'이 과도하게 중단될 수 도 있다.
따라서, 일례로, '(에너지) 측정' 동작이 수행되는 (시간/주파수) 자원 관련 정보들 (예를 들어, 주기, 서브프레임 오프셋, (홉핑) 패턴 등)은 ('LOCAL TIME'이 아니라) 'GPS (GLOBAL POSITIONING SYSTEM) TIME (혹은 UTC (COORDINATED UNIVERSAL TIME))' (혹은 '(서빙) 기지국(/RSU)의 시간 (동기)')을 기준으로 설정(/시그널링) 및 적용되도록 규칙이 정의될 수 있다.
여기서, 일례로, '(에너지) 측정' 동작이 수행되는 (시간/주파수) 자원 관련 정보들은 'V2X MESSAGE TYPE (예를 들어, 'PERIODIC' 혹은 'EVENT-TRIGGERD' V2X MESSAGE) 그리고/혹은 'V2X MESSAGE PRIORITY' 그리고/혹은 'V2X UE DENSITY(/SPEED)' 그리고/혹은 'V2X MESSAGE PRIORITY' 그리고/혹은 'V2X UE TYPE' 등이 고려되어 (상이하게 혹은 독립적으로) 설정될 수 도 있다.
일례로, 상기 '(에너지) 측정' 동작은 (V2X UE(S)뿐만 아니라) (서빙) 기지국(/RSU)이 (직접적으로) 수행할 수 도 있다.
여기서, 일례로, 인접 거리 (그리고/혹은 동일 채널(/밴드)) 내에서 '다른 통신 (예를 들어, 'DSRC/IEEE 802.11P SERVICE', '(다른 NUMEROLOGY 기반의) NR eV2X SERVICE')'을 검출한 (서빙) 기지국(/RSU)은 (커버리지 안의 혹은 커넥션을 맺고 있는) 주변 V2X UE(S) (그리고/혹은 기지국(/RSU))에게 (해당 채널(/밴드) 상에서의) 'V2X 통신' 중단 여부 (그리고/혹은 사전에 정의(/시그널링)된 (규칙(/(우선) 순위)에 따라) 다른 자원(/채널/밴드) 상에서의 'V2X 통신' 수행 여부)를 (사전에 정의된 채널(/시그널)을 통해서) 알려줄(/지시할) 수 도 있다.
또 다른 일례로, 다양한 목적/이유 (예를 들어, CONGESTION COTROL)로 'CROSS CARRIER(/POOL) SCHEDULING'이 수행 (예를 들어, SA 전송과 DATA 전송이 상이한 CARRIER(/POOL)에서 수행, DATA(/SA) REPETITION 전송의 (뒤쪽) 일부가 상이한 CARRIER(/POOL)에서 수행) 될 때, 사전에 정의(/시그널링)된 규칙(/정보)에 따라, 서로 다른 CARRIER(/POOL)에서 사용되는 PHY FORMAT이 상이할 수 있다.
여기서, 일례로, 특정 CARRIER 상에서 V2X UE가 어떤 PHY FORMAT (예를 들어, 'RS STRUCTURE')으로 (제어/데이터 정보) 전송할지를 사전에 정의(/시그널링)된 채널 (예를 들어, PSCCH) 상의 (새로운) 필드를 통해서 (다른 V2X UE(S)에게) 알려줄 수 도 있다.
여기서, 일례로, '스케줄링/제어 정보 (그리고/혹은 사용되는 PHY FORMAT 정보)' 전송에 사용되는 채널 (예를 들어, PSCCH)의 PHY FORMAT은 상이한 CARRIER(/POOL) 간에 동일하게 (혹은 공통적으로) 정의될 수 도 있다.
또 다른 일례로, V2X UE(S)로 하여금, (전송) 자원 (재)선택을 아래와 같이 수행하도록 할 수 있다. 이하, 1. (전송) 자원 (재)선택 동작에 대한 일례에 대한 내용을 표 1을 통해, 2. V2X TX UE(S)의 전송 자원 (재)예약(/선택) 동작에 대한 일례에 대한 내용을 표 2를 통해 설명한다.
<표 1>
Figure PCTKR2017002413-appb-I000001
Figure PCTKR2017002413-appb-I000002
Figure PCTKR2017002413-appb-I000003
Figure PCTKR2017002413-appb-I000004
Figure PCTKR2017002413-appb-I000005
Figure PCTKR2017002413-appb-I000006
Figure PCTKR2017002413-appb-I000007
<표 2>
Figure PCTKR2017002413-appb-I000008
Figure PCTKR2017002413-appb-I000009
Figure PCTKR2017002413-appb-I000010
Figure PCTKR2017002413-appb-I000011
일례로, 아래 공존 방법들은 V2X UE(S)가 (상기 설명한) 규칙에 따라 특정 채널(/밴드/케리어) 상에서 다른 통신 (예를 들어, 'DSRC/IEEE 802.11P SERVICE', '(다른 NUMEROLOGY 기반의) NR eV2X SERVICE')을 검출하고 '채널(/밴드/케리어) 스위칭(/변경) 동작'을 수행할 때, V2X 통신 관련 '센싱 동작' 그리고/혹은 '자원 (재)선택 동작'을 효과적으로 수행하는 방법들을 제시한다.
여기서, 일례로, “센싱”의 워딩은 사전에 정의(/시그널링)된 참조 신호 (REFERENCE SIGNAL (RS)) 그리고/혹은 채널에 대한 에너지 측정 동작 (예를 들어, (디코딩된 PSCCH와 연동된) PSSCH의 DM-RS RSRP 그리고/혹은 S-RSSI)으로 해석되거나, 혹은 사전에 정의(/시그널)된 채널 (예를 들어, PSCCH (PHYSICAL SIDELINK CONTROL CHANNEL))에 대한 디코딩 동작으로 해석될 수 있다.
여기서, 일례로, 이러한 (일부) 공존 방법들은 V2X 통신이 수행되고 있는 특정 채널(/밴드/케리어)의 'CONGESTION LEVEL'이 (사전에 설정(/시그널링)된 임계값보다) 높아져서, 사전에 정의된 규칙 (혹은 ((서빙) 기지국(/RSU)으로부터) 수신된 시그널링(/지시자))에 따라, V2X UE(S)가 '채널(/밴드/케리어) 스위칭(/변경) 동작'을 수행할 경우에도 확장 적용될 수 있다.
[공존 방법#2] V2X UE(S)가 '채널(/밴드/케리어) 스위칭(/변경) 동작' 수행시, V2X 통신에 사용될 자원들을 (스위칭(/변경)된 채널(/밴드/케리어) 상의 'V2X RESOURCE POOL'에서) 랜덤하게 (재)선택하도록 할 수 있다.
여기서, 일례로, '채널(/밴드/케리어) 스위칭(/변경) 동작'은 일종의 '(전송) 자원 (재)선택'이 트리거링(/수행)되는 조건으로 해석될 수 도 있다.
여기서, 일례로, 상기 규칙에 따라 랜덤하게 (재)선택된 자원들은 ('채널(/밴드/케리어) 스위칭(/변경) 동작' 수행 후에 사전에 설정(/시그널링)된 횟수 (예를 들어, '1')의 'TB (TRANSPORT BLOCK)' 전송에만 이용되고) (향후 (복수개의) 'TB' 전송을 위해) '예약'(/'SPS (SEMI-PERSISTENT SCHEDULING)')되지 못하도록 하거나, 혹은 향후 (복수개의) 'TB' 전송에 사용되는 (주파수) 자원으로 이용(/예약)되지 못하도록 할 수 도 있다.
여기서, 또 다른 일례로, '채널(/밴드/케리어) 스위칭(/변경) 동작' 수행시, 랜덤하게 (재)선택된 자원들은 (예외적으로) ((복수개 (혹은 사전에 설정(/시그널링)된 횟수)의) 'TB' 전송을 위해) '예약'(/'SPS')될 수 있도록 하거나, 혹은 향후 (복수개 (혹은 사전에 설정(/시그널링)된 횟수)의) 'TB' 전송에 사용되는 (주파수) 자원으로 이용(/예약)될 수 있도록 할 수 도 있다.
또 다른 일례로, V2X UE(S)로 하여금, 스위칭(/변경)된 채널(/밴드/케리어) 상에서 사전에 설정(/시그널링)된 시간 구간 동안에 '센싱' 동작을 (우선적으로) 수행하도록 한 후, 그 결과를 기반으로 V2X 통신에 사용될 (최적의) 자원들을 (재)선택하도록 할 수 도 있다.
여기서, 일례로, 해당 '센싱 시간 구간' 값 (그리고/혹은 표 2 SECTION 2.3.의 STEP 5 상의 “PSSCH-RSRP MEASUREMENT” 임계값 (그리고/혹은 표 2 SECTION 2.3. STEP 6(/8) 상의 “0.2*Mtotal” 관련 계수(/비율)값 (예를 들어, 표 2 SECTION 2.3.의 STEP 5 수행 후에 (전체 (후보) 자원 중에) (SA 집합 내에) 남아 있어야 하는 최소 (후보) 자원 개수를 도출(/결정)하는 비율 값 그리고/혹은 표 2 SECTION 2.3.의 STEP 8 수행 후에 SB 집합 내에 있어야 (최소) (후보) 자원 개수를 도출(/결정)하는 비율 값으로 해석될 수 있음) 그리고/혹은 표 2 SECTION 2.3.의 STEP 5 수행 후에 (전체 (후보) 자원 중에) SA 집합 내에 남아 있어야 하는 최소 (후보) 자원 개수가 충족되지 못한 경우에 적용되는 “PSSCH-RSRP MEASUREMENT” 증가값 (예를 들어, “3DB”) 그리고/혹은 센싱 동작 (예를 들어, 표 2 SECTION 2.3.의 STEP 5) (그리고/혹은 에너지 측정 동작 (예를 들어, 표 2 SECTION 2.3.의 STEP 8)에 사용되는 주기값))은 '채널(/밴드/케리어) 스위칭(/변경) 동작'이 수행되지 않을 때에 적용(/사용)되는 것 (예를 들어, '1000MS')과 상이하게 (예를 들어, 상대적으로 작은 (혹은 큰) 값) (혹은 동일하게) 설정(/시그널링)될 수 도 있다.
여기서, 또 다른 일례로, 전송 자원 (재)예약(/선택) 수행시, 가정(/사용)되는 (자원 예약 (간격) 주기의) 유한한 서브프레임 개수 (그리고/혹은 표 2 SECTION 2.1. 상의 Cresel 값 (예를 들어, “[10*SL_RESOURCE_RESELECTION_COUNTER]”)) 그리고/혹은 V2X 메시지 우선 순위 그리고/혹은 V2X 자원 풀 (그리고/혹은 (V2X) 케리어) 상에서 선택(/허용) 가능한 I_VALUE (범위) 값 그리고/혹은 P_STEP 값 그리고/혹은 전송 전력 관련 (OPEN-LOOP) 파라미터(/값) (예를 들어, “PO“, ”ALPHA” 등)가 '채널(/밴드/케리어) 스위칭(/변경) 동작'이 수행되지 않을 때에 적용(/사용)되는 것과 상이하게 (혹은 동일하게) 설정(/시그널링)될 수 도 있다.
[공존 방법#3] V2X UE(S)가 '채널(/밴드/케리어) 스위칭(/변경) 동작' 수행시, V2X 통신에 사용될 자원들은 아래 (일부) 규칙에 따라 (스위칭(/변경)된 채널(/밴드/케리어) 상의 'V2X RESOURCE POOL'에서) (재)선택되도록 할 수 있다.
(예시#3-1) '채널(/밴드/케리어) 스위칭(/변경)'을 했지만, 만약 '(LOW LAYER) 버퍼' (그리고/혹은 'PDCP LAYER') 상에 (전송될 혹은 생성된) 패킷(/메시지)이 없다면 (혹은 패킷(/메시지)이 생성되지 않았다면), V2X UE(S)로 하여금, (스위칭(/변경)된 채널(/밴드/케리어) 상의 'V2X RESOURCE POOL'에 대한) '센싱' 동작을 (부분적으로) 수행하도록 할 수 도 있다.
여기서, 일례로, 해당 '(부분적) 센싱' 동작은 자신의 (LOW LAYER) 버퍼' (그리고/혹은 'PDCP LAYER') 상에 (전송될 혹은 생성된) 패킷(/메시지)이 존재(/도달)할 때까지 (혹은 패킷(/메시지)이 생성될 때까지) (혹은 사전에 설정(/시그널링)된 시간 구간 동안에만) 수행하도록 할 수 도 있다.
여기서, 일례로, 이러한 규칙이 적용될 경우, V2X UE(S)는 최종적으로 '(부분적) 센싱' 동작 결과를 기반으로 (스위칭(/변경)된 채널(/밴드/케리어) 상의 'V2X RESOURCE POOL'에서) 가장 적합한 (전송) 자원을 (재)선택하게 된다.
여기서, 일례로, V2X UE(S)로 하여금, '(부분적) 센싱' 동작이 수행된 자원 (영역) 내에서만 (한정적으로) 자신의 (전송) 자원을 (재)선택하도록 할 수 있다.
여기서, 일례로, '(부분적) 센싱' 동작이 수행된 경우에만 ((복수개의) 'TB' 전송 관련) (주파수) 자원을 '예약'(/'SPS') 할 수 있도록 정의될 수 도 있다.
또 다른 일례로, '채널(/밴드/케리어) 스위칭(/변경)'을 했지만, 만약 'LATECNY'가 (사전에 설정(/시그널링) 임계값보다) 많이 남아있다면, V2X UE(S)로 하여금, (스위칭(/변경)된 채널(/밴드/케리어) 상의 'V2X RESOURCE POOL'에 대한) '센싱' 동작을 (부분적으로) 수행하도록 할 수 도 있다.
(예시#3-2) (상기 (예시#3-1)에서) V2X UE(S)로 하여금, 사전에 설정(/시그널링)된 조건의 만족 여부에 따라, (A) '(부분적) 센싱' 동작 기반의 자원 (재)선택과 (B) '랜덤' 기반의 자원 (재)선택 중에 하나를 수행(/선택)하도록 할 수 있다.
여기서, 일례로, 아래 (일부) 조건이 만족될 경우에는 '랜덤' 기반의 자원 (재)선택 (혹은 '(부분적) 센싱' 동작 기반의 자원 (재)선택)을 수행하도록 하고, 그렇지 않을 경우에는 '(부분적) 센싱' 동작 기반의 자원 (재)선택 (혹은 '랜덤' 기반의 자원 (재)선택)을 수행하도록 할 수 도 있다.
(일례#3-2-1) '채널(/밴드/케리어) 스위칭(/변경)'을 했을 때, ('(LOW LAYER) 버퍼' (그리고/혹은 'PDCP LAYER') 상에) (새롭게) 생성된 (혹은 전송될) 패킷(/메시지)이 존재하는 경우.
(일례#3-2-2) '채널(/밴드/케리어) 스위칭(/변경)'을 했을 때, (사전에 설정(/시그널링) 임계값보다) 적은 'LATECNY'가 남아있는 경우.
(일례#3-2-3) '채널(/밴드/케리어) 스위칭(/변경)'을 했을 때, 기존 채널(/밴드/케리어) 상의 'V2X RESOURCE POOL'에서 (재)선택한 자원 관련 '(RESELCTION) COUNTER' 값이 사전에 설정(/시그널링)된 임계값 (예를 들어, '0')보다 작거나 같은 (혹은 큰) 경우 (그리고/혹은 (자신이) 사전에 설정(/시그널링) 횟수(/주기)만큼, (재)선택한 (주파수) 자원 재이용해서, 'TB' 전송을 수행한 (혹은 수행하지 못한) 경우).
(예시#3-3) V2X UE(S)로 하여금, '채널(/밴드/케리어) 스위칭(/변경)'을 했을 때, 기존 채널(/밴드/케리어) 상의 'V2X RESOURCE POOL'에서 (재)선택한 자원 관련 '(RESELCTION) COUNTER' 값이 사전에 설정(/시그널링)된 임계값 (예를 들어, '0')보다 큰 (혹은 작거나 같은) 경우 (그리고/혹은 (자신이) 사전에 설정(/시그널링) 횟수(/주기)만큼, (재)선택한 (주파수) 자원 재이용해서, 'TB' 전송을 수행하지 못한 (혹은 수행한) 경우 그리고/혹은 '채널(/밴드/케리어) 스위칭(/변경)'을 했을 때, ('(LOW LAYER) 버퍼' (그리고/혹은 'PDCP LAYER') 상에) (새롭게) 생성된 (혹은 전송될) 패킷(/메시지)이 존재하는 (혹은 없는) 경우 그리고/혹은 '채널(/밴드/케리어) 스위칭(/변경)'을 했을 때, (사전에 설정(/시그널링) 임계값보다) 적은 (혹은 많은) 'LATECNY'가 남아있는 경우), (최소한) 스위칭(/변경)된 채널(/밴드/케리어) 상의 V2X 통신 관련 (전송) 자원 위치는 기존 채널(/밴드/케리어) 상의 것과 동일하게 승계(/유지)되도록 할 수 도 있다.
여기서, 일례로, 이러한 규칙이 적용될 경우, 기존 채널(/밴드/케리어) 상에서의 (전송) 자원 (재)선택 관련 (일부) 파라미터 (예를 들어, '(RESELCTION) COUNTER', (재)선택한 (주파수) 자원을 재이용하여 'TB' 전송이 수행되는 횟수(/주기) 등)이 스위칭(/변경)된 채널(/밴드/케리어)로 승계되는 것으로 해석될 수 도 있다.
여기서, 일례로, 상기 규칙은 기존 채널(/밴드/케리어)과 스위칭(/변경)된 채널(/밴드/케리어) 상의 V2X 통신 관련 'RESOURCE POOL CONFIGURATION(/BANDWIDTH)'이 동일한 경우에만 한정적으로 적용될 수 도 있다.
일례로, V2X UE(S)로 하여금, '채널(/밴드/케리어) 스위칭(/변경)'하고 스위칭(/변경)된 채널(/밴드/케리어) 상의 V2X 통신 관련 (전송) 자원 위치를 기존 채널(/밴드/케리어) 상에 대한 센싱 결과를 (재)이용하여 설정할 경우, 기존 채널(/밴드/케리어)과 스위칭(/변경)된 채널(/밴드/케리어) 간에 (논리 자원 영역 상에서) 겹치는 (V2V 통신 관련) 자원 (풀) 영역만을 고려하여, 그 중에 (기존 채널(/밴드/케리어)에 대한 센싱 결과를 기반으로) (가장) 적합한 자원을 선택(/예약)하도록 할 수 있다.
여기서, 일례로, V2X UE(S)로 하여금, '채널(/밴드/케리어) 스위칭(/변경)'하고 스위칭(/변경)된 채널(/밴드/케리어) 상의 V2X 통신 관련 (전송) 자원 위치를 기존 채널(/밴드/케리어) 상에 대한 센싱 결과를 (재)이용하여 설정할 경우, 만약 (기존 채널(/밴드/케리어) 상에 대한 센싱 결과를 (재)이용하여) 해당 설정된 (전송) 자원 위치가 스위칭(/변경)된 채널(/밴드/케리어) 상에서 (이미) 다른 V2X UE(S)에 의해 점유된 것 (예를 들어, V2X UE(S)가 스위칭(/변경)된 채널(/밴드/케리어)에 대한 센싱 동작을 (사전에) 수행한 경우로 해석될 수 있음)이면, (A) 해당 충돌된 (전송) 자원만을 재선택 (그리고/혹은 랜덤 선택) 하도록 하거나 그리고/혹은 (B) 나머지 충돌하지(/겹치지) 않는 (전송) 자원만을 (V2X MESSSAGE) 전송 용도로 사용하도록 할 수 있다.
일례로, (복수개의 채널(/밴드/케리어) 관련 수신(/센싱) 능력이 있는) V2X UE(S)로 하여금, (해당) 복수개의 채널(/밴드/케리어)에 대한 센싱(/수신) 동작 (그리고/혹은 다른 통신 (예를 들어, 'DSRC/IEEE 802.11P SERVICE', '(다른 NUMEROLOGY 기반의) NR eV2X SERVICE') 검출 동작)을 수행하고 있다가 자신이 현재 (V2X 메시지) 전송 동작을 수행하는 채널(/밴드/케리어) 상에서 다른 통신이 검출되면, (해당 채널(/밴드/케리어)를 제외하고) 센싱(/수신) 동작 (그리고/혹은 다른 통신 검출 동작)을 수행하던 (해당) 복수개의 채널(/밴드/케리어) 중에 하나를 선택하여 채널(/밴드/케리어) 스위칭(/변경) 동작을 수행하도록 할 수 있다.
여기서, 일례로, (해당) 복수개의 채널(/밴드/케리어) 중에 (A) CONGESTION LEVEL (그리고/혹은 센싱된 에너지 측정값)이 (상대적으로) 낮은 채널(/밴드/케리어) 그리고/혹은 (B) 다른 V2X UE(S)에 의해 점유된 자원이 (상대적으로) 적은 채널(/밴드/케리어) 그리고/혹은 (C) 다른 통신이 검출되지 않은 채널(/밴드/케리어) 그리고/혹은 (E) (상대적으로) 낮은 (혹은 높은) 인덱스의 채널(/밴드/케리어)를 우선적으로 선택 (그리고/혹은 사전에 설정(/시그널링)된 (우선) 순위에 따라 (높은 (혹은 낮은) (우선) 순위의) 채널(/밴드/케리어)를 우선적으로 선택)하도록 하거나, 혹은 랜덤하게 선택하도록 할 수 도 있다.
일례로, V2X UE(S)가 (V2X MESSAGE) 전송을 위해, (사전에 설정(/시그널링)된) 특정 케리어(/채널(/밴드))를 사용하다가 (사전에 설정(/시그널링)된) 다른 케리어(/채널(/밴드))가 상대적으로 더 낮은 'CONGESTION LEVEL' (그리고/혹은 'LOAD LEVEL')로 판단될 때, 즉시 (혹은 금방) (해당) 다른 케리어(/채널(/밴드))로 스위칭하면, 시스템이 불안정해지는 문제가 발생할 수 있다.
여기서, 일례로, 해당 문제를 완화시키기 위해서, (A) (('CONGESTION LEVEL' (그리고/혹은 'LOAD LEVEL') 기반의) 케리어(/채널(/밴드)) 스위칭이 적용되기 전에) 기존 케리어(/채널(/밴드)) 상의 (V2X MESSAGE) 전송을 유지하기 위한 타이머가 설정(/시그널링)되거나 그리고/혹은 (B) 기존 케리어(/채널(/밴드))와 다른 케리어(/채널(/밴드)) 간의 'CONGESTION LEVEL DIFFERERNCE' (그리고/혹은 'LOAD LEVEL DIFFERENCE')가 사전에 설정(/시그널링)된 임계값 (예를 들어, 일종의 ('CONGESTION LEVEL' (그리고/혹은 'LOAD LEVEL') 관련) 'HYSTERESIS'로 해석될 수 있음)을 초과할 때에만 (상대적으로 낮은 'CONGESTION LEVEL' (그리고/혹은 'LOAD LEVEL')의) 다른 케리어(/채널(/밴드))로의 스위칭 동작을 (한정적으로) 수행하도록 할 수 도 있다.
일례로, V2X UE(S)의 'RAT'이 (상대적으로) 낮은 우선 순위로 설정(/시그널링)된 자원 (RES_L)과 (상대적으로) 높은 우선 순위로 설정(/시그널링)된 자원 (RES_H)이 있다고 가정 (표 3 참조)하자.
여기서, 일례로, V2X UE(S)가 'RES_H' 상에서 V2X 통신을 수행하다가 (측정된) ('RES_H' 관련) 'CONGESTION LEVEL' 값이 사전에 설정(/시그널링)된 임계값 (CL_RSC_H) (예를 들어, 'CL_RSC_H'은 'RES_H'와 연동된 임계값으로 볼 수 있음) 보다 커져서 'RES_L'로의 스위칭(/오프로딩)을 고려할 때, 'RES_L' 관련 (측정된) 'CONGESTION LEVEL' 값이 사전에 설정(/시그널링)된 임계값 (CL_RSC_L) (예를 들어, 'CL_RSC_L'은 'RES_L'와 연동된 임계값으로 볼 수 있음) 보다 작을 때에만 (실제) ('RES_H'에서 'RES_H'로의) 스위칭이 허용될 수 있다.
여기서, 일례로, 'CL_RSC_H'와 'CL_RSC_L'는 상이한 값 (예를 들어, 'CL_RSC_H > CL_RSC_L')으로 설정(/시그널링)될 수 있다.
일례로, V2X UE(S)로 하여금, ('CARRIER(/CELL)-SPEICIFC NETWORK (PRE)CONFIGURATION' 형태로 지정된) V2X 자원 풀이 아닌 (사전에 설정(/시그널링)된) (외부) 자원 영역에서도 ‘CONGESTION LEVEL' (그리고/혹은 'LOAD LEVEL') 측정 동작 (그리고/혹은 ‘다른 통신' (예를 들어, 'DSRC/IEEE 802.11P SERVICE', '(다른 NUMEROLOGY 기반의) NR eV2X SERVICE') (그리고/혹은 'OTHER RAT') 검출 동작)을 수행하도록 할 수 있다.
여기서, 일례로, 해당 ((외부) 자원 영역에 대한) ‘CONGESTION LEVEL' (그리고/혹은 'LOAD LEVEL') 측정 결과가 높다면, ‘다른 통신' (그리고/혹은 'OTHER RAT')이 존재하는 것으로 판단할 수 있다.
여기서, 일례로, 해당 ((외부) 자원 영역에 대한) ‘CONGESTION LEVEL' (그리고/혹은 'LOAD LEVEL') 측정 (그리고/혹은 ‘다른 통신' (그리고/혹은 'OTHER RAT') 검출)은 사전에 설정(/시그널링)된 ((외부) 자원 영역 상의) (별도의) 서브채널에서 수행되도록 하거나 그리고/혹은 ((외부) 자원 영역 상의) 전대역에서 수행되도록 할 수 도 있다.
여기서, 일례로, (‘CONGESTION LEVEL' (그리고/혹은 'LOAD LEVEL') 측정 관련) (S-RSSI) 측정 동작은 V2X 자원 풀 구분 없이 V2X 자원(들) 내에서 수행될 수 있다.
여기서, 일례로, 해당 (‘CONGESTION LEVEL' (그리고/혹은 'LOAD LEVEL') 측정 관련) (S-RSSI) 측정 동작은 '(V2X) POOL-SPECIFIC' (혹은 '(V2X) POOL-COMMON) 형태로 수행하도록 하고, (V2X) POOL 이외의 영역은 별도로 측정하도록 할 수 도 있다.
여기서, 일례로, 상기 (일부) 규칙에서 (V2X 자원(들) 내의) 측정 동작은 (해당 케리어 상의) (V2X) TX POOL (그리고/혹은 (V2X) RX POOL)에서만 수행되도록 할 수 도 있다.
일례로, V2X TX UE(S)로 하여금, (사전에 설정(/시그널링)된 규칙(/(우선) 순위)에 따라) ('V2X 통신' (그리고/혹은 'V2X MESSAGE TX 동작') 관련) 케리어(/채널/밴드/풀)를 스위칭할 경우, 자신이 어떤 케리어(/채널/밴드/풀)로 스위칭하는지를 사전에 정의된 채널 (예를 들어, 'PSCCH(/PSSCH)' 그리고/혹은 'PSBCH)')을 통해서 (미리) (주변) V2X RX UE(S)에게 시그널링(/브로드캐스팅)하도록 할 수 있다.
여기서, 일례로, 해당 용도의 채널이 전송되는 (특정) 케리어(/채널/밴드/풀)는 ('UE-COMMON' 형태로) 사전에 설정(/시그널링)될 수 도 있다.
일례로, 표 3은 ‘V2X 통신'과 '다른 통신 (예를 들어, 'DSRC/IEEE 802.11P SERVICE', '(다른 NUMEROLOGY 기반의) NR eV2X SERVICE')'이 효율적으로 공존하기 위한 방법을 나타낸다.
<표 3>
Figure PCTKR2017002413-appb-I000012
Figure PCTKR2017002413-appb-I000013
Figure PCTKR2017002413-appb-I000014
Figure PCTKR2017002413-appb-I000015
Figure PCTKR2017002413-appb-I000016
Figure PCTKR2017002413-appb-I000017
Figure PCTKR2017002413-appb-I000018
상기 설명한 공존 방법에 대한 일례들 또한 본 발명의 구현 방법들 중 하나로 포함될 수 있으므로, 일종의 공존 방법들로 간주될 수 있음은 명백한 사실이다. 또한, 상기 설명한 공존 방법들은 독립적으로 구현될 수 도 있지만, 일부 공존 방법들의 조합 (혹은 병합) 형태로 구현될 수 도 있다. 일례로, 본 발명에서는 설명의 편의를 위해 3GPP LTE 시스템을 기반으로 공존 방법을 설명하였지만, 공존 방법이 적용되는 시스템의 범위는 3GPP LTE 시스템 외에 다른 시스템으로도 확장 가능하다.
일례로, 본 발명의 공존 방법들은 D2D 통신을 위해서도 확장 적용 가능하다. 여기서, 일례로, D2D 통신은 UE가 다른 UE와 직접 무선 채널을 이용하여 통신하는 것을 의미하며, 여기서, 일례로 UE는 사용자의 단말을 의미하지만, 기지국과 같은 네트워크 장비가 UE 사이의 통신 방식에 따라서 신호를 송/수신하는 경우에는 역시 일종의 UE로 간주될 수 있다.
또한, 일례로, 본 발명의 공존 방법들은 MODE 2 V2X 동작 (그리고/혹은 MODE 1 V2X 동작)에만 한정적으로 적용될 수 도 있다. 또한, 일례로, 본 발명의 공존 방법들은 V-UE(S) (혹은 P-UE(S)) (그리고/혹은 V2X 케리어(/채널(/밴드))에 대한 (DEDICATED) RX(/TX) CHAIN을 구비한 V2X UE(S))에게만 한정적으로 적용될 수 도 있다.
이하, 본 발명에 대해 설명한다.
아래, 제안 방법들에서, 단말은 능력에 제한이 있는 단말일 수 있다. 예를 들어, 단말은 한정된 수신(/송신) 회로 능력(LIMITED RX(/TX) CHAIN/CIRCUIT CAPABILITY)을 가진 단말 (그리고/혹은 베터리 용량(/지속 시간/소모)에 제한이 있는 단말)일 수 있다. 예컨대, 단말은 수신부(/송신부)를 하나만 구비하여, 제1 주파수에서의 WAN 통신에 따른 신호와 제2 주파수에서의 V2X 통신에 따른 신호를 동시에 수신(/송신)하는 것이 불가능한 단말일 수 있다. 상기 단말은 (차량에 설치된 단말(VEHICLE-UE: V-UE)에 비해) 상대적으로 하드웨어 구현 비용/복잡도 증가/배터리 소모의 제약이 큰 보행자 단말(PEDESTRIAN UE: P-UE, 보행자가 소지하고 있는 단말로 보행 단말이라고 칭할 수도 있음)일 수 있다.
이하에서, 상기 단말이 V2X 반송파 또는 V2X 자원 풀(V2X 통신이 설정된 반송파/자원 풀) 상에서 V2X 메시지 전송(/수신) 동작을 수행할 때, 이를 효율적으로 수행하도록 하는 방법을 제시한다.
이하에서 제안 방식에 대한 설명의 편의를 위해서, 일례로, 단말 P-UE#K는 하나의 수신 회로 (RX CHAIN/CIRCUIT) 능력과 두 개의 송신 회로 (TX CHAIN/CIRCUIT) 능력을 가지고 있다고 가정한다.
또한, P-UE#K는 WAN(wide area network) DL/UL 반송파#X(WAN DL/UL 통신이 설정된 반송파들로 해석 가능)에서 WAN DL/UL 통신을 수행하고, V2X 반송파#Y 상에서 V2X 메시지 전송(/수신) 동작을 (함께) 수행하는 상황을 가정한다. 하지만, 본 발명의 제안 방식들은 이러한 상황뿐만 아니라 다양한 경우들 (예를 들어, V2X UE이 가진 수신(/송신) 회로 능력보다 더 많은 것이 요구되는 경우들)에도 확장 적용 가능하다.
상기 P-UE#K는 V2X 통신이 수행되는 V2X 반송파#Y 상에 '전용 수신부(/송신부)(DEDICATED RX(/TX) CHAIN/CIRCUIT)'가 없는 것으로 해석할 수 있다. 즉, 상기 V2X 반송파#Y 상에 'TX(/RX) CHAIN/CIRCUIT'만이 있는 것으로 해석 가능하다.
상이한 V2X 단말들 간의 "전송 자원 충돌 회피 동작 (즉, 센싱 방법)"은, V2X 단말들이 임의로 전송 자원을 선택/재선택하는 랜덤 방법에 비해, V2X 통신 성능을 향상시키는데 도움이 된다.
상기 센싱 동작은 (A) '스케줄링 할당(SCHEDULING ASSIGNMENT: SA) 채널 (예컨대, PSCCH)'의 디코딩을 통해서 수행되거나 그리고/혹은 (해당) 디코딩된 PSCCH와 연동된 'DATA 채널 (예컨대, PSSCH)' 상의 사전에 정의된 채널/참조 신호 (REFERENCE SIGNAL: RS, 예를 들어, 'DM-RS')에 대한 측정(예를 들어, 'PSSCH-RSRP') 그리고/혹은 (B) 에너지 측정(예를 들어, 'S-RSSI')을 통해서 수행될 수 있다.
이하에서, 일례로, 사용하는 반송파/밴드/채널 등의 용어는 자원 풀(resource pool)의 의미로 해석될 수 있다.
<제안 방법#1>
(한정된 수신 회로 능력을 가진) P-UE#K는 V2X 반송파#Y 상에서 V2X 메시지 전송 동작을 수행할 때, (센싱 동작이 설정된 것과 상관없이) WAN 하향링크 수신 동작 (WAN DL CARRIER#X)에 사용되는 수신 회로 (RX CHAIN/CIRCUIT)를 차용(/스위칭)하지 않고, (항상) 랜덤 방법으로 V2X 메시지 전송을 위한 (V2X 반송파#Y 상의) 전송 자원을 (재)선택하도록 할 수 있다.
일례로, V2X 메시지는 ((단말의) 상위 계층에서 결정된) 주기 값을 기반으로 (주기적으로) 전송 (그리고/혹은 (해당 주기값을 기반으로) (재)선택(/예약)된 (주기적인) 자원을 기반으로 전송)될 수 있다. 여기서, 일례로, P-UE#K는 (전송 블록(transport block: TB) 관련) (데이터/스케줄링 할당) 전송 자원 (재)선택(/예약)시, 이전 (주기(/전송 자원 (재)선택(/예약))) 시점에서 (재)선택(/예약)한 (TB 관련) (데이터/스케줄링 할당) 전송 자원이 속한 서브프레임은 제외하고 나머지 서브프레임에서 한정적으로 (재)선택(/예약)하도록 할 수 있다 (HALF DUPLEX 문제 완화 효과).
예를 들어, P-UE#K가 전송 자원 (재)선택(/예약)시, 100개의 서브프레임들(상기 100개의 서브프레임들을 0부터 99까지 인덱싱한다고 가정)로 구성된 (재)선택(/예약) 후보 자원 내에서, 특정 서브프레임(들)을 선택하여 V2X 메시지를 전송할 수 있다. 이전 전송 자원 (재)선택(/예약) 시점에서, P-UE#K가 ((재)선택(/예약) 후보 자원 내의) N 번째 서브프레임을 선택하였다면, 그 다음 전송 자원 (재)선택(/예약) 시점에서는 ((재)선택(/예약) 후보 자원 내의) 해당 N 번째 서브프레임을 제외한 나머지 서브프레임들 중에서 특정 서브프레임을 (랜덤하게) 선택할 수 있다.
여기서, 일례로, P-UE#K로 하여금, (센싱 동작이 설정된 경우) 'UU 인터페이스' 또는 WAN 상향링크를 이용하여 V2X 메시지 전송 동작을 수행할 수도 있다. 이러한 동작은 PC5와 UU(혹은 WAN 상향링크) 간의 스위칭으로 해석할 수 도 있다.
<제안 방법 #2>
(한정된 수신 회로 능력을 가진) P-UE#K는, (V2X 메시지 전송 (자원 (재)선택(/예약)) 동작을 수행하기 전) 사전에 설정되거나 시그널링된 시간/주파수 자원 (예를 들어, V2X 전송 자원 풀 앞의 시간/주파수 자원 그리고/혹은 V2X 메시지 전송 (자원 (재)선택(/예약)) 동작이 수행될 (스케줄링 할당) 주기(/시점) 전의 시간/주파수 자원 등) 상에, (네트워크로부터) 사전에 설정되거나 시그널링된 패턴 (예를 들어, '비트맵/주기/오프셋')의 "센싱 갭(SENSING GAP)(/센싱 자원) 또는 수신 갭(/수신 자원) 또는 부분 센싱 갭(PARTIAL SENSING GAP)(/부분 센싱 자원)"이 존재한다고 가정할 수 있다. 여기서, 일례로, "센싱 갭 또는 수신 갭" 워딩은 부분 센싱 갭(PARTIAL SENSING GAP)이라 칭할 수도 있다(이하 동일). 여기서, 일례로, "센싱 갭"은 단말이 V2X 신호 전송에 사용될 자원 (예를 들어, 서브프레임)을 (재)선택(/예약)하기 위해 센싱을 수행해야 할 자원(resource)를 의미할 수 있으며, 이러한 측면에서 센싱 갭은 센싱 자원이라고 칭할 수도 있다. 마찬가지로, "수신 갭"은 상기 단말이 상기 센싱을 수행하기 위해 신호(/채널)를 수신(/디코딩)해야 하는 자원 (그리고/혹은 PSSCH-RSRP/S-RSSI 측정을 해야 하는 자원)을 의미할 수 있으며, 이러한 측면에서 수신 갭은 수신 자원이라고 칭할 수도 있다. 또한, "부분 센싱 갭"은 상기 센싱을 수행하도록 설정된 (일부) 자원을 의미할 수 있으며, 이러한 측면에서 부분 센싱 갭은 부분 센싱 자원이라고 칭할 수 도 있다.
상기 센싱 갭(/자원)(혹은 수신 갭(/자원)/부분 센싱 갭(/자원), 이하 동일) 상에서, P-UE#K는 WAN 하향링크 수신 동작(WAN DL 반송파#X)에 사용되는 자신의 수신 회로를 스위칭(/차용)하거나 그리고/혹은 센싱 동작(또는 부분 센싱 동작)을 수행할 수 있다. 센싱 동작이란, 예를 들어, 1) 다른 V2X 단말이 전송하는 스케줄링 할당 채널들에 대한 디코딩 동작을 수행하여 점유된 자원들에 대한 정보들을 획득, 2)사전에 정의된 채널/참조 신호에 대한 (에너지) 측정 동작 (예를 들어, PSSCH-RSRP, S-RSSI)을 수행하여 높은 간섭이 존재하는 자원들 또는 다른 V2X 단말에 의해 점유된 자원들에 대한 정보들을 획득하는 동작 중 적어도 하나를 포함할 수 있다.
이러한 센싱 동작을 통해서, 다른 V2X 단말과의 전송 자원 충돌 회피가 가능해진다.
도 10은 <제안 방법 #2>에 따른 부분 센싱 동작에 따른 V2X 전송 자원 (재)선택(/예약) 방법을 예시한다.
도 10을 참조하면, 단말(P-UE, 이하 동일)은 (사전에 정의된 조건의 만족 여부에 따라) V2X 신호 전송을 위한 자원의 (재)선택(/예약)이 결정(/트리거링)될 수 있다. 예를 들어, 서브프레임 #m에서, 상기 전송 자원 (재)선택(/예약)이 결정 또는 트리거링 되었다고 가정해 보자. 이 경우, 단말은 서브프레임 #m+T1에서 #m+T2까지의 서브프레임 구간에서, V2X 신호 전송을 위한 자원을 (재)선택(/예약)할 수 있다. 상기 서브프레임 #m+T1에서 #m+T2까지의 서브프레임 구간을, 이하에서 선택 윈도우(selection window)라고 칭한다. 선택 윈도우는 예를 들어, 연속하는 100개의 서브프레임들로 구성될 수 있다.
단말은 선택 윈도우 내에서, 최소 Y개의 서브프레임들을 후보(candidate) 자원들로 선택할 수 있다. 즉, 단말은 선택 윈도우 내에서 최소한 Y개의 서브프레임들을 후보 자원들로 고려해야 할 수 있다. 상기 Y 값은 미리 설정된 값일 수도 있고, 네트워크에 의하여 설정되는 값일 수도 있다. 다만, 선택 윈도우 내에서 Y개의 서브프레임들을 어떻게 선택할 것인지는 단말 구현의 문제일 수 있다. 즉, 상기 Y값이 예컨대, 50이라고 할 때, 선택 윈도우를 구성하는 100개의 서브프레임들 중에서 어떤 50개의 서브프레임들을 선택할 것인지는 단말이 선택할 수 있다. 예를 들어, 단말은 상기 100개의 서브프레임들 중에서 서브프레임 번호가 홀수인 50개의 서브프레임들을 선택할 수도 있고, 서브프레임 번호가 짝수인 50개의 서브프레임들을 선택할 수도 있다. 또는 임의의 규칙에 의하여 50개의 서브프레임들을 선택할 수 있다.
한편, 상기 Y개의 서브프레임들 중에서 특정 서브프레임, 예컨대, 서브프레임 #N(SF#N)을 V2X 신호를 전송할 수 있는 V2X 전송 서브프레임으로 (재)선택(/예약)하기 위해서는, 단말은 상기 서브프레임 #N에 링크되거나 연관된 적어도 하나의 서브프레임을 센싱해야 할 수 있다. 센싱을 위하여 정의된 (전체) 서브프레임 구간을 센싱 윈도우(sensing window)라 칭하며, 예를 들어, 1000개의 서브프레임들로 구성될 수 있다. 즉, 센싱 윈도우는 1000 밀리초(ms) 또는 1초로 구성될 수 있다. 예를 들어, 단말은 센싱 윈도우 내에서, 서브프레임 #N-100*k (여기서, k는 [1, 10] 범위의 각 요소들의 집합일 수 있으며, 미리 설정되거나 네트워크에 의하여 설정되는 값일 수 있다)에 해당하는 서브프레임들을 센싱할 수 있다.
도 10에서는 k 값이 {1, 3, 5, 7, 10}인 경우를 예시하고 있다. 즉, 단말은 서브프레임 #N-1000, #N-700, #N-500, #N-300, #N-100을 센싱하여, 서브프레임 #N이 다른 V2X 단말에 의하여 사용되고 있는지 여부 (그리고/혹은 서브프레임 #N 상에 상대적으로 높은 (혹은 사전에 설정(/시그널링)된 임계값 이상의) 간섭이 존재하는지 여부)를 추정/판단하고 그 결과에 따라 서브프레임 #N을 (최종적으로) 선택할 수 있다. 보행 단말은 차량 단말에 비하여 배터리 소모에 민감하므로, 센싱 윈도우 내의 모든 서브프레임들을 센싱하는 것이 아니라 일부 서브프레임들만을 센싱, 즉, 부분 센싱(partial sensing)하는 것이다.
도 11은 <제안 방법 #2>에 따른 V2X 전송 서브프레임(/자원)을 (재)결정(/선택(/예약))하는 방법을 예시한다.
도 11을 참조하면, 단말은 (부분) 센싱 패턴을 결정하는데 이용되는 패턴 정보를 수신한다(S191). 상기 패턴 정보는 RRC (혹은 SIB) 메시지 등을 통해 네트워크에 의하여 제공될 수 있다.
다음 표는 패턴 정보의 일 예를 예시한다.
<표 4>
Figure PCTKR2017002413-appb-I000019
상기 표에서, 'minNumCandidateSF'는 가능한 후보 자원들에 포함되어야만 하는 최소 서브프레임들의 개수를 나타낸다. 전술한 바와 같이 단말은 선택 윈도우 내에서 최소한 Y개의 서브프레임들을 후보 자원들로 고려해야하는데, 이 때, 'minNumCandidateSF'가 상기 Y 값을 지시할 수 있다.
'gapCandidateSensing'는 후보 자원으로 어떤 서브프레임이 고려될 때, 어떤 서브프레임이 센싱되어야 하는지를 나타낸다. 전술한 바와 같이, 상기 Y개의 서브프레임들 중에서 특정 서브프레임 예컨대, 서브프레임 #N(SF#N)을 후보 자원으로 선택하는 경우, 센싱 윈도우 내에서, 서브프레임 #N-100*k 에 해당하는 서브프레임들을 센싱해야 할 수 있는데, 이 경우, 'gapCandidateSensing'는 상기 k 값을 10비트의 비트 스트링(bit string)을 통해 지시할 수 있다. 예컨대, k 값이 {1, 3, 5, 7, 10}인 경우, "1001010101" 과 같이 나타낼 수 있다.
단말은 센싱 윈도우 내의 서브프레임들 중에서, 상기 패턴 정보에 기반하여 결정된 일부 서브프레임들을 센싱한다(S192). 즉, 단말은 부분 센싱을 수행한다. 부분 센싱에 대해서는 도 10을 참조하여 상세히 설명한 바 있다.
단말은 상기 센싱에 기반하여 선택 윈도우 내의 특정 서브프레임을 V2X 전송 서브프레임으로 선택한다(S193).
도 12는 <제안 방법 #2>에 따른, 보행 단말(P-UE), 차량 단말(V-UE) 및 네트워크 간의 통신 방법을 예시한다. 여기서, 일례로, 도 12에서는 P-UE가 V-UE에게 V2X 신호를 전송하는 상황을 가정하였지만, 일반적으로, P-UE가 전송하는 V2X 신호는 V-UE 뿐만 아니라, 다른 개체들 (예를 들어, P-UE, V-UE, (UE-TYPE) RSU 등)을 타겟으로 할 수도 있다.
도 12를 참조하면, 네트워크는 보행 단말에게 (센싱) 패턴 정보를 제공한다(S201). 패턴 정보에 대해서는 표 4에서 상세히 설명한 바 있다.
보행 단말은 (센싱) 패턴 정보에 기반하여 부분 센싱을 수행하고, 그 결과에 따라 V2X 전송 서브프레임을 선택한다(S202).
보행 단말은 선택된 V2X 전송 서브프레임에서 V2X 신호를 전송한다(S203).
<제안 방법 #3>
(한정된 수신 회로 능력을 가진 보행 단말 예컨대) P-UE#K는, 자신이 선호하는 형태나 패턴의 센싱 갭(/자원) 또는 수신 갭(/자원) 또는 부분 센싱 갭(/자원) 정보를 (WAN 상향링크를 통해서 네트워크에게) 보고할 수 있다. 여기서, 일례로, 해당 센싱 갭(/자원) 또는 수신 갭(/자원) 또는 부분 센싱 갭(/자원) 정보는 비트맵 형태 그리고/혹은 (센싱 갭(/자원)(/수신 갭(/자원)/부분 센싱 갭(/자원)))의 주기/오프셋 값을 알려주는 형태일 수도 있다.
선호되는 센싱 갭(/자원)(/수신 갭(/자원)/부분 센싱 갭(/자원)) 형태/패턴은 P-UE#K가 (사전에 설정되거나 시그널링된 시간/주파수 자원 구간 상에서) 측정(/센싱) 동작을 수행한 후, 상대적으로 낮은 에너지 측정 결과값 (그리고/혹은 '혼잡도(CONGESTION LEVEL)' 결과값)을 가지는 일부 시간/주파수 자원 영역을 포함할 수 있다.
<제안 방법 #4>
(전술한 제안 방법 #3을 적용할 경우) (기지국으로부터 수신 받은) 센싱 갭(/자원) (또는 수신 갭(/자원) 또는 부분 센싱 갭(/자원)) 패턴이, 만약 (V2X 메시지 전송 동작이 수행될 풀(/자원) 관련) 센싱 동작이 필요한 (이전) 시간/주파수 자원(/풀) 영역을 전부(혹은 사전에 설정(/시그널링)된 (임계) 비율값 이상으로) 커버하지 못한다면 (예를 들어, 해당 센싱 갭(/자원)(/수신 갭(/자원)/부분 센싱 갭(/자원)) 패턴이 센싱 윈도우 내의 일부 자원(/서브프레임)만 커버하는 경우), 다음 규칙에 따라 해당 V2X 메시지 전송 동작이 수행될 수 있다.
여기서, 일례로, V2X 메시지 전송 동작이 (스케줄링 할당 풀(/주기)#J와 연동된) V2X 전송 자원 풀#J 상에서 수행될 때, 해당 V2X 전송 자원 풀#J에 대한 센싱 동작은 그 이전 시간/주파수 자원(예를 들어, (스케줄링 할당/주기#(J-1)에 연동된) V2X 전송 자원 풀#(J-1) 상에서 수행될 수 있다. 전술한 바와 같이, 센싱 갭(/자원)(혹은 수신 갭(/자원)) 기반의 센싱 동작은 '부분 센싱 동작'의 의미로 해석될 수 있다.
(예시#4-1) (기지국으로부터 수신 받은) 센싱 갭(/자원)(또는 수신 갭(/자원) 또는 부분 센싱 갭(/자원), 이하 동일) 패턴 상에서, 획득된 센싱 정보(예를 들어, 다른 V2X 단말이 점유한 자원 정보, 높은 간섭이 존재하는 자원 정보)만을 이용하여, 다른 V2X 단말과의 전송 자원 충돌 회피 동작을 수행할 수 있다.
예를 들어, (다른 단말이 일정한 주기로 사용 자원을 반복하는 경우에 센싱 갭(/자원)(/수신 갭(/자원)/부분 센싱 갭(/자원))이 (하나의) 반복 주기 (혹은 센싱 윈도우)를 다 커버하지 못한다면) P-UE는 센싱 갭(/자원)(/수신 갭(/자원)/부분 센싱 갭(/자원))을 통해 센싱이 수행된 자원 내에서만 자신의 최적 전송 자원을 (재)선택(/예약)하도록 동작할 수 있다.
일례로, 에너지가 가장 낮은 자원을 (재)선택(/예약)하는 경우, 센싱 갭(/자원)(혹은 수신 갭(/자원) 혹은 부분 센싱 갭(/자원))에 속한 자원 중에서 에너지가 가장 낮은 자원을 (재)선택(/예약)하는 것으로 제한할 수 있다.
일례로, 다른 단말의 스케줄링 할당 채널 디코딩을 통해서 다른 단말에 의하여 점유된 자원을 파악하는 경우, 센싱 갭(/자원)(/수신 갭(/자원)/부분 센싱 갭(/자원))에 속하는 스케줄링 자원에서 스케줄링할 수 있는 '데이터 자원'만을 (재)선택(/예약)하도록 제한할 수 있다.
P-UE#K는 현재 전송 자원 (재)선택(/예약) (주기) 시점에서, (전송 블록 관련) (데이터 또는 스케줄링 할당, 이하 동일) 전송 자원 (재)선택(/예약)시, 이전 (재)선택(/예약) (주기) 시점에서 (재)선택(/예약)한 (전송 블록 관련) (데이터 또는 스케줄링 할당) 전송 자원이 속한 서브프레임은 제외하고 나머지 서브프레임에서 한정적으로 (재)선택(/예약)할 수 있다. 이를 통해 (불완전한 센싱 정보 기반의 전송 자원 (재)선택(/예약) 동작 환경 하에서) 하프 듀플렉스(HALF DUPLEX) 문제를 완화 할 수 있다. 하프 듀플렉스 문제란, 단말이 신호의 전송과 수신을 동시에 하지 못하기 때문에, 동일한 자원(예컨대, 주파수 자원)을 반복적으로 신호의 전송/수신에 사용할 경우, 상기 자원에서 신호의 수신/전송을 반복적으로 하지 못하게 되는 것을 의미한다.
도 13은 예시#4-1에 따라 V2X 전송 자원을 (재)선택(/예약)하는 방법을 예시한다.
도 13을 참조하면, 제1 전송 자원 (재)선택(/예약) 시점(/주기)에서, 단말은 제1 선택 윈도우(222)에서 제1 서브프레임(223)을 선택할 수 있다. 상기 제1 서브프레임(223)을 선택함에 있어 센싱을 수행하여야 하는 연동된 서브프레임들을 제1 센싱 윈도우(221) 내에 센싱 자원들로 나타내고 있다.
제2 전송 자원 (재)선택(/예약) 시점(/주기)에서, 단말은 제2 선택 윈도우(225)에서 제2 서브프레임(226)을 선택할 수 있다. 이 때, 상기 제2 서브프레임(226)은 (선택 윈도우 내에서) 제1 서브프레임(223)과 동일한 위치(/ORDER)의 서브프레임(227)과 겹치지 않는 서브프레임이다. 즉, 제2 서브프레임(226)을 선택함에 있어서, 제2 선택 윈도우 내에서 제1 서브프레임(223)과 동일한 위치/서브프레임 ORDER(/번호)를 가지는 서브프레임은 제외하고 그 나머지 서브프레임들 중에서 제2 서브프레임(226)을 선택하는 것이다. 제2 서브프레임(226)을 선택하기 위해 센싱을 수행하여야 하는 연동된 서브프레임들을 제2 센싱 윈도우(224) 내에 센싱 자원들로 나타내고 있다.
이러한 방법에 의하면, 제1 선택 윈도우와 제2 선택 윈도우에서 서로 다른 자원을 선택하게 되므로, 하프 듀플렉스 문제를 완화할 수 있다.
제외된 서브프레임(/자원)과 연동(/링크)된 센싱 자원은 (센싱 갭(/자원)(/수신 갭(/자원)/부분 센싱 갭(/자원))에 포함된다고 할지라도) 센싱 동작을 생략하거나 그리고/혹은 (P-UE#K가 관련 정보를 기지국으로 보고함으로써) 센싱 갭에 포함되지 않도록 할 수도 있다.
도 14는 예시#4-1에 따른 V2X 전송 자원 (재)선택(/예약) 방법을 나타낸다.
도 14를 참조하면, 단말은 제1 선택 윈도우에서 선택된 제1 서브프레임과 겹치지 않는 제2 서브프레임을 제2 선택 윈도우에서 후보 자원으로 선택한다(S211).
단말은 제2 센싱 윈도우에서 상기 제2 서브프레임에 링크/연동된 서브프레임들을 센싱한다(S212).
단말은 상기 센싱 결과에 따라 상기 제2 서브프레임을 V2X 전송 서브프레임으로 선택할 수 있다(S213).
(예시#4-2) 일례로, 사전에 정의되거나 시그널링된 다른 방법, 예를 들어, 랜덤 방법으로 전송 자원 (재)선택 동작을 수행할 수도 있다.
또 다른 일례로, 'UU 인터페이스' 혹은 WAN 상향링크를 이용하여 V2X 메시지 전송 동작을 수행할 수도 있다. 이러한 동작은 PC5와 UU(혹은 WAN 상향링크) 간의 스위칭으로 해석될 수도 있다.
(예시#4-3) 기지국으로부터 센싱 갭(/자원)(혹은 수신 갭(/자원) 혹은 부분 센싱 갭(/자원)) 패턴 정보를 수신하지 못했다면, P-UE#K는 (센싱 동작이 설정되었다고 할지라도) 사전에 정의되거나 시그널링된 다른 방법(/폴백 방법) (예를 들어, 랜덤 방법)으로 전송 자원을 (재)선택(/예약)할 수 있다. 또는 'UU 인터페이스' (혹은 WAN 상향링크)를 이용하여 V2X 메시지 전송 동작을 수행할 수도 있다.
[제안 방법#5] P-UE가 센싱 동작을 너무 길게 수행하도록 하면, 예를 들어, (WAN DL RX CHAIN/CIRCUIT 스위칭으로 인해) WAN 하향링크 수신 성능의 저하가 발생하거나 그리고/혹은 베터리 소모 측면에서 좋지 않을 수 있다. 또는 고정된(혹은 (반)정적인) 시간/주파수 자원 영역에 대해서만 (부분) 센싱 동작을 짧게 혹은 한정적으로 수행하도록 할 경우, 예를 들어, 에너지 센싱의 정확성 및 전송 자원 충돌 회피 성능의 저하가 발생할 수 있다. 이러한 점들을 고려할 때, (부분) 센싱 동작 관련 파라미터들, 예를 들어, (부분) 센싱 동작이 수행되는 구간 길이(SENSING DURATION), (부분) 센싱 패턴(센싱 동작이 수행되는 형태(/패턴)/주기/오프셋 등을 의미하며, 비트맵 형태로 제공될 수 있음)이 사전에 정의된 규칙에 따라 '(시간) 홉핑'및/또는 '랜덤화' 되도록 설정해줄 수 있다.
'(시간) 홉핑 (패턴)' 및/또는 '랜덤화 (패턴)'은 서로 다른 V2X 단말들 간에 랜덤화될 수 있다. 예를 들어, 전송 단말의 ID, 수신 단말의 ID, V2X 메시지 전송 동작이 수행되는 (자원/풀의) (주기) 인덱스, 스케줄링 (자원/풀의) (주기) 인덱스 등의 입력 파라미터들 중 적어도 하나에 기반하여 사전에 정의된 함수에 의해 랜덤화될 수 있다.
한편, 단말은 복수 개의 반송파들에 대해서 (수신 회로/능력은 있으나) 한정된 송신 회로/능력(LIMITED TX CHAIN/CIRCUIT CAPABILITY)만을 가질 수 있다. 이러한 경우, 상기 단말은 사전에 정의되거나 시그널링된 "전송 갭(TX GAP)"에 속한 자원 중에서 (전송 갭에 속한 자원과) 연동된 센싱 자원 상에서 센싱 동작을 수행하고, 그 결과에 기반하여 상기 단말 자신의 최적 전송 자원을 한정적으로 (재)선택할 수 있다.
상기 전송 갭은, WAN 상향링크 전송에 비해서 V2V 메시지 전송이 상대적으로 높은 우선 순위를 가지는 자원 영역으로 해석될 수 있다.
이러한 경우, V2X 단말은 전송 갭에 속하지 않는 자원(들)을 V2X 메시지 전송 용도로 (재)선택(/예약)함으로써, (동일한 (혹은 상이한) 반송파 상에서) WAN 상향링크 전송과의 겹침으로 인해서, V2X 메시지 전송이 생략(혹은 드랍)되는 것 (그리고/혹은 전송 파워를 후순위로 할당 받는 것)을 완화시킬 수 있다.
한정된 송신 회로 능력을 가진 P-UE#K는, 자신이 선호하는 형태(/패턴) (예를 들어, '비트맵/주기/오프셋')의 전송 갭 정보를 (WAN 상향링크를 통해서) 네트워크에게 보고할 수 있다.
선호되는 전송 갭 형태(/패턴)은 P-UE#K가 (사전에 설정(/시그널링)된 (시간(/주파수)) 자원 (구간) 상에서) 측정(/센싱) 동작을 수행한 후, 상대적으로 낮은 (에너지) 측정 결과값 (그리고/혹은 '혼잡도(CONGESTION LEVEL)' 결과값)을 가지는 (일부) (시간(/주파수)) 자원 영역을 포함할 수 있다.
또는, 전송 갭은 V2X 통신이 수행되는 반송파들 간에 공통적으로 적용될 수 있다. (상기 반송파들 간에 공통적으로) 전송 갭이 설정(/적용)될 경우, 상이한 반송파들 상에서 'WAN 상향링크 전송'과 'V2X 메시지 전송'이 동시에 발생되었을 때 또는 시간 영역 상에서 일부 겹쳤을 때, 'WAN 상향링크 전송'에 높은 우선 순위의 전송 전력 분배를 하기 때문에 발생하는'V2X 통신 성능 저하 문제'를 완화시킬 수 있다.
다시 말해서, 상이한 반송파들 상에서 'WAN 상향링크 전송'과 'V2X 메시지 전송'이 (일부 혹은 모두) 겹치게 전송될 경우, 전송 갭에서는 V2X 메시지 전송에 WAN 상향링크 전송에 비해서 상대적으로 높은 우선 순위로 전송 전력을 할당(/분배)하는 것으로도 해석할 수 있다. 이러한 규칙이 적용될 경우, V2X 메시지 전송 관련 전송 전력이 낮게 할당(/분배)됨으로써 V2X 통신 (혹은 PUBLIC SAFTY (PS) 통신)의 성능 저하가 발생되는 것을 완화시킬 수 있다.
또는, 하나의 V2X 단말 관점에서, 상이한 반송파들 상에서 'WAN 상향링크 전송'과 'V2X 메시지 전송'이 동시에 발생하거나 또는 시간 영역 상에서 일부라도 겹치는 경우, 만약 전송 갭으로 설정된 구간이라면, V2X 메시지 전송에 WAN 상향링크 전송에 비해서 상대적으로 높은 우선 순위로 전송 전력을 할당(/분배)하되, WAN 상향링크 전송에 사전에 정의되거나 시그널링된 최소값의 전송 전력 값을 보장해줄 수도 있다. 이러한 규칙이 적용될 경우, WAN 상향링크 통신 관련 성능을 최소한으로 보장해줄 수 있다.
이하에서, (스케줄링 할당 디코딩/에너지 측정 기반의) 센싱 동작을 (부분적으로) 수행할 수 있는 V2X 단말, 예를 들어, V-UE 그리고/혹은 P-UE를 타입#A 단말(TYPE#A_UE)이라 하자. 즉, 타입#A 단말은 (부분) 센싱을 수행할 수 있는 단말이다. 그리고, (스케줄링 할당 디코딩/에너지 측정 기반의) 센싱 동작을 수행할 수 없는 V2X 단말(예를 들어, P-UE)을 타입#B 단말이(TYPE#B_UE)라 하자. 즉, 타입#B 단말은 (부분) 센싱을 수행할 수 없는 단말이다.
한편, V2X 전송 자원 풀은 다양한 타입이 존재할 수 있다.
도 15는 V2X 전송 자원 풀의 타입을 예시한다.
도 15 (a)를 참조하면, V2X 전송 자원 풀#A는 (부분) 센싱(sensing)만 허용되는 자원 풀일 수 있다. V2X 전송 자원 풀#A에서 단말은 (부분) 센싱을 수행한 후 V2X 전송 자원을 선택해야 하며, 랜덤 선택은 허용되지 않을 수 있다. (부분) 센싱에 의하여 선택된 V2X 전송 자원은 도 15 (a)에서 도시하는 바와 같이 일정 주기로 반정적으로 유지된다.
단말이 V2X 전송 자원 풀#A 상에서 V2X 메시지 전송을 수행하기 위해서는 (스케줄링 할당 디코딩/에너지 측정 기반의) 센싱 동작을 (부분적으로) 수행하도록 기지국은 설정할 수 있다. 이것은, 상기 V2X 전송 자원 풀#A 상에서는 전송 자원의 '랜덤 선택'이 허용되지 않은 것으로 해석될 수 있으며, '(부분) 센싱' 기반의 전송 자원 선택(만)이 수행(/허용)되는 것)으로 해석될 수 있다. 상기 설정은 기지국이 할 수 있다.
도 15 (b)를 참조하면, V2X 전송 자원 풀#B는 랜덤 선택(random selection)만 허용되는 자원 풀일 수 있다. V2X 전송 자원 풀#B에서 단말은 (부분) 센싱을 수행하지 않고, 선택 윈도우에서 V2X 전송 자원을 랜덤하게 선택할 수 있다. 여기서, 일례로, 랜덤 선택만 허용되는 자원 풀에서는, (부분) 센싱만 허용되는 자원 풀과 달리 선택된 자원이 반정적으로 유보되지 않도록 설정(/시그널링)될 수 도 있다.
기지국은, 단말이 V2X 전송 자원 풀#B 상에서 V2X 메시지 전송 동작을 수행하기 위해서는 (스케줄링 할당 디코딩/에너지 측정 기반의) 센싱 동작을 수행하지 않도록 설정할 수 있다. 이것은, V2X 전송 자원 풀 #B 상에서는 전송 자원 '랜덤 선택'(만)이 수행(/허용)되는 것 그리고/혹은 '(부분) 센싱' 기반의 전송 자원 선택이 허용되지 않은 것으로 해석될 수 있다.
한편, 도 15에는 도시하지 않았지만, (부분) 센싱과 랜덤 선택이 둘 다 가능한 자원 풀도 존재할 수 있다. 기지국은 이러한 자원 풀에서 (단말 구현으로) (부분) 센싱과 랜덤 선택 중 하나의 방식(either of the partial sensing and the random selection)으로 V2X 자원을 선택할 수 있음을 알려줄 수 있다.
도 16은 복수 타입의 자원 풀들이 존재하는 상황에서, V2X 자원 풀을 선택하는 방법을 예시한다.
도 16을 참조하면, 단말은 자원 풀의 타입을 알려주는 타입 정보를 수신한다(S300).
다음 표는 타입 정보의 일 예이다.
<표 5>
Figure PCTKR2017002413-appb-I000020
상기 표에서 'partialSensing'은 해당 자원 풀에서 단말이 자원 선택하기 위해서 부분 센싱이 허용됨을 나타낸다. 'randomSelection'은 해당 자원 풀에서 단말이 자원 선택함에 있어서 랜덤하게 선택하는 것이 허용됨을 나타낸다. 즉, 타입 정보는 특정 자원 풀에서 단말이 어떠한 방식으로 V2X 전송 자원을 선택할 수 있는지를 지시함으로써 상기 특정 자원 풀의 타입 (예를 들어, 부분 센싱 기반의 전송 자원 선택만이 허용된 자원 풀, 랜덤 선택 기반의 전송 자원 선택만이 허용된 자원 풀, 부분 센싱과 랜덤 선택 기반의 전송 자원 선택이 모두 허용된 자원 풀)을 알려줄 수 있다.
단말은 상기 타입 정보에 기반하여, 상기 자원 풀에서 랜덤 선택, 부분 센싱 에 기반한 자원 선택 중 적어도 하나를 수행한다(S310).
예를 들어, 기지국은 사전에 정의된 시그널링(상기 타입 정보)을 통해서 타입#A 단말에게 V2X 전송 자원 풀 #A 상에서는 (스케줄링 할당 디코딩/에너지 측정 기반의) 센싱 동작 기반의 전송 자원 할당/스케줄링, V2X 메시지 전송 동작 등을 수행하게 하고, V2X 전송 자원 풀 #B 상에서는 (스케줄링 할당 디코딩/에너지 측정 기반의) 센싱 동작 없는 (혹은 랜덤 선택 기반의) 전송 자원 할당/스케줄링, V2X 메시지 전송 동작을 하도록 허용할 수 있다.
(기지국은 사전에 정의된 시그널링을 통해서) (스케줄링 할당 디코딩/에너지 측정 기반의) 센싱 동작을 수행할 수 있는 단말이라고 하여도, ((V2X 전송 자원 풀 #A 상에서) (스케줄링 할당 디코딩/에너지 측정 기반의) 센싱 동작 기반의 전송 자원 할당/스케줄링, V2X 메시지 전송 동작 뿐만 아니라) (V2X 전송 자원 풀 #B 상에서) (스케줄링 할당 디코딩/에너지 측정 기반의) 센싱 동작 없는 전송 자원 할당/스케줄링, V2X 메시지 전송 동작 (예를 들어, 랜덤 선택 기법)을 하도록 허용할 수 있다. 여기서, 일례로, ((다만) V2X 전송 자원 풀들 중에서, (스케줄링 할당 디코딩/에너지 측정 기반의) 센싱 동작을 수행/적용해야만 하는 V2X 전송 자원 풀이 있다면), 상기 타입#A 단말로 하여금, ((반드시) (스케줄링 할당 디코딩/에너지 측정 기반의) 센싱 동작을 수행/적용해야만 하는 V2X 전송 자원 풀을 사용하도록 하거나 그리고/혹은) ((V2X 전송 자원 풀 #A 상에서) (스케줄링 할당 디코딩/에너지 측정 기반의) 센싱 동작 기반의 전송 자원 할당/스케줄링, V2X 메시지 전송 동작 등을 수행하도록 설정할 수 있다.
다시 말해서, 센싱 관련 능력이 상대적으로 좋은 V2X 단말에게 센싱 관련 능력이 상대적으로 나쁜 V2X 단말을 위한 자원(V2X 전송 자원 풀)의 사용을 제한(/금지)하는 것으로 해석할 수 있다. 또는/및 센싱 관련 능력이 상대적으로 좋은 V2X 단말과 센싱 관련 능력이 상대적으로 나쁜 V2X 단말이 동일한 V2X 전송 자원 풀을 사용(/공유)함으로써, 센싱 관련 능력이 상대적으로 좋은 V2X 단말의 V2X 통신 성능이 전송 자원 충돌로 인해 저하되는 것을 방지하는 것으로 해석될 수 있다.
기지국은 사전에 정의된 시그널링을 통해서, 타입#B 단말에게, V2X 전송 자원 풀#B 상에서만 전송 자원의 '랜덤 선택' 동작을 수행(/허용)하도록 할지 아니면 V2X 전송 자원 풀#A 상에서도 전송 자원의 '랜덤 선택' 동작을 수행(/허용)하도록 할 지를 알려줄 수 있다.
V2X 전송 자원 풀#A 상에서는 '(부분) 센싱' 기반의 전송 자원 선택 후에 선택된 전송 자원을 일정 시간 동안 유지(/예약)하도록 설정(/시그널링)될 수 있다. 그리고/혹은 V2X 전송 자원 풀#B 상에서는 전송 자원 '랜덤 선택' 선택 후에 선택된 전송 자원을 일정 시간 동안 유지(/예약)하지 않도록 설정/시그널링될 수 있다. 그리고/혹은 V2X 전송 자원 풀#B 상에서는 '(부분) 센싱' 능력 (그리고/혹은 수신 회로 능력)이 있는 (그리고/혹은 'WAN 하향링크 수신에 사용되는 '수신 체인'을 스위칭(/빌려온)) V2X 단말(예를 들어, P-UE만)이 전송 자원의 '랜덤 선택' 선택 후에 선택된 전송 자원을 일정 시간 동안 유지(/예약)하도록) 설정(/시그널링)될 수 있다.
V2X 전송 자원 풀 별로 어떤 타입의 V2X 단말의 전송 간에 해당 자원 풀이 공유되는지가 설정/시그널링될 수 있다. 예를 들어, 특정 자원 풀은 V-단말과 P-단말 간에 공유되도록 설정(/시그널링)되지만, 다른 자원 풀은 V-단말(혹은 P-단말)만이 사용하도록 설정(/시그널링)될 수 있다. 그리고/또는 '랜덤 선택'이 허용된 (P-단말 관련) 자원 풀이 (V-단말이 사용하는) '(부분) 센싱' 기반의 자원 풀과 일부 혹은 모두 겹치는지 여부가 설정(/시그널링) (예를 들어, '랜덤 선택'이 허용된 자원 풀과 '(부분) 센싱' 기반의 자원 풀이 (모두) 겹치는 경우, 해당 자원 풀은 '랜덤 선택'과 '(부분) 센싱' 기반의 자원 선택이 모두 (혹은 동시에) 허용된 자원 풀로 해석될 수 있음) 될 수도 있다.
특정 자원 풀 또는/및 V2X 반송파가 랜덤 선택이 허용되는 것인지 아니면 센싱 기반이 허용되는지는, 전술한 바와 같이 타입 정보를 통해 명시적으로 지시될 수도 있지만, 사전에 설정되거나 시그널링된 특정 파라미터(이를 I_VALUE라 하자)의 범위 값으로 암묵적으로 파악될 수도 있다.
예를 들어, 특정 자원 풀 (그리고/혹은 (V2X) 반송파) 상에서 상기 파라미터가 '0' 값을 제외한 나머지 값이 선택(/허용)되지 못하도록 설정(/시그널링)된 경우, 상기 특정 자원 풀은 전송 자원을 '랜덤 선택' 하는 단말(예를 들어, P-단말)만이 사용하도록 설정(/시그널링)된 자원 풀로 해석될 수 있다.
한편, 특정 자원 풀이 V-단말과 P-단말의 전송 간에 공유되도록 설정되거나, 그리고/혹은 '랜덤 선택'이 허용된 (P-단말 관련) 자원 풀과 (V-단말이 사용하는) '(부분) 센싱' 기반의 자원 풀이 일부 혹은 모두 겹치도록 설정(/시그널링)될 수도 있다. 이러한 경우, '랜덤 선택' 동작을 수행하는 (P-)단말로 하여금, 해당 자원 풀 상에서 '랜덤 선택'한 전송 자원을 일정 시간 동안 유지(/예약)하도록 할 수 있다. 또는, (특정 자원 풀이 V-단말과 P-단말의 전송 간에 공유되도록 설정되지 않거나, 그리고/혹은 '랜덤 선택'이 허용된 (P-단말 관련) 자원 풀과 (V-단말이 사용하는) '(부분) 센싱' 기반의 자원 풀이 일부 혹은 모두 겹치도록 설정(/시그널링)되지 않은 경우)'랜덤 선택' 동작을 수행하는 (P-)단말로 하여금, 해당 자원 풀 상에서 '랜덤 선택' 전송 자원을 일정 시간 동안 유지(/예약)하지 않도록 할 수도 있다.
도 17은 (부분) 센싱이 허용된 자원 풀 상에서 랜덤 선택 방식으로 자원을 선택한 단말의 동작을 예시한다.
여러가지 이유로 단말은 (부분) 센싱이 허용된 자원 풀에서 랜덤 선택을 통해 V2X 전송 자원(312)을 선택할 수 있다. 예를 들어, (부분) 센싱이 허용된 자원 풀과 랜덤 선택이 허용된 자원 풀이 겹치는 경우 (그리고/혹은 특정 풀 상에서 랜덤 선택과 (부분) 센싱이 모두 허용된 경우), 단말은 (부분) 센싱이 허용된 자원 풀에서 랜덤 선택을 통해 V2X 전송 자원을 선택할 수 있다.
이러한 경우, 단말은 상기 V2X 전송 자원(312)과 동일한 주파수를 가지는 자원들(313)을 반정적(semi-static)으로 유보(reservation)할 수 있다. 즉, 특정 구간에 걸쳐, 랜덤 선택한 자원을 일정한 주기를 가지고 반복적으로 유보하는 것이다. 단말은 실제로 랜덤 선택 방식으로 자원을 선택하였지만, 상기 자원을 선택한 자원 풀이 (부분) 센싱이 허용된 자원 풀과 겹치는 경우 (그리고/혹은 상기 자원을 선택한 자원 풀이 랜덤 선택과 (부분) 센싱을 모두 허용하는 경우), (부분) 센싱이 허용된 자원 풀에서의 ((부분) 센싱 동작) 단말과 유사한 동작을 하는 것으로 해석할 수 있다.
한편, 사전에 설정(/시그널링)된 한정된 시간(/주파수) 자원 구간(/영역) 내에서만 (스케줄링 할당 디코딩/에너지 측정 기반) 센싱 동작을 수행할 수 있는 V2X 단말 (예를 들어, P-단말) (제한된/부분 센싱 단말(LIMITED(/PARTIAL) SENSING_UE))은 타입#A 단말 (혹은 타입#B 단말)의 경우와 동일한 규칙(/방식)이 적용될 수 있다.
또는 타입#A 단말은 V2X 전송 자원 풀#B 상에서 V2X 메시지 전송 동작을 수행하기 위해서는 (스케줄링 할당 디코딩/에너지 측정 기반) 센싱 동작을 수행하지 않도록(혹은 수행하도록) 할 수 있다.
일례로, (A) 'LIMITED SENSING_UE' 형태 그리고/혹은 (B) 'TYPE#B_UE' 형태 그리고/혹은 (C) 'LIMITED RX CHAIN/CIRCUIT' (혹은 'NO RX CHAIN/CIRCUIT') 형태 (예를 들어, V2X 통신이 수행되는 V2X CARRIER#Y 상에 'DEDICATED RX CHAIN/CIRCUIT'가 없는 경우 (혹은 'TX CHAIN/CIRCUIT'만이 있는 경우))의 P-UE(S)는 자신의 주변에 위치한 (혹은 인접한) 다른 V2X UE(S) (예를 들어, 'V-UE(S)')가 'ITS(sidelink) SERVICE (관련 V2X MESSAGE TX 동작)' 그리고/혹은 'PS (PUBLIC SAFTY) SERVICE (관련 V2X MESSAGE TX 동작)' 등을 수행하는지를 (효율적으로 (혹은 빠른 시간 안에)) 파악하기 어렵다.
따라서, 아래의 (일부) 방식들의 적용을 통해서, 이러한 문제를 해결(/완화)시킬 수 있다.
일례로, 아래 (일부) 방법들은 상기 설명한 '(제한된) CAPABILITY(/CHAIN/CIRCUIT)' (예를 들어, 'LIMITED SENSING_UE' 형태, 'TYPE#B_UE' 형태, 'LIMITED RX CHAIN/CIRCUIT' 형태 (혹은 'NO RX CHAIN/CIRCUIT' 형태 혹은 'TX CHAIN/CIRCUIT'만이 있는 형태)의 P-UE(S)가 (V2X 통신이 수행되는) 동일 채널(/밴드/케리어) 상의 인접 거리에 '다른 통신 (예를 들어, 'DSRC/IEEE 802.11P SERVICE', '(다른 NUMEROLOGY 기반의) NEW RAT (NR) eV2X SERVICE')'이 존재하는지를 효율적으로 파악(/검출)하도록 하기 위해서도 (확장) 이용될 수 있다.
여기서, 일례로, ((V2X 통신이 수행되는) 동일 채널(/밴드/케리어) 상의 인접 거리에) '다른 통신'이 존재함을 파악(/검출)한 P-UE(S)는 상기 '제안된 공존 방법'(특히, <'V2X 통신'과 '다른 통신'이 공존하도록 하는 방법>에 기술된 내용)에 기술된 (일부) 규칙에 따라, 효율적으로 공존(/(충돌) 회피)하게 된다.
이하, 도면을 통해 P-UE 즉, (A) 센싱 능력이 부족(혹은 제한되는)한 단말(예컨대, 전술한 ‘LIMITED SENSING_UE'), 혹은 (B) 센싱 능력이 없는 단말(예컨대, 전술한 'TYPE#B_UE'), 혹은 (C) V2X 통신이 수행되는 V2X CARRIER#Y 상에 'DEDICATED RX CHAIN/CIRCUIT'가 없기에, 제한된 RX CHAIN/CIRCUIT을 가진 단말(예컨대, 전술한 ‘LIMITED RX CHAIN/CIRCUIT')이 V2X(Vehicle to X) 캐리어 상에서 다른 통신이 수행된다는 것을 파악(혹은 검출)하고, 상기 검출된 결과에 기반하여 V2X 메시지 전송 자원을 결정한 후 상기 전송 자원 상에서 상기 V2X 메시지를 전송하는 방법을 도면을 통해 보다 구체적으로 설명한다.
도 18은 본 발명의 일 실시예에 따른, 한정된 수신 능력을 가지는 단말이 V2X 메시지를 전송하는 방법의 순서도다.
도 18에 따르면, 단말은 V2X(Vehicle to X) 캐리어 상에서 다른 통신이 수행(/검출)된다는 것을 지시하는 정보를 수신할 수 있다(S1010). 이때, 상기 다른 통신이 수행됨을 검출하는 능력이 제한적인 단말은, 제한된 센싱 능력을 가지는 단말이거나, 센싱 능력이 없는 단말이거나, 또는 상기 V2X 자원 전용의 수신 체인(chain)이 없는 단말일 수 있으며, 상기 단말은 전술한 바와 같이, P-UE일 수 있다.
여기서, 상기 단말은 V2X(Vehicle to X) 캐리어 상에서 다른 통신이 수행(/검출)된다는 것을 지시하는 정보를 (A) 다른 V2X 단말들로부터 수신하거나, 혹은 (B) 기지국으로부터 수신할 수 있다. 이때, 상기 V2X 자원 상에서 다른 통신이 수행(/검출)된다는 것을 지시하는 정보는 상기 V2X 자원 상에서 수행되고 있는 사이드링크 서비스의 종류를 지시하는 정보일 수 있다. 또한, 상기 V2X 자원 상에서 다른 통신이 수행(/검출)된다는 것을 지시하는 정보는 상기 V2X 자원 상에서 수행되고 있는 서비스가 PS(public safety) 서비스인지 여부를 지시하는 정보일 수 있다. 이때, 상기 V2X 자원 상에서 다른 통신이 수행(/검출)된다는 것을 지시하는 정보는 상기 V2X 자원 상에서 V2X 통신의 RAT(radio access technology)와는 다른 RAT에 기반한 통신이 수행되는지 여부를 지시하는 정보일 수 있다.
보다 구체적으로,
[제안 방법#6] (P-UE(S)의 주변에 위치한 (혹은 인접한)) (A) 다른 V2X UE(S) (예를 들어, 'V-UE(S)') 그리고/혹은 (B) (서빙) 기지국으로 하여금, (현재) 동작되고 있는 (혹은 검출된) 'ITS 서비스의 종류(/내용)' 그리고/혹은 'PS (혹은 NON-PS) 서비스인지의 여부' (그리고/혹은 '다른 통신 (예를 들어, 'DSRC/IEEE 802.11P SERVICE', '(다른 NUMEROLOGY 기반의) NR eV2X SERVICE')의 존재 여부') 등에 대한 정보를 (P-UE(S)에게) (사전에 설정(/시그널링)된 채널을 통해서) 알려주도록 할 수 있다.
여기서, 일례로, 이러한 규칙은 P-UE(S)가 해당 관련 정보를 '(SIDELINK) SYNCHRONIZATION SIGNAL (SLSS)' (예를 들어, 'ITS 서비스의 종류(/내용)' 그리고/혹은 'PS (혹은 NON-PS) 서비스인지의 여부 관련 정보'가 'SLSS SEQUENCE(/ID)'에 맵핑되는 경우 (그리고/혹은 상이한 서비스(/통신) 별로 다른 'SLSS SEQUENCE(/ID)'가 사용될 경우)) (그리고/혹은 'PSBCH' (예를 들어, 'PSBCH' 상의 특정 (RESERVED) 필드를 통해서 이러한 정보들이 시그널링되는 경우))로 파악하기 어려운 경우 그리고/혹은 'SIDELINK (DEDICATED) RX CHAIN/CIRCUIT'이 없는 경우에 유용할 수 있다. 여기서, 일례로, 'SLSS' 워딩은 'PSSS' (혹은 'SSSS')로 해석될 수 도 있다.
[제안 방법#7] 일례로, '서비스 타입(/종류/내용) (정보)' (예를 들어, 'ITS 서비스의 종류' 그리고/혹은 'PS (혹은 NON-PS) 서비스인지의 여부' 등에 대한 정보)가 'SLSS SEQUENCE(/ID)'에 맵핑되는 경우 (그리고/혹은 상이한 서비스(/통신) 별로 다른 'SLSS SEQUENCE(/ID)'가 사용될 경우), (P-UE(S)의 주변에 위치한 (혹은 인접한)) (A) 다른 V2X UE(S) (예를 들어, 'V-UE(S)') 그리고/혹은 (B) (서빙) 기지국으로 하여금, 검출된 'SLSS SEQUENCE(/ID)'에 대한 정보를 (P-UE(S)에게) (사전에 설정(/시그널링)된 채널을 통해서) 알려주도록 할 수 있다.
이후, 단말은 상기 정보에 기반하여, V2X 메시지를 전송한다(S1020). 여기서, 상기 단말이 상기 정보에 기반하여 V2X 메시지를 전송하는 것은, 상기 정보에 기반하여 V2X 전송 메시지 전송 자원을 결정하고, 결정된 상기 전송 자원 상에서 상기 V2X 메시지를 전송하는 것을 포함할 수 있다. 여기서, 상기 V2X 자원 상에서 다른 통신이 수행되는 경우, 상기 V2X 단말은 상기 V2X 메시지의 전송 자원을 상기 V2X 자원과는 다른 V2X 자원으로 스위칭(switching)하고, 및 상기 단말은 스위칭된 상기 다른 V2X 자원 상에서 상기 V2X 메시지를 전송하는 것을 의미할 수 있다. 상기 단말은 스위칭된 상기 다른 V2X 자원 상에서 기 설정된 시간 동안 상기 V2X 메시지를 전송할 수 있으며, 스위칭된 상기 V2X 자원은 상기 단말이 이전에 전송한 전송 블록에서 사용된 서브프레임을 제외한 서브프레임일 수 있다.
보다 구체적으로,
일례로, ([제안 방법#7] (그리고/혹은 [제안 방법#6])이 적용될 경우) P-UE(S)로 하여금, 사전에 설정(/시그널링)된 'SIDELINK SYNCHRONIZATION(/PSBCH) RESOURCE(S)' 상에서만 'WAKE-UP' 하여 'SLSS (SEQUENCE(/ID))(/PSBCH)' 검출 시도를 수행 (그리고/혹은 사전에 설정(/시그널링)된 (시간(/주파수) 자원) (일부) 구간 동안에만 ('다른 통신' 검출(/파악)을 위한) '센싱' 동작을 수행 (예를 들어, 일종의 'PARTIAL SENSING' 동작으로 해석될 수 있음) (그리고/혹은 자신이 V2X MESSAGE TX 용도로 선택(/예약)한 자원 (혹은 자신의 전송 동작 (시점)) 이전(/직전)의 (혹은 자신이 V2X MESSAGE TX 용도로 선택(/예약)한 자원 (혹은 자신의 전송 동작 (시점))으로부터 사전에 설정(/시그널링)된 (시간(/타이밍)) 오프셋 값 이전의) (시간(/주파수)) 자원 (영역(/구간)) 상에서 ('다른 통신' 검출(/파악)을 위한) '센싱' 동작을 수행) 그리고/혹은 (현재) 동작되고 있는 (혹은 검출된) 'ITS 서비스의 종류(/내용)' 그리고/혹은 'PS (혹은 NON-PS) 서비스인지의 여부' 그리고/혹은 '다른 통신 (예를 들어, 'DSRC/IEEE 802.11P SERVICE', '(다른 NUMEROLOGY 기반의) NR eV2X SERVICE')의 존재 여부' 등에 대한 정보를 파악)하도록 할 수 도 있다.
여기서, 일례로, '다른 통신'이 검출된 경우, P-UE(S)로 하여금, (A) 기존 풀(/케리어/채널/밴드) 상에서 'V2X 통신' (그리고/혹은 'V2X MESSAGE TX 동작')을 중단하도록 규칙이 정의되거나 그리고/혹은 (B) 사전에 정의(/시그널링)된 (규칙(/(우선) 순위)에 따라 'V2X 통신' (그리고/혹은 'V2X MESSAGE TX 동작')이 수행되는 풀(/케리어/채널/밴드)을 변경 그리고/혹은) (해당 변경된) 다른 풀(/케리어/채널/밴드) 상에서 (사전에 설정(/시그널링)된 일정 시간 동안) 'V2X 통신' (그리고/혹은 'V2X MESSAGE TX 동작')을 수행하도록 규칙이 정의될 수 있다.
또 다른 일례로, ([제안 방법#7] (그리고/혹은 [제안 방법#6])이 적용될 경우) (P-UE(S)의 주변에 위치한 (혹은 인접한)) 다른 V2X UE(S) (예를 들어, 'V-UE(S)')로 하여금, 파악한 (혹은 검출된) (현재) 동작되고 있는 'ITS 서비스의 종류(/내용)' 그리고/혹은 'PS (혹은 NON-PS) 서비스인지의 여부' 그리고/혹은 '다른 통신 (예를 들어, 'DSRC/IEEE 802.11P SERVICE', '(다른 NUMEROLOGY 기반의) NR eV2X SERVICE')의 존재 여부' 등에 대한 정보를 (서빙) 기지국에게 전송(/보고)할 때, '자신의 위치 정보' (그리고/혹은 '해당 정보를 파악한 위치 정보') (그리고/혹은 '(위치 기반의 자원 풀 (TDM(/FDM)) 분할 동작이 설정(/시그널링)된 경우) '다른 통신' (그리고/혹은 'ITS 서비스' 그리고/혹은 'PS(/NON-PS) 서비스')이 검출된 자원 풀(/케리어/채널/밴드) (인덱스) 정보')를 함께 (혹은 추가적으로) 보고(/전송)하도록 할 수 도 있다.
여기서, 일례로, 이러한 정보를 수신한 (서빙) 기지국은 ((보고받은) 인접 (혹은 동일) 위치(/영역) 상의) P-UE(S)에게 해당 정보를 (사전에 정의된 시그널을 (예를 들어, (WAN) DL(/PDSCH))를 통해) 알려줄 수 있다. 여기서, 일례로, (V-UE(S)로부터) 상기 정보를 수신한 (서빙) 기지국은 '다른 통신'이 검출된 (인접 혹은 동일) 위치(/영역) (그리고/혹은 풀(/케리어/채널/밴드)) 상의 P-UE(S)에게 (관련) 자원 풀을 'ACTIVATION/DEACTIVATION' 시키거나 그리고/혹은 'V2X 통신' (그리고/혹은 'V2X MESSAGE TX 동작')을 중단시키거나 그리고/혹은 사전에 설정(/시그널링)된 (규칙(/(우선) 순위)에 따라) 다른 케리어(/채널/밴드/풀)로의 스위칭을 지시할 있다.
여기서, 또 다른 일례로, ((서빙) 기지국으로부터) 해당 정보를 수신한 P-UE(S)는 자신의 (현재) 위치 (그리고/혹은 자신이 (현재) V2X MESSAGE TX 동작을 수행하는 풀(/케리어/채널/밴드))를 고려(/비교)하여, 기존 풀(/케리어/채널/밴드) 상의 V2X MESSAGE TX 동작 유지(/중단) 여부 그리고/혹은 사전에 정의(/시그널링)된 (규칙(/(우선) 순위)에 따라) 다른 케리어(/채널/밴드/풀)로의 스위칭 및 (해당 변경된) 다른 자원(/채널/밴드) 상에서 (사전에 설정(/시그널링)된 일정 시간 동안) 'V2X 통신' (그리고/혹은 'V2X MESSAGE TX 동작') 수행 여부 등을 결정(/판단)할 수 있다. 여기서, 일례로, 이러한 규칙이 적용될 경우, P-UE(S)는 'SLSS (SEQUENCE(/ID))(/PSBCH)' 검출 시도를 (직접적으로) 할 필요가 없다. 여기서, 일례로, 'SLSS' 워딩은 'PSSS' (혹은 'SSSS')로 해석될 수 도 있다.
또 다른 일례로, 상기 설명한 '(제한된) CAPABILITY(/CHAIN/CIRCUIT)' (예를 들어, 'LIMITED SENSING_UE' 형태, 'TYPE#B_UE' 형태, 'LIMITED RX CHAIN/CIRCUIT' 형태 (혹은 'NO RX CHAIN/CIRCUIT' 형태 혹은 'TX CHAIN/CIRCUIT'만이 있는 형태)의 P-UE(S)가 '다른 통신' (예를 들어, 'DSRC/IEEE 802.11P SERVICE', '(다른 NUMEROLOGY 기반의) NR eV2X SERVICE') 검출(/파악) 목적으로 (사전에 설정(/시그널링)된 (시간(/주파수) 자원) 구간 동안에) 'PARTIAL SENSING' 동작을 수행할 때, ('다른 통신'을 효과(/성공)적으로 검출하기까지 요구되는) (평균적인) 'PARTIAL SENSING' 시간을 줄이기 위해서 (혹은 'PARTIAL SENSING' 동작 수행시 '다른 통신' 검출 확률을 높이기 위해서), (인접한) 다른 V2X UE(S) (예를 들어, 'V-UE(S)') (그리고/혹은 (서빙) 기지국(/RSU))로 하여금, (사전에 설정(/시그널링)된) 'PARTIAL SENSING' (시간(/주파수) 자원) 구간 동안에 (V2X 통신 관련) 채널/시그널 전송 동작을 생략 (일종의 'SILENCING PERIOD'로 해석 가능)하도록 할 수 도 있다.
또 다른 일례로, (한정된 수신(/송신) 회로 능력을 가진) P-UE(S)가 (A) 어떤 타입(/종류) (예를 들어, 'PARTIAL SENSING', 'FULL SENSING')의 센싱 동작을 수행하는지 그리고/혹은 (B) (센싱 동작없이) (전송 자원) 랜덤 선택 수행 여부에 따라, 'SLSS 전송(/수신(/모니터링)) (수행) 조건'이 상이하게 설정(/시그널링)될 수 있다.
또 다른 일례로, (한정된 수신(/송신) 회로 능력을 가진) P-UE(S)의 경우, 아래 (일부) 파라미터가 V-UE(S)와 비교할 때, 상이하게 (혹은 독립적으로) 설정(/시그널링)될 수 있다.
(예제#1) 전송 자원 (재)예약(/선택) 수행시, 가정(/사용)되는 (자원 예약 (간격) 주기의) 유한한 서브프레임 개수 (그리고/혹은 (본 발명 문서) 제안된 공존 방법: 표 2 SECTION 2.1. 상의 Cresel 값 (예를 들어, "[10*SL_RESOURCE_RESELECTION_COUNTER]")).
(예제#2) V2X 메시지 우선 순위 (예를 들어, 상대적으로 낮은 (혹은 높은) 우선 순위로 설정(/시그널링)될 수 있음) 그리고/혹은 (본 발명 문서) 제안된 공존 방법: 표 2 SECTION 2.3.의 STEP 5 상의 "PSSCH-RSRP MEASUREMENT" 임계값 (그리고/혹은 (본 발명 문서) 제안된 공존 방법: 표 2 SECTION 2.3. STEP 6(/8) 상의 "0.2*Mtotal" 관련 계수(/비율)값 (예를 들어, (본 발명 문서) 제안된 공존 방법: 표 2 SECTION 2.3.의 STEP 5 수행 후에 (전체 (후보) 자원 중에) (SA 집합 내에) 남아 있어야 하는 최소 (후보) 자원 개수를 도출(/결정)하는 비율 값 그리고/혹은 (본 발명 문서) 제안된 공존 방법: 표 2 SECTION 2.3.의 STEP 8 수행 후에 SB 집합 내에 있어야 (최소) (후보) 자원 개수를 도출(/결정)하는 비율 값으로 해석될 수 있음)이 상이한 (혹은 독립적인) 값으로 설정(/시그널링)될 수 있음 그리고/혹은 (본 발명 문서) 제안된 공존 방법: 표 2 SECTION 2.3.의 STEP 5 수행 후에 (전체 (후보) 자원 중에) SA 집합 내에 남아 있어야 하는 최소 (후보) 자원 개수가 충족되지 못한 경우에 적용되는 "PSSCH-RSRP MEASUREMENT" 증가값 (예를 들어, "3DB") 그리고/혹은 센싱 동작 (예를 들어, (본 발명 문서) 제안된 공존 방법: 표 2 SECTION 2.3.의 STEP 5) (그리고/혹은 에너지 측정 동작 (예를 들어, (본 발명 문서) 제안된 공존 방법: 표 2 SECTION 2.3.의 STEP 7/8))에 사용되는 주기값. 여기서, 일례로, (즉) P-UE의 (부분) 센싱 패턴을 네트워크가 시그널링해주는 동작에 전술한 예가 적용될 수 있음).
(예제#3) V2X 자원 풀 (그리고/혹은 (V2X) 케리어) 상에서 선택(/허용) 가능한 I_VALUE (범위) 값 그리고/혹은 P_STEP 값.
(예제#4) 전송 전력 관련 (OPEN-LOOP) 파라미터(/값) (예를 들어, "PO", "ALPHA" 등) 그리고/혹은 V2X 자원 풀(/케리어).
또 다른 일례로, 아래 표 6을 통해서, (한정된 수신(/송신) 회로 능력을 가진) P-UE(S)의 'V2X MESSAGE) 전송 동작' (그리고/혹은 '(전송) 자원 선택(/예약) 동작')을 효율적으로 지원해줄 수 있다.
<표 6>
Figure PCTKR2017002413-appb-I000021
Figure PCTKR2017002413-appb-I000022
Figure PCTKR2017002413-appb-I000023
Figure PCTKR2017002413-appb-I000024
이하, 이해의 편의를 위해 전술한 실시예를 흐름도를 통해 아래에서 설명하도록 한다. 이하에서는, 설명의 편의를 위해 전술한 내용과 아래 도면에서 중복되어 적용될 수 있는 내용은 생략하도록 한다. 즉, 전술한 실시예는 후술할 실시예에도 적용될 수 있다.
도 19는 본 발명의 다른 실시예에 따른, 한정된 수신 능력을 가지는 단말이 V2X 메시지를 전송하는 방법의 순서도다.
도 19에 따르면, 단말은 V2X(Vehicle to X) 캐리어 상에서 다른 통신이 수행(/검출)된다는 것을 지시하는 정보를 다른 V2X 단말로부터 수신할 수 있다(S1110). 이때, 전술한 바와 같이, 상기 다른 V2X 단말은 V-UE를 의미할 수 있다.
일례로 예컨대, 전술한 바와 같이, V2X(Vehicle to X) 캐리어 상에서 다른 통신이 수행(/검출)된다는 것을 지시하는 정보를 수신하는 것은, 전술한 바와 같이, (현재) 동작되고 있는 (혹은 검출된) 'ITS 서비스의 종류(/내용)' 그리고/혹은 'PS (혹은 NON-PS) 서비스인지의 여부' (그리고/혹은 '다른 통신 (예를 들어, 'DSRC/IEEE 802.11P SERVICE', '(다른 NUMEROLOGY 기반의) NR eV2X SERVICE')의 존재 여부') 등에 대한 정보를 (P-UE(S)에게) (사전에 설정(/시그널링)된 채널을 통해서) 알려주도록 하는 것을 의미할 수 있다. 본 예에 대한 구체적인 설명은 전술한 바와 같으므로, 설명의 편의를 위해 구체적인 내용은 생략하도록 한다.
이후, 단말은 상기 정보에 기반하여, V2X 메시지의 전송 자원을 결정할 수 있다(S1120).
일례로 예컨대, 상기 정보에 기반하여, '다른 통신'이 검출된 경우, P-UE(S)로 하여금, (A) 기존 풀(/케리어/채널/밴드) 상에서 'V2X 통신' (그리고/혹은 'V2X MESSAGE TX 동작')을 중단하도록 규칙이 정의되거나 그리고/혹은 (B) 사전에 정의(/시그널링)된 (규칙(/(우선) 순위)에 따라 'V2X 통신' (그리고/혹은 'V2X MESSAGE TX 동작')이 수행되는 풀(/케리어/채널/밴드)을 변경 그리고/혹은) (해당 변경된) 다른 풀(/케리어/채널/밴드) 상에서 (사전에 설정(/시그널링)된 일정 시간 동안) 'V2X 통신' (그리고/혹은 'V2X MESSAGE TX 동작')을 수행하도록 규칙이 정의될 수 있다. 본 예에 대한 구체적인 설명은 전술한 바와 같으므로, 설명의 편의를 위해 구체적인 내용은 생략하도록 한다.
또한, 일례로 예컨대, 전술한 (한정된 수신(/송신) 회로 능력을 가진) P-UE(S)의 경우, (일부) 파라미터가 V-UE(S)와 비교할 때, 상이하게 (혹은 독립적으로) 설정(/시그널링)될 수 있다. 본 예에 대한 구체적인 설명은 전술한 바와 같으므로, 설명의 편의를 위해 구체적인 내용은 생략하도록 한다.
또한, 일례로 예컨대, (한정된 수신(/송신) 회로 능력을 가진) P-UE(S)의 'V2X MESSAGE) 전송 동작' (그리고/혹은 '(전송) 자원 선택(/예약) 동작')을 효율적으로 지원해줄 수 있다. 본 예에 대한 구체적인 설명은 전술한 바와 같으므로, 설명의 편의를 위해 구체적인 내용은 생략하도록 한다.
이후, 단말은 결정된 상기 전송 자원 상에서, 상기 V2X 메시지를 전송할 수 있다(S1130). 단말이 결정된 상기 전송 자원 상에서, 상기 V2X 메시지를 전송하는 구체적인 예는 전술한 바와 같다.
도 20은 본 발명의 또 다른 실시예에 따른, 한정된 수신 능력을 가지는 단말이 V2X 메시지를 전송하는 방법의 순서도다.
도 20에 따르면, 기지국은 (P-UE와는 다른) V2X 단말로부터 V2X(Vehicle to X) 캐리어 상에서 다른 통신이 수행(/검출)된다는 것을 지시하는 정보를 수신할 수 있다(S1210). 이때, 전술한 바와 같이, 상기 다른 V2X 단말은 V-UE를 의미할 수 있다.
일례로 예컨대, 전술한 바와 같이, V2X(Vehicle to X) 캐리어 상에서 다른 통신이 수행(/검출)된다는 것을 지시하는 정보를 수신하는 것은, 전술한 바와 같이, (현재) 동작되고 있는 (혹은 검출된) 'ITS 서비스의 종류(/내용)' 그리고/혹은 'PS (혹은 NON-PS) 서비스인지의 여부' (그리고/혹은 '다른 통신 (예를 들어, 'DSRC/IEEE 802.11P SERVICE', '(다른 NUMEROLOGY 기반의) NR eV2X SERVICE')의 존재 여부') 등에 대한 정보를 (P-UE(S)에게) (사전에 설정(/시그널링)된 채널을 통해서) 알려주도록 하는 것을 의미할 수 있다. 본 예에 대한 구체적인 설명은 전술한 바와 같으므로, 설명의 편의를 위해 구체적인 내용은 생략하도록 한다.
또한, 일례로, (P-UE(S)의 주변에 위치한 (혹은 인접한)) 다른 V2X UE(S) (예를 들어, 'V-UE(S)')로 하여금, 파악한 (혹은 검출된) (현재) 동작되고 있는 'ITS 서비스의 종류(/내용)' 그리고/혹은 'PS (혹은 NON-PS) 서비스인지의 여부' 그리고/혹은 '다른 통신 (예를 들어, 'DSRC/IEEE 802.11P SERVICE', '(다른 NUMEROLOGY 기반의) NR eV2X SERVICE')의 존재 여부' 등에 대한 정보를 (서빙) 기지국에게 전송(/보고)할 때, '자신의 위치 정보' (그리고/혹은 '해당 정보를 파악한 위치 정보') (그리고/혹은 '(위치 기반의 자원 풀 (TDM(/FDM)) 분할 동작이 설정(/시그널링)된 경우) '다른 통신' (그리고/혹은 'ITS 서비스' 그리고/혹은 'PS(/NON-PS) 서비스')이 검출된 자원 풀(/케리어/채널/밴드) (인덱스) 정보')를 함께 (혹은 추가적으로) 보고(/전송)하도록 할 수 도 있다. 본 예에 대한 구체적인 설명은 전술한 바와 같으므로, 설명의 편의를 위해 구체적인 내용은 생략하도록 한다.
단말(상기 다른 V2X 단말과는 다른 단말, 예컨대, P-UE)은 V2X(Vehicle to X) 캐리어 상에서 다른 통신이 수행(/검출)된다는 것을 지시하는 정보를 기지국으로부터 수신할 수 있다(S1220). 즉, 단말은 다른 V2X 단말이 전송한 V2X(Vehicle to X) 캐리어 상에서 다른 통신이 수행(/검출)된다는 것을 지시하는 정보를 기지국으로부터 포워딩 받을 수 있다. 혹은, 단말은 기지국이 생성한 V2X(Vehicle to X) 캐리어 상에서 다른 통신이 수행(/검출)된다는 것을 지시하는 정보를 기지국으로부터 수신할 수 있다.
일례로 예컨대, 전술한 바와 같이, V2X(Vehicle to X) 캐리어 상에서 다른 통신이 수행(/검출)된다는 것을 지시하는 정보를 수신하는 것은, 전술한 바와 같이, (현재) 동작되고 있는 (혹은 검출된) 'ITS 서비스의 종류(/내용)' 그리고/혹은 'PS (혹은 NON-PS) 서비스인지의 여부' (그리고/혹은 '다른 통신 (예를 들어, 'DSRC/IEEE 802.11P SERVICE', '(다른 NUMEROLOGY 기반의) NR eV2X SERVICE')의 존재 여부') 등에 대한 정보를 (P-UE(S)에게) (사전에 설정(/시그널링)된 채널을 통해서) 알려주도록 하는 것을 의미할 수 있다. 본 예에 대한 구체적인 설명은 전술한 바와 같으므로, 설명의 편의를 위해 구체적인 내용은 생략하도록 한다.
이후, 단말은 상기 정보에 기반하여, V2X 메시지의 전송 자원을 결정할 수 있다(S1230).
일례로 예컨대, 상기 정보에 기반하여, '다른 통신'이 검출된 경우, P-UE(S)로 하여금, (A) 기존 풀(/케리어/채널/밴드) 상에서 'V2X 통신' (그리고/혹은 'V2X MESSAGE TX 동작')을 중단하도록 규칙이 정의되거나 그리고/혹은 (B) 사전에 정의(/시그널링)된 (규칙(/(우선) 순위)에 따라 'V2X 통신' (그리고/혹은 'V2X MESSAGE TX 동작')이 수행되는 풀(/케리어/채널/밴드)을 변경 그리고/혹은) (해당 변경된) 다른 풀(/케리어/채널/밴드) 상에서 (사전에 설정(/시그널링)된 일정 시간 동안) 'V2X 통신' (그리고/혹은 'V2X MESSAGE TX 동작')을 수행하도록 규칙이 정의될 수 있다. 본 예에 대한 구체적인 설명은 전술한 바와 같으므로, 설명의 편의를 위해 구체적인 내용은 생략하도록 한다.
또한, 일례로 예컨대, 전술한 (한정된 수신(/송신) 회로 능력을 가진) P-UE(S)의 경우, (일부) 파라미터가 V-UE(S)와 비교할 때, 상이하게 (혹은 독립적으로) 설정(/시그널링)될 수 있다. 본 예에 대한 구체적인 설명은 전술한 바와 같으므로, 설명의 편의를 위해 구체적인 내용은 생략하도록 한다.
또한, 일례로 예컨대, (한정된 수신(/송신) 회로 능력을 가진) P-UE(S)의 'V2X MESSAGE) 전송 동작' (그리고/혹은 '(전송) 자원 선택(/예약) 동작')을 효율적으로 지원해줄 수 있다. 본 예에 대한 구체적인 설명은 전술한 바와 같으므로, 설명의 편의를 위해 구체적인 내용은 생략하도록 한다.
이후, 단말은 결정된 상기 전송 자원 상에서, 상기 V2X 메시지를 전송할 수 있다(S1240). 단말이 결정된 상기 전송 자원 상에서, 상기 V2X 메시지를 전송하는 구체적인 예는 전술한 바와 같다.
(상대적으로 빠른 속도로 움직이는) V2X 단말에 의해 수행되는 PS 서비스 관련 V2X 전송의 경우, WAN 전송 동작이 V2X 전송 동작보다 항상 우선화 되지 않을 수 있다.
이에, 본 발명에서는, WAN 전송 동작과 V2X 전송 동작이 시간 영역에서 겹치는 경우, V2X 전송 동작을 어떠한 방식으로 수행할지를 도면을 통해 설명하도록 한다.
도 21은 본 발명의 일 실시예에 따른, WAN 전송 동작과 V2X 전송 동작이 시간 영역에서 겹치는 경우, V2X 전송 방법의 순서도다.
도 21에 따르면, 단말은 V2X 전송 동작과 WAN 전송 동작이 시간 영역에서 겹치는 경우, 상기 V2X 전송 동작과 WAN 전송 동작이 동일한 캐리어 상에서 수행되는지 여부를 결정할 수 있다(S1310). 이때, 상기 단말은 전술한 V2X 단말일 수 있다.
이후, 단말은 상기 결정에 기반하여, V2X 전송 동작을 수행할 수 있다(S1320). 보다 구체적으로, 단말은 (A) 상이한 케리어 상에서 수행되는 V2X 전송 동작과 WAN (UL) 전송 동작이 시간 영역에서 (일부 혹은 모두) 겹칠 경우, V2X 전송 전력을 효율적으로 결정하는 방법 그리고/혹은 (B) (동일 (그리고/혹은 상이한) 케리어 상에서 WAN (UL) 전송 동작과 시간 영역에서 겹치는) V2X 전송 동작을 WAN (UL) 전송에 비해, 우선시 시키는 보다 구체적인 방법을 후술하도록 한다.
(A) 상이한 케리어 상에서 수행되는 V2X 전송 동작과 WAN (UL) 전송 동작이 시간 영역에서 (일부 혹은 모두) 겹칠 경우, V2X 전송 전력을 효율적으로 결정하는 방법
도 22는 상이한 케리어 상에서 수행되는 V2X 전송 동작과 WAN (UL) 전송 동작이 시간 영역에서 (일부 혹은 모두) 겹치는 일례를 개략적으로 도시한 것이다.
도 22에 도시된 바와 같이, 단말은 t0 시점에, f0 주파수를 가지는 V2X 캐리어 상에서 V2X 전송을 수행할 수 있으며, 단말은 t0 시점에 f1 주파수를 가지는 WAN 캐리어 상에서는 WAN 전송을 수행할 수 있다.
서브프레임에서 단말의 사이드링크 전송이 시간 측면에서 단말의 상향링크 전송과 오버랩되는 경우, 단말은 오버랩된 부분에서 총 전송 전력이 PCMAX를 넘지 않도록 사이드링크 전송 전력을 조정해야 된다.
일반적으로, D2D 동작에 따르면, 서로 다른 캐리어 상에서 WAN TX와 SL TX가 서브프레임에서의 시간 측면에서 오버랩되는 경우, WAN TX는 전력 할당 측면에서 SL TX에 비해 우선화될 수 있다.
달리 말하면, D2D 동작의 경우에는 서로 다른 캐리어 상에서, WAN TX와 SL TX가 동일한 시간에서 수행되거나 혹은 겹치는 시간 상에서 수행되는 경우, 단말은 전력을 (SL TX보다) WAN TX에 더 많이 할당할 수 있다. 하지만, 전술한 바와 같이, 상대적으로 빠른 속도로 움직이는 V2X 단말에 의해 수행되는 V2X 전송의 경우, D2D 전송에 비해 더 긴급한 전송 동작을 요구하는 경우가 많기에, WAN 전송 동작이 V2X 전송 동작보다 항상 우선화 되지 않을 수 있다.
이에, 전술한 문제점을 해결하기 위해, 아래와 같은 실시예가 제공될 수 있다.
도 23은 본 발명의 다른 실시예에 따른, WAN 전송 동작과 V2X 전송 동작이 시간 영역에서 겹치는 경우, V2X 전송 방법의 순서도다.
도 23에 따르면, 단말은 V2X 전송 동작과 WAN 전송 동작이 시간 영역에서 겹치고, 상기 V2X 전송 동작과 WAN 전송 동작이 상이한 캐리어 상에서 수행되는 경우, 상기 V2X 전송 동작에 적용되는 전송 전력 결정할 수 있다(S1410). 상기 단말은 V2X 단말을 의미할 수 있다. 보다 구체적으로, 아래와 같은 옵션이 제공될 수 있다.
아래와 같은 옵션 하에서, 전력 할당에 있어 V2V TX에 (WAN TX) 보다 높은 우선순위를 부여함으로써, V2V 퍼포먼스 감소가 효율적으로 방지될 수 있다.
이때, 예를 들어, V2V TX가 'V2V 갭'과 같이 설정된 시간 영역에서 발생하거나, 혹은 PPP(ProSe prioiry per packet)가 (기)설정된 V2V TX가 수행되는 경우에, 아래와 같은 옵션들이 제한적으로 적용될 수 있다. 게다가, 아래 옵션 2에 따르면, 듀얼 연결에 관한 존재하는 솔루션들(혹은 절차들)이 재사용될 수 있다.
옵션 1: 우선적으로 V2V TX에 전력을 할당하고, 남는 전력들을 WAN TX에 할당
옵션 2: V2V TX에 대한 최소 전력을 보증
여기서, 일례로, (특정 (하나의) V2X UE 관점에서) 상이한 (그리고/혹은 동일한) 케리어 (혹은 주파수) 상에서, V2X MESSAGE TX와 WAN UL TX가 시간 영역 상에서 (일부 그리고/혹은 전부) 겹치는 경우, 아래 (일부) 규칙이 적용되어, (상대적으로 높은 PPPP의) V2X MESSAGE TX 그리고/혹은 (상대적으로 중요한) WAN UL TX (예를 들어, PUCCH(/PRACH)(/PUSCH/SRS))의 성능을 (최대한) 보장해줄 수 있다.
여기서, 일례로, 아래 (일부) 규칙은 V2X MESSAGE TX와 WAN UL TX 간의 (시간) 동기 차이가 사전에 설정(/시그널링)된 임계값보다 큰 경우에만 한정적으로 적용될 수 도 있다.
(예시#1) (사전에 설정(/시그널링)된 PPPP 임계값 이상의) V2X MESSAGE TX 그리고/혹은 (사전에 설정(/시그널링)된 채널(/시그널)의) WAN UL TX 상에, "최소 보장 파워값 (GUARANTEED MINIMUM POWER (G_ MINPOWER))"이 설정(/시그널링)될 수 있다.
여기서, 일례로, WAN UL TX (그리고/혹은 V2X MESSAGE TX) 상에 사전에 설정(/시그널링)된 G_MINPOWER 값을 적용시키는 것은 (시간 영역 상에서) (일부 혹은 전부) 겹치는 V2X MESSAGE TX의 PPPP(ProSe prioiry per packet) 값이 사전에 설정(/시그널링)된 임계값보다 큰 경우 (예를 들어, V2X MESSAGE TX의 PPPP 값이 사전에 설정(/시그널링)된 임계값보다 작은 경우에는 WAN UL TX 상에 전력 할당이 우선시 됨) (그리고/혹은 (요구되는) V2X MESSAGE TX POWER 값과 (요구되는) WAN UL TX POWER 값의 합이 단말의 최대 전송 파워값 (예를 들어, '23 DBM')을 초과하는 경우)에만 한정될 수 도 있다.
여기서, 일례로, WAN UL TX (그리고/혹은 V2X MESSAGE TX) 관련 G_MINPOWER 값은 ((시간 영역 상에서) (일부 혹은 전부) 겹치는) V2X MESSAGE TX의 PPPP 값 별로 상이하게 (혹은 독립적으로) 설정(/시그널링)될 수 도 있다.
(예시#2) (시간 영역 상에서) (일부 혹은 전부) 겹치는 V2X MESSAGE TX의 PPPP 값이 사전에 설정(/시그널링)된 임계값보다 큰 경우, WAN UL TX를 생략 (예를 들어, V2X MESSAGE TX의 PPPP 값이 사전에 설정(/시그널링)된 임계값보다 작은 경우에는 V2X MESSAGE TX가 생략됨) 하도록 할 수 있다.
여기서, 일례로, 해당 규칙은 사전에 설정(/시그널링)된 (중요한) 채널(/시그널) (예를 들어, PUCCH(/PRACH)(/PUSCH/SRS))을 제외한 WAN UL TX의 경우에만 한정적으로 적용될 수 도 있다.
여기서, 일례로, 사전에 설정(/시그널링)된 (중요한) 채널(/시그널) (예를 들어, PUCCH(/PRACH)(/PUSCH/SRS))의 경우, 상기 설명한 (예시#1) (예를 들어, G_MINPOWER)이 (예외적으로) 적용 (예를 들어, (해당) (중요한) 채널(/시그널) 전송이 생략되지 않도록 하는 것으로 해석될 수 있음) 되도록 하거나 그리고/혹은 V2X MESSAGE TX를 (예외적으로) 생략하도록 할 수 도 있다.
전술한 내용들을 요약하면, 아래와 같다.
- 제안: 정리하면, 아래와 같은 두 가지 옵션이 전력 할당에서 WAN TX에 비해 SL TX 우선화를 지원할 수 있다.
(1) 옵션 1: 우선적으로 V2V TX에 전력을 할당하고, 남는 전력들을 WAN TX에 할당
(2) 옵션 2: V2V TX에 대한 최소 전력을 보증
(B) (동일 (그리고/혹은 상이한) 케리어 상에서 WAN (UL) 전송 동작과 시간 영역에서 겹치는) V2X 전송 동작을 WAN (UL) 전송에 비해, 우선시 시키는 보다 구체적인 방법
도 24는 (동일 (그리고/혹은 상이한) 케리어 상에서 WAN (UL) 전송 동작과 시간 영역에서 겹치는) V2X 전송 동작을 WAN (UL) 전송에 비해, 우선시 시키는 방법에 대한 일례를 개략적으로 도시한 것이다.
도 24에 도시된 바와 같이, 단말은 t0 시점에, f0 주파수를 가지는 동일한 캐리어 상에서 V2X 전송 및 WAN 전송을 수행할 수 있다. 도 24는 본 발명의 설명의 편의를 위해, 동일한 캐리어 상에서 V2X 전송 및 WAN 전송을 수행하는 것을 개략적으로 도시한 것이나, 아래 본 발명의 실시예는 상이한 캐리어 상에서 V2X 전송 및 WAN 전송을 수행하는 경우에도 적용될 수 있다.
여기서, 전술한 PC5 기반 V2V와 WAN 공존을 위해, 아래와 같은 내용들이 지원될 수 있다.
우선, 사이드링크 개방 루프 전력 제어는 V2V에 관한 SL TX를 위해 재사용될 수 있다.
아울러, V2V를 위한 SL TX는 WAN TX에 비해 우선화될 수 있다. 이때, 전술한 V2V를 위한 SL TX는 전술한 D2D 동작(예컨대, 모드 1 및/또는 모드 2)을 적용할 수도 있다. 여기서, 우선 순위는 기지국(eNB)에 의해 관리될 수도 있다.
또한, V2V 단말에 대해서도 D2D 통신 단말의 동일한 수신기 기능이 가정될 수 있다. 즉, 단말이 V2V를 수신하도록 구성된 경우, RX 체인은 WAN 수신에 영향을 미치지 않고 항상 V2V 신호를 수신 할 수도 있다.
이하, AN 전송 동작과 V2X 전송 동작이 시간 영역에서 겹치는 경우, V2X 전송 방법을 보다 구체적으로 설명한다.
도 25는 본 발명의 또 다른 실시예에 따른, WAN 전송 동작과 V2X 전송 동작이 시간 영역에서 겹치는 경우, V2X 전송 방법의 순서도다.
도 25에 따르면, 단말은 V2X 전송 동작과 WAN 전송 동작이 시간 영역에서 겹치고, 상기 V2X 전송 동작과 WAN 전송 동작이 동일한 캐리어 상에서 수행되는 경우, 상기 V2X 전송 동작의 우선 순위를 결정할 수 있다(S1510). 이때, 단말은 전술한 V2X 단말일 수 있다. 보다 구체적으로, 아래와 같은 옵션들이 적용될 수 있다.
WAN TX를 통한 SL TX 우선화는 공유 캐리어 케이스(즉, 동일한 캐리어에서의 SL TX 및 WAN TX)에서 TM4의 V2V 성능을 보장하는 것이 중요하다. 이 동작을 지원하는 하나의 가능한 옵션은 V2V 트래픽 패턴을 위해 최적화된 추가적인 수정과 함께, 'ProSe gap'(예컨대, 네트워크에 의해 설정되는 D2D TX가 WAN TX보다 우선화되는 시간 구간)을 재사용하는 것을 고려할 수 있다.
다른 예로, 사전에 설정된 PPPP가 있는 V2V TX가 WAN TX에 비해 항상 우선화되는 것이 고려될 수 있다. 달리 말하면, V2V TX와 WAN TX가 동일한 캐리어에서 시간 측면에서 오버랩되는 경우, 또 다른 PPPP가 있는 V2V TX는 드랍(drop)될 수 있다.
제안: WAN TX를 통한 SL TX 우선화를 지원하기 위해 아래 옵션 중 하나가 선택될 수 있다.
옵션 1: 몇 가지 필수 수정 사항(예: V2V 트래픽 패턴에 적합한 추가 주기 도입)을 적용한 후, Rel-13 eD2D 검색과 관련된 'ProSe gap'을 재사용할 수 있다. 여기서, 일례로, 해당 GAP ((시간(/주파수)) 자원) 영역 안에서, 사전에 설정(/시그널링)된 임계값 이상의 PPPP (혹은 사전에 설정(/시그널링)된 특정 PPPP)와 연동된 V2X (MESSAGE) TX만이 WAN UL TX에 비해 우선시 되도록 할 수 도 있다.
옵션 2: (사전) 구성된 PPPP가 있는 V2V TX는 항상 WAN TX 보다 우선화될 수 있다.
결론적으로, 전술한 내용들을 요약하면 아래와 같다.
- 제안: WAN TX를 통한 SL TX 우선화를 지원하기 위해 아래 옵션 중 하나가 선택될 수 있다.
(1) 옵션 1: 몇 가지 필수 수정 사항(예: V2V 트래픽 패턴에 적합한 추가 주기 도입)을 적용한 후, Rel-13 eD2D 검색과 관련된 'ProSe gap'을 재사용할 수 있다.
(2) 옵션 2: (사전) 구성된 PPPP가 있는 V2V TX는 항상 WAN TX 보다 우선화될 수 있다.
또 다른 일례로, P-UE(S)의 경우, "(PARTIAL) SENSING-BASED RESOURCE SELECTION BEHAVIOUR(/POOL)"과 "RAMDOM RESOURCE SELECTION BEHAVIOUR(/POOL)" 간의 선택(/스위칭) 동작은 (자신이 (직접) 측정한 혹은 다른 V2X ENTITY (예를 들어, (서빙) 기지국, V-UE(S))로부터 수신된) "CONGESTION LEVEL"이 사전에 설정(/시그널링)된 임계값을 초과하는지에 따라, (최종) 수행 여부가 결정될 수 도 있다.
여기서, 일례로, ("(PARTIAL) SENSING-BASED RESOURCE SELECTION BEHAVIOUR(/POOL)"을 수행(/이용)하던 P-UE(S)가 (자신이 (직접) 측정한 혹은 다른 V2X ENTITY로부터 수신된)) "CONGESTION LEVEL"이 사전에 설정(/시그널링)된 임계값을 초과한다면, "RAMDOM RESOURCE SELECTION BEHAVIOUR(/POOL)"을 수행(/이용)하도록 할 수 있다.
상기 설명한 제안 방식에 대한 일례들 또한 본 발명의 구현 방법들 중 하나로 포함될 수 있으므로, 일종의 제안 방식들로 간주될 수 있음은 명백한 사실이다. 또한, 상기 설명한 제안 방식들은 독립적으로 구현될 수 도 있지만, 일부 제안 방식들의 조합 (혹은 병합) 형태로 구현될 수 도 있다.
일례로, 본 발명에서는 설명의 편의를 위해 3GPP LTE 시스템을 기반으로 제안 방식을 설명하였지만, 제안 방식이 적용되는 시스템의 범위는 3GPP LTE 시스템 외에 다른 시스템으로도 확장 가능하다.
일례로, 본 발명의 제안 방식들은 D2D 통신을 위해서도 확장 적용 가능하다. 여기서, 일례로, D2D 통신은 UE가 다른 UE와 직접 무선 채널을 이용하여 통신하는 것을 의미하며, 여기서, 일례로 UE는 사용자의 단말을 의미하지만, 기지국과 같은 네트워크 장비가 UE 사이의 통신 방식에 따라서 신호를 송/수신하는 경우에는 역시 일종의 UE로 간주될 수 있다.
또한, 일례로, 본 발명의 제안 방식들은 MODE 2 V2X 동작 (그리고/혹은 MODE 1 V2X 동작)에만 한정적으로 적용될 수 도 있다.
또한, 일례로, 본 발명의 제안 방식들은 한정된 수신(/송신) 회로 능력을 가진 P-UE(S)뿐만 아니라, VEHICLE UE(S) (V- UE (S)) (그리고/혹은 수신(/송신) 회로 능력이 한정되지 않은 P-UE(S))에게도 확장 적용 가능하다.
또한, 일례로, 본 발명의 제안 방식들은 WAN UL TX와 V2X MESSAGE TX가 상이한 CARRIER(S)에서 시간 영역 상에서 (일부) 겹치는 경우에도 확장 적용이 가능하다.
또한, 일례로, 본 발명의 제안 방식들은 (한정된 수신(/송신) 회로 능력을 가진) P-UE(S)가 네트워크 (혹은 기지국)으로부터 수신한 “SENSING GAP(/RESOURCE) (혹은 RX GAP(/RESOURCE) 혹은 PARTIAL SENSING GAP(/RESOURCE))" 내에서 ((일부) 자원 구간(/영역)에 대한) "PARTIAL SENSING 동작"을 수행하는 경우 그리고/혹은 해당 관련 정보의 수신 없이 자신이 (독자적으로) 설정(/지정)한 (일부) 자원 구간(/영역) 내에서 "PARTIAL SENSING 동작"을 수행하는 경우에도 확장 적용이 가능하다.
또한, 일례로, 본 발명의 제안 방식들은 (한정된 수신(/송신) 회로 능력을 가진) P-UE(S)가 'PARTIAL SENSING' (그리고/혹은 'FULL SENSING') 동작 (기반의 전송 자원 선택)을 수행하는 경우 (그리고/혹은 (센싱 동작없이) 전송 자원 랜덤 선택하는 경우)에만 한정적으로 적용될 수 있다.
또한, 일례로, 본 발명의 제안 방식들은 (특정 (하나의) V2X UE 관점에서) 상이한 (그리고/혹은 동일한) 케리어 (혹은 주파수) 상에서, V2X MESSAGE TX와 WAN UL TX가 시간 영역 상에서 (일부 그리고/혹은 전부) 겹치는 경우에만 한정적으로 적용될 수 있다.
도 26은 본 발명의 실시예가 구현되는 단말을 나타낸 블록도이다.
도 26을 참조하면, 단말(1100)은 프로세서(1110), 메모리(1120) 및 RF부(radio frequency unit, 1130)을 포함한다.
일 실시예에 따르면, 프로세서(1110)는 본 발명이 설명하는 기능/동작/방법을 실시할 수 있다. 예를 들어, 프로세서(1110)는 자원 풀(resource pool)의 타입을 알려주는 타입 정보를 수신하고, 상기 타입 정보에 기반하여 상기 자원 풀에서 랜덤 선택(random selection) 및 부분 센싱(partial sensing)에 기반한 자원 선택 중 적어도 하나를 수행할 수 있다.
프로세서(1110)는, 상기 자원 풀의 타입이 부분 센싱에 기반한 자원 선택만 허용되는 타입인 경우, 부분 센싱(partial sensing)에 기반한 자원 선택을 통해 선택한 자원을 반정적(semi-persistent)으로 유보(reservation)할 수 있다.
프로세서(1110)는 상기 자원 풀의 타입이 랜덤 선택만 허용되는 타입인 경우, 상기 랜덤 선택을 통해 선택한 자원은 반정적으로 유보하지 않을 수 있다.
프로세서(1110)는 상기 자원 풀의 타입이 부분 센싱에 기반한 자원 선택이 허용되는 타입인데, 상기 자원 풀에서 랜덤 선택을 수행하는 경우, 상기 랜덤 선택한 자원을 반정적으로 유보할 수 있다. 반정적으로 유보하는 자원에 대해서는 도 17을 참조하여 설명한 바 있다.
RF부(1130)은 프로세서(1110)와 연결되어 무선 신호를 송신 및 수신한다.
프로세서는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. RF부는 무선 신호를 처리하기 위한 베이스밴드 회로를 포함할 수 있다. 실시예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리에 저장되고, 프로세서에 의해 실행될 수 있다. 메모리는 프로세서 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서와 연결될 수 있다.

Claims (15)

  1. 무선 통신 시스템에서 단말에 의해 수행되는 V2X(vehicle-to-everything) 전송 자원 선택 방법에 있어서,
    자원 풀(resource pool)의 타입을 알려주는 타입 정보를 수신하고, 및
    상기 타입 정보에 기반하여 상기 자원 풀에서 랜덤 선택(random selection) 및 부분 센싱(partial sensing)에 기반한 자원 선택 중 적어도 하나를 수행하는 것을 특징으로 하는 방법.
  2. 제 1 항에 있어서,
    상기 타입 정보는 상기 단말이 상기 자원 풀에서 자원 선택을 할 때 부분 센싱이 허용되는지 여부 및 상기 단말이 상기 자원 풀에서 자원 선택을 할 때 랜덤 선택이 허용되는지 여부를 지시하는 것을 특징으로 하는 방법.
  3. 제 1 항에 있어서,
    상기 부분 센싱은, 센싱 윈도우(sensing window) 내의 서브프레임들 중에서 일부 서브프레임들만을 센싱하고, 상기 센싱에 기반하여 선택 윈도우(selectin window) 내의 특정 서브프레임을 V2X 전송 서브프레임으로 선택하는 센싱 기법인 것을 특징으로 하는 방법.
  4. 제 3 항에 있어서,
    상기 센싱 윈도우는 연속하는 1000개의 서브프레임들로 구성되고, 상기 선택 윈도우는 상기 센싱 윈도우 다음에 위치하는 100개의 연속하는 서브프레임들로 구성되는 것을 특징으로 하는 방법.
  5. 제 1 항에 있어서,
    상기 단말은 상기 자원 풀의 타입이 부분 센싱(partial sensing)에 기반한 자원 선택만 허용되는 타입인 경우, 상기 부분 센싱(partial sensing)에 기반한 자원 선택을 통해 선택한 자원을 반정적(semi-persistent)으로 유보(reservation)하는 것을 특징으로 하는 방법.
  6. 제 1 항에 있어서,
    상기 단말은 상기 자원 풀의 타입이 랜덤 선택만 허용되는 타입인 경우, 상기 랜덤 선택을 통해 선택한 자원을 반정적으로 유보하지 않는 것을 특징으로 하는 방법.
  7. 제 1 항에 있어서,
    상기 자원 풀의 타입이 부분 센싱(partial sensing)에 기반한 자원 선택이 허용되는 타입이고 상기 단말이 상기 자원 풀에서 랜덤 선택을 수행하는 경우, 상기 단말은 상기 랜덤 선택한 자원을 반정적으로 유보하는 것을 특징으로 하는 방법.
  8. 제 1 항에 있어서,
    상기 단말은 차량에 설치된 다른 단말과 통신하는 단말인 것을 특징으로 하는 방법.
  9. 단말(User equipment; UE)은,
    무선 신호를 송신 및 수신하는 RF(Radio Frequency) 부; 및
    상기 RF부와 결합하여 동작하는 프로세서; 를 포함하되, 상기 프로세서는,
    자원 풀(resource pool)의 타입을 알려주는 타입 정보를 수신하고, 상기 타입 정보에 기반하여 상기 자원 풀에서 랜덤 선택(random selection) 및 부분 센싱(partial sensing)에 기반한 자원 선택 중 적어도 하나를 수행하는 것을 특징으로 하는 단말.
  10. 제 9 항에 있어서,
    상기 타입 정보는 상기 단말이 상기 자원 풀에서 자원 선택을 할 때 부분 센싱이 허용되는지 여부 및 상기 단말이 상기 자원 풀에서 자원 선택을 할 때 랜덤 선택이 허용되는지 여부를 지시하는 것을 특징으로 하는 단말.
  11. 제 9 항에 있어서,
    상기 부분 센싱은, 센싱 윈도우(sensing window) 내의 서브프레임들 중에서 일부 서브프레임들만을 센싱하고, 상기 센싱에 기반하여 선택 윈도우(selectin window) 내의 특정 서브프레임을 V2X 전송 서브프레임으로 선택하는 센싱 기법인 것을 특징으로 하는 단말.
  12. 제 11 항에 있어서,
    상기 센싱 윈도우는 연속하는 1000개의 서브프레임들로 구성되고, 상기 선택 윈도우는 상기 센싱 윈도우 다음에 위치하는 100개의 연속하는 서브프레임들로 구성되는 것을 특징으로 하는 단말.
  13. 제 9 항에 있어서,
    상기 단말은 상기 자원 풀의 타입이 부분 센싱(partial sensing)에 기반한 자원 선택만 허용되는 타입인 경우, 상기 부분 센싱(partial sensing)에 기반한 자원 선택을 통해 선택한 자원을 반정적(semi-persistent)으로 유보(reservation)하는 것을 특징으로 하는 단말.
  14. 제 9 항에 있어서,
    상기 단말은 상기 자원 풀의 타입이 랜덤 선택만 허용되는 타입인 경우, 상기 랜덤 선택을 통해 선택한 자원을 반정적으로 유보하지 않는 것을 특징으로 하는 단말.
  15. 제 9 항에 있어서,
    상기 자원 풀의 타입이 부분 센싱(partial sensing)에 기반한 자원 선택이 허용되는 타입이고 상기 단말이 상기 자원 풀에서 랜덤 선택을 수행하는 경우, 상기 단말은 상기 랜덤 선택한 자원을 반정적으로 유보하는 것을 특징으로 하는 단말.
PCT/KR2017/002413 2016-03-04 2017-03-06 무선 통신 시스템에서 단말에 의해 수행되는 v2x 전송 자원 선택 방법 및 상기 방법을 이용하는 단말 WO2017150958A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/082,207 US11147044B2 (en) 2016-03-04 2017-03-06 V2X transmission resource selecting method implemented by terminal in wireless communication system and terminal using same
US17/465,591 US11678301B2 (en) 2016-03-04 2021-09-02 V2X transmission resource selecting method implemented by terminal in wireless communication system and terminal using same

Applications Claiming Priority (20)

Application Number Priority Date Filing Date Title
US201662303389P 2016-03-04 2016-03-04
US62/303,389 2016-03-04
US201662316574P 2016-04-01 2016-04-01
US62/316,574 2016-04-01
US201662321748P 2016-04-13 2016-04-13
US62/321,748 2016-04-13
US201662333862P 2016-05-10 2016-05-10
US62/333,862 2016-05-10
US201662350727P 2016-06-16 2016-06-16
US62/350,727 2016-06-16
US201662379221P 2016-08-24 2016-08-24
US62/379,221 2016-08-24
US201662401743P 2016-09-29 2016-09-29
US62/401,743 2016-09-29
US201662403028P 2016-09-30 2016-09-30
US62/403,028 2016-09-30
US201662416669P 2016-11-02 2016-11-02
US62/416,669 2016-11-02
US201662423738P 2016-11-17 2016-11-17
US62/423,738 2016-11-17

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/082,207 A-371-Of-International US11147044B2 (en) 2016-03-04 2017-03-06 V2X transmission resource selecting method implemented by terminal in wireless communication system and terminal using same
US17/465,591 Continuation US11678301B2 (en) 2016-03-04 2021-09-02 V2X transmission resource selecting method implemented by terminal in wireless communication system and terminal using same

Publications (1)

Publication Number Publication Date
WO2017150958A1 true WO2017150958A1 (ko) 2017-09-08

Family

ID=59743044

Family Applications (4)

Application Number Title Priority Date Filing Date
PCT/KR2017/002413 WO2017150958A1 (ko) 2016-03-04 2017-03-06 무선 통신 시스템에서 단말에 의해 수행되는 v2x 전송 자원 선택 방법 및 상기 방법을 이용하는 단말
PCT/KR2017/002412 WO2017150957A1 (ko) 2016-03-04 2017-03-06 무선 통신 시스템에서 단말에 의해 수행되는 v2x 전송 자원 선택 방법 및 상기 방법을 이용하는 단말
PCT/KR2017/002414 WO2017150959A1 (ko) 2016-03-04 2017-03-06 무선 통신 시스템에서 단말에 의해 수행되는 v2x 전송 자원 선택 방법 및 상기 방법을 이용하는 단말
PCT/KR2017/002411 WO2017150956A1 (ko) 2016-03-04 2017-03-06 무선 통신 시스템에서 단말에 의해 수행되는 v2x 전송 자원 선택 방법 및 상기 방법을 이용하는 단말

Family Applications After (3)

Application Number Title Priority Date Filing Date
PCT/KR2017/002412 WO2017150957A1 (ko) 2016-03-04 2017-03-06 무선 통신 시스템에서 단말에 의해 수행되는 v2x 전송 자원 선택 방법 및 상기 방법을 이용하는 단말
PCT/KR2017/002414 WO2017150959A1 (ko) 2016-03-04 2017-03-06 무선 통신 시스템에서 단말에 의해 수행되는 v2x 전송 자원 선택 방법 및 상기 방법을 이용하는 단말
PCT/KR2017/002411 WO2017150956A1 (ko) 2016-03-04 2017-03-06 무선 통신 시스템에서 단말에 의해 수행되는 v2x 전송 자원 선택 방법 및 상기 방법을 이용하는 단말

Country Status (2)

Country Link
US (4) US11432263B2 (ko)
WO (4) WO2017150958A1 (ko)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109526056A (zh) * 2017-09-18 2019-03-26 电信科学技术研究院 多载波下的资源选择方法、装置及计算机设备、存储介质
WO2019164353A1 (ko) * 2018-02-23 2019-08-29 엘지전자 주식회사 무선 통신 시스템에서 단말의 v2x 통신 방법 및 상기 방법을 이용하는 장치
WO2020027637A1 (ko) * 2018-08-03 2020-02-06 엘지전자 주식회사 Nr v2x에서 캐리어 (재)선택을 수행하는 방법 및 장치
WO2020024175A1 (en) * 2018-08-01 2020-02-06 Panasonic Intellectual Property Corporation Of America User equipment and communication methods
WO2020060289A1 (ko) * 2018-09-21 2020-03-26 삼성전자 주식회사 무선 통신 시스템에서 통신을 수행하는 방법 및 장치
WO2020060214A1 (ko) * 2018-09-20 2020-03-26 엘지전자 주식회사 무선 통신 시스템에서 신호를 송수신하는 방법 및 단말
CN111149397A (zh) * 2017-09-29 2020-05-12 Lg电子株式会社 在无线通信系统中由终端发送v2x消息的方法和使用该方法的终端
CN112714414A (zh) * 2020-04-29 2021-04-27 宸芯科技有限公司 一种资源选择方案确定方法、装置、终端及存储介质
CN112737747A (zh) * 2019-10-14 2021-04-30 大众汽车股份公司 无线通信设备以及对应的装置、方法和计算机程序
CN112737746A (zh) * 2019-10-14 2021-04-30 大众汽车股份公司 无线通信设备以及对应的装置、方法和计算机程序
WO2021100935A1 (ko) * 2019-11-22 2021-05-27 엘지전자 주식회사 무선 통신 시스템에서 취약한 도로 사용자의 단말이 신호를 전송하는 방법
WO2022086070A1 (ko) * 2020-10-19 2022-04-28 엘지전자 주식회사 Nr v2x에서 선택 윈도우에 대한 시프트를 수행하는 방법 및 장치
WO2022108395A1 (ko) * 2020-11-20 2022-05-27 현대자동차주식회사 사이드링크 통신에서 페이징을 위한 방법 및 장치
US11553487B2 (en) 2017-09-15 2023-01-10 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for selecting carrier and communication device
US11647483B2 (en) 2018-03-16 2023-05-09 Huawei Technologies Co., Ltd. Devices and methods for device to device (D2D) communication
WO2023121298A1 (ko) * 2021-12-21 2023-06-29 엘지전자 주식회사 Nr v2x에서 sl 자원을 기반으로 무선 통신을 수행하는 방법 및 장치

Families Citing this family (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017171519A1 (en) * 2016-04-01 2017-10-05 Samsung Electronics Co., Ltd. Method and apparatus for transmitting control channel and data channel in v2x communication
JP6912457B2 (ja) * 2016-04-11 2021-08-04 株式会社Nttドコモ ユーザ装置及び信号送信方法
CN110545575B (zh) * 2016-04-23 2022-06-21 上海朗帛通信技术有限公司 一种窄带移动通信的方法和装置
EP3484224B1 (en) * 2016-08-09 2023-09-27 Huawei Technologies Co., Ltd. Method, device, and system for v2x message transmission
KR102439564B1 (ko) 2016-08-10 2022-09-02 삼성전자 주식회사 V2x 통신에서 자원을 선택하는 방법 및 장치
CN113115269A (zh) * 2016-08-11 2021-07-13 华为技术有限公司 一种资源能量确定方法及装置
RU2721010C1 (ru) 2016-09-10 2020-05-15 ЭлДжи ЭЛЕКТРОНИКС ИНК. Способ для резервирования конечного числа ресурсов, используемых для выполнения v2х-связи в системе беспроводной связи, и терминал, использующий его
US10716092B2 (en) * 2016-09-29 2020-07-14 Sharp Kabushiki Kaisha Method and apparatus for selecting radio resources for vehicle (V2X) communications from an overlapping resource pool
WO2018062098A1 (ja) * 2016-09-30 2018-04-05 京セラ株式会社 無線端末及び基地局
CN108024286A (zh) * 2016-11-04 2018-05-11 北京三星通信技术研究有限公司 用于无线通信中的拥塞控制的方法和设备
KR102331796B1 (ko) * 2017-01-06 2021-11-25 텔레폰악티에볼라겟엘엠에릭슨(펍) 멀티캐리어 동작을 위한 뉴머롤로지 조합 세트
US10667239B2 (en) * 2017-03-10 2020-05-26 Futurewei Technologies, Inc. Method for resource selection
CN115460697A (zh) 2017-03-23 2022-12-09 苹果公司 用于传输侧链路传输的方法、用户设备和存储介质
US11324007B2 (en) * 2017-03-24 2022-05-03 Samsung Electronics Co., Ltd. Method and device for transmitting data
WO2019031926A1 (en) * 2017-08-10 2019-02-14 Samsung Electronics Co., Ltd. METHOD AND DEVICE FOR RESOURCE ALLOCATION AND LATERAL LINK COMMUNICATION
WO2019031900A1 (ko) * 2017-08-10 2019-02-14 삼성전자 주식회사 V2x 통신 방법 및 단말
WO2019031998A1 (en) * 2017-08-11 2019-02-14 Telefonaktiebolaget Lm Ericsson (Publ) ORDER INFORMATION CODE RATE
EP3684097B1 (en) * 2017-09-12 2022-01-26 Shenzhen Heytap Technology Corp., Ltd. Terminal in a v2x system determining a plurality of logical channels for data transceiving
JP2020537373A (ja) * 2017-09-15 2020-12-17 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. 搬送波選択方法、端末装置、及びコンピュータ記憶媒体
EP3677077A4 (en) * 2017-10-06 2020-10-28 LG Electronics Inc. -1- METHOD AND APPARATUS FOR SUPPORTING A RESELECTION OF CARRIER BASED ON A CHANNEL OCCUPANCY RATE IN A WIRELESS COMMUNICATION SYSTEM
WO2019084860A1 (zh) * 2017-11-02 2019-05-09 Oppo广东移动通信有限公司 车联网中的数据发送方法及终端
WO2019095226A1 (en) * 2017-11-16 2019-05-23 Lenovo (Beijing) Limited Method and apparatus for transmission resource selection
WO2019095238A1 (zh) * 2017-11-16 2019-05-23 华为技术有限公司 多载频选择方法及相关设备
CN109803400A (zh) * 2017-11-17 2019-05-24 华为技术有限公司 信息上报方法、资源分配方法、用户设备及基站
US11057854B2 (en) * 2017-11-17 2021-07-06 Qualcomm Incorporated Synchronization for V2X carrier aggregation
US11399368B2 (en) * 2017-11-27 2022-07-26 Telefonaktiebolaget Lm Ericsson (Publ) Resource allocation for carrier aggregation
US11064057B2 (en) * 2017-11-30 2021-07-13 Intel Corporation Multi-access edge computing (MEC) translation of radio access technology messages
EP3735087A4 (en) * 2017-12-29 2021-10-06 LG Electronics Inc. TERMINAL SIGNAL SENDING CONTROL PROCESS AND APPARATUS SUPPORTING A PLURALITY OF CARRIERS
US10862613B2 (en) * 2018-02-01 2020-12-08 T-Mobile Usa, Inc. Dynamic numerology based on services
WO2019156528A1 (en) * 2018-02-12 2019-08-15 Lg Electronics Inc. Method and apparatus for deprioritizing packet transmission based on reliability level or congestion level in wireless communication system
WO2019158054A1 (en) * 2018-02-13 2019-08-22 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Apparatus and method for performing vehicle to everything communication
EP3761728B1 (en) 2018-03-15 2022-09-07 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for carrier selection in internet of vehicles, and terminal device
EP3747225B1 (en) 2018-05-08 2022-07-06 LG Electronics Inc. Method and apparatus for triggering transmission carrier selection in wireless communication system
FR3081278A1 (fr) * 2018-05-18 2019-11-22 Orange Procede distribue d'allocation de ressources de transmission a des terminaux d2d dans un reseau d'acces cellulaire.
US11089625B2 (en) * 2018-05-25 2021-08-10 Futurewei Technologies, Inc. Protection for mode-3 V2X UEs in the ITS band
EP3589053A3 (en) * 2018-06-29 2020-03-11 ASUSTek Computer Inc. Method and apparatus for handling sensing for sidelink resource in a wireless communication system
EP3594712B1 (en) 2018-07-12 2023-11-22 Cohda Wireless Pty Ltd. A method and system for estimating range between and position of objects using a wireless communication system
US20210168861A1 (en) * 2018-07-30 2021-06-03 Lg Electronics Inc. Method and device for occupying resources in nr v2x
EP3813463A4 (en) * 2018-08-10 2021-09-08 LG Electronics, Inc. METHOD AND DEVICE FOR COEXISTENCE OF SIDELINK COMMUNICATION ASSOCIATED WITH VARIOUS COUNCILS IN NR V2X
AU2018437157A1 (en) * 2018-08-17 2021-03-11 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Data transmission method, terminal device and network device
US10979876B2 (en) * 2018-08-31 2021-04-13 Cohda Wireless Pty Ltd. Method for estimating the position of an object
CN110536430B (zh) * 2018-09-05 2023-04-07 中兴通讯股份有限公司 通信及资源配置方法、装置、基站、终端及存储介质
JP7116341B2 (ja) * 2018-09-19 2022-08-10 富士通株式会社 通信装置、基地局装置、及び通信システム
WO2020069295A1 (en) * 2018-09-27 2020-04-02 Intel Corporation Resource allocation and configuration for broadcast and unicast operation over sidelink for nr v2x
US10897792B2 (en) * 2018-09-28 2021-01-19 Mediatek Inc. Method and apparatus of new radio V2X cluster head
US11171807B2 (en) * 2018-10-30 2021-11-09 Hyundai Motor Company Method and apparatus for allocating priority transmission opportunities in vehicle network
EP3874776A1 (en) * 2018-10-31 2021-09-08 FRAUNHOFER-GESELLSCHAFT zur Förderung der angewandten Forschung e.V. Proximity awareness in sidelink communications
CN115765943A (zh) * 2018-12-13 2023-03-07 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN111328154B (zh) * 2018-12-14 2022-03-29 大唐移动通信设备有限公司 一种无线资源控制连接管理方法及终端
CN111355567B (zh) * 2018-12-20 2022-09-13 华硕电脑股份有限公司 无线通信系统中用于处理侧链路反馈碰撞的方法和设备
CN111385765B (zh) * 2018-12-28 2022-07-22 大唐移动通信设备有限公司 信息传输的方法及终端
US11395313B2 (en) * 2019-01-10 2022-07-19 Qualcomm Incorporated Handling packets with different priorities in sidelink systems
CN111699743B (zh) * 2019-01-11 2023-12-22 联发科技股份有限公司 新无线电车联网移动通信中存在带内发射时之资源分配
EP4117361A1 (en) * 2019-01-18 2023-01-11 Telefonaktiebolaget LM Ericsson (publ) Service information for v2x service coordination in other frequency spectrum
CN111526540A (zh) * 2019-02-01 2020-08-11 北京三星通信技术研究有限公司 一种旁路通信系统的资源分配方法及设备
KR20200114220A (ko) 2019-03-28 2020-10-07 삼성전자주식회사 무선 통신 시스템에서 피드백 송수신 방법 및 장치
US11197203B2 (en) * 2019-05-03 2021-12-07 Qualcomm Incorporated Adaptive control exclusion configuration
US11638297B2 (en) * 2019-05-10 2023-04-25 Qualcomm Incorporated Sidelink network resource reservation
ES2917776T3 (es) * 2019-05-10 2022-07-11 Asustek Comp Inc Reporte de información sobre la capacidad del equipo de usuario para la configuración del portador de radio del enlace lateral en un sistema de comunicación inalámbrica
CN113812177B (zh) * 2019-05-13 2023-03-24 华为技术有限公司 侧行链路免授权传输的感测和资源选择方法及设备
EP3962219A4 (en) * 2019-05-14 2022-08-17 LG Electronics Inc. METHOD AND DEVICE FOR PLANNING MULTIPLE RESOURCES IN NR V2X
US11978344B2 (en) * 2019-05-24 2024-05-07 Lg Electronics Inc. Method for transmitting, by UE, message in wireless communication system supporting sidelink, and apparatus therefor
US10939359B2 (en) * 2019-06-24 2021-03-02 Nxp B.V. Location-based communication
US11483802B2 (en) 2019-07-18 2022-10-25 Ofinno, Llc Hybrid automatic repeat request feedback in radio systems
CN114503754A (zh) * 2019-10-04 2022-05-13 鸿颖创新有限公司 用于侧链路操作的方法和设备
US20220394735A1 (en) * 2019-10-07 2022-12-08 Lg Electronics Inc. Method and device for determining transmission resource in nr v2x
EP3809651B1 (en) * 2019-10-14 2022-09-14 Volkswagen AG Wireless communication device and corresponding apparatus, method and computer program
KR20220097904A (ko) * 2019-11-08 2022-07-08 엘지전자 주식회사 Nr v2x에서 사이드링크 전송 자원을 선택하는 방법 및 장치
US11546881B2 (en) * 2019-11-18 2023-01-03 Qualcomm Incorporated Resource reselection in sidelink
US11792617B2 (en) * 2019-11-20 2023-10-17 Qualcomm Incorporated Methods for sidelink paging
CN111246426B (zh) * 2020-01-16 2023-07-04 北京紫光展锐通信技术有限公司 辅链路通信的资源选择方法及通信装置
CN115941085A (zh) * 2020-02-07 2023-04-07 Oppo广东移动通信有限公司 一种资源选取方法及终端设备
US11490414B2 (en) * 2020-02-14 2022-11-01 Qualcomm Incorporated Techniques for intra-user equipment and inter-user equipment cancelation of overlapping communications
US20230141380A1 (en) * 2020-03-24 2023-05-11 Lenovo (Beijing) Ltd. Method and apparatus for sidelink resource re-evaluation
CN113498177A (zh) * 2020-04-01 2021-10-12 维沃移动通信有限公司 资源选择方法、终端及网络侧设备
CN113810873A (zh) 2020-06-17 2021-12-17 北京三星通信技术研究有限公司 用于旁路资源确定的方法和终端
CN113873465A (zh) * 2020-06-30 2021-12-31 维沃移动通信有限公司 信息处理方法、装置及终端
KR20230030647A (ko) * 2020-07-30 2023-03-06 엘지전자 주식회사 Nr v2x에서 rsrp 값을 기반으로 사이드링크 전송 자원을 결정하는 방법 및 장치
WO2022027592A1 (en) * 2020-08-07 2022-02-10 Mediatek Singapore Pte. Ltd. Partial sensing enhancement for sl resource allocation
WO2022027606A1 (zh) * 2020-08-07 2022-02-10 华为技术有限公司 一种数据传输的方法、装置以及系统
CN114080010A (zh) * 2020-08-17 2022-02-22 维沃移动通信有限公司 操作方法、发送方法及相关设备
US11917441B2 (en) * 2020-09-10 2024-02-27 Qualcomm Incorporated Prioritization of positioning-related reports in uplink
EP4224968A1 (en) * 2020-09-29 2023-08-09 LG Electronics Inc. Method and device for reducing interference between uu communication and sl communication during sl drx operation in nr v2x
KR20230062586A (ko) * 2020-10-06 2023-05-09 엘지전자 주식회사 Nr v2x에서 sl drx 동작과 관련된 rf 모듈의 스위칭으로 인한 간섭의 제어 방법 및 장치
CN114363854A (zh) * 2020-10-14 2022-04-15 大唐移动通信设备有限公司 资源感知方法、装置、网络侧设备、终端及存储介质
US20220295482A1 (en) * 2021-03-03 2022-09-15 Samsung Electronics Co., Ltd. Method and apparatus for low power sensing for sidelink in wireless communication systems
US11901983B1 (en) * 2021-03-17 2024-02-13 T-Mobile Innovations Llc Selectively assigning uplink transmission layers
CN117501767A (zh) * 2021-03-31 2024-02-02 弗劳恩霍夫应用研究促进协会 Nr直连链路中节能用户的资源选择
WO2022235123A1 (ko) * 2021-05-05 2022-11-10 엘지전자 주식회사 Nr v2x에서 단말의 전송 주기를 기반으로 부분 센싱을 수행하는 방법 및 장치
WO2024025534A1 (en) * 2022-07-28 2024-02-01 Nokia Technologies Oy Support for sidelink user equipment in co-channel coexistence environments
EP4319428A1 (en) * 2022-08-04 2024-02-07 Nokia Technologies Oy Detecting transmissions
WO2024058635A1 (ko) * 2022-09-16 2024-03-21 엘지전자 주식회사 무선 통신 시스템에서 메시지를 전송하는 방법 및 이를 위한 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015115847A1 (ko) * 2014-01-29 2015-08-06 엘지전자 주식회사 무선 통신 시스템에서 단말에 의해 수행되는 d2d 동작 방법 및 상기 방법을 이용하는 단말
WO2015178851A1 (en) * 2014-05-23 2015-11-26 Telefonaktiebolaget L M Ericsson (Publ) Devices and methods for d2d transmission
KR20160003257A (ko) * 2013-05-01 2016-01-08 삼성전자주식회사 기기 간 직접 통신 시스템을 위한 방법 및 장치

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9049720B2 (en) * 2012-07-30 2015-06-02 Lg Electronics Inc. Method and apparatus for simultaneously performing frequency resource sensing and data transmission in a wireless communication system
KR102072021B1 (ko) * 2013-08-09 2020-03-02 삼성전자주식회사 디바이스-투-디바이스 통신 시스템에서 피어 탐색 자원 선택 장치 및 방법
US20150043446A1 (en) 2013-08-12 2015-02-12 Qualcomm Incorporated Method and apparatus for coexistence of device to device and lte wan communication using single communication chain
US9955485B2 (en) * 2013-09-26 2018-04-24 Lg Electronics Inc. Method for D2D communication performed by terminals in wireless communication system, and devices for supporting same
CN104780525B (zh) 2014-01-15 2020-11-03 索尼公司 调整终端到终端通信传输功率的方法、设备、组头和系统
CN105940755B (zh) * 2014-01-29 2019-07-09 Lg电子株式会社 在无线通信系统中由终端执行的d2d操作方法及使用该方法的终端
CN104936297B (zh) 2014-03-18 2020-01-10 北京三星通信技术研究有限公司 配置有包含d2d子帧服务小区的系统的功率控制方法及用户设备
US9531494B2 (en) 2014-03-28 2016-12-27 Qualcomm Incorporated Techniques for acquiring measurements of a shared spectrum and performing channel selection for access points using the shared spectrum
KR20150124298A (ko) 2014-04-28 2015-11-05 삼성전자주식회사 무선 통신 시스템에서 무선 자원 제어 연결을 관리하는 장치 및 방법
EP3138341B1 (en) * 2014-04-30 2018-10-03 Telefonaktiebolaget LM Ericsson (publ) Method and radio network node for scheduling of wireless devices in a cellular network
US9847848B2 (en) 2014-05-09 2017-12-19 Samsung Electronics Co., Ltd. Method and apparatus for performing communication by D2D communication terminal
WO2015170934A1 (ko) 2014-05-09 2015-11-12 주식회사 아이티엘 무선통신 시스템에서 전송 파워 제어 방법 및 장치
KR102137648B1 (ko) * 2014-05-09 2020-07-24 후아웨이 테크놀러지 컴퍼니 리미티드 무선통신 시스템에서 전송 파워 제어 방법 및 장치
US9942879B2 (en) * 2014-05-19 2018-04-10 Samsung Electronics Co., Ltd. Method and apparatus for avoiding resource collision in mobile communication system
US10057076B2 (en) 2014-05-19 2018-08-21 Futurewei Technologies, Inc. System and method for device-to-device communication
KR102280577B1 (ko) 2014-08-01 2021-07-23 삼성전자 주식회사 D2d 통신에서 단말의 송신 전력 제어 방법 및 장치
US10225810B2 (en) 2014-08-06 2019-03-05 Samsung Electronics Co., Ltd. Method and apparatus for transmitting/receiving synchronization signal in device-to-device communication system
KR102182491B1 (ko) * 2014-08-08 2020-11-24 주식회사 아이티엘 자원 패턴을 기반으로 d2d 데이터를 전송하는 방법 및 장치
US20160135148A1 (en) 2014-11-06 2016-05-12 Samsung Electronics Co., Ltd. Efficient operation of lte cells on unlicensed spectrum
US20160295624A1 (en) 2015-04-02 2016-10-06 Samsung Electronics Co., Ltd Methods and apparatus for resource pool design for vehicular communications
US9743440B2 (en) 2015-05-15 2017-08-22 Qualcomm Incorporated Link selection for device-to-device communications
US10477527B2 (en) * 2015-07-14 2019-11-12 Qualcomm Incorporated Semi-persistent scheduling mechanisms for vehicle-to-vehicle communication
CN107852777A (zh) * 2015-08-13 2018-03-27 株式会社Ntt都科摩 用户装置以及d2d信号发送方法
WO2017033486A1 (en) 2015-08-21 2017-03-02 Nec Corporation Vehicle to everything (v2x) communication method and system
EP4255077A3 (en) 2015-11-05 2023-10-25 Panasonic Intellectual Property Corporation of America Wireless device and wireless communication method
EP3372029B1 (en) * 2015-11-06 2020-03-18 Telefonaktiebolaget LM Ericsson (publ) Receiving device and method performed therein for communicating in a wireless communication network
US10383147B2 (en) * 2015-12-28 2019-08-13 Samsung Electronics Co., Ltd. Methods and apparatus for resource collision avoidance in vehicle to vehicle communication
US10244538B2 (en) 2016-02-12 2019-03-26 Futurewei Technologies, Inc. System and method for determining a resource selection technique
GB2552319B (en) * 2016-07-18 2020-09-02 Samsung Electronics Co Ltd Resource arrangement
KR102439564B1 (ko) * 2016-08-10 2022-09-02 삼성전자 주식회사 V2x 통신에서 자원을 선택하는 방법 및 장치
CN108024264B (zh) * 2016-11-03 2022-08-02 中兴通讯股份有限公司 一种资源选择方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160003257A (ko) * 2013-05-01 2016-01-08 삼성전자주식회사 기기 간 직접 통신 시스템을 위한 방법 및 장치
WO2015115847A1 (ko) * 2014-01-29 2015-08-06 엘지전자 주식회사 무선 통신 시스템에서 단말에 의해 수행되는 d2d 동작 방법 및 상기 방법을 이용하는 단말
WO2015178851A1 (en) * 2014-05-23 2015-11-26 Telefonaktiebolaget L M Ericsson (Publ) Devices and methods for d2d transmission

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "UE Autonomous Resource Selection", R1-160307, 3GPP TSG RAN WG1 MEETING #84, 6 February 2016 (2016-02-06), St Julian's, Malta, XP051064125 *
LG ELECTRONICS: "Discussion on UE Autonomous Resource Allocation Mechanism for PC5-based V2V", R1-160634, 3GPP TSG RAN WG1 MEETING #84, 6 February 2016 (2016-02-06), St Julian's, Malta, XP051064271 *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11553487B2 (en) 2017-09-15 2023-01-10 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for selecting carrier and communication device
TWI812640B (zh) * 2017-09-15 2023-08-21 大陸商Oppo廣東移動通信有限公司 載波選取的方法和通信設備
US11246135B2 (en) 2017-09-18 2022-02-08 Datang Mobile Communications Equipment Co., Ltd. Resource selection method and apparatus under multiple carriers, computer device, and storage medium
CN109526056A (zh) * 2017-09-18 2019-03-26 电信科学技术研究院 多载波下的资源选择方法、装置及计算机设备、存储介质
CN109526056B (zh) * 2017-09-18 2022-03-29 大唐移动通信设备有限公司 多载波下的资源选择方法、装置及计算机设备、存储介质
CN111149397A (zh) * 2017-09-29 2020-05-12 Lg电子株式会社 在无线通信系统中由终端发送v2x消息的方法和使用该方法的终端
CN111149397B (zh) * 2017-09-29 2023-09-29 Lg电子株式会社 在无线通信系统中由终端发送v2x消息的方法和使用该方法的终端
US11516633B2 (en) 2018-02-23 2022-11-29 Lg Electronics Inc. V2X communication method of terminal in wireless communication system and apparatus using same method
WO2019164353A1 (ko) * 2018-02-23 2019-08-29 엘지전자 주식회사 무선 통신 시스템에서 단말의 v2x 통신 방법 및 상기 방법을 이용하는 장치
US11647483B2 (en) 2018-03-16 2023-05-09 Huawei Technologies Co., Ltd. Devices and methods for device to device (D2D) communication
WO2020024175A1 (en) * 2018-08-01 2020-02-06 Panasonic Intellectual Property Corporation Of America User equipment and communication methods
CN112425233A (zh) * 2018-08-01 2021-02-26 松下电器(美国)知识产权公司 用户设备和通信方法
US11924868B2 (en) 2018-08-03 2024-03-05 Lg Electronics Inc. Method and apparatus for performing carrier (re)selection in NR V2X
WO2020027637A1 (ko) * 2018-08-03 2020-02-06 엘지전자 주식회사 Nr v2x에서 캐리어 (재)선택을 수행하는 방법 및 장치
WO2020060214A1 (ko) * 2018-09-20 2020-03-26 엘지전자 주식회사 무선 통신 시스템에서 신호를 송수신하는 방법 및 단말
WO2020060289A1 (ko) * 2018-09-21 2020-03-26 삼성전자 주식회사 무선 통신 시스템에서 통신을 수행하는 방법 및 장치
US11432131B2 (en) 2018-09-21 2022-08-30 Samsung Electronics Co., Ltd. Method and device for performing communication in wireless communication system
CN112737747B (zh) * 2019-10-14 2024-05-28 大众汽车股份公司 无线通信设备以及对应的装置、方法和计算机程序
CN112737746A (zh) * 2019-10-14 2021-04-30 大众汽车股份公司 无线通信设备以及对应的装置、方法和计算机程序
CN112737747A (zh) * 2019-10-14 2021-04-30 大众汽车股份公司 无线通信设备以及对应的装置、方法和计算机程序
WO2021100935A1 (ko) * 2019-11-22 2021-05-27 엘지전자 주식회사 무선 통신 시스템에서 취약한 도로 사용자의 단말이 신호를 전송하는 방법
CN112714414A (zh) * 2020-04-29 2021-04-27 宸芯科技有限公司 一种资源选择方案确定方法、装置、终端及存储介质
WO2022086070A1 (ko) * 2020-10-19 2022-04-28 엘지전자 주식회사 Nr v2x에서 선택 윈도우에 대한 시프트를 수행하는 방법 및 장치
WO2022108395A1 (ko) * 2020-11-20 2022-05-27 현대자동차주식회사 사이드링크 통신에서 페이징을 위한 방법 및 장치
WO2023121298A1 (ko) * 2021-12-21 2023-06-29 엘지전자 주식회사 Nr v2x에서 sl 자원을 기반으로 무선 통신을 수행하는 방법 및 장치

Also Published As

Publication number Publication date
US11432263B2 (en) 2022-08-30
US11678301B2 (en) 2023-06-13
US20200296692A1 (en) 2020-09-17
WO2017150956A1 (ko) 2017-09-08
US20210400638A1 (en) 2021-12-23
US20190075548A1 (en) 2019-03-07
US11240783B2 (en) 2022-02-01
WO2017150959A1 (ko) 2017-09-08
US20200296691A1 (en) 2020-09-17
WO2017150957A1 (ko) 2017-09-08

Similar Documents

Publication Publication Date Title
WO2017150958A1 (ko) 무선 통신 시스템에서 단말에 의해 수행되는 v2x 전송 자원 선택 방법 및 상기 방법을 이용하는 단말
WO2016122202A2 (ko) 무선 통신 시스템에서 단말에 의해 수행되는 d2d 발견 신호 전송 방법 및 상기 방법을 이용하는 단말
WO2018004322A1 (ko) 무선 통신 시스템에서 데이터를 송수신하는 방법 및 이를 위한 장치
WO2018143786A1 (ko) 무선 통신 시스템에서 사이드링크 통신을 수행하는 방법 및 이를 위한 장치
WO2018062957A1 (ko) Rrc 비활성화 또는 활성화 상태에서 데이터 전송 방법 및 장치
WO2019098663A1 (en) Method and apparatus for deprioritizing duplicated packet transmission in wireless communication system
WO2017176098A1 (ko) 무선 통신 시스템에서 레이턴시 요구를 만족시키는 범위 내에서 v2x 통신을 수행할 자원을 선택하는 방법 및 상기 방법을 이용하는 단말
WO2017171525A1 (ko) 무선 통신 시스템에서 상향링크 sps에 따른 단말의 동작 방법 및 상기 방법을 이용하는 단말
WO2019216617A1 (en) Method and apparatus for triggering transmission carrier selection in wireless communication system
WO2019156528A1 (en) Method and apparatus for deprioritizing packet transmission based on reliability level or congestion level in wireless communication system
WO2016182295A1 (ko) 무선 통신 시스템에서 단말의 v2x 통신 수행 방법 및 상기 방법을 이용하는 단말
WO2019066629A1 (ko) 무선 통신 시스템에서 단말에 의해 수행되는 v2x 메시지 전송 방법 및 상기 방법을 이용하는 단말
WO2015137781A1 (en) Methods and apparatus for synchronization in device-to-device communication networks
WO2017159972A1 (ko) 무선 통신 시스템에서 데이터를 송수신하기 위한 방법 및 이를 지원하는 장치
WO2022203299A1 (ko) 무선 통신 시스템에서 psfch를 송수신하는 방법 및 이를 위한 장치
WO2021141329A1 (en) Method and apparatus for performing communication in wireless communication system
WO2021162397A1 (ko) 무선 통신 시스템에서 단말간 통신을 위한 센싱 대상 자원 결정 방법 및 장치
WO2022015028A1 (en) Method and apparatus for handling small data transmission in rrc_inactive state in a wireless communication system
WO2022019480A1 (ko) 무선 통신 시스템에서 단말간 통신을 위한 부분 센싱 방법 및 장치
WO2020060289A1 (ko) 무선 통신 시스템에서 통신을 수행하는 방법 및 장치
WO2023043283A1 (ko) 무선 통신 시스템에서 단말간 조정 정보의 송수신 방법 및 그 장치
WO2023022576A1 (ko) 무선 통신 시스템에서 단말간 조정 정보의 송수신 방법 및 그 장치
WO2022220615A1 (ko) 무선 통신 시스템에서 물리 사이드링크 피드백 채널의 송수신 방법 및 그 장치
WO2018194239A1 (en) Method and apparatus for transmitting and receiving a wake-up signal in a wireless communication system
WO2023090938A1 (ko) 무선 통신 시스템에서 사이드링크 데이터를 송수신하기 위한 방법 및 그 장치

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17760362

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17760362

Country of ref document: EP

Kind code of ref document: A1