WO2018062957A1 - Rrc 비활성화 또는 활성화 상태에서 데이터 전송 방법 및 장치 - Google Patents
Rrc 비활성화 또는 활성화 상태에서 데이터 전송 방법 및 장치 Download PDFInfo
- Publication number
- WO2018062957A1 WO2018062957A1 PCT/KR2017/011010 KR2017011010W WO2018062957A1 WO 2018062957 A1 WO2018062957 A1 WO 2018062957A1 KR 2017011010 W KR2017011010 W KR 2017011010W WO 2018062957 A1 WO2018062957 A1 WO 2018062957A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- terminal
- base station
- rrc
- data
- logical channel
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/20—Manipulation of established connections
- H04W76/27—Transitions between radio resource control [RRC] states
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/24—Radio transmission systems, i.e. using radiation field for communication between two or more posts
- H04B7/26—Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
- H04B7/2612—Arrangements for wireless medium access control, e.g. by allocating physical layer transmission capacity
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/12—Wireless traffic scheduling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/50—Allocation or scheduling criteria for wireless resources
- H04W72/56—Allocation or scheduling criteria for wireless resources based on priority criteria
- H04W72/566—Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient
- H04W72/569—Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient of the traffic information
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W56/00—Synchronisation arrangements
- H04W56/004—Synchronisation arrangements compensating for timing error of reception due to propagation delay
- H04W56/0045—Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/10—Connection setup
Definitions
- the present invention relates to a technique for operating a base station and a terminal to achieve the Energy Efficiency KPI discussed in the 3GPP RAN 5G SI.
- a 5G communication system or a pre-5G communication system is called a system after a 4G network (Beyond 4G Network) or a system after an LTE system (Post LTE).
- 5G communication systems are being considered for implementation in the ultra-high frequency (mmWave) band (eg, such as the 60 Gigabit (60 GHz) band).
- FD-MIMO massive array multiple input / output
- FD-MIMO massive array multiple input / output
- FD-MIMO massive array multiple input / output
- FD-MIMO massive array multiple input / output
- FD-MIMO massive array multiple input / output
- Array antenna, analog beam-forming, and large scale antenna techniques are discussed.
- 5G communication systems have advanced small cells, advanced small cells, cloud radio access network (cloud RAN), ultra-dense network (ultra-dense network) , Device to Device communication (D2D), wireless backhaul, moving network, cooperative communication, Coordinated Multi-Points (CoMP), and interference cancellation
- cloud RAN cloud radio access network
- D2D Device to Device communication
- D2D Device to Device communication
- CoMP Coordinated Multi-Points
- Hybrid FSK and QAM Modulation FQAM
- SWSC Slide Window Superposition Coding
- ACM Advanced Coding Modulation
- FBMC Fan Bank Multi Carrier
- NOMA non orthogonal multiple access
- SCMA sparse code multiple access
- IoT Internet of Things
- IoE Internet of Everything
- M2M machine to machine
- MTC Machine Type Communication
- IT intelligent Internet technology services can be provided that collect and analyze data generated from connected objects to create new value in human life.
- IoT is a field of smart home, smart building, smart city, smart car or connected car, smart grid, health care, smart home appliances, advanced medical services, etc. through convergence and complex of existing information technology (IT) technology and various industries. It can be applied to.
- the standard defines energy-efficient operation with the main goal of improving the power efficiency [bit / J] of the terminal and base station networks by more than 1000 times within the next 10 years.
- a control for reducing the active operation time of the UE is being discussed.
- the UL resource allocated considering only the priority between logical channels in the LCP process worked without any problem.
- future systems such as 5G mobile communication systems, it is expected that many services with different performance requirements will be serviced using resources having various types of TTIs. Data transmission and reception using resources with different TTIs show different performances. Therefore, in the LCP process, the UL resource allocated to the UE should be utilized in consideration of the attributes of the TTI as well as the priority between logical channels.
- the present invention proposes an LCP procedure considering the properties of TTI.
- the design of the RRC state for the wireless communication terminal to transmit and receive data was designed too conservatively by the design philosophy of the previous generation focused on voice calls. For example, even when there is no traffic arrival for a certain period of time after receiving traffic, power consumption is severely maintained due to the RRC connected status (Connected DRX). In addition, in case of a smart phone user, keep alive messages, etc., which are not related to user QoS, are frequently generated as data. When the RRC connection is designed based on a voice call service, terminal power consumption may be worsened.
- another object of the present invention is to improve an RRC state (Inactive and (or) Active) determination method for transmitting data and a spectral efficiency improvement and a channel access method for efficiently transmitting the traffic of the UE in the RRC inactive state. Suggest.
- the numerology of the physical layer configured to receive the signal of the base station that is, the subcarrier spacing, subframe length, symbol length, etc., which are values related to the structure of the physical layer, is collectively used.
- the terminal should receive numerology information necessary for an initial access procedure and a transmission / reception operation in a connected state from a base station. Therefore, the present invention proposes an operation and a procedure necessary for what information is transmitted from the base station to the terminal at what time point, and also for the terminal to receive numerology information of the base station.
- a method for transmitting uplink data of a terminal includes receiving logical channel configuration information for uplink scheduling from a base station, and a scheduling request message. Transmitting the uplink resource allocation message based on the logical channel configuration information from the base station in response to the scheduling request message; and the uplink resource allocation message; And transmitting uplink data to the base station.
- the logical channel configuration information includes corresponding information between an uplink resource and a logical channel transmittable through the uplink resource, and the uplink resource is at least one of a transmission time interval (TTI) and a subcarrier spacing (subcarrier spacing). It can be divided based on.
- TTI transmission time interval
- subcarrier spacing subcarrier spacing
- the logical channel configuration information may further include priority information for the logical channel transmittable through the uplink resource.
- the uplink data may be transmitted to the base station through a resource determined based on the priority information of the logical channel included in the logical channel configuration information and the resource allocation information included in the uplink resource allocation message. .
- the scheduling request message may include information about a transmittable logical channel preferred by the terminal.
- a method for receiving uplink data of a base station includes transmitting logical channel configuration information for uplink scheduling to a terminal and a scheduling request message. Receiving an uplink resource allocation message based on the logical channel configuration information to the terminal in response to the scheduling request message, and transmitting the uplink grant to the terminal. Accordingly, receiving uplink data from the terminal.
- the logical channel configuration information includes corresponding information between an uplink resource and a logical channel transmittable through the uplink resource, and the uplink resource is at least one of a transmission time interval (TTI) and a subcarrier spacing (subcarrier spacing). It can be divided based on.
- TTI transmission time interval
- subcarrier spacing subcarrier spacing
- the logical channel configuration information may further include priority information for the logical channel transmittable through the uplink resource.
- the uplink data may be received from the terminal through the resource determined based on the priority information of the logical channel included in the logical channel configuration information and the resource allocation information included in the uplink resource allocation message. .
- the scheduling request message may include information about a transmittable logical channel preferred by the terminal.
- a terminal for transmitting uplink data includes a transceiver for transmitting and receiving a signal, and a controller connected to the transceiver for controlling the transceiver.
- the controller receives logical channel configuration information for uplink scheduling from a base station, transmits a scheduling request message to the base station, and responds to the scheduling request message in response to the scheduling request message.
- the transceiver may be controlled to receive an uplink grant allocated from the base station and to transmit uplink data to the base station according to the uplink resource allocation message.
- a base station for receiving uplink data includes a transceiver for transmitting and receiving a signal, and a controller connected to the transceiver for controlling the transceiver.
- the controller transmits logical channel configuration information for uplink scheduling to a terminal, receives a scheduling request message from the terminal, and responds to the scheduling request message in response to the scheduling request message.
- the transmitter / receiver may control the uplink resource allocation message (uplink grant) configured based on the terminal and receive uplink data from the terminal according to the uplink resource allocation message.
- a base station (RA) preamble (RA) preamble is used. Transmitting to the base station by adding an uplink data to an RRC connection request message corresponding to the RA response message, receiving an RA response message corresponding to the RA preamble from the base station; Transmitting.
- RRC radio resource control
- a buffer state report is further added to the RRC connection request message and transmitted to the base station. It may further comprise a step.
- an RRC connection suspend message corresponding to the RRC connection request message is received.
- the method may further include receiving from a base station.
- the uplink data transmission method of the terminal may further include adding uplink data to an RRC connection resume complete message corresponding to the RRC connection resume message and transmitting the uplink data to the base station.
- the uplink data transmission method of the terminal may further include transmitting uplink data to the base station in the RRC connection state when the terminal transitions to the RRC connection state according to the RRC connection resumption message.
- the RRC connection request message and the uplink data may be multiplexed and transmitted in one transport block.
- a radio resource control (RRC) inactive state when a terminal is in a radio resource control (RRC) inactive state, a random access (RA) preamble is transmitted from the terminal.
- RRC radio resource control
- RA random access
- Receiving an RRC transmitting an RA response message corresponding to the RA preamble from the terminal, an RRC connection request message corresponding to the RA response message, and an uplink added to the RRC connection request message.
- the method of receiving uplink data of the base station when the terminal does not complete transmission of the uplink data when the RRC connection request message is transmitted, a buffer state report added to the RRC connection request message is transmitted from the terminal.
- the method may further include receiving.
- the method of receiving uplink data of the base station includes determining to transition the state of the terminal to an RRC connected state based on the buffer state report, and corresponding to the RRC connection request message according to the determination result.
- the method may further include transmitting an RRC connection resume message to the terminal.
- the method of receiving uplink data of the base station may include determining to maintain the state of the terminal in an RRC inactive state based on the buffer state report, and an RRC connection stop message corresponding to the RRC connection request message according to the determination result.
- the method may further include transmitting an RRC connection suspend to the terminal.
- the uplink data receiving method of the base station may receive an RRC connection resume complete message corresponding to the RRC connection resume message and uplink data added to the RRC connection resume complete message from the terminal. .
- the method of receiving uplink data of the base station may further include receiving uplink data from the terminal in the RRC connection state when the terminal transitions to the RRC connection state according to the RRC connection resumption message.
- the RRC connection request message and the uplink data may be multiplexed and received in one transport block.
- a terminal for transmitting uplink data includes a transceiver for transmitting and receiving a signal, and a controller connected to the transceiver for controlling the transceiver.
- the controller when the terminal is in a radio resource control (RRC) inactive state, transmits a random access (RA) preamble to the base station, and transmits an RA response message corresponding to the RA preamble from the base station.
- RRC radio resource control
- the transceiver may be controlled to receive and add uplink data to an RRC connection request message corresponding to the RA response message and transmit the uplink data to the base station.
- a base station for receiving uplink data includes a transceiver for transmitting and receiving a signal, and a controller connected to the transceiver for controlling the transceiver.
- the controller when the terminal is in a radio resource control (RRC) inactive state, receives a RA (random access) preamble from the terminal and receives an RA response message corresponding to the RA preamble from the terminal.
- RRC radio resource control
- the transmission and reception unit may be controlled to receive an RRC connection request message corresponding to the RA response message and uplink data added to the RRC connection request message from the terminal.
- the LCP operation in consideration of the TTI attribute when used, when a UE is allocated an uplink resource, it may be clearly understood through which TTI the data belonging to a specific logical channel should be transmitted.
- resources are allocated earlier, but the HARQ timeline is relatively long, thereby preventing retransmission.
- the communication system of the terminal and the base station transitions to the RRC Connected_Active (or RRC_CONNECTED) state when transmitting data directly in an inactive state while selecting an RRC state for data transmission and performing a procedure therefor. Since the transition is not performed, the standby time (C-DRX, Radio tail) in the active state is kept to a minimum, so the power consumption saving effect of the terminal is expected.
- the standby time (C-DRX, Radio tail) in the active state is kept to a minimum, so the power consumption saving effect of the terminal is expected.
- C-DRX, Radio tail the standby time in the active state
- Connected_active or RRC_CONNECTED
- Data transmission delay is reduced.
- the reduction of the RRC release message for the transition of the RRC state is expected to increase the efficiency of radio resource use by reducing the power consumption of the 5G base station (RU / TRP) and reducing the peripheral interference between 5G cells.
- numerology information may be transmitted using the radio resources efficiently according to the density of the terminal or the service required by the terminal.
- the base station may inform the service / slice / numerology / UE information provided by the network in order to help the selection of the signal transmission method of the terminal to inform the base station. This information can also be used in paging procedures to wake up the terminal.
- 1 is a view illustrating how a terminal utilizes uplink resources based on LCP in LTE.
- FIG. 2 is a diagram illustrating a plurality of services provided by a fifth generation mobile communication system and performance requirements for each service according to the first embodiment of the present invention.
- FIG. 3 is a diagram illustrating a time relationship between initial transmission, ACK / NACK feedback, and retransmission when HARQ-based transmission / reception is performed on resources having different TTIs according to the first embodiment of the present invention.
- FIG. 4 is a diagram illustrating a case where a resource having a long TTI is allocated to a terminal before a resource having a short TTI according to the first embodiment of the present invention.
- FIG. 5 is a diagram illustrating a signal flow diagram for the operation 1 proposed in accordance with the first embodiment of the present invention.
- FIG. 6 is a diagram illustrating a case in which a terminal is allocated a resource having one type of TTI from a base station according to the first embodiment of the present invention.
- FIG. 7 is a diagram illustrating a case where a terminal is simultaneously allocated resources having various types of TTIs from a base station according to the first embodiment of the present invention.
- FIG. 8 is a flowchart illustrating a proposed operation 2 according to the first embodiment of the present invention.
- FIG. 9 is a flowchart illustrating the operation 3 proposed in accordance with the first embodiment of the present invention.
- FIG. 10 is a diagram illustrating an example for describing a proposed operation 4 according to the first embodiment of the present invention.
- FIG. 11 is a diagram illustrating a hard split between a logical channel and a TTI proposed in accordance with a first embodiment of the present invention.
- FIG. 12 is a diagram illustrating a soft split between a proposed logical channel and a TTI according to the first embodiment of the present invention.
- FIG. 13 is a diagram illustrating a hybrid split between a logical channel and a TTI proposed in accordance with a first embodiment of the present invention from a logical channel perspective.
- FIG. 14 illustrates a hybrid split between a logical channel and a TTI proposed according to the first embodiment of the present invention from a TTI perspective.
- 15 is a diagram illustrating a method for notifying an LCP set to a terminal through a UL grant by a base station according to the first embodiment of the present invention.
- FIG. 16 is a diagram illustrating a method for notifying a base station of a preferred LCP set by a terminal through a scheduling request according to the first embodiment of the present invention.
- 17 is a diagram illustrating a method for efficiently applying a default priority and a special priority to a terminal by a base station according to the first embodiment of the present invention.
- FIG. 18 is a diagram illustrating a method for assigning a degree of freedom to logical terminal priority selection of a terminal after the base station allocates a TTI-specific priority to the terminal according to the first embodiment of the present invention.
- 19 is a view showing a modified method for the base station to efficiently apply the default priority and special priority to the terminal according to the first embodiment of the present invention.
- 20 is a diagram schematically illustrating a structure of a 5G or NR communication system according to a second embodiment of the present invention.
- FIG. 21 is a diagram illustrating an example of operations of three RRC states, Connected_Active (or RRC_CONNECTED), Connected_Inactive, and Idle, which are applied in a 5G or NR communication system according to a second embodiment of the present invention.
- FIG. 22 is a diagram illustrating an exemplary state of a terminal, a base station, and an MME in an inactive state in a 5G or NR communication system according to a second embodiment of the present invention.
- FIG. 23 illustrates an example of a state transition between an RRC state (idle, Connected_Active (or RRC_CONNECTED), and Connected_Inactive (or RRC_INACTIVE)) according to a second embodiment of the present invention.
- FIG. 24 is a diagram schematically illustrating a data transmission operation in an INACTIVE state in an NR system according to a second embodiment of the present invention.
- FIG. 24 illustrates an operation of adding data to a Message3 RRC connection (resume) request in an RACH procedure. Drawing.
- FIG. 25 is a diagram schematically illustrating a data transmission operation in an INACTIVE state in an NR system according to a second embodiment of the present invention.
- FIG. 26 is a diagram schematically illustrating a data transmission operation in an INACTIVE state in an NR system according to a second embodiment of the present invention.
- FIG. 27 is a diagram schematically illustrating a data transmission operation in an INACTIVE state in an NR system according to a second embodiment of the present invention.
- FIG. 28 is a diagram schematically illustrating a data transmission operation after a state transition from INACTIVE to ACTIVE in an NR system according to a second embodiment of the present invention.
- FIG. 29 is a diagram schematically illustrating a data transmission operation after starting data transmission in an INACTIVE state and transitioning to an ACTIVE state in an NR system according to a second embodiment of the present invention.
- FIG. 30 is a NR system according to the second embodiment of the present invention starts the data transmission through the MSG3 in the INACTIVE state, adds data to the Message5 RRC connection (resume) complete and transmits the data to the RRC connection response (ACK) Is a diagram for describing an operation of maintaining an Inactive state by transmitting a suspend).
- FIG. 31 is a diagram schematically illustrating a data transmission operation after starting data transmission in an INACTIVE state and transitioning to an ACTIVE state in an NR system according to a second embodiment of the present invention.
- 32 is a NR system according to the second embodiment of the present invention to start the data transmission through the MSG3 in the INACTIVE state, add the data to the Message5 RRC connection (resume) complete and transmit the data if additional data transmission is necessary
- This is a diagram for explaining the operation of transitioning to the active state by sending (ACK and Resume) to the response, and then transferring back to Inactive through the RRC connection suspend message when the data transmission is completed again.
- FIG. 33 is a diagram illustrating an example of a signaling operation between terminal base stations for determining and controlling an RRC state (Inactive and (or) Active) for transmitting data in an NR system according to a second embodiment of the present invention.
- FIG. 34 is a diagram illustrating an exemplary signaling operation between terminal base stations for determining and controlling an RRC state (Inactive and (or) Active) for transmitting data in an NR system according to a second embodiment of the present invention.
- FIG. 35 is a diagram illustrating an exemplary signaling operation between terminal base stations for determining and controlling an RRC state (Inactive and (or) Active) for transmitting data in an NR system according to a second embodiment of the present invention.
- FIG. 36 is a diagram illustrating an exemplary signaling operation between terminal base stations for determining and controlling an RRC state (Inactive and (or) Active) for transmitting data in an NR system according to a second embodiment of the present invention.
- FIG. 37 is a diagram illustrating an exemplary signaling operation between UE base stations for determining and controlling an RRC state (Inactive and / or Active) for transmitting data in an NR system according to a second embodiment of the present invention.
- FIG. 38 is a diagram illustrating an example of a signaling operation between terminal base stations for determining and controlling an RRC state (Inactive and (or Active)) for transmitting data in an NR system according to a second embodiment of the present invention.
- RRC state Inactive and (or Active)
- FIG. 39 is a view illustrating a method of determining an operation mode related to MSG3, MSG5, or RRC state transition in which a terminal transmits data based on an event trigger configured by a base station for data transmission in an NR system according to a second embodiment of the present invention.
- FIG. It is a figure explaining.
- a terminal 40 is a MSG3 or MSG5 to which a terminal transmits data when the terminal operates without additional feedback on a corresponding event to the base station based on an event trigger configured by the base station for data transmission in the NR system according to the second embodiment of the present invention.
- a diagram illustrating an operation of determining an RRC state transition related operation mode is a diagram illustrating an operation of determining an RRC state transition related operation mode.
- FIG. 41 is a MSG3 or MSG5 to which a terminal transmits data when the terminal transmits additional feedback on a corresponding event to the base station based on an event trigger configured by the base station for data transmission in the NR system according to the second embodiment of the present invention.
- a diagram illustrating an operation of determining an RRC state transition related operation mode is a diagram illustrating an operation of determining an RRC state transition related operation mode.
- FIG. 42 is a diagram illustrating an operation in which a terminal transmits data and a base station determines an RRC state transition related operation mode based on an event trigger configured by a base station for data transmission in an operation according to a second embodiment of the present invention.
- FIG. 43 is a diagram illustrating an example of an information acquisition method for improving spectral efficiency when a transmission is efficiently performed in an NR RRC inactive state according to the second embodiment of the present invention.
- FIG. 44 illustrates an example of a method for obtaining information for improving channel access in a case of efficiently transmitting in an NR RRC inactive state according to the second embodiment of the present invention.
- 45 is a diagram illustrating an example of a method for improving channel access efficiency in a case of efficiently performing transmission in an NR RRC inactive state according to the second embodiment of the present invention.
- FIG. 46 is a view illustrating a multiple UL grant allocation and a corresponding UL transmission procedure based on UE buffer state information when transmitting data in an NR RRC inactive state according to the second embodiment of the present invention.
- FIG. 47 is a diagram illustrating the operation of allocating a preamble sequence and resources for dedicated RACH and grant-free transmission when data is transmitted in an NR RRC inactive state according to the second embodiment of the present invention, and setting a valid timer of these resources.
- FIG. 48 is a diagram for determining whether to perform Contention based RACH based data transmission operation, Dedicated based RACH based data transmission operation, or Grant-free based data transmission when data is transmitted in NR RRC Inactive state according to the second embodiment of the present invention. It is a figure which shows.
- FIG. 49 is a diagram illustrating an additional continuous transmission procedure after initial transmission in data transmission in an NR RRC inactive state according to the second embodiment of the present invention.
- 50 is a diagram illustrating an example of a traffic characteristic of a keep alive message of a specific application according to the second embodiment of the present invention.
- FIG. 52 is a diagram illustrating an initial access procedure according to a third embodiment of the present invention.
- 53 is a diagram illustrating an initial access procedure considering an UL presence signal according to a third embodiment of the present invention-I diagram.
- FIG. 54 is a diagram illustrating an initial access procedure considering an DL probing signal according to a third embodiment of the present invention-I diagram.
- FIG. 55 is a view illustrating an initial access procedure example-I considering a UL presence signal and a DL probing signal according to a third embodiment of the present invention.
- FIG. 56 is a view illustrating an initial access procedure illustrating a UL presence signal and a DL probing signal according to the third embodiment of the present invention-II.
- FIG. 57 is a diagram illustrating an initial access procedure considering a UL presence signal according to a third embodiment of the present invention-II.
- 58 illustrates an example of a method of transmitting and receiving a tone-based signal based on a UE ID and a service ID according to a third embodiment of the present invention.
- 59 illustrates an example of overlapping tone-based signals from a plurality of terminals according to the third embodiment of the present invention.
- 60 shows an example of a base station querying an MME with tone or hash code information according to the third embodiment of the present invention.
- FIG. 61 shows an example of a base station sending a matching indication to an MME according to the third embodiment of the present invention.
- FIG. 62 is a diagram illustrating a configuration of a terminal device according to the third embodiment of the present invention.
- FIG. 63 is a view illustrating options applied when a terminal switches from an idle state to a connected state according to a third embodiment of the present invention.
- 64 is an illustration when UPCH reuses an existing RA procedure according to the third embodiment of the present invention.
- 65 is an example of using a RA procedure in which a UPCH is modified according to a third embodiment of the present invention.
- the present invention proposes a UL scheduling method in a 5G mobile communication system.
- various services or slices
- eMBB enhanced Mobile BroadBand
- URLLC Ultra Reliable and Low Latency Communication
- eMTC Enhanced Machine Type Communication
- VoIP Voice over Internet Protocol
- BE Best Effort
- 5G mobile communication systems various numerologies are expected to be supported in 5G mobile communication systems. This specifically means subcarrier spacing (SCS) or transmission time interval (TTI).
- SCS subcarrier spacing
- TTI transmission time interval
- 5G mobile communication systems are expected to support various lengths of TTI or SCS. This is one of the characteristics of 5G mobile communication system that is different from standardized LTE so far, only one type of TTI (1 ms) and one type of SCS (15 kHz) is supported. If the 5G mobile communication system supports a much shorter TTI (for example, 0.1 ms) than LTE's 1 ms TTI, it is expected to be of great help in supporting URLLC, which requires a short delay time.
- the present invention proposes a UL scheduling method considering the characteristics of the 5G mobile communication system, that is, supporting various services and various numerology (TTI and SCS).
- TTI and SCS various numerology
- the difference from the UL scheduling method defined in LTE is conventionally a scheduling method for supporting various services.
- a scheduling method for supporting various services using various numerologies may be considered.
- TTI and subcarrier spacing are used as the same terms. That is, the method considering the TTI in the example of the present invention may be extended to the method considering the SCS with the same principle.
- LCP Logical Channel Prioritization
- DL scheduling a subject that generates and transmits DL traffic is a base station, and a subject that performs DL scheduling is also a base station. That is, the base station performs DL scheduling and transmits the generated DL traffic.
- UL scheduling a subject that generates and transmits UL traffic is a terminal, but a subject that performs UL scheduling is a base station.
- the base station allocates a predetermined size resource to the terminal through UL scheduling, and the terminal fills the UL traffic generated by the allocated resource to the base station.
- the method of "filling the UL traffic generated by the terminal with the allocated resources" is called LCP.
- 1 is a view illustrating how a terminal utilizes uplink resources based on LCP in LTE.
- each logical channel or collection of multiple logical channels may correspond to each service.
- Each logical channel has priority according to the configuration of the base station.
- logical channels 1, 2, and 3 correspond to priorities 1, 2, and 3, respectively.
- the terminal fills the UL traffic it has with the resource allocated as much as the PBR (Prioritized Bit Rate) condition in the order of the logical channels having the highest priority (basically).
- the PBR of each logical channel may also be configured by the base station through RRC signaling. Thereafter, the terminal fills the allocated resources according to the priority until all the allocated resources are exhausted.
- the specific operation for this is defined in the LTE standard as follows.
- the Logical Channel Prioritization procedure is applied when a new transmission is performed.
- RRC controls the scheduling of uplink data by signaling for each logical channel: priority where an increasing priority value indicates a lower priority level, prioritised Bit Rate which sets the Prioritized Bit Rate (PBR), bucketSizeDuration which sets the Bucket Size Duration (BSD).
- priority where an increasing priority value indicates a lower priority level
- prioritised Bit Rate which sets the Prioritized Bit Rate (PBR)
- bucketSizeDuration which sets the Bucket Size Duration (BSD).
- the MAC entity shall maintain a variable Bj for each logical channel j.
- Bj shall be initialized to zero when the related logical channel is established, and incremented by the product PBR X TTI duration for each TTI, where PBR is Prioritized Bit Rate of logical channel j.
- PBR Prioritized Bit Rate of logical channel j.
- the value of Bj can never exceed the bucket size and if the value of Bj is larger than the bucket size of logical channel j, it shall be set to the bucket size.
- the bucket size of a logical channel is equal to PBR X BSD, where PBR and BSD are configured by upper layers.
- the MAC entity shall perform the following Logical Channel Prioritization procedure when a new transmission is performed:
- the MAC entity shall allocate resources to the logical channels in the following steps:
- Step 2 the MAC entity shall decrement Bj by the total size of MAC SDUs served to logical channel j in Step 1
- Step 3 if any resources remain, all the logical channels are served in a strict decreasing priority order (regardless of the value of Bj) until either the data for that logical channel or the UL grant is exhausted, whichever comes first. Logical channels configured with equal priority should be served equally.
- LCP operates in LTE, and when one logical channel or a collection of a plurality of logical channels corresponds to one service, it can be seen that LCP in consideration of multiple services is already supported in LTE.
- FIG. 2 is a diagram illustrating a plurality of services provided by a 5G mobile communication system and performance requirements for each service.
- the first embodiment proposes a method of how LCP should be improved when a plurality of services as well as a plurality of TTIs or SCSs are introduced in a 5G mobile communication system. 2, in the 5G mobile communication system, eMBB, URLLC, eMTC, etc. require different performances. In particular, it can be seen that each service requires different performance in terms of latency.
- transmission and reception performed through resources having different TTIs have different HARQ timelines (data initial transmission, ACK or NACK transmission, and data retransmission). This is because the time required for data encoding and decoding is mainly proportional to the TTI.
- FIG. 3 is a diagram illustrating a time relationship between initial transmission, ACK / NACK feedback, and retransmission when HARQ-based transmission and reception are performed on resources having different TTIs. Referring to FIG. 3, HARQ timelines of different TTIs are shown.
- LTE's LCP does not reflect these features of TTI, so the 5G mobile communication system should design the LCP to reflect this.
- the terminal is using the service S1 and S2 at the same time.
- the UL buffer of the UE currently has both UL traffic of service S1 and S2.
- Services S1 and S2 are optimized for transmission and reception via TTI1 and TTI2, respectively, but S1 may be sent to TTI2 and S2 may be sent to TTI1.
- each service may perform transmission and reception using only the TTI optimized for itself.
- service S1 may transmit and receive using only TTI1
- service S2 may transmit and receive using only TTI2.
- a specific service may transmit and receive using only a TTI optimized for itself, and another specific service may transmit and receive using all TTIs.
- service S1 may perform transmission and reception using only TTI1
- service S2 may perform transmission and reception using both TTI1 and TTI2.
- TTI2 is shorter than TTI 1.
- FIG. 4 illustrates in detail the conditions to be considered when designing an LCP in a 5G mobile communication system.
- FIG. 4 is a diagram illustrating a case where a resource having a long TTI is allocated to a terminal of the present invention before a resource having a short TTI.
- the UE may be allocated a TTI1 resource from the base station.
- the terminal transmits both the UL traffic for the service S1 and the UL traffic for the service S2 currently present in its UL buffer in the corresponding resource. It is assumed here that the size of the resource is sufficient.
- Situation 1 corresponds to a situation in which services S1 and S2 use the same time / frequency radio resource.
- the present invention includes the resource utilization method described in ⁇ Situation 1>. That is, the resource utilization method is configured such that both service S1 and service S2 can use TTI1 resources.
- the situation in which the services S1 and S2 use the same time / frequency radio resource is more specifically the situation in which the services S1 and S2 use the time / frequency radio resource having the same TTI.
- the UE may be allocated a TTI1 resource from the base station.
- the UE transmits the corresponding resource including UL traffic for service S1 currently present in its UL buffer, but may not transmit UL traffic for service S2.
- the UE may be allocated a TTI2 resource from the base station.
- the terminal has transmitted the UL traffic for the service S2 currently in its UL buffer in the corresponding resource.
- Situation 2 corresponds to a situation in which services S1 and S2 use different time / frequency radio resources.
- the present invention includes the resource utilization method described in ⁇ Situation 2>.
- the service utilization method is configured such that service S1 and service S2 use time / frequency radio resources having different TTIs.
- service S1 uses radio resources with TTI1 and service S2 uses radio resources with TTI2.
- the above situation 1 and 2 show a case in which the base station first allocates a long TTI resource to the terminal in a state where the terminal has UL traffic of the service S1 optimized for TTI1 and the service S2 optimized for TTI2.
- the terminal must satisfy the latency requirements of service S1 and S2 (particularly S2 with short latency requirements).
- the UE does not know that TTI2 resources capable of faster transmission and reception in terms of HARQ timeline within a predetermined time period will be allocated, it is best to transmit all UL traffic at the earliest time T1. This corresponds to situation 1. However, if the UE knows that a TTI2 resource capable of transmitting / receiving faster in terms of HARQ timeline will be allocated within a certain time period, the UL traffic of the service S1 optimized for TTI1 in T1 than in transmitting all UL traffic at T1, which is the earliest point in time, In this case, it is best to transmit UL traffic of service S2 optimized for TTI2 at a time point T2 to which TTI2 resources are allocated. This corresponds to situation 2.
- the base station provides the terminal with a default priority for each logical channel. This can be done through LogicalChannelConfig IE (Information Element) among RRC signaling as follows.
- the IE LogicalChannelConfig is used to configure the logical channel parameters.
- the base station provides a special priority applied to the corresponding UL grant when allocating the UL grant to the terminal. This can be done through Downlink Control Information (DCI) transmitted through the PDCCH.
- DCI Downlink Control Information
- special priority may be set for one logical channel or two or more logical channels. Also, special priority may not be set for any logical channel.
- Table 2 below shows an example of informing the UE of a highest priority logical channel applied to a corresponding UL grant when the BS allocates a UL grant to the UE.
- the terminal is provided with the default priority and special priority for the logical channel. Based on this, the terminal operates as follows.
- Data is filled in the UL grant allocated from the base station in the order of the logical channels with the highest special priority. That is, LCP is applied to a logical channel for which a special priority is set.
- FIG. 5 is a diagram illustrating a signal flow diagram for the operation 1 proposed in accordance with the first embodiment of the present invention.
- the base station 5G-NB may provide the terminal UE with a default priority for the logical channels A, B, C, and D in the order of A> B> C> D.
- the A> B> C> D display format means that A is first, B is second, C is third, and D is fourth.
- the base station 5G-NB When the base station 5G-NB allocates a UL grant to the UE, the base station 5G-NB sets and provides a special priority applied to the corresponding UL grant in the order of C> A.
- (3) UE first fills UL grant by performing LCP operation in order of special priority C> A for logical channels A and C with special priority.
- UE performs LCP operation in order of special priority C> A and then fills UL grant and when resources remain in UL grant, according to default priority for remaining logical channels except A and C which are already considered.
- the LCP is performed in the order B> D to fill the UL grant.
- the UE performs LCP operation in order of default priority A> B> C> D to fill the UL grant.
- the base station provides the terminal with logical channel priority for each TTI type. This can be done through LogicalChannelConfig IE during RRC signaling.
- a UL grant having a 1 ms TTI is given priority in the order of A> B> C> D
- a UL grant having a 0.2 ms TTI is provided in the order of C> B> A> D.
- logical channels A, B, C, and D can use a UL grant with a 1 ms TTI, and LCP when logical channels A, B, C, and D are transmitted through a UL grant with a 1 ms TTI.
- the priority applied in the process is A> B> C> D.
- logical channels A and B have UL grants with 1 ms TTI. It means you can use it. That is, other logical channels other than the logical channels A and B may not use a UL grant having a 1 ms TTI. Priority information is required to perform LCP operations. Therefore, the absence of priority information for a specific logical channel means that the logical channel cannot be used. Likewise, logical channels C and D may use UL grants having a 0.2 ms TTI. That is, other logical channels other than logical channels C and D may not use a UL grant having a 0.2 ms TTI.
- the base station also provides the terminal with priority for each TTI type. This can also be done through LogicalChannelConfig IE during RRC signaling.
- a UL grant having a 0.2 ms TTI may be set to have a higher priority than a UL grant having a 1 ms TTI.
- the priority between TTIs is included in the LogicalChannelConfig IE.
- LogicalChannelConfig IE includes information about a specific logical channel. Therefore, if the TTI priority of a specific logical channel is set to be 0.2 ms TTI higher than 1 ms TTI, it can be said that the logical channel includes information that 0.2 ms TTI and 1 ms TTI can be used.
- LogicalChannelConfig IE shows how logical channel priority information (priorityForTTIType1, priorityForTTIType2) for each TTI type and priority information (ulTTI-SpecificParameters, TTIType, priorityAmongTTIType) for each TTI type are set.
- the IE LogicalChannelConfig is used to configure the logical channel parameters.
- FIG. 6 is a diagram illustrating a case where a terminal is allocated a resource having one type of TTI at a specific time from a base station according to the first embodiment of the present invention.
- the UE operates as follows when the UL grant corresponding to one type of TTI is allocated from a base station as shown in FIG. 6.
- the UE is allocated an UL grant having a 1 ms TTI from the base station, UL through the LCP operation in the order of A> B> C> D, which is given priority for the corresponding logical channels A, B, C, D Fill the grant.
- the UE is allocated a UL grant having a 0.2 ms TTI from the base station, UL through the LCP operation in the order of C> B> A> D given priority for the corresponding logical channels A, B, C, D Fill the grant.
- FIG. 7 is a diagram illustrating a case where a terminal is simultaneously allocated resources having various types of TTIs from a base station.
- the UE operates as follows when simultaneously receiving UL grants corresponding to two or more types of TTIs from a base station.
- this includes a case in which a UE is allocated two UL grants (UL grant having a 1 ms TTI and a UL grant having a 0.2 ms TTI) indicating the same time point as shown in FIG. 7.
- the UE fills the UL grant in the logical channel priority order of the corresponding TTI according to the priority information for each TTI type provided by the base station.
- the terminal since a UL grant having a 0.2 ms TTI has a higher priority than a UL grant having a 1 ms TTI, the terminal first has a logical channel priority corresponding to a UL grant having a 0.2 ms TTI, which is C> B> A> D. Fill UL grant in order.
- the UL grant with 0.2 ms TTI is filled with data through the LCP operation, the UL grant is filled in the order of A> B> C> D with the logical channel priority corresponding to the UL grant having the priority of 1 ms TTI. .
- FIG. 8 is a flowchart illustrating a proposed operation 2 according to the first embodiment of the present invention.
- the UE can identify a TTI having an M th priority and a logical channel priority for a TTI having an M th priority. Thereafter, the UE may transmit data according to the logical channel priority to the TTI (UL resource) having the M th priority.
- the UE may determine whether it is the last TTI type or whether the allocated UL resources are exhausted. According to an embodiment, when the last TTI type or the allocated UL resources are exhausted, the terminal may terminate the LCP operation. According to another embodiment, when not the last TTI type or when the allocated UL resources are not exhausted, the UE may identify the TTI having the next priority (M + 1 th) and repeat the LCP operations.
- the base station may provide the terminal with priority information between logical channels for each TTI type.
- PBR Primary Bit Rate
- BSD Bucket Size Duration
- the UE may apply different PBRs (PBRa and PBRb) and different BSDs (BSDa and BSDb) when transmitting data belonging to the same logical channel using TTI type a and when transmitting using TTI type b.
- PBRa and PBRb PBRs
- BSDa and BSDb BSDs
- TTI type a corresponds to step 1 of LCP procedure defined in LTE
- TTI type b corresponds to step 1 of LCP procedure defined in LTE
- the base station provides a logical channel priority to the terminal in the same manner as LTE. This can be done through LogicalChannelConfig IE during RRC signaling.
- priority is given in the order of logical channel A> B> C> D.
- the base station also provides the UE with priority for TTI type for each logical channel. This can also be done through LogicalChannelConfig IE during RRC signaling.
- logical channel A has a higher priority than a UL grant having a 1 ms TTI than a UL grant having a 0.2 ms TTI. This means that logical channel A can use both a UL grant having a 1 ms TTI and a UL grant having a 0.2 ms TTI.
- logical channel B has a higher priority than a UL grant having a 0.2 ms TTI than a UL grant having a 1 ms TTI. This means that the logical channel B can use both a UL grant having a 0.2 ms TTI and a UL grant having a 1 ms TTI.
- LogicalChannelConfig IE shows how priority information (ulTTI-SpecificParameters, TTIType, priorityAmongTTIType) is set for each TTI type.
- the IE LogicalChannelConfig is used to configure the logical channel parameters.
- the terminal operates as follows when an UL grant corresponding to one type of TTI is allocated from a base station.
- the UE fills data in the order of priority A> B> C> D (regardless of the TTI type of the corresponding UL grant) to the UL grant allocated from the base station.
- the UE operates as follows when an UL grant corresponding to two or more types of TTIs is allocated from a base station.
- the terminal fills data in the UL grant allocated according to the TTI priority of each logical channel in order of the highest logical channel.
- logical channel A has the highest priority. Also, it is assumed that a UL grant having a 1 ms TTI has a higher priority than a UL grant having a 0.2 ms TTI for logical channel A. Therefore, the UE first fills data corresponding to logical channel A with a UL grant having a 1 ms TTI, and then fills data with a UL grant having a 0.2 ms TTI when the corresponding UL grant is insufficient.
- the UE repeats the same operation for logical channel B next to logical channel A.
- a UL grant having a 0.2 ms TTI has a higher priority for a logical channel B than a UL grant having a 1 ms TTI.
- the UE first fills data corresponding to logical channel B with a UL grant having a 0.2 ms TTI, and then fills the data after the UL grant having a 1 ms TTI when the corresponding UL grant is insufficient.
- FIG. 9 is a flowchart illustrating the operation 3 proposed in accordance with the first embodiment of the present invention.
- the UE can identify a logical channel having an M th priority and a TTI priority for a logical channel having an M th priority. Thereafter, the UE may transmit data of the logical channel having the M th priority on the allocated resource according to the corresponding TTI priority.
- the UE may determine whether it is the last logical channel or whether all the allocated UL resources are exhausted. According to an embodiment, when the last logical channel or the allocated UL resources are exhausted, the terminal may terminate the LCP operation. According to another embodiment, if it is not the last logical channel or if the allocated UL resources are not exhausted, the UE can identify the logical channel having the next priority (M + 1 th) and repeat the LCP operations.
- the base station may provide logical channel priority information for each TTI type to the terminal.
- PBR Primary Bit Rate
- BSD Bucket Size Duration
- the UE applies different PBRs (PBRa and PBRb) and different BSDs (BSDa and BSDb) when transmitting data belonging to the same logical channel using TTI type a and when transmitting using TTI type b.
- PBRa and PBRb PBRs
- BSDa and BSDb BSDs
- the role of PBR and BSD is considered to be the same as that of LTE. That is, it works as follows.
- TTI type a corresponds to step 1 of LCP procedure defined in LTE
- TTI type b corresponds to step 1 of LCP procedure defined in LTE
- the base station provides a logical channel priority to the terminal in the same manner as LTE. This can be done through LogicalChannelConfig IE during RRC signaling.
- the base station grants the terminal the right to repeatedly transmit data belonging to a specific logical channel within a certain time.
- This setting can also be made through the LogicalChannelConfig IE as shown below.
- repetitive transmission refers to transmitting data belonging to a specific logical channel when assigning UL grant and then transmitting again when assigning UL grant separately from HARQ and ACK / NACK feedback.
- the base station may perform setting regarding the following to the terminal.
- the IE LogicalChannelConfig is used to configure the logical channel parameters.
- the terminal performs repetitive transmission in consideration of the maximum time interval and the maximum number of repetitive transmissions allowed for repetitive transmission.
- FIG. 10 is a diagram illustrating an example for describing a proposed operation 4 according to the first embodiment of the present invention.
- FIG. 10 is a diagram illustrating an example for describing a proposed operation 4 according to the first embodiment of the present invention.
- the base station allowed the terminal to repeatedly transmit the logical channel A.
- the maximum time interval allowed for repetitive transmission is set to 5 normal TTI, and the maximum number of repetitive transmissions is set to 3 times.
- the terminal first transmits data of logical channel A by filling the UL grant allocated at the time point T1. After that, when UL grant is received within 5 normal TTIs, which is the maximum time interval allowed for repetitive transmission, if the maximum number of repetitive transmissions is not exceeded 3 times, UL allocated to the data of logical channel A transmitted at T1 at T2 After refilling the grant, it can be sent. The same operation may be applied to the UL grant allocated at the time T3 in the same principle.
- the base station provides the terminal with information about the priority (priorityForTTIType1, priorityForTTIType2, etc.) and the priority (TTIType, priorityAmongTTIType, etc.) between different TTI types to the UE through the LogicalChannelConfig IE.
- the UE may interpret that only TTI types included in the LogicalChannelConfig IE of the specific logical channel provided by the base station are used to transmit and receive data belonging to the specific logical channel.
- the base station may designate a TTI type that the terminal can use to transmit and receive data belonging to the corresponding logical channel through the LogicalChannelConfig IE. This point has been mentioned in the descriptions of the operations 2 and 3 but will be described in more detail in this section.
- FIG. 11 is a diagram illustrating a hard split between a proposed logical channel and a TTI according to the first embodiment of the present invention.
- the base station supports six logical channels ⁇ 1, 2, 3, 4, 5, 6 ⁇ and two TTI types ⁇ A, B ⁇ to the terminal.
- the UE can use only TTI type A when transmitting data belonging to logical channels ⁇ 1, 2, 3 ⁇ . That is, data belonging to logical channel ⁇ 1, 2, 3 ⁇ cannot be transmitted using TTI type B.
- the UE can use only TTI type B when transmitting data belonging to the logical channel ⁇ 4, 5, 6 ⁇ . That is, data belonging to logical channel ⁇ 4, 5, 6 ⁇ cannot be transmitted using TTI type A.
- FIG. 12 is a diagram illustrating a soft split between a proposed logical channel and a TTI according to the first embodiment of the present invention.
- the base station supports six logical channels ⁇ 1, 2, 3, 4, 5, 6 ⁇ and two TTI types ⁇ A, B ⁇ to the terminal.
- the UE When the UE transmits data belonging to the logical channels ⁇ 1, 2, 3, 4, 5, 6 ⁇ , one, some or all of the TTI types ⁇ A, B ⁇ may be used.
- FIG. 13 is a diagram illustrating a hybrid split between a logical channel and a TTI proposed in accordance with a first embodiment of the present invention from a logical channel perspective.
- the base station supports nine logical channels ⁇ 1, 2, 3, 4, 5, 6, 7, 8, 9 ⁇ and three TTI types ⁇ A, B, C ⁇ to the terminal.
- TTI type A may be used to transmit data belonging to logical channels ⁇ 1, 2, 3 ⁇ .
- -TTI type B can be used to transmit data belonging to any logical channel among logical channels ⁇ 1, 2, 3, 4, 5, 6, 7, 8, 9 ⁇ .
- TTI type C may be used to transmit data belonging to logical channels ⁇ 4, 5, 6, 7, 8, 9 ⁇ .
- FIG. 14 illustrates a hybrid split between a logical channel and a TTI proposed according to the first embodiment of the present invention from a TTI perspective.
- Data belonging to the logical channel ⁇ 1, 2, 3 ⁇ may be transmitted and received by the TTI type A.
- Data belonging to the logical channel ⁇ 4, 5, 6 ⁇ can be transmitted and received through all TTI types.
- Data belonging to the logical channel ⁇ 7, 8, 9 ⁇ may be transmitted and received by the TTI type ⁇ B, C ⁇ .
- the base station In order to realize the hard split-based approach, the soft split-based approach, and the hybrid approach described above, the base station also uses the TTI type that can be used to transmit and receive data when the base station informs the user of the logical channel configuration. You must tell them together. This can be informed via the LogicalChannelConfig IE as follows: The LogicalChannelConfig IE mentioned in the description of operation 2 and operation 3 also contains information about this and additional priority information about the logical channel.
- the base station may inform the UE of the TTI type in which data belonging to each logical channel may be transmitted through a method other than the above-described LogicalChannelConfig IE.
- the base station provides a plurality of logical channel priority sets to the terminal. This can be done through LogicalChannelConfig IE during RRC signaling.
- logical channel priority set 1 provides priority in the order of A> B> C> D
- logical channel priority set 2 provides priority in the order of C> D> A> B.
- LogicalChannelConfig IE shows how multiple logical channel priority sets are configured.
- the base station provides a logical channel priority set ID applied to the corresponding UL grant when allocating a UL grant to the terminal. This may be done through a DCI or the like transmitted through the PDCCH.
- the table below shows an example of informing a logical channel priority set ID applied to a corresponding UL grant when a base station allocates a UL grant to a user equipment.
- the terminal is provided with a plurality of logical channel priority set IDs and logical channel priority set IDs corresponding to UL grants. Based on this, the terminal operates as follows.
- the terminal checks the logical channel priority set ID specified in the UL grant and confirms the corresponding logical channel priority.
- the UE fills the UL grant with data currently present in the buffer according to the logical channel priority identified above.
- 15 is a diagram illustrating a method for notifying an LCP set to a terminal through a UL grant by a base station according to the first embodiment of the present invention.
- the base station provides a plurality of logical channel priority (LCP) sets 1 and 2 to the terminal.
- LCP logical channel priority
- the logical channel priority of logical channel priority set 1 is set to A> B> C> D
- the logical channel priority of logical channel priority set 2 is set to C> D> A> B.
- the base station provides a logical channel priority set ID applied to the corresponding UL grant when allocating a UL grant to the terminal.
- priority A> B> C> D is filled in the resource allocated to the corresponding UL grant through LCP operation.
- the base station may provide logical channel priority information for each TTI type to the terminal.
- PBR Primary Bit Rate
- BSD Bucket Size Duration
- the UE applies different PBRs (PBRa and PBRb) and different BSDs (BSDa and BSDb) when transmitting data belonging to the same logical channel using TTI type a and when transmitting using TTI type b.
- PBRa and PBRb PBRs
- BSDa and BSDb BSDs
- the role of PBR and BSD is considered to be the same as that of LTE. That is, it works as follows.
- TTI type a corresponds to step 1 of LCP procedure defined in LTE
- Operations 1 to 5 described so far may be regarded as operations in which the base station determines priorities between logical channels to be used by the terminal.
- operation 6 the UE takes a look at an operation of selecting an LCP to be used by the UE.
- the base station provides a plurality of logical channel priorities to the terminal.
- the logical channel priority provided to the terminal may be regarded as a logical channel priority optimized for each TTI type currently operated by the base station. This can be done through LogicalChannelConfig IE during RRC signaling.
- the base station provides one terminal with one logical channel priority set in the order of logical channel A> B> C> D and additionally provides one logical channel priority set with C> D> A> B in order.
- logical channel priority set A> B> C> D is a priority that is easy to apply to TTIs of normal length
- logical channel priority set C> D> A> B is a priority that is easy to apply to TTI of short length. Can be.
- LogicalChannelConfig IE shows an example in which the base station provides a plurality of logical channel priority sets to the terminal.
- the UE When the UE requests UL resource from the base station (when transmitting scheduling request signal or buffer status report MAC CE transmission), the UE sets a logical channel priority set ID to be applied to the resource allocated from the base station through an explicit or implicit method. Notify the base station.
- the base station that has received the preferred logical channel priority set ID information from the UE in step (2) is a resource that can easily apply the logical channel priority indicated by the corresponding set ID (for example, a resource having a short TTI or a long TTI). Resource) and assign it to the terminal through UL grant.
- step (3) the UE, which has allocated resources through the UL grant, performs LCP and data generation after transmitting LCP according to the logical channel priority indicated by the logical channel priority set ID informed by the base station.
- FIG. 16 is a diagram illustrating a method for notifying a base station of a preferred LCP set by a terminal through a scheduling request according to the first embodiment of the present invention. 16 corresponds to an example of operation 6.
- FIG. 16 corresponds to an example of operation 6.
- step (2) it has been described that the terminal provides the base station with information about its preferred logical channel priority in the form of a set ID.
- this information is provided when the scheduling request signal is transmitted or when the buffer status report MAC CE is transmitted.
- the terminal may provide information on a preferred logical channel priority set ID to the base station through various methods. This corresponds to the example below.
- Buffer status report Includes preferred logical channel priority set ID in MAC CE.
- the base station can find out the preferred logical channel set ID of the terminal according to the time or frequency resource received.
- the base station provided priority information for each TTI type to the terminal.
- PBR Primary Bit Rate
- BSD Bucket Size Duration
- the UE applies different PBRs (PBRa and PBRb) and different BSDs (BSDa and BSDb) when transmitting data belonging to the same logical channel using TTI type a and when transmitting using TTI type b.
- PBRa and PBRb PBRs
- BSDa and BSDb Packe Size Duration
- TTI type a corresponds to step 1 of LCP procedure defined in LTE
- This operation will be described for the overall operation of including data in the UL resources allocated through the LCP when the terminal is allocated UL resources through the UL grant. Basically, it is based on the LCP operation of LTE described above. This operation focuses on how the LCP operation of LTE should be improved when there are a plurality of logical channels and a plurality of TTIs.
- LTE when the hard split, that is, logical channel ⁇ 1, 2, 3 ⁇ is set to use only TTI type A, and logical channel ⁇ 4, 5, 6 ⁇ is set to use only TTI type B, LTE is used.
- the LCP operation of LTE may be applied as it is. More specifically, it works as follows.
- Data belonging to LCH 1 can also be filled up to the maximum total PBR1 * BSDA.
- soft splits that is, LCH ⁇ 1, 2, 3 ⁇ and ⁇ 4, 5, 6 ⁇ may use both TTI types A and B, but LCH ⁇ 1, 2, 3 ⁇ for TTI type A.
- the priority is higher than ⁇ 4, 5, 6 ⁇ and the LCH ⁇ 4, 5, 6 ⁇ has a higher priority than ⁇ 1, 2 3 ⁇ for the TTI type B. In this case, two operations are possible.
- the UE when including the data to be transmitted in the UL resource corresponding to the TTI type A, the UE sets the priority between the LCH as follows and then applies the LCP operation of LTE as it is. More specifically, it works as follows.
- UE fills data belonging to LCH 1 by PBR1, A * TTIA.
- PBR1, A means PBR applied when data belonging to LCH 1 is included in data belonging to TTI type A.
- Data belonging to LCH 1 can also be filled up to the maximum total PBR1, A * BSDA in LCP step 1.
- the UE when including the data to be transmitted in the UL resource corresponding to the TTI type A, the UE includes all the data belonging to the LCH ⁇ 1, 2, 3 ⁇ of high priority for the TTI type A and then allocated the UL resource It is also possible to include data belonging to the LCH ⁇ 4, 5, 6 ⁇ only if the remaining. More specifically, it works as follows.
- UE fills data belonging to LCH 1 by PBR1, A * TTIA.
- PBR1, A means PBR applied when data belonging to LCH 1 is included in data belonging to TTI type A.
- Data belonging to LCH 1 can also be filled up to the maximum total PBR1, A * BSDA in LCP step 1.
- the remaining UL resources are filled with the allocated UL resources in order of 1> 2> 3, which is the priority of LCH ⁇ 1, 2, 3 ⁇ . .
- the base station examines how to efficiently apply a default priority and a special (eg, TTI-specific) priority to the terminal. This works as follows:
- the base station provides a plurality of logical channel priorities to the terminal.
- the logical channel priority provided by the base station to the terminal may be regarded as a logical channel priority optimized for each TTI type currently operated by the base station. This can be done through LogicalChannelConfig IE during RRC signaling.
- the base station can set the priority for the TTI type 1 in the order of logical channel B> C> A.
- the base station may set the priority in the order of logical channel C> A> B for the TTI type 2.
- the base station provides a default logical channel priority to the terminal.
- the default logical channel priority may be regarded as a logical channel priority that may be applied regardless of characteristics of UL resources allocated to the UE (for example, TTI length or numerology). This can be done through LogicalChannelConfig IE during RRC signaling.
- the base station can set the default priority in the order of logical channel A> B> C.
- LogicalChannelConfig IE provides a base station with a default logical channel priority that can be applied to the UE, for example, special logical channel priority and UL grant characteristics applicable to each TTI, regardless of the TTI length. It shows an example.
- the base station also includes a 1-bit indication that means whether to apply the default logical channel priority when transmitting the UL grant to the terminal.
- the UE operates as follows in consideration of the RRC configuration for the logical channel and whether to apply the default logical channel priority included in the UL grant.
- the terminal performs LCP according to the default logical channel priority set from the base station when transmitting data through the corresponding UL grant.
- the UE transmits data through the corresponding UL grant, the characteristics of the UL grant (for example, TTI) and the corresponding special ( Or TTI-specific) LCP is performed according to logical channel priority.
- 17 is a diagram illustrating a method for efficiently applying a default priority and a special priority to a terminal by a base station according to the first embodiment of the present invention. 17 corresponds to an example for operation 8.
- FIG. 17 is a diagram illustrating a method for efficiently applying a default priority and a special priority to a terminal by a base station according to the first embodiment of the present invention. 17 corresponds to an example for operation 8.
- FIG. 17 is a diagram illustrating a method for efficiently applying a default priority and a special priority to a terminal by a base station according to the first embodiment of the present invention. 17 corresponds to an example for operation 8. FIG.
- the TTI-specific logical channel for B> C> A, TTI type 2 as the TTI-specific logical channel priority for TTI type 1 We set C> A> B as priority.
- the default logical channel priority used is set to A> B> C.
- the terminal transmits a scheduling request signal to the base station to transmit the UL data, and the base station transmits a UL grant including UL resource allocation information to the terminal.
- the UE operates according to the indicator whether the default logical channel priority is applied to the UL grant as follows. In this specification, for convenience of description, if the default logical channel priority application indicator is 0, it does not apply the default logical channel priority. If the default logical channel priority application indicator is 1, it is described as applying the default logical channel priority. According to the specification, whether the default logical channel priority is applied may be set differently.
- the UE is allocated UL resource corresponding to TTI type 1 and the indicator indicating whether to apply the default logical channel priority is set to 0, when the UE transmits data through the corresponding UL grant, the logical channel corresponding to TTI type 1 LCP is performed according to the priority B> C> A.
- the UE transmits data through the corresponding UL grant to the logical channel corresponding to TTI type 2 LCP is performed according to the priority C> A> B.
- the UE is allocated UL resource corresponding to TTI type 1 and the indicator indicating whether to apply the default logical channel priority is set to 1, when the UE transmits data through the corresponding UL grant, the logical channel corresponding to TTI type 1 Ignore the priority B> C> A and perform LCP according to the default logical channel priority A> B> C.
- the UE is allocated UL resources corresponding to TTI type 2 and the indicator indicating whether to apply the default logical channel priority is set to 1, when the UE transmits data through the corresponding UL grant, the logical channel corresponding to TTI type 2 Ignore the priority C> A> B and perform LCP according to the default logical channel priority A> B> C.
- the base station allocates a TTI-specific priority to the terminal, and then finds a method of granting a degree of freedom in selecting a logical channel priority of the terminal in some cases. This works as follows:
- the base station provides a plurality of logical channel priorities to the terminal.
- the logical channel priority provided to the terminal by the base station may be regarded as a logical channel priority optimized for each TTI type currently operated by the base station. This can be done through LogicalChannelConfig IE during RRC signaling.
- the base station may set the priority for the TTI type 1 in the order of logical channel B> C> A.
- the base station may set the priority in the order of logical channel C> A> B for the TTI type 2.
- the base station also includes a 1-bit indication that grants the terminal the right to select the logical channel priority without the base station when transmitting the UL grant to the terminal.
- the UE operates as follows in consideration of RRC configuration for the logical channel, that is, whether or not the TTI-specific logical channel priority and the logical channel priority selection authority of the UE included in the UL grant.
- the terminal transmits data through the corresponding UL grant characteristics of the UL grant (for example, TTI) and corresponding LCP is performed according to the special (or TTI-specific) logical channel priority.
- FIG. 18 is a diagram illustrating a method for assigning a degree of freedom to logical terminal priority selection of a terminal after the base station allocates a TTI-specific priority to the terminal according to the first embodiment of the present invention. 18 corresponds to an example of operation 9.
- the base station configures the logical channels A, B, and C used by the UE, the TTI-specific logical channel for B> C> A, TTI type 2 as the TTI-specific logical channel priority for TTI type 1
- C> A> B the TTI-specific logical channel priority for TTI type 1
- the terminal transmits a scheduling request signal to the base station to transmit the UL data, and the base station transmits a UL grant including UL resource allocation information to the terminal.
- the terminal operates according to the presence or absence indicator of the logical channel priority setting authority of the terminal included in the UL grant.
- the presence or absence of the logical channel priority setting authority indicator is 0, there is no authority for setting the logical channel priority of the terminal, and if the presence or absence of the logical channel priority setting authority indicator is 1, the logical channel priority setting authority of the terminal is set.
- the presence / absence of the logical channel priority setting authority may be variously set.
- the UE is allocated UL resource corresponding to TTI type 1 and the presence / absence of the logical channel priority setting authority indicator of the UE is set to 0, when the UE transmits data through the corresponding UL grant, the logical channel corresponding to TTI type 1 LCP is performed according to priority B> C> A.
- the terminal If the terminal is assigned UL resource corresponding to TTI type 2 and the indicator indicating whether the authority to set logical channel priority is set to 0, the terminal transmits data through the corresponding UL grant and the logical channel corresponding to TTI type 2 LCP is performed according to the priority C> A> B.
- the terminal is allocated UL resource corresponding to TTI type 1 and the indicator indicating whether the logical channel priority setting authority of the terminal is set to 1, when the terminal transmits data through the corresponding UL grant, the logical channel corresponding to TTI type 1 LCP is performed according to the logical channel priority A> B> C which is set by the terminal itself, ignoring the priority B> C> A.
- TTI is one of physical attributes of UL resources allocated to the terminal by the base station through the UL grant. Therefore, the UL resource allocated to the terminal by the base station may be distinguished by a TTI of the corresponding resource, or may be identified by other attributes other than the TTI. It may also be distinguished by a combination of TTIs or other attributes.
- TTI is one of physical attributes of UL resources allocated to the terminal by the base station through the UL grant. Therefore, the UL resource allocated to the terminal by the base station may be distinguished by a TTI of the corresponding resource, or may be identified by other attributes other than the TTI. It may also be distinguished by a combination of TTIs or other attributes.
- various examples of identifying UL resources will be described.
- UL resources may be classified by TTI.
- the TTI length may be a subframe length, a slot length, a mini-slot length, and a transmission period of a control channel such as an LTE PDCCH.
- a control channel such as an LTE PDCCH.
- (2) UL resources can be distinguished by subcarrier spacing.
- (3) UL resources may be classified by cyclic prefix length (CP).
- CP cyclic prefix length
- the CP length is determined in consideration of aspects such as performance and overhead, and may be part of several values such as 4.7 us, 0.9 us, and 0.1 us.
- (4) UL resources may be classified by modulation / coding methods and coding rates to be applied to the corresponding resources.
- the base station When the base station allocates the UL resource to the terminal, the base station informs the modulation / coding method applied to the corresponding resource through the UL grant, and the terminal can identify the UL resource allocated to the base station based on this.
- UL resources may be distinguished by the number of OFDM symbols included in a certain unit (for example, 1 ms, subframe, slot, mini-slot, TTI, etc.).
- the number of OFDM symbols included in a predetermined unit may be 14, 70, 560, etc. in some cases.
- transmission time of allocated resource may be included.
- the transmission time of the allocated resource refers to the total number of symbols from the first OFDM symbol to the last OFDM symbol allocated to the terminal when the base station allocates a data channel, that is, a PUSCH or PDSCH, to the terminal.
- (6) UL resources can be divided by OFDM symbol length.
- UL resources can be distinguished by the bandwidth occupied by the resource.
- the UL resource is (i) the UL grant based resource that transmits and allocates the UL resource allocation information, that is, the UL grant through the control channel such as PDCCH to the UE at every resource allocation, or (ii) every resource allocation Rather than transmitting a UL grant to the terminal to allocate UL resources, the base station periodically allocates UL resources through RRC signaling in advance regardless of whether or not data is generated in the terminal. It may be classified according to whether the UL grant-free based resource using. Accordingly, the base station may be configured to transmit and receive data generated in a specific logical channel to the terminal through the UL grant-based resources, and may be configured to transmit and receive data generated in another logical channel through the UL grant-free based resources.
- the UL resource is (i) there is no possibility of collision caused when multiple resources simultaneously perform UL transmission on the same resource because the resource is allocated exclusively to one terminal or the resource is allocated to a plurality of terminals. Since they are commonly allocated, they may be classified according to whether there is a possibility of collision occurring when multiple terminals simultaneously transmit to the same resource. Accordingly, the base station can be set so that data generated in a specific logical channel to the terminal is dedicated to only one terminal to be transmitted and received through a UL resource without a possibility of collision, and data generated in another logical channel is allocated to a plurality of terminals to collide with each other. It can be set to be transmitted and received through a potential UL resource.
- the UL resource may be classified by the transmission period of the control channel to which the resource is allocated.
- the transmission period of the control channel to which the UL resource is allocated includes a PDCCH transmission period of the base station, a PDCCH monitoring periodicity of the terminal, and a CORESET (control resource set) observation period set by the base station to the terminal. This may be expressed in units such as a symbol or mini-slot or a slot or subframe.
- the UL resource can be classified by considering the transmission period of the control channel to which the resource is allocated and the time length of the allocated UL resource.
- a method in which a transmission period of a control channel to which an UL resource is allocated and a time length of the allocated UL resource are considered in a comprehensive manner and are divided into two.
- the transmission period of the control channel for allocating UL resources is 3 symbols and the time length of the allocated UL resources is 14 symbols, the corresponding UL resources are divided according to 14 symbols, which are time lengths of the allocated UL resources.
- the table below shows an example of a method of classifying UL resources proposed in the present invention.
- the Type A UL resource is a resource that is a reference value for UL resource classification, that is, a resource having a larger value of 1 symbol or 2 symbol among a transmission period of a control channel for allocating UL resources and a time length of the allocated UL resource .
- the type B UL resource refers to a resource having a value of 3 to 14 symbols as a criterion for the classification of UL resources.
- the Type C UL resource refers to a resource whose value, which is a criterion for UL resource classification, exceeds 14 symbols. This corresponds to one example.
- the present invention includes a method for providing an index of a logical channel that a base station can transmit to a user equipment according to a type of UL resource, that is, Type A, Type B, or Type C.
- a type of UL resource that is, Type A, Type B, or Type C.
- data generated in LCH 1, LCH 2, LCH 3 can be transmitted in Type A UL resources, can occur in LCH 2, LCH 3 in Type B UL resources, and can be transmitted in LCH 3 in Type C resources.
- the situation in which the generated data can be transmitted has been described. This classification of the UL resources and the correspondence relationship with the LCH can be prevented as much as possible when the data generated in a specific LCH is transmitted through the UL resources that are not suitable for transmitting them.
- all operations proposed in the present invention can be made by assigning IDs to the types of UL resources classified according to the above criteria and performing LCP operations by applying different logical channel priorities for each ID. Therefore, this document has focused on performing LCP operation by applying different logical channel priority to each UL resource classified based on TTI.
- subcarrier spacing, CP length, modulation / coding method, coding rate, OFDM symbol It is also possible to apply LCP operation by applying different logical channel priority to each UL resource classified by criteria such as number, OFDM symbol length, bandwidth of allocated resource block, and so on.
- an operation of assigning an ID to each UL resource type and applying different logical channel priority to each ID has been described. The present invention applies to the same logical channel priority as well as different logical channel priority for each ID. Also includes. Applying the same logical channel priority to each ID can be said to be included in a special example of applying a different logical channel priority to each ID.
- the LCP operation is performed by assigning an ID to each type of UL resources classified by two or more criteria among the above-described UL resource attributes and applying a different logical channel priority to each ID. All proposed actions can be made possible.
- the base station classifies UL resources based on TTI and subcarrier spacing criteria among various attributes of UL resources, and then assigns an ID to each UL resource type as follows.
- TTI type currently used by the base station 1 ms, 0.5 ms, 0.25 ms
- the base station classifies UL resources based on TTI and subcarrier spacing, and then assigns IDs to each type of UL resources. Based on this, the base station may set a correspondence relationship between UL resources corresponding to each ID and logical channels that can be transmitted through the base station. In addition, the base station may set the priority between logical channels that can be transmitted through the UL resources corresponding to each ID. An example of this is as follows.
- TTI type currently used by the base station 1 ms, 0.5 ms, 0.25 ms
- Subcarrier spacing currently used by base stations 15 kHz, 30 kHz, 60 kHz
- logical channels A, B, and C can be transmitted through UL resources having a TTI length of 1 ms and a subcarrier spacing of 15 kHz or 30 kHz or 60 kHz, where the priority between logical channels is A> The order is B> C.
- logical channels A, B, and C may be transmitted through UL resources having a TTI length of 0.5 ms and subcarrier spacing 15 kHz or 30 kHz.
- the priority between logical channels is A> B> C.
- logical channels B, C, and D may be transmitted through UL resources having a TTI length of 0.5 ms and a subcarrier spacing of 60 kHz.
- the priority between the logical channels is D> C> B.
- logical channels B, C, and D may be transmitted through UL resources having a TTI length of 0.25 ms and a subcarrier spacing of 15 kHz or 30 kHz or 60 kHz, where the priority between logical channels is D> C> B.
- Another example is as follows.
- TTI type currently used by the base station 1 ms, 0.5 ms, 0.25 ms
- Subcarrier spacing currently used by base stations 15 kHz, 30 kHz, 60 kHz
- logical channels A and B can be transmitted through UL resources having a TTI length of 1 ms and a subcarrier spacing of 15 kHz or 30 kHz or 60 kHz, where the priority between logical channels is A> B.
- logical channels A and B may be transmitted through UL resources having a TTI length of 0.5 ms and subcarrier spacing 15 kHz or 30 kHz.
- the priority between logical channels is A> B.
- logical channels C and D may be transmitted through UL resources having a TTI length of 0.5 ms and a subcarrier spacing 60 kHz.
- the priority between the logical channels is C> D.
- logical channels C and D may be transmitted through UL resources having a TTI length of 0.25 ms and subcarrier spacing 15 kHz or 30 kHz or 60 kHz.
- the priority between the logical channels is C> D.
- priority between logical channels is set in the order of A> B> C> D for all logical channels. Therefore, when logical channels A and B are transmittable, priority is set in the order of A> B based on the priority between all logical channels, and when logical channels C and D are transmitable, based on the priority between all logical channels. Priority is set in order of C> D.
- the UL resource is divided as in the above example with respect to any combination of ⁇ TTI, subcarrier spacing, CP length, modulation / coding method and coding rate, number of OFDM symbols, OFDM symbol length, bandwidth, etc. ⁇ . And setting a correspondence relationship between UL resources and a logical channel, and setting priority between logical channels.
- the contents proposed by the present invention that is, TTI, subcarrier spacing, CP length, modulation / coding method, and coding rate
- the information required for classification of UL resources according to the number of OFDM symbols, the length of an OFDM symbol, bandwidth, etc. is provided by the base station to the terminal through RRC signaling. More specifically, this information may be transmitted through LogicalChannelConfig IE (Information Element) that provides parameter and configuration information related to a specific logical channel. For convenience, name the type of UL resource that can transmit data generated in a specific logical channel as 'profile'.
- the type of UL resource through which the corresponding logical channel can be transmitted is subcarrier spacing, time length, cell or component carrier to which the UL resource belongs, or UL resource is allocated in a UL grant-free manner or UL grant- Suppose it is divided based on whether the resource is allocated based on the method.
- the length of time may be one of the TTI or the number of OFDM symbols included in a predetermined unit.
- LogicalChannelConfig for a specific logical channel.
- a specific logical channel is specified through which UL resources can be transmitted and received among UL resources classified by subcarrier spacing, time length, UL resource allocation method, cell to which UL resources belong, and the like.
- subcarrier spacing is specified as 'subcarrierSpacing'. In the present example, it may have one of 15 kHz, 30 kHz, 60 kHz, and 120 kHz, which is just one example and may have another value in the present invention.
- the length of time is specified as 'timeParameter'. In the present example, it may have one of 0.125 ms, 0.25 ms, 0.5 ms, and 1 ms, which is just one example and may have another value in the present invention.
- the meaning of the length of time may be as follows.
- the corresponding logical channel may be transmitted and received through the corresponding UL resource.
- a UL resource having a time corresponding to the number of OFDM symbols included in a predetermined unit (i.e., an allocated UL resource) (i.e., the number of OFDM symbols times the length of the OFDM symbol) is shorter than a 'timeParameter' is allocated
- the corresponding logical channel May be transmitted and received through the corresponding UL resource.
- the UL resource allocation scheme is specified as 'ulGrantMode'. In this example, it may have one of 'ulGrantBased', 'ulGrantFree', and 'both'.
- 'UlGrantBased' means that the corresponding logical channel can transmit and receive through UL resources allocated in a UL grant-based manner.
- 'ulGrantFree' means that a corresponding logical channel can be transmitted and received through UL resources allocated in a UL grant-free manner.
- the term 'both' means that the corresponding logical channel can transmit and receive through UL resources allocated in UL grant-based and UL grant-free methods.
- the cell to which the UL resource belongs is specified as 'allowedCellList'. This corresponds to the index list of the serving cell that can be used to transmit and receive the corresponding logical channel among the serving cells currently used.
- Example 1 represents a type of resource (a UL resource type is called a profile in this document) using a combination of subcarrier spacing, timeParameter, ulGrantMode, and allowedCellList.
- Example 2 expresses the type of resource through a combination of subcarrier spacing, timeParameter, and ulGrantMode and allowedCellList set separately.
- Example 3 expresses the type of resource through a combination of subcarrier spacing and timeParameter and ulGrantMode and allowedCellList set separately.
- the present invention allows other types of UL resource type representation methods in addition to the above examples.
- the LogicalChannelConfigIE includes an identifier of a UL resource capable of transmitting data generated in a specific logical channel, and an example of describing an attribute of a UL resource having the identifier in a separate IE. More specific ID form is as follows.
- LogicalChannelConfig IE includes only the ID of profile (composed of subcarrierSpacing, timeParameter, ulGrantMode, allowedCellList), and the parameter configuring profile ID is transmitted through separate IE -----
- applicableProfileIdList is a list of applicableProfileId where applicableProfileId is simply an integer and the details indicated by that integer are described in the ApplicableProfile IE.
- the ApplicableProfile IE includes subcarrierSpacing, timeParameter, ulGrantMode, and allowedCellList.
- LogicalChannelConfig IE includes the ID of profile (composed of subcarrierSpacing, timeParameter, ulGrantMode) and separate allowedCellList, and the parameter configuring profile ID is transmitted through separate IE -----
- applicableProfileIdList is a list of applicableProfileId where applicableProfileId is simply an integer and the details indicated by that integer are described in the ApplicableProfile IE.
- the ApplicableProfile IE includes subcarrierSpacing, timeParameter, and ulGrantMode.
- the allowedCellList information is included in LogicalChanneConfig separately from ApplicableProfile.
- LogicalChannelConfig IE includes the ID of profile (composed of subcarrierSpacing, timeParameter) and separate ulGrantMode and allowedCellList, and the parameter configuring profile ID is transmitted through separate IE -----
- applicableProfileIdList is a list of applicableProfileId where applicableProfileId is simply an integer and the details indicated by that integer are described in the ApplicableProfile IE.
- the ApplicableProfile IE includes subcarrierSpacing and timeParameter.
- ulGrantMode and allowedCellList information is included in LogicalChanneConfig separately from ApplicableProfile.
- the base station searches for a modified method of efficiently applying a default priority and a special (for example, TTI-specific) priority to the terminal. This works as follows:
- the base station provides a plurality of logical channel priorities to the terminal.
- the logical channel priority provided by the base station to the terminal may be regarded as a logical channel priority optimized for each TTI type currently operated by the base station. This can be done through LogicalChannelConfig IE during RRC signaling.
- the base station may set the priority for the TTI type 3 in the order of logical channel B> C> A.
- the base station provides a default logical channel priority to the terminal.
- the default logical channel priority may be regarded as a logical channel priority used in addition to the case where the base station assigns a special logical channel priority. This can be done through LogicalChannelConfig IE during RRC signaling.
- the base station may set a default priority in the order of logical channel A> B> C.
- LogicalChannelConfig IE shows an example in which the base station provides a terminal with a special (TTI-specific) logical channel priority and a default logical channel priority.
- the UE operates as follows in consideration of RRC configuration for a logical channel and characteristics of UL resources allocated through UL grant (for example, TTI).
- the UE performs LCP according to the special logical channel priority set from the base station when transmitting data through the corresponding UL grant.
- the UE performs LCP according to the default logical channel priority set from the base station when transmitting data through the corresponding UL grant.
- 19 is a view showing a modified method for the base station to efficiently apply the default priority and special priority to the terminal according to the first embodiment of the present invention. 19 corresponds to an example of operation 11.
- the base station determines B> C> A as the TTI-specific logical channel priority for the TTI type 3 when setting the logical channels A, B, and C used by the terminal. Also set the default logical channel priority to A> B> C.
- the terminal transmits a scheduling request signal to the base station to transmit the UL data, and the base station transmits a UL grant including UL resource allocation information to the terminal.
- the UE operates according to the characteristics of the UL resource allocated through the UL grant, for example, the TTI.
- the UE If the UE is allocated UL resources corresponding to TTI type 1, the UE performs LCP according to the default logical channel priority A> B> C when transmitting data through the corresponding UL grant.
- the UE performs LCP according to the default logical channel priority A> B> C when transmitting data through the corresponding UL grant.
- the UE performs LCP according to B> A> C which is a special logical channel priority corresponding to TTI type 3 when transmitting data through the corresponding UL grant.
- the present invention is a description of the operation method of the base station and the terminal to achieve the Energy Efficiency KPI [1] discussed in the 3GPP RAN 5G SI.
- the standard defines energy-efficient operation as the main goal [2] [3] to improve the power efficiency [bit / J] of the terminal and base station networks more than 1000 times within the next 10 years.
- a control for reducing the active operation time of the UE is being discussed.
- the technology proposed in the present invention is based on the RRC connection control and maintenance method based on three RRC states, Connected_Active (RRC CONNECTED), Connected_Inactive (RRC INACTIVE), and Idle (RRC IDLE), which are to be applied in a mobile communication system (5G or NR).
- RRC state described below refers to RRC state Connected_Active means RRC CONNECTED.
- Connected_Inactive means RRC INACTIVE state and Idle means RRC IDLE state.
- the RRC state Inactive and / or Active
- the function to improve the spectral efficiency and channel access method for the case of efficient transmission in the RRC Inactive state when transmitting traffic of the terminal How to apply.
- the design of the RRC state for the wireless communication terminal to transmit and receive data was overly conservative due to the design philosophy of the previous generation focused on voice calls. For example, even when there is no traffic arrival for a certain period of time after receiving traffic, power consumption is severely maintained due to the RRC connected status (Connected DRX). In addition, in case of a smart phone user, keep alive messages, etc., which are not related to user QoS, are frequently generated as data. When the RRC connection is designed based on a voice call service, terminal power consumption may be worsened.
- the present patent focuses on an RRC state (inactive and / or active) determination method for transmitting data and a spectral efficiency improvement and channel access method improvement for efficiently transmitting the traffic of the UE in the RRC inactive state.
- 20 is a diagram schematically showing a structure of a 5G (or NR) communication system according to a second embodiment of the present invention.
- a 5G (or NR) communication system may include a gNB, a mobility management entity (MME), a serving gateway (S-GW), and the like.
- MME mobility management entity
- S-GW serving gateway
- the gNB is, for example, a 5G (or NR) communication system base station connected to a UE through a wireless channel and may perform a more complicated role than a conventional (UMTS) NodeB and an LTE eNodeB base station.
- 5G or NR
- the gNB is a mobile station in the mobile communication system when all user traffic, including real-time services such as voice over IP (VoIP) service over the Internet protocol is serviced through a shared channel, the buffer state of the UE, the available transmit power state, Status information such as channel status can be collected and scheduled.
- VoIP voice over IP
- One gNB typically controls multiple cells.
- the S-GW is a device for providing a data bearer, and generates or removes a data bearer under the control of the MME.
- the MME is a device that is in charge of various control functions as well as mobility management function for the terminal is connected to a plurality of base stations.
- FIG. 21 is a diagram illustrating an example of operations of three RRC states Connected_Active (RRC_CONNECTED), Connected_Inactive, (RRC_INACTIVE), and Idle (RRC_IDLE) applied to a 5G or NR communication system according to a second embodiment of the present invention.
- the 3GPP NR adds an inactive state to the existing two RRC states to operate three RRC states, and the UE determines to operate with one RRC state at a time.
- FIG. 22 is a diagram illustrating an exemplary state of a terminal, a base station, and an MME in an inactive state in a 5G or NR communication system according to a second embodiment of the present invention.
- RRC_CONNECTED RRC Connected_Active
- FIG. 23 is a diagram illustrating an example of a state transition between an RRC state (idle, Connected_Active (RRC_CONNECTED), and Connected_Inactive (RRC_INACTIVE)) according to a second embodiment of the present invention.
- the transition of three RRC states is transitional compared to the transition of two RRC states to Idle e Connected_Active (RRC_CONNECTED) in LTE. 1-1)
- the RRC state transitions as follows.
- Movement between the three states proceeds as follows, and Idle (RRC_IDLE) ⁇ Connected_Inactive (RRC_INACTIVE) ⁇ Connected_Active (RRC_CONNECTED) can be performed according to the following event occurrences.
- RRC state As an example of three transition operations, a state transition between RRC_Connected and RRC_Inactive, a state transition between RRC_Connected and RRC_Idle, and a state transition between RRC_Inactive and RRC_Idle are all supported.
- the event-based operation for the RRC state transition is as follows.
- the UE Upon initial connection, the UE transitions from RRC_Idle state to RRC_Connected state.
- the UE transitions from the RRC_Inactive state to the RRC_Connected state if the state of the terminal is RRC_Inactive, or transitions from the RRC_Idle state to the RRC_Connected state if the state of the terminal is RRC_Idle,
- the UE transitions from the RRC_Connected state to the RRC_Idle if the state of the terminal is RRC_Connected, or transitions from the RRC_Inactive state to the RRC_Idle if the RRC_Connected state.
- option 2 Idle ⁇ Connected_Active, Connected_Inactive ⁇ Connected_Active, and there is no Idle ⁇ Connected_Inactive transition, the following operation embodiments are possible depending on the event occurrence.
- the UE Upon initial connection, the UE transitions from RRC_Idle state to RRC_Connected state.
- the UE transitions from the RRC_Inactive state to the RRC_Connected state if the state of the terminal is RRC_Inactive, or transitions from the RRC_Idle state to the RRC_Connected state if the state of the terminal is RRC_Idle,
- the terminal When the terminal is powered off or is not included in the base station cell coverage of the corresponding service, when the state of the terminal is RRC_Connected, the terminal transitions from the RRC_Connected state to the RRC_Idle; It includes an operation to do.
- RRC state Three transition operation examples are supported only state transitions between RRC_Connected and RRC_Inactive, and state transitions between RRC_Connected and RRC_Idle and state transitions between RRC_Inactive and RRC_Idle are limited because they do not transition to RRC_Idle with the exception of certain exceptions. It is a figure which illustrates a case.
- the UE Upon initial connection, the UE transitions from the RRC_Inactive state to the RRC_Connected state. At this time, the stored UE context is used as a common setting commonly used in the network supporting the service, not the UE specific information.
- the terminal When the terminal is powered off or is not included in the base station cell coverage of the service, when the state of the terminal is RRC_Connected, the terminal transitions from the RRC_Connected state to the RRC_Inactive state, or the RRC_Inactive state (stores UE specific UE context information) In RRC_Inactive (saves the network common UE context).
- a mode in which a UE transmits and receives data may be three examples.
- Mode 3 a method of starting data transmission in the INACTIVE state and additionally transmitting data after the transition to the ACTIVE state (FIGS. 27, 29, 31, and 32).
- the following example includes configuring / transmitting an RRC state type and an event trigger method to be applied to each terminal determined by the base station to each terminal.
- Terminal link initial setting when link setup or transition to RRC_Connected (applied RRC state configuration and transition event rule of the corresponding terminal) method of configuring / setting by RRC configuration message
- 3) includes a method of configuring / setting an RRC release message (application RRC state configuration and transition event rule of a corresponding UE) at the time of RRC connection release.
- the operation of transmitting data directly in the INACTIVE state does not require delay and control signaling that the UE transitions from the Inactive state to the RRC active state, and has the advantage of eliminating the waiting time in the Active state, but due to grant-free transmission.
- the data transmission in the Idle state has the disadvantage of reducing channel access efficiency due to grant-free transmission and reducing transmission spectral efficiency due to subtitles of information such as CQI and BSR, the newly defined Inactive terminal operation
- a spectral efficiency improvement and a channel access improvement method for efficiently transmitting the traffic of the UE in the RRC inactive state are further proposed in FIGS. 31 to 34.
- FIG. 24 to 26 and 30 illustrate an RACH signaling that is a control message in a terminal RACH procedure in an inactive state in an data transmission operation in an INACTIVE state corresponding to “mode 1) in an NR system according to a second embodiment of the present invention. It shows how to piggyback and transfer data.
- FIG. 24 is a diagram schematically illustrating a data transmission operation in an INACTIVE state in an NR system according to a second embodiment of the present invention.
- FIG. 24 illustrates an example of adding data to a Message3 RRC connection (resume) request in a RACH procedure and transmitting the data.
- FIG. 25 is a diagram schematically illustrating a data transmission operation in an INACTIVE state in an NR system according to a second embodiment of the present invention.
- data is added to a Message3 RRC connection (resume) request and transmitted by adding BSR information.
- BSR information An example is shown.
- the information transmitted together with the MSG3 is as follows.
- UE identity (or UE context identity)
- UE's security information e.g. authentication token
- the MSG3 illustrates a method of transmitting an RRC connection request including the following information.
- an RRC connection (resume) request transmitted in RACH Message 3 is transmitted to an SRB and uplink data is transmitted to a DRB, but both of them may be transmitted in one transmission block through MAC multiplexing in one transport block.
- the terminal buffer status information (BSR) may be transmitted to the MSG3 to transmit information on a subsequent transmission need to the base station.
- FIG. 26 illustrates an example of adding data to an RRC connection (resume) complete transmitted to Message5 in an RACH procedure and transmitting the same.
- the terminal buffer status information (BSR) is transmitted to MSG3 to transmit information on future transmission needs to the base station, and the RRC resume response including ACK information for MSG3 is determined by the base station. It shows a method of transmitting the remaining data in the active state after the transition to the active state by transmitting to the terminal.
- residual data after data transmission in MSG3 may be additionally transmitted in an inactive state through MSG5.
- the RRC resume response including the ACK information about the MSG5 is shown as in FIG. 32.
- the base station transmits the remaining data in the active state after the base station transmits to the mobile station and transitions to the active state.
- the method of adding data to RACH Message3 and transmitting the data has the effect of reducing network control burden and delay due to the low number of control signaling, compared to the method of adding data to RACH Message5 in FIG. 26.
- the transmission SE is reduced because information available for preamble and RA response is limited.
- the UE may indicate whether to transmit UL data in the corresponding RACH Message 3 while transmitting the RACH preamble which is the RACH Message1.
- RACH Message1 includes an operation of indicating whether to transmit UL data by separating a pool of PRACH resources.
- the base station is configured in the terminal by separating the RACH Message1 preamble according to whether to transmit the UL data, and the terminal operating based on this method,
- a base station configured by the base station by separating the RACH Message1 transmission frequency (for example, based on the ARFCN) according to whether to transmit UL data, and configuring the terminal and operating the terminal based on the same;
- the base station configures the terminal by separating a carrier domain of a PRACH frequency (for example, a sub-carrier or a bandwidth part (BWP)) from a reference frequency band according to whether to transmit UL data or not. How the terminal operates based on,
- a PRACH frequency for example, a sub-carrier or a bandwidth part (BWP)
- the base station transmits reference information for partitioning the PRACH resource to the terminal according to whether to transmit the corresponding UL data.
- Each of the target base stations includes system information (SI) information transmitted by each of them (broadcasting method) and a combination thereof.
- SI system information
- the base station transmits reference information for partitioning PRACH resources to the terminal according to whether to transmit the corresponding UL data.
- the UL carrier frequency, UL bandwidth, and IE RadioResourceConfigCommon related to uplink information are broadcasted through SIB2.
- the IE RadioResourceConfigCommon includes information for configuring a PUSCH, a PUCCH, and a Sounding RS (SRS) transmitted in an uplink including an RACH configuration.
- the operation includes dividing the PRACH parameter into two sets.
- the PRACH preamble can be set as shown in the following table.
- PRACH pool partitioning including timing, frequency band, carrier domain, etc. for PRACH transmission described above also includes an operation of dividing the PRACH configuration parameters into separate sets (two parameter groups).
- SUL technology is a technology that additionally supports UL in the lower frequency band to expand and support UL coverage of the higher frequency band of NR.
- SUL Supplemental Uplink Frequency
- downlink since the spatial power capacity of the base station is high, beam gain can be obtained with a larger number of antennas, and downlink coverage can be extended with higher transmission power.
- uplink it is difficult to secure a wide coverage in a higher frequency band due to the limitation of spatial and physical power of the terminal, and performs an operation of supplementing the lower frequency of the SUL.
- a criterion for determining whether the corresponding RACH uses the SUL band (lower frequency band) or performs the RACH in NR UL (uplink uplink) is needed.
- the information is configured when the base station releases a previous RRC connection (configuration of reference information for partitioning the corresponding PRACH resources in the RRC connection suspend or RRC connection release message)
- Each of the target base stations includes system information (SI) information transmitted by each of them (broadcasting method) and a combination thereof.
- SI system information
- RMSI Remaining System Information
- the uplink configuration information of the RACH for the terminal to perform the initial access includes the operation of broadcasting to the base station (cell) by mounting the relevant parameter in the RMSI.
- the base station when the UE performs the RACH, the base station sets a threshold that serves as a criterion for determining whether to use the SUL band (lower frequency band) or perform the RACH in NR UL (uplink uplink). broadcast within the base station cell with information (e.g., RMSI).
- a threshold that serves as a criterion for determining whether to use the SUL band (lower frequency band) or perform the RACH in NR UL (uplink uplink).
- information e.g., RMSI
- the threshold includes a threshold of the received signal level
- the threshold may be operated based on the degree of congestion of the corresponding uplink path (SUL or NR UL). For example, it includes a method of operating based on the number of timing backoff occurrences or the timing backoff occurrence frequency due to contention occurrence in the RACH procedure.
- the above contention generation criteria can be applied in the following situations.
- transmitting the RACH preamble which is RACH message 1
- Retransmit the RACH preamble which is RACH message 1.
- a criterion for selecting an uplink transmission path as SUL transmission or NR UL based on the above-described contention generation degree can be applied in the following situations.
- an uplink transmission path for example, SUL
- RACH message1 when a channel collision occurs due to congestion, an uplink transmission path (for example, SUL) that is determined to be transmitted is transmitted to RACH message1 when a RAR (RACH response) is successfully received from a base station.
- a threshold that is a corresponding criterion, if each and combinations of the received RSRP, RSRQ, RSSI, etc. of the UE are greater than or equal to the threshold, the RACH is performed with NR UL.
- If it is less than the threshold value includes performing the RACH in the SUL frequency band.
- the NR UL and the SUL include an operation of dividing two separate PRACH parameters into two sets to support this because the distance between the frequency band and the transmitting / receiving terminal is different.
- the PRACH parameter in the case of setting the PRACH parameter according to whether to use the SUL band (lower frequency band) or perform the RACH in NR UL (uplink uplink) when performing the RACH, it can be set as shown in the following table. have.
- the method includes setting a common RACH-ConfigCommon parameter set and extending the parameter to a larger value that can compensate for the difference in pathloss between the SUL frequency band and the NR frequency band.
- the common powerRampingParameters parameter set is set for SUL transmission and NR UL transmission, and the maximum power ramping up value is extended by setting the parameter to a larger value to compensate for the difference in pathloss between the SUL frequency band and the NR frequency band. It includes a method.
- the UE When the UE transmits the RACH preamble, which is the RACH message 1, the UE transmits the initial transmission power until the RAR (RACH response) is successfully received from the base station, and transmits the transmission power based on the powerRampingParameters again after a predetermined time (pre-configured RAR waiting time). It increments and retransmits the RACH preamble, which is RACH message 1.
- the RRC Connection Request which is the RACH MSG3, is transmitted.
- the uplink transmission path is determined according to the threshold set by the RMSI during the initial RACH preamble transmission, it is fixed and the corresponding uplink path (SUL or NR UL) until the RAR (RACH response) is successfully received from the base station. How to send;
- the RACH preamble retransmission attempt is continuously transmitted to the SUL until the base station successfully receives a RAR response.
- the RACH preamble retransmission attempt that is transmitted by power ramping up until the RAR (RACH response) is successfully received from the base station continues to the UL NR. How to transfer
- the uplink path determined at the first RACH preamble transmission is NR UL (power ramping up)
- the RMSI is configured until the RAR (RACH response) is successfully received from the base station.
- the RMSI sets until the RAR (RACH response) is successfully received from the base station.
- SUL power ramping up
- RAR RACH response
- RACH message 3 and RACH message 5 (RRC connection complete) using the same uplink transmission path (SUL or NR UL) of the RACH preamble transmitted in RACH message1 when RAR (RACH response) is successfully received from the base station. ) Transmission method;
- the RACH message 3 is transmitted using the same uplink transmission path (SUL or NR UL) of the RACH preamble transmitted in the RACH message1 when the RAR response is successfully received from the base station, and then the RACH message 4 ( Transmitting a RACH message 5 (RRC connection complete) on an uplink transmission path (SUL or NR UL) configured in an RRC configuration based on an RRC connection response;
- the pathloss of the SUL must be corrected based on the reference signaling transmitted in the NR downlink. It includes a method for the base station to broadcast the difference in pathloss in the SUL frequency band and NR frequency band for this to the terminal in the RMSI.
- Reference signaling as a reference includes a synch signal (SS), a channel state information reference signal (CSI-RS), a demodulation RS (DMRS), and a tracking RS (TRS).
- SS synch signal
- CSI-RS channel state information reference signal
- DMRS demodulation RS
- TRS tracking RS
- a method of broadcasting a different value according to a reference signaling type which is a reference in a method of broadcasting a pathloss difference between a SUL frequency band and an NR frequency band to a mobile station by an RMSI, and
- the terminal includes controlling the transmission power of the RACH preamble based on the pathloss difference value (in the SUL frequency band and the NR frequency band) of the received number.
- PHR Power Headroom Report
- 43 to 45 further propose a method of improving spectral efficiency and improving channel access when transmitting traffic of a terminal in an inactive state.
- both RACH Message3 of FIG. 24 and RACH Message5 of FIG. 26 transmit information on ACK and RRC state transition of the corresponding data as an RRC response. At this time, if the RRC response is suspend, it maintains the inactive state, and if it is resume, it transitions to the active state and then transfers data.
- FIG. 28 schematically illustrates a data transmission operation after a state transition from INACTIVE to ACTIVE corresponding to "mode 2)" in the NR system according to the second embodiment of the present invention.
- the operation of starting data transmission after the transition to the active state has a burden of delay and control signaling that the UE transitions from the Inactive state to the RRC active (RRC CONNECTED) state, and is due to the waiting time in the Active (RRC CONNECTED) state. Terminal power consumption occurs.
- RRC CONNECTED state increases the channel access efficiency due to the granted transmission in the active (RRC CONNECTED) state and transmits spectral efficiency by utilizing information such as CQI and BSR. Can improve.
- the data transmission operation after the state transition from INACTIVE (RRC INACTIVE) corresponding to “mode 2) to ACTIVE (RRC CONNECTED) is similar to the existing LTE operation in that data is transmitted after the transition to the active state, but is transmitted in the RACH.
- RRC connection resume
- the control delay and the number of signaling between the core (gNB-MME) networks are reduced.
- the terminal can quickly transition to the low power mode Inactive state through 6.
- 27, 29, 31, and 32 are schematic diagrams illustrating a data transmission operation after transition to an ACTIVE state by starting data transmission in an INACTIVE state corresponding to “mode 3) in an NR system according to an embodiment of the present invention. do.
- both RACH Message3 of FIG. 29 and RACH Message5 of FIG. 31 transmit information on the ACK and the RRC state transition of the corresponding data as an RRC response after data transmission.
- the RRC response is suspend, it maintains the inactive state, and if it is resume, it transitions to the active state and then transfers data.
- 5CN node selection information e.g. selected PLMN identity or NSSAI
- the UE In order to transmit the information of the embodiment to the MSG5, when the UE successfully retrieves the UE context stored from the anchor base station and generates new security key information (K_gNB_target) from the target base station, the information is transmitted to the SRB1. And applying the new security key to the terminal securely and securely transmits the corresponding information to the base station.
- K_gNB_target new security key information
- Some or all of the information may also include an RRC connection request transmitted to MSG3, or a method mounted on an RRC connection resume request or an RRC resume request and transmitted to SRB0 or DRB.
- the following information may be mounted and transmitted in the RRC connection request messag transmitted to the MSG3.
- Dual Connectivity (DC) (or Carrier Aggregation (CA)
- DC Dual Connectivity
- CA Carrier Aggregation
- the first method is to suspend by storing the radio bearer configuration of the corresponding DC or CA in the UE context stored by the terminal and the anchor base station in the inactive state, and then resume when the RRC_Connected.
- the terminal and the anchor base station in the inactive state are stored and suspend after storing them in the UE context. How to resume when RRC_Connected.
- the terminal and anchor base station in the inactive state after deleting the configuration of the second node (SN) (SCG bearer configuration) after leaving only the configuration (MCG bearer) of the master node (MN) of the radio bearer configuration applied to the DC
- SCG bearer configuration the configuration of the second node
- MCG bearer the configuration of the master node
- RRC_Connected This is an example of how to save and suspend some of the UE in the saving UE context and resume when it is later RRC_Connected.
- It includes a method of changing some of the configuration of the second node (SN) (SCG bearer configuration) to MCG bearer and release some radio bearer.
- the terminal and the anchor base station in the inactive state are stored and suspend.
- the terminal and the anchor base station in the inactive state are stored and suspend.
- It includes a method of changing some of the radio bearer set in the Scells (Radio bearer setting) to the PCell and releasing some radio bearers.
- the radio bearer is changed to MN (MCG bearer or PCell bearer) and stored in the UE context, and then able to transmit to the radio bearer immediately through the suspend and resume procedures;
- MN MCG bearer or PCell bearer
- the core network manages and controls the radio bearer in the process of reducing the capacity of the terminal and the anchor base station storing the corresponding radio bearer information in the UE context or updating the RAN-based paging area when the terminal moves by releasing the radio bearer.
- the process of choosing a method of reducing the burden includes:
- the core network determines the base station based on the above-described PDU session information, bearer or flow support QoS, and request delay. This includes determining whether to release the radio bearer or performing a bearer type change, and applying the same to transition the RRC state to Inactive.
- the core network sets a measure / criteria for the determination (the above-described PDU session information, support QoS and request delay of a bearer or a corresponding flow), and rules in the base station;
- the UE is DC (DC structure on 5G applicable NSA or SA including LTE-NR DC and NR-NR DC)
- the QoS required for flow or service supported by the radio bearer configured in the corresponding SN (SCG) also includes the operation of feeding back information or combinations of information including latency requirements or service categories to the base station.
- the UE feeds back each flow or combination of information including a QoS or latency requirement or service category of a flow or service supported by a radio bearer set in a corresponding Scell to a base station.
- FIG. 29 illustrates a case in which data is additionally transmitted by transitioning to the RRC active state after data transmission in the inactive state based on the RACH Message3
- FIG. 31 is additionally data in the RRC active state after data transmission in the inactive state based on the RACH Message5.
- the base station can quickly transition the terminal to the inactive state, which is a low power mode, through the 6.
- RRC connection suspend message FIG. 30 shows that the message 5 RRC connection ( resume) Adds data to complete and sends it. When data transfer is completed, it sends (ACK and suspend) to the RRC response to maintain the Inactive state.
- FIG. 31 is a diagram schematically illustrating a data transmission operation after starting data transmission in an INACTIVE state and transitioning to the ACTIVE state.
- FIG. 32 shows the active state by transmitting data through MSG3 in the INACTIVE state, adding data to Message5 RRC connection (resume) complete, and transmitting (ACK and Resume) to the RRC connection response when additional data transmission is required.
- ACK and Resume a diagram illustrating the operation of transition back to Inactive through the RRC connection suspend message transmission.
- 33 to 35 illustrate examples of signaling operations between a terminal and a base station for determining and controlling an RRC state (Inactive and / or Active) for transmitting data in an NR system according to a second embodiment of the present invention.
- RRC state Inactive and / or Active
- FIG. 33 illustrates a method of determining an RRC state related operation mode to transmit data based on a base station configuration and determining an event triggered by a terminal and feedbacked by the base station.
- the UE may receive configuration information regarding an RRC state (Inactive and / or Active) determination method for transmitting data from the base station.
- RRC state Inactive and / or Active
- the base station determines the type of RRC state and switching method to be applied to each terminal. Configuration information related to the can be transmitted to the terminal.
- Step 2) The terminal may trigger an event based on configuration information related to the RRC state type and the switching method determination transmitted from the base station and transmit the feedback to the base station. Then, the base station performs any one of data transmission mode (1) data transmission in the INACTIVE state, (2) transition to the ACTIVE state, (3) start data transmission in the INACTIVE and active data transmission operation based on the feedback. You can choose. Among the three modes, the mode (1) and the mode (3) have the same operation before the RRC response, so the base station can distinguish and inform only the modes (1), (3) and the mode (2). Thereafter, mode (1) and mode (3) may be classified based on RRC response 1) ACK & suspend and 2) Resume.
- Step 3 After determining (or switching) the data transmission mode, the base station may transmit the same to the terminal through system information or dedicated signaling (paging, etc.).
- Step 4 When data transmission is required in the active state after data transmission in the initial inactive state, the base station transmits information within the RRC response 1) ACK & suspend, 2) Resume and based on this, the terminal subsequently inactivates the data transmission RRC state. You can keep it as is, or perform an active transition.
- FIG. 34 illustrates a method in which an event is triggered by the terminal based on the base station configuration and the data transmission mode is switched and then transmitted to the base station (e.g., embedded in a RACH UL message) in the data transmission process.
- the base station e.g., embedded in a RACH UL message
- the base station selects the data transmission mode based on the feedback of the terminal.
- the terminal selects the data transmission mode directly based on the base station configuration and informs the base station of the selection result.
- the UE may receive a configuration regarding an RRC state (Inactive and / or Active) determination method for transmitting data from the base station.
- RRC state Inactive and / or Active
- the base station determines the type of RRC state and switching method to be applied to each terminal. Configuration information related to the can be transmitted to the terminal.
- Step 2) The UE may determine the data transmission mode based on the event trigger based on the configuration information related to the RRC state type and the switching method determined from the base station.
- the terminal may select a data transmission mode from among three transmission modes: (1) data transmission in the INACTIVE state, (2) determining the transition to the ACTIVE state, and (3) starting data transmission in the INACTIVE and then continuously transmitting the data to the Active.
- mode (1) and mode (3) have the same operation as before the RRC response, but the terminal may inform the base station by dividing only the modes (1), (3) and mode (2). After that, mode (1) and mode (3) can be distinguished based on RRC response 1) ACK & suspend and 2) Resume.
- Step 3 In order to transmit the selected data transmission mode to the base station, the terminal may transmit the data transmission mode update to the base station (for example, embedded in the RACH UL message) in the data transmission process.
- the base station for example, embedded in the RACH UL message
- the mode (1) and the mode (3) have the same operation before the RRC response, but the UE distinguishes the entire mode (1) (2) (3) mode and the base station informs the appropriate RRC response 1 ) ACK & suspend, 2) Resume can be sent.
- Step 4 When data transmission is required in the active state after data transmission in the initial inactive state, the base station transmits information within the RRC response 1) ACK & suspend, 2) Resume and based on this, the terminal subsequently inactivates the data transmission RRC state. Maintains or transitions to active.
- FIG. 35 illustrates a method of determining an RRC state related operation mode in which a base station transmits data without event trigger and feedback of a terminal based on a base station configuration. Compared to FIG. 33, the method illustrated in FIG. 35 is similar in that the base station determines a data transmission mode, but there is a difference in that there is no event trigger and feedback of the terminal.
- the UE may receive configuration information regarding an RRC state (Inactive and / or Active) determination method for transmitting data from the base station.
- RRC state Inactive and / or Active
- the base station determines the type of RRC state and switching method to be applied to each terminal. Configuration information related to the can be transmitted to the terminal.
- the base station may set a buffer size and an RSRP threshold for determining a data transmission mode to the terminal.
- the configuration may be configured by the base station to the terminal at the start of the RRC inactive state setup. Examples include determining an RRC state (Inactive and / or Active) for transmitting data and determining an MSG3 or MSG5 transmission mode. Defining an event and setting a parameter therefor, the parameter includes setting a buffer size and an RSRP threshold of the terminal. In addition, the base station may update the configuration through the System Information.
- RRC state Inactive and / or Active
- MSG3 or MSG5 transmission mode Defining an event and setting a parameter therefor, the parameter includes setting a buffer size and an RSRP threshold of the terminal.
- the base station may update the configuration through the System Information.
- Step 2) The base station transmits data in the data transmission mode without feedback of the terminal (1) data transmission in the INACTIVE state, (2) transition to the ACTIVE state, (3) start data transmission in the INACTIVE and active data transmission mode among the continuous data transmission operations Can be selected.
- the mode (1) and the mode (3) have the same operation before the RRC response, so the base station can distinguish the modes (1), (3) and the mode (2) and inform the user equipment.
- mode (1) and mode (3) can be distinguished based on RRC response 1) ACK & suspend and 2) Resume.
- Step 3 After the base station selects (or switches) the data transmission mode, the base station may transmit the same to the terminal through system information or dedicated signaling (paging, etc.).
- Step 4 When data transmission is required in the active state after data transmission in the initial inactive state, the base station transmits information within the RRC response 1) ACK & suspend, 2) Resume and based on this, the terminal subsequently inactivates the data transmission RRC state. You can keep it as is, or perform an active transition.
- Information for determining an RRC state related operation mode for transmitting data may be determined based on characteristics of the transmission data traffic and characteristics of the UE below.
- the base station determines the RRC state for data transmission and transmits an RRC response (RRC suspend or RRC resume)
- the RRC state for data transmission in the terminal is determined and the request is divided into an inactive_data transmission or an active_data transmission with resume_cause within an RRC connection request (resume request) message.
- a traffic characteristic-based decision criterion for determining an RRC state related operation mode to transmit data, based on a part or a combination of the following elements
- Data packet size is advantageous in terms of terminal power efficiency or data transmission / reception delay in case of transmitting small data in inactive state.
- it can be defined as 2/3 SDU size, and the detailed value can be configured and operated according to the system.
- Data Packet Interval When frequent data traffic arrives, it may be advantageous to transition to the active state and transmit the data packet. An operation based on the number of traffic unit arrivals per unit time, based on the RRC state-related operation mode for transmitting data.
- the terminal feeds back previous information to the base station.
- the base station determines the RRC state for data transmission based on
- terminal information (traffic pattern, mobility information) in the UE context at the time of transmission of the previous data stored in the terminal and updating and forwarding the Anchor base station to the camped base station through X2.
- Data packet sum in UE / gNB buffer A method of determining an RRC state related operation mode to transmit data based on the traffic size to the buffer of the UE and / or BS, where the buffer size is the IP side of the application stage, PDCP, RLC, and MAC. It can operate including buffer of PHY stage.
- the data packet delay requirement is determined based on the characteristics of each traffic service such as eNBB, ULRRC, and mMTC and QoS (CQI for each bearer) defined in NR, and RRC state related operation to transmit data based on the characteristics including the above factors Select mode
- Network loading (Contention probability) The operation of determining the RRC state to transmit data based on the contention probability generated when the terminal or base station determines the channel access.
- the method includes transitioning to the RRC connected active state to transmit data.
- the contention probability that occurs during channel access can utilize the information that base station finds through Contention resolution.
- the UE determines the neighbor interference level based on the RSRQ (for example) and determines the event based on the threshold pre-configured by the base station.
- Terminal characteristics for determining an RRC state related operation mode to transmit data are selected based on some or a combination of the following elements;
- Short-Long Coverage between terminals and base stations is determined based on a pathloss between terminals and base stations, for example, based on a receiving RSRP / RSRQ.
- the information is a standard for determining the payload length that can be transmitted in the inactive state.
- the method of transmitting data in Inactive is more advantageous in short distance (higher received signal quality).
- the method of transmitting data in the active state is more advantageous in the near field (higher received signal quality), and thus, an operation mode of determining an RRC state related operation mode to transmit data is used.
- Terminal usage status Latency Tolerance, if the traffic is not directly entered by the user or direct traffic affecting QoS, low latency factor is not important, so the data in Active state to improve network-wide (SE) efficiency
- SE network-wide
- the user selects a mode for transmitting data in an active (RRC_CONNECTED) state for low power operation (removing unnecessary C-DRX intervals) of the terminal.
- RRC_CONNECTED active
- Cell ID C-RNTI Cell ID C-RNTI
- Paging S1, X2 terminal mobility support overhead
- the terminal feeds back the previous information to the base station.
- the base station determines the RRC state for data transmission based on
- terminal information (traffic pattern, mobility information) in the UE context at the time of transmission of the previous data stored in the terminal and updating and forwarding the Anchor base station to the camped base station through X2.
- UE battery status a method of determining an RRC state to transmit data by feeding back a power consumption state of a UE to a base station
- the feedback may be performed by data transmission in an inactive state without transition or transition to RRC connected active of the RRC state.
- a terminal for setting an RRC state related operation mode for transmitting data based on a property including the element Determining by adding base station information based on event trigger and feedback or by using only base station internal information or internally determined by the terminal according to the rules set by the base station and RRC state related operation to transmit it to the terminal / base station and transmit data thereafter. Transmit by changing the mode.
- the reflection of elements including UE / Data traffic characteristics for determining the RRC state related operation mode for transmitting the data may be reflected as a control message transmission in the RRC state transition procedure, or some DRBs may be dedicated to inactive state data transmission.
- the other DRB can be set as a dedicated DRB for active data transmission, and when data traffic occurs, the corresponding DRB can be mapped and transmitted to different DRBs.
- FIG. 37 is a diagram illustrating an exemplary signaling operation between a terminal and a base station for determining and controlling an RRC state (Inactive and / or Active) for transmitting data in an NR system according to a second embodiment of the present invention.
- the terminal may determine an RRC state related operation mode in which the base station transmits data without feedback to the base station.
- the allocation size of the MSG3 may be assigned to the default without the information BSR or RSRP information.
- the terminal may transmit information related to BSR or RSRP information based on, for example, Group information of the RA sequence based on MSG1 (RA preamble).
- the low-precision corresponding to small data is used to deliver information that specifies the size of a few MSG3s, for example, and also the time domain and frequency domain in addition to the PA preamble sequence domain.
- the base station may perform allocation of the corresponding MSG3 according to an indication of a resource (time, frequency. Beam) to which the UE accesses the RACH.
- the base station grants a size of a UL resource corresponding to the corresponding second MSG3 size based on a pre-configured Look Up Table (LUT). It may include.
- the terminal may transmit terminal information (RSPR or BSR) to the base station through additional feedback, and the base station may determine an RRC state related operation mode to transmit data.
- RSPR terminal information
- the BSR or RSRP information of the MSG3 is transmitted before data transmission, so the base station knows the information.
- the MSG3 is optimized based on the BSR or RSRP information. Can be assigned to the minimum size required by the system or to the maximum size allowed by the channel situation.
- FIG. 39 is a diagram illustrating a method of determining an MSG3, MSG5, or RRC state transition related operation mode in which a UE transmits data based on an event trigger configured by a base station for data transmission in an NR system according to a second embodiment of the present invention; FIG. to be.
- the base station may set the buffer size and the RSRP threshold for determining the data transmission mode by the terminal.
- step S3903 it may be checked whether the UE buffer size is greater than zero, and if the UE buffer size is greater than zero, in step S3905, it may be determined whether the RSRP is greater than the RSRP threshold value (RSRP_thresold_MSG3) for MSG3. If the RSRP is greater than the RSRP threshold (RSRP_thresold_MSG3) for the MSG3, it may be determined whether the UE buffer size is larger than the buffer size threshold (T_thresold_MSG3) for the MSG3 in step S3907.
- RSRP_thresold_MSG3 the RSRP threshold value for MSG3.
- step S3909 If the UE buffer size is larger than the buffer size threshold value T_thresold_MSG3 for MSG3, it may be determined whether the UE buffer size is larger than the buffer size threshold value T_thresold_MSG5 for MSG5 in step S3909. If the UE buffer size is larger than the buffer size threshold value T_thresold_MSG5 for MSG5, in step S3911, data and BSR may be transmitted to MSG3, data to MSG5, and RRC response (Resume) to MSG6. In step S3913, the UE may transition to the RRC Active state.
- step S3905 If RSRP is smaller than the RSRP threshold value RSRP_thresold_MSG3 for MSG3 in step S3905, data may be transmitted to MSG5 in step S3915. Thereafter, in step S3921, it may be checked whether the UE buffer size is larger than the buffer size threshold value T_thresold_MSG5 for MSG5. If the UE buffer size is larger than the buffer size threshold value T_thresold_MSG5 for MSG5 in step S3921, an RRC response (Resume) may be transmitted to MSG6 after data transmission to MSG5 in step S3923. In step S3925, the UE may transition to the RRC Active state.
- UE buffer size is smaller than the buffer size threshold value T_thresold_MSG5 for MSG5 in step S3921, data may be transmitted to MSG5 and an RRC response (Suspend) may be transmitted to MSG6 in step S3927.
- the UE buffer size is smaller than the buffer size threshold value T_thresold_MSG3 for the MSG3 in operation S3907, data may be transmitted to the MSG3 and an RRC Response (Suspend) may be transmitted to the MSG4 in operation S3917.
- RRC Response Suspend
- the RRC message transmitted to the corresponding RACH MSG4 includes a method of transmitting an RRC connection response or an RRC resume response, an RRC suspend response, an RRC connection resume response, or an RRC connection suspend response.
- data and BSR may be transmitted to MSG3, data to MSG5 and RRC Response (Suspend) to MSG6 in step S3919.
- target state RRC_IDLE, RRC_INACTIVE, RRC_CONNECTED
- the base station determines the RRC state of the UE and implicitly informs the UE of the RRC connection response. If the base station controls to transition the RRC state of the terminal to the RRC_CONNECTED (Active) state, the base station instructs the terminal to the RRC connection response (resume) or RRC connection resume message transmitted to the MSG4.
- the base station instructs the UE in an RRC connection response (suspend) or RRC connection suspend message transmitted to MSG4.
- the MSG4 When the MSG4 instructs the UE to transition to RRC_INACTIVE (or RRC_IDLE), the MSG4 includes an operation of updating a related parameter operating in the corresponding RRC state and transmitting the MSG4.
- the corresponding information included in MSG4 includes:
- corresponding information included in MSG4 includes:
- UE identity (or UE context identity)
- the MSG4 can transmit the information to SRB1 when the UE context previously stored in the UE is successfully retrieved (recovered) from the Anchor base station and new security key information (K_gNB_target) can be generated from the target base station. If it fails to retrieve (recovery) from the Anchor base station or if the base station rejects the RRC connection request of the terminal due to congestion, the MSG4 is transmitted to SRB0 because new security key information (K_gNB_target) cannot be generated from the target base station. do.
- the waiting timer is a timer that waits for a predetermined period of time after receiving a RRC connection response from the base station, and then attempts an RRC connection request again when the corresponding timer expires. If the base station configures a long wait timer, the terminal may request an RRC connection request for a long time and thus start data transmission, which may damage the QoS of the terminal. However, if the range of wait timer that can be set in SRB0 is limited in the network, the fake base station cannot succeed in setting the wait timer to too large value.
- the MSG4 transmitted to the SRB1 includes an operation of setting the range of the wait timer to be adjustable.
- MSG4 transmitted from SRB0 includes an operation of enabling the wait timer to be set only within a limited range previously set (pre-configured).
- the category and maximum value (restriction value) of the wait timer include the method of setting the previous RRC message with security applied (SRB1 or cyphering, or integrity applied). You can also set the category and maximum value (limit value) of the wait timer through system information.
- MSG4 sent to SRB0 or SRB1 can send a waiting timer.
- MSG4 sent to SRB0 includes setting a relatively short waiting timer with a limited maximum.
- the fixed parameter when the MSG4 is transmitted to SRB0, the fixed parameter is not used but the related parameter is updated when MSG4 is transmitted to SRB1.
- the parameter includes the cause information, redirect carrier frequency, mobility control information, frequency / RAT deprioritisation information, and wait timer when the UE transitions to RRC_IDLE as described above.
- the corresponding information included in MSG4 includes cause information, redirect carrier frequency, mobility control information, frequency / RAT deprioritisation information, and additionally UE identity (or UE context identity, RAN configured). It includes DRX cycle, RAN periodic notification timer, RAN notification area, and Wait timer.
- RSRP of the terminal can determine whether to transmit data to the MSG3 based on the maximum coverage that can transmit the RRC connection request or RRC resume request of the MSG3. After that, it determines whether to transmit data to MSG3 and whether to send additional data to MSG5 or to transmit additional data after transitioning to active state.
- RRC suspend message is transmitted as RRC response message and RRC resume message is transmitted in case of additional transmission operation in active state.
- a terminal 40 is a MSG3 or MSG5 to which a terminal transmits data when the terminal operates without additional feedback on a corresponding event to the base station based on an event trigger configured by the base station for data transmission in the NR system according to the second embodiment of the present invention.
- a diagram illustrating an operation of determining an RRC state transition related operation mode is a diagram illustrating an operation of determining an RRC state transition related operation mode.
- the allocation size of the MSG3 may be assigned to the default without the information BSR or RSRP information.
- the base station may set the buffer size and the RSRP threshold for determining the data transmission mode to the terminal.
- step S4003 it may be checked whether the UE buffer size is greater than zero, and if the UE buffer size is greater than zero, in step S4005, it may be determined whether the RSRP is greater than the RSRP threshold (RSRP_thresold_MSG3) for MSG3. If the RSRP is greater than the RSRP threshold (RSRP_thresold_MSG3) for the MSG3, it may be determined whether the UE buffer size is larger than the buffer size threshold (T_thresold_MSG3) for the MSG3 in step S4007.
- RSRP_thresold_MSG3 the RSRP threshold threshold
- T_thresold_MSG3 buffer size threshold
- the UE buffer size is larger than the buffer size threshold value T_thresold_MSG3 for MSG3, it may be determined whether the UE buffer size is larger than the buffer size threshold value T_thresold_MSG5 for MSG5 in step S4009. If the UE buffer size is larger than the buffer size threshold value (T_thresold_MSG5) for MSG5, in step S4011 the base station allocates the default MSG3 size, the terminal transmits data to the MSG3, the remaining traffic to the BSR and the corresponding BSR-based UL grant reception Data can be sent to MSG5 and RRC response (Resume) to MSG6. In step S4013 the UE may transition to the RRC Active state.
- the base station allocates the default MSG3 size in step S4015, the terminal transmits the BSR without transmitting data to the MSG3, and the terminal receives the MSG5 by receiving the corresponding BSR-based UL grant.
- Data can be sent to After the operation S4015 is completed, the operation after the operation S4009 may be performed.
- the base station default MSG3 size is allocated in step S4017 and the UE may transmit data to the MSG3 and transmit an RRC response (Suspend) to the MSG4.
- the base station allocates a default MSG3 size, the terminal transmits data to the MSG3, and transmits the remaining traffic to the BSR and based on the corresponding BSR
- the UL grant can transmit data to MSG5 and RRC response (Suspend) to MSG6.
- FIG. 41 is a MSG3 or MSG5 to which a terminal transmits data when the terminal transmits additional feedback on a corresponding event to the base station based on an event trigger configured by the base station for data transmission in the NR system according to the second embodiment of the present invention.
- a diagram illustrating an operation of determining an RRC state transition related operation mode is a diagram illustrating an operation of determining an RRC state transition related operation mode.
- the BSR or RSRP information of the MSG3 is transmitted before data transmission, so the base station knows the information.
- the MSG3 is optimized based on the BSR or RSRP information. Can be assigned to the minimum size required by the system or to the maximum size allowed by the channel situation.
- the base station may set the buffer size and the RSRP threshold to determine the data transmission mode to the terminal.
- step S4103 it may be checked whether the UE buffer size is larger than zero, and if the UE buffer size is larger than zero, in step S4105, it may be checked whether the RSRP is larger than the RSRP threshold value (RSRP_thresold_MSG3) for MSG3. If the RSRP is greater than the RSRP threshold (RSRP_thresold_MSG3) for the MSG3, it may be determined whether the UE buffer size is larger than the buffer size threshold (T_thresold_MSG3) for the MSG3 in step S4107.
- RSRP_thresold_MSG3 the RSRP threshold value
- T_thresold_MSG3 buffer size threshold
- the base station allocates an appropriate MSG3 size, the terminal transmits data to the MSG3, transmits residual traffic to the BSR, and receives the corresponding BSR based UL grant. Data can be sent to MSG5 and RRC response (Resume) to MSG6.
- the UE may transition to the RRC Active state.
- the base station allocates the minimum MSG3 size in step S4115, the terminal transmits the BSR without transmitting data to the MSG3, and the terminal receives the MSG5 by receiving the corresponding BSR-based UL grant. Data can be sent to After the step S4115 is completed, the operation after the step S4109 may be performed.
- RSRP_thresold_MSG3 the RSRP threshold value
- the UE buffer size is smaller than the buffer size threshold value (T_thresold_MSG3) for the MSG3 in step S4107, allocates the appropriate MSG3 size to the base station in step S4117, the UE may transmit data to the MSG3 and transmit an RRC response (Suspend) to the MSG4.
- T_thresold_MSG3 the buffer size threshold value
- the UE buffer size is smaller than the buffer size threshold value (T_thresold_MSG5) for the MSG5 in step S4109, allocates the appropriate MSG3 size to the base station in step S4119, the UE transmits data to the MSG3 and transmits the remaining traffic to the BSR and the corresponding BSR based UL Data can be transmitted to MSG5 by grant reception, and RRC response (Suspend) can be transmitted to MSG6.
- T_thresold_MSG5 the buffer size threshold value for the MSG5 in step S4109.
- the base station 42 illustrates an operation for determining in which RRC state data transmission is performed in an operation according to a second embodiment of the present invention. If the terminal has data to be transmitted by the base station based on the event trigger configured by the base station, at this point, additional feedback for the corresponding event is required and transmitted. Based on this, the base station may determine an operation mode related to the RRC state transition.
- a criterion based on an event trigger configured by the base station may be network loading, UE mobility, UE battery status, UE location (cell center or boundary) or a combination thereof.
- FIG. 43 is a diagram illustrating an example of an information acquisition method for improving spectral efficiency when a data transmission is performed in an NR RRC inactive state according to the second embodiment of the present invention.
- the terminal / base station distance (Short / Long Coverage) may be determined based on, for example, a receiving RSRP / RSRQ based on a pathloss between the terminal and the base station.
- an RRC state related operation mode for transmitting data may be determined based on this information.
- the information is a standard for determining the payload length that can be transmitted in the inactive state.
- the method of transmitting data in Inactive is more advantageous in short distance (higher received signal quality).
- the method of transmitting data in the active state is more advantageous in the near field (higher received signal quality), and thus, an operation mode of determining an RRC state related operation mode to transmit data is used.
- RACH Message 1/2 based CQI MCS
- MCS RACH Message 1/2 based CQI
- the existing RACH preamble performs a Tx power ramping up to reach the Tx power to reach the base station after the attempt to receive the RAR, and as a result, the base station's Tx power information is unknown. This is because the existing RACH Preamble UL Tx power is not fixed.
- the base station identifies the Tx power of the successful RACH preamble received by adding a Tx power index to the RACH preamble sequence and uses the MCS mapped to the corresponding CQI for subsequent transmission. , Allocating the corresponding MCS-based radio resource (frequency time, etc.) even when applying UL grant
- the RAR is received by reaching the Tx power to reach the base station.
- the UE identifies the UL CQI based on the Tx power of the RACH preamble that successfully received the RAR.
- the base station does not know the applied MCS, so the UL grant performs incorrectly in unit units, and the UL payload (header is transmitted to the fixed MCS, and the payload MCS information is indicated within the header) is applied to the message3 / or message5. How to
- NAS security keys that can be leveraged in traditional Inactive mode require security handling at the MME.
- Delay-SRB has a long base station routing path, which causes delay.
- the UE and the network In the inactive state, the UE and the network have the UE context including the security key, so data transmission is performed by using the existing AS security key within a predefined security timer.
- the terminal may feed back the information on the setting of the security key operation to be applied to the data transmission, and the base station may include an operation and a method for transmitting.
- FIG. 44 illustrates an example of a method for obtaining information for improving channel access in a case of efficiently transmitting in an NR RRC inactive state according to the second embodiment of the present invention.
- FIG. 44 illustrates an example of obtaining additional information required before active transition when performing RACH in an inactive state.
- BSR Buffer size information
- the operation including the dedicated RACH allocation is loaded as information in the sequence and payload including the RACH message 1/2/3/4/5, and this is not limited to the message included in the RACH operation, and the grant-free operation is performed. It can cover the transfer of Inactive state data, which is the stage before the transition.
- FIG. 45 is a diagram illustrating an example of a method for improving channel access efficiency when a transmission is efficiently performed in an NR RRC inactive state according to the second embodiment of the present invention. Particularly, FIG. 45 is a diagram illustrating an example of a method for obtaining information for improving channel access when transmitting data while maintaining an inactive state of a terminal, and relates to a method of acquiring additional information required before active transition during RACH in an inactive state. It is an example.
- the RACH separation method for data transfer with the existing RACH is divided into a preamble sequence domain, time, frequency, and beam resources, and based on this, the existing RACH (RRC state transition, TA update, etc.) and the RACH for inactive state data transmission. It may include the operation of determining the priority of the transmission by dividing.
- barring statistics When applying barring in a network congestion situation, apply different barring statistics. For example, in a network congestion situation, operate the RACH for transmitting inactive state data at low priority compared to the RRC state transition (inactive to active transition). Barring and reverse operations are included.
- the RACH separation method includes an operation of separating into a preamble sequence domain, time and frequency, beam resource, and traffic generated based on this. It may include the operation of determining the priority of the transmission by classifying the RACH per QoS of the.
- barring statistics When applying barring in a network congestion situation, apply different barring statistics. For example, in a network congestion situation, operate the RACH for transmitting inactive state data at low priority compared to the RRC state transition (inactive to active transition). Barring and reverse operations are included.
- FIG. 46 is a view illustrating a multiple UL grant allocation and a corresponding UL transmission procedure based on UE buffer state information when transmitting data in an NR RRC inactive state according to the second embodiment of the present invention.
- the buffer state information that needs to be additionally transmitted is piggybacked to the MSG3 as the BSR, and then the UL grant for the transmission of the MSG5 can be transmitted to the MSG5 based on this.
- multiple UL grants for a case where a plurality of data transmissions are required for MSG5 may be used.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
본 개시는 4G 시스템 이후 보다 높은 데이터 전송률을 지원하기 위한 5G 통신 시스템을 IoT 기술과 융합하는 통신 기법 및 그 시스템에 관한 것이다. 본 개시는 5G 통신 기술 및 IoT 관련 기술을 기반으로 지능형 서비스 (예를 들어, 스마트 홈, 스마트 빌딩, 스마트 시티, 스마트 카 혹은 커넥티드 카, 헬스 케어, 디지털 교육, 소매업, 보안 및 안전 관련 서비스 등)에 적용될 수 있다. 본 발명은 무선 통신 시스템에서 단말의 상향링크 데이터 전송 방법에 있어서, 상기 단말이 RRC(radio resource control) 비활성 상태(inactive state)인 경우, RA 응답 메시지에 상응하는 RRC 연결 요청 메시지(RRC connection request)에 상향링크 데이터를 추가하여 기지국으로 전송하는 기술을 개시한다.
Description
본 발명은 3GPP RAN 5G SI에서 논의되고 있는 Energy Efficiency KPI를 달성하기 위한 기지국 및 단말의 동작 방식에 대한 기술에 관한 것이다.
4G 통신 시스템 상용화 이후 증가 추세에 있는 무선 데이터 트래픽 수요를 충족시키기 위해, 개선된 5G 통신 시스템 또는 pre-5G 통신 시스템을 개발하기 위한 노력이 이루어지고 있다. 이러한 이유로, 5G 통신 시스템 또는 pre-5G 통신 시스템은 4G 네트워크 이후 (Beyond 4G Network) 통신 시스템 또는 LTE 시스템 이후 (Post LTE) 이후의 시스템이라 불리어지고 있다. 높은 데이터 전송률을 달성하기 위해, 5G 통신 시스템은 초고주파(mmWave) 대역 (예를 들어, 60기가(60GHz) 대역과 같은)에서의 구현이 고려되고 있다. 초고주파 대역에서의 전파의 경로손실 완화 및 전파의 전달 거리를 증가시키기 위해, 5G 통신 시스템에서는 빔포밍(beamforming), 거대 배열 다중 입출력(massive MIMO), 전차원 다중입출력(Full Dimensional MIMO: FD-MIMO), 어레이 안테나(array antenna), 아날로그 빔형성(analog beam-forming), 및 대규모 안테나 (large scale antenna) 기술들이 논의되고 있다. 또한 시스템의 네트워크 개선을 위해, 5G 통신 시스템에서는 진화된 소형 셀, 개선된 소형 셀 (advanced small cell), 클라우드 무선 액세스 네트워크 (cloud radio access network: cloud RAN), 초고밀도 네트워크 (ultra-dense network), 기기 간 통신 (Device to Device communication: D2D), 무선 백홀 (wireless backhaul), 이동 네트워크 (moving network), 협력 통신 (cooperative communication), CoMP (Coordinated Multi-Points), 및 수신 간섭제거 (interference cancellation) 등의 기술 개발이 이루어지고 있다. 이 밖에도, 5G 시스템에서는 진보된 코딩 변조(Advanced Coding Modulation: ACM) 방식인 FQAM (Hybrid FSK and QAM Modulation) 및 SWSC (Sliding Window Superposition Coding)과, 진보된 접속 기술인 FBMC(Filter Bank Multi Carrier), NOMA(non orthogonal multiple access), 및SCMA(sparse code multiple access) 등이 개발되고 있다.
한편, 인터넷은 인간이 정보를 생성하고 소비하는 인간 중심의 연결 망에서, 사물 등 분산된 구성 요소들 간에 정보를 주고 받아 처리하는 IoT(Internet of Things, 사물인터넷) 망으로 진화하고 있다. 클라우드 서버 등과의 연결을 통한 빅데이터(Big data) 처리 기술 등이 IoT 기술에 결합된 IoE (Internet of Everything) 기술도 대두되고 있다. IoT를 구현하기 위해서, 센싱 기술, 유무선 통신 및 네트워크 인프라, 서비스 인터페이스 기술, 및 보안 기술과 같은 기술 요소 들이 요구되어, 최근에는 사물간의 연결을 위한 센서 네트워크(sensor network), 사물 통신(Machine to Machine, M2M), MTC(Machine Type Communication)등의 기술이 연구되고 있다. IoT 환경에서는 연결된 사물들에서 생성된 데이터를 수집, 분석하여 인간의 삶에 새로운 가치를 창출하는 지능형 IT(Internet Technology) 서비스가 제공될 수 있다. IoT는 기존의 IT(information technology)기술과 다양한 산업 간의 융합 및 복합을 통하여 스마트홈, 스마트 빌딩, 스마트 시티, 스마트 카 혹은 커넥티드 카, 스마트 그리드, 헬스 케어, 스마트 가전, 첨단의료서비스 등의 분야에 응용될 수 있다.
이에, 5G 통신 시스템을 IoT 망에 적용하기 위한 다양한 시도들이 이루어지고 있다. 예를 들어, 센서 네트워크(sensor network), 사물 통신(Machine to Machine, M2M), MTC(Machine Type Communication)등의 기술이 5G 통신 기술이 빔 포밍, MIMO, 및 어레이 안테나 등의 기법에 의해 구현되고 있는 것이다. 앞서 설명한 빅데이터 처리 기술로써 클라우드 무선 액세스 네트워크(cloud RAN)가 적용되는 것도 5G 기술과 IoT 기술 융합의 일 예라고 할 수 있을 것이다.
특히, 해당 표준에서는 향후 10년 이내에 단말 및 기지국 네트워크의 전력 효율성 [bit/J] 이 1000배 이상 향상되는 것을 주 목표로 에너지 효율적 동작을 정의하고 있다. 이를 위해 고주파수 대역의 mmW 동작 시 필수적인 Beamforming 전송 방식에 따른 전력 추가 소모 가능성을 해결하기 위해 단말의 Active 동작 시간을 감소 시키는 제어가 논의 시작되고 있다.
기존의 LTE 시스템에서는 한 종류의 TTI을 갖는 자원만 존재하였기 때문에 LCP 과정에서 logical channel 사이의 우선순위만을 고려하여 할당 받은 UL 자원을 사용하면 문제없이 동작하였다. 하지만 5세대 이동통신시스템과 같은 미래의 시스템에서는 서로 다른 성능 요구 사항을 갖는 다수의 서비스가 다양한 종류의 TTI을 갖는 자원을 활용하여 서비스될 것으로 예상된다. 서로 다른 TTI을 갖는 자원을 활용한 데이터 송수신은 서로 다른 성능을 보인다. 따라서 LCP 과정에서 logical channel 사이의 우선순위뿐만 아니라 TTI의 속성을 함께 고려하여 단말에게 할당된 UL 자원이 활용되어야 한다. 이러한 맥락에서 본 발명은 TTI의 속성을 고려한 LCP 과정을 제안한다.
또한 무선 통신 단말이 데이터를 송수신 하기 위한 RRC state의 설계는 음성통화 위주의 이전 세대의 설계 철학으로 지나치게 보수적으로 설계 되었다. 예를 들어 traffic 수신 이후 일정시간 동안 traffic 도착이 없음에도 RRC connected 상태로 (Connected DRX) 등의 대기시간을 유지하는 데 이로 인한 전력 소모가 심각하다. 또한 스마트폰 사용자의 경우, 사용자 QoS와 상관없는 keep alive message등이 data로 빈번하게 발생하는데 이를 위한 RRC connection을 음성 통화 서비스 기반으로 설계할 경우 단말 전력 소모가 더욱 악화될 수 있다. 따라서 본 발명의 또다른 목적은 특허에서는 data 전송을 하는 RRC state (Inactive 및(or) Active) 결정 방법 및 RRC Inactive state에서 단말의 traffic 전송 시에 효율적으로 전송하도록 하는 Spectral efficiency 향상 및 Channel access 방법 향상을 제안한다.
또한 기존의 LTE 시스템에서는 기지국의 신호를 단말이 받기 위해 설정하는 물리계층의 numerology - 즉, 물리계층의 구조와 관련한 값들인 subcarrier spacing, subframe length, symbol length 등을 총칭 - 는 random access 절차를 제외하면 동일하였다. 하지만 복수의 numerologies를 동적으로 변경하는 이동통신시스템이 도입되면, 단말은 초기 접속 절차 및 Connected State에서의 송수신 동작을 위해 필요한 numerology 정보를 기지국으로부터 설정 받아야 한다. 따라서 본 발명은 어떤 시점에서 어떤 정보를 기지국이 단말에게 송신하는지, 또한 단말은 기지국의 numerology 정보를 수신하기 위해 필요한 동작 및 절차를 제안한다.
본 발명의 일 실시예에 따른 무선 통신 시스템에서 단말의 상향링크 데이터 전송 방법은, 상향링크 스케줄링을 위한 논리 채널 설정 정보(logical channel configuration) 를 기지국으로부터 수신하는 단계와, 스케줄링 요청 메시지(scheduling request)를 상기 기지국으로 전송하는 단계와, 상기 스케줄링 요청 메시지에 응답하여 상기 논리 채널 설정 정보에 기반하여 설정된 상향링크 자원할당 메시지(uplink grant)를 상기 기지국으로부터 수신하는 단계;와, 상기 상향링크 자원할당 메시지에 따라 상향링크 데이터를 상기 기지국으로 전송하는 단계를 포함한다.
상기 논리 채널 설정 정보는, 상향링크 자원과 상기 상향링크 자원을 통해 전송 가능한 논리 채널 사이의 대응 정보를 포함하고, 상기 상향링크 자원은 TTI(transmission time interval) 및 부반송파 간격(subcarrier spacing) 중에서 적어도 하나를 기반으로 구분될 수 있다.
상기 논리 채널 설정 정보는, 상기 상향링크 자원을 통해 전송 가능한 상기 논리 채널에 대한 우선순위 정보를 더 포함할 수 있다.
상기 논리 채널 설정 정보에 포함된 상기 논리 채널에 대한 상기 우선순위 정보, 및 상기 상향링크 자원할당 메시지에 포함된 자원할당 정보를 기반으로 결정된 자원을 통해 상기 상향링크 데이터가 상기 기지국으로 전송될 수 있다.
상기 스케줄링 요청 메시지는 상기 단말이 선호하는 전송 가능한 논리 채널에 관한 정보를 포함할 수 있다.
본 발명의 일 실시예에 따른 무선 통신 시스템에서 기지국의 상향링크 데이터 수신 방법은, 상향링크 스케줄링을 위한 논리 채널 설정 정보(logical channel configuration)를 단말로 전송하는 단계와, 스케줄링 요청 메시지(scheduling request)를 상기 단말로부터 수신하는 단계와, 상기 스케줄링 요청 메시지에 응답하여 상기 논리 채널 설정 정보에 기반하여 설정된 상향링크 자원할당 메시지(uplink grant)를 상기 단말로 전송하는 단계와, 상기 상향링크 자원할당 메시지에 따라 상향링크 데이터를 상기 단말로부터 수신하는 단계를 포함한다.
상기 논리 채널 설정 정보는, 상향링크 자원과 상기 상향링크 자원을 통해 전송 가능한 논리 채널 사이의 대응 정보를 포함하고, 상기 상향링크 자원은 TTI(transmission time interval) 및 부반송파 간격(subcarrier spacing) 중에서 적어도 하나를 기반으로 구분될 수 있다.
상기 논리 채널 설정 정보는, 상기 상향링크 자원을 통해 전송 가능한 상기 논리 채널에 대한 우선순위 정보를 더 포함할 수 있다.
상기 논리 채널 설정 정보에 포함된 상기 논리 채널에 대한 상기 우선순위 정보, 및 상기 상향링크 자원할당 메시지에 포함된 자원할당 정보를 기반으로 결정된 자원을 통해 상기 상향링크 데이터가 상기 단말로부터 수신될 수 있다.
상기 스케줄링 요청 메시지는 상기 단말이 선호하는 전송 가능한 논리 채널에 관한 정보를 포함할 수 있다.
본 발명의 일 실시예에 따른 무선 통신 시스템에서 상향링크 데이터를 전송하는 단말은, 신호를 송수신하는 송수신부, 및 상기 송수신부와 연결되어 상기 송수신부를 제어하는 제어부를 포함한다. 상기 제어부는, 상향링크 스케줄링을 위한 논리 채널 설정 정보(logical channel configuration)를 기지국으로부터 수신하고, 스케줄링 요청 메시지(scheduling request)를 상기 기지국으로 전송하고, 상기 스케줄링 요청 메시지에 응답하여 상기 논리 채널 설정 정보에 기반하여 설정된 상향링크 자원할당 메시지(uplink grant)를 상기 기지국으로부터 수신하고, 상기 상향링크 자원할당 메시지에 따라 상향링크 데이터를 상기 기지국으로 전송하도록 상기 송수신부를 제어할 수 있다.
본 발명의 일 실시예에 따른 무선 통신 시스템에서 상향링크 데이터를 수신하는 기지국은, 신호를 송수신하는 송수신부, 및 상기 송수신부와 연결되어 상기 송수신부를 제어하는 제어부를 포함한다. 상기 제어부는, 상향링크 스케줄링을 위한 논리 채널 설정 정보(logical channel configuration)를 단말로 전송하고, 스케줄링 요청 메시지(scheduling request)를 상기 단말로부터 수신하고, 상기 스케줄링 요청 메시지에 응답하여 상기 논리 채널 설정 정보에 기반하여 설정된 상향링크 자원할당 메시지(uplink grant)를 상기 단말로 전송하고, 상기 상향링크 자원할당 메시지에 따라 상향링크 데이터를 상기 단말로부터 수신하도록 상기 송수신부를 제어할 수 있다.
본 발명의 다른 실시예에 따른 무선 통신 시스템에서 단말의 상향링크 데이터 전송 방법은, 상기 단말이 RRC(radio resource control) 비활성 상태(inactive state)인 경우, RA(random access) 프리앰블(preamble)을 기지국으로 전송하는 단계와, 상기 RA 프리앰블에 상응하는 RA 응답 메시지를 상기 기지국으로부터 수신하는 단계와, 상기 RA 응답 메시지에 상응하는 RRC 연결 요청 메시지(RRC connection request)에 상향링크 데이터를 추가 하여 상기 기지국으로 전송하는 단계를 포함한다.
상기 단말의 상향링크 데이터 전송 방법은, 상기 RRC 연결 요청 메시지 전송 시 상향링크 데이터 전송을 완료하지 못한 경우, 상기 RRC 연결 요청 메시지에 버퍼 상태 보고(buffer state report )를 더 추가하여 상기 기지국으로 전송하는 단계를 더 포함할 수 있다.
상기 단말의 상향링크 데이터 전송 방법은, 상기 버퍼 상태 보고에 기반하여 상기 단말의 상태가 RRC 연결 상태(connected stste)로 천이되도록 결정되면, 상기 RRC 연결 요청 메시지에 상응하는 RRC 연결 재개 메시지(RRC connection resume )를 상기 기지국으로부터 수신하는 단계를 더 포함할 수 있다.
상기 단말의 상향링크 데이터 전송 방법은, 상기 버퍼 상태 보고에 기반하여 상기 단말의 상태가 RRC 비활성 상태로 유지되도록 결정되면, 상기 RRC 연결 요청 메시지에 상응하는 RRC 연결 중지 메시지(RRC connection suspend )를 상기 기지국으로부터 수신하는 단계를 더 포함할 수 있다.
상기 단말의 상향링크 데이터 전송 방법은, 상기 RRC 연결 재개 메시지에 상응하는 RRC 연결 재개 완료 메시지(RRC connection resume complete)에 상향링크 데이터를 추가하여 상기 기지국으로 전송하는 단계를 더 포함할 수 있다.
상기 단말의 상향링크 데이터 전송 방법은, 상기 RRC 연결 재개 메시지에 따라 상기 단말이 RRC 연결 상태로 천이되면, 상기RRC 연결 상태에서 상향링크 데이터를 상기 기지국으로 전송하는 단계를 더 포함할 수 있다.
실시예에 따라, 상기 RRC 연결 요청 메시지 및 상기 상향링크 데이터가 멀티플렉싱(multiplexing)되어 하나의 전송 블록(transport block)으로 전송될 수 있다.
본 발명의 다른 실시예에 따른 무선 통신 시스템에서 기지국의 상향링크 데이터 수신 방법은, 단말이 RRC(radio resource control) 비활성 상태(inactive state)인 경우, 상기단말로부터 RA(random access) 프리앰블(preamble)을 수신하는 단계와, 상기 RA 프리앰블에 상응하는 RA 응답 메시지를 상기 단말로부터 전송하는 단계와, 상기 RA 응답 메시지에 상응하는 RRC 연결 요청 메시지(RRC connection request)및 상기 RRC 연결 요청 메시지에 추가된 상향링크 데이터를 상기 단말로부터 수신하는 단계를 포함한다.
상기 기지국의 상향링크 데이터 수신 방법은, 상기 단말이 상기 RRC 연결 요청 메시지 전송 시 상향링크 데이터 전송을 완료하지 못한 경우, 상기 RRC 연결 요청 메시지에 추가된 버퍼 상태 보고(buffer state report)를 상기 단말로부터 수신하는 단계를 더 포함할 수 있다.
상기 기지국의 상향링크 데이터 수신 방법은, 상기 버퍼 상태 보고에 기반하여 상기 단말의 상태를 RRC 연결 상태(connected stste)로 천이하도록 결정하는 단계와, 상기 결정 결과에 따라 상기 RRC 연결 요청 메시지에 상응하는 RRC 연결 재개 메시지(RRC connection resume)를 상기 단말로 전송하는 단계를 더 포함할 수 있다.
상기 기지국의 상향링크 데이터 수신 방법은, 상기 버퍼 상태 보고에 기반하여 상기 단말의 상태를 RRC 비활성 상태로 유지하도록 결정하는 단계와, 상기 결정 결과에 따라 상기 RRC 연결 요청 메시지에 상응하는 RRC 연결 중지 메시지(RRC connection suspend)를 상기 단말로 전송하는 단계를 더 포함할 수 있다.
상기 기지국의 상향링크 데이터 수신 방법은, 상기 RRC 연결 재개 메시지에 상응하는 RRC 연결 재개 완료 메시지(RRC connection resume complete) 및 상기 RRC 연결 재개 완료 메시지에 추가된 상향링크 데이터를 상기 단말로부터 수신할 수 있다.
상기 기지국의 상향링크 데이터 수신 방법은, 상기 RRC 연결 재개 메시지에 따라 상기 단말이 RRC 연결 상태로 천이되면, 상기RRC 연결 상태에서 상향링크 데이터를 상기 단말로부터 수신하는 단계를 더 포함할 수 있다.
실시예에 따라, 상기 RRC 연결 요청 메시지 및 상기 상향링크 데이터가 멀티플렉싱(multiplexing)되어 하나의 전송 블록(transport block)으로 수신될 수 있다.
본 발명의 다른 실시예에 따른 무선 통신 시스템에서 상향링크 데이터를 전송하는 단말은, 신호를 송수신하는 송수신부, 및 상기 송수신부와 연결되어 상기 송수신부를 제어하는 제어부를 포함한다. 상기 제어부는, 상기 단말이 RRC(radio resource control) 비활성 상태(inactive state)인 경우, RA(random access) 프리앰블(preamble)을 기지국으로 전송하고, 상기 RA 프리앰블에 상응하는 RA 응답 메시지를 상기 기지국으로부터 수신하고, 상기 RA 응답 메시지에 상응하는 RRC 연결 요청 메시지(RRC connection request)에 상향링크 데이터를 추가하여 상기 기지국으로 전송하도록 상기 송수신부를 제어할 수 있다.
본 발명의 다른 실시예에 따른 무선 통신 시스템에서 상향링크 데이터를 수신하는 기지국은, 신호를 송수신하는 송수신부, 및 상기 송수신부와 연결되어 상기 송수신부를 제어하는 제어부를 포함한다. 상기 제어부는, 단말이 RRC(radio resource control) 비활성 상태(inactive state)인 경우, 상기단말로부터 RA(random access) 프리앰블(preamble)을 수신하고, 상기 RA 프리앰블에 상응하는 RA 응답 메시지를 상기 단말로부터 전송하고, 상기 RA 응답 메시지에 상응하는 RRC 연결 요청 메시지(RRC connection request)및 상기 RRC 연결 요청 메시지에 추가된 상향링크 데이터를 상기 단말로부터 수신하도록 상기 송수신부를 제어할 수 있다.
본 발명의 일 실시예에 따르면, TTI 속성을 고려한 LCP 동작을 사용하면 단말이 상향링크 자원을 할당 받았을 때 특정 logical channel에 속한 데이터를 어떤 TTI을 갖는 자원을 통해서 전송해야 하는지 명확히 알 수 있다. 특히 낮은 latency 요구 사항을 갖는 데이터를 전송할 때 먼저 할당된 자원을 통해서 일찍 전송을 수행하였지만 HARQ timeline이 상대적으로 길어서 재전송이 늦어지는 현상을 방지할 수 있다.
또한 본 발명의 또 다른 실시 예에 따르면 단말 및 기지국의 통신 시스템은 Data 전송을 위한 RRC state를 선택하고 이를 위한 절차를 수행하면서 Inactive state에서 바로 data를 전송하는 경우 RRC Connected_Active (혹은 RRC_CONNECTED) 상태로 천이(Transition)을 수행하지 않으므로 Active 상태에서의 대기시간 (C-DRX, Radio tail)을 최소한으로 유지 되므로 단말의 전력 소모 절약 효과가 기대된다. 또한, RRC state 천이를 위한 RRC release message 없이 Data를 전송함으로써, Inactive (Idle) 상태에서 Data를 전송하고자 하는 경우 Connected_active (혹은 RRC_CONNECTED)로 RRC state를 천이하지 않으므로 관련 Control Signalling에 소요되는 지연을 제거하여 Data 전송 지연 감소 효과가 있다. 또한 RRC state 천이를 위한 RRC release message의 감소는 5G 기지국 (RU/TRP)의 전력 소모 감소를 통한 Cost 효율성 및 5G 셀간 주변 간섭 감소를 통해 무선자원 사용 효율성 증대가 기대된다.
또한 본 발명의 또 다른 실시예에 따르면 단말의 밀집도 또는 단말이 요구하는 서비스에 따라 무선 자원을 효율적으로 사용하여 numerology 정보를 송신할 수 있다. 또한, 기지국에게 알리기 위한 단말의 신호 송신 방법의 선택을 돕기 위해 기지국은 네트워크에서 제공하는 서비스/슬라이스/numerology/UE 정보를 알려 줄 수 있다. 또한 이 정보는 단말을 깨우기 위한 paging 절차에 사용될 수 있다.
도 1은 LTE에서 단말이 LCP를 기반으로 상향링크 자원을 어떻게 활용하는지를 설명하는 도면이다.
도 2는 본 발명의 제1 실시예에 따라 5세대 이동통신시스템에서 제공하는 다수의 서비스 및 각각의 서비스에 대한 성능 요구사항을 보여주는 도면이다.
도 3은 본 발명의 제1 실시예에 따라 서로 다른 TTI를 갖는 자원에서 HARQ 기반 송수신이 수행될 때 초기 전송 및 ACK/NACK feedback, 재전송 사이의 시간 관계를 보여주는 도면이다.
도 4는 본 발명의 제1 실시예에 따라긴 TTI을 갖는 자원이 짧은 TTI을 갖는 자원보다 단말에게 먼저 할당된 경우를 설명하는 도면이다.
도 5는 본 발명의 제1 실시예에 따라 제안하는 동작 1에 대한 신호 흐름도를 나타내는 도면이다.
도 6은 본 발명의 제1 실시예에 따라 단말이 기지국으로부터 한 종류의 TTI을 갖는 자원을 할당 받은 경우를 나타내는 도면이다.
도 7은 본 발명의 제1 실시예에 따라 단말이 기지국으로부터 여러 종류의 TTI을 갖는 자원을 동시에 할당 받은 경우를 나타내는 도면이다.
도 8은 본 발명의 제1 실시예에 따라 제안하는 동작 2에 대한 순서도를 나타내는 도면이다.
도 9는 본 발명의 제1 실시예에 따라 제안하는 동작 3에 대한 순서도를 나타내는 도면이다.
도 10은 본 발명의 제1 실시예에 따라 제안하는 동작 4를 설명하기 위한 예시를나타내는 도면이다.
도 11은k 본 발명의 제1 실시예에 따라 제안하는 logical channel과 TTI 사이의 hard split을 나타내는 도면이다.
도 12는 본 발명의 제1 실시예에 따라 제안하는 logical channel과 TTI 사이의 soft split을 나타내는 도면이다.
도 13은 본 발명의 제1 실시예에 따라 제안하는 logical channel과 TTI 사이의 hybrid split을 logical channel 관점에서 나타내는 도면이다.
도 14는 본 발명의 제1 실시예에 따라 제안하는 logical channel과 TTI 사이의 hybrid split을 TTI 관점에서 나타내는 도면이다.
도 15는 본 발명의 제1 실시예에 따라 기지국이 UL grant를 통해 단말에게 LCP set을 알려주는 방법을 나타내는 도면이다.
도 16은 본 발명의 제1 실시예에 따라 단말이 scheduling request을 통해서 기지국에게 선호하는 LCP set을 알려주는 방법을 나타내는 도면이다.
도 17은 본 발명의 제1 실시예에 따라 기지국이 단말에게 default priority 및 special priority를 효율적으로 적용시키는 방법을 나타내는 도면이다.
도 18은 본 발명의 제1 실시예에 따라 기지국이 단말에게 TTI-specific priority을 할당한 후 단말의 logical channel priority 선정에 자유도를 부여하는 방법을 나타내는 도면이다.
도 19는 본 발명의 제1 실시예에 따라 기지국이 단말에게 default priority 및 special priority를 효율적으로 적용시키는 변형된 방법을 나타내는 도면이다.
도 20은 본 발명의 제2 실시 예에 따른 5G 또는 NR 통신 시스템의 구조를 개략적으로 도시하는 도면이다.
도 21은 본 발명의 제2 실시 예에 따른 5G 또는 NR 통신 시스템에서 적용하는 3개의 RRC state인 Connected_Active (혹은 RRC_CONNECTED), Connected_Inactive, Idle의 동작 예시를 나타낸 도면이다.
도 22는 본 발명의 제2 실시 예에 따른 5G 또는 NR 통신 시스템에서 Inactive 상태의 단말, 기지국, 및 MME의 상태 예시를 나타낸 도면이다.
도 23은 본 발명의 제2 실시 예에 따른 RRC 상태 (idle, Connected_Active(혹은 RRC_CONNECTED), Connected_Inactive (혹은 RRC_INACTIVE) 사이에서 상태 천이하는 예를 도시한 도면이다.
도 24는 본 발명의 제2 실시 예에 따른 NR 시스템에서 INACTIVE state 에서 데이터 전송 동작을 개략적으로 도시하는 도면으로, RACH 절차에서 Message3 RRC connection (resume) request 에 데이터를 추가하여 전송하는 동작을 설명하는 도면이다.
도 25는 본 발명의 제2 실시 예에 따른 NR 시스템에서 INACTIVE state 에서 Data 전송 동작을 개략적으로 도시하는 도면이다.
도 26은 본 발명의 제2 실시 예에 따른 NR 시스템에서 INACTIVE state 에서 Data 전송 동작을 개략적으로 도시하는 도면이다.
도 27은 본 발명의 제2 실시 예에 따른 NR 시스템에서 INACTIVE state 에서 Data 전송 동작을 개략적으로 도시하는 도면이다.
도 28은 본 발명의 제2 실시 예에 따른 NR 시스템에서 INACTIVE 에서 ACTIVE로 상태 천이 이후 Data 전송 동작을 개략적으로 도시하는 도면이다.
도 29는 본 발명의 제2 실시 예에 따른 NR 시스템에서 INACTIVE state 에서 Data 전송을 시작하여 ACTIVE state로 천이, 이후 Data 전송 동작을 개략적으로 도시하는 도면이다.
도 30은 본 발명의 제2 실시 예에 따른 NR 시스템에서 INACTIVE state 에서 MSG3 를 통해 Data 전송을 시작하여 Message5 RRC connection (resume) complete에 Data를 추가하여 전송하고 data 전송 완료시 RRC connection response에 (ACK과 suspend)을 전송하여 Inactive 상태를 유지하는 동작을 설명하는 도면이다.
도 31은 본 발명의 제2 실시 예에 따른 NR 시스템에서 INACTIVE state 에서 Data 전송을 시작하여 ACTIVE state로 천이, 이후 Data 전송 동작을 개략적으로 도시하는 도면이다.
도 32는 본 발명의 제2 실시 예에 따른 NR 시스템에서 INACTIVE state 에서 MSG3 를 통해 Data 전송을 시작하여 Message5 RRC connection (resume) complete에 Data를 추가하여 전송하고 data 전송이 추가로 필요한 경우에 RRC connection response에 (ACK과 Resume)을 전송하여 Active 상태로 천이하고 이후 Data전송이 다시 완료되면 RRC connection suspend message전송을 통해 Inactive로 다시 천이하는 동작을 설명하는 도면이다.
도 33은 본 발명의 제2 실시 예에 따른 NR 시스템에서 data 전송을 하는 RRC state (Inactive 및(or) Active) 결정 및 제어를 위한 단말 기지국간 시그널링 동작 예시를 나타낸 도면이다.
도 34는 본 발명의 제2 실시 예에 따른 NR 시스템에서 data 전송을 하는 RRC state (Inactive 및(or) Active) 결정 및 제어를 위한 단말 기지국간 시그널링 동작 예시를 나타낸 도면이다.
도 35는 본 발명의 제2 실시 예에 따른 NR 시스템에서 data 전송을 하는 RRC state (Inactive 및(or) Active) 결정 및 제어를 위한 단말 기지국간 시그널링 동작 예시를 나타낸 도면이다.
도 36은 본 발명의 제2 실시 예에 따른 NR 시스템에서 data 전송을 하는 RRC state (Inactive 및(or) Active) 결정 및 제어를 위한 단말 기지국간 시그널링 동작 예시를 나타낸 도면이다.
도 37은 본 발명의 제2 실시 예에 따른 NR 시스템에서 data 전송을 하는 RRC state (Inactive 및/또는 Active) 결정 및 제어를 위한 단말 기지국간 시그널링 동작 예시를 나타낸 도면이다.
도 38은 본 발명의 제2 실시 예에 따른 NR 시스템에서 data 전송을 하는 RRC state (Inactive 및(or) Active) 결정 및 제어를 위한 단말 기지국 간 시그널링 동작 예시를 나타낸 도면이다.
도 39는 본 발명의 제2 실시 예에 따른 NR 시스템에서 data 전송을 위해 단말이 기지국이 configuration한 event trigger 기반으로 단말이 data를 전송할 MSG3 혹은 MSG5 혹은 RRC state 천이 관련 동작 모드를 결정하는 방법을 동작을 설명하는 도면이다.
도 40은 본 발명의 제2 실시 예에 따른 NR 시스템에서 data 전송을 위해 단말이 기지국이 configuration한 event trigger 기반으로 기지국에 해당 Event에 대한 추가적인 feedback 없이 동작할 경우에 단말이 data를 전송할 MSG3 혹은 MSG5 혹은RRC state 천이 관련 동작 모드를 결정하는 방법을 동작을 설명하는 도면이다.
도 41은 본 발명의 제2 실시 예에 따른 NR 시스템에서 data 전송을 위해 단말이 기지국이 configuration한 event trigger 기반으로 기지국에 해당 Event에 대한 추가적인 feedback 을 전송하는 경우에 단말이 data를 전송할 MSG3 혹은 MSG5 혹은RRC state 천이 관련 동작 모드를 결정하는 방법을 동작을 설명하는 도면이다.
도 42는 본 발명의 제2 실시 예에 따른 동작으로 data 전송을 위해 기지국이 configuration한 event trigger 기반으로 단말이 Data를 전송하고 기지국이 RRC state 천이 관련 동작 모드를 결정하는 동작을 설명하는 도면이다.
도 43은 본 발명의 제2 실시 예에 따른 NR RRC Inactive state에서 효율적으로 전송을 수행하는 경우에 대해서 Spectral efficiency 향상을 위한 정보 획득 방법 예시를 나타낸 도면이다.
도 44는 본 발명의 제2 실시 예에 따른 NR RRC Inactive state에서 효율적으로 전송을 수행하는 경우에 대해서 Channel access 향상을 위한 정보 획득 방법 예시를 나타낸 도면이다.
도 45는 본 발명의 제2 실시 예에 따른 NR RRC Inactive state에서 효율적으로 전송을 수행하는 경우에 대해서 Channel access 효율향상을 위한 방법 예시를 나타낸 도면이다.
도 46은 본 발명의 제2 실시 예에 따른 NR RRC Inactive state에서 data 전송시 단말 Buffer 상태 정보에 기반하여 multiple UL grant 할당과 해당 UL 전송 절차를 나타낸 도면이다.
도 47은 본 발명의 제2 실시 예에 따른 NR RRC Inactive state에서 data 전송 시 Dedicated RACH 및 grant-free 전송을 위한 preamble sequence 및 자원을 할당하고 이러한 자원의 유효 시간 (valid timer)를 설정하여 동작하는 과정을 도시한 도면이다.
도 48은 본 발명의 제2 실시 예에 따른 NR RRC Inactive state에서 data 전송 시 Contention based RACH 기반 data 전송 동작, Dedicated based RACH 기반 data 전송 동작, 혹은 Grant-free 기반 data 전송을 수행할지를 결정하는 기준을 나타내는 도면이다.
도 49는 본 발명의 제2 실시 예에 따른 NR RRC Inactive state에서 data 전송시 초기 전송 이후에 추가 연속 전송절차를 나타낸 도면이다.
도 50은 본 발명의 제2 실시 예에 따른 특정 application의 keep alive message의 traffic 특성의 예시를 나타낸 도면이다.
도 51은 본 발명의 제3 실시예에 따라 Dedicated numerology set을 설정하는 다양한 절차를 나타낸 도면이다.
도 52는 본 발명의 제3 실시예에 따라 initial access 절차를 나타낸 도면이다.
도 53은 본 발명의 제3 실시예에 따라 UL presence 신호를 고려한 initial access 절차 예시-I 도면이다.
도 54는 본 발명의 제3 실시예에 따라 DL probing 신호를 고려한 initial access 절차 예시-I 도면이다.
도 55는 본 발명의 제3 실시예에 따라 UL presence 신호와 DL probing 신호를 고려한 initial access 절차 예시-I 도면이다.
도 56은 본 발명의 제3 실시예에 따라 UL presence 신호와 DL probing 신호를 고려한 initial access 절차 예시-II 도면이다.
도 57은 본 발명의 제3 실시예에 따라 UL presence 신호를 고려한 initial access 절차 예시-II 도면이다.
도 58은 본 발명의 제3 실시예에 따라 UE ID 및 서비스 ID 기반 tone-based 신호 송수신 방법의 예시이다.
도 59는 본 발명의 제3 실시예에 따라 복수의 단말로부터의 tone 기반 신호의 중첩 예시이다.
도 60은 본 발명의 제3 실시예에 따라 기지국이 MME에게 tone 또는 해시 코드 정보로 문의하는 예시이다.
도 61은 본 발명의 제3 실시예에 따라 기지국이 MME에게 matching indication을 보내는 예시이다.
도 62는 본 발명의 제3 실시예에 따라 단말 장치의 구성도를 나타낸 도면이다.
도 63은 본 발명의 제3 실시예에 따라 단말이 Idle state에서 Connected state로 전환하는 과정에서 적용되는 옵션들을 나타낸 도면이다.
도 64는 본 발명의 제3 실시예에 따라 UPCH가 기존 RA 절차를 재사용할 때의 예시이다.
도 65는 본 발명의 제3 실시예에 따라 UPCH가 변형된 RA 절차를 사용할 때의 예시이다.
이하, 본 발명의 실시예를 첨부한 도면과 함께 상세히 설명한다. 또한 본 발명을 설명함에 있어서 관련된 공지 기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단된 경우 그 상세한 설명은 생략한다. 그리고 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시 예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시 예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시 예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
<제1 실시예>
본 발명에서는 5G 이동통신시스템에서의 UL scheduling 방법을 제안한다. 5G 이동통신시스템에서는 eMBB (enhanced Mobile BroadBand), URLLC (Ultra Reliable and Low Latency Communication), eMTC (enhanced Machine Type Communication) 등과 같은 다양한 서비스 (또는 slice)가 지원될 것으로 예상된다. 이는 4G 이동통신시스템인 LTE에서 음성 특화 서비스인 VoIP (Voice over Internet Protocol)와 BE (Best Effort) 서비스 등이 지원되는 것과 같은 맥락으로 이해할 수 있다. 또한 5G 이동통신시스템에서는 다양한 numerology가 지원될 것으로 예상된다. 이는 구체적으로 subcarrier spacing (SCS) 또는 TTI (Transmission Time Interval) 등을 의미한다.
따라서 5G 이동통신시스템에서는 다양한 길이의 TTI 또는 SCS가 지원될 것으로 예상된다. 이는 현재까지 표준화된 LTE에서 오직 한 종류의 TTI (1 ms) 및 한 종류의 SCS (15 kHz)만 지원된 것과는 매우 다른 5G 이동통신시스템의 특징 중 하나라고 볼 수 있다. 만약 5G 이동통신시스템에서 LTE의 1 ms TTI 보다 훨씬 짧은 TTI (예를 들면 0.1 ms)을 지원한다면 이는 짧은 지연 시간을 요구하는 URLLC 등을 지원하는데 큰 도움이 될 것으로 예상된다.
본 발명에서는 이러한 5G 이동통신시스템의 특징, 즉 다양한 서비스와 다양한 numerology (TTI 및 SCS) 지원을 고려한 UL scheduling 방법을 제안한다. LTE에 정의되어 있는 UL scheduling 방법과의 차이점은 기존에는 다양한 서비스를 지원하기 위한 scheduling 방법이었다면 본 발명에서는 다양한 서비스를 다양한 numerology을 활용하여 지원하기 위한 scheduling 방법으로 볼 수 있다. 본 문서에서는 TTI, subcarrier spacing 등이 같은 역할을 하는 용어로써 사용됨을 일러둔다. 즉, 본 발명의 예시 중 TTI을 고려한 방식은 동일한 원리로 SCS을 고려한 방식으로 확장될 수 있다.
본 발명을 설명하기에 앞서 기존 방안에 대해서 알아보도록 하자. 본 발명에서는 UL scheduling 중 LCP (Logical Channel Prioritization)에 초점을 맞춘다. LTE 표준 중 하나인 36.321에는 UL scheduling을 위한 LCP 동작이 정의되어 있다. DL scheduling의 경우 DL traffic을 생성 및 전송하는 주체는 기지국이고 DL scheduling을 수행하는 주체도 기지국이다. 즉, 기지국이 DL scheduling을 수행하고 생성된 DL traffic을 전송하면 된다. 하지만 UL scheduling의 경우 UL traffic을 생성 및 전송하는 주체는 단말이지만 UL scheduling을 수행하는 주체는 기지국이다. 따라서 기지국은 UL scheduling을 통해서 단말에게 일정한 크기의 자원을 할당하고 단말은 할당 받은 자원에 자신이 생성한 UL traffic을 채워서 기지국에게 전송한다. 여기서 "단말이 할당 받은 자원에 자신이 생성한 UL traffic을 채우는" 방법을 LCP라고 한다.
도 1은 LTE에서 단말이 LCP를 기반으로 상향링크 자원을 어떻게 활용하는지를 설명하는 도면이다.
단말에서 생성된 상향링크 트래픽(UL traffic)은 서비스 종류 등에 따라서 논리 채널(logical channel)에 대응된다. 예컨대, 각 logical channel 또는 여러 logical channel의 모임은 각 서비스에 대응될 수 있다. 각 logical channel은 기지국의 설정에 따라서 우선 순위를 갖는다.
도 1을 참조하면, logical channel 1, 2, 3 각각이 우선 순위 1, 2, 3에 해당한다. 기지국으로부터 자원을 할당 받았을 때 단말은 자신이 가지고 있는 UL traffic을 (기본적으로) 우선 순위가 높은 logical channel 순서대로 PBR (Prioritized Bit Rate) 조건을 만족하는 만큼의 데이터을 할당 받은 자원에 채운다. 여기서 각 logical channel의 PBR 역시 기지국이 RRC signaling 등을 통해서 설정하여 줄 수 있다. 그후 단말은 할당 받은 자원을 모두 소진할 때까지 우선 순위에 따라서 할당 받은 자원에 채운다. 이에 대한 구체적인 동작을 LTE 표준에서는 아래와 같이 정의하고 있다.
----------------------------------------------------------------------------------------------------------------------------
5.4.3 Multiplexing and assembly
5.4.3.1 Logical channel prioritization
The Logical Channel Prioritization procedure is applied when a new transmission is performed.
RRC controls the scheduling of uplink data by signalling for each logical channel: priority where an increasing priority value indicates a lower priority level, prioritisedBitRatewhich sets the Prioritized Bit Rate (PBR), bucketSizeDuration which sets the Bucket Size Duration (BSD).
The MAC entity shall maintain a variable Bj for each logical channel j. Bj shall be initialized to zero when the related logical channel is established, and incremented by the product PBR X TTI duration for each TTI, where PBR is Prioritized Bit Rate of logical channel j. However, the value of Bj can never exceed the bucket size and if the value of Bj is larger than the bucket size of logical channel j, it shall be set to the bucket size. The bucket size of a logical channel is equal to PBR X BSD, where PBR and BSD are configured by upper layers.
The MAC entity shall perform the following Logical Channel Prioritization procedure when a new transmission is performed:
- The MAC entity shall allocate resources to the logical channels in the following steps:
- Step 1: All the logical channels with Bj> 0 are allocated resources in a decreasing priority order. If the PBR of a logical channel is set to "infinity", the MAC entity shall allocate resources for all the data that is available for transmission on the logical channel before meeting the PBR of the lower priority logical channel(s);
- Step 2: the MAC entity shall decrement Bj by the total size of MAC SDUs served to logical channel j in Step 1
NOTE: The value of Bj can be negative.
- Step 3: if any resources remain, all the logical channels are served in a strict decreasing priority order (regardless of the value of Bj) until either the data for that logical channel or the UL grant is exhausted, whichever comes first. Logical channels configured with equal priority should be served equally.
----------------------------------------------------------------------------------------------------------------------------
도 1에서는 LTE에서 LCP가 어떻게 동작하는지를 설명하고 있고, 하나의 logical channel 또는 복수의 logical channel들의 모임이 하나의 서비스에 대응된다고 보면 LTE에서도 다수의 서비스를 고려한 LCP가 이미 지원됨을 알 수 있다.
도 2는 5G 이동통신시스템에서 제공하는 다수의 서비스 및 각각의 서비스에 대한 성능 요구사항을 보여주는 도면이다.
제1 실시예에서는 5G 이동통신시스템에서 다수의 서비스뿐만 아니라 다수의 TTI 또는 SCS가 도입되는 경우 LCP가 어떻게 개선되어야 하는지에 대한 방안을 제안하다. 도 2를 참조하면, 5G 이동통시시스템에서 eMBB, URLLC, eMTC 등은 서로 다른 성능을 요구한다. 특히 latency 관점에서도 서비스 별로 서로 다른 성능을 요구함을 알 수 있다.
TTI 측면에서 서로 다른 TTI을 갖는 자원을 통해서 수행되는 송수신은 서로 다른 HARQ timeline (data 초기 전송, ACK 또는 NACK 전송, data 재전송)을 갖게 된다. 왜냐하면, data encoding 및 decoding 등에 소요되는 시간은 주로 TTI이 비례하기 때문이다.
도 3은 서로 다른 TTI를 갖는 자원에서 HARQ 기반 송수신이 수행될 때 초기 전송 및 ACK/NACK feedback, 재전송 사이의 시간 관계를 보여주는 도면이다. 도 3을 참조하면, 서로 다른 TTI의 HARQ timeline을 보여준다.
앞에서 설명한 것처럼 5G 이동통신시스템에서 서비스 별 latency 요구 사항이 다르므로 일반적으로 짧은 latency을 요구하는 서비스는 짧은 TTI을 통해서 송수신되어야 하고 상대적으로 긴 latency을 요구하는 서비스는 긴 TTI을 통해서 송수신되어도 무방하다. LTE의 LCP은 이러한 TTI의 특징이 반영되지 않았으므로 5G 이동통신시스템에서는 이러한 점을 반영하여 LCP을 설계해야 한다.
지금부터 논의의 편의를 위해서 다음을 가정하도록 한다. 이는 편의를 위한 것일 뿐 본 발명의 내용이 아래의 가정에 제한되지 않는다.
1) 단말은 서비스 S1과 S2을 동시에 사용하고 있다.
A. 단말의 UL buffer에는 현재 서비스 S1과 S2의 UL traffic이 모두 존재한다.
2) 서비스 S1과 S2는 각각 TTI1과 TTI2을 통한 송수신에 최적화되어 있다.
A. 서비스 S1과 S2는 각각 TTI1과 TTI2을 통한 송수신에 최적화되어 있지만 S1이 TTI2에 전송될 수도 있고 S2가 TTI1에 전송될 수도 있다.
또한 각 서비스는 자신에 최적화된 TTI만을 이용해서 송수신을 수행할 수도 있다. 예를 들면 서비스 S1은 TTI1만을 사용하여 송수신을 수행할 수 있고, 서비스 S2은 TTI2만을 사용하여 송수신을 수행할 수 있다.
또한 특정 서비스는 자신에 최적화된 TTI만을 이용하여 송수신을 수행하고 다른 특정 서비스는 모든 TTI을 이용하여 송수신을 수행할 수도 있다. 예를 들면 서비스 S1은 TTI1만을 사용하여 송수신을 수행할 수 있고, 서비스 S2은 TTI1 및 TTI2을 모두 사용하여 송수신을 수행할 수 있다.
3) 서비스 S1과 S2는 시간/주파수 무선 자원을 공유하여 사용한다.
4) TTI2는 TTI 1보다 짧다.
5) 서비스 S2는 S1보다 짧은 latency을 요구한다.
이러한 가정이 적용되었을 때 도 4는 5G 이동통신시스템에서 LCP을 설계할 때 고려해야 할 상항을 구체적으로 보여주고 있다.
도 4는 본 발명의 단말에게 긴 TTI을 갖는 자원이 짧은 TTI을 갖는 자원보다 먼저 할당된 경우를 설명하는 도면이다.
<상황 1>
도 4를 참조하면, 시점 T1에 단말은 기지국으로부터 TTI1 자원을 할당 받을 수 있다. 단말은 해당 자원에 현재 자신의 UL buffer에 존재하는 서비스 S1에 대한 UL traffic과 서비스 S2에 대한 UL traffic을 모두 포함하여 전송하였다. 여기서 해당 자원의 크기는 충분하다고 가정한다. 상황 1은 서비스 S1과 S2가 동일한 시간/주파수 무선 자원을 사용하는 상황에 해당한다. 본 발명은 <상황 1>에서 설명한 자원 활용 방법을 포함한다. 즉, 서비스 S1과 서비스 S2가 모두 TTI1 자원을 사용할 수 있도록 설정된 자원 활용 방법이다. 여기서 서비스 S1과 S2가 동일한 시간/주파수 무선 자원을 사용하는 상황이란 보다 구체적으로 서비스 S1과 S2가 동일한 TTI를 갖는 시간/주파수 무선 자원을 사용하는 상황임을 말한다.
<상황 2>
도 4를 참조하면, 시점 T1에 단말은 기지국으로부터 TTI1 자원을 할당 받을 수 있다. 단말은 해당 자원에 현재 자신의 UL buffer에 존재하는 서비스 S1에 대한 UL traffic을 포함하여 전송하으나, 서비스 S2에 대한 UL traffic은 전송하지 않을 수 있다. 시점 T2에 단말은 기지국으로부터 TTI2 자원 을 할당 받을 수 있다. 단말은 해당 자원에 현재 자신의 UL buffer에 존재하는 서비스 S2에 대한 UL traffic을 포함하여 전송하였다. 상황 2는 서비스 S1과 S2가 서로 다른 시간/주파수 무선 자원을 사용하는 상황에 해당한다. 본 발명은 <상황 2>에서 설명한 자원 활용 방법을 포함한다. 즉, 서비스 S1과 서비스 S2가 각각 서로 다른 TTI을 갖는 시간/주파수 무선 자원을 사용하도록 설정된 자원 활용 방법이다. 다시 말해서 서비스 S1은 TTI1을 갖는 무선 자원을 사용하고 서비스 S2은 TTI2을 갖는 무선 자원을 사용하는 방법이다.
위의 상황 1 및 2는 단말이 TTI1에 최적화된 서비스 S1과 TTI2에 최적화된 서비스 S2의 UL traffic을 모두 갖고 있는 상태에서 기지국이 단말에게 긴 TTI 자원을 먼저 할당한 경우를 보여준다. 이러한 경우 단말은 서비스 S1과 S2의 latency 요구 사항 (특히 latency 요구 사항이 짧은 S2)을 만족시켜야 한다.
만약 단말이 일정 시간 내에 HARQ timeline 관점에서 더 빠른 송수신이 가능한 TTI2 자원이 할당될 것이라는 사실을 모른다면 현재 가장 빠른 시점인 T1에서 모든 UL traffic을 전송하는 것이 가장 좋은 선택이다. 이는 상황 1에 해당한다. 하지만 단말이 일정 시간 내에 HARQ timeline 관점에서 더 빠른 송수신이 가능한 TTI2 자원이 할당될 것이라는 사실을 안다면 현재 가장 빠른 시점인 T1에서 모든 UL traffic을 전송하는 것보다 T1에서는 TTI1에 최적화된 서비스 S1의 UL traffic을 전송하고, TTI2에 최적화된 서비스 S2의 UL traffic은 얼마의 시간 후 TTI2 자원이 할당된 T2 시점에 전송하는 것이 가장 좋은 선택이다. 이는 상황 2에 해당한다.
하지만 일반적으로 단말은 T1 시점에서 기지국이 TTI2 자원을 언제 자신에게 할당할 것인지 알기 어렵다. 따라서 LCP에 TTI 종류를 고려한 규칙을 만들어서 적용한다면 위와 같은 상황에 적절히 대응할 수 있을 것이다. 지금부터 TTI 종류를 고려한 LCP 동작을 설명하도록 한다.
<동작 1>
(1) 기지국은 단말에게 각 logical channel에 대한 default priority을 제공한다. 이는 아래와 같이 RRC signaling 중 LogicalChannelConfig IE (Information Element)을 통해서 이루어 질 수 있다.
- LogicalChannelConfig
The IE LogicalChannelConfig is used to configure the logical channel parameters.
LogicalChannelConfig information element
-- ASN1START
LogicalChannelConfig ::= SEQUENCE {
ul-SpecificParameters SEQUENCE {
defaultPriority INTEGER (1..16),
prioritisedBitRate ENUMERATED {
kBps0, kBps8, kBps16, kBps32, kBps64, kBps128,
kBps256, infinity, kBps512-v1020, kBps1024-v1020,
kBps2048-v1020, spare5, spare4, spare3, spare2,
spare1},
bucketSizeDuration ENUMERATED {
ms50, ms100, ms150, ms300, ms500, ms1000, spare2,
spare1},
logicalChannelGroup INTEGER (0..3) OPTIONAL -- Need OR
} OPTIONAL, -- Cond UL
...,
[[ logicalChannelSR-Mask-r9 ENUMERATED {setup} OPTIONAL -- Cond SRmask
]],
[[ logicalChannelSR-Prohibit-r12 BOOLEAN OPTIONAL -- Need ON
]]
}
-- ASN1STOP
[표 1]
(2) 기지국은 단말에게 UL grant을 할당할 때 해당 UL grant에 적용되는 special priority을 제공한다. 이는 PDCCH을 통해서 전송되는 DCI (Downlink Control Information) 등을 통해서 이루어 질 수 있다.
A. 여기서 special priority는 하나의 logical channel에 대해서 설정될 수도 있고 두 개 이상의 logical channel에 대해서 설정될 수도 있다. 또한 special priority가 어떠한 logical channel에 대해서도 설정되지 않을 수도 있다.
B. 아래의 표2는 기지국이 단말에게 UL grant을 할당할 때 해당 UL grant에 적용되는 highest priority logical channel을 단말에게 알려주는 예시를 보여준다.
[표 2]
(3) 위의 (1)과 (2)의 과정을 통해서 단말은 logical channel에 대한 default priority 및 special priority을 제공받는다. 이를 기반으로 단말은 아래와 같이 동작한다.
A. Special priority가 높은 logical channel 순서대로 기지국으로부터 할당 받은 UL grant에 데이터를 채운다. 즉, special priority가 설정된 logical channel에 대해서 LCP을 적용한다.
B. Special priority가 지정된 logical channel의 데이터를 UL grant에 모두 채운 후 UL grant에 자원이 남았을 때에는 default priority가 높은 logical channel 순서대로 데이터를 채운다. 즉, special priority가 설정된 logical channel에 대해서 LCP을 적용하여 데이터를 채운 후 default priority가 설정된 logical channel에 대해서 LCP을 적용한다.
도 5는 본 발명의 제1 실시예에 따라 제안하는 동작 1에 대한 신호 흐름도를 나타내는 도면이다.
(1) 기지국(5G-NB)은 단말(UE)에게 logical channel A, B, C, D에 대한 default priority을 A > B > C > D 순으로 설정하여 제공할 수 있다. 여기서 A > B > C > D 표시 형식은 A가 1순위, B가 2순위, C가 3순위, D가 4순위임을 의미한다.
(2) 기지국(5G-NB)은 단말(UE)에게 UL grant을 할당할 때 해당 UL grant에 적용되는 special priority을 C > A 순으로 설정하여 제공하였다.
(3) 단말(UE)은 우선 special priority가 지정된 logical channel인 A 및 C에 대해서 special priority C > A 순으로 LCP 동작을 수행하여 UL grant을 채운다.
(4) 단말(UE)은 만약 special priority C > A 순으로 LCP 동작을 수행하여 UL grant을 채운 후 UL grant에 자원이 남았을 때에는 이미 고려된 A 및 C를 제외한 나머지 logical channel에 대한 default priority에 따라서 B > D 순으로 LCP 동작을 수행하여 UL grant을 채운다.
A. 만약 UL grant에 special priority가 설정되어 있지 않다면 단말(UE)은 default priority A > B > C > D 순으로 LCP 동작을 수행하여 UL grant을 채운다.
<동작 2>
(1) 기지국은 단말에게 각 TTI 종류 별로 logical channel priority을 제공한다. 이는 RRC signaling 중 LogicalChannelConfig IE을 통해서 이루어질 수 있다.
A. 예를 들면 1 ms TTI을 갖는 UL grant에는 A > B > C > D 순으로 priority을 제공하고 0.2 ms TTI을 갖는 UL grant에는 C > B > A > D 순으로 priority을 제공한다. 이는 logical channel A, B, C, D가 1 ms TTI을 갖는 UL grant을 사용할 수 있음을 의미하고, 또한 logical channel A, B, C, D가 1 ms TTI을 갖는 UL grant을 통해서 전송될 때 LCP 과정에서 적용되는 우선 순위가 A > B > C > D 임을 의미한다. 마찬가지로 logical channel A, B, C, D가 0.2 ms TTI을 갖는 UL grant을 사용할 수 있음을 의미하고, 또한 logical channel A, B, C, D가 0.2 ms TTI을 갖는 UL grant을 통해서 전송될 때 LCP 과정에서 적용되는 우선 순위가 C > B > A > D 임을 의미한다.
만약 1 ms TTI을 갖는 UL grant에는 A > B 순으로 priority을 제공하고 0.2 ms TTI을 갖는 UL grant에는 C > D 순으로 priority을 제공하였다면 이는 logical channel A, B가 1 ms TTI을 갖는 UL grant을 사용할 수 있음을 의미한다. 즉, logical channel A, B 외 다른 logical channel은 1 ms TTI을 갖는 UL grant을 사용할 수 없음을 의미한다. LCP 동작을 수행하기 위해서는 반드시 priority 정보가 필요하다. 따라서 특정 logical channel에 대한 priority 정보가 없음은 결국 그 logical channel을 사용할 수 없음을 의미한다. 마찬가지로 logical channel C, D가 0.2 ms TTI을 갖는 UL grant을 사용할 수 있음을 의미한다. 즉, logical channel C, D 외 다른 logical channel은 0.2 ms TTI을 갖는 UL grant을 사용할 수 없음을 의미한다.
(2) 또한 기지국은 단말에게 각 TTI 종류 별 우선 순위를 제공한다. 이 역시 RRC signaling 중 LogicalChannelConfig IE을 통해서 이루어질 수 있다.
A. 예를 들면 0.2 ms TTI을 갖는 UL grant가 1 ms TTI을 갖는 UL grant 보다 높은 우선 순위를 갖도록 설정할 수 있다. 위의 설명에 따르면 TTI 사이의 우선 순위는 LogicalChannelConfig IE에 포함된다. 여기서 LogicalChannelConfig IE는 특정 logical channel에 대한 정보를 포함하고 있다. 따라서 특정 logical channel에 대한 TTI 우선 순위가 0.2 ms TTI가 1 ms TTI 보다 높다고 설정되어 있다면 이는 그 logical channel이 0.2 ms TTI 및 1 ms TTI을 사용할 수 있다는 정보를 포함하고 있다고 볼 수 있다.
B. 아래의LogicalChannelConfig IE은 각 TTI 종류 별 logical channel priority 정보 (priorityForTTIType1, priorityForTTIType2), 각 TTI 종류 별 우선 순위 정보 (ulTTI-SpecificParameters, TTIType, priorityAmongTTIType)가 어떻게 설정되는지 보여준다.
- LogicalChannelConfig
The IE LogicalChannelConfig is used to configure the logical channel parameters.
LogicalChannelConfig information element
-- ASN1START
LogicalChannelConfig ::= SEQUENCE {
ul-SpecificParameters SEQUENCE {
priorityForTTIType1 INTEGER (1..16),
priorityForTTIType2 INTEGER (1..16),
prioritisedBitRate ENUMERATED {
kBps0, kBps8, kBps16, kBps32, kBps64, kBps128,
kBps256, infinity, kBps512-v1020, kBps1024-v1020,
kBps2048-v1020, spare5, spare4, spare3, spare2,
spare1},
bucketSizeDuration ENUMERATED {
ms50, ms100, ms150, ms300, ms500, ms1000, spare2,
spare1},
logicalChannelGroup INTEGER (0..3) OPTIONAL -- Need OR
} OPTIONAL, -- Cond UL
ulTTI-SpecificParameters SEQUENCE {
TTIType INTEGER (1..16),
priorityAmongTTIType INTEGER (1..16),
}
...,
[[ logicalChannelSR-Mask-r9 ENUMERATED {setup} OPTIONAL -- Cond SRmask
]],
[[ logicalChannelSR-Prohibit-r12 BOOLEAN OPTIONAL -- Need ON
]]
}
-- ASN1STOP
[표 3]
도 6은 본 발명의 제1 실시예에 따라 단말이 기지국으로부터 특정 시점에 한 종류의 TTI을 갖는 자원을 할당 받은 경우를 나타내는 도면이다.
(3) 단말은 도 6과 같이 기지국으로부터 특정 시점에 한 종류의 TTI에 대응하는 UL grant을 할당 받았을 때 다음과 같이 동작한다.
A. 만약 단말이 기지국으로부터 1 ms TTI을 갖는 UL grant을 할당 받은 경우 이에 해당하는 logical channel인 A, B, C, D에 대해서 주어진 priority인 A > B > C > D 순으로 LCP 동작을 통해서 UL grant을 채운다.
B. 만약 단말이 기지국으로부터 0.2 ms TTI을 갖는 UL grant을 할당 받은 경우 이에 해당하는 logical channel인 A, B, C, D에 대해서 주어진 priority인 C > B > A > D 순으로 LCP 동작을 통해서 UL grant을 채운다.
도 7은 단말이 기지국으로부터 여러 종류의 TTI을 갖는 자원을 동시에 할당 받은 경우를 나타내는 도면이다.
(4) 단말은 기지국으로부터 두 종류 이상의 TTI에 대응하는 UL grant을 동시에 할당 받았을 때 다음과 같이 동작한다.
A. 하나의 예로써 이는 도 7과 같이 단말이 같은 시점을 지칭하는 두 개의 UL grant (1 ms TTI을 갖는 UL grant 및 0.2 ms TTI을 갖는 UL grant)을 할당 받은 경우를 포함한다.
B. 단말은 기지국이 제공한 TTI 종류 별 우선 순위 정보에 따라서 TTI 사이의 우선 순위가 높은 TTI을 갖는 UL grant에 해당 TTI가 갖는 logical channel priority 순서대로 UL grant을 채운다.
i. 본 예에서는 0.2 ms TTI을 갖는 UL grant가 1 ms TTI을 갖는 UL grant 보다 높은 우선 순위를 갖기 때문에 단말은 먼저 0.2 ms TTI을 갖는 UL grant에 이에 해당하는 logical channel priority인 C > B > A > D 순으로 UL grant을 채운다.
ii. 0.2 ms TTI을 갖는 UL grant에 LCP 동작을 통해서 데이터를 모두 채웠다면 그 다음 우선 순위인 1 ms TTI을 갖는 UL grant에 이에 해당하는 logical channel priority인 A > B > C > D 순으로 UL grant을 채운다.
도 8은 본 발명의 제1 실시예에 따라 제안하는 동작 2에 대한 순서도를 나타내는 도면이다.
도 8을 참조하면, 단말은 M 번째 우선 순위를 갖는 TTI를 파악하고, M 번째 우선 순위를 갖는 TTI에 대한 logical channel 우선 순위를 파악할 수 있다. 이후, 단말은 M 번째 우선 순위를 갖는 TTI(UL 자원)에 해당 logical channel 우선 순위에 따라 데이터를 전송할 수 있다.
단말은 마지막 TTI 종류인지 또는 할당된 UL 자원이 모두 소진되었는지 판단할 수 있다. 실시예에 따라, 마지막 TTI 종류이거나 할당된 UL 자원이 모두 소진된 경우, 단말은 LCP 동작을 종료할 수 있다. 다른 실시예에 따라, 마지막 TTI 종류가 아니거나 할당된 UL 자원이 모두 소진되지 않은 경우, 단말은 다음 우선 순위(M+1 번째)를 갖는 TTI를 파악하고 상기 LCP 동작들을 반복할 수 있다.
기지국은 단말에게 각 TTI 종류 별로 logical channel 사이의 우선 순위 정보를 제공할 수 있다. 본 발명에서는 logical channel 사이의 우선 순위 정보 외에도 PBR (Prioritized Bit Rate) 및 BSD (Bucket Size Duration) 정보 역시 기지국이 단말에게 RRC signaling 등을 통해서 각 TTI 종류 별로 제공할 수 있음을 고려한다.
따라서 단말은 동일한 logical channel에 속한 데이터를 TTI 종류 a를 이용하여 전송할 때와 TTI 종류 b를 이용하여 전송할 때 서로 다른 PBR (PBRa 및 PBRb) 및 서로 다른 BSD (BSDa 및 BSDb)을 적용할 수 있다. PBR과 BSD의 역할은 기존의 LTE와 동일한 것을 고려한다. 즉, 다음과 같이 동작한다.
* 특정 logical channel에 속한 데이터를 TTI 종류 a을 이용하여 전송할 때 (LTE에서 정의된 LCP 절차의 step 1에 해당)
- 1회 할당량: PBRa X TTIa
- 최대 할당량: PBRa X BSDa
* 특정 logical channel에 속한 데이터를 TTI 종류 b을 이용하여 전송할 때 (LTE에서 정의된 LCP 절차의 step 1에 해당)
- 1회 할당량: PBRb X TTIb
- 최대 할당량: PBRb X BSDb
<동작 3>
(1) 기지국은 단말에게 LTE와 동일하게 logical channel priority을 제공한다. 이는 RRC signaling 중 LogicalChannelConfig IE을 통해서 이루어질 수 있다.
A. 예를 들면 logical channel A > B > C > D 순으로 priority을 제공한다.
(2) 또한 기지국은 단말에게 각 logical channel 별 TTI 종류에 대한 우선 순위를 제공한다. 이 역시 RRC signaling 중 LogicalChannelConfig IE을 통해서 이루어질 수 있다.
A. 예를 들면 logical channel A는 1 ms TTI을 갖는 UL grant가 0.2 ms TTI을 갖는 UL grant 보다 높은 우선 순위를 갖는다. 이는 logical channel A가 1 ms TTI을 갖는 UL grant와 0.2 ms TTI을 갖는 UL grant을 모두 사용할 수 있음을 의미한다.
B. 또한 logical channel B는 0.2 ms TTI을 갖는 UL grant가 1 ms TTI을 갖는 UL grant 보다 높은 우선 순위를 갖는다. 이는 logical channel B가 0.2 ms TTI을 갖는 UL grant와 1 ms TTI을 갖는 UL grant을 모두 사용할 수 있음을 의미한다.
C. 아래의LogicalChannelConfig IE은 각 TTI 종류 별 우선 순위 정보 (ulTTI-SpecificParameters, TTIType, priorityAmongTTIType)가 어떻게 설정되는지 보여준다.
- LogicalChannelConfig
The IE LogicalChannelConfig is used to configure the logical channel parameters.
LogicalChannelConfig information element
-- ASN1START
LogicalChannelConfig ::= SEQUENCE {
ul-SpecificParameters SEQUENCE {
priority INTEGER (1..16),
prioritisedBitRate ENUMERATED {
kBps0, kBps8, kBps16, kBps32, kBps64, kBps128,
kBps256, infinity, kBps512-v1020, kBps1024-v1020,
kBps2048-v1020, spare5, spare4, spare3, spare2,
spare1},
bucketSizeDuration ENUMERATED {
ms50, ms100, ms150, ms300, ms500, ms1000, spare2,
spare1},
logicalChannelGroup INTEGER (0..3) OPTIONAL -- Need OR
} OPTIONAL, -- Cond UL
ulTTI-SpecificParameters SEQUENCE {
TTIType INTEGER (1..16),
priorityAmongTTIType INTEGER (1..16),
}
...,
[[ logicalChannelSR-Mask-r9 ENUMERATED {setup} OPTIONAL -- Cond SRmask
]],
[[ logicalChannelSR-Prohibit-r12 BOOLEAN OPTIONAL -- Need ON
]]
}
-- ASN1STOP
[표 4]
(3) 단말은 기지국으로부터 한 종류의 TTI에 대응하는 UL grant을 할당 받았을 때 다음과 같이 동작한다.
A. 단말은 기지국으로부터 할당 받은 UL grant에 (해당 UL grant의 TTI 종류에 상관 없이) priority A > B > C > D 순으로 데이터를 채운다.
(4) 단말은 기지국으로부터 두 종류 이상의 TTI에 대응하는 UL grant을 할당 받았을 때 다음과 같이 동작한다.
A. 단말은 priority가 높은 logical channel 순으로 각 logical channel의 TTI 우선 순위에 따라서 할당 받은 UL grant에 데이터를 채운다.
i. 본 예시에서는 logical channel A의 우선 순위가 가장 높은 것으로 가정하였다. 또한 logical channel A에 대해서 1 ms TTI을 갖는 UL grant가 0.2 ms TTI을 갖는 UL grant 보다 높은 우선 순위를 갖는다고 가정하였다. 따라서 단말은 logical channel A에 해당하는 데이터를 1 ms TTI을 갖는 UL grant에 먼저 채운 후 해당 UL grant가 부족할 경우 0.2 ms TTI을 갖는 UL grant에 이어서 데이터를 채운다.
ii. 단말은 logical channel A 다음으로 우선 순위가 높은 logical channel B에 대해서 동일한 동작을 반복한다. 여기서 logical channel B에 대해서는 0.2 ms TTI을 갖는 UL grant가 1 ms TTI을 갖는 UL grant 보다 높은 우선 순위를 갖는다고 가정하였다. 따라서 단말은 logical channel B에 해당하는 데이터를 0.2 ms TTI을 갖는 UL grant에 먼저 채운 후 해당 UL grant가 부족할 경우 1 ms TTI을 갖는 UL grant에 이어서 데이터를 채운다.
1. 이는 logical channel A에 해당하는 데이터를 1 ms 및 0.2 ms TTI을 갖는 UL grant에 채운 후 각 UL grant에 자원이 남은 경우를 가정하여 logical channel B에 해당하는 데이터를 채우는 경우를 설명한 것이다. 만약 logical channel A에 해당하는 데이터를 채운 후 모든 UL grant을 소진하였다면 그 것으로 LCP 동작은 종료된다. 만약 logical channel A에 해당하는 데이터를 채운 후 일부 UL grant는 소진되고 일부에만 자원이 남았다면 남아있는 자원이 존재하는 UL grant을 대상으로 위와 동일한 동작을 계속 수행한다.
도 9는 본 발명의 제1 실시예에 따라 제안하는 동작 3에 대한 순서도를 나타내는 도면이다.
도 9를 참조하면, 단말은 M 번째 우선 순위를 갖는 logical channel을 파악하고, M 번째 우선 순위를 갖는 logical channel에 대한 TTI 우선 순위를 파악할 수 있다. 이후, 단말은 M 번째 우선 순위를 갖는 logical channel의 데이터를 해당 TTI 우선 순위에 따라서 할당된 자원 상에서 전송할 수 있다.
단말은 마지막 logical channel인지 또는 할당된 UL 자원이 모두 소진되었는지 판단할 수 있다. 실시예에 따라, 마지막 logical channel이거나 할당된 UL 자원이 모두 소진된 경우, 단말은 LCP 동작을 종료할 수 있다. 다른 실시예에 따라, 마지막 logical channel이 아니거나 할당된 UL 자원이 모두 소진되지 않은 경우, 단말은 다음 우선 순위(M+1 번째)를 갖는 logical channel을 파악하고 상기 LCP 동작들을 반복할 수 있다.
기지국은 단말에게 각 TTI 종류 별 logical channel 우선 순위 정보를 제공할 수 있다. 본 발명에서는 logical channel의 우선 순위 정보 외에도 PBR (Prioritized Bit Rate) 및 BSD (Bucket Size Duration) 정보 역시 기지국이 단말에게 RRC signaling 등을 통해서 각 TTI 종류 별로 제공할 수 있음을 고려한다. 단말은 동일한 logical channel에 속한 데이터를 TTI 종류 a을 이용하여 전송할 때와 TTI 종류 b을 이용하여 전송할 때 서로 다른 PBR (PBRa 및 PBRb) 및 서로 다른 BSD (BSDa 및 BSDb)을 적용하게 된다. PBR과 BSD의 역할은 기존의 LTE와 동일한 것을 고려한다. 즉, 다음과 같이 동작한다.
* 특정 logical channel에 속한 데이터를 TTI 종류 a을 이용하여 전송할 때 (LTE에서 정의된 LCP 절차의 step 1에 해당)
- 1회 할당량: PBRa X TTIa
- 최대 할당량: PBRa X BSDa
* 특정 logical channel에 속한 데이터를 TTI 종류 b을 이용하여 전송할 때 (LTE에서 정의된 LCP 절차의 step 1에 해당)
- 1회 할당량: PBRb X TTIb
- 최대 할당량: PBRb X BSDb
<동작 4>
(1) 기지국은 단말에게 LTE와 동일하게 logical channel priority을 제공한다. 이는 RRC signaling 중 LogicalChannelConfig IE을 통해서 이루어질 수 있다.
(2) 기지국은 단말에게 특정 logical channel에 속한 데이터를 일정 시간 이내에 반복 전송할 수 있는 권리를 부여한다. 이에 대한 설정 역시 아래와 같이 LogicalChannelConfig IE을 통해서 이루어질 수 있다.
A. 여기서 말하는 반복 전송이란 HARQ 및 이에 대한 ACK/NACK feedback과 별개로 특정 logical channel에 속한 데이터를 UL grant 할당 시 전송한 후 다음 UL grant 할당 시 다시 전송하는 것을 말한다.
B. 보다 구체적으로 기지국은 단말에게 아래에 관한 설정을 수행할 수 있다.
i. 특정 logical channel에 속한 데이터의 반복 전송 허용 여부
ii. 특정 logical channel에 속한 데이터의 반복 전송이 허용되는 최대 시간 구간
iii. 특정 logical channel에 속한 데이터의 최대 반복 전송 가능 횟수
- LogicalChannelConfig
The IE LogicalChannelConfig is used to configure the logical channel parameters.
LogicalChannelConfig information element
-- ASN1START
LogicalChannelConfig ::= SEQUENCE {
ul-SpecificParameters SEQUENCE {
priority INTEGER (1..16),
allowRepeatedTransmission BOOLEAN OPTIONAL -- Need ON
allowRepeatedTransmissionTimer ENUMERATED {sf1, sf2, sf4, sf8, sf16, spare1, spare2}, OPTIONAL -- Need ON
maxRepeatedTransmission INTEGER (1..16), OPTIONAL -- Need ON
prioritisedBitRate ENUMERATED {
kBps0, kBps8, kBps16, kBps32, kBps64, kBps128,
kBps256, infinity, kBps512-v1020, kBps1024-v1020,
kBps2048-v1020, spare5, spare4, spare3, spare2,
spare1},
bucketSizeDuration ENUMERATED {
ms50, ms100, ms150, ms300, ms500, ms1000, spare2,
spare1},
logicalChannelGroup INTEGER (0..3) OPTIONAL -- Need OR
} OPTIONAL, -- Cond UL
...,
[[ logicalChannelSR-Mask-r9 ENUMERATED {setup} OPTIONAL -- Cond SRmask
]],
[[ logicalChannelSR-Prohibit-r12 BOOLEAN OPTIONAL -- Need ON
]]
}
-- ASN1STOP
[표 5]
(3) 단말은 기지국이 특정 logical channel에 속한 데이터의 반복 전송을 허용하였다면 반복 전송이 허용되는 최대 시간 구간과 최대 반복 전송 가능 횟수를 고려하여 반복 전송을 수행한다.
도 10은 본 발명의 제1 실시예에 따라 제안하는 동작 4를 설명하기 위한 예시를 나타내는 도면이다.
i. 기지국은 단말에게 logical channel A에 대한 반복 전송을 허용하였다. 또한 반복 전송이 허용되는 최대 시간 구간을 5 normal TTI로 설정하였고, 최대 반복 전송 가능 횟수를 3회로 설정하였다.
도 10을 참조하면, 단말은 T1 시점에 할당된 UL grant에 logical channel A의 데이터를 채워서 처음 전송한다. 그 후 반복 전송이 허용되는 최대 시간 구간인 5 normal TTI 내에 UL grant을 받았을 때 최대 반복 전송 가능 횟수인 3회를 넘지 않은 경우에는 T1 시점에 전송하였던 logical channel A의 데이터를 T2 시점에 할당 받은 UL grant에 다시 채운 후 전송할 수 있다. 동일한 동작이 T3 시점에 할당 받은 UL grant에도 동일한 원리로 적용될 수 있다.
<Logical Channel과 TTI 사이의 대응 관계>
위에서 설명한 동작 2 및 동작 3은 LogicalChannelConfig IE을 통해서 기지국이 단말에게 TTI 종류별 logical channel의 우선순위 (priorityForTTIType1, priorityForTTIType2 등) 및 서로 다른 TTI 종류 사이의 우선순위 (TTIType, priorityAmongTTIType 등) 등에 관한 정보를 제공한다. 여기서 단말은 특정 logical channel에 속한 데이터를 송수신하는데 있어서 기지국이 제공한 특정 logical channel의 LogicalChannelConfig IE에 포함되어 있는 TTI 종류만 사용한다고 해석할 수 있다. 다르게 말하면 기지국은 LogicalChannelConfig IE을 통해서 단말이 해당 logical channel에 속한 데이터를 송수신하는데 사용할 수 있는 TTI 종류를 지정한다고 볼 수도 있다. 이러한 점에 대해서는 동작 2 및 동작 3의 설명에서도 언급하였지만 본 항목에서 조금 더 세부적으로 알아보도록 한다.
도 11은 본 발명의 제1 실시예에 따라 제안하는 logical channel과 TTI 사이의 hard split을 나타내는 도면이다.
(1) Hard split-based approach (도 11)
- 기지국은 단말에게 6개의 logical channel {1, 2, 3, 4, 5, 6} 및 2개의 TTI 종류 {A, B}을 지원하고 있다고 가정하여 보자.
- 단말은 logical channel {1, 2, 3}에 속한 데이터를 전송할 때 TTI 종류 A만 사용할 수 있다. 즉, TTI 종류 B을 사용하여 logical channel {1, 2, 3}에 속한 데이터를 전송할 수 없다.
- 단말은 logical channel {4, 5, 6}에 속한 데이터를 전송할 때 TTI 종류 B만 사용할 수 있다. 즉, TTI 종류 A을 사용하여 logical channel {4, 5, 6}에 속한 데이터를 전송할 수 없다.
-
도 12는 본 발명의 제1 실시예에 따라 제안하는 logical channel과 TTI 사이의 soft split을 나타내는 도면이다.
(2) Soft split-based approach (도 12)
- 기지국은 단말에게 6개의 logical channel {1, 2, 3, 4, 5, 6} 및 2개의 TTI 종류 {A, B}을 지원하고 있다고 가정하여 보자.
- 단말은 logical channel {1, 2, 3, 4, 5, 6}에 속한 데이터를 전송할 때 TTI 종류 {A, B} 중 하나 혹은 일부 혹은 전부를 사용할 수 있다.
도 13은 본 발명의 제1 실시예에 따라 제안하는 logical channel과 TTI 사이의 hybrid split을 logical channel 관점에서 나타내는 도면이다.
(3) Hybrid approach (도 13)
- 기지국은 단말에게 9개의 logical channel {1, 2, 3, 4, 5, 6, 7, 8, 9} 및 3개의 TTI 종류 {A, B, C}을 지원하고 있다고 가정하여 보자.
- TTI 종류 A은 logical channel {1, 2, 3}에 속한 데이터를 전송할 때 사용될 수 있다.
- TTI 종류 B은 logical channel {1, 2, 3, 4, 5, 6, 7, 8, 9} 중 임의의 logical channel에 속한 데이터를 전송할 때 사용할 수 있다.
- TTI 종류 C은 logical channel {4, 5, 6, 7, 8, 9}에 속한 데이터를 전송할 때 사용될 수 있다.
도 14는 본 발명의 제1 실시예에 따라 제안하는 logical channel과 TTI 사이의 hybrid split을 TTI 관점에서 나타내는 도면이다.
- Logical channel {1, 2, 3}에 속한 데이터는 TTI 종류 A에 의해서 송수신될 수 있다.
- Logical channel {4, 5, 6}에 속한 데이터는 모든 TTI 종류를 통해서 송수신될 수 있다.
- Logical channel {7, 8, 9}에 속한 데이터는 TTI 종류 {B, C}에 의해서 송수신될 수 있다.
지금까지설명한 hard split-based approach, soft split-based approach, hybrid approach 동작을 실현하기 위해서는 기본적으로 기지국이 단말에게 logical channel의 설정에 관한 정보를 알려줄때 이에 속한 데이터를 송수신하는데 사용할 수 있는 TTI 종류도 함께 알려주어야 한다. 이는 다음과같이 LogicalChannelConfig IE을 통해서알려줄수있다. 동작 2 및 동작 3의 설명에서 언급한 LogicalChannelConfig IE 역시이에관한정보와 함께 logical channel에 관한 priority 정보를추가로포함하고있다고볼수있다.
위에서 설명한 LogicalChannelConfig IE 활용 외의 방법을 통해서도 각각의 logical channel에 속한 데이터가 전송될 수 있는 TTI 종류를 기지국이 단말에게 알려줄 수 있다.
<동작 5>
(1) 기지국은 단말에게 복수의 logical channel priority set을 제공한다. 이는 RRC signaling 중 LogicalChannelConfig IE을 통해서 이루어질 수 있다.
A. 예를 들면 logical channel priority set 1은 A > B > C > D 순으로 priority을 제공하고 logical channel priority set 2은 C > D > A > B 순으로 priority을 제공한다.
B. 아래의 LogicalChannelConfig IE은 복수의 logical channel priority set이 어떻게 설정되는지 보여준다.
(2) 기지국은 단말에게 UL grant을 할당할 때 해당 UL grant에 적용되는 logical channel priority set ID을 제공한다. 이는 PDCCH을 통해서 전송되는 DCI 등을 통해서 이루어질 수 있다.
A. 아래의 표는 기지국이 단말에게 UL grant을 할당할 때 해당 UL grant에 적용되는 logical channel priority set ID을 알려주는 예시를 보여준다.
(3) 위의 (1)과 (2)의 과정을 통해서 단말은 복수의 logical channel priority set 및 UL grant에 해당하는 logical channel priority set ID을 제공받았다. 이를 기반으로 단말은 아래와 같이 동작한다.
A. 단말은 UL grant에 명시되어 있는 logical channel priority set ID을 확인하고 이에 대응하는 logical channel priority을 확인한다.
B. 단말은 현재 buffer에 존재하는 데이터를 위에서 확인한 logical channel priority에 따라서 UL grant에 채운다.
도 15는 본 발명의 제1 실시예에 따라 기지국이 UL grant를 통해 단말에게 LCP set을 알려주는 방법을 나타내는 도면이다.
(1) 기지국은 단말에게 복수의 logical channel priority (LCP) set 1과 2을 제공한다. 여기서 logical channel priority set 1의 logical channel priority는 A > B > C> D로 설정되어 있고 logical channel priority set 2의 logical channel priority는 C > D > A > B로 설정되어 있다.
(2) 기지국은 단말에게 UL grant을 할당할 때 해당 UL grant에 적용되는 logical channel priority set ID을 제공한다.
A. UL grant에 적용되는 logical channel priority set ID가 1인 경우에는 priority A > B > C > D 순으로 해당 UL grant에 LCP 동작을 통해서 할당 받은 자원을 채운다.
B. UL grant에 적용되는 logical channel priority set ID가 2인 경우에는 priority C > D > A > B 순으로 해당 UL grant에 LCP 동작을 통해서 할당 받은 자원을 채운다.
위의 (1)번 동작에서 기지국은 단말에게 각 TTI 종류 별 logical channel 우선 순위 정보를 제공할 수 있다. 본 발명에서는 logical channel 우선 순위 정보 외에도 PBR (Prioritized Bit Rate) 및 BSD (Bucket Size Duration) 정보 역시 기지국이 단말에게 RRC signaling 등을 통해서 각 TTI 종류 별로 제공할 수 있음을 고려한다. 따라서 단말은 동일한 logical channel에 속한 데이터를 TTI 종류 a을 이용하여 전송할 때와 TTI 종류 b을 이용하여 전송할 때 서로 다른 PBR (PBRa 및 PBRb) 및 서로 다른 BSD (BSDa 및 BSDb)을 적용하게 된다. PBR과 BSD의 역할은 기존의 LTE와 동일한 것을 고려한다. 즉, 다음과 같이 동작한다.
- 특정 logical channel에 속한 데이터를 TTI 종류 a을 이용하여 전송할 때 (LTE에서 정의된 LCP 절차의 step 1에 해당)
- 1회 할당량: PBRa X TTIa
- 최대 할당량: PBRa X BSDa
- 특정 logical channel에 속한 데이터를 TTI 종류 b을 이용하여 전송할 때 (LTE에서 정의된 LCP 절차의 step 1에 해당)
- 1회 할당량: PBRb X TTIb
- 최대 할당량: PBRb X BSDb
<동작 6>
지금까지 설명한 동작 1 ~ 5는 기지국이 단말이 사용할 logical channel 사이의 우선순위를 결정하는 동작이라고 볼 수 있다. 동작 6에서는 단말이 주도적으로 자신이 사용할 LCP을 선택하는 동작을 알아보도록 한다.
(1) 기지국은 단말에게 복수의 logical channel priority을 제공한다. 하나의 예로써 단말에게 제공되는 logical channel priority은 현재 기지국이 운영하고 있는 각각의 TTI 종류에 최적화된 logical channel priority라고 볼 수 있다. 이는 RRC signaling 중 LogicalChannelConfig IE을 통해서 이루어질 수있다.
A. 예를 들면 기지국은 단말에게 logical channel A > B > C > D 순으로 logical channel priority set을 하나 설정하여 제공하고 추가적으로 C > D > A > B 순으로 logical channel priority set을 하나 설정하여 제공한다. 예를 들면 logical channel priority set A > B > C > D은 보통 길이의 TTI에 적용하기 용이한 priority이며 logical channel priority set C > D > A > B은 짧은 길이의 TTI에 적용하기 용이한 priority라고 볼 수 있다.
B. 아래의 LogicalChannelConfig IE은 기지국이 단말에게 복수의 logical channel priority set을 제공하는 예시를 보여주고 있다.
(2) 단말은 기지국에게 UL 자원을 요청할 때 (scheduling request 신호 전송 시 또는 buffer status report MAC CE 전송 시 등) 기지국으로부터 할당 받은 자원에 적용할 logical channel priority의 set ID을 explicit 또는 implicit 방법 등을 통해서 기지국에게 알린다.
(3) 단계 (2)에서 단말로부터 선호하는 logical channel priority set ID 정보를 수신한 기지국은 해당 set ID가 지칭하는 logical channel priority을 적용하기 용이한 자원 (예를 들면 짧은 TTI을 갖는 자원 또는 긴 TTI을 갖는 자원)을 선택한 후 이를 단말에게 UL grant을 통해서 할당한다.
(4) 단계 (3)에서 기지국으로부터 UL grant을 통해서 자원을 할당 받은 단말은 자신이 기지국에게 알려준 logical channel priority set ID가 지칭하는 logical channel priority에 따라서 LCP 수행 및 데이터 생성 후 전송을 수행한다.
도 16은 본 발명의 제1 실시예에 따라 단말이 scheduling request을 통해서 기지국에게 선호하는 LCP set을 알려주는 방법을 나타내는 도면이다. 도 16은 동작 6에 대한 일 예시에 해당한다.
위의 단계 (2)에서 단말이 기지국에게 자신이 선호하는 logical channel priority에 대한 정보를 set ID 등의 형태로 제공한다고 설명하였다. 또한 이러한 정보는 scheduling request 신호 전송 시 또는 buffer status report MAC CE 전송 시 등에 제공한다고 설명하였다. 본 발명에서는 다양한 방법을 통해서 단말이 기지국에게 자신이 선호하는 logical channel priority set ID에 대한 정보를 제공할 수 있음을 고려한다. 아래의 이에 대한 예시에 해당한다.
- Buffer status report MAC CE에 preferred logical channel priority set ID을 포함시킴.
- Preferred logical channel priority set ID 정보를 포함하는 MAC CE을 새롭게 정의함.
- 단말에게 복수의 scheduling request 신호를 할당하고 각 scheduling request 신호와 각 preferred logical channel priority set ID을 대응시킴. 따라서 기지국이 특정 scheduling request 신호를 수신하면 scheduling request 신호의 종류에 따라서 단말의 preferred logical channel priority set ID을 알아낼 수 있음.
- 단말에게 하나의 scheduling request 신호를 할당하고, scheduling request 신호를 전송할 수 있는 시간 또는 주파수 자원을 구분하여 각 시간 또는 주파수 자원과 각 preferred logical channel priority set ID을 대응시킴. 따라서 단말은 항상 동일한 scheduling request 신호를 전송하더라도 기지국은 이를 수신한 시간 또는 주파수 자원에 따라서 단말의 preferred logical channel set ID을 알아낼 수 있음.
위의 (1)번 동작에서 기지국은 단말에게 각 TTI 종류 별 우선 순위 정보를 제공하였다. 본 발명에서는 우선 순위 정보 외에도 PBR (Prioritized Bit Rate) 및 BSD (Bucket Size Duration) 정보 역시 기지국이 단말에게 RRC signaling 등을 통해서 각 TTI 종류 별로 제공할 수 있음을 고려한다. 따라서 단말은 동일한 logical channel에 속한 데이터를 TTI 종류 a을 이용하여 전송할 때와 TTI 종류 b을 이용하여 전송할 때 서로 다른 PBR (PBRa 및 PBRb) 및 서로 다른 BSD (BSDa 및 BSDb)을 적용하게 된다. PBR과 BSD의 역할은 기존의 LTE와 동일한 것을 고려한다. 즉, 다음과 같이 동작한다.
- 특정 logical channel에 속한 데이터를 TTI 종류 a을 이용하여 전송할 때 (LTE에서 정의된 LCP 절차의 step 1에 해당)
- 1회 할당량: PBRa X TTIa
- 최대 할당량: PBRa X BSDa
- 특정 logical channel에 속한 데이터를 TTI 종류 b을 이용하여 전송할 때 (LTE에서 정의된 LCP 절차의 step 1에 해당)
- 1회 할당량: PBRb X TTIb
- 최대 할당량: PBRb X BSDb
<동작7>
본 동작에서는 단말이 UL grant을 통해서 UL 자원을 할당 받았을 때 LCP을 통해서 할당 받은 UL 자원에 데이터를 포함시키는 전체적인 동작에 대해서 설명한다. 기본적으로 앞에서 설명한 LTE의 LCP 동작을 기반으로 한다. 본 동작에서는 복수의 logical channel과 복수의 TTI가 존재할 때 LTE의 LCP 동작이 어떻게 개선되어야 하는가에 초점을 맞춘다.
먼저 도 11과 같이 hard split, 즉 logical channel {1, 2, 3}은 TTI type A만 사용하도록 설정되어 있고 logical channel {4, 5, 6}은 TTI type B만 사용하도록 설정되어 있는 경우에는 LTE의 LCP 동작을 그대로 적용하면 된다. 즉, logical channel {1, 2, 3}에 속한 데이터를 TTI type A에 해당하는 UL 자원에 포함시킬 때에는 LTE의 LCP 동작을 그대로 적용하면 되고 logical channel {4, 5, 6}에 속한 데이터를 TTI type B에 해당하는 UL 자원에 포함시킬 때에는 LTE의 LCP 동작을 그대로 적용하면 된다. 보다 구체적으로 다음과 같이 동작한다.
(1) 단말은 LCH 1에속한데이터를 PBR1 * TTIA 만큼 채운다.
A. 여기서 LCH {1, 2, 3} 사이의 우선 순위는 1 > 2 > 3 순으로 가정하였다.
B. 또한 LCH 1에 속한 데이터는 최대 총 PBR1 * BSDA 만큼 채워질 수 있다.
(2) 만약과정 (1) 수행 후 할당 받은 UL 자원이 남았다면 LCH 2에 속한 데이터를 PBR2 * TTIA 만큼 채운다.
(3) 만약 과정 (2) 수행 후 할당 받은 UL 자원이 남았다면 LCH 3에 속한 데이터를 PBR3 * TTIA 만큼 채운다.
(4) 만약 과정 (3) 수행 후 할당 받은 UL 자원이 남았다면 LCH 1의 남아있는 모든 데이터를 할당 받은 자원에 채운다.
(5) 만약 과정 (4) 수행 후 할당 받은 자원이 남았다면 LCH 2의 남아있는 모든 데이터를 할당 받은 자원에 채운다.
(6) 만약 과정 (5) 수행 후 할당 받은 자원이 남았다면 LCH 3의 남아있는 모든 데이터를 할당 받은 자원에 채운다.
(7) 위의 과정을 수행하는 도중 할당 받은 UL 자원이 모두 소진되었으면 전체 동작이 종료된다.
위와 같은 동작을 LCH {4, 5, 6}과 TTI type B에도 동일하게 적용할 수 있다.
다음으로 도 12와 같이 soft split, 즉 LCH {1, 2, 3}과 {4, 5, 6}은 TTI type A와 B을 모두 사용할 수 있지만 TTI type A에 대해서는 LCH {1, 2, 3}이 {4, 5, 6} 보다 높은 우선 순위를 갖고 TTI type B에 대해서는 LCH {4, 5, 6}이 {1, 2 3} 보다 높은 우선 순위를 갖는 경우를 생각해 보자. 이러한 경우에는 다음과 같이 두 가지 동작이 가능하다.
첫째, 단말이 전송하고자 하는 데이터를 TTI type A에 해당하는 UL 자원에 포함시킬 때 아래와 같이 LCH 사이의 우선 순위를 설정한 후 LTE의 LCP 동작을 그대로 적용한다. 보다 구체적으로 다음과 같이 동작한다.
(1) 단말은 LCH 1에 속한 데이터를 PBR1,A * TTIA 만큼 채운다.
A. 여기서 LCH {1, 2, 3, 4, 5, 6} 사이의 우선 순위는 1 > 2 > 3 > 4 > 5 > 6 순으로 가정하였다.
B. 여기서 PBR1,A은 LCH 1에 속한 데이터를 TTI type A에 속한 데이터에 포함시킬 때 적용되는 PBR을 의미한다.
C. 또한 LCH 1에 속한 데이터는 LCP step 1에서 최대 총 PBR1,A * BSDA 만큼 채워질 수 있다.
(2) 만약 과정 (1) 수행 후 할당 받은 UL 자원이 남았다면 LCH 2에 속한 데이터를 PBR2,A * TTIA 만큼 채운다.
(3) 만약 과정 (2) 수행 후 할당 받은 UL 자원이 남았다면 LCH 3에 속한 데이터를 PBR3,A * TTIA 만큼 채운다.
(4) 만약 과정 (3) 수행 후 할당 받은 UL 자원이 남았다면 LCH 4에 속한 데이터를 PBR4,A * TTIA 만큼 채운다.
(5) 만약 과정 (4) 수행 후 할당 받은 UL 자원이 남았다면 LCH 5에 속한 데이터를 PBR5,A * TTIA 만큼 채운다.
(6) 만약 과정 (5) 수행 후 할당 받은 UL 자원이 남았다면 LCH 6에 속한 데이터를 PBR6,A * TTIA 만큼 채운다.
(7) 만약 과정 (6) 수행 후 할당 받은 UL 자원이 남았다면 LCH 사이의 우선 순위 순서대로 각 LCH의 남아있는 모든 데이터를 할당 받은 UL 자원에 채운다.
(8) 위의 과정을 수행하는 도중 할당 받은 UL 자원이 모두 소진되었으면 전체 동작이 종료된다.
위와같은동작을 LCH {1, 2, 3, 4, 5, 6}과 TTI type B에도 동일하게적용할수있다.
둘째, 단말이 전송하고자 하는 데이터를 TTI type A에 해당하는 UL 자원에 포함시킬 때 TTI type A에 대한 우선 순위가 높은 LCH {1, 2, 3}에 속한 데이터를 모두 포함시킨 후 할당 받은 UL 자원이 남은 경우에만 LCH {4, 5, 6}에 속한 데이터를 포함시키도록 할 수도 있다. 보다 구체적으로 다음과 같이 동작한다.
(1) 단말은 LCH 1에 속한 데이터를 PBR1,A * TTIA 만큼 채운다.
A. 여기서 LCH {1, 2, 3} 사이의 우선 순위는 1 > 2 > 3 순으로 가정하였다.
B. 여기서 PBR1,A은 LCH 1에 속한 데이터를 TTI type A에 속한 데이터에 포함시킬 때 적용되는 PBR을 의미한다.
C. 또한 LCH 1에 속한 데이터는 LCP step 1에서 최대 총 PBR1,A * BSDA 만큼 채워질 수 있다.
(2) 만약 과정 (1) 수행 후 할당 받은 UL 자원이 남았다면 LCH 2에 속한 데이터를 PBR2,A * TTIA 만큼 채운다.
(3) 만약 과정 (2) 수행 후 할당 받은 UL 자원이 남았다면 LCH 3에 속한 데이터를 PBR3,A * TTIA 만큼 채운다.
(4) 만약 과정 (3) 수행 후 할당 받은 UL 자원이 남았다면 LCH {1, 2, 3}의 우선 순위인 1 > 2 > 3 순으로 각 LCH의 남아 있는 모든 데이터를 할당 받은 UL 자원에 채운다.
(5) 만약 과정 (4) 수행 후, 즉 LCH {1, 2, 3}에 속한 데이터를 할당 받은 UL 자원에 모두 포함시켰음에도 불구하고 할당 받은 UL 자원이 남았다면 LCH {4, 5, 6}에 속한 데이터를 채우기 시작한다. 즉 LCH 4에 속한데이터를 PBR4,A * TTIA 만큼 채운다.
A. 여기서 LCH {4, 5, 6} 사이의 우선 순위는 4 > 5 > 6 순으로 가정하였다.
(6) 만약과정 (5) 수행후할당받은 UL 자원이남았다면 LCH 5에 속한데이터를 PBR5,A * TTIA 만큼 채운다.
(7) 만약 과정 (6) 수행 후 할당 받은 UL 자원이 남았다면 LCH 6에 속한 데이터를 PBR6,A * TTIA 만큼 채운다.
(8) 만약 과정 (7)을 수행한 후 할당 받은 UL 자원이 남았다면 LCH {4, 5, 6}의 우선 순위인 4 > 5 > 6 순으로 각 LCH의 남아있는 모든 데이터를 할당 받은 UL 자원에 채운다.
(9) 위의 과정을 수행하는 도중 할당 받은 UL 자원이 모두 소진되었으면 전체 동작이 종료된다.
위와 같은 동작을 TTI type B에도 동일하게 적용할 수 있다.
<동작 8>
동작 8에서는 기지국이 단말에게 default priority 및 special (예를 들면 TTI-specific) priority을 효율적으로 적용시키는 방법을 알아보도록 한다. 이는 아래와 같이 동작한다.
(1) 기지국은 단말에게 복수의 logical channel priority을 제공한다. 하나의 예로서 기지국이 단말에게 제공하는 logical channel priority는 현재 기지국이 운영하고 있는 각각의 TTI 종류에 최적화된 logical channel priority라고 볼 수 있다. 이는 RRC signaling 중 LogicalChannelConfig IE을 통해서 이루어질 수 있다.
A. 예를들면 기지국은 TTI type 1에 대해서는 logical channel B > C > A 순으로 priority을 설정하여줄수있다. 또한 기지국은 TTI type 2에 대해서는 logical channel C > A > B 순으로 priority을 설정하여 줄 수 있다.
(2) 기지국은 단말에게 default logical channel priority을 제공한다. 여기서 default logical channel priority란 기지국이 단말에게 할당한 UL 자원의 특성 (예를 들면 TTI 길이 또는 numerology)에 관계 없이 적용될 수 있는 logical channel priority라고 볼 수 있다. 이는 RRC signaling 중 LogicalChannelConfig IE을 통해서 이루어질 수 있다.
A. 예를들면 기지국은 logical channel A > B > C 순으로 default priority을 설정하여 줄 수있다.
B. 아래의 LogicalChannelConfig IE은 기지국이 단말에게 예를들면, 각 TTI 별로적용할 수 있는 special logical channel priority 및 UL grant의 특성, 예를들면 TTI 길이에무관하게적용될수있는 default logical channel priority을제공하는예시를보여주고있다.
(3) 또한 기지국은 단말에게 UL grant을 전송할 때 default logical channel priority 적용여부를의미하는 1-bit indication을포함한다.
(4) 단말은 logical channel에 대한 RRC 설정과 UL grant에 포함된 default logical channel priority 적용 여부를 고려하여 다음과 같이 동작한다.
A. 만약 UL grant 내 default logical channel priority 적용 여부를 의미하는 1 bit이 1로 설정되어 있다면단말은해당 UL grant을 통해서 data을 전송할때기지국으로부터설정된 default logical channel priority에 따라서 LCP을 수행한다.
B. 만약 UL grant 내 default logical channel priority 적용 여부를 의미하는 1 bit이 0으로 설정되어 있다면 단말은 해당 UL grant을 통해서 data을 전송할때 UL grant의 특성 (예를 들면 TTI) 및이에대응하는 special (또는 TTI-specific) logical channel priority에 따라서 LCP을 수행한다.
도 17은 본 발명의 제1 실시예에 따라 기지국이 단말에게 default priority 및 special priority를 효율적으로 적용시키는 방법을 나타내는 도면이다. 도 17은 동작 8에 대한 일 예시에 해당한다.
1) 기지국은 단말이 사용하는 logical channel A, B, C에 대한 설정을 수행할 때 TTI type 1에 대한 TTI-specific logical channel priority로써 B > C > A, TTI type 2에 대한 TTI-specific logical channel priority로써 C > A > B로 정한다. 또한 UL grant의 특성 (예를 들면 TTI)과 무관하게사용되는 default logical channel priority는 A > B > C로 설정한다.
2) 단말은 UL data을 전송하기 위해서 기지국에게 scheduling request 신호를 전송하고 기지국은 단말에게 UL 자원할당 정보를 포함한 UL grant를 전송한다. 이때 UL grant에 포함되어 있는 default logical channel priority 적용 여부 indicator에 따라서 단말은 아래와 같이 동작한다. 본 명세서 상에서는 설명의 편의를 위해 default logical channel priority 적용 여부 indicator가 0이면 default logical channel priority를 적용하지 않고, default logical channel priority 적용 여부 indicator가 1이면 default logical channel priority를 적용하는 것으로 기재하고 있으나, 설계 사양에 따라, default logical channel priority 적용 여부 indicator는 다르게 설정될 수 있다.
A. 만약 단말이 TTI type 1에 해당하는 UL 자원을 할당 받았고 default logical channel priority 적용 여부를 나타내는 indicator가 0으로 설정되어 있으면 단말은 해당 UL grant을 통해서 data을 전송할때 TTI type 1에 해당하는 logical channel priority인 B > C > A에따라서 LCP을 수행한다.
B. 만약 단말이 TTI type 2에 해당하는 UL 자원을 할당 받았고 default logical channel priority 적용 여부를 나타내는 indicator가 0으로 설정되어 있으면 단말은 해당 UL grant을 통해서 data을 전송할 때 TTI type 2에해당하는 logical channel priority인 C > A > B에따라서 LCP을 수행한다.
C. 만약 단말이 TTI type 1에 해당하는 UL 자원을 할당 받았고 default logical channel priority 적용 여부를 나타내는 indicator가 1으로 설정되어 있으면 단말은 해당 UL grant을 통해서 data을 전송할 때 TTI type 1에 해당하는 logical channel priority인 B > C > A은 무시하고 default logical channel priority인 A > B> C에따라서 LCP을 수행한다.
D. 만약 단말이 TTI type 2에 해당하는 UL 자원을 할당 받았고 default logical channel priority 적용 여부를 나타내는 indicator가 1으로 설정되어 있으면 단말은 해당 UL grant을 통해서 data을 전송할 때 TTI type 2에 해당하는 logical channel priority인 C > A > B은 무시하고 default logical channel priority인 A > B> C에 따라서 LCP을 수행한다.
<동작 9>
동작 9에서는 기지국이 단말에게 TTI-specific priority을 할당한 후 경우에 따라서 단말의 logical channel priority 선정에 자유도를 부여하는 방법을 알아보도록 한다. 이는 아래와 같이 동작한다.
(1) 기지국은 단말에게 복수의 logical channel priority을 제공한다. 하나의 예로써 기지국이 단말에게 제공하는 logical channel priority는 현재 기지국이 운영하고 있는 각각의 TTI 종류에 최적화된 logical channel priority라고 볼 수 있다. 이는 RRC signaling 중 LogicalChannelConfig IE을 통해서 이루어 질 수 있다.
A. 예를들면 기지국은 TTI type 1에 대해서는 logical channel B > C > A 순으로 priority을 설정하여 줄수 있다. 또한 기지국은 TTI type 2에 대해서는 logical channel C > A > B 순으로 priority을 설정하여 줄 수 있다.
(2) 또한 기지국은 단말에게 UL grant을 전송할 때 단말이 기지국의 지시없이 logical channel priority을 선택할 권한을 부여하는 1-bit indication을 포함한다.
(3) 단말은 logical channel에 대한 RRC 설정, 즉 TTI-specific logical channel priority와 UL grant에 포함된 단말의 logical channel priority 선택 권한 유무를 고려하여 다음과 같이 동작한다.
A. 만약 UL grant 내 단말의 logical channel priority 선정 권한 유무를 의미하는 1 bit이 0으로 설정되어 있다면 단말은 해당 UL grant을 통해서 data을 전송할 때 UL grant의 특성 (예를 들면 TTI) 및 이에 대응하는 special (또는 TTI-specific) logical channel priority에 따라서 LCP을 수행한다.
B. 만약 UL grant 내단말의 logical channel priority 선정권한유무를의미하는 1 bit이 1로 설정되어있다면단말은해당 UL grant을 통해서 data을 전송할때단말스스로 설정한 logical channel priority에 따라서 LCP을 수행한다.
도 18은 본 발명의 제1 실시예에 따라 기지국이 단말에게 TTI-specific priority을 할당한 후 단말의 logical channel priority 선정에 자유도를 부여하는 방법을 나타내는 도면이다. 도 18은 동작 9에 대한 일 예시에 해당한다.
1) 기지국은 단말이 사용하는 logical channel A, B, C에 대한 설정을 수행할 때 TTI type 1에 대한 TTI-specific logical channel priority로써 B > C > A, TTI type 2에 대한 TTI-specific logical channel priority로써 C > A > B로 정한다.
2) 단말은 UL data을 전송하기 위해서 기지국에게 scheduling request 신호를 전송하고 기지국은 단말에게 UL 자원 할당 정보를 포함한 UL grant을 전송한다. 이 때 UL grant에 포함되어 있는 단말의 logical channel priority 설정 권한 유무 indicator에 따라서단말은아래와같이동작한다. 본 명세서에서는 설명의 편의를 위해 logical channel priority 설정 권한 유무 indicator가 0이면 단말의 logical channel priority 설정 권한이 없고 logical channel priority 설정 권한 유무 indicator가 1이면 단말의 logical channel priority 설정 권한이 있는 것으로 설정되어 있지만, 설계 사양에 따라 logical channel priority 설정 권한 유무 indicator는 다양하게 설정될 수 있다.
A. 만약 단말이 TTI type 1에 해당하는 UL 자원을 할당 받았고 단말의 logical channel priority 설정 권한 유무 indicator가 0으로 설정되어 있으면 단말은 해당 UL grant을 통해서 data을 전송할때 TTI type 1에 해당하는 logical channel priority인 B > C > A에 따라서 LCP을 수행한다.
B. 만약 단말이 TTI type 2에 해당하는 UL 자원을 할당 받았고 단말의 logical channel priority 설정권한유무 indicator가 0으로 설정되어있으면단말은해당 UL grant을 통해서 data을 전송할때 TTI type 2에 해당하는 logical channel priority인 C > A > B에 따라서 LCP을 수행한다.
C. 만약 단말이 TTI type 1에 해당하는 UL 자원을 할당 받았고 단말의 logical channel priority 설정권한유무 indicator가 1으로 설정되어 있으면 단말은 해당 UL grant을 통해서 data을 전송할 때 TTI type 1에 해당하는 logical channel priority인 B > C > A은 무시하고 단말 스스로 설정한 logical channel priority인 A > B> C에 따라서 LCP을 수행한다.
<동작 10>
본 발명에서는 단말이 서로 다른 TTI을 갖는 UL 자원에 서로 다른 logical channel priority을 적용한 후 LCP 동작을 수행하는 다양한 방법을 제안하였다. 여기서 TTI는 UL grant을 통해서 기지국이 단말에게 할당하는 UL 자원의 물리적 속성 중 하나이다. 따라서 기지국이 단말에게 할당하는 UL 자원은 해당 자원의 TTI에 의해서 구분될 수도 있고, TTI 외 다른 속성에 의해서 구분될 수도 있다. 또한 TTI 또는 다른 속성의 조합에 의해서 구분될 수도 있다. 동작 10에서는 UL 자원을 구분하는 다양한 예시를 설명하도록 한다.
(1) UL 자원은 TTI에 의해서 구분될 수 있다.
- 여기서 TTI 길이란 subframe 길이, slot 길이, mini-slot 길이, LTE PDCCH와 같은 제어 채널의 전송 주기 등이 될 수 있다. 예를 들면 1/2m ms, 즉 1 ms (m = 0), 0.5 ms (m = 1), 0.25 ms (m = 2), 0.125 ms (m = 3) 등 다양한 방법으로 표현되는 값 중 일부가 될 수 있다.
(2) UL 자원은 subcarrier spacing에 의해서구분될수있다.
- 여기서 subcarrier spacing의 예시로써 15*2m kHz, 즉 15 kHz (m = 0), 30 kHz (m = 1), 60 kHz (m = 2), 120 kHz (m = 3) 등이 될 수도 있고 15*n kHz, 즉 15 kHz (n = 1), 30 kHz (n = 2), 45 kHz (n = 3), 60 kHz (n = 4) 등 다양한 방법으로 표현되는 값 중 일부가 될 수 있다.
(3) UL 자원은 CP (Cyclic Prefix) 길이에 의해서 구분될 수 있다.
- 여기서 CP 길이는 성능 및 overhead 등과 같은 측면을 고려하여 결정되는데 예를 들면 4.7 us, 0.9 us, 0.1 us 등과 같은 여러 값 중 일부가 될 수 있다.
(4) UL 자원은 해당 자원에 적용될 modulation/coding 방법 및 coding rate에 의해서 구분될수있다.
- 기지국은 단말에게 UL 자원을 할당할 때 UL grant을 통해서 해당 자원에 적용되는 modulation/coding 방법을 알려주고 단말은 이를 기반으로 자신에게 할당된 UL 자원을 구분할 수 있다.
(5) UL 자원은일정단위 (예를 들면 1 ms, subframe, slot, mini-slot, TTI 등) 내에포함된 OFDM symbol 수에의해서구분될수있다.
- 여기서 일정 단위 내에 포함된 OFDM symbol 수는 경우에 따라서 14개, 70개, 560개 등이 될 수 있다.
- 여기서 일정 단위 (예를 들면 1 ms, subframe, slot, mini-slot, TTI 등)의 추가적인 예시로써 할당된 자원의 전송 소요 시간이 포함될 수 있다. 할당된 자원의 전송 소요 시간이란 기지국이 단말에게 data channel, 즉 PUSCH 또는 PDSCH 등을 할당하였을 때 단말에게 할당된 첫 번째 OFDM symbol부터 마지막 OFDM symbol까지의 총 symbol 수를 말한다.
(6) UL 자원은 OFDM symbol 길이에의해서구분될수있다.
(7) UL 자원은 해당 자원이 차지하는 bandwidth에 의해서구분될수있다.
(8) UL 자원은 (i) 매 자원 할당 시 기지국이 단말에게 PDCCH 등과 같은 제어 채널을 통해서 UL 자원 할당 정보, 즉 UL grant을 전송하여 할당하는 UL grant 기반 자원인지, 아니면 (ii) 매 자원 할당 시 기지국이 단말에게 UL grant을 전송하여 UL 자원을 할당하는 방식이 아니라 단말의 데이터 발생 여부와 상관 없이 미리 RRC signaling 등을 통해서 주기적으로 UL 자원을 할당하여 두고 데이터 발생 시 이러한 방식으로 미리 할당된 자원을 사용하는 UL grant-free 기반 자원인지에 따라서 구분될 수 있다. 이에 따라서 기지국은 단말에게 특정 logical channel에서 발생한 데이터는 UL grant 기반 자원을 통해서 송수신되도록 설정할 수 있고, 또 다른 logical channel에서 발생한 데이터는 UL grant-free 기반 자원을 통해서 송수신될 수 있도록 설정할 수 있다.
(9) UL 자원은 (i) 그 자원이 하나의 단말에게만 전용으로 할당되어서 여러 단말이 동일한 자원에 동시에 UL 전송을 수행할 때 발생하게 되는 충돌의 가능성이 없는지, 아니면 그 자원이 복수의 단말에게 공통으로 할당되어서 여러 단말이 동일한 자원에 동시에 전송을 수행할 때 발생하게 되는 충돌의 가능성이 있는지에 따라서 구분될 수 있다. 이에 따라서 기지국은 단말에게 특정 logical channel에서 발생한 데이터는 하나의 단말에게만 전용으로 할당되어 충돌 가능성이 없는 UL 자원을 통해서 송수신되도록 설정할 수 있고, 또 다른 logical channel에서 발생한 데이터는 복수의 단말에게 할당되어 충돌 가능성이 있는 UL 자원을 통해서 송수신되도록 설정할 수 있다.
(10) UL 자원은 그 자원을 할당한 제어 채널의 전송 주기에 의해서 구분될 수 있다. 여기서 UL 자원을 할당한 제어 채널의 전송 주기는 기지국의 PDCCH 전송 주기, 단말의 PDCCH 관찰 주기 (monitoring periodicity), 기지국이 단말에게 설정한 CORESET (control resource set) 관찰 주기 등을 포함한다. 이는 symbol 또는 mini-slot 또는 slot 또는 subframe 등의 단위로 표현될 수 있다.
(11) UL 자원은 그 자원을 할당한 제어 채널의 전송 주기와 할당된 UL 자원의 시간 길이를 종합적으로 고려하여 구분될 수 있다. 본 발명에서는 UL 자원을 할당한 제어 채널의 전송 주기와 할당된 UL 자원의 시간 길이를 종합적으로 고려하여 구분하는 방법으로써 UL 자원을 할당한 제어 채널의 전송 주기와 할당된 UL 자원의 시간 길이 중 큰 값을 기준으로 UL 자원을 구분하는 방법을 제안한다. 하나의 예로써, 만약 UL 자원을 할당하는 제어 채널의 전송 주기가 7 symbol이고 할당된 UL 자원의 시간 길이가 2 symbol 이라면 해당 UL 자원은 UL 자원을 할당하는 제어 채널의 전송 주기인 7 symbol에 따라서 구분된다. 또 다른 예로써, 만약 UL 자원을 할당하는 제어 채널의 전송 주기가 3 symbol 이고 할당된 UL 자원의 시간 길이가 14 symbol 이라면 해당 UL 자원은 할당된 UL 자원의 시간 길이인 14 symbol에 따라서 구분된다. 아래의 표는 본 발명에서 제안한 UL 자원의 구분 방법의 예시를 보여 준다.
위의 예시에서 Type A UL 자원은 UL 자원 구분의 기준이 되는 값, 즉 UL 자원을 할당하는 제어 채널의 전송 주기와 할당된 UL 자원의 시간 길이 중 큰 값이 1 symbol 또는 2 symbol 인 자원을 말한다. 또한 Type B UL 자원은 UL 자원 구분의 기준이 되는 값이 3 ~ 14 symbol인 자원을 말한다. 또한 Type C UL 자원은 UL 자원 구분의 기준이 되는 값이 14 symbol을 초과하는 자원을 말한다. 이는 하나의 예시에 해당한다. 본 발명에서는 기지국이 단말에게 UL 자원의 종류, 즉 Type A 인지 Type B 인지 Type C 인지에 따라서 전송할 수 있는 logical channel의 index을 제공하는 방법을 포함한다. 본 예시에서는 Type A UL 자원에서는 LCH 1, LCH 2, LCH 3에서 발생한 데이터가 전송될 수 있고, Type B UL 자원에서는 LCH 2, LCH 3에서 발생한 이 전송될 수 있고, Type C 자원에서는 LCH 3에서 발생한 데이터가 전송될 수 있는 상황에 대해서 설명하였다. 이러한 UL 자원의 구분 및 LCH와의 대응 관계는 특정 LCH에서 발생한 데이터가 이를 전송하는데 적절하지 않는 UL 자원을 통해서 전송되는 경우를 최대한 방지할 수 있도록 하여 준다.
본 발명에서는 위와 같은 기준에 의해서 구분된 각 UL 자원의 종류에 ID를 부여하고 각 ID 마다 서로 다른 logical channel priority을 적용하여 LCP 동작을 수행하는 등 본 발명에서 제안한 모든 동작이 가능하도록 할 수 있다. 따라서 본 문서가 TTI 기준으로 구분된 각 UL 자원에 서로 다른 logical channel priority을 적용하여 LCP 동작을 수행하는 것을 중심으로 설명을 하였으나 그 외에도 subcarrier spacing, CP 길이, modulation/coding 방법 및 coding rate, OFDM symbol 수, OFDM symbol 길이, 할당 받은 resource block의 bandwidth 등과 같은 기준으로 구분된 각 UL 자원에 서로 다른 logical channel priority을 적용하여 LCP 동작을 수행하는 것 역시 가능하다. 본 발명에서는 각 UL 자원의 종류에 ID를 부여하고 각 ID 마다 서로 다른 logical channel priority을 적용하는 동작을 설명하였는데, 본 발명은 각 ID 마다 서로 다른 logical channel priority 뿐만 아니라 동일한 logical channel priority을 적용하는 경우도 포함한다. 각 ID 마다 동일한 logical channel priority을 적용하는 것은 각 ID 마다 서로 다른 logical channel priority을 적용하는 것의 특수한 예시에 포함된다고 불 수 있다.
또한 본 발명에서는 위에서 언급한 UL 자원의 속성 중 2개 이상의 기준에 의해서 구분된 각 UL 자원의 종류에 ID을 부여하고 각 ID 마다 서로 다른 logical channel priority을 적용하여 LCP 동작을 수행하는 등 본 발명에서 제안한 모든 동작이 가능하게 할 수 있다.
하나의 예로써 기지국은 UL 자원의 다양한 속성 중 TTI 및 subcarrier spacing 기준으로 UL 자원을 구분한 후 각 UL 자원의 종류에 아래와 같이 ID을 부여한다.
- 현재 기지국에서 사용하고 있는 TTI 종류: 1 ms, 0.5 ms, 0.25 ms
- 현재기지국에서사용하고있는 subcarrier spacing: 15 kHz, 30 kHz, 60 kHz
- TTI 및 subcarrier spacing에 따른 UL 자원의분류
위와 같이 기지국은 TTI 및 subcarrier spacing 기준으로 UL 자원을 구분한 후 각 UL 자원의 종류에 ID을 부여한다. 이를 기반으로 기지국은 각 ID에 해당하는 UL 자원과 이를 통해서 전송될 수 있는 logical channel 사이의 대응 관계를 설정하여 줄 수 있다. 또한 기지국은 각 ID에 해당하는 UL 자원을 통해서 전송될 수 있는 logical channel 사이의 priority을 설정하여 줄 수도 있다. 이에 대한 예시는 아래와 같다.
- 현재 기지국에서 사용하고 있는 TTI 종류: 1 ms, 0.5 ms, 0.25 ms
- 현재 기지국에서 사용하고 있는 subcarrier spacing: 15 kHz, 30 kHz, 60 kHz
- 현재 단말에게 할당된 logical channel의 종류: LCH A, B, C, D
- 각 ID와 logical channel 사이의 대응 관계 및 priority 예시
위의 표에 따르면 TTI 길이 1 ms와 subcarrier spacing 15 kHz 또는 30 kHz 또는 60 kHz을 갖는 UL 자원을 통해서는 logical channel A, B, C가 전송될 수 있고 이 때 logical channel 사이의 우선 순위는 A > B > C 순서가 된다. 또한 TTI 길이 0.5 ms와 subcarrier spacing 15 kHz 또는 30 kHz을 갖는 UL 자원을 통해서는 logical channel A, B, C가 전송될 수 있고 이 때 logical channel 사이의 우선 순위는 A > B > C 순서가 된다. 또한 TTI 길이 0.5 ms와 subcarrier spacing 60 kHz을 갖는 UL 자원을 통해서는 logical channel B, C, D가 전송될 수 있고 이 때 logical channel 사이의 우선 순위는 D > C > B 순서가 된다. 또한 TTI 길이 0.25 ms와 subcarrier spacing 15 kHz 또는 30 kHz 또는 60 kHz을 갖는 UL 자원을 통해서는 logical channel B, C, D가 전송될 수 있고 이 때 logical channel 사이의 우선 순위는 D > C > B 순서가 된다.
또 다른 예시는 다음과 같다.
- 현재 기지국에서 사용하고 있는 TTI 종류: 1 ms, 0.5 ms, 0.25 ms
- 현재 기지국에서 사용하고 있는 subcarrier spacing: 15 kHz, 30 kHz, 60 kHz
- 현재 단말에게 할당된 logical channel의 종류: LCH A, B, C, D
- 각 ID와 logical channel 사이의 대응 관계 및 priority 예시
위의 표에 따르면 TTI 길이 1 ms와 subcarrier spacing 15 kHz 또는 30 kHz 또는 60 kHz을 갖는 UL 자원을 통해서는 logical channel A, B가 전송될 수 있고 이 때 logical channel 사이의 우선 순위는 A > B 순서가 된다. 또한 TTI 길이 0.5 ms와 subcarrier spacing 15 kHz 또는 30 kHz을 갖는 UL 자원을 통해서는 logical channel A, B가 전송될 수 있고 이 때 logical channel 사이의 우선 순위는 A > B 순서가 된다. 또한 TTI 길이 0.5 ms와 subcarrier spacing 60 kHz을 갖는 UL 자원을 통해서는 logical channel C, D가 전송될 수 있고 이 때 logical channel 사이의 우선 순위는 C > D 순서가 된다. 또한 TTI 길이 0.25 ms와 subcarrier spacing 15 kHz 또는 30 kHz 또는 60 kHz을 갖는 UL 자원을 통해서는 logical channel C, D가 전송될 수 있고 이 때 logical channel 사이의 우선 순위는 C > D 순서가 된다.
본 예시에서는 전체 logical channel에 대해서 logical channel 사이의 우선 순위가 A > B > C > D 순서로 설정되어 있는 상황을 가정하였다. 따라서 logical channel A 및 B가 전송 가능할 때에는 전체 logical channel 사이의 우선 순위에 기반하여 A > B 순서로 우선 순위가 설정되고, logical channel C 및 D가 전송 가능할 때에는 전체 logical channel 사이의 우선 순위에 기반하여 C > D 순서로 우선 순위가 설정된다.
위의 예시에서는 TTI와 subcarrier spacing에 따른 UL 자원의 구분, UL 자원과 logical channel 사이의 대응, logical channel 사이의 priority 등을 설명하였다. 본 발명에서는 이에 국한되지 않고 {TTI, subcarrier spacing, CP 길이, modulation/coding 방법 및 coding rate, OFDM symbol 수, OFDM symbol 길이, bandwidth 등}의 임의의 조합에 대해서 위의 예시와 같이 UL 자원을 구분하고, UL 자원과 logical channel 사이의 대응 관계를 설정하고, logical channel 사이의 priority을 설정하는 동작을 포함한다.본 발명에서 제안한 내용, 즉 TTI, subcarrier spacing, CP 길이, modulation/coding 방법 및 coding rate, OFDM symbol 수, OFDM symbol 길이, bandwidth 등에 따른 UL 자원의 구분을 위해서 필요한 정보는 기지국이 단말에게 RRC signaling 등을 통해서 제공한다. 보다 구체적으로 이러한 정보는 특정 logical channel과 관련된 parameter 및 설정 정보를 제공하는 LogicalChannelConfig IE (Information Element)을 통해서 전송될 수 있다. 편의 상 특정 logical channel에서 발생한 데이터가 전송될 수 있는 UL 자원의 종류를 ‘profile’ 이라고 명명하자. 그리고 하나의 예시로써 해당 logical channel이 전송될 수 있는 UL 자원의 종류는 subcarrier spacing, 시간 길이, UL 자원이 속한 cell 또는 component carrier, UL 자원이 UL grant-free 방식으로 할당된 자원인지 아니면 UL grant-based 방식으로 할당된 자원인지 여부 등으로 구분된다고 가정하자. 여기서 시간 길이란 본 발명에서 제안한 TTI 또는 일정 단위내 포함된 OFDM symbol 수 중 하나가 될 수 있다.
아래는 특정 logical channel에 대한 LogicalChannelConfig을 보여주고 있다. 여기서 특정 logical channel은 subcarrier spacing, 시간 길이, UL 자원 할당 방식, UL 자원이 속한 cell 등에 의해서 구분된 UL 자원 중 어떤 UL 자원을 통해서 송수신될 수 있는지 명시된다.
- 본 예시에서 subcarrier spacing은 ‘subcarrierSpacing’으로 명시되었다. 본 예시에서는 15 kHz, 30 kHz, 60 kHz, 120 kHz 중 하나의 값을 가질 수 있으며, 이는 하나의 예시일 뿐 본 발명에서는 다른 값을 갖는 것도 가능하다.
- 본 예시에서 시간 길이는 ‘timeParameter’라고 명시되었다. 본 예시에서는 0.125 ms, 0.25 ms, 0.5 ms, 1 ms 중 하나의 값을 가질 수 있으며 이는 하나의 예시일 뿐 본 발명에서는 다른 값을 갖는 것도 가능하다. 여기서 시간 길이의 의미는 다음과 같을 수 있다.
- ‘timeParameter’ 보다 작은 값을 갖는 TTI의 UL 자원이 할당된 경우 해당 logical channel은 해당 UL 자원을 통해서 송수신될 수 있다.
- 일정 단위 (예를 들면 할당된 UL 자원) 내에 포함된 OFDM symbol 수에 대응하는 시간 (즉, OFDM symbol 수 곱하기 OFDM symbol의 시간 길이)이 ‘timeParameter’ 보다 짧은 UL 자원이 할당된 경우 해당 logical channel은 해당 UL 자원을 통해서 송수신될 수 있다.
- 특정 TTI의 시간을 지칭함
- 일정 단위 (예를 들면 할당된 UL 자원) 내에 포함된 OFDM symbol 수에 대응하는 시간 (즉, OFDM symbol 수 곱하기 OFDM symbol의 시간 길이)의 특정 값을 지칭함
- 본 예시에서 UL 자원 할당 방식은 ‘ulGrantMode’라고 명시되었다. 본 예시에서는 ‘ulGrantBased’, ‘ulGrantFree’, ‘both’ 중 하나의 값을 가질 수 있는데 ‘ulGrantBased’라 함은 해당 logical channel은 UL grant-based 방식으로 할당 받은 UL 자원을 통해서 송수신이 가능함을 말한다. 또한 ‘ulGrantFree’라 함은 해당 logical channel은 UL grant-free 방식으로 할당 받은 UL 자원을 통해서 송수신이 가능함을 말한다. 또한 ‘both’라 함은 해당 logical channel은 UL grant-based 및 UL grant-free 방식으로 할당 받은 UL 자원을 통해서 송수신이 가능함을 말한다.
- 본 예시에서 UL 자원이 속한 cell은 ‘allowedCellList’라고 명시되었다. 이는 자신이 현재 사용하고 있는 serving cell 중 해당 logical channel을 송수신하는데 사용될 수 있는 serving cell의 index 목록에 해당한다.
- 아래의 예시 1은 subcarrier spacing, timeParameter, ulGrantMode, allowedCellList의 조합으로 자원의 종류 (본 문서에서는 UL 자원의 종류를 profile이라고 명명한다.)를 표현한다. 또한 예시 2는 subcarrier spacing, timeParameter, ulGrantMode의 조합과 이와 별도로 설정된 allowedCellList를 통해서 자원의 종류를 표현한다. 또한 예시 3은 subcarrier spacing, timeParameter의 조합과 이와 별도로 설정된 ulGrantMode 및 allowedCellList을 통해서 자원의 종류를 표현한다. 본 발명에서는 이러한 예시 외에도 다른 형태의 UL 자원 종류 표현 방법을 허용한다.
지금까지 설명한 예시는 LogicalChannelConfig IE에 특정 logical channel에서 발생한 data가 전송될 수 있는 UL 자원의 특성이 LogicalChannelConfig IE 내부에 모두 포함된 경우를 보여준다. 또 다른 예시로써 LogicalChannelConfigIE에는 특정 logical channel에서 발생한 data가 전송될 수 있는 UL 자원의 identifier가 포함되고 별도의 IE에 해당 identifier을 갖는 UL 자원의 속성이 기술되는 형태의 예시도 가능하다. 보다 구체적인 ID 형태는 다음과 같다.
----- (a) LogicalChannelConfig IE에는 (subcarrierSpacing, timeParameter, ulGrantMode, allowedCellList 로 구성된) profile의 ID만 포함하고 profile ID을 구성하는 parameter는 별도의 IE을 통해서 전송되는 경우 -----
위의 IE에서 applicableProfileIdList는 applicableProfileId의 목록인데 여기서 applicableProfileId는 단순히 integer 이고 그 integer가 지시하는 세부 내용은 ApplicableProfile IE에 기술되어 있다. 본 예시에서 ApplicableProfile IE은 subcarrierSpacing, timeParameter, ulGrantMode, allowedCellList을 포함한다.
----- LogicalChannelConfig IE에는 (subcarrierSpacing, timeParameter, ulGrantMode로 구성된) profile의 ID 및 별도의 allowedCellList을 포함하고 profile ID을 구성하는 parameter는 별도의 IE을 통해서 전송되는 경우 -----
위의 IE에서 applicableProfileIdList는 applicableProfileId의 목록인데 여기서 applicableProfileId는 단순히 integer 이고 그 integer가 지시하는 세부 내용은 ApplicableProfile IE에 기술되어 있다. 본 예시에서 ApplicableProfile IE은 subcarrierSpacing, timeParameter, ulGrantMode을 포함한다. allowedCellList 정보는 ApplicableProfile과 별개로 LogicalChanneConfig에 포함되어 있다.
----- LogicalChannelConfig IE에는 (subcarrierSpacing, timeParameter로 구성된) profile의 ID 및 별도의 ulGrantMode과 allowedCellList을 포함하고 profile ID을 구성하는 parameter는 별도의 IE을 통해서 전송되는 경우 -----
위의 IE에서 applicableProfileIdList는 applicableProfileId의 목록인데 여기서 applicableProfileId는 단순히 integer 이고 그 integer가 지시하는 세부 내용은 ApplicableProfile IE에 기술되어 있다. 본 예시에서 ApplicableProfile IE은 subcarrierSpacing, timeParameter을 포함한다. ulGrantMode 및 allowedCellList 정보는 ApplicableProfile과 별개로 LogicalChanneConfig에 포함되어 있다.
<동작 11>
동작 11에서는 기지국이 단말에게 default priority 및 special (예를 들면 TTI-specific) priority을 효율적으로 적용시키는 변형된 방법을 알아보도록 한다. 이는 아래와 같이 동작한다.
(1) 기지국은 단말에게 복수의 logical channel priority을 제공한다. 하나의 예로서 기지국이 단말에게 제공하는 logical channel priority는 현재 기지국이 운영하고 있는 각각의 TTI 종류에 최적화된 logical channel priority라고 볼 수 있다. 이는 RRC signaling 중 LogicalChannelConfig IE을 통해서 이루어질 수 있다.
A. 예를 들면 기지국은 TTI type 3에 대해서는 logical channel B > C > A 순으로 priority을 설정하여 줄 수 있다.
(2) 기지국은 단말에게 default logical channel priority을 제공한다. 여기서 default logical channel priority란 기지국이 special logical channel priority을 부여한 경우 외에 사용되는 logical channel priority라고 볼 수 있다. 이는 RRC signaling 중 LogicalChannelConfig IE을 통해서 이루어질 수 있다.
A. 예를 들면 기지국은 logical channel A > B > C 순으로 default priority을 설정하여 줄 수 있다.
B. 아래의 LogicalChannelConfig IE은 기지국이 단말에게 special (TTI-specific) logical channel priority 및 default logical channel priority을 제공하는 예시를 보여주고 있다.
(3) 단말은 logical channel에 대한 RRC 설정과 UL grant을 통해서 할당 받은 UL 자원의 특성 (예를 들면 TTI)를 고려하여 다음과 같이 동작한다.
A. 만약 special logical channel priority가 설정되어 있는 TTI로 구성된 UL 자원을 할당 받았으면 단말은 해당 UL grant을 통해서 data을 전송할 때 기지국으로부터 설정된 special logical channel priority에 따라서 LCP을 수행한다.
B. 만약 special logical channel priority가 설정되어 있지 않은 TTI로 구성된 UL 자원을 할당 받았으면 단말은 해당 UL grant을 통해서 data을 전송할 때 기지국으로부터 설정된 default logical channel priority에 따라서 LCP을 수행한다.
도 19는 본 발명의 제1 실시예에 따라 기지국이 단말에게 default priority 및 special priority를 효율적으로 적용시키는 변형된 방법을 나타내는 도면이다. 도 19는 동작 11에 대한 일 예시에 해당한다.
1) 기지국은 단말이 사용하는 logical channel A, B, C에 대한 설정을 수행할 때 TTI type 3에 대한 TTI-specific logical channel priority로써 B > C > A 로 정한다. 또한 default logical channel priority는 A > B > C로 설정한다.
2) 단말은 UL data을 전송하기 위해서 기지국에게 scheduling request 신호를 전송하고 기지국은 단말에게 UL 자원 할당 정보를 포함한 UL grant을 전송한다. 이 때 UL grant를 통해서 할당되는 UL 자원의 특성, 예를 들면 TTI에 따라서 단말은 아래와 같이 동작한다.
A. 만약 단말이 TTI type 1에 해당하는 UL 자원을 할당 받았으면 단말은 해당 UL grant을 통해서 data을 전송할 때 default logical channel priority인 A > B > C에 따라서 LCP을 수행한다.
B. 만약 단말이 TTI type 2에 해당하는 UL 자원을 할당 받았으면 단말은 해당 UL grant을 통해서 data을 전송할 때 default logical channel priority인 A > B > C에 따라서 LCP을 수행한다.
C. 만약 단말이 TTI type 3에 해당하는 UL 자원을 할당 받았으면 단말은 해당 UL grant을 통해서 data을 전송할 때 TTI type 3에 해당하는 special logical channel priority인 B > A > C에 따라서 LCP을 수행한다.
<제2 실시예>
본 발명은 3GPP RAN 5G SI 에서 논의되고 있는 Energy Efficiency KPI [1]를 달성하기 위한 기지국 및 단말의 동작 방식에 대한 기술이다. 해당 표준에서는 향후 10년 이내에 단말 및 기지국 네트워크의 전력 효율성 [bit/J] 이 1000배 이상 향상되는 것을 주 목표 [2][3]로 에너지 효율적 동작을 정의하고 있다. 이를 위해 고주파수 대역의 mmW 동작 시 필수적인 Beamforming 전송 방식에 따른 전력 추가 소모 가능성을 해결하기 위해 단말의 Active 동작 시간을 감소 시키는 제어가 논의 시작되고 있다.
본 발명에서 제안하고 있는 기술은 이동통신시스템 (5G 혹은 NR)에서 적용 예정인 3개의 RRC state인 Connected_Active (RRC CONNECTED), Connected_Inactive(RRC INACTIVE), Idle (RRC IDLE)에 기반한 RRC connection 제어 및 유지 방법에 관한 기술이다. 하기에 기술한 RRC state에 대한 용어는 RRC state인 Connected_Active 는 RRC CONNECTED 를 뜻한다. Connected_Inactive는 RRC INACTIVE 상태를, Idle은 RRC IDLE 상태를 의미하며 이를 기반으로 기술한다.
특히, data 전송을 하는 RRC state (Inactive 및/또는 Active) 결정 방법 및 단말의 traffic 전송 시 RRC Inactive state에서 효율적으로 전송을 수행하는 경우에 대해서 Spectral efficiency 향상 및 Channel access 방법을 향상시키도록 하는 기능을 지원하는 방법에 대해 다룬다.
무선 통신 단말이 데이터를 송수신 하기 위한 RRC state의 설계는 음성통화 위주의 이전 세대의 설계 철학으로 지나치게 보수적으로 설계 되었다. 예를 들어 traffic 수신 이후 일정시간 동안 traffic 도착이 없음에도 RRC connected 상태로 (Connected DRX) 등의 대기시간을 유지하는 데 이로 인한 전력 소모가 심각하다. 또한 스마트폰 사용자의 경우, 사용자 QoS와 상관없는 keep alive message등이 data로 빈번하게 발생하는데 이를 위한 RRC connection을 음성 통화 서비스 기반으로 설계할 경우 단말 전력 소모가 더욱 악화될 수 있다.
따라서 본 특허에서는 data 전송을 하는 RRC state (Inactive 및/또는 Active) 결정 방법 및 RRC Inactive state에서 단말의 traffic 전송 시에 효율적으로 전송하도록 하는 Spectral efficiency 향상 및 Channel access 방법 향상을 주 내용으로 한다.도 20은 본 발명의 제2 실시 예에 따른 5G(또는 NR) 통신 시스템의 구조를 개략적으로 도시하는 도면이다.
도 20을 참조하면, 5G(또는 NR) 통신 시스템은 gNB, MME (Mobility Management Entity), S-GW (Serving Gateway) 등을 포함할 수 있다.
상기 gNB는 예컨대, 5G(또는 NR) 통신 시스템 기지국으로써 UE와 무선 채널을 통해 연결되며 기존 (UMTS)의 NodeB와 LTE의 eNodeB 기지국 보다 복잡한 역할을 수행할 수 있다.
상기 gNB는 이동통신 시스템에서 인터넷 프로토콜을 통한 VoIP(Voice over IP) 서비스와 같은 실시간 서비스를 비롯한 모든 사용자 트래픽이 공용 채널(shared channel)을 통해 서비스될 때, UE들의 버퍼 상태, 가용 전송 전력 상태, 채널 상태 등의 상태 정보를 취합해서 스케줄링 할 수 있다. 하나의 gNB는 통상 다수의 셀들을 제어한다.
상기 S-GW는 데이터 베어러를 제공하는 장치이며, 상기 MME의 제어에 따라서 데이터 베어러를 생성하거나 제거한다. 상기 MME는 상기 단말에 대한 이동성 관리 기능은 물론 각종 제어 기능을 담당하는 장치로 다수의 기지국들과 연결된다.
도 21은 본 발명의 제2 실시 예에 따른 5G 또는 NR 통신 시스템에서 적용하는 3개의 RRC state인 Connected_Active (RRC_CONNECTED), Connected_Inactive, (RRC_INACTIVE), Idle(RRC_IDLE)의 동작 예시를 나타낸 도면이다.
도 21과 같이 3GPP NR은 기존 2개의 RRC state에 추가로 Inactive state를 더해 3개 RRC State를 운용하며 단말은 한번에 하나의 RRC State로 동작하기로 결정하였다.
도 22는 본 발명의 제2 실시 예에 따른 5G 또는 NR 통신 시스템에서 Inactive 상태의 단말, 기지국, 및 MME의 상태 예시를 나타낸 도면이다.
신규 RRC 상태인 Inactive는 단말과 기지국의 Air interface는 비 접속 상태이지만 기지국과 MME의 core network은 접속상태를 유지하고 단말이 기지국과 RRC Connected_Active (RRC_CONNECTED)상태를 해지 (Release) 하더라도 기지국과 MME는 ECM Connected 상태로 단말 Context는 기지국과 MME가 저장하고 있는 것을 가정한다.
도 23은 본 발명의 제2 실시 예에 따른 RRC 상태 (idle, Connected_Active (RRC_CONNECTED), Connected_Inactive(RRC_INACTIVE)) 사이에서 상태 천이하는 예시를 도시한 도면이다.
3개의 RRC State가 천이되는 동작은 기존 LTE에서 2개의 RRC state가 Idle ⇔ Connected_Active (RRC_CONNECTED) 천이되는 동작에 대비하여 1-1) 5G NR에서는 다음과 같이 RRC State가 천이되는 동작의 방법으로 옵션 1) 세 상태간 이동이 다음과 같이 진행되고 Idle(RRC_IDLE) ⇔ Connected_Inactive (RRC_INACTIVE)⇔ Connected_Active (RRC_CONNECTED)아래 해당 이벤트 발생에 따라 다음과 같은 동작 실시 예가 가능하다.
① 초기 연결: Idle ->Connected_Active(RRC_CONNECTED),
② Traffic timer 만료: Connected_Active(RRC_CONNECTED) ->Connected_Inactive(RRC_INACTIVE),
③ Traffic 도착 시: Connected_Inactive(RRC_INACTIVE) ->Connected_Active(RRC_CONNECTED),
④ UE power off: no coverage: Connected_Inactive (RRC_INACTIVE)or Connected_Active (RRC_CONNECTED)->Idle로 동작할 수 있다.
RRC state 3개의 천이 동작 예시로써 RRC_Connected와 RRC_Inactive 사이의 상태 천이, RRC_Connected와 RRC_Idle 사이의 상태 천이와 RRC_Inactive 와 RRC_Idle 사이의 상태 천이가 모두 지원되는 경우를 예시하는 도면이다.
RRC_Connected와 RRC_Inactive 사이의 상태 천이, RRC_Connected와 RRC_Idle 사이의 상태 천이와 RRC_Inactive 와 RRC_Idle 사이의 상태 천이가 모두 지원되는 경우, 일 실시 예로 RRC 상태 천이를 위한 Event 기반 동작은 아래와 같다.
① 초기 연결 시 단말은 RRC_Idle상태에서 RRC_Connected상태로 천이하는 동작,
② 마지막으로 도착한 Traffic을 기반으로 기준 timer (UE_inactivity_timer_inactive)가 만료되는 Event 발생 시 RRC_Connected에서 RRC_Inactive로 천이하는 동작,
③ 신규 Traffic 도착 시, 단말의 그 시점 상태가 RRC_Inactive 이면 RRC_Inactive상태에서 RRC_Connected 상태로 천이하는 동작, 혹은 단말의 그 시점 상태가 RRC_Idle 이면 RRC_Idle 상태에서 RRC_Connected 상태로 천이하는 동작,
④ 단말이 전원이 꺼지거나 해당 서비스의 기지국 셀 coverage 에 포함되지 않는 경우 단말의 그 시점 상태가 RRC_Connected이면 RRC_Connected상태에서 RRC_Idle로 천이하거나, RRC_Inactive 상태이면 RRC_Inactive상태에서 RRC_Idle로 천이하는 동작을 포함한다.
RRC State가 천이되는 동작의 방법으로 옵션 2) Idle ⇔ Connected_Active, Connected_Inactive ⇔ Connected_Active로 천이하고 Idle ⇔ Connected_Inactive 천이 없는 동작에서는 해당 이벤트 발생에 따라 다음과 같은 동작 실시 예가 가능하다.
① 초기 연결: Idle ->Connected_Active ,
② Traffic timer 만료: Connected_Active -> Connected_Inactive
③ Traffic 도착: Connected_Inactive ->Connected_Active,
④ UE power off: no coverage: Connected_Active -> Idle, Connected_Inactive ->Connected_Active -> Idle로 동작할 수 있다.
다시 말하면, RRC state 3개의 천이 동작 예시로써 RRC_Connected와 RRC_Inactive 사이의 상태 천이, RRC_Connected와 RRC_Idle 사이의 상태 천이는 지원되지만 RRC_Inactive 와 RRC_Idle 사이의 direct (직접) 상태 천이가 지원되지 않고 RRC_Connected로 상태 천이를 통하여 지원되는 경우를 예시하는 도면이다.
① 초기 연결 시 단말은 RRC_Idle상태에서 RRC_Connected상태로 천이하는 동작,
② 마지막으로 도착한 Traffic을 기반으로 기준 timer (UE_inactivity_timer_inactive)가 만료되는 Event 발생 시 RRC_Connected에서 RRC_Inactive로 천이하는 동작,
③ 신규 Traffic 도착 시, 단말의 그 시점 상태가 RRC_Inactive 이면 RRC_Inactive상태에서 RRC_Connected 상태로 천이하는 동작, 혹은 단말의 그 시점 상태가 RRC_Idle 이면 RRC_Idle 상태에서 RRC_Connected 상태로 천이하는 동작,
④ 단말이 전원이 꺼지거나 해당 서비스의 기지국 셀 coverage 에 포함되지 않는 경우 단말의 그 시점 상태가 RRC_Connected이면 RRC_Connected상태에서 RRC_Idle로 천이하거나, RRC_Inactive 상태이면 RRC_Inactive상태에서 RRC_Connected상태로 천이한 이후 다시 RRC_Idle로 천이하는 동작을 포함한다.
RRC State가 천이되는 동작의 방법으로 옵션 3)으로 Connected_Inactive ⇔ Connected_Active 두 state만 천이하는 방법으로 해당 이벤트 발생에 따라 다음과 같은 동작 실시 예가 가능하다.
(1) 초기 연결: Connected_Inactive ->Connected_Active
(2) Traffic timer 만료: Connected_Active ->Connected_Inactive
(3) Traffic 도착: Connected_Inactive ->Connected_Active
(4) UE power off: no coverage: Connected_Active -> Connected_Inactive
RRC state 3개의 천이 동작 예시로써 RRC_Connected와 RRC_Inactive 사이의 상태 천이만 지원되고, 특정한 예외를 제외하고 RRC_Idle로 천이하지 않아서 RRC RRC_Connected와 RRC_Idle 사이의 상태 천이와 RRC_Inactive 와 RRC_Idle 사이의 상태 천이가 제한적으로 지원되는 경우를 예시하는 도면이다.
① 초기 연결 시 단말은 RRC_Inactive 상태에서 RRC_Connected상태로 천이하는 동작, 이때 저장된 UE context는 단말 specific한 정보가 아니라 해당 서비스를 지원하는 network에서 공용으로 사용하는 common 설정으로 사용하는 방법,
② 마지막으로 도착한 Traffic을 기반으로 기준 timer (UE_inactivity_timer_inactive)가 만료되는 Event 발생 시 RRC_Connected에서 RRC_Inactive로 천이하는 동작,
③ 신규 Traffic 도착 시, RRC_Inactive상태에서 RRC_Connected 상태로 천이하는 동작, 혹은 RRC_Idle 상태에서 RRC_Connected 상태로 천이하는 동작,
④ 단말이 전원이 꺼지거나 해당 서비스의 기지국 셀 coverage 에 포함되지 않는 경우 단말의 그 시점 상태가 RRC_Connected이면 RRC_Connected상태에서 RRC_Inactive로 천이하거나, RRC_Inactive 상태이면 RRC_Inactive상태 (UE specific한 UE context정보를 저장하는) 에서 RRC_Inactive (network common UE context를 저장하는)상태로 천이하는 동작을 포함한다.
도 23에서 살펴본 RRC 상태 (idle, Connected_Active, Connected_Inactive) 사이에 상태 천이하는 예를 도시한 동작에서 단말이 Data를 송수신하는 모드는 아래와 같이 세가지 예를 들 수 있다.
- 모드 1) INACTIVE state 에서 Data 전송 (도 24 내지 도 26, 도 30)
- 모드 2) INACTIVE 에서 ACTIVE 상태로 천이 이후 Data 전송 (도 28)
- 모드 3) INACTIVE state 에서 Data 전송을 시작하고 ACTIVE state로 천이 이후 Data 추가 전송하는 방법 (도 27, 도 29, 도 31, 및 도 32)를 포함한다.
상기 기지국이 결정한 각 단말에 적용할 RRC State 종류 및 전환 (Event trigger) 방법을 각 단말에게 Configure/전송 하는 아래 일 실시 예를 포함한다.
1) 단말 링크 초기 설정 (link setup시나 RRC_Connected로의 천이 시 (해당 단말의 적용 RRC state구성 및 천이 이벤트 규칙) RRC configuration message로 configure/설정하는 방법,
2) 임의의 시점에 RRC state 적용 기준 변경 탐지 시 (해당 단말의 적용 RRC state구성 및 천이 이벤트 규칙) RRC reconfiguration message로 configure/ 설정하는 방법,
3) RRC Connection release 시 RRC release message로 (해당 단말의 적용 RRC state구성 및 천이 이벤트 규칙) configure/설정하는 방법을 포함한다.
도 도 24 내지 도 26, 도 30 본 발명의 실시 예들에 따른 NR 시스템에서 모드 1)에 해당하는 INACTIVE state 에서 Data 전송 동작을 개략적으로 도시한다.
INACTIVE state에서 바로 Data를 전송하는 동작은 단말이 Inactive 상태에서 RRC active 상태로 천이하는 지연 및 제어 시그널링이 필요하지 않고, Active 상태에서의 대기시간을 제거할 수 있는 장점이 있지만 Grant-free 전송으로 인한 channel access 효율성 감소 및 CQI와 BSR등의 정보의 부제로 전송 Spectral efficiency의 감소의 단점이 존재한다.
기존의 Idle 상태에서의 data 전송이 Grant-free 전송으로 인한 channel access 효율성 감소 및 CQI와 BSR등의 정보의 부제로 전송 Spectral efficiency의 감소의 단점이 존재하지만, 신규로 정의되는 Inactive 상태의 단말 동작을 설계하는 방법에 있어서, RRC Inactive state에서 단말의 traffic 전송 시에 효율적으로 전송하도록 하는 Spectral efficiency 향상 및 Channel access 향상 방법을 도 31 내지 34에서 추가로 제안한다.
도 도 24 내지 도 26, 도 30에서는 본 발명의 제2 실시 예에 따른 NR 시스템에서 “모드 1)”에 해당하는 INACTIVE state 에서 Data 전송 동작에서는 Inactive 상태에서 단말 RACH 절차에서 control message인 RACH signalling에 data를 piggyback하여 전송하는 방법을 도시한다. 도 24는 본 발명의 제2 실시 예에 따른 NR 시스템에서 INACTIVE state 에서 데이터 전송 동작을 개략적으로 도시하는 도면으로, RACH 절차에서 Message3 RRC connection (resume) request 에 data를 추가하여 전송하는 예시를 나타낸다.
도 25는 본 발명의 제2 실시 예에 따른 NR 시스템에서 INACTIVE state 에서 Data 전송 동작을 개략적으로 도시하는 도면으로, RACH 절차에서 Message3 RRC connection (resume) request 에 data를 추가하고 BSR 정보를 추가하여 전송하는 예시를 나타낸다.
이때 MSG3에 함께 전송되는 정보는 다음과 같다.
- AS ID로 UE identity (or UE context identity)
- Establishment (or resume) cause information
- UE's security information (e.g. authentication token)을 포함한다
또한 MSG3에 RRC Connection request에 다음 정보를 포함하여 전송하는 방법을 예시한다.
- NAS message
- 5G CN node selection,
- UE capability of supporting high frequency,
- the access category indicating a type of services 를 포함하는 정보로 MSG5에 전송할 수 있는 정보 중 일부 혹은 전부를 MSG3에 전송하는 방법을 예시한다..
도 25를 참조하면, RACH Message3로 전송되는 RRC connection (resume) request는 SRB로 전송되고 상향링크 Data는 DRB로 전송되지만 이 둘은 MAC multiplexing을 통하여 하나의 Transport block으로 한번의 전송으로 전송될 수 있다. 이때 MSG3에 data 전송이 완료되지 못하는 경우, 단말 버퍼 상태 정보(BSR) 을 MSG3에 전송하여 차후 전송 필요에 대한 정보를 기지국에 전송할 수 있다.
도 26은 RACH 절차에서 Message5 로 전송되는 RRC connection (resume) complete에 Data를 추가하여 전송하는 예시를 나타낸다.
도 27은 MSG3에 data 전송이 완료되지 못하는 경우, 단말 버퍼 상태 정보(BSR) 을 MSG3에 전송하여 차후 전송 필요에 대한 정보를 기지국에 전송하고, MSG3에 대한 ACK 정보를 포함한 RRC resume response를 기지국이 단말에게 전송하여 Active 상태로 천이한 이후 잔여 data를 active상태에서 전송하는 방법을 나타낸다.
도 30과 같이 MSG3에서 Data 전송 이후 잔여 data는 MSG5을 통해 inactive 상태에서추가로 전송될 수 있다. 또한 MSG5 전송으로도 data 전송이 완료되지 않고 active 상태로의 천이가 더 유리하다고 (관련 결정 기준은 도 35 부분에서 부가 설명) 판단되는 경우, 도 32와 같이 MSG5에 대한 ACK 정보를 포함한 RRC resume response를 기지국이 단말에게 전송하여 Active상태로 천이한 이후 잔여 data를 active상태에서 전송하는 방법이다.
도 24에서 RACH Message3에 데이터를 추가하여 전송하는 방법은 도 26에서 RACH Message5에 데이터를 추가하여 전송하는 방법에 대비하여, 제어 시그널링 수가 적어서 네트워크 제어 부담 및 지연 감소의 효과가 있으나, RACH Message3 이전 RA Preamble과 RA Response로 활용 가능한 정보가 제한되어 있어 전송 SE가 감소할 우려가 있다.
단말은 RACH Message1인 RACH preamble을 전송하면서 해당 RACH Message 3에 UL data를 전송할지 여부를 Indication 할 수 있다. 이때 RACH Message1 은 PRACH 자원의 pool을 분리하여 UL data를 전송할지 여부를 Indication하는 동작을 포함한다.
예를 들어 UL data를 전송할지 여부에 따라 RACH Message1 preamble 을 분리하여 기지국이 단말에 설정 (configuration)하고 이를 기반으로 단말이 동작하는 방법,
또는 UL data를 전송할지 여부에 따라 RACH Message1 전송 time (예를 들어 기준 시간으로부터 TTI 혹은 time slot) 을 분리하여 기지국이 단말에 설정 (configuration)하고 이를 기반으로 단말이 동작하는 방법,
또는 UL data를 전송할지 여부에 따라 RACH Message1 전송 frequency (예를 들어 ARFCN을 기반으로 하는 주파수 대역)을 분리하여 기지국이 단말에 설정 (configuration)하고 이를 기반으로 단말이 동작하는 방법,
또는 UL data를 전송할지 여부에 따라 RACH Message1 전송하는 PRACH frequency 의 carrier domain 을 (예를 들어 기준 주파수 대역으로부터 sub-carrier 혹은 bandwidth part (BWP)) 을 분리하여 기지국이 단말에 설정 (configuration)하고 이를 기반으로 단말이 동작하는 방법,
각각 및 복수 개의 조합을 기준으로 동작하는 방법을 포함한다.
이때 해당 UL data를 전송할지 여부에 따라 PRACH 자원을 partitioning 하는 기준 정보를 기지국이 단말에게 전송하는 방법으로는
이전 RRC 연결을 release할 때 (RRC connection suspend 혹은 RRC connection release 메시지에 해당 PRACH 자원을 partitioning 하는 기준 정보를 설정(configuration)하는 방법 및
Target 기지국 각각이 전송 하는 System Information (SI) 정보에 이를 방송 (broadcasting하는 방법) 각각 및 조합을 포함한다.
해당 UL data를 전송할지 여부에 따라 PRACH 자원을 partitioning 하는 기준 정보를 기지국이 단말에게 전송하는 방법으로 상향링크 정보 관련된 UL carrier 주파수, UL bandwidth 와 IE RadioResourceConfigCommon은 SIB2로 방송(broadcasting) 된다. IE RadioResourceConfigCommon에는 RACH 설정을 포함한 PUSCH, PUCCH와 상향링크로 전송되는 Sounding RS (SRS) 를 설정하는 정보가 포함된다. 이때 UL data를 전송할지 여부에 따라 PRACH 자원을 partitioning 하는 기준 정보를 전송하기 위해 PRACH parameter를 2개의 set으로 구분하여 전송하는 동작을 포함한다.
보다 상세히는 예를 들어 PRACH preamble을 UL data를 전송할지 여부 (Early Data Transmission: EDT)에 따라 partition하는 설정의 경우 아래의 표와 같이 설정할 수 있다.
또한 위에서 예시한 PRACH 전송을 위한 timing, 주파수 대역 및 carrier domain 등을 포함한 PRACH pool partitioning 또한 SI의 PRACH 설정 parameter에서 별도의 Set (2개의 parameter 그룹)으로 구분하여 설정하는 동작을 포함한다.
또 다른 실시 예로, SUL (Supplemental Uplink Frequency)를 지원하는 경우의 System Information 전송을 설명한다. SUL 기술은 NR의 higher 주파수 대역의 UL coverage(커버리지)를 확장 지원하기 위해 lower 주파수대역에서 UL를 추가 지원하는 기술이다. 하향링크의 경우 기지국의 공간적 전력적 capacity가 높아서 더 많은 안테나 수로 beam gain을 얻고, 더 높은 전송 전력으로 하향링크 coverage 확장이 가능하다. 반면의 상향링크의 경우, 단말의 공간적, 물리적 전력의 한계로 고주파수 (higher frequency)대역에서 넓은 coverage 확보가 어려워, SUL 의 lower frequency로 보완 하는 동작을 수행한다.
단말이 초기 접속 (Initial access)를 수행할 때 해당 RACH가 SUL 대역 (lower 주파수 대역)을 사용할 지, NR UL(uplink 상향링크)로 RACH를 수행할 지를 결정하는 기준 (criterion)이 필요하다.
해당 정보는 기지국이 이전 RRC 연결을 release할 때 (RRC connection suspend 혹은 RRC connection release 메시지에 해당 PRACH 자원을 partitioning 하는 기준 정보를 설정(configuration)하는 방법 및
Target 기지국 각각이 전송 하는 System Information (SI) 정보에 이를 방송 (broadcasting하는 방법) 각각 및 조합을 포함한다.
특히 NR의 경우, 고주파수대역의 높은 pathloss 발생으로 beamforming을 수행하게 되는데 system information이 전체 빔 방향에 대해 전송 해야 하는 broadcast 정보이므로 이를 PBCH에 전송하는 경우 payload 사이즈가 부족한 현상이 발생한다. 이를 해결하기 위해 PBCH에 탑재되지 못한 여분의 SI 정보를 PDCCH나 PDSCH에 방송 (broadcasting)하게 되는데 이를 RMSI (Remaining System Information)이라고 한다.
즉, 단말이 초기 접속 (Initial access)를 수행하기 위한 RACH의 상향링크 설정 정보는 RMSI에 관련 parameter를 탑재하여 기지국 (셀)에 broadcasting하는 동작을 포함한다.
특히 단말이 RACH를 수행할 때 가 SUL 대역 (lower 주파수 대역)을 사용할 지, NR UL(uplink 상향링크)로 RACH를 수행할 지를 결정하는 기준 (criterion)이 되는 threshold(임계값)을 기지국은 system information (예를 들어 RMSI)으로 기지국 셀 이내에 방송하는 동작을 포함한다.
해당 임계값은 수신신호 레벨의 threshold(임계값)을 포함하고,
또 다른 기준 (criterion)이 되는 threshold(임계값)으로는 해당 상향링크 경로 (SUL 혹은 NR UL)의 Congestion정도를 기준으로 동작할 수 있다. 예를 들어 RACH 절차 상의 Contention 발생으로 인한 timing backoff 발생 개수, 혹은 timing backoff 발생 빈도를 기반으로 동작하는 방법을 포함한다.
위의 Contention 발생 정도 기준은 다음 상황에서 적용 가능하다. RACH message 1인 RACH preamble을 전송할 때 기지국으로부터 RAR (RACH response)를 성공적으로 수신할 때까지 초기 전송 power로 전송하고 일정시간 (pre-configured RAR waiting time) 이후 다시 powerRampingParameters에 기반하여 전송 전력을 증가시켜서 RACH message 1인 RACH preamble을 재전송한다.
또한 상기 기술한 Contention 발생 정도를 기반으로 상향링크 전송 경로를 SUL 전송 혹은 NR UL 로 선택하는 기준은 다음 상황에서 적용 가능하다.
기지국으로부터 RAR (RACH response)를 성공적으로 수신 할 때의 RACH message1로 전송되는 RACH preamble이 전송되는 것으로 결정된 상향링크 전송 경로 (예를 들어 SUL)이 congestion 으로 채널 충돌(collision)이 발생하는 경우 동작으로 RACH message 4 (RRC connection response)로 이전 상향링크 전송 경로 (예를 들어 SUL)에서 다른 상향링크 전송 경로 (예를 들어 NR UL)로 변경하여 설정하고 이를 적용하여 RACH message 5 (RRC connection complete)를 전송하는 방법을 포함한다.
해당 기준이 되는 threshold(임계값)의 예로는 단말의 수신 RSRP, RSRQ, RSSI등 각각 및 조합이 임계값 이상이면 NR UL로 RACH를 수행하고,
임계값 이하이면 SUL 주파수 대역으로 RACH를 수행하는 동작을 포함한다.
또한 NR UL와 SUL은 주파수 대역 및 동작하는 송수신단 사이의 거리가 상이함으로 이를 지원하기 위한 별도의 PRACH parameter를 2개의 set으로 구분하여 전송하는 동작을 포함한다.
보다 상세히는 예를 들어 RACH를 수행할 때 가 SUL 대역 (lower 주파수 대역)을 사용할 지, NR UL(uplink 상향링크)로 RACH를 수행할 지에 따라 PRACH parameter하는 설정의 경우 아래의 표와 같이 설정할 수 있다.
이전에 기술한 바와 같이 SUL 전송과 NR UL 전송을 위한 각각의 독립적인 2개의 RACH-ConfigCommon parameter set을 설정하는 방법과는 달리,
또 다른 일실 시 예로, 하나의 공통된 RACH-ConfigCommon parameter set을 설정하고 SUL 주파수 대역과 NR 주파수 대역에서의 pathloss 차이를 compensate할 수 있는 더 큰 값으로 parameter를 확장하여 설계하는 방법을 포함한다.
예를 들어 powerRampingParameters를 설정하는 방법으로 적용하는 동작에서 SUL 전송과 NR UL 전송을 위한 각각의 독립적인 2개의 powerRampingParameters parameter set을 설정하고 적용하는 방법,
이와는 달리 SUL 전송과 NR UL 전송을 위한 공통의 powerRampingParameters parameter set을 설정하고 maximum power ramping up 값을 SUL 주파수 대역과 NR 주파수 대역에서의 pathloss 차이를 compensate할 수 있는 더 큰 값으로 parameter를 확장하여 설정하는 방법을 포함한다.
단말이 RACH message 1인 RACH preamble을 전송할 때 기지국으로부터 RAR (RACH response)를 성공적으로 수신할 때까지 초기 전송 power로 전송하고 일정시간 (pre-configured RAR waiting time) 이후 다시 powerRampingParameters에 기반하여 전송 전력을 증가시켜서 RACH message 1인 RACH preamble을 재전송한다.
만약 기지국으로부터 RAR (RACH response)를 성공적으로 수신하면 RACH MSG3인 RRC Connection Request를 전송한다.
이러한 RACH preamble 재전송 과정에서 SUL 혹은 NR UL로 전송하는 것을 결정하는 방법으로는
1) 최초의 RACH preamble 전송 시에 RMSI가 설정한 임계 값에 따른 상향링크 전송 경로를 결정한 경우 이를 고정하여 기지국으로부터 RAR (RACH response)를 성공적으로 수신할 때까지 해당 상향링크 경로 (SUL 혹은 NR UL)로 전송하는 방법;
1-1) 최초의 RACH preamble 전송 시에 결정된 상향링크 경로가 SUL이면 기지국으로부터 RAR (RACH response)를 성공적으로 수신할 때까지 (power ramping up)되어 전송되는 RACH preamble 재전송 시도를 계속 SUL로 전송하는 방법
1-2) 최초의 RACH preamble 전송 시에 결정된 상향링크 경로가 UL NR이면 기지국으로부터 RAR (RACH response)를 성공적으로 수신할 때까지 (power ramping up)되어 전송되는 RACH preamble 재전송 시도를 계속 UL NR로 전송하는 방법
2) 최초의 RACH preamble 전송 시와 이어지는 (power ramping up)되어 전송되는 RACH preamble 재전송 시도 때 마다 RMSI가 설정한 임계 값에 따른 상향링크 전송 경로(SUL 혹은 NR UL)를 새로이 결정하여 적용하는 동작;
2-1) 최초의 RACH preamble 전송 시에 결정된 상향링크 경로가 NR UL 이면 (power ramping up)되어 전송되는 RACH preamble 재전송 시도 때 마다 기지국으로부터 RAR (RACH response)를 성공적으로 수신할 때까지 RMSI가 설정한 임계 값에 따른 상향링크 전송 경로(SUL 혹은 NR UL)를 새로이 결정하여 적용하여 전송하는 방법
2-2) 최초의 RACH preamble 전송 시에 결정된 상향링크 경로가 SUL이면 (power ramping up)되어 전송되는 RACH preamble 재전송 시도 때 마다 기지국으로부터 RAR (RACH response)를 성공적으로 수신할 때까지 RMSI가 설정한 임계 값에 따른 상향링크 전송 경로(SUL 혹은 NR UL)를 새로이 결정하여 적용하여 전송하는 방법
또 다른 일 실시 예로, Initial access를 위한 RACH procedure 에서 과정에서 SUL 혹은 NR UL로 전송하는 것을 결정하는 방법으로는
1) 기지국으로부터 RAR (RACH response)를 성공적으로 수신 할 때의 RACH message1로 전송되는 RACH preamble의 상향링크 전송 경로(SUL 혹은 NR UL)를 동일하게 사용하여 RACH message 3로 전송되는 RRC connection request, 혹은 RRC connection resume request, 혹은 RRC resume request를 전송하는 방법;
2) 기지국으로부터 RAR (RACH response)를 성공적으로 수신 할 때의 RACH message1로 전송되는 RACH preamble의 상향링크 전송 경로(SUL 혹은 NR UL)를 동일하게 사용하여 RACH message 3 및 RACH message 5 (RRC connection complete)를 전송하는 방법;
3) 기지국으로부터 RAR (RACH response)를 성공적으로 수신 할 때의 RACH message1로 전송되는 RACH preamble의 상향링크 전송 경로(SUL 혹은 NR UL)를 동일하게 사용하여 RACH message 3 를 전송하고 이후 RACH message 4 (RRC connection response)를 기반으로 RRC configuration에 설정된 상향링크 전송 경로(SUL 혹은 NR UL)로 RACH message 5 (RRC connection complete)를 전송하는 방법;
4) 기지국으로부터 RAR (RACH response)를 성공적으로 수신 할 때의 RACH message1로 전송되는 RACH preamble이 전송되는 것으로 결정된 상향링크 전송 경로 (예를 들어 SUL)이 congestion 으로 채널 충돌(collision)이 발생하는 경우 동작으로 RACH message 4 (RRC connection response)로 이전 상향링크 전송 경로 (예를 들어 SUL)에서 다른 상향링크 전송 경로 (예를 들어 NR UL)로 변경하여 설정하고 이를 적용하여 RACH message 5 (RRC connection complete)를 전송하는 방법;
이때 SUL 의 경우 상향링크만 지원하고 하향링크 및 하향링크 reference signalling이 없으므로, NR 하향링크에서 전송되는 reference signalling을 기준으로 SUL의 pathloss를 보정 해야 한다. 이를 위한 SUL 주파수 대역과 NR 주파수 대역에서의 pathloss 차이를 기지국이 RMSI로 단말에게 방송하는 방법을 포함한다.
여기에서 기준이 되는 reference signalling은 SS (synch signal), CSI-RS (Channel State Information Reference Signal), DMRS (demodulation RS) 및 TRS (tracking RS)를 포함한다.
SUL 주파수 대역과 NR 주파수 대역에서의 pathloss 차이를 기지국이 RMSI로 단말에게 방송하는 방법에 있어서 기준이 되는 reference signalling 종류에 따라 각각 다른 값을 방송하는 방법, 및
적용되는 단일 RS 혹은 일부 RS에 대한 한정된 개수의 (SUL 주파수 대역과 NR 주파수 대역에서의) pathloss 차이 값을 전송하는 방법을 포함한다.
단말은 전송 받은 개수의 (SUL 주파수 대역과 NR 주파수 대역에서의) pathloss 차이 값을 기준으로 RACH preamble의 전송 power를 조절하는 동작을 포함한다.
또는 RRC_CONNECTED 상태에서 상향링크 data 전송을 위해 PH(power headroom)을 연산할 때 NR DL에 RS에 해당하는 pathloss에 보정 값을 기준으로 SUL의 PH값을 계산하여 PHR (Power Headroom Report)를 전송하는 동작을 포함한다.
해당하는 내용인 Inactive상태에서 단말의 traffic 전송 시 Spectral efficiency 향상 및 Channel access 향상 방법을 도 43 내지 45에서 추가로 제안한다.
도 24의 RACH Message3와 도 26의 RACH Message5 모두 data 전송 이후에는 해당 data에 대한 ACK과 RRC state 천이 여부에 대한 정보를 RRC response로 전송한다. 이때 RRC response가 suspend일 경우 Inactive state를 유지하고 resume일 경우 Active state로 천이하여 이후 data 전송을 진행한다.
도 28은 본 발명의 제2 실시 예에 따른 NR 시스템에서 “모드 2)”에 해당하는 INACTIVE 에서 ACTIVE로 상태 천이 이후 Data 전송 동작을 개략적으로 도시한다.
Active state로 천이 이후에 Data 전송을 시작하는 동작은 단말이 Inactive 상태에서 RRC active (RRC CONNECTED)상태로 천이하는 지연 및 제어 시그널링의 부담이 존재하고, Active (RRC CONNECTED)상태에서의 대기시간으로 인해 단말 전력소모가 발생한다.
다만, Active state (RRC CONNECTED 상태)로 천이 이후에 Data 전송을 시작하는 동작은 Active (RRC CONNECTED)상태에서의 Granted 전송으로 인한 channel access 효율성을 증대하고, CQI 와 BSR등의 정보 활용으로 전송 Spectral efficiency를 향상시킬 수 있다.
도 28에서 “모드 2)”에 해당하는 INACTIVE (RRC INACTIVE) 에서 ACTIVE (RRC CONNECTED)로 상태 천이 이후 Data 전송 동작은 Active 상태로 천이 이후 data를 전송한다는 점에서 기존 LTE 동작과 유사하지만 RACH에서 전송되는 control signal이 RRC connection (resume) request로 RRC 설정 과정에서 저장되어 있는 UE context를 활용하여 Core (gNB-MME) 네트워크 간 시그널링 지연 및 개수가 감소하는 효과가 있다. 또한 data 전송 이후 6. RRC connection suspend 메시지를 통해 단말을 저전력 모드인 Inactive 상태로 빠르게 천이할 수 있다.
도 27, 도 29, 도 31, 및 도 32는 본 발명의 실시 에 따른 NR 시스템에서 “모드 3)”에 해당하는 INACTIVE state 에서 Data 전송을 시작하여 ACTIVE state로 천이 이후 Data 전송 동작을 개략적으로 도시한다.
“모드1)” 과 “모드2)”의 hybrid 형태로 data를 전송하는 방식으로 단말이 Inactive 상태에서 RRC active 상태로 천이하는 지연 및 제어 시그널링의 부담을 제거하여 Data의 초기 전송지연을 감소시키면서 이후에 data전송의 Granted 전송으로 인한 channel access 효율성 증대 CQI 와 BSR등의 정보 활용으로 전송 Spectral efficiency의 향상을 동시에 얻을 수 있다.
이때, 도 29의 RACH Message3와 도 31의 RACH Message5 모두 data 전송 이후에는 해당 data에 대한 ACK과 RRC state 천이 여부에 대한 정보를 RRC response로 전송한다. 이때 RRC response가 suspend일 경우 Inactive state를 유지하고 resume일 경우 Active state로 천이하여 이후 data 전송을 진행한다.
MSG5의 RRC connection complement 혹은 RRC connection resume complete 혹은 RRC resume complete 신호 전송 시에는 아래의 해당 정보를 탑재하여 전송하는 동작을 포함한다.
- NAS PDU
- 5CN node selection information (e.g. selected PLMN identity or NSSAI
- selectedPLMN-Identity,
- registeredMME,
- gummei-Type,
- s-TMSI,
- attachWithoutPDN-Connectivity,
- up-CIoT-EPS-Optimisation,
- cp-CIoT-EPS-Optimisation,
- dcn-ID.
상기 일 실시 예의 정보가 MSG5로 전송 되기 위해서는 이전에 저장된 UE context를 Anchor 기지국으로부터 retrieve (회수)에 성공하고 target 기지국으로부터 새로운 보안키 정보 (K_gNB_target)을 생성 가능한 경우에 SRB1으로 해당 정보를 전송하고 또한 신규 보안키를 적용하여 보안상 안전하게 단말이 기지국에게 해당 정보를 전송하는 동작을 포함한다.
해당 정보 중 일부 혹은 전부는 또한 MSG3로 전송되는 RRC Connection request, 혹은 RRC connection resume request 혹은 RRC resume request에 탑재되어 (SRB0 혹은 DRB)에 전송되는 방법을 포함한다.
다시 말하면 MSG3로 전송되는 RRC connection request messag에는 아래 정보가 탑재되어 전송될 수 있다.
- NAS message
- 5G CN node selection,
- UE capability of supporting high frequency,
- the access category indicating a type of services 를 포함하는 정보로 MSG5에 전송할 수 있는 정보 중 일부 혹은 전부를 MSG3에 전송하는 방법을 예시한다.
또 다른 일실 시 예로 Dual Connectivity (DC) (혹은 Carrier Aggregation(CA))이 적용되어 있는 경우 단말이 RRC_CONNECTED에서 RRC_INACTIVE로 천이할 때의 절차 및 동작에 관한 것으로,
첫번째 방법은 해당 DC 혹은 CA 의 Radio bearer 설정을 Inactive 상태의 단말 및 anchor 기지국이 저장하는 UE context에 모두 저장하여 suspend하고 이후 RRC_Connected 될 때 resume 하는 방법이다.
두번째 방법은 해당 DC 가 적용된 Radio bearer 설정 중에서 Master node (MN)의 설정 (MCG bearer)만 남기고 Second node (SN)의 설정 (SCG bearer 설정)을 삭제한 이후에 Inactive 상태의 단말 및 anchor 기지국이 저장하는 UE context에 일부 저장하여 suspend하고 이후 RRC_Connected 될 때 resume 하는 방법이다.
혹은 해당 CA가 적용된 Radio bearer 설정 중에서 PCell의 설정 (Radio bearer)만 남기고 Scell의 설정 (Radio bearer 설정)을 삭제한 이후에 Inactive 상태의 단말 및 anchor 기지국이 저장하는 UE context에 일부 저장하여 suspend하고 이후 RRC_Connected 될 때 resume 하는 방법이다.
DC를 예로 설명하면 해당 DC 가 적용된 Radio bearer 설정 중에서 Master node (MN)의 설정 (MCG bearer)만 남기고 Second node (SN)의 설정 (SCG bearer 설정)을 삭제한 이후에 Inactive 상태의 단말 및 anchor 기지국이 저장하는 UE context에 일부 저장하여 suspend하고 이후 RRC_Connected 될 때 resume 하는 방법의 일 실 시 예로
1) Second node (SN)의 설정 (SCG bearer 설정)을 모두 Radio bearer를 Release하는 방법
2) Second node (SN)의 설정 (SCG bearer 설정)을 모두 MCG bearer로 변경하는 방법
3) Second node (SN)의 설정 (SCG bearer 설정)중 일부를 MCG bearer로 변경하고 일부 Radio bearer를 Release하는 방법을 포함한다.
이는 CA의 경우에도 Scell을 SN동작에 대입하여 확장 적용이 가능하다.
즉, 해당 CA가 적용된 Radio bearer 설정 중에서 PCell의 설정 (Radio bearer)만 남기고 Scell의 설정 (Radio bearer 설정)을 삭제한 이후에 Inactive 상태의 단말 및 anchor 기지국이 저장하는 UE context에 일부 저장하여 suspend하고 이후 RRC_Connected 될 때 resume 하는 방법의 일 실시 예로,
1) Scell 들에 설정된 (Radio bearer 설정)을 모두 Radio bearer를 Release하는 방법
2) Scell 들에 설정된 (Radio bearer 설정)을 모두 PCell로 radio bearer를 변경하는 방법
3) Scell 들에 설정된 (Radio bearer 설정) 중 일부를 PCell로 radio bearer를 변경하는 하고 일부 Radio bearer를 Release하는 방법을 포함한다.
이때 해당 Radio bearer를 MN(MCG bearer 혹은 PCell의 bearer)로 변경하여 UE context에 저장하고 이후에 suspend와 resume 절차를 거쳐 바로 해당 Radio bearer로전송 가능하도록 하는 방법;
혹은 Radio bearer 를 release하여 단말 및 Anchor 기지국이 해당 radio bearer 정보를 UE context에 저장하는 용량을 감소하거나 단말 이동 시 RAN-based paging area를 update하는 과정에서 Core network이 해당 radio bearer를 관리 제어하기 위한 제어 부담을 감소하는 방법을 선택하는 과정은 다음을 포함한다.
1) DC의 경우 해당 SN(SCG 혹은 CA의 경우 Scell)에 설정된 radio bearer가 MN(MCG bearer 혹은 CA의 경우 PCell의 Radio bearer 가 설정된 PDU session과 중복 되는 경우, 이를 DC의 경우 MN(MCG bearer 로 혹은 CA의 경우 PCell의 Radio bearer로 변경한다. 중복 되지 않는 경우 PDU session을 유지하는 Cost 가 발생하므로 해당 Radio bearer를 release한다.
2) DC의 경우 해당 SN(SCG 혹은 CA의 경우 Scell)에 설정된 radio bearer 가 지원하는 flow 나 서비스의 QoS level이 특정 임계값 이상인 경우, 이를 DC의 경우 MN(MCG bearer 로 혹은 CA의 경우 PCell의 Radio bearer로 변경한다 QoS 레벨이 임계값 보다 낮은 경우 해당 Radio bearer를 release한다.
3) DC의 경우 해당 SN(SCG 혹은 CA의 경우 Scell)에 설정된 radio bearer 이 지원하는 flow 나 서비스의 요구 latency 제한이 특정 임계값보다 짧은 경우, Resumption시 발생하는 지연을 감소시키기 위해 이를 DC의 경우 MN(MCG bearer 로 혹은 CA의 경우 PCell의 Radio bearer로 변경한다 요구 latency 제한이 특정 임계값보다 길어서 지연이 발생해도 무관한 경우 해당 Radio bearer를 release하는 동작을 포함한다.
이러한 동작을 위해 상기 기술한 PDU Session 정보, Bearer 혹은 해당 flow의 지원 QoS 및 요구 지연 등을 기반으로 Core network이 결정하여 기지국으로 설정하는 동작을 포함한다. 이는 해당 Radio bearer를 release할지 이전(bearer type change)를 수행할지 결정하는 동작 및 이를 적용하여 RRC state를 Inactive로 천이하는 동작을 포함한다.
해당 Radio bearer를 release할지 이전(bearer type change)를 수행할지 결정하는 방법으로
1) Core network이 해당 결정에 대한 상기 기술한 PDU Session 정보, Bearer 혹은 해당 flow의 지원 QoS 및 요구 지연 등을 포함하는 부가정보를 기반으로 기지국에 설정하는 방법,
2) Core network이 해당 결정을 위한 measure/기준 (상기 기술한 PDU Session 정보, Bearer 혹은 해당 flow의 지원 QoS 및 요구 지연) 및 규칙을 기지국에 설정하는 방법,
3) 기지국이 해당 기지국의 master cell 이내의 (DC의 경우 MN, CA의 경우 PCell 포함) 기지국 보유 정보와 단말 feedback 정보를 가지고 Radio bearer를 release할지 이전(bearer type change)를 수행할지 결정하는 방법을 포함한다.
4) 기지국이 해당 기지국 이내의 (DC의 경우 MN와 SN, CA의 경우 Pcell과 Scell을 모두 포함)하여 기지국 보유 정보와 단말 feedback 정보를 가지고 Radio bearer를 release할지 이전(bearer type change)를 수행할지 결정하는 방법을 포함한다.
이 과정에서 단말이 DC의 경우 (LTE-NR DC, NR-NR DC를 포함하는 5G 적용 가능한 NSA 혹은 SA상에서의 DC 구조) 해당 SN(SCG)에 설정된 radio bearer 이 지원하는 flow 나 서비스의 요구 QoS나 latency 요구 사항 혹은 service category를 포함하는 정보 각각 혹은 조합을 기지국으로 feedback 하는 동작을 포함한다.
이 상기 기술한 동작에서 단말이 CA의 경우 해당 Scell에 설정된 radio bearer 이 지원하는 flow 나 서비스의 요구 QoS나 latency 요구 사항 혹은 service category를 포함하는 정보 각각 혹은 조합을 기지국으로 feedback 하는 동작을 포함한다.
도 29는 RACH Message3 기반한 Inactive 상태에서의 data 전송 이후 RRC active 상태로 천이하여 추가적으로 data를 전송하는 경우를 나타내고, 도 31은 RACH Message5 기반한 Inactive 상태에서의 data 전송 이후 RRC active 상태로 천이하여 data를 추가적으로 전송하는 경우를 나타낸다. 단말이 Active상태에서 data 전송 이후 기지국은 6. RRC connection suspend 메시지를 통해 단말을 저전력 모드인 Inactive 상태로 빠르게 천이할 수 있다.도 30은 INACTIVE state 에서 MSG3 를 통해 Data 전송을 시작하여 Message5 RRC connection (resume) complete에 Data를 추가하여 전송하고 data 전송 완료 시 RRC response에 (ACK과 suspend)을 전송하여 Inactive 상태를 유지하는 동작을 설명하는 도면이다.
도 31은 INACTIVE state 에서 Data 전송을 시작하여 ACTIVE state로 천이, 이후 Data 전송 동작을 개략적으로 도시하는 도면이다.
도 32는 INACTIVE state 에서 MSG3 를 통해 Data 전송을 시작하여 Message5 RRC connection (resume) complete에 Data를 추가하여 전송하고 data 전송이 추가로 필요한 경우에 RRC connection response에 (ACK과 Resume)을 전송하여 Active 상태로 천이하고 이후 Data전송이 다시 완료되면 RRC connection suspend message전송을 통해 Inactive로 다시 천이하는 동작을 설명하는 도면이다.
도 33 내지 35은 본 발명의 제2 실시 예에 따른 NR 시스템에서 data 전송을 하는 RRC state (Inactive 및/또는 Active) 결정 및 제어를 위한 단말과 기지국 간 시그널링 동작 예시를 나타낸 도면이다.
도 33은 data를 전송할 RRC state관련 동작 모드를 결정하기 위하여 기지국 configuration 기반으로 단말이 event trigger하고 이를 feedback하여 기지국이 결정하는 방법을 도시한다.
1 단계) 단말은 기지국으로부터 data 전송을 하는 RRC state (Inactive 및/또는 Active) 결정 방법에 관한 Configuration 정보를 수신할 수 있다. 단말이 해당 통신 시스템에 초기 접속을 수행할 때 혹은 전원을 켰을 때 (Turn on) 혹은 단말이 해당 기지국으로부터 System Information (SI) 수신 시에, 기지국은 각 단말에 적용할 RRC State 종류 및 전환 방법 결정에 관련된 configuration 정보를 단말로 전송할 수 있다.
2 단계) 단말은 기지국에서 전송되는 RRC State 종류 및 전환 방법 결정에 관련된 configuration 정보를 기반으로 event trigger하고 이를 기지국에게 feedback 전송할 수 있다. 이후, 기지국은 상기 feedback을 기반으로 Data 전송 모드 (1) INACTIVE 상태에서 data 전송, (2) ACTIVE 상태로 천이 결정, (3) INACTIVE로 data 전송 시작해서 Active로 연속 data 전송 동작들 중에서 어느 하나를 선택할 수 있다. 세가지 모드들 중에서 모드 (1) 및 모드 (3)은 RRC response 이전 동작이 동일하므로 기지국은 모드 (1), (3)과 모드 (2) 만을 구분하여 알려줄 수 있다. 이후, 모드 (1) 과 모드 (3)은 RRC response 1) ACK & suspend, 2) Resume 기반으로 구분될 수 있다.
3 단계) 기지국은 Data 전송 모드를 결정(또는 전환)한 이후 이를 system information이나 dedicated signalling (paging등) 을 통해 단말에게 전송할 수 있다.
4 단계) 초기 Inactive 상태에서 data 전송 이후 active 상태에서 data 전송이 필요한 경우, 기지국은 RRC response 이내의 정보를 1) ACK & suspend, 2) Resume 전송하고 이를 기반으로 단말은 이후 data 전송 RRC state를 Inactive 로 유지하거나 혹은 active로 천이하는 동작을 수행할 수 있다.
도 34는 기지국 configuration 기반으로 단말이 event trigger하고 data 전송 모드를 전환을 결정한 이후 이를 data 전송 과정에서 (예를 들어 RACH UL message에 embedded하여) 기지국으로 전송하여 알려주는 방법을 도시한다.
도 33에서 기지국이 단말의 피드백에 기반하여 data 전송 모드를 선택하는 반면, 도 34에서는 단말이 기지국 configuration을 기반으로 직접 data 전송 모드를 선택하고 선택 결과를 기지국으로 알려 줄 수 있다.
1 단계) 단말은 기지국으로부터 data 전송을 하는 RRC state (Inactive 및/또는 Active) 결정 방법에 관한 Configuration을 수신할 수 있다. 단말이 해당 통신 시스템에 초기 접속을 수행할 때 혹은 전원을 켰을 때 (Turn on) 혹은 단말이 해당 기지국으로부터 System Information (SI) 수신 시에, 기지국은 각 단말에 적용할 RRC State 종류 및 전환 방법 결정에 관련된 configuration 정보를 단말로 전송할 수 있다.
2 단계) 단말은 기지국으로부터 전송되는 RRC State 종류 및 전환 방법 결정에 관련된 configuration 정보를 기반으로 event trigger하고 이를 기반으로 Data전송 모드를 결정할 수 있다. 단말은 (1) INACTIVE 상태에서 data 전송, (2) ACTIVE 상태로 천이 결정, (3) INACTIVE로 data 전송 시작해서 Active로 연속 data 전송 동작의 3가지 전송모드들 중에서 Data 전송 모드를 선택할 수 있다. 세가지 모드들 중에서 모드 (1) 모드 (3)은 RRC response 이전 동작이 동일하지만 단말은 모드 (1), (3)과 모드 (2) 만을 구분하여 기지국으로 알려줄 수 있다. 이후 모드 (1) 과 모드 (3)은 RRC response 1) ACK & suspend, 2) Resume 기반으로 구분이 가능하다.
3 단계) 단말은 선택한 Data 전송 모드를 기지국에 전송하기 위해 data 전송 과정에서 (예를 들어 RACH UL message에 embedded하여) 기지국으로 Data 전송 모드 Update를 전송할 수 있다.
이때, 세가지 Data 전송 모드들 중에서 모드 (1) 및 모드 (3)은 RRC response 이전 동작이 동일하지만 단말은 모드 (1)(2)(3) 모드 전체를 구분하여 알려주어 기지국이 적절한 RRC response 1) ACK & suspend, 2) Resume 를 전송할 수 있다.
4 단계) 초기 Inactive 상태에서 data 전송 이후 active 상태에서 data 전송이 필요한 경우, 기지국은 RRC response 이내의 정보를 1) ACK & suspend, 2) Resume 전송하고 이를 기반으로 단말은 이후 data 전송 RRC state를 Inactive 로 유지하거나 혹은 active로 천이하는 동작을 수행한다.
도 35는 기지국 configuration 기반으로 단말의 event trigger 및 feedback 없이 기지국이 data를 전송할 RRC state 관련 동작 모드를 결정하는 방법을 도시한다. 도 33과 비교할 때, 도 35에 도시된 방법은 기지국이 Data 전송 모드를 결정하는 점에서 유사한 점이 있으나 단말의 event trigger 및 feedback이 없는 점에서 양자는 차이가 있다.
1 단계) 단말은 기지국으로부터 data 전송을 하는 RRC state (Inactive 및/또는 Active) 결정 방법에 관한 Configuration 정보를 수신할 수 있다. 단말이 해당 통신 시스템에 초기 접속을 수행할 때 혹은 전원을 켰을 때 (Turn on) 혹은 단말이 해당 기지국으로부터 System Information (SI) 수신 시에, 기지국은 각 단말에 적용할 RRC State 종류 및 전환 방법 결정에 관련된 configuration 정보를 단말로 전송할 수 있다.
도 36은 data 전송을 하는 RRC state (Inactive 및/또는 Active) 결정 및 제어를 위한 단말 기지국간 시그널링 동작 예시를 나타낸 도면이다. Inactive state configuration 과정에서 기지국이 단말에게 Data 전송 모드 결정을 위한 Buffer 크기 및 RSRP 임계값 설정할 수 있다.
도 36을 참조하면, 해당 configuration은 RRC inactive 상태 시작 설정 시에 기지국이 단말에게 설정할 수 있으며, 해당 예로는 data 전송을 하는 RRC state (Inactive 및/또는 Active) 결정 및 MSG3 혹은 MSG5 전송 모드를 결정하는 Event를 정의하고 이를 위한 parameter를 설정하는 동작, 해당 parameter는 단말의 Buffer 크기 및 RSRP 임계값 설정을 포함한다. 또한, 기지국은 System Information을 통해 해당 configuration을 업데이트할 수 있다.
2 단계) 기지국은 단말의 feedback 없이 Data 전송 모드 (1) INACTIVE 상태에서 data 전송, (2) ACTIVE 상태로 천이 결정, (3) INACTIVE로 data 전송 시작해서 Active로 연속 data 전송 동작들 중에서 Data 전송 모드를 선택할 수 있다. 세가지 Data 전송 모드들 중에서 모드 (1) 및 모드 (3)은 RRC response 이전 동작이 동일하므로 기지국은 모드 (1), (3)과 모드 (2) 만을 구분하여 단말에게 알려줄 수 있다. 이후 모드 (1) 과 모드 (3)은 RRC response 1) ACK & suspend, 2) Resume 기반으로 구분 가능하다.
3 단계) 기지국은 Data 전송 모드를 선택(또는 전환)한 이후 이를 system information이나 dedicated signalling (paging등) 을 통해 단말에게 전송할 수 있다.
4 단계) 초기 Inactive 상태에서 data 전송 이후 active 상태에서 data 전송이 필요한 경우, 기지국은 RRC response 이내의 정보를 1) ACK & suspend, 2) Resume 전송하고 이를 기반으로 단말은 이후 data 전송 RRC state를 Inactive 로 유지하거나 혹은 active로 천이하는 동작을 수행할 수 있다.
data를 전송할 RRC state관련 동작 모드를 결정하기 위한 정보는 아래의 전송 data traffic의 특성 및 단말의 특성에 기반하여 결정될 수 있다.
1) 기지국에게 feedback하여 기지국이 Data 전송을 위한 RRC state를 결정하여 RRC response (RRC suspend 혹은 RRC resume) 을 전송하는 동작
2) 혹은 단말 내에서 Data 전송을 위한 RRC state를 결정하여 이를 RRC connection request (resume request) message 이내에 resume_cause로 inactive_data 전송 혹은 Active_data 전송으로 구분하여 요청하는 동작
data를 전송할 RRC state관련 동작 모드를 결정하기 위한 Traffic 특성 기반 결정 기준으로 아래의 요소들의 일부 혹은 조합을 기준으로 선택하는 동작,
* Data Packet size는 small data의 경우 Inactive 상태에서 전송하는 것이 단말 전력 효율이나 Data 송수신 지연 측면에서 유리하다. 동작의 일 실 시 예로 2/3 SDU size로 정의할 수 있으며 시스템에 따라 그 상세 값을 Configuration하여 운용할 수 있다.
* Data Packet Interval: 빈번한 data traffic 도착하는 경우 Active 상태로 천이하여 전송하는 것이 유리할 수 있다. data를 전송할 RRC state관련 동작 모드를 결정 기준으로 단위시간당 traffic unit 도착 개수 등을 기준으로 하는 동작
- Traffic pattern 을 기준으로 결정하는 방법에서 기지국 (network)의 UE inactivity timer을 반영한 connected_active state의 비율과 inactive state의 비율 및 idle state의 비율을 기반으로 이를 기지국이 판단하거나
- 단말에 저장한 이전 data 전송 시에 RRC state 비율을 기반으로
단말이 idle mobility (단말이 idle 상태나 inactive 상태에서 handover 없이 이동하여 현재 위치하는 기지국이 단말의 정보/feedback을 받지 않는 동작)으로 기지국이 이러한 정보를 모르는 경우 이전 정보를 단말이 기지국에게 feedback하고 이를 기반으로 data전송을 위한 RRC state를 기지국이 결정하는 동작
- 혹은 단말에 저장한 이전 data 전송 시에 단말 정보 (traffic pattern, mobility 정보)를 UE context에 저장하고 update하여 X2를 통해 Anchor 기지국에서 camped 기지국으로 포워딩하여 전송하는 방법을 포함한다.
* Data packet sum in UE/gNB buffer: 단말 and/or 기지국의 buffer에 traffic 크기를 기준으로 data를 전송할 RRC state관련 동작 모드를 결정하는 방법, 이때 buffer size는 Application단 IP단, PDCP, RLC, MAC, PHY단의 buffer를 포함하여 동작할 수 있음.
* Data packet delay requirement는 NR에서 정의하는eNBB, ULRRC, mMTC 등의 traffic 서비스 별 특성 및 QoS (Bearer별 CQI)등을 기반으로 결정하며 상기 요소를 포함하는 특성을 기반으로 data를 전송할 RRC state관련 동작 모드를 선택하는 동작
* Network loading (Contention 확률): 단말 혹은 기지국이 판단한 channel access 시에 발생하는 contention 확률에 근거하여 Data를 전송할 RRC state를 결정하는 동작
- 일실시 예로 Data전송을 위해 channel 에 access하는 단말 수가 많은 경우,RRC connected active 상태로 천이하여 data를 전송도록 하는 동작을 포함함
- channel access 시에 발생하는 contention 확률은 기지국이 Contention resolution을 통해 파악한 정보를 활용할 수 있으며
- 혹은 단말이 인근 간섭 level을 측정 (예를들어) RSRQ를 기반으로 판단하여 기지국이 pre-configured 한 임계값 (threshold)를 기준으로 event가 발생하는 경우 이를 기반으로 판단하는 동작
Data를 전송할 RRC state관련 동작 모드를 결정하기 위한 단말 특성으로는 아래의 요소들의 일부 혹은 조합을 기준으로 선택하는 동작,
* 단말-기지국간 거리 (Short/Long Coverage) 는 단말-기지국 간 pathloss 를 기반으로 예를 들어 수신 RSRP/RSRQ 기반으로 판단하는 동작
단말 위치가 기지국으로부터 cell center 영역에 위치하는지 boundary 영역에 위치하는지를 단말-기지국간 거리 임계값 (Threshold) 혹은 수신 신호 값 (예 RSRP/RSRQ) 기준으로 판단하는 동작
: 일실 시 예로 RACH 동작 시 RA Preamble 전송 및 RAR 수신 과정에서도 해당 정보 파악 가능하므로 이를 기반으로 data를 전송할 RRC state관련 동작 모드를 결정하는 동작
: 해당 정보는 Inactive 상태에서 전송가능 한 payload length를 결정하는 기준이 되므로
- CQI 및 유사 정보 보유 시에는 근거리 (높은 수신신호 품질) 일수록 Inactive에서 data를 전송하는 방식이 유리하며
- CQI 및 유사 정보 부재 시에는 근거리 (높은 수신신호 품질) 일수록 Active 상태에서 data를 전송하는 방식이 상대적으로 유리하여 이를 기반으로 data를 전송할 RRC state관련 동작 모드를 결정하는 동작
* 단말 사용상태: Latency Tolerance, 해당 단말에 traffic이 사용자가 직접 입력하거나 QoS에 영향을 주는 직접적인 traffic이 아닌 경우, 저 지연 요소가 중요하지 않으므로 Network-wide (SE) 효율성 향상을 위해 Active 상태에서 data를 전송하는 방식을 선택하는 동작의 예,
혹은 동일하게 사용자가 직접 입력하거나 QoS에 영향을 주는 직접적인 traffic이 아닌 경우, 단말의 저전력 동작을 위해 (불필요한 C-DRX 구간 제거를 위해) Active (RRC_CONNECTED)상태에서 data를 전송하는 모드를 선택하는 동작의 예,
* 단말 이동 속도 및 최근 RRC connected되었던 기지국으로부터 Idle mobility 여부:
- 단말 ID (Cell ID C-RNTI)를 Inactive 상태 data 전송 상황에서 재 사용가능 한지 여부를 기반으로 한 data를 전송할 RRC state관련 동작 모드를 결정 동작
- 단말의 UP 보안 정보 (security key)를 Inactive 상태 data 전송 상황에서 재 사용가능 한지 여부를 기반으로 한 data를 전송할 RRC state관련 동작 모드를 결정 동작
- Idle mobility 지원 overhead (Paging S1, X2)을 포함하는 요소를 고려하여 결정하는 동작을 수행한다.
Paging 동작 방법에 따라 (CN-based paging 혹은 RAN-based paging) 혹은 tracking area/paging area 크기에 따른 단말 mobility 지원 overhead (Paging S1, X2)를 기준으로 data 전송을 위한 RRC state 천이를 결정하는 방법.
단말이 idle mobility (단말이 idle 상태나 inactive 상태에서 handover없이 이동하여 현재 위치하는 기지국이 단말의 정보/feedback을 받지 않는 동작)으로 기지국이 이러한 정보를 모르는 경우 이전 정보를 단말이 기지국에게 feedback하고 이를 기반으로 data전송을 위한 RRC state를 기지국이 결정하는 동작
- 혹은 단말에 저장한 이전 data 전송 시에 단말 정보 (traffic pattern, mobility 정보)를 UE context에 저장하고 update하여 X2를 통해 Anchor 기지국에서 camped 기지국으로 포워딩하여 전송하는 방법을 포함한다.
* UE battery status: 단말의 전력 소비 상태를 기지국에게 feedback하여 이를 참고하여 data를 전송할 RRC state를 결정하는 방법
이러한 상기 feedback은 RRC state의 RRC connected active로의 천이 혹은 천이 없이 inactive state에서의 data 전송으로 수행될 수 있다.상기 요소를 포함하는 특성을 기반으로 data를 전송할 RRC state관련 동작 모드를 기지국이 설정하는 단말 event trigger및 feedback 기반으로 기지국 정보를 더하여 결정하거나 기지국 내부 정보만을 활용하여 결정하거나 기지국이 설정하는 규칙에 따라 단말이 내부적으로 결정하는 동작 및 이를 단말/기지국에 전송하고 이후 data를 전송할 RRC state관련 동작 모드를 변경하여 전송하는 동작.
앞서 설명한 Data를 전송할 RRC state관련 동작 모드를 결정하기 위한 단말/Data traffic 특성을 포함하는 요소들의 반영은 RRC 상태 천이 절차에 제어 메시지 전송으로 반영될 수 있으며 혹은 일부 DRB는 Inactive 상태 data 전송 전용 DRB로 설정하고 다른 DRB는 Active 상태 data 전송 전용 DRB로 설정하여 Data Traffic 발생시 해당 전송을 각각 다른 DRB에 mapping하여 전송하는 절차로 반영 될 수 있다.
도 37은 본 발명의 제2 실시 예에 따른 NR 시스템에서 data 전송을 하는 RRC state (Inactive 및/또는 Active) 결정 및 제어를 위한 단말과 기지국 간 시그널링 동작 예시를 나타낸 도면이다. 기지국 configuration 및 단말의 event trigger 기반으로 단말은 기지국으로의 feedback 없이 기지국이 data를 전송할 RRC state 관련 동작 모드를 결정할 수 있다.
해당 동작의 경우 MSG3의 BSR이나 RSRP 정보 전송 이전에는 기지국이 해당 정보를 알 수 없기 때문에 기지국에 MSG3를 할당할 때 해당 정보 BSR이나 RSRP 정보 없이 MSG3의 할당 크기를 default로 할당할 수 있다.
또한 단말이 MSG1 (RA preamble)을 기반으로 예를 들어 RA sequence의 Group 정보를 기반으로 BSR이나 RSRP 정보 관련 정보를 전달 할 수 있다. 하지만 전달할 수 있는 정보량이 한정적이여서 small data에 해당하는 low-precision으로 소수개의 예를 들어 2-3개의 MSG3의 크기를 지정하는 정보를 전달하는 동작, 또한 PA preamble의 Sequence 도메인 이외에 Time 도메인, Frequency 도메인, Beam 도메인 (spatial 도메인)의 pre-configuration 된 규칙 기반으로 단말이 RACH를 접속하는 자원 (time, frequency. Beam)의 indication에 따라 기지국이 해당 MSG3의 할당을 수행할 수 있다.
일 실시예로 단말이 sub-slot 1-5중에서 2로 RACH를 수행하는 경우 기지국은 pre-configuration된 Look up table (LUT) 기반 해당 2번째 MSG3 size에 해당하는 UL 자원의 크기를 grant하는 동작을 포함할 수 있다.
도 38은 본 발명의 제2 실시 예에 따른 NR 시스템에서 data 전송을 하는 RRC state (Inactive 및/또는 Active) 결정 및 제어를 위한 단말과 기지국 간 시그널링 동작 예시를 나타낸 도면이다. 기지국 configuration 및 단말의 event trigger 기반으로 단말은 추가 feedback을 통하여 기지국으로 단말 정보 (RSPR 혹은 BSR)를 전송하고, 기지국은 data를 전송할 RRC state 관련 동작 모드를 결정할 수 있다.
해당 동작의 경우 MSG3의 BSR이나 RSRP 정보를 Data 전송 이전에 전송하므로 기지국이 해당 정보를 알고 있기 때문에 기지국에 MSG3를 할당할 때 해당 정보 BSR이나 RSRP 정보 기반하여 MSG3의 할당 크기를 최적화 하여 (data 전송에 필요한 최소 크기로 혹은 채널 상황이 허락하는 최대 크기로) 할당할 수 있다.
도 39는 본 발명의 제2 실시 예에 따른 NR 시스템에서 data 전송을 위해 기지국이 configuration한 event trigger 기반으로 단말이 data를 전송할 MSG3, MSG5 혹은 RRC state 천이 관련 동작 모드를 결정하는 방법을 설명하는 도면이다.
S3901 단계를 참조하면, 기지국은 단말에 의한 Data 전송 모드 결정을 위해 버퍼 크기 및 RSRP 임계값을 설정할 수 있다.
S3903 단계를 참조하면, UE 버퍼 사이즈가 0보다 큰지 확인하고, UE 버퍼 사이즈가 0보다 큰 경우, S3905 단계에서 RSRP가 MSG3에 대한 RSRP 임계값(RSRP_thresold_MSG3)보다 큰지 확인할 수 있다. RSRP가 MSG3에 대한 RSRP 임계값(RSRP_thresold_MSG3)보다 크면, S3907 단계에서 UE 버퍼 사이즈가 MSG3에 대한 버퍼 크기 임계값(T_thresold_MSG3)보다 큰지 확인할 수 있다. UE 버퍼 사이즈가 MSG3에 대한 버퍼 크기 임계값(T_thresold_MSG3)보다 크면, S3909 단계에서 UE 버퍼 사이즈가 MSG5에 대한 버퍼 크기 임계값(T_thresold_MSG5)보다 큰지 확인할 수 있다. UE 버퍼 사이즈가 MSG5에 대한 버퍼 크기 임계값(T_thresold_MSG5)보다 크면, S3911 단계에서 MSG3에 Data 및 BSR을 전송하고 MSG5에 Data를 전송하고 MSG6에 RRC response (Resume)을 전송할 수 있다. S3913 단계에서 단말은 RRC Active 상태로 천이할 수 있다.
S3905 단계에서 RSRP가 MSG3에 대한 RSRP 임계값(RSRP_thresold_MSG3)보다 작으면, S3915 단계에서 MSG5에 Data를 전송할 수 있다. 이후, S3921 단계에서 UE 버퍼 사이즈가 MSG5에 대한 버퍼 크기 임계값(T_thresold_MSG5)보다 큰지 확인할 수 있다. S3921 단계에서 UE 버퍼 사이즈가 MSG5에 대한 버퍼 크기 임계값(T_thresold_MSG5)보다 크면, S3923 단계에서 MSG5에 Data 전송 이후 MSG6에 RRC response (Resume)을 전송할 수 있다. S3925 단계에서 단말은 RRC Active 상태로 천이할 수 있다. S3921 단계에서 UE 버퍼 사이즈가 MSG5에 대한 버퍼 크기 임계값(T_thresold_MSG5)보다 작으면, S3927 단계에서 MSG5에 Data를 전송하고 MSG6에 RRC response (Suspend)를 전송할 수 있다.
S3907 단계에서 UE 버퍼 사이즈가 MSG3에 대한 버퍼 크기 임계값(T_thresold_MSG3)보다 작으면, S3917 단계에서 MSG3에 Data를 전송하고 MSG4에 RRC Response (Suspend)를 전송할 수 있다.
해당 RACH MSG4(message4)로 전송되는 RRC message는 RRC connection response 혹은 RRC resume response, 혹은 RRC suspend response, RRC connection resume response, RRC connection suspend response 등으로 전송되는 방법을 포함한다.
S3909 단계에서 UE 버퍼 사이즈가 MSG5에 대한 버퍼 크기 임계값(T_thresold_MSG5)보다 작으면, S3919 단계에서 MSG3에 Data 및 BSR을 전송하고 MSG5에 Data를 전송하고 MSG6에 RRC Response (Suspend)를 전송할 수 있다.
이때 기지국은 MSG4로 전송하는 RRC connection response (suspend) 혹은 RRC connection suspend message 에는 target RRC state를 명시적으로 (target state= RRC_IDLE, RRC_INACTIVE, RRC_CONNECTED)지시하는 동작을 포함한다. 이를 기반으로 단말은 RRC 상태를 천이한다.
혹은 RACH MSG3로 전송되는 RRC connection request에 상향링크 data 전송을 수행하면 기지국은 단말의 RRC state를 결정하여 이를 RRC Connection response로 묵시적으로 (implicit) 하게 단말에게 알려준다. 만약 기지국이 단말의 RRC 상태를 RRC_CONNECTED (Active)상태로 천이하기로 제어하는 경우 기지국은 MSG4로 전송하는 RRC connection response (resume) 혹은 RRC connection resume message로 이를 단말에게 지시한다.
반대로 단말이 RRC_Inactive로 머물러 있기로 결정할 경우 기지국은 MSG4로 전송하는 RRC connection response (suspend) 혹은 RRC connection suspend message로 이를 단말에게 지시한다.
이러한 MSG4가 단말을 RRC_INACTIVE로 (혹은 RRC_IDLE) 천이하도록 지시하는 경우, 해당 RRC state에서 동작하는 관련 parameter를 update하여 MSG4에서 전송하는 동작을 포함한다.
단말이 RRC_IDLE로 천이하는 경우 MSG4에 포함되는 해당 정보로는
- cause information
- redirect carrier frequency
- mobility control information
- frequency/RAT deprioritisation information
- Wait timer 를 포함한다.
다른 일 실시 예로 단말이 RRC_INACTIVE로 천이하는 경우 MSG4에 포함되는 해당 정보로는
- cause information
- redirect carrier frequency
- mobility control information
- frequency/RAT deprioritisation information 을 포함하며 추가로
- UE identity (or UE context identity
- RAN configured DRX cycle,
- RAN periodic notification timer,
- RAN notification area
- Wait timer를 포함한다.
그런데, Fake UE나 fake 기지국이 DoS 공격을 시도 할 경우 보안상의 문제로 MSG4에 update하여 전송할 수 있는 정보가 달라진다.
다시 말해서 MSG4가 SRB0로 전송(보안 적용 cyphering) 되느냐 SRB1으로 전송 (보안 미 적용 not cyphering) 되느냐에 따라 MSG4에 update하여 전송할 수 있는 정보가 달라진다.
MSG4의 전송은 단말에 이전에 저장된 UE context를 Anchor 기지국으로부터 retrieve (회수)에 성공하고 target 기지국으로부터 새로운 보안키 정보 (K_gNB_target)을 생성 가능한 경우에 SRB1으로 해당 정보를 전송이 가능하며, 반대로 UE context를 Anchor 기지국으로부터 retrieve (회수)에 실패하거나 기지국이 congestion 이 발생하여 해당 단말의 RRC connection request을 거절하는 경우에는 target 기지국으로부터 새로운 보안키 정보 (K_gNB_target)을 생성할 수 없기 때문에 SRB0로 MSG4를 전송하게 된다.
예를 들어 Waiting timer는 단말이 기지국으로부터 RRC Connection Response를 수신하고 나서 일정시간 Waiting timer 만큼 대기하였다가 해당 타이머가 만기 (expiry) 되면 다시 RRC Connection request를 시도 할 수 있게 동작하는 timer이다. Fake 기지국이 long wait timer를 설정하면 해당 단말이 오랜 시간동안 RRC connection request를 요청하여 Data 전송을 시작할 수 없으므로 단말의 QoS에 피해를 줄 수 있다. 그러나 SRB0에서 설정할 수 있는 Wait timer의 범위 (range)를 네트워크에서 제한시키면 fake 기지국이 너무 큰 값으로 Wait timer를 설정하는 공격을 성공 할 수 없다.
따라서 SRB1로 전송하는 MSG4에서는 Wait timer의 범위를 조정가능 하게 설정하는 동작을 포함한다. 또한 SRB0에서 전송하는 MSG4에서는 이전에 설정된 (pre-configured) 제한된 범주 이내에서만 Wait timer를 설정가능 하도록 하는 동작을 포함한다.
이를 위해 Wait timer 의 범주 및 최대값 (제한 값)은 보안이 적용된 (SRB1 혹은 cyphering 적용, 혹은 integrity 적용된 이전 RRC message에서 설정하는 방법을 포함한다. 또한 Fake UE와 구분 가능한 보안 적용된 Genuine 기지국 에서 전송하는 system information을 통해서도 Wait timer 의 범주 및 최대값 (제한 값)을 설정하는 동작을 수행할 수 있다.
다시 말하면 SRB0 혹은 SRB1으로 전송되는 MSG4에서 모두 waiting timer를 전송할 수 있다. 하지만 SRB0로 전송 되는 MSG4에서는 최대값이 제한된 비교적 짧은 waiting timer를 설정하는 동작을 포함한다.
또다른 일실 시 예로 MSG4를 SRB0로 전송하는 경우에는 관련 parameter를 업데이트 하지 않고 고정값으로 사용하고 MSG4를 SRB1으로 전송하는 경우 관련 parameter를 업데이트 하는 동작을 포함한다. 해당 parameter는 상기 기술한 바와 같이 단말이 RRC_IDLE로 천이하는 경우 MSG4에 포함되는 해당 정보로는 cause information, redirect carrier frequency, mobility control information, frequency/RAT deprioritisation information, Wait timer 를 포함한다.
다른 일 실시 예로 단말이 RRC_INACTIVE로 천이하는 경우 MSG4에 포함되는 해당 정보로는 cause information, redirect carrier frequency, mobility control information, frequency/RAT deprioritisation information 을 포함하며 추가로 UE identity (or UE context identity, RAN configured DRX cycle, RAN periodic notification timer, RAN notification area, Wait timer를 포함한다.
즉, 단말의 buffer 상태 크기가 0이상인 경우, 전송할 데이터가 발생한 경우 해당 단말의 RSRP가 MSG3의 RRC connection request 혹은 RRC resume request를 전송할 수 있는 최대 coverage에 기반하여 MSG3에 data전송 여부를 결정할 수 있다. 이후 단말의 buffer 상태 정보에 따라 MSG3에 data전송 여부 및 MSG5에 추가 data 전송 혹은 active상태로 천이 이후에 추가 data전송 여부를 차례로 결정하여 동작한다.
이때 data 전송이 완료된 경우에는 RRC response message로 RRC suspend message를 전송하고 active상태로 추가 전송 동작의 경우 RRC resume message를 전송한다.
도 40은 본 발명의 제2 실시 예에 따른 NR 시스템에서 data 전송을 위해 단말이 기지국이 configuration한 event trigger 기반으로 기지국에 해당 Event에 대한 추가적인 feedback 없이 동작할 경우에 단말이 data를 전송할 MSG3 혹은 MSG5 혹은 RRC state 천이 관련 동작 모드를 결정하는 방법을 동작을 설명하는 도면이다.
해당 동작의 경우 MSG3의 BSR이나 RSRP 정보 전송 이전에는 기지국이 해당 정보를 알 수 없기 때문에 기지국에 MSG3를 할당할 때 해당 정보 BSR이나 RSRP 정보 없이 MSG3의 할당 크기를 default로 할당할 수 있다.
S4001 단계를 참조하면, 기지국은 단말에게 Data 전송 모드 결정을 위해 버퍼 크기 및 RSRP 임계값을 설정할 수 있다.
S4003 단계를 참조하면, UE 버퍼 사이즈가 0보다 큰지 확인하고, UE 버퍼 사이즈가 0보다 큰 경우, S4005 단계에서 RSRP가 MSG3에 대한 RSRP 임계값(RSRP_thresold_MSG3)보다 큰지 확인할 수 있다. RSRP가 MSG3에 대한 RSRP 임계값(RSRP_thresold_MSG3)보다 크면, S4007 단계에서 UE 버퍼 사이즈가 MSG3에 대한 버퍼 크기 임계값(T_thresold_MSG3)보다 큰지 확인할 수 있다. UE 버퍼 사이즈가 MSG3에 대한 버퍼 크기 임계값(T_thresold_MSG3)보다 크면, S4009 단계에서 UE 버퍼 사이즈가 MSG5에 대한 버퍼 크기 임계값(T_thresold_MSG5)보다 큰지 확인할 수 있다. UE 버퍼 사이즈가 MSG5에 대한 버퍼 크기 임계값(T_thresold_MSG5)보다 크면, S4011 단계에서 기지국은 default MSG3 크기를 할당하고 단말은 MSG3에 Data를 전송하고 잔여 트래픽을 BSR로 전송하고 해당 BSR 기반 UL grant 수신으로 MSG5에 Data를 전송하고 MSG6에 RRC response (Resume)을 전송할 수 있다. S4013 단계에서 단말은 RRC Active 상태로 천이할 수 있다.
S4005 단계에서 RSRP가 MSG3에 대한 RSRP 임계값(RSRP_thresold_MSG3)보다 작으면, S4015 단계에서 기지국 default MSG3 크기를 할당하고 단말은 MSG3에 Data 전송하지 않고 BSR을 전송하고 해당 BSR 기반 UL grant 수신으로 단말은 MSG5에 Data를 전송할 수 있다. S4015 단계 완료 후 S4009 단계 이후의 동작을 수행할 수 있다.
S4007 단계에서 UE 버퍼 사이즈가 MSG3에 대한 버퍼 크기 임계값(T_thresold_MSG3)보다 직으면, S4017 단계에서 기지국 default MSG3 크기를 할당하고 단말은 MSG3에 Data 전송하고 MSG4에 RRC response (Suspend)를 전송할 수 있다.
S4009 단계에서 UE 버퍼 사이즈가 MSG5에 대한 버퍼 크기 임계값(T_thresold_MSG5)보다 작으면, S4019 단계에서 기지국은 default MSG3 크기를 할당하고 단말은 MSG3에 Data를 전송하고 잔여 트래픽을 BSR로 전송하고 해당 BSR 기반 UL grant 수신으로 MSG5에 Data를 전송하고 MSG6에 RRC response (Suspend)를 전송할 수 있다.
도 41은 본 발명의 제2 실시 예에 따른 NR 시스템에서 data 전송을 위해 단말이 기지국이 configuration한 event trigger 기반으로 기지국에 해당 Event에 대한 추가적인 feedback 을 전송하는 경우에 단말이 data를 전송할 MSG3 혹은 MSG5 혹은RRC state 천이 관련 동작 모드를 결정하는 방법을 동작을 설명하는 도면이다.
해당 동작의 경우 MSG3의 BSR이나 RSRP 정보를 Data 전송 이전에 전송하므로 기지국이 해당 정보를 알고 있기 때문에 기지국에 MSG3를 할당할 때 해당 정보 BSR이나 RSRP 정보 기반하여 MSG3의 할당 크기를 최적화 하여 (data 전송에 필요한 최소 크기로 혹은 채널 상황이 허락하는 최대 크기로) 할당할 수 있다.
S4101 단계를 참조하면, 기지국은 단말에게 Data 전송 모드 결정을 위해 버퍼 크기 및 RSRP 임계값을 설정할 수 있다.
S4103 단계를 참조하면, UE 버퍼 사이즈가 0보다 큰지 확인하고, UE 버퍼 사이즈가 0보다 큰 경우, S4105 단계에서 RSRP가 MSG3에 대한 RSRP 임계값(RSRP_thresold_MSG3)보다 큰지 확인할 수 있다. RSRP가 MSG3에 대한 RSRP 임계값(RSRP_thresold_MSG3)보다 크면, S4107 단계에서 UE 버퍼 사이즈가 MSG3에 대한 버퍼 크기 임계값(T_thresold_MSG3)보다 큰지 확인할 수 있다. UE 버퍼 사이즈가 MSG3에 대한 버퍼 크기 임계값(T_thresold_MSG3)보다 크면, S4109 단계에서 UE 버퍼 사이즈가 MSG5에 대한 버퍼 크기 임계값(T_thresold_MSG5)보다 큰지 확인할 수 있다. UE 버퍼 사이즈가 MSG5에 대한 버퍼 크기 임계값(T_thresold_MSG5)보다 크면, S4111 단계에서 기지국은 적합한 MSG3 크기를 할당하고 단말은 MSG3에 Data를 전송하고 잔여 트래픽을 BSR로 전송하고 해당 BSR 기반 UL grant 수신으로 MSG5에 Data를 전송하고 MSG6에 RRC response (Resume)을 전송할 수 있다. S4013 단계에서 단말은 RRC Active 상태로 천이할 수 있다.
S4105 단계에서 RSRP가 MSG3에 대한 RSRP 임계값(RSRP_thresold_MSG3)보다 작으면, S4115 단계에서 기지국 최소 MSG3 크기를 할당하고 단말은 MSG3에 Data 전송하지 않고 BSR을 전송하고 해당 BSR 기반 UL grant 수신으로 단말은 MSG5에 Data를 전송할 수 있다. S4115 단계 완료 후 S4109 단계 이후의 동작을 수행할 수 있다.
S4107 단계에서 UE 버퍼 사이즈가 MSG3에 대한 버퍼 크기 임계값(T_thresold_MSG3)보다 작으면, S4117 단계에서 기지국 적합한 MSG3 크기를 할당하고 단말은 MSG3에 Data 전송하고 MSG4에 RRC response (Suspend)를 전송할 수 있다.
S4109 단계에서 UE 버퍼 사이즈가 MSG5에 대한 버퍼 크기 임계값(T_thresold_MSG5)보다 작으면, S4119 단계에서 기지국 적합한 MSG3 크기를 할당하고 단말은 MSG3에 Data를 전송하고 잔여 트래픽을 BSR로 전송하고 해당 BSR 기반 UL grant 수신으로 MSG5에 Data를 전송하고 MSG6에 RRC response (Suspend)를 전송할 수 있다.
도 42는 본 발명의 제2 실시 예에 따른 동작으로 data 전송을 어떤 RRC state 에서 수행할지 결정하기 위한 동작이다. 단말은 기지국이 configuration한 event trigger 기반으로 만약 단말이 전송할 Data가 있고 이때 해당 Event에 대한 추가적인 feedback 이 필요하여 전송한다. 이를 기반으로 기지국이 RRC state 천이 관련 동작 모드를 결정할 수 있다.
이때 기지국이 configuration한 event trigger 기반이 되는 기준(criterion)은 network loading, UE mobility, UE battery status, UE location (cell center or boundary 각각 혹은 이들의 조합일 수 있다.
기존의 Idle 상태에서의 data전송이 Grant-free 전송으로 인한 channel access 효율성 감소 및 CQI와 BSR등의 정보의 부제로 전송 Spectral efficiency의 감소의 단점이 존재하지만, 신규로 정의되는 Inactive 상태의 단말 동작을 설계하는 방법에 있어서, Inactive (RRC_INACTIVE)상태에서 단말의 traffic 전송 시에 Spectral efficiency 향상 및 Channel access 향상 방법을 도 43 내지 45에서 추가로 제안한다.
도 43은 본 발명의 제2 실시 예에 따른 NR RRC Inactive state에서 data 전송을 수행하는 경우에 대해서 Spectral efficiency 향상을 위한 정보 획득 방법 예시를 나타낸 도면을 나타낸다.
단말-기지국간 거리 (Short/Long Coverage) 는 단말-기지국 간 pathloss 를 기반으로 예를 들어 수신 RSRP/RSRQ 기반으로 판단될 수 있다. 일 실시 예로 RACH 동작 시 RA Preamble 전송 및 RAR 수신 과정에서도 해당 정보 파악 가능하므로 이를 기반으로 data를 전송할 RRC state관련 동작 모드를 결정할 수 있다.
: 해당 정보는 Inactive 상태에서 전송가능 한 payload length를 결정하는 기준이 되므로
- CQI 및 유사 정보 보유 시에는 근거리 (높은 수신신호 품질) 일수록 Inactive에서 data를 전송하는 방식이 유리하며
- CQI 및 유사 정보 부재 시에는 근거리 (높은 수신신호 품질) 일수록 Active 상태에서 data를 전송하는 방식이 상대적으로 유리하여 이를 기반으로 data를 전송할 RRC state관련 동작 모드를 결정하는 동작
실시 예에서 Grant-free 전송의 예로 RACH를 활용하는 경우 이전 전송 DL/UL 기반 CQI 정보 획득하는 방법으로 RACH Message 1/2 기반 CQI (MCS) 를 결정하는 동작,
보다 상세히 는 기존 RACH Preamble은 Tx power Ramping up을 수행하여 시도 후 기지국에 도달할 Tx power 에 이르러 RAR수신을 하게 되고 결과적으로 기지국에서 단말의 Tx 전력 정보는 알 수 없다. 이는 기존 RACH Preamble UL Tx power가 고정되어 있지 않기 때문이다.
* 해결 방법으로 RACH preamble sequence에 Tx power index 추가하여 UL tx power level을 기지국에게 알려주는 방법을 통해 기지국은 수신 성공한 RACH preamble의 Tx power를 파악하고 해당 CQI에 맵핑 되는 MCS를 이후 전송에 사용하는 동작, UL grant 적용시에도 해당 MCS 기반 무선자원 (주파수 시간 등) 할당하는 동작
* 기존 RACH preamble sequence를 전송하고 Tx power Ramping up을 수행하여 시도 후 기지국에 도달할 Tx power 에 이르러 RAR수신을 하게 되고 결과적으로 단말은 RAR 수신 성공한 RACH preamble의 Tx power를 기반으로 UL CQI를 파악하고 이를 Message3/혹은 Message5에 적용하여 전송하는 방안, 이때 기지국은 적용된 MCS를 알지 못하므로 UL grant는 단위 Unit으로 부정확하게 수행하며 UL payload에 (header는 고정된 MCS로 전송, header 이내에 payload MCS 정보를 Indication하는 방법
실시 예에서 Grant-free 전송의 예로 RACH를 활용하는 경우 이전 전송 DL/UL 기반 CQI 정보 획득하는 방법으로
이전 전송된 RACH data 전송 시 CQI가 유효한지 여부를 indication하여 전송하는 방법 및 일정시간 이내에 예를 들어 1초내에 CQI change를 (+alpha, -beta)로 조정하여 기지국에 feedback을 전송하거나 혹은 단말 자체 판단으로 Adjust하여 전송하는 방법을 포함할 수 있다.
실시 예에서 Grant-free 전송의 예로 RACH를 활용하는 경우 RACH Message 3/5 기반 Piggyback하는 Data에 보안 키 적용 방법,
기존 Inactive 모드에서 활용할 수 있는 NAS 보안 키는 MME에서 보안 처리 필요하기 때문에
문제점 1: MME 용량 초과 - 비교적 large data, MME 증설 필요하며
문제점 2: 지연 발생- SRB 는 기지국 routing 경로가 길어 지연 발생의 요인이 된다,
따라서 NAS 보안키 (SRB 기반 전송) 대신 AS (DRB) 보안키 사용 방법으로
* Last eNB (AS 보안키 기반) Inactive 상태 data 전송 수행 동작,
Inactive 상태에서 단말과 Network은 보안키를 포함한 UE context를 보유하고 있으므로 미리 정의된 일정 유효시간 (security timer)이내에는 기존 AS 보안키를 활용하여 data 전송 수행
* 미리 정의된 일정 유효시간 (security timer) 이 경과 되거나 (security timer expired)
* RRC release (suspend)이후 단말 이동으로 기지국 변경 발생시 (gNB 변경 시 다른 전송 옵션 동작)으로
- NAS security 적용 Inactive 전송,
- 혹은 ACTIVE전환 후 AS security를 업데이트 하여 적용 후 Data를 전송하는 방법을 포함하며
이러한 Inactive 상태에서 data 전송에 적용할 보안키 동작에 대한 설정을 정보를 단말이 feedback하고 기지국이 설정하여 전송하는 동작 및 방법을 포함할 수 있다.
도 44는 본 발명의 제2 실시 예에 따른 NR RRC Inactive state에서 효율적으로 전송을 수행하는 경우에 대해서 Channel access 향상을 위한 정보 획득 방법 예시를 나타낸 도면이다. 도 44는 Inactive 상태에서 RACH 수행 시 Active 천이 이전에 필요한 추가 정보를 획득하는 방법에 관한 예시이다.
기존의 UL data 전송을 위해 필요한 SR, BSR, UL grant 등의 Active 전송 관련 정보를 Inactive (small) data 전송 구간에 미리 전송하여 data 전송 지연시간을 단축하는 방법은 아래와 같다.
- SR 할당
- Buffer size 정보 (BSR 및 유사 정보)
- UL grant, DL scheduling 미리 자원 할당
- UE ID (C-RNTI) 할당
- Dedicated RACH 할당을 포함하는 동작을 RACH message 1/2/3/4/5를 포함하는 sequence 및 payload에 정보로 탑재하고 이는 RACH 동작에 포함되는 Message에 국한되지 않고 Grant-free로 Active 상태로의 천이 이전 단계인 Inactive 상태 data 전송을 포괄할 수 있다.
도 45는 본 발명의 제2 실시 예에 따른 NR RRC Inactive state에서 효율적으로 전송을 수행하는 경우에 대해서 Channel access 효율 향상을 위한 방법 예시를 나타낸 도면이다. 특히, 도 45는 단말의 Inactive 상태를 유지하면서 data를 전송하는 경우에 Channel access 향상을 위한 정보 획득 방법 예시를 나타낸 도면으로 Inactive 상태에서 RACH 수행 시 Active 천이 이전에 필요한 추가 정보를 획득하는 방법에 관한 예시이다.
기존 RACH와 data transfer를 위한 RACH 분리 방법으로는 preamble sequence domain, 시간 및 주파수, beam resource로 분리하는 동작 및 이를 기반하여 기존 RACH (RRC State transition, TA update 등)와 Inactive 상태 data전송을 위한 RACH를 구분하여 해당 전송의 priority를 결정하는 동작을 포함할 수 있다.
Network congestion 등의 상황에서 Barring 적용 시 연관 서로 다른 Barring statistics를 적용하는 방법으로 예를 들어 Network congestion상황에서 RRC State transition (Inactive에서 active 천이) 대비 Inactive 상태 data전송을 위한 RACH를 Low priority로 동작 시키거나 barring하는 동작 및 반대 동작 등을 포함한다.
또한 RRC Inactive state에서 data 전송을 수행하는 경우에 QoS level을 분류하고 이를 지원하기 위한 방법으로 해당 RACH 분리 방법으로는, preamble sequence domain, 시간 및 주파수, beam resource로 분리하는 동작 및 이를 기반하여 발생한 traffic 의 QoS별 RACH를 구분하여 해당 전송의 priority를 결정하는 동작을 포함할 수 있다.
Network congestion 등의 상황에서 Barring 적용 시 연관 서로 다른 Barring statistics를 적용하는 방법으로 예를 들어 Network congestion상황에서 RRC State transition (Inactive에서 active 천이) 대비 Inactive 상태 data전송을 위한 RACH를 Low priority로 동작 시키거나 barring하는 동작 및 반대 동작 등을 포함한다.
도 46은 본 발명의 제2 실시 예에 따른 NR RRC Inactive state에서 data 전송 시 단말 Buffer 상태 정보에 기반하여 multiple UL grant 할당과 해당 UL 전송 절차를 나타낸 도면이다.
단말이 전송 데이터 용량을 알고 있는 경우, MSG3 전송 이후 추가로 전송이 필요한 버퍼 상태 정보를 BSR 로 MSG3에 piggyback하여 전송하고 이를 기반으로 이후 data 를 MSG5의 전송을 위한 UL grant를 MSG5에 전송할 수 있다. 이때 MSG5에 data 전송이 복수 개 필요한 경우를 위한 multiple UL grant가 사용될 수 있다.
해당 multiple UL grant 는 복수개의 UL 전송 자원을 할당하는 것으로 one sub-frame이내의 UL 자원 혹은 복수 sub-frame 에 걸치는 UL grant할당 하는 동작을 의미한다.
단말은 MSG5에 data 수신 시 연속 PDCCH decoding을 수행하는 baseline동작 이외에 UL grant에 해당하는 slot/sub-frame에 해당하는 자원에만 turn on하여 UL 전송을 수행하고 추가 update (DL 전송이 추가 되었는지 확인) 하는 동작을 수행할 수 있다. 단말은 Multiple UL grant에서 마지막 UL grant 에 해당하는 자원까지는 선택적 비연속적 turn on으로 동작하고 이후 RRC response (suspend 혹은 resume) 수신을 위한 동작에서는 RRC response (suspend 혹은 resume) 수신을 위한 offset (기지국이 UL data를 수신하여 decoding하고 ACK/NACK을 생성하는 시간 고려) 및 RRC response (suspend 혹은 resume + ACK/NACK) 수신 window를 설정하여 선택적으로 수신하는 동작을 수행할 수 있다. 단말은 해당 동작의 RRC response (suspend 혹은 resume + ACK/NACK) 수신을 위해 대기하는 waiting window를 위한 RRC response 수신 신규 timer를 (RRC-response waiting timer 혹은 RRC-response waiting window)설정하는 동작을 포함한다.
도 47은 본 발명의 제2 실시 예에 따른 NR RRC Inactive state에서 data 전송 시 Dedicated RACH 및 grant-free 전송을 위한 preamble sequence및 자원을 할당하고 이러한 자원의 유효 시간 (valid timer)를 설정하여 동작하는 도면이다.
단말이 inactive data 에서 data를 전송할 때 동작의 일실 시 예로 최초 전송에서 contention-based RACH를 수행하고 이후 일정 시간 (consecutive data transfer timer) 연속 data 전송을 위한 자원 할당 동작을 수행할 있다.
해당 자원 할당은 유효시간 최초 전송에서 contention-based RACH를 수행하고 이후 일정 시간 (consecutive data transfer valid timer) 이내에 발생하는
두번째 이후 inactive data전송를 위한 dedicated RACH 동작을 위한 RACH preamble sequence를 할당하는 동작을 포함할 수 있다.
해당 동작은 inactive 상태에서 첫번째 data전송 혹은 이전 data 전송에서 유효시간 (consecutive data transfer valid timer) 이후에 발생하는 첫 번째 data 전송 완료 시 기지국이 전송하는 RRC response message (suspend)에 해당 RACH preamble sequence를 할당 정보를 탑재하는 동작을 포함할 수 있다.
해당 자원 할당은 유효시간 최초 전송에서 contention-based RACH를 수행하고 이후 일정 시간 (consecutive data transfer valid timer) 이내에 발생하는
두 번째 이후 inactive data전송를 위한 Grant-free 동작을 지원하기 위해 단말이 Grant-free하게 접속할 수 있는 무선 자원을 기지국이 할당하고 지시하는 동작 해당 동작은 inactive 상태에서 첫 번째 data전송 혹은 이전 data 전송에서 유효시간 (consecutive data transfer valid timer) 이후에 발생하는 첫 번째 data 전송 완료 시 기지국이 전송하는 RRC response message (suspend)에 해당 RACH preamble sequence를 할당 정보를 탑재하는 동작을 포함할 수 있다. 도 48은 본 발명의 제2 실시 예에 따른 NR RRC Inactive state에서 data 전송 시 Contention based RACH 기반 data 전송 동작, Dedicated based RACH 기반 data 전송 동작, 혹은 Grant-free 기반 data 전송을 수행할지를 결정하는 기준을 나타내는 도면이다.
도 48에서 도시한 바와 같이, MSG3 data 전송 이후 MSG5 에 연속 data를 전송하는 동작에서 Contention based RACH 기반 data 전송 동작 혹은 Dedicated based RACH 기반 data 전송 동작 혹은 Grant-free 기반 data 전송을 수행할지를 결정하는 기준은 아래와 같다.
실시 예에 따라, 유효한 preamble개수가 inactive 상태에서 data 전송을 시작하고 이후 유효시간 (consecutive data transfer timer) 이내의 단말들에게 할당할 수 있는 지 여부에 따라 충분한 여분의 RACH preamble개수가 존재하면 Dedicated based RACH 기반 data 전송 동작을 수행할 수 있다.
다른 실시 예에 따라, 이전 inactive 상태에서 data 전송을 통해 RACH 를 수행하여 동기 정보가 유효한지 여부에 따라 추가 RACH를 동작을 통하여 동기정보를 획득해야 하는 경우 RACH기반 data 전송을 수행하고, 이전 전송을 통해 유효한 동기정보가 있는 경우 Grant-free 전송을 수행할 수 있다.
이러한 1) Contention-based RACH, 2) Dedicated-based RACH, 3) grant-free 기반 data 전송 여부는 기지국이 결정할 수 있다. 해당 동작은 inactive 상태에서 첫 번째 data전송 혹은 이전 data 전송에서 유효시간 (consecutive data transfer valid timer) 이후에 발생하는 첫 번째 data 전송 완료 시 기지국이 전송하는 RRC response message (suspend)에 탑재하여 indication 동작, System information (혹은 on-demand SI)으로 기지국이 단말에게 알려주는 동작을 포함할 수 있다.
Inactive state 시작 시 기지국이 RRC configuration message이내에
- 이전 data 전송에서 유효시간 (consecutive data transfer valid timer)
- 두번째 전송 시 전송 모드
1) Contention-based RACH,
2) Dedicated-based RACH,
3) Grant-free 기반 data 전송 여부는 기지국이 결정하여 단말에게 전송하는 방법을 포함한다.
해당 설정에 기반하여 단말은 Inactive state에서 이전 전송까지의 경과시간이 유효시간 (consecutive data transfer valid timer) 이내인지 여부를 판단할 수 있다.
경과시간이 유효시간 이내이면 혹은 이내이더라도 이전전송에서 동기정보를 RACH 절차 등으로 update하여서 동기 정보 (synchronization 정보)가 유효한지 여부에 따라 동기 정보 (synchronization 정보)가 유효하면 3) Grant-free 전송을 수행할 수 있다.
이전 전송으로부터 유효시간 (consecutive data transfer valid timer) 경과하거나 이전전송에서 동기정보를 RACH 절차 등으로 update하지 않아서 동기 정보 (synchronization 정보)가 유효하지 않으면 RACH 절차를 수행할 수 있다.
이때 할당 받은 RACH preamble 정보가 존재하면 2) dedicated-based RACH를 수행하고, 할당 받은 RACH preamble 정보가 존재하지 않으면 1) Contention-based RACH를 수행할 수 있다.
도 49는 본 발명의 제2 실시 예에 따른 NR RRC Inactive state에서 data 전송 시 초기 UL data 전송 이후에 추가 data 전송 절차를 예시한다.
단말의 data 전송 시 RRC_Inactive 상태 에서 전송할지 RRC_connected (active)로 천이를 할지 결정하는 일실 시 예로, 단말이 Security key를 포함한 이전 UE context를 저장한 Anchor 기지국 이내 인지 기지국이 변경 되었는지 여부에 따라 이를 indication하는 정보를 단말이 RRC_connection request (RRC resume request) 전송 시에 함께 전송하고 Security key를 포함한 이전 UE context를 저장한 Anchor 기지국 이내 이면 기지국이 RRC_INACTIVE상태에서 data 전송을 수행할 수 있다.
Anchor 기지국 밖으로 이동하였으면 RRC_CONNECTED로 천이를 하여 data를 전송하는 동작을 결정하는 동작 및 이를 RRC connection response 메시지로 indication하는 동작을 포함한다. (RRC resume: connected 상태로 전환하여 data 전송 수행, RRC suspend message: RRC_INACTIVE 상태 유지하고 data 전송 수행)
본 발명에서 동일한 Anchor 기지국은 동일한 sector, 동일한 PDCP entity, 동일한 DU, 동일한 CU 이내로 각각 변경하여 각 unit 이내 여부를 indication하는 정보를 단말 및 기지국이 송수신 하고 이를 기반으로 RRC state 천이 여부를 결정하거나 신규 보안키를 생성하는 동작을 포함할 수 있다.
단말이 Security key를 포함한 이전 UE context를 저장한 Anchor 기지국 이내 인지 기지국이 변경 되었는지 여부에 따라 이를 indication하는 정보를 단말이 RRC_connection request (RRC resume request) 전송 시에 함께 전송하고 이를 기반으로 Anchor 기지국 바깥으로 이동 시 신규 보안키를 생성을 수행하는 동작을 포함할 수 있다.
동일한 Anchor 기지국은 동일한 sector, 동일한 PDCP entity, 동일한 DU, 동일한 CU 이내로 각각 변경하여 각 unit 이내 여부를 판단하는 동작은 기지국이 System information으로 Broadcast/unicast전송하는 Physical Cell ID 혹은/그리고 System information으로 Broadcast/unicast전송하는 및 RRC로 설정하는 CU entity, DU entity, PDCP entity 정보를 기반으로 단말 수신기가 판단하여 기지국에 변경 여부를 indication하거나 단말이 수신한 Physical Cell ID, CU entity, DU entity, PDCP entity 정보를 단말이 기지국에게 copy전송하여 기지국이 자신의 Physical Cell ID, CU entity, DU entity, PDCP entity 정보와 대조하여 변경 여부를 판단하는 동작을 포함할 수 있다.
단말의 data 전송 시 RRC_Inactive 상태 에서 전송할지 RRC_connected (active)로 천이를 할지 결정하는 또다른 일실 시 예로, 단말이 RRC_connection request (RRC resume request) 전송 시에 함께 전송하는 단말의 buffer size, 전송할 data 양, BSR를 기반으로 기지국이 임계값 이하의 BSR을 수신하면 RRC_INACTIVE상태에서 data 전송을 수행하고 임계값 이상의 BSR을 수신하면RRC_CONNECTED로 천이를 하여 data를 전송하는 동작을 결정하는 동작 및 이를 RRC connection response 메시지로 indication하는 동작을 포함할 수 있다.(RRC resume: connected 상태로 전환하여 data 전송 수행, RRC suspend message: RRC_INACTIVE 상태 유지하고 data 전송 수행)
초기 전송시 UE buffer 크기가 RRC 천이 결정을 위한 임계값 이상이면 초기 전송 UL data를 전송하지 않고 바로 RRC connection response (RRC resume message)를 통해 바로 RRC_CONNECTED (혹은 RRC_ACTIVE)로 천이하는 동작;
혹은 초기 전송 가능한 UL data만을 INATIVE 상태에서 전송하고 RRC connection response (RRC resume message)에 초기 전송한 UL data에 해당하는 DL acknowledgement를 전송하고 RRC_CONNECTED (혹은 RRC_ACTIVE)로 천이하는 동작;및
초기 전송시 UE buffer 크기가 RRC 천이 결정을 위한 임계값이하이면 RRC_CONNECTED (혹은 RRC_ACTIVE)로 천이하지 않고 RRC_INACTIVE를 유지한 상태로 초기 전송 이후 subsequent Data 전송을 수행하는 동작,
이때 첫번째 전송에서 buffer된 data를 모두 전송하지 못할 경우 Data와 BSR를 함께 전송하여 이후에 전송이 필요함을 기지국에게 알리는 동작;
기지국은 단말의 Inactive상태에서의 data 전송에 포함된 BSR 를 기반으로 UL grant를 수행하고 이는 RACH contentionresolution 메시지에 첫번째 UL data의 전송에 대한 DL Acknowledgement 를 함께 multiplexing하여 전송하는 동작;
단말은 Inactive 상태에서 residual UL data를 전송하고 이번 전송에서 buffer된 data를 모두 전송하지 못할 경우 Data와 BSR를 함께 전송하여 이후에 전송이 필요함을 기지국에게 알리는 동작;
이때 단말이 전송을 고려하는 buffer된 data는 이전 전송의 residual data 및 이전 전송 이후에 새롭게 단말에 도착한 (생성된) data를 포함하는 동작,
이때 UE buffer 크기가 RRC 천이 결정을 위한 임계값 이하이면 RRC_CONNECTED (혹은 RRC_ACTIVE)로 천이하지 않고 RRC_INACTIVE를 유지한 상태로 data 전송을 수행하는 동작,
subsequent UL data 수행시 단말이 전송을 고려하는 buffer된 data가 이전 UL grant보다 클 경우 단말은 Data와 BSR를 함께 전송하여 이후에 전송이 필요함을 기지국에게 알리는 동작;
이를 수신한 기지국이 BSR에 기반한 UL grant 전송을 수신한subsequent UL data에 해당하는 DL acknowledgement(DRB) 및 RRC connection response (RRC suspend) (SRB1)와 함께 MAC PDU level에서 multiplexing/de-multiplexing하여 송수신하는 방법;
단말은 수신한 UL grant를 기반으로 subsequent UL data 전송절차를 상시 일실시 예와 같이 반복적으로 수행하는 방법;subsequent UL data 수행시 단말이 전송을 고려하는 buffer된 data가 이전 UL grant보다 작을 경우 단말은 Data만을 전송하거나 BSR (=0)값으로 함께 전송하여 이후에 추가 전송이 필요하지 않음을 기지국에게 알리는 동작;
이를 수신한 기지국이 BSR에 기반한 UL grant 전송은 하지 않고 수신한 subsequent UL data에 해당하는 DL acknowledgement(DRB) 및 RRC connection response (RRC suspend) (SRB1) 와 함께 MAC PDU level에서 multiplexing/de-multiplexing하여 송수신하는 방법;
이후 단말은 INACTIVE상태를 유지하다가 추가로 UL data 생성시 초기 UL data전송 절차를 다시 시작하는 방법을 포함한다.
만약 RRC_INACTIVE 상태 이내에 초기 전송 이후 subsequent전송시 UE buffer 크기가 임계값 이상이면 초기 전송 UL data를 전송하지 않고 바로 RRC connection response (RRC resume message)를 통해 바로 RRC_CONNECTED (혹은 RRC_ACTIVE)로 천이하는 동작;
혹은 subsequent 전송 가능한 UL data만을 INATIVE 상태에서 전송하고 RRC connection response (RRC resume message)에 초기 전송한 UL data에 해당하는 DL acknowledgement를 전송하고 RRC_CONNECTED (혹은 RRC_ACTIVE)로 천이하는 동작;을 포함한다.
또한 초기 전송 이후 subsequent UL data 수행 시에도 Security key를 포함한 이전 UE context를 저장한 Anchor 기지국 이내 이면 기지국이 RRC_INACTIVE상태에서 data 전송을 수행하고Anchor 기지국 밖으로 이동하였으면 RRC_CONNECTED로 천이를 하여 data를 전송하는 동작을 결정하는 동작 및 이를 RRC connection response 메시지로 indication하는 동작을 포함한다.
도 50은 본 발명의 제2 실시예에 따라 특정 application의 keep alive message의 traffic 특성의 예시를 나타낸 도면이다.
도 50에서 관찰되는 바와 같이 Keep alive traffic의 경우 상/하향링크 traffic burst가 연달아 송수신 되고 짧은 burst이후 상대적으로 긴 시간 동안 traffic이 발생하지 않다가 다시 상/하향링크 traffic burst가 연달아 송수신되는 동작이 일반적이다. 구체적인 traffic payload size나 inter-packet arrival interval 및 하나의 burst 이내의 상/하향링크 traffic packet수는 application 및 서버에 기반하여 달라진다.
RRC Inactive state에서 data 전송을 수행하는 경우에 대해서 Channel access 효율향상을 위한 방법으로 이러한 방법은 초기 data 전송 및 이후 연속으로 전송되는 상햐항 링크의 전송 효율을 높이기 위한 방법으로 적용 될 수 있으며, 상향링크 traffic을 지원하기 위한 해당 하향링크 traffic 예를 들어 MAC/RLC level의 ACK/NACK 즉 ARQ/HARQ 응답의 송수신을 위해 적용 할 수 있다.
1) Inactive 단말에 대한 무선 자원 Grant를 (예를 들어 dedicated RACH나 SR 자원 등)을 모든 단말에게 고정적으로 할당하는 방법,
1-1) 혹은 모든 Inactive 단말에 할당하기에 부족한 자원일 가능성이 높으므로 Inactive상태의 단말 중 (data전송이 inactive에서 시작되는 모드 1) 혹은 모드 3)으로 지정된 단말에 대해서 고정적으로 할당하는 방법,
2) Inactive 단말에 대한 무선 자원 Grant를 (예를 들어 dedicated RACH나 SR 자원 등)을 모든 단말에게 주기적으로 할당하는 방법
2-1) 혹은 모든 Inactive 단말에 할당하기에 부족한 자원일 가능성이 높으므로 Inactive상태의 단말 중 (data전송이 inactive에서 시작되는 모드 1) 혹은 모드 3)으로 지정된 단말에 대해서 주기적으로 할당하는 방법,
- 해당 주기는 단말의 Application 정보이나 이전 활성화 history 기반, 기지국 결정이나 단말 요청 (feedback)기반으로 수행하는 동작,
3) Grant-free 기반으로 Inactive상태에서 data 발생 할 때마다 contention (non-orthogonal channel access)를 통해 data를 전송하는 방법,
4) 초기에만 Grant-free전송을 수행하고 이후 연속 packet 에 대한 grant기반 전송을 수행하는 방법을 포함하는 동작,
4) 방법에 대한 구체적인 동작으로, 2단계 Grant-free/Grant 연속 전송 방법은
초기 packet은 Grant-free 전송: Contention 기반으로 예를 들어 Contention기반 RACH 기반 전송을 수행하며, 이후 연속 packet에 대해서는 Grant전송으로 예를 들어 Dedicated기반 RACH나 scheduled기반 data 전송을 수행하는 방법이다.
- 구체적인 실시 예로 Dedicated RACH Preamble 할당은 모든 Inactive 단말에 할당하기에 부족한 자원일 가능성이 높으므로 Inactive상태의 단말 중 (data 전송이 inactive에서 시작되는 모드 1) 혹은 모드 3)으로 지정된 단말에 대해서 한정된 시간 (Short duration) 유효한 preamble을 할당하는 방법
이러한 한정된 시간 동안 유효한 Dedicated RACH Preamble 할당이나 UL grant /DL scheduling (Paging주기 PF/PO조절) 방법에서
* data traffic 특성 기반으로 한정된 시간의 결정은 도면 2l에서 예시한 keep alive message의 traffic 특성에서 하나의 burst 이내의 상/하향링크 traffic packet의 평균 지속 시간을 기반으로 명시적으로 (explicit)하게 Time tag를 설정하여 전송하는 동작,
* 혹은 burst 이내의 상/하향링크 traffic packet 도착 시간 (inter-arrival간에) 고정된 timer를 기준으로 이러한 timer이내에 packet도착시 해당 한정된 시간 동안 유효한 자원의 유효성을 갱신하는 동작 방안 포함한다.
유효한 시간 결정 방법으로 단말/기지국 버퍼 상태, BSR 및 유사 정보 기반 동작으로 예를 들어 RACH Message3/5 length를 결정하는 방법에 있어서 RA preamble에 BSR유사 정보를 전송하는 방안, (RA preamble에 신규 field 추가 예를 들어 Inactive_BSR 혹은 RA preamble group을 통해 기지국에게 단말 Buffer 상태 정보를 전송하는 방법, 이를 기반으로 RA Response에 UL grant 전송 동작, 기존 RACH 대비 Message3/5의 UL 자원 length 차별 할당을 수행하는 방법,
Inactive상태에서 data 전송 방법은 Data transmission에서 전송할 data가 packet length 이상인 경우와 미만인 경우에 대한 지원 동작 방법은
- 해당 traffic에 대한 Fragmentation/Reassemble 지원 동작 여부에 대한 기지국 설정 (RRC configuration 기반 last connected RRC 설정기반 동작 혹은 SI Broadcast 기반 update를 통한 설정 동작 수행)
동작의 일실 시 예로 traffic의 size가 연속된 RACH message3의 복수개의 전송이 필요한 경우 Message3에 신규 field로 next bit을 추가 하여 추가 UL grant 수신하고 다음 data를 RACH message1/2 없이 RACH message3로 연달아 전송하는 동작 방법,
이때 Reassemble을 지원하기 위한 Header field가 필요하고 예를 들어 2 bit 적용하여 처음 전송 packet은 10, 중간 packet은 00, 마지막 Packet은 01등으로 표기하여 동작하는 방법,
- Multiplexing 지원 여부에 대한 기지국 설정 (RRC configuration 기반 last connected RRC 설정기반 동작 혹은 SI Broadcast 기반 update를 통한 설정 동작 수행)
일실 시 예로 Multiplexing 지원 시, Header에 field 가 필요하고 유효하나 Data length 정보 및 이외 multiplexing된 other packet 및 multiplexing을 지원하지 않는 경우 zero padding 영역을 구분하는 동작을 포함한다.
앞서 기술한 Inactive상태에서 data 전송 방법은 상/하향 링크 모두에 적용이 가능하며, 특히 하향링크 전송 방법에 대해서 Inactive 상태에서 하향링크 data를 전송하는 방법으로
1) Paging 개선 방안으로
* 기존 paging이 PDCCH에서 맵핑한 PDSCH에서 paging대상 UE의 ID를 concatenate하여 전송하는데 해당 PDSCH에 DL data를 Piggyback하여 전송하는 동작 방법,
2) 기존 paging 수신 이후 grant-free 전송 방안 (예를 들어 RACH message 4에 data piggyback전송)을 포함하는 동작
단말이 Inactive 상태에서 하향링크 data를 전송하는 경우에 사용할 하향링크 전송 모드에 대한 설정을 기지국이 system information이나 RRC configuration 등으로 설정하는 동작을 포함함.
Inactive상태에서 data 전송을 RACH contention resolution에 필요한 절차는
RACH Message5로 data를 전송할 경우 기존 방식대로 C-RNTI로 Contention resolution을 수행하는 동작
RACH Message3/Message 4로 data를 전송할 경우 RA-RNTI 혹은 T-CRNTI를 기반으로 Contention resolution을 수행하는 동작,
이외에 Inactive상태에서 단말이 가용한 ID인 P-RNTI 와 S-TIMSI 및 IMSI 각각의 ID 및 조합으로 된 ID를 기반으로 Contention resolution을 수행하는 동작을 포함함.
Inactive상태에서 data 전송을 위한 해당 상/하향링크 전송에 필요한 단말 ID는
1) RAN-based Paging를 기반으로 PAU (Paging area unit)이내의 P-RNTI를 기반으로 전송하거나
2) 최근 RRC Connected 되었던 기지국 (Last cell) 에서 단말이 이동 없이 camping하고 있는 경우 C-RNTI를 기반으로 전송하거나
3) 혹은 P-RNTI를 기반으로 전송하는 동작 및
4) 혹은 UE ID로 RRC Resume 에 필요한 ID를 신규로 정의하여 예를 들어 CID 전부 혹은 상/하위 bit 몇 비트 + C-RNTI 의 조합 등으로 최대 ID 비트 수 이내에서 신규로 생성하여 이를 이를 data 전송 과정에 사용하는 방법
5) 혹은 이외에 Inactive상태에서 단말이 가용한 ID인 P-RNTI 와 S-TIMSI 및 IMSI 각각의 ID 및 조합으로 된 ID를 기반으로 신규 ID를 생성하여 이를 data 전송 과정에 사용하는 방법
단말이 Inactive 상태에서 하향링크 data를 전송하는 경우에 사용할 단말 ID에 대한 설정을 기지국이 system information이나 RRC configuration 등으로 설정하는 동작을 포함한다.
<제3 실시예>
본 발명에서는 5G 이동통신시스템에서의 numerology 정보 송수신 및 설정 방법을 제안한다. 5G 이동통신시스템에서는 eMBB (enhanced Mobile BroadBand), URLLC (Ultra Reliable and Low Latency Communication), eMTC (enhanced Machine Type Communication) 등과 같은 다양한 서비스 (또는 slice)가 지원될 것으로 예상된다. 이는 4G 이동통신시스템인 LTE에서 음성 특화 서비스인 VoIP (Voice over Internet Protocol)와 BE (Best Effort) 서비스 등이 지원되는 것과 같은 맥락으로 이해할 수 있다. 또한 5G 이동통신시스템에서는 다양한 numerology가 지원될 것으로 예상된다. 이는 구체적으로 subcarrier spacing 등을 의미하는데 이는 TTI (Transmission Time Interval)에 직접적으로 영향을 준다. 따라서 5G 이동통신시스템에서는 다양한 길이의 TTI가 지원될 것으로 예상된다. 이는 현재까지 표준화된 LTE에서 오직 한 종류의 TTI (1 ms)만 지원된 것과는 매우 다른 5G 이동통신시스템의 특징 중 하나라고 볼 수 있다. 만약 5G 이동통신시스템에서 LTE의 1 ms TTI 보다 훨씬 짧은 TTI (예를 들면 0.1 ms)을 지원한다면 이는 짧은 지연 시간을 요구하는 URLLC 등을 지원하는데 큰 도움이 될 것으로 예상된다. 본 문서에서 numerology는 subcarrier spacing, subframe length, symbol/sequence length 등과 같은 역할을 하는 용어로써 사용됨을 일러둔다. 기지국은 gNB, eNB, NB, BS 등 다양한 축약어에 대해 대표될 수 있다. 단말은 UE, MS, STA 등 다양한 축약어에 대해 대표될 수 있다.
본 발명에서는 이러한 5G 이동통신시스템의 특징, 즉 다양한 서비스와 다양한 numerology (TTI) 지원을 고려한 numerology 송수신 및 설정 방법을 제안한다. LTE와의 차이점은 기존에는 고정된 numerology에 따라 송수신 동작하는 방법이었다면 본 발명에서는 동적으로 numerology를 변경하는 것을 지원하기 위한 numerology 송수신 및 설정 방법에 해당한다. 또한 단말의 밀집도에 따라 numerology 송수신 방법의 종류에 따른 장단점이 있기 때문에 그 송수신 방법 또한 동적으로 바꿀 수 있어야 한다.
우선 본 발명에서 가정하는 시스템 및 numerology 구분을 위한 용어를 정의하고자 한다. 단말은 규격에 따라 주어진 적어도 하나 이상의 numerology 정보를 가지고 있어야 한다. 이 정보에 따라 단말은 적어도 이동통신시스템의 기지국이 송신하는 동기신호를 수신할 수 있어야 한다. 기지국은 규격에 의해 정해지면 복수의 numerology에 따른 동기신호를 운용할 수도 있다. 단말은 특정 numerology에 의해 기지국이 송신하는 동기신호에 대한 수신을 성공하면, 기지국으로부터 별도의 설정이 없다면 성공한 동기신호에 적용된 numerology 또는 그 numerology로부터 도출될 수 있는 추가적인 numerology들에 따라 동작한다. 이렇게 성공적인 동기신호 수신에 의해 파악할 수 있는 하나 이상의 numerology의 모음을 default numerology set이라고 호칭할 수 있다.
한편, 네트워크 또는 기지국은 단말의 요청에 따라, 또는 서비스(또는 slice) 제어 서버의 판단에 따라, 서비스 (또는 slice) 별 추가적으로 필요한 numerology에 대한 정보를 거주하고(camped) 있는 또는 접속되어(connected) 있는 단말에게 설정할 수 있어야 한다. 이렇게 기본적으로 네트워크 또는 기지국이 제공하고 있지 않지만, 필요에 의해 추가적으로 제공하는 서비스/slice를 운용하기 위한 numerology 의 모음을 dedicated numerology set이라고 호칭할 수 있다.
본 발명의 제4 실시예에서는 default numerology set에 따라 동작하는 단말에게 dedicated numerology set을 설정하는 절차 및 방법에 대해 설명한다.
도 51은 본 발명의 제3 실시예에 따라 Dedicated numerology set을 설정하는 다양한 절차를 나타낸 도면이다.
도 51에 따르면, 네 가지 옵션(option)은 서로 다른 시점에 다른 신호로 dedicated numerology set 정보 또는 해당 ID (identification, 식별자)을 단말에게 송신한다.
Option 1에 따르면, 기지국은 dedicated numerology set 정보를 동기 신호에 실어서 보내야 한다. 하지만 실제적인 동기신호 수신 성능 및 단말의 수신 복잡도를 고려하면, sequence 기반의 동기신호에 다양한 numerology 정보를 실어 보내는 것은 상당한 부담일 수 있다.
Option 2에 따르면, 기지국은 dedicated numerology set 정보를 SI (System Information) 메시지에 실어서 보내야 한다. 기존 LTE 기지국은 가장 중요한 SI 내용을 Master Information Block으로 BCH (Broadcast Channel-방송채널)로 송신하고 중요도에 따라 다른 주기로 추가적인 SI 내용을 System Information Block으로 Shared Channel (공유 채널)로 송신한다. 단말은 Shared Channel에서 SIB를 수신하기 위해서 SI-RNTI (System Information-Radio Network Temporary Identifier)로 구분 가능한 제어채널 신호를 확인하여야 한다. 단말은 SI 메시지를 통하여 설정한 dedicated numerology set에 따라 random access (임의 접속) 절차 및 connected state에서의 제어/데이터 채널 송수신 동작을 수행한다. 서비스 별 random access의 접속 요구 성능이 다르다면, SI 메시지에서 서비스 별 적합한 random access 설정 및 필요한 numerology를 알려주는 것이 필요하다.
Option 2에 따르는 또 다른 방식으로 네트워크 또는 기지국은 dedicated numerology set 정보를 paging 메시지에 실어 보낼 수 있고 단말은 paging 메시지에 포함된 dedicated numerology set 정보에 따라 random access 절차를 수행할 수 있으나, 이 방식은 MT (Mobile terminated) 호인 경우에 한정한다. Option 3는 반면 단말 및 서비스에 무관하게 공통의 random access 절차를 수행하는 방식이다. 이 방식은 random access 과정을 거치는 단말에게만 connected state 동작에 필요한 numerology를 할당할 수 있는 장점이 있다. 그러므로 네트워크 또는 기지국은 단말의 random access 시도가 있는 경우에 단말의 종류/서비스/요구사항을 파악하여 필요 시에만 dedicated numerology set을 할당할 수 있으므로 무선자원의 효율적인 사용에 기여할 수 있다.
시나리오에 따라서 connection establishment 과정을 거치거나 connection-less 방식으로 dedicated numerology set을 할당할 수 있다. Option 4는 일단 default numerology set에 따라 동작하여 connected state까지 진행한 후에 connection establishment 절차 또는 numerology/서비스/slice request 절차를 통해 단말이 dedicated numerology set을 획득하는 과정을 보인다.
이렇게 다양한 dedicated numerology set 정보를 전달하는 방안을 살펴보면, 기지국이 단말에게 그 정보를 알려주는 방식은 상기 option들에 대해 상세하게 다음과 같이 고려될 수 있다.
Option 2)-a: Minimum SI를 BCH에 실어 송신하는 방식
Option 2)-b: 추가적인 SI를 BCH에 실어 송신하는 방식
Option 2)-c: 추가적인 SI를 SI-RNTI로 구분한 공유 채널로 송신하는 방식
Option 2)-d: paging 메시지를 P-RNTI로 구분한 공유 채널로 송신하는 방식
Option 3)-a: random access 절차 중 random access response 메시지(msg2)를 RA-RNTI로 구분한 공유 채널로 송신하는 방식
Option 3)-b: random access 절차 중 connection setup complete 메시지(msg4)를 C-RNTI로 구분한 공유 채널로 송신하는 방식
Option 4): connection establishment 완료 후, 별도의 상위 계층 메시지를 C-RNTI로 구분한 공유 채널로 송신하는 방식
이러한기지국의 송신 방식을 분류하면 크게 4가지로 구분할 수 있다.
방식 1: BCH로 송신하는 broadcast 신호. 단말은 동기신호 탐지에 따라 BCH 수신이 가능하다. 단말은 Idle state에서 상기 broadcast 신호를 수신할 수 있다.
방식 2: DL-SCH (하향링크 공유채널)로 송신하는 broadcast/multicast 신호. 단말은 default numerology set을 따르는 minimum SI로부터 물리계층 제어/데이터 채널에 대한 정보 수신 및 설정을 완료해야 상기 broadcast/multicast 신호 수신이 가능하다. 단말은 Idle state에서 상기 broadcast/multicast 신호를 수신할 수 있다.
방식 3: DL-SCH (하향링크 공유채널)로 송신하는 connection이 없는 단말에 대한 unicast (UE-specific) 신호. 단말은 default numerology set을 따르는 minimum SI로부터 물리계층 제어/데이터 채널에 대한 정보 수신 및 설정을 완료해야 상기 unicast 신호 수신이 가능하다. 단말은 Idle state에서 상기 unicast 신호를 수신할 수 있다.
방식 4: DL-SCH (하향링크 공유채널)로 송신하는 connection이 있는 단말에 대한 unicast (UE-specific) 신호. 단말은 default numerology set을 따르는 minimum SI로부터 물리계층 제어/데이터 채널에 대한 정보 수신 및 설정을 완료해야 상기 unicast 신호 수신이 가능하다. 단말은 connected state에서만 상기 unicast 신호를 수신할 수 있다.
도 63은 위에서 설명한 방식들이 단말이 Idle state에서 Connected state로 전환하는 과정에서 적용되는 옵션들을 설명한 것이다.
도 63은 본 발명의 제3 실시예에 따라 단말이 Idle state에서 Connected state로 전환하는 과정에서 적용되는 옵션들을 나타낸 도면이다.
옵션 1: SI을 통해 dedicated numerology set 을 전달할 수 있다. 이때, minimum SI 또는 Other SI에 해당 정보가 담길 수 있다. Other SI의 경우 기지국-specific 하게 또는 단말-specific 하게 설정되어 전송될 수 있다. Connection establishment 절차 이전에 dedicated numerology를 설정함으로써, 단말은 processing overhead를 줄일 수 있는 이점이 있다.
옵션 2: default numerology 및 dedicated numerology 둘 다 이용하여 connection establishment 를 진행할 수 있다. Paging 메시지를 통하여 기지국은 네트워크에서 전송 대기 중인 MT(Mobile-terminated) data에 해당하는 service type을 단말에게 알릴 수 있다. 해당 type 정보를 기반으로, 단말은 이후 random access preamble 전송, RAR 감지 및 connected mode에서의 데이터 송수신에 사용할 RACH 자원 및 dedicated numerology set을 선택할 수 있다. Downlink, Uplink RRC 메시지 또한 해당 dedicated numerology set으로 설정되어 전송될 수 있다.
옵션 3: RAR을 통해 전달할 수 있다. 이 옵션의 경우, default numerology set을 이용하여 SI acquisition, paging 및 random access를 진행한다. Random access preamble이 성공적으로 기지국에서 감지 및 검출된 경우, 해당 메시지에 대한 response를 송신하는데, 이때 dedicated numerology set 정보를 전송할 수 있다. 하지만 단말은 random access 시도 시에 default 설정을 하였기 때문에 이에 대한 RAR 전송 또한 default set으로 설정될 필요가 있다. 따라서 기지국은 해당 UE에게 선호되는 dedicated set에 대한 표시(indication)을 설정하여 전송하거나, 기지국 자체적으로 가능한 numerology 자원들 사이에 배분할 수 있다.
옵션 4: Connection establishment은 default numerology를 이용하여 진행할 수 있다. 초기 SI 획득에 쓰인 default numerology를 이용하여 단말과 기지국 사이 common control signaling (other SI transmission, paging indication with P-RNTI 및 RAR)
송수신 및 RRC 메시지 3 (Msg3)와 4 (Msg4) 전송에 사용할 수 있다. 본 옵션에서 dedicated numerology는 단말에 대해 dedicated 연결을 설정하기 위한 메시지 4에 포함되어 전송될 수 있다. 단말은 초기 접속 시점에서 선호하는 또는 구현 가능한 numerology 정보를 기지국에서 미리 알릴 필요가 있다.
위 옵션들은 numerology set을 재설정하기 위해서 또한 사용될 수 있다.
한편, 단말의 밀집도 및 서비스/slice에 따라 상기 네 가지 방식이 적합도가 달라질 수 있다. 예를 들어 방식1의 BCH 기반 broadcast 신호는 기지국 내 동일한 종류의 단말의 수가 많은 경우에 적합하다. 방식2의 DL-SCH 기반 broadcast/multicast 신호는 기지국 내 다른 종류의 단말 또는 단말그룹이 상당한 수로 서로 다른 비율로 분포하는 경우에 적합하다. 방식3의 DL-SCH 기반 connection-less unicast 신호는 기지국 내 단말 중 요청한 단말에 한정하여 송신할 수 있으며 신속한 numerology 전환이 필요할 때 적합하다. 방식4의 DL-SCH connection 기반 unicast 신호는 기지국 내 단말 중 요청한 단말에 한정하여 송신할 수 있으며 기지국 내 요청한 단말의 수가 적으며 네트워크에서 단말의 가입/서비스/보안 정보를 정확히 확인하고자 하는 경우에 적합하다.
하지만 방식4를 제외한 방식1,2,3은 단말이 idle state에 있을 때에도 동작하여야 하므로, 기지국이 단말이 idle state에서 어느 기지국에 거주하고 있는지 알 수 없으면 단말의 밀집도에 따라 적합한 방식을 운용하기 어렵게 된다. 또한 기지국이 단말의 ID 또는 단말이 원하는 서비스/slice를 알 수 없으면 서비스/slice 별 적합한 방식을 운용하기 어렵게 된다. 반면, 단말이 이미 connected state에 있는 방법4의 경우, BSR (Buffer Status Report) 또는 BSR과 함께 추가로 보낼 수 있는 정보에 기반하여 기지국이 단말의 서비스/slice 사용에 대한 의향을 파악할 수 있다.
따라서 본 발명에서는 단말이 특정 기지국에 거주하고 있는 또는 특정 기지국에 가까이 있다는 presence 정보 및 단말의 서비스/slice를 특정할 수 있는 정보(단말/서비스/slice ID 등)를 idle mode 단말의 상향링크 신호에 의해 기지국이 단말의 위치 및 특징/정체성을 파악하고 이에 따라 상기 dedicated numerology set을 설정하는 방식을 적절하게 선택하는 방법 및 절차에 대해 설명하고자 한다.
Idle mode 단말이 자신의 ID/서비스/slice 정보를 예컨대 presence 신호(또는 probing, discovery, beacon 신호)에 실어 적어도 하나 이상의 기지국을 대상으로 송신하기 위해서, 단말은 우선 기지국의 동기신호를 수신하여 기준시각을 일치하여야 한다. 또한 동기신호의 위치에 따라 미리 presence 신호를 송신하는 자원위치가 고정되는 것은 시스템의 자유로운 설계를 저해하므로, minimum SI 또는 추가적인 SI에서 presence 신호 송수신을 위한 채널을 설정해 주어야 한다. 본 발명에서 이러한 채널을 UL presence 채널 (UPCH)로 호칭하기로 한다.
상기 UL presence 채널이 설정되어 있을 때, 짧은 주기로 단말이 UL presence 신호를 송신하는 것은 단말의 복잡도 및 전력소모에 있어 부담이 될 수 있다. 이러한 문제에 대응하여 기지국이 UL presence 채널에 상응하는 DL probing 채널 (DPCH)을 구성할 수 있다. DL probing 채널 역시 minimum SI 또는 추가적인 SI에서 설정할 수 있으며, DL probing 신호는 단말, 단말 그룹, 서비스, slice, numerology 중 적어도 하나의 정보 또는 그 ID를 송신한다.
UL presence 신호 또는 DL probing 신호는 sequence 또는 신호의 일부가 겹쳐도 분리가 가능한 경쟁 기반 신호일 수 있다. 또는 가능한 많은 수의 단말 및 그 서비스/slice 등을 지시하기 위해서 tone 기반 신호가 고려될 수 있다. 특히 multi-tone에 단말의 ID 및 정보를 mapping 하는 경우 단말 별 서로 다른 hash code로 encoding하여 송신하고 기지국은 bloom filter로 수신하는 방식을 고려할 수 있다.
UL presence 신호로 경쟁 기반 신호를 이용하는 방식의 예로, 기존 Random Access 절차를 그대로 활용할 수 있다. 즉, 단말의 Random Access Preamble 과 기지국의 Random Access Response에 이어, 단말의 msg 3 에 서비스/슬라이스 관련 요청을 보낼 수 있다.
UL presence 신호로 경쟁 기반 신호를 이용하는 방식의 또 다른 예로, 기존 Random Access 신호의 변형일 수 있다. 하지만 기존 Random Access Preamble은 sequence를 보내므로 많은 정보량을 담을 수 없다. 또한 sequence로는 동적으로 바뀔 수 있는 정보를 보내기도 어렵다. 따라서 기지국은 SI로 UPCH를 설정할 때, sequence와 서비스/슬라이스 간 mapping 정보를 함께 보내야 한다. 단말은 사용하고 있거나 사용하려는 서비스/슬라이스에 해당하는 sequence를 선택하여 UPCH에서 전송할 수 있다.
UL presence 신호로 경쟁 기반 신호를 이용하는 방식의 또 다른 예로, Sparse Coding에 기반한 새로운 신호 전송 방법을 이용할 수 있다. Sparse Coding에 따르면 기지국은 복수의 단말이 송신한 중첩된 신호를 수신하고 단말 별 신호를 구분할 수 있다. 단말은 Sparse Coding에 따라 서비스/슬라이스 ID를 보내거나, 그 ID를 hash code와 같은 방법을 사용하여 압축해서 보낼 수 있다.
UL presence 신호 또는 DL probing 신호로 경쟁 기반 신호를 이용하는 방식의 또 다른 예로 tone 기반 신호와 hash code를 이용할 수 있다.
이러한 방식의 장점은 단말 및 단말의 정보를 대표하는 어떠한 형태의 데이터라도 이를 hash code를 통해서 encoding할 수 있다는 점이다. 또한 false negative 에러가 없고 false positive (또는 false alarm) 에러만 발생하기 때문에, 특정 ID를 송신했을 때 송신하지 않은 것으로 판단할 확률이 극히 적다. 따라서 기지국은 정보의 형태에 무관하게 그 정보를 저장하고 있으면, 어떤 단말로부터의 신호인지를 구분할 수 있다. UL presence 신호가 sequence가 아닌 경우에는 기지국이 단말의 TA를 계산할 수 있으려면 단말의 RAP 신호 수신이 필요하다. 또한 동일한 tone mapping이면 신호가 중첩될 뿐이므로 서로 다른 송신부로부터의 신호 간 간섭이 없다는 특징이 있다. DL probing 신호도 UL presence 신호와 동일한 구조로 설계될 수 있다. 따라서 MME 또는 서비스/slice 제어 서버가 저장한 단말 정보를 기반으로 DL probing 신호를 구성할 수 있다. 이러한 특징은 paging 신호의 기능을 대체하기 위해 하나 또는 복수의 기지국에서 DL probing 신호를 사용할 때 유용하다.
도 52는 본 발명의 제3 실시예에 따라 고려할 수 있는 initial access 절차를 flow chart로 보여준다. 단말은 기지국의 동기신호 탐지 및 SI 메시지를 획득한 후, SI 내 정보에 기반하여 PRACH (Physical Random Access Channel, 물리계층 임의접속 채널)에 대한 설정을 완료하면 paging 메시지를 수신하거나 UL buffer에 보낼 데이터가 발생하면 RAP (Random Access Preamble)을 송신할 수 있다. 단말은 SI 내 PRACH 설정에서 정의한 단말 거리 별 RA preamble set 중에서 임의의 RA-RNTI를 선택하여 송신할 수 있다. 기지국은 수신한 RAP에 상응하여 RA-RNTI로 구분하는 RAR (Random Access Response) message로 RAP ID, Timing Advance 값, 임시 C-RNTI (Temporary C-RNTI), 단말의 msg3 송신을 위한 자원할당 정보(RB, MCS) 등의 정보를 송신한다. 단말은 RAR 수신 성공에 따라 msg3, 즉 RRC connection establishment 메시지로 단말의 ID (TMSI - Temporary Mobile Subscriber Identity 또는 random value) 및 연결설정이유(establishment cause)를 송신한다. 기지국은 msg3에 상응하여 RRC connection setup 메시지로 connection 설정 완료를 알리기 위해 msg3에서 수신한 단말의 ID와 connected state에서 사용할 C-RNTI를 송신한다.도 53은 본 발명의 제3 실시예에 따라 UL presence 신호를 고려한 initial access 절차 예시-I 도면이다.
도 53에 따르면, 기지국은 minimum SI (또는 additional SI)로 UPCH와 PRACH 설정 정보를 송신하고 단말은 minimum SI를 수신하면 UPCH와 PRACH 설정을 완료할 수 있다. 단말은 UPCH 설정에 따라 결정된 UL presence 신호를 특정 UPCH 자원으로 송신한다. 단말은 MT (mobile-terminated) 호(call)의 경우 UL presence를 기지국에 알리면, 기지국이 matching 결과에 따라 이에 응답하여 paging 메시지를 송신한다. 이 때 paging 메시지에 RACH를 위한 numerology 또는 dedicated numerology set을 포함하여 알려줄 수 있다.
MO (mobile-oriented) 호의 경우 UL presence를 기지국에 알린 후, 단말은 default numerology set에 따라 RAP 및 RAR 절차를 수행한다. 기지국이 RAR 메시지로 dedicated resource set을 설정한다면, msg3와 msg4부터 dedicated numerology set과 상응하는 자원으로 송수신 동작을 수행한다. 기지국이 RRC connection setup (msg4) 메시지로 dedicated numerology set을 설정한다면, 단말은 connected state 전환과 함께 dedicated numerology set과 상응하는 자원에서 connected mode 동작을 수행한다.도 54는 본 발명의 제3 실시예에 따라 DL probing 신호를 고려한 initial access 절차 예시-I 도면이다.
도 54는 DL probing 신호로 paging의 기능을 대체하는 절차를 보여준다. 동기식 네트워크의 경우, DL probing 신호는 하나 또는 복수개의 기지국으로부터 동일한 신호가 composite하여 송수신된다. 따라서 네트워크가 단말의 위치를 정확히 알지 못하더라도 일정 영역의 하나 이상의 기지국에서 단말을 지시하는 DL probing 신호를 동시에 송신하여 단말을 깨울 수 있다. 단말은 수신한 DL probing 신호의 matching 결과에 따라 random access 절차를 수행한다.도 55는 본 발명의 제3 실시예에 따라 UL presence 신호와 DL probing 신호를 고려한 initial access 절차 예시-I 도면이다.
도 55는 도 53에서 paging이 송수신 되는 경우에 대해 paging 신호가 DL probing 신호로 바뀐 절차를 보여준다. 기지국은 특정 단말로부터의 UL presence 신호에 대한 matching이 성공적이면 DL probing 신호를 송신한다. 단말은 UL presence 신호에 상응하는 정보에 따라 DL probing 신호를 matching하고 그 결과가 성공적이면 random access 절차를 수행한다. UL presence 신호로 단말이 요구하는 서비스/slice/numerology 정보를 matching할 수 있다면, random access 절차를 dedicated numerology set을 따라 수행할 수 있다. 여기서 dedicated numerology set은 minimum SI 또는 additional SI로 전달됨을 가정한다.도 56은 본 발명의 제3 실시예에 따라 UL presence 신호와 DL probing 신호를 고려한 initial access 절차 예시-II 도면이다.
도 56에서 기지국이 DL probing 신호를 먼저 보내고, DL probing 신호에 대한 matching이 성공한 단말은 UL presence 신호를 송신한다. 기지국은 paging 신호를 보내지 않기 때문에 단말은 default numerology set으로 paging 신호를 관찰(monitoring) 할 필요가 없이, random access 절차를 바로 dedicated numerology set으로 수행할 수 있다. 다른 일 예시에 따르면, DL probing과 UL presence 과정으로 기지국과 단말 간 상호 접속의 의향을 파악하였기 때문에 msg 3와 msg 4를 송신하지 않고 msg4에서 송신하는 단말의 ID와 C-RNTI 정보를 msg2에서 송신할 수 있다. 단 RAP 송수신을 위해 사용하는 RA-RNTI는 DL probing 및 UL presence 과정에서 사용된 단말을 특정하는 정보를 기반으로 도출되어야 한다. 예를 들어 DL probing 또는 UL presence를 송신하는 자원의 시간/주파수 위치를 기반으로 RA-RNTI를 결정할 수 있다. 또는 단말의 connected state에서의 상태 정보가 네트워크에 저장되어 있는 경우라면, 단축된 random access 절차를 위해 미리 할당된 RNTI를 사용할 수 있다.도 57은 본 발명의 제3 실시예에 따라 UL presence 신호를 고려한 initial access 절차 예시-II 도면이다.
도 57은 도 53에서 보인 UL presence 신호에 기반한 절차의 변형으로, 추가적인 SI가 minimum SI와 같이 송신되는 것이 아니라, 단말의 UL presence 신호에 상응하여 기지국이 송신하는 경우를 보여준다. 따라서 PRACH 설정 또는 dedicated numerology set 설정 정보는 추가적인 SI에만 포함되어 있다.도 64는 본 발명의 제3 실시예에 따라 UPCH가 기존 RA 절차를 재사용할 때의 예시이다.
도 64는 UPCH가 기존 RA 절차를 재사용할 때의 예시이다. 단말은 기지국에 동기 및 SI를 획득하고 SI로 설정되는 UPCH와 PRACH 정보에 따라 동작한다. 기지국은 UPCH로 설정된 자원에서 단말의 RAP 신호가 수신되면, 기존 RA 절차와 다른 UPCH 관련 절차로 동작한다. 즉, RAP(msg1)-RAR(msg2)-UL presence(msg3)로 이어지는 순서에 따라 동작한다. Msg3에 대한 기지국의 응답인 UL presence ACK (msg4)은 필요한 경우에만 보낼 수 있다. 기지국은 UL presence 신호를 수신하여 단말의 서비스/슬라이스 정보를 확인할 수 있기 때문에 MT호의 경우 단말에게 paging 메시지를 보낼 때 Numerology 정보를 설정할 수 있다. Paging 신호를 수신하게 되면 단말은 UL 동기가 유효하다면 바로 RRC connection request를 설정한 Numerology로 송신하고 기지국은 이에 대해 RRC connection setup으로 응답한다. MO호의 경우 단말은 이전 msg2의 Timing Advanced 정보에 따라 맞춘 UL 동기가 유효하다면 바로 RRC connection request를 설정한 Numerology로 송신하고 기지국은 이에 대해 RRC connection setup으로 응답한다. 이 절차에서 Numerology 설정 이후 기지국과 단말이 주고받는 RRC 메시지는 설정한 Numerology에 따른다.도 65는 본 발명의 제3 실시예에 따라 UPCH가 변형된 RA 절차를 사용할 때의 예시이다.
도 65는 UPCH가 변형된 RA 절차를 사용할 때의 예시이다. 단말은 기지국에 동기 및 SI를 획득하고 SI로 설정되는 UPCH와 PRACH 정보에 따라 동작한다. 단말은 sequence 또는 sequence와 UPCH 자원의 index의 조합으로 표현할 수 있는 서비스/슬라이스 ID에 따라 적절한 sequence 또는/그리고 UPCH 자원을 선택하여 RAP(msg1)를 송신한다. 기지국은 UPCH로 설정된 자원에서 단말의 RAP 신호가 수신되면, 기존 RA 절차와 다른 UPCH 관련 절차로 동작한다. 즉, UL presence(msg1)-RAR(msg2) 로 이어지는 순서에 따라 동작한다. 기지국은 UL presence 신호를 수신하여 단말의 서비스/슬라이스 정보를 확인할 수 있기 때문에 MT호의 경우 단말에게 paging 메시지를 보낼 때 Numerology 정보를 설정할 수 있다. Paging 신호를 수신하게 되면 단말은 이전 msg2의 Timing Advanced 정보에 따라 맞춘 UL 동기가 유효하다면 바로 RRC connection request를 설정한 Numerology로 송신하고 기지국은 이에 대해 RRC connection setup으로 응답한다. MO호의 경우 단말은 UL 동기가 유효하다면 바로 RRC connection request를 설정한 Numerology로 송신하고 기지국은 이에 대해 RRC connection setup으로 응답한다. 이 절차에서 Numerology 설정 이후 기지국과 단말이 주고받는 RRC 메시지는 설정한 Numerology에 따른다.
도 51에서 보이는 dedicated numerology set을 설정하는 다양한 절차와 도 52에서 도 57, 도 60, 도 61, 도 63, 도 64, 도 65까지의 initial access 절차는 서로 결합되어 동작할 수 있다. 따라서 도 51의 여러 option과 도 52에서 도 57, 도 60, 도 61, 도 63, 도 64, 도 65에서 예시하는 다양한 절차의 조합 역시 본 개시의 내용에 포함된다.
여기서 UL presence 신호 또는 DL probing 신호의 물리계층의 구성 및 단말의 ID, 서비스/slice ID를 어떻게 송신하는지 구체적인 실 예를 개시한다. 본 발명의 핵심은 단말의 상위계층과 네트워크의 상위계층, 특히 MME 또는 서비스/slice 제어 서버에서 가지고 있는 단말의 ID와 서비스/slice ID 정보를 multi-tone에 mapping하여 송수신하여 단말의 존재와 요구하는 서비스/slice ID를 파악하여, 그 서비스/slice 를 지원할 수 있는 dedicated numerology set 정보를 네트워크의 서버 또는 기지국이 단말에게 제공하는 데 있다. 따라서 상위 계층의 ID 정보를 어떻게 tone 기반 신호로 송수신하는지, 그리고 tone 기반 신호로 송신한 단말을 어떻게 특정하여 기지국이 dedicated numerology set 정보를 단말이 수신할 수 있도록 할 수 있는지에 대한 상세를 개시한다.
우선 단말에서 기지국으로 송신하는 UL presence 신호 또는 기지국에서 단말로 송신하는 DL probing 신호는 동일한 송수신 방법을 따른다. 도 4h는 송신부에서 UE ID 및 서비스 ID를 기반으로 tone mapping을 하는 과정과 수신부에서 탐지한 tone 정보를 기반으로 가지고 있던 UE ID 및 서비스 ID 정보와의 matching 절차를 보이고 있다. 절차 상 단말을 특정할 필요가 없다면, 예를 들어 네트워크는 서비스 요구의 분포만 알고자 할 때, 단말은 서비스/slice ID만 송신하도록 미리 설정되거나, 네트워크 또는 기지국에 의해 설정될 수 있다. 네트워크 또는 기지국에 의해 설정되는 경우에는 Minimum SI 또는 추가적인 SI에서 tone mapping에 입력으로 쓰일 ID 정보의 format을 설정할 수 있다. 송신부(단말)는 상기 ID를 입력 값으로 하여 해시 함수 (hash functions)로부터 해시 코드 (hashed code)인 출력 값을 받는다. 단말은 해시 코드를 기반으로 앞서 minimum SI 또는 추가적인 SI에서 설정받은 UPCH 정보를 바탕으로 어떤 tone에 신호(에너지)를 실어 보낼지 결정한다. UPCH 설정은 시간/주파수로 구분되는 tone 자원의 구조와 복수의 tone에 논리적인 인덱스를 부여하는 방법을 포함한다. 흔히 시간 우선 (time-first) 또는 주파수 우선 (frequency-first) 방식이 있으며 도 4h에서는 주파수 우선 방식에 따라 표현하였다. 즉, 낮은 주파수 tone으로부터 점점 증가하는 방향으로 인덱스를 부여하며 한 시간 단위에서 모든 주파수 tone을 인덱싱하면 다음 시간 단위에서 마찬가지고 낮은 주파수 tone부터 인덱스를 부여한다.
도 58은 본 발명의 제3 실시예에 따라 UE ID 및 서비스 ID 기반 tone-based 신호 송수신 방법의 예시이다.
도 58에서는 0번 tone부터 1279번 tone까지 총 1280개 tone을 인덱싱한 구조를 보여준다. 해시 함수로부터 얻어진 해시 코드는 MSB (Most Significant Bit) 또는 LSB (Least Significant Bit)의 일반적인 순서에 따라 인식할 수 있다. 단말은 예를 들어 MSB부터 UPCH의 tone 인덱스 0부터 순차적으로 할당할 수 있다.
한 실시 예에 따르면, 수신성능의 향상을 위해 순차적인 tone mapping이 아닌 스크램블 또는 interleaving 방식으로 순서를 바꾸어 기지국 별 서로 다른 스크램블 코드 또는 interleaving 규칙을 적용할 수 있다. 이러한 기지국 별 또는 단말 별 추가적인 순서 변환이 추가적인 복잡도를 감수하고 가능하다면, 기지국이 단말의 현재 거주 기지국을 판단하는데 활용될 수 있다.
순차적인 tone mapping이 적용된 예시에서는 기지국은 탐지한 tone 정보를 기반으로 tone을 code로 mapping하는 절차를 수행한다. 이 때 기지국이 수신한 tone 정보는 하나 또는 복수의 단말로부터의 tone 신호가 중첩된 신호일 수 있다.
도 59는 본 발명의 제3 실시예에 따라 복수의 단말로부터의 tone 기반 신호의 중첩 예시이다.
중첩된 신호는 도 59에서 보듯 단말1 (UE1)이 송신한 tone과 단말2 (UE2)가 송신한 tone 중 일부는 중첩이 될 수 있다. 하지만 기지국 또는 네트워크 서버는 단말의 ID 정보를 사전에 가지고 있으면서 이를 해시 함수에 입력으로 넣어 얻어진 출력을 기반으로 단말의 ID를 matching하고 단말의 존재 여부 또는 단말의 서비스 요구 상황을 확인할 수 있다. 이는 중첩된 신호가 다른 단말의 tone mapping에 영향을 주지 않기 때문이다. 즉, 수신부는 해시 함수로 특정 tone만 검사하여 matching 여부를 확인하기 때문이다. 일 실시 예에 따르면, 복수의 해시 함수로 이루어진 bloom filter를 사용하여 false alarm 확률을 최소화하는 방식을 사용할 수 있다.
일실시예에 따르면, 기지국은 단말에게 미리 단말의 ID 또는 서비스 ID 각각에 대한 tone mapping 정보 또는 단말의 ID와 서비스 ID 조합에 대한 tone mapping 정보를 네트워크에 접속 시 할당해 줄 수 있다. 단말이 connected state에서 다시 idle state로 전환하면, 단말은 기지국이 설정한 tone mapping 정보에 따라 필요 시 UL presence 신호를 송신하거나, 기지국의 DL probing 신호를 탐지하여 인식할 수 있다.
단말은 Minimum SI 또는 추가적인 SI로 설정한 UPCH의 주기, 자원 위치 등을 알고 있으므로, 특정 서비스/slice를 위한 UL 데이터가 버퍼에 쌓이면 가장 가까운 UPCH에서 UL presence 신호를 송신할 수 있다. 일 실시 예에 따르면, 단말은 서비스/slice의 우선순위에 따라 UPCH의 주기의 서로 다른 배수의 주기로 UL presence 신호를 송신하거나, 서비스/slice별 서로 구분된 UPCH 위치(offset 및 주기로 구분)에서 UL presence 신호를 송신한다. 또는 단말은 paging occasion이 설정되어 있다면, 다음 paging occasion 전 k번의 UPCH에서 UL presence 신호를 송신하도록 기지국 또는 네트워크에 의해 설정 받을 수 있다.
한편, UL presence 신호를 수신하여 단말의 존재 또는 단말의 요구를 확인한 기지국 또는 네트워크는 단말에게 서비스/slice에 적합한 dedicated numerology set 정보를 알려주어야 한다. 단말이 UL presence 신호는 tone-based 신호로 송신하나, 기지국의 dedicated numerology set 정보는 메시지로 송신하여야 하므로, 공유채널의 제어/데이터 채널을 통하여 단말을 특정하여 송신하려면, 단말이 알고 있는 RNTI로 DCI (DL Control Information)나 상위계층 메시지를 송신하여야 한다. 또한 단말도 상기 기지국이 보내는 RNTI에 대한 정보를 알고 있어야 한다. 따라서 본 개시에서는 단말이 idle state에서 기지국으로부터 메시지를 수신하기 위한 새로운 RNTI를 결정할 수 있는지 상세히 알아본다. 새로운 RNTI는 idle state에서 사용되므로 I-RNTI라는 용어로 호칭하고자 한다.
기지국과 단말은 connection이 맺어져 있지 않은 상황에서 random access 절차 없이 동일한 RNTI를 결정할 수 있어야 한다. 본 개시의 여러 실시 예에 따르면, 단말은 UL presence 신호를 tone-based 신호로 송신할 수 있다. UPCH 내 복수의 tone에 mapping 된 UE ID는 바로 I-RNTI로 변환하기에는 너무 큰 정보이다. 그러므로 이미 작은 크기로 변환된 해시 코드 또는 tone으로 변환된 mapping 정보에 기반하여 단말의 I-RNTI를 결정하는 것이 단말의 복잡도 감소에 기여한다.
예를 들어, 1) mapping된 tone의 인덱스 값의 합을 RNTI 전체 크기로 모듈라(modular) 연산을 취한 결과값을 I-RNTI로 결정하거나, 2) tone 영역 (space)을 N개의 구간으로 나누어 각 구간의 bits 열을 RNTI의 일부분 값으로 변환(예를 들어 hexadeimel 값) 후 합친 값을 I-RNTI로 결정하거나, 3) mapping 된 tone의 인덱스 값을 순차적으로 이어 붙여 얻은 값을 I-RNTI로 변환하거나, 4) mapping 된 tone 간 비어 있는 tone의 간격 값의 합을 RNTI 전체 크기로 모듈라(modular) 연산을 취한 결과값을 I-RNTI로 결정할 수 있다.
그 외 일반적으로 알려진 알고리즘에 기반한 다양한 변환 방식이 고려될 수 있다. 만일 해시 코드 영역의 크기가 I-RNTI 영역의 크기보다 작으면, 변환한 값을 반복하여 I-RNTI의 총 영역에 값이 mapping되도록 할 수 있다. 만일 해시 코드 영역의 크기가 I-RNTI 영역의 크기보다 크면, 규칙에 따라 일부 영역의 값을 생략하여 I-RNTI 영역의 크기에 맞출 수 있다.
단말은 상기와 같이 네트워크 서버 또는 기지국과 동일한 I-RNTI 생성 규칙에 따라, UL presence 신호 또는 DL probing 신호의 tone 정보를 기반으로 I-RNTI를 생성한다. 한편 일 실시예에 따라 기지국은 영역 내 예상되는 단말의 ID 및 서비스/slice ID 정보를 MME 또는 서비스/slice 제어 서버로부터 미리 요청하여 받아 올 수 있다.
또는 기지국은 수신한 tone 정보를 기반으로 해시 코드를 생성하여 이를 MME 또는 서비스/slice 제어 서버에 보내어 matching 여부를 문의할 수 있다. 도 4j는 수신한 tone mapping 정보 또는 tone-to-code mapping을 통하여 얻은 해시 코드 정보를 기지국이 MME 또는 서비스/slice 서버에게 문의하고, 그에 따라 MME가 단말에게 paging을 송신하는 일 실시예를 보인다.
도 61은 본 발명의 제3 실시예에 따라 기지국이 MME에게 matching indication을 보내는 예시이다.
도 61은 미리 MME가 이를 테면 Tracking Area 내 기지국에게 matching을 위한 UE/service/slice ID 또는 해시 코드를 제공하고, 기지국은 matching을 할 수 있도록 제공받은 정보를 기반으로 UL presence 신호에 대한 matching을 수행한다. Matching이 성공하면 그 내역에 대해 기지국은 MME에게 알려줄 필요가 있다. 이 때 matching indication은 matching에 성공한 UE ID 및 서비스/slice ID 정보를 포함하여 송신할 수 있다.
단말은 tone-based 신호로부터 결정한 I-RNTI를 기반으로 하기와 같은 동작을 수행할 수 있다. 이 때 기지국은 다수 단말로부터의 UL presence 신호를 기반으로, 예를 들어 특정 서비스를 요구하는 단말 수가 많으면, 상응하는 dedicated numerology set 정보를 BCH 기반 추가적인 SI로 송신한다; 또는 예를 들어 특정 서비스를 요구하는 단말 수가 많지 않되 서비스 수가 많으면, 상응하는 dedicated numerology set 정보를 SI-RNTI로 송신한다; 또는 특정 서비스를 요구하는 단말 수가 매우 적으면, 상응하는 dedicated numerology set 정보를 I-RNTI로 송신한다. 따라서 단말은 UL presence 신호를 송신한 후, Minimum SI 또는 추가적인 SI로 설정 받은 I-RNTI 수신 윈도우 내에서 대기하면서 I-RNTI로 구분 가능한 기지국의 신호를 탐색한다.
기지국이 BCH를 송신하도록 되어 있는 자원에서는 수신 윈도우와 무관하게 단말은 BCH 수신 동작을 수행하여야 한다. 이는 구현에 따라 단말이 BCH 수신을 위해 I-RNTI 수신 동작을 하지 않을 수 있음을 의미한다. 한편, 기지국이 SI-RNTI를 송신하도록 되어 있는 자원(SI scheduling으로 획득)에서는 수신 윈도우와 별개로 단말은 SI-RNTI 수신 동작과 I-RNTI 수신 동작을 모두 병행하고 있어야 한다. 단말의 capability에 따라 어떤 단말은 SI-RNTI 수신 동작과 I-RNTI 수신 동작을 동시에 수행하기 어려울 수 있다. 그러한 단말은 I-RNTI 수신 윈도우 내에서는 SI-RNTI를 수신하지 않고, I-RNTI 수신 윈도우가 만료되면 SI-RNTI를 수신한다.
단말의 ID는 네트워크에/기지국에서 사용하는 여러 ID (IMSI, GUTI, S-TMSI, IP/PDN address UE S1AP ID, UE X2AP ID ) 이거나, 서비스/애플리케이션/slice 별 정해진 가입자 ID일 수 있다.도 62는 본 발명의 제3 실시예에 따라 단말 장치의 구성도를 나타낸 도면이다.
도 62는 본 개시의 제3 실시예에 따른 단말 장치의 구성을 예시하는 도면이다.
단말장치는 타 단말과의 신호 송수신을 수행하는 송수신부와, 상기 단말장치의 모든 동작을 제어하는 제어부를 포함할 수 있다. 본 개시에서 상술한 동기화 지원을 위한 모든 동작들은 상기 제어부에 수행되는 것으로 이해될 수 있다. 그러나, 상기 제어부및 상기 송수신부는 반드시 별도의 장치로 구현되어야 하는 것은 아니고, 단일 칩과 같은 형태로 하나의 구성부로 구현될 수 있음은 물론이다.
도 51 내지 도 57이 예시하는 단말의 구성도, 제어/데이터 신호 송신 방법의 예시도, 단말의 동작 절차 예시도, 단말 장치의 구성도들은 본 개시의 권리범위를 한정하기 위한 의도가 없음을 유의하여야 한다. 즉, 상기 도 51 내지 도 57에 기재된 모든 구성부, 엔터티, 또는 동작의 단계가 개시의 실시를 위한 필수구성요소인 것으로 해석되어서는 안되며, 일부 구성요소 만을 포함하여도 개시의 본질을 해치지 않는 범위 내에서 구현될 수 있다.
앞서 설명한 기지국이나 단말의 동작들은 해당 프로그램 코드를 저장한 메모리 장치를 기지국 또는 단말 장치 내의 임의의 구성부에 구비함으로써 실현될 수 있다. 즉, 기지국 또는 단말 장치의 제어부는 메모리 장치 내에 저장된 프로그램 코드를 프로세서 혹은 CPU(Central Processing Unit)에 의해 읽어내어 실행함으로써 앞서 설명한 동작들을 실행할 수 있다.
본 명세서에서 설명되는 엔터티, 기지국 또는 단말 장치의 다양한 구성부들과, 모듈(module)등은 하드웨어(hardware) 회로, 일 예로 상보성 금속 산화막반도체(complementary metal oxide semiconductor) 기반 논리 회로와, 펌웨어(firmware)와, 소프트웨어(software) 및/혹은 하드웨어와 펌웨어 및/혹은 머신 판독 가능 매체에 삽입된 소프트웨어의 조합과 같은 하드웨어 회로를 사용하여 동작될 수도 있다. 일 예로, 다양한 전기 구조 및 방법들은 트랜지스터(transistor)들과, 논리 게이트(logic gate)들과, 주문형 반도체와 같은 전기 회로들을 사용하여 실시될 수 있다.
Claims (15)
- 무선 통신 시스템에서 단말의 상향링크 데이터 전송 방법에 있어서,상기 단말이 RRC(radio resource control) 비활성 상태(inactive state)인 경우, RA(random access) 프리앰블(preamble)을 기지국으로 전송하는 단계;상기 RA 프리앰블에 상응하는 RA 응답 메시지를 상기 기지국으로부터 수신하는 단계; 및상기 RA 응답 메시지에 상응하는 RRC 연결 요청 메시지(RRC connection request)에 상향링크 데이터를 추가 하여 상기 기지국으로 전송하는 단계를 포함하는 것을 특징으로 하는 방법.
- 제1항에 있어서,상기 RRC 연결 요청 메시지 전송 시 상향링크 데이터 전송을 완료하지 못한 경우, 상기 RRC 연결 요청 메시지에 버퍼 상태 보고(buffer state report)를 더 추가하여 상기 기지국으로 전송하는 단계를 더 포함하는 것을 특징으로 하는 방법.
- 제2항에 있어서,상기 버퍼 상태 보고에 기반하여 상기 단말의 상태가 RRC 연결 상태(connected stste)로 천이되도록 결정되면, 상기 RRC 연결 요청 메시지에 상응하는 RRC 연결 재개 메시지(RRC connection resume)를 상기 기지국으로부터 수신하는 단계를 더 포함하는 것을 특징으로 하는 방법.
- 제2항에 있어서,상기 버퍼 상태 보고에 기반하여 상기 단말의 상태가 RRC 비활성 상태로 유지되도록 결정되면, 상기 RRC 연결 요청 메시지에 상응하는 RRC 연결 중지 메시지(RRC connection suspend)를 상기 기지국으로부터 수신하는 단계를 더 포함하는 것을 특징으로 하는 방법.
- 제3항에 있어서,상기 RRC 연결 재개 메시지에 상응하는 RRC 연결 재개 완료 메시지(RRC connection resume complete)에 상향링크 데이터를 추가하여 상기 기지국으로 전송하는 단계를 더 포함하는 것을 특징으로 하는 방법.
- 무선 통신 시스템에서 기지국의 상향링크 데이터 수신 방법에 있어서,단말이 RRC(radio resource control) 비활성 상태(inactive state)인 경우, 상기단말로부터 RA(random access) 프리앰블(preamble)을 수신하는 단계;상기 RA 프리앰블에 상응하는 RA 응답 메시지를 상기 단말로부터 전송하는 단계; 및상기 RA 응답 메시지에 상응하는 RRC 연결 요청 메시지(RRC connection request)및 상기 RRC 연결 요청 메시지에 추가된 상향링크 데이터를 상기 단말로부터 수신하는 단계를 포함하는 것을 특징으로 하는 방법.
- 제6항에 있어서,상기 단말이 상기 RRC 연결 요청 메시지 전송 시 상향링크 데이터 전송을 완료하지 못한 경우, 상기 RRC 연결 요청 메시지에 추가된 버퍼 상태 보고(buffer state report)를 상기 단말로부터 수신하는 단계를 더 포함하는 것을 특징으로 하는 방법.
- 제7항에 있어서,상기 버퍼 상태 보고에 기반하여 상기 단말의 상태를 RRC 연결 상태(connected stste)로 천이하도록 결정하는 단계; 및상기 결정 결과에 따라 상기 RRC 연결 요청 메시지에 상응하는 RRC 연결 재개 메시지(RRC connection resume)를 상기 단말로 전송하는 단계를 더 포함하는 것을 특징으로 하는 방법.
- 제7항에 있어서,상기 버퍼 상태 보고에 기반하여 상기 단말의 상태를 RRC 비활성 상태로 유지하도록 결정하는 단계; 및상기 결정 결과에 따라 상기 RRC 연결 요청 메시지에 상응하는 RRC 연결 중지 메시지(RRC connection suspend)를 상기 단말로 전송하는 단계를 더 포함하는 것을 특징으로 하는 방법.
- 제6항에 있어서,상기 RRC 연결 요청 메시지 및 상기 상향링크 데이터가 멀티플렉싱(multiplexing)되어 하나의 전송 블록(transport block)으로 수신되는 것을 특징으로 하는 방법.
- 무선 통신 시스템에서 상향링크 데이터를 전송하는 단말에 있어서,신호를 송수신하는 송수신부; 및상기 송수신부와 연결되어 상기 송수신부를 제어하는 제어부를 포함하고,상기 제어부는,상기 단말이 RRC(radio resource control) 비활성 상태(inactive state)인 경우, RA(random access) 프리앰블(preamble)을 기지국으로 전송하고, 상기 RA 프리앰블에 상응하는 RA 응답 메시지를 상기 기지국으로부터 수신하고, 상기 RA 응답 메시지에 상응하는 RRC 연결 요청 메시지(RRC connection request)에 상향링크 데이터를 추가하여 상기 기지국으로 전송하도록 상기 송수신부를 제어하는 것을 특징으로 하는 단말.
- 제11항에 있어서, 상기 제어부는,상기 RRC 연결 요청 메시지 전송 시 상향링크 데이터 전송을 완료하지 못한 경우, 상기 RRC 연결 요청 메시지에 버퍼 상태 보고(buffer state report)를 더 추가하여 상기 기지국으로 전송하도록 제어하는 것을 특징으로 하는 단말.
- 제11항에 있어서,상기 RRC 연결 요청 메시지 및 상기 상향링크 데이터가 멀티플렉싱(multiplexing)되어 하나의 전송 블록(transport block)으로 전송되는 것을 특징으로 하는 단말.
- 무선 통신 시스템에서 상향링크 데이터를 수신하는 기지국에 있어서,신호를 송수신하는 송수신부; 및상기 송수신부와 연결되어 상기 송수신부를 제어하는 제어부를 포함하고,상기 제어부는,단말이 RRC(radio resource control) 비활성 상태(inactive state)인 경우, 상기단말로부터 RA(random access) 프리앰블(preamble)을 수신하고, 상기 RA 프리앰블에 상응하는 RA 응답 메시지를 상기 단말로부터 전송하고, 상기 RA 응답 메시지에 상응하는 RRC 연결 요청 메시지(RRC connection request)및 상기 RRC 연결 요청 메시지에 추가된 상향링크 데이터를 상기 단말로부터 수신하도록 상기 송수신부를 제어하는 것을 특징으로 하는 기지국.
- 제14항에 있어서, 상기 제어부는,상기 단말이 상기 RRC 연결 요청 메시지 전송 시 상향링크 데이터 전송을 완료하지 못한 경우, 상기 RRC 연결 요청 메시지에 추가된 버퍼 상태 보고(buffer state report)를 상기 단말로부터 수신하도록 제어하는 것을 특징으로 하는 기지국.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17856843.2A EP3506708B1 (en) | 2016-09-29 | 2017-09-29 | Method and apparatus for transmitting data in rrc deactivated state |
US16/337,351 US10986655B2 (en) | 2016-09-29 | 2017-09-29 | Method and apparatus for transmitting data in RRC deactivated or activated state |
US17/301,931 US11849445B2 (en) | 2016-09-29 | 2021-04-19 | Method and apparatus for transmitting data in RRC deactivated or activated state |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20160125950 | 2016-09-29 | ||
KR10-2016-0125950 | 2016-09-29 | ||
KR10-2016-0146069 | 2016-11-03 | ||
KR20160146069 | 2016-11-03 | ||
KR1020170001481A KR20180035638A (ko) | 2016-09-29 | 2017-01-04 | RRC Inactive 및 active 상태에서 data 전송 결정 및 방법 및 장치 |
KR10-2017-0001481 | 2017-01-04 | ||
KR10-2017-0037158 | 2017-03-23 | ||
KR1020170037158A KR20180035643A (ko) | 2016-09-29 | 2017-03-23 | RRC Inactive 및 active 상태에서 data 전송 결정 및 방법 및 장치 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/337,351 A-371-Of-International US10986655B2 (en) | 2016-09-29 | 2017-09-29 | Method and apparatus for transmitting data in RRC deactivated or activated state |
US17/301,931 Continuation US11849445B2 (en) | 2016-09-29 | 2021-04-19 | Method and apparatus for transmitting data in RRC deactivated or activated state |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018062957A1 true WO2018062957A1 (ko) | 2018-04-05 |
Family
ID=61760785
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2017/011010 WO2018062957A1 (ko) | 2016-09-29 | 2017-09-29 | Rrc 비활성화 또는 활성화 상태에서 데이터 전송 방법 및 장치 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102380612B1 (ko) |
WO (1) | WO2018062957A1 (ko) |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108513714A (zh) * | 2018-04-26 | 2018-09-07 | 北京小米移动软件有限公司 | Harq反馈方法及装置 |
WO2019098118A1 (en) * | 2017-11-17 | 2019-05-23 | Nec Corporation | Early data transmission authorization control |
WO2019201563A1 (en) * | 2018-04-17 | 2019-10-24 | Telefonaktiebolaget Lm Ericsson (Publ) | Allowance of subsequent data for early data transmission |
WO2019214734A1 (en) * | 2018-05-11 | 2019-11-14 | Telefonaktiebolaget Lm Ericsson (Publ) | Methods, terminal device and base station for physical downlink control channel monitoring |
WO2019245297A1 (en) * | 2018-06-20 | 2019-12-26 | Lg Electronics Inc. | Method for selecting bwp and device supporting the same |
WO2020000299A1 (zh) * | 2018-06-28 | 2020-01-02 | Oppo广东移动通信有限公司 | 调度资源的方法、终端设备和网络设备 |
CN110719633A (zh) * | 2018-07-13 | 2020-01-21 | 电信科学技术研究院有限公司 | 一种上行资源分配方法、装置、基站及终端 |
WO2020032634A3 (ko) * | 2018-08-09 | 2020-03-26 | 엘지전자 주식회사 | 무선 통신 시스템에서 pur을 이용하여 상향링크 데이터를 송수신하기 위한 방법 및 이를 위한 장치 |
WO2020060178A1 (en) * | 2018-09-18 | 2020-03-26 | Samsung Electronics Co., Ltd. | Method and apparatus for reporting selected plmn of rrc-inactive mode ue in next-generation communication system |
CN112292899A (zh) * | 2018-04-19 | 2021-01-29 | 上海诺基亚贝尔股份有限公司 | 用于在没有rrc连接情况下的数据传输的方法、设备和计算机可读介质 |
CN112422375A (zh) * | 2019-08-22 | 2021-02-26 | 中兴通讯股份有限公司 | 通信方法、装置、系统、固定台式分布单元及存储介质 |
CN112470545A (zh) * | 2018-06-21 | 2021-03-09 | 三星电子株式会社 | 下一代移动通信系统中用于支持rrc非活动模式的双连接的方法和设备 |
CN112640555A (zh) * | 2018-08-09 | 2021-04-09 | 苹果公司 | 新无线电(nr)相关通信中测量间隙配置的技术 |
CN112655268A (zh) * | 2018-09-10 | 2021-04-13 | 联想(新加坡)私人有限公司 | 消息3缓冲区中的媒体访问控制协议数据单元 |
CN112740751A (zh) * | 2018-09-26 | 2021-04-30 | 瑞典爱立信有限公司 | 无线信道切换 |
US11026286B2 (en) | 2017-07-27 | 2021-06-01 | Lg Electronics Inc. | Method and apparatus for performing EDT |
US11044756B2 (en) | 2017-10-09 | 2021-06-22 | Qualcomm Incorporated | Supplementary uplink random access channel procedures |
CN113141668A (zh) * | 2020-01-17 | 2021-07-20 | 华硕电脑股份有限公司 | 基于随机接入信道的小数据传送过程的方法和设备 |
CN113261377A (zh) * | 2019-01-10 | 2021-08-13 | 索尼集团公司 | 通信设备,通信方法和通信程序 |
US20210360730A1 (en) * | 2018-05-11 | 2021-11-18 | Lg Electronics Inc. | Method and apparatus for resuming only signaling radio bearers in wireless communication system |
WO2022022306A1 (zh) * | 2020-07-31 | 2022-02-03 | 华为技术有限公司 | 一种通信方法及装置 |
CN111935808B (zh) * | 2018-05-07 | 2022-02-18 | Oppo广东移动通信有限公司 | 一种悬挂rrc连接的方法及装置、计算机存储介质 |
US11399394B2 (en) | 2018-01-24 | 2022-07-26 | Telefonaktiebolaget Lm Ericsson (Publ) | Multiple TBS for Msg3 in data transmission during random access |
WO2022200033A1 (en) * | 2021-03-26 | 2022-09-29 | Nokia Technologies Oy | Data transmission in inactive state connection |
CN115669149A (zh) * | 2020-07-10 | 2023-01-31 | Oppo广东移动通信有限公司 | 上行数据传输方法、装置、终端及存储介质 |
US11627632B2 (en) | 2020-05-14 | 2023-04-11 | Ofinno, Llc | Small data transmission |
US12069717B2 (en) | 2017-08-10 | 2024-08-20 | Kyocera Corporation | Communication control method, user equipment, and apparatus for performing early data transmission |
US12082267B2 (en) | 2018-05-09 | 2024-09-03 | Kyocera Corporation | Communication control method, radio terminal, apparatus and base station |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019203711A1 (en) | 2018-04-20 | 2019-10-24 | Telefonaktiebolaget Lm Ericsson (Publ) | Cross-carrier spatial relation indication for semi-persistent sounding reference signal (sp-srs) resources |
KR102206806B1 (ko) * | 2018-05-04 | 2021-01-25 | 아서스테크 컴퓨터 인코포레이션 | 무선 통신 시스템에서 액티브 다운링크 대역폭 부분 변경을 고려한 다운링크 제어 정보 컨텐트 프로세싱을 위한 방법 및 장치 |
WO2019216690A1 (ko) * | 2018-05-11 | 2019-11-14 | 엘지전자 주식회사 | 시스템 정보를 송수신하는 방법 및 이를 위한 장치 |
US11129041B2 (en) * | 2018-07-20 | 2021-09-21 | FG Innovation Company Limited | Reporting early measurement results in the next generation wireless networks |
EP3834569B1 (en) * | 2018-08-08 | 2023-07-05 | Fg Innovation Company Limited | Method and apparatus for generating mac pdu |
US11564277B2 (en) | 2018-08-16 | 2023-01-24 | Lg Electronics Inc. | Method and apparatus for supporting early data transmission in inactive state in wireless communication system |
WO2020067818A1 (ko) * | 2018-09-27 | 2020-04-02 | 엘지전자 주식회사 | 무선 통신 시스템에서 무선 통신 시스템에서 아이들 모드의 pur 상에서 ul 데이터를 송수신하기 위한 방법 및 그 장치 |
WO2020067817A1 (ko) * | 2018-09-27 | 2020-04-02 | 엘지전자 주식회사 | 무선 통신 시스템에서 무선 통신 시스템에서 아이들 모드의 pur 상에서 ul 데이터를 송수신하기 위한 방법 및 그 장치 |
WO2020067819A1 (ko) * | 2018-09-27 | 2020-04-02 | 엘지전자 주식회사 | 무선 통신 시스템에서 무선 통신 시스템에서 아이들 모드의 pur 상에서 ul 데이터를 송수신하기 위한 방법 및 그 장치 |
EP3804454B1 (en) | 2018-09-28 | 2022-11-02 | LG Electronics, Inc. | Method and apparatus for determining whether to perform transmission on a random access or a configured grant in wireless communication system |
WO2020092415A1 (en) * | 2018-11-01 | 2020-05-07 | Intel Corporation | Transmission, retransmission, and hybrid automatic repeat request (harq) for preconfigured uplink resource (pur) in idle mode |
KR102543222B1 (ko) | 2018-11-02 | 2023-06-13 | 삼성전자 주식회사 | 무선 통신 시스템에서 비직교 다중접속 신호 송수신 방법 및 장치 |
US11601980B2 (en) | 2019-07-09 | 2023-03-07 | Asustek Computer Inc. | Method and apparatus for carrier selection and early data transmission (EDT) in a wireless communication system |
KR20230038657A (ko) * | 2020-07-14 | 2023-03-21 | 삼성전자주식회사 | 스몰 데이터 송신을 위한 응답 타이머 및 셀 재선택 처리 방법 및 장치 |
KR102500495B1 (ko) * | 2021-08-18 | 2023-02-16 | 주식회사 블랙핀 | 무선 이동 통신 시스템에서 rrc 연결 재개 절차와 데이터 송수신을 수행하기 위해 복수의 타이머와 베어러를 제어하는 방법 및 장치 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090135769A1 (en) * | 2007-10-01 | 2009-05-28 | Qualcomm, Incorporated | Enhanced uplink for inactive state in a wireless communication system |
US20130170453A1 (en) * | 2007-08-07 | 2013-07-04 | Samsung Electronics Co., Ltd. | Method and apparatus for performing random access procedure in a mobile communication system |
WO2014148746A1 (ko) * | 2013-03-21 | 2014-09-25 | 주식회사 케이티 | 소량 데이터 전송을 위한 방법 및 그 장치 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105103606B (zh) * | 2013-05-09 | 2018-12-11 | 英特尔Ip公司 | 缓冲器溢出的减少 |
-
2017
- 2017-09-29 KR KR1020170127431A patent/KR102380612B1/ko active IP Right Grant
- 2017-09-29 WO PCT/KR2017/011010 patent/WO2018062957A1/ko unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130170453A1 (en) * | 2007-08-07 | 2013-07-04 | Samsung Electronics Co., Ltd. | Method and apparatus for performing random access procedure in a mobile communication system |
US20090135769A1 (en) * | 2007-10-01 | 2009-05-28 | Qualcomm, Incorporated | Enhanced uplink for inactive state in a wireless communication system |
WO2014148746A1 (ko) * | 2013-03-21 | 2014-09-25 | 주식회사 케이티 | 소량 데이터 전송을 위한 방법 및 그 장치 |
Non-Patent Citations (2)
Title |
---|
"Design for RACH Procedure for NR", R1-167378, 3GPP TSG RAN WG1 MEETING #86, 13 August 2016 (2016-08-13), XP051133032 * |
"Discussion on Beam Sweeping for Initial Access", R1-167115, 3GPP TSG RAN WG1 #86, 13 August 2016 (2016-08-13), XP051132995 * |
Cited By (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11026286B2 (en) | 2017-07-27 | 2021-06-01 | Lg Electronics Inc. | Method and apparatus for performing EDT |
US11589413B2 (en) | 2017-07-27 | 2023-02-21 | Lg Electronics Inc. | Method and apparatus for performing EDT |
US12069717B2 (en) | 2017-08-10 | 2024-08-20 | Kyocera Corporation | Communication control method, user equipment, and apparatus for performing early data transmission |
US11044756B2 (en) | 2017-10-09 | 2021-06-22 | Qualcomm Incorporated | Supplementary uplink random access channel procedures |
US11330507B2 (en) | 2017-11-17 | 2022-05-10 | Nec Corporation | Early data transmission authorization control |
WO2019098118A1 (en) * | 2017-11-17 | 2019-05-23 | Nec Corporation | Early data transmission authorization control |
US11812476B2 (en) | 2018-01-24 | 2023-11-07 | Telefonaktiebolaget Lm Ericsson (Publ) | Multiple TBS for Msg3 in data transmission during random access |
US11399394B2 (en) | 2018-01-24 | 2022-07-26 | Telefonaktiebolaget Lm Ericsson (Publ) | Multiple TBS for Msg3 in data transmission during random access |
CN111972034A (zh) * | 2018-04-17 | 2020-11-20 | 瑞典爱立信有限公司 | 允许后续数据用于提早数据传输 |
CN111972034B (zh) * | 2018-04-17 | 2024-04-30 | 瑞典爱立信有限公司 | 允许后续数据用于提早数据传输 |
US11432337B2 (en) | 2018-04-17 | 2022-08-30 | Telefonaktiebolaget Lm Ericsson (Publ) | Allowance of subsequent data for early data transmission |
WO2019201563A1 (en) * | 2018-04-17 | 2019-10-24 | Telefonaktiebolaget Lm Ericsson (Publ) | Allowance of subsequent data for early data transmission |
CN112292899A (zh) * | 2018-04-19 | 2021-01-29 | 上海诺基亚贝尔股份有限公司 | 用于在没有rrc连接情况下的数据传输的方法、设备和计算机可读介质 |
US11456824B2 (en) | 2018-04-26 | 2022-09-27 | Beijing Xiaomi Mobile Software Co., Ltd. | HARQ feedback method and apparatus |
CN108513714B (zh) * | 2018-04-26 | 2019-10-25 | 北京小米移动软件有限公司 | Harq反馈方法及装置 |
CN108513714A (zh) * | 2018-04-26 | 2018-09-07 | 北京小米移动软件有限公司 | Harq反馈方法及装置 |
US11909534B2 (en) | 2018-04-26 | 2024-02-20 | Beijing Xiaomi Mobile Software Co., Ltd. | HARQ feedback method and apparatus |
CN111935808B (zh) * | 2018-05-07 | 2022-02-18 | Oppo广东移动通信有限公司 | 一种悬挂rrc连接的方法及装置、计算机存储介质 |
US12082267B2 (en) | 2018-05-09 | 2024-09-03 | Kyocera Corporation | Communication control method, radio terminal, apparatus and base station |
CN112106423A (zh) * | 2018-05-11 | 2020-12-18 | 瑞典爱立信有限公司 | 用于物理下行链路控制信道监测的方法、终端设备和基站 |
WO2019214734A1 (en) * | 2018-05-11 | 2019-11-14 | Telefonaktiebolaget Lm Ericsson (Publ) | Methods, terminal device and base station for physical downlink control channel monitoring |
US20210360730A1 (en) * | 2018-05-11 | 2021-11-18 | Lg Electronics Inc. | Method and apparatus for resuming only signaling radio bearers in wireless communication system |
US11678399B2 (en) * | 2018-05-11 | 2023-06-13 | Lg Electronics Inc. | Method and apparatus for resuming only signaling radio bearers in wireless communication system |
US11510225B2 (en) | 2018-05-11 | 2022-11-22 | Telefonaktiebolaget Lm Ericsson (Publ) | Methods, terminal device and base station for physical downlink control channel monitoring |
WO2019245297A1 (en) * | 2018-06-20 | 2019-12-26 | Lg Electronics Inc. | Method for selecting bwp and device supporting the same |
US11743764B2 (en) | 2018-06-20 | 2023-08-29 | Lg Electronics Inc. | Method for selecting BWP and device supporting the same |
CN112470545A (zh) * | 2018-06-21 | 2021-03-09 | 三星电子株式会社 | 下一代移动通信系统中用于支持rrc非活动模式的双连接的方法和设备 |
WO2020000299A1 (zh) * | 2018-06-28 | 2020-01-02 | Oppo广东移动通信有限公司 | 调度资源的方法、终端设备和网络设备 |
CN110719633B (zh) * | 2018-07-13 | 2022-08-09 | 大唐移动通信设备有限公司 | 一种上行资源分配方法、装置、基站及终端 |
CN110719633A (zh) * | 2018-07-13 | 2020-01-21 | 电信科学技术研究院有限公司 | 一种上行资源分配方法、装置、基站及终端 |
US12004204B2 (en) | 2018-08-09 | 2024-06-04 | Lg Electronics Inc. | Method for transmitting and receiving uplink data by using PUR in wireless communication system, and device for same |
CN112640555A (zh) * | 2018-08-09 | 2021-04-09 | 苹果公司 | 新无线电(nr)相关通信中测量间隙配置的技术 |
WO2020032634A3 (ko) * | 2018-08-09 | 2020-03-26 | 엘지전자 주식회사 | 무선 통신 시스템에서 pur을 이용하여 상향링크 데이터를 송수신하기 위한 방법 및 이를 위한 장치 |
CN112655268A (zh) * | 2018-09-10 | 2021-04-13 | 联想(新加坡)私人有限公司 | 消息3缓冲区中的媒体访问控制协议数据单元 |
CN112655268B (zh) * | 2018-09-10 | 2024-04-05 | 联想(新加坡)私人有限公司 | 消息3缓冲区中的媒体访问控制协议数据单元 |
US11190996B2 (en) | 2018-09-18 | 2021-11-30 | Samsung Electronics Co., Ltd. | Method and apparatus for reporting selected PLMN of RRC-inactive mode UE in next-generation communication system |
WO2020060178A1 (en) * | 2018-09-18 | 2020-03-26 | Samsung Electronics Co., Ltd. | Method and apparatus for reporting selected plmn of rrc-inactive mode ue in next-generation communication system |
US12022507B2 (en) | 2018-09-26 | 2024-06-25 | Telefonaktiebolaget Lm Ericsson (Publ) | Wireless channel switching |
CN112740751A (zh) * | 2018-09-26 | 2021-04-30 | 瑞典爱立信有限公司 | 无线信道切换 |
EP3911100A4 (en) * | 2019-01-10 | 2022-01-19 | Sony Group Corporation | COMMUNICATION DEVICE, COMMUNICATION METHOD AND COMMUNICATION PROGRAM |
TWI811508B (zh) * | 2019-01-10 | 2023-08-11 | 日商索尼股份有限公司 | 通訊裝置、通訊方法、及通訊程式 |
US11979922B2 (en) | 2019-01-10 | 2024-05-07 | Sony Group Corporation | Communication device, communication method, and communication program |
CN113261377A (zh) * | 2019-01-10 | 2021-08-13 | 索尼集团公司 | 通信设备,通信方法和通信程序 |
CN112422375B (zh) * | 2019-08-22 | 2023-05-30 | 中兴通讯股份有限公司 | 通信方法、装置、系统、固定台式分布单元及存储介质 |
CN112422375A (zh) * | 2019-08-22 | 2021-02-26 | 中兴通讯股份有限公司 | 通信方法、装置、系统、固定台式分布单元及存储介质 |
CN113141668A (zh) * | 2020-01-17 | 2021-07-20 | 华硕电脑股份有限公司 | 基于随机接入信道的小数据传送过程的方法和设备 |
US11627632B2 (en) | 2020-05-14 | 2023-04-11 | Ofinno, Llc | Small data transmission |
CN115669149A (zh) * | 2020-07-10 | 2023-01-31 | Oppo广东移动通信有限公司 | 上行数据传输方法、装置、终端及存储介质 |
WO2022022306A1 (zh) * | 2020-07-31 | 2022-02-03 | 华为技术有限公司 | 一种通信方法及装置 |
WO2022200033A1 (en) * | 2021-03-26 | 2022-09-29 | Nokia Technologies Oy | Data transmission in inactive state connection |
Also Published As
Publication number | Publication date |
---|---|
KR102380612B1 (ko) | 2022-03-30 |
KR20180035719A (ko) | 2018-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018062957A1 (ko) | Rrc 비활성화 또는 활성화 상태에서 데이터 전송 방법 및 장치 | |
WO2020222532A1 (ko) | 사이드링크 통신에서 채널 상태 측정 및 보고 방법 및 장치 | |
WO2021010786A1 (en) | Method and device for reporting information, method and device for receiving message | |
WO2021002714A1 (en) | Method of random access procedure for supporting large random access response (rar) window size | |
WO2016114641A1 (ko) | 무선 통신 시스템에서 제어 정보 전송 방법 및 장치 | |
WO2018147677A1 (en) | Method and apparatus for inactive mode operation in wireless communication system | |
WO2019139382A1 (en) | Efficient system information request method and apparatus of terminal in next generation mobile communication system | |
WO2019139384A1 (en) | Method and apparatus for performing contention-based and non- contention-based beam failure recovery in a wireless communication system | |
WO2020032580A1 (ko) | 무선 통신 시스템에서 노드의 동작 방법 및 상기 방법을 이용하는 장치 | |
WO2018143703A1 (en) | Method and apparatus for transmitting data in a mobile communication system | |
WO2018131956A1 (en) | Method and apparatus for communication in wireless mobile communication system | |
WO2017150956A1 (ko) | 무선 통신 시스템에서 단말에 의해 수행되는 v2x 전송 자원 선택 방법 및 상기 방법을 이용하는 단말 | |
WO2017176099A1 (ko) | 무선 통신 시스템에서 특정 서브프레임을 제외한 나머지 서브프레임에 대해 v2x 자원 풀을 할당하는 방법 및 상기 방법을 이용하는 단말 | |
WO2017135803A1 (en) | Method and apparatus for ue signal transmission in 5g cellular communications | |
WO2017135726A1 (ko) | 이동 통신 시스템에서 통신 방법 및 장치 | |
WO2020055102A1 (en) | System and method of transmitting and receiving paging and system information | |
WO2019017583A1 (ko) | 차세대 이동 통신 시스템에서 효율적으로 통신을 위한 방법 및 장치 | |
WO2020096433A1 (ko) | 무선 통신 시스템에서 단말 간 직접 통신용 무선 액세스 기술을 선택하는 장치 및 방법 | |
WO2021141329A1 (en) | Method and apparatus for performing communication in wireless communication system | |
EP3777312A1 (en) | System and method of transmitting and receiving paging and system information | |
WO2020009414A1 (ko) | 이동 통신 시스템에서 통신 방법 및 장치 | |
EP3545722A1 (en) | Method and apparatus for communication in wireless mobile communication system | |
WO2022015028A1 (en) | Method and apparatus for handling small data transmission in rrc_inactive state in a wireless communication system | |
WO2020091452A1 (en) | Method and apparatus for performing communication in mobile communication system | |
WO2018174579A1 (ko) | 이동통신 시스템에서 페이징을 수행하는 방법 및 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17856843 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017856843 Country of ref document: EP Effective date: 20190329 |