WO2017150756A1 - 쿠에트 테일러 반응기를 이용한 니켈-코발트-망간 복합 전구체의 이종원소 코팅 방법 - Google Patents

쿠에트 테일러 반응기를 이용한 니켈-코발트-망간 복합 전구체의 이종원소 코팅 방법 Download PDF

Info

Publication number
WO2017150756A1
WO2017150756A1 PCT/KR2016/002386 KR2016002386W WO2017150756A1 WO 2017150756 A1 WO2017150756 A1 WO 2017150756A1 KR 2016002386 W KR2016002386 W KR 2016002386W WO 2017150756 A1 WO2017150756 A1 WO 2017150756A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
cobalt
manganese composite
composite precursor
coating
Prior art date
Application number
PCT/KR2016/002386
Other languages
English (en)
French (fr)
Inventor
권순모
권오상
강동구
Original Assignee
주식회사 이엔드디
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 이엔드디 filed Critical 주식회사 이엔드디
Publication of WO2017150756A1 publication Critical patent/WO2017150756A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G1/00Methods of preparing compounds of metals not covered by subclasses C01B, C01C, C01D, or C01F, in general
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for coating hetero elements on a surface of a nickel-cobalt-manganese composite precursor used as a cathode active material by mixing with lithium in a lithium secondary battery. More specifically, the present invention relates to a method for coating heteroatoms on the surface of a nickel-cobalt-manganese composite precursor in a "continuous" manner using a "Kuet Taylor reactor.”
  • a lithium secondary battery is a battery in which carbon such as graphite is used as a negative electrode active material, a metal oxide containing lithium is used as a positive electrode active material, and a nonaqueous solvent is used as an electrolyte.
  • Lithium is a metal that has a high tendency to ionize and is a material that is attracting attention in a battery having high energy density because it can express high voltage.
  • a lithium transition metal oxide containing lithium is mainly used as a positive electrode active material for a lithium secondary battery, and a layered lithium transition metal composite oxide such as cobalt / nickel / tricomponent (cobalt, nickel, and manganese coexist) This is used more than 90%.
  • a layered lithium transition metal composite oxide such as cobalt / nickel / tricomponent (cobalt, nickel, and manganese coexist)
  • Li 2 CO 3 and Ni x Co y Mn 1- xy (OH) 2 precursors are mixed and plasticized to be used as a positive electrode material.
  • Ni x Co y Mn 1 -xy (OH) 2 precursor is prepared by the coprecipitation method, a nickel salt, manganese and after the cobalt salt dissolved in distilled water, an aqueous ammonia solution (chelating agent), NaOH solution (a basic aqueous solution )
  • Ni x Co y Mn 1 -xy (OH) 2 is synthesized in the solid phase and then precipitated.
  • Korean Patent No. 10-1493932 discloses a technology related to a cathode active material for a lithium secondary battery coated with silicon oxide and a method of manufacturing the same.
  • An object of the present invention is to provide a method for coating hetero elements on a nickel-cobalt-manganese composite precursor through a continuous process.
  • the present invention continuously injects a nickel-cobalt-manganese composite precursor into a first inlet in a Cue Taylor reactor, and continuously injects heteroatoms through a second inlet, thereby providing a Cue Taylor reactor.
  • a hetero-element coating method of a nickel-cobalt-manganese composite precursor using a Kuet Taylor reactor wherein the hetero-element is coated on the surface of the nickel-cobalt-manganese composite precursor.
  • the hetero element may be at least one of Ti, Zr, Si, Ce, La, Y, W, Sn, Gd, and Nb.
  • the residence time of the nickel-cobalt-manganese composite precursor or heterogeneous element in the Kuet Taylor reactor, the injection concentration of the hetero element, the injection concentration of the nickel-cobalt-manganese composite precursor, the temperature in the Kue Taylor taylor reactor, the bridge in the Kue Taylor reactor It is desirable to control the coating thickness of the hetero element by adjusting at least one of reaction force, pH in the Kue Taylor reactor.
  • the second inlet is provided with a plurality, it is preferable that the heterogeneous element is supplied to the plurality of second inlet, so that the heterogeneous element is maintained in a uniform concentration in the Kue Taylor reactor.
  • the Kuet Taylor reactor by using the Kuet Taylor reactor, it is possible to coat elements of heterogeneous elements such as Ti, Zr, etc. on the surface of the nickel-cobalt-manganese composite precursor uniformly in a "continuous manner" unlike the prior art.
  • the hetero-element due to the characteristics of the Kuwait Taylor reactor, the hetero-element can be coated with a uniform thickness over the entire surface of the nickel-cobalt-manganese composite precursor, and the heterogeneous coating can be easily changed by changing the process conditions in the Kuwait Taylor reactor. You can also adjust the thickness.
  • the hetero-element is coated nickel when the hetero-element is coated through the Kuet Taylor reactor, the coating method of the present invention at the end
  • the cobalt-manganese composite precursor can be produced continuously, so that a nickel-cobalt-manganese composite precursor coated with a heterogeneous element at a large capacity can be prepared.
  • FIG. 2 is a view for explaining a method for coating heterogeneous elements using the Kuet Taylor reactor of the present invention.
  • Figure 3 is a SEM measurement of the nickel-cobalt-manganese composite precursor prepared in Experimental Example 1.
  • FIG. 4 is a particle size distribution diagram of the nickel-cobalt-manganese composite precursor prepared in Experimental Example 1.
  • FIG. 4 is a particle size distribution diagram of the nickel-cobalt-manganese composite precursor prepared in Experimental Example 1.
  • FIG. 5 is a graph plotting the particle size distribution of the Zr-coated nickel-cobalt-manganese composite precursor prepared in Experimental Example 2 and the particle size distribution of the non-Zr coated nickel-cobalt-manganese composite precursor prepared in Experimental Example 1 to be.
  • FIG. 6 is an EDS mapping result image of the Zr-coated nickel-cobalt-manganese composite precursor prepared in Experimental Example 2.
  • FIG. 6 is an EDS mapping result image of the Zr-coated nickel-cobalt-manganese composite precursor prepared in Experimental Example 2.
  • FIG. 7 is a line scanning measurement result of the Zr-coated nickel-cobalt-manganese composite precursor prepared in Experimental Example 2.
  • the nickel-cobalt-manganese composite precursor means a Ni x Co y Mn 1 -xy (OH) 2 precursor, wherein 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1.
  • the Kuet Taylor reactor is characterized by coating a hetero element on the surface of the nickel-cobalt-manganese composite precursor.
  • Patent Registration No. 10-1275845 discloses a technique related to a cathode active material precursor manufacturing apparatus for a lithium secondary battery using a Kuet Taylor reactor (see FIG. 1). In the present invention, a detailed description of the Kuet Taylor reactor will be omitted.
  • a heterogeneous element is coated on the surface of the nickel-cobalt-manganese composite precursor using a batch reactor, but in the present invention, the heterogeneous coating is uniformly coated on the spherical surface of the nickel-cobalt-manganese composite precursor and the heterogeneous coating is performed.
  • the hetero element is coated on the surface of the nickel-cobalt-manganese composite precursor using a Kuet Taylor reactor to reduce the time and enable continuous coating.
  • the hetero element means an element other than nickel, cobalt, and manganese, and various elements such as Ti, Zr, Si, Ce, La, Y, W, Sn, Gd, and Nb may be used.
  • the method of the present invention is not limited to the type of hetero elements can be applied.
  • the Kuet Taylor reactor 10 has at least two inlets, that is, a first inlet 1 and a second inlet 2, and nickel-cobalt through the first inlet 1.
  • Manganese composite precursor is continuously injected, and hetero elements, for example, Ti, Zr, etc., are injected through the second inlet 2.
  • the hetero element is preferably injected in a dissolved state or dispersed state.
  • a plurality of second inlets 2 are installed along the cylindrical case 4 of the Kue Taylor reactor 10, and each second inlet ( It is preferable to supply hetero elements through 2).
  • the coating thickness of the hetero elements can be controlled through various factors.
  • the residence time of the nickel-cobalt-manganese composite precursor or hetero element, the injection concentration of the hetero element, the injection concentration of the nickel-cobalt-manganese composite precursor, the temperature in the Kue Taylor reactor, the Kue Taylor reactor in the Kue Taylor reactor It is possible to control the coating thickness of the hetero element through various factors such as the stirring force in the inside, the pH in the Cue Taylor reactor. For example, if the concentration of heterologous elements is high and the residence time is long, the thickness of the heterologous elements to be coated will naturally become thick.
  • coated nickel-cobalt-manganese composite precursor is discharged to the outside through the outlet 3 located at the rear end of the Kuet Taylor reactor 10.
  • Coated nickel-cobalt-manganese composite precursors can be prepared.
  • an NCM811 precursor (Ni 0.8 Co 0.1 Mn 0.1 (OH) 2 ) was prepared. 3L of distilled water was charged into a 5L double tank reactor and the temperature was raised to 50-60 ° C using a temperature maintaining apparatus. Before the reaction, 200 ml of NH 4 OH solution was added and stirred at a speed of 900 to 1000 rpm using an impeller. Nickel sulfate, cobalt sulfate, and manganese sulfate were mixed in a molar ratio of 0.8: 0.1: 0.1 to prepare a metal solution of 30M concentration, and 20L of a 30-40% sodium hydroxide aqueous solution was prepared.
  • the aqueous metal solution was pumped continuously to the reactor with a metering pump at 0.48 L / hr, which was mixed with 2 L / m of N 2 gas and introduced into the reactor.
  • the aqueous sodium hydroxide solution was used to adjust the pH atmosphere during the reaction, the pH was pumped into the reactor in conjunction with the pump through the control equipment to maintain a pH of 9.8 ⁇ 10.4.
  • NH 4 OH solution was continuously added to the reactor at 30mL / hr after the reaction 3 hours.
  • FIG. 3 is a SEM measurement photograph of the nickel-cobalt-manganese composite precursor prepared according to the above example (larger magnification from top to bottom) to confirm that a relatively high spherical nickel-cobalt-manganese composite precursor was prepared. there was.
  • the 1L Kuet-Taylor reactor was filled with deionized water and heated to 50-60 ° C. using a temperature maintaining device.
  • 1.5 kg of 10% ZrO 2 (aqueous coating solution) was prepared, and maintained at room temperature.
  • the coprecipitation overflowed in the continuous coprecipitation reaction used in Experimental Example 1 was introduced into the Kuet Taylor reactor as it overflowed, and the aqueous solution of ZrO 2 (aqueous coating solution) was prepared as a Zr raw material, 5-7 mL / min. Was continuously added to the metering pump.
  • the ZrO 2 coating solution was added and mixed with N 2 gas 2L / min.
  • the stirring rpm of the Kuet Taylor reactor was fixed at 800-900, and the reactants passing through the Kuet Taylor reactor continued to accumulate. The precursor thus accumulated was dried at 100 ° C. for 10 hours.
  • Figure 5 is, in Experimental Example 2, a ZrO 2 coating produced nickel-cobalt-manganese that is not a ZrO 2 coating produced from the particle size measurements as in Experimental Example 1 of the composite precursor of nickel-cobalt-particles of manganese composite precursor size Plot together graphs.
  • ZrO 2 it can be seen from FIG. 5 that the median particle size was increased from 11.2 to 12.2 ⁇ m. That is, it could be confirmed that the coating was well performed by the present invention.
  • FIG. 6 is an EDS mapping result of the Zr-coated nickel-cobalt-manganese composite precursor prepared in Experimental Example 2
  • FIG. 7 is a Zr distribution diagram through line scanning of the precursor. 6 and 7, Zr is uniformly distributed on the precursor surface, and it can be confirmed that Zr is coated toward the precursor surface, and it was confirmed that Zr coating was well performed by the method of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

본 발명은 니켈이차전지에서 양극 활물질로 사용되는 니켈-코발트-망간 복합 전구체의 표면에 이종원소를 코팅하는 방법으로서, 쿠에트 테일러 반응기를 이용하여 연속식으로 이종원소를 코팅하는 방법에 관한 기술이다.

Description

쿠에트 테일러 반응기를 이용한 니켈-코발트-망간 복합 전구체의 이종원소 코팅 방법
본 발명은 리튬이차전지에서 리튬과 함께 혼합하여 양극 활물질로 사용되는 니켈-코발트-망간 복합 전구체의 표면에 이종원소를 코팅하는 방법에 관한 것이다. 더욱 구체적으로는 본 발명은 "쿠에트 테일러 반응기"를 이용한 "연속식"으로 니켈-코발트-망간 복합 전구체의 표면에 이종원소를 코팅하는 방법에 관한 것이다.
휴대용의 소형 전기ㆍ전자기기의 보급 확산에 따라 니켈수소전지나 리튬이차전지와 같은 신형 이차전지 개발이 활발하게 진행되고 있다. 이 중 리튬이차전지는 흑연 등의 카본을 음극 활물질로 사용하고, 리튬이 포함되어 있는 금속 산화물을 양극 활물질로 사용하며, 비수 용매를 전해액으로 사용하는 전지이다. 리튬은 매우 이온화 경향이 큰 금속으로 고전압 발현이 가능하여 에너지 밀도가 높은 전지에 각광을 받고 있는 물질이다.
리튬이차전지에 사용되는 양극 활물질로는 리튬을 함유하고 있는 리튬 전이금속산화물이 주로 사용되고 있으며, 코발트계/니켈계/삼성분계(코발트, 니켈 및 망간이 공존) 등의 층상계 리튬 전이금속 복합산화물이 90% 이상 사용되고 있다. 예를 들어, Li2CO3와 NixCoyMn1 -x-y(OH)2계 전구체를 혼합 소성 가공하여 양극 소재로 사용하고 있다. 통상 NixCoyMn1 -x-y(OH)2 전구체는 공침법을 이용하여 제조되는데, 니켈염, 망간염 및 코발트염들을 증류수에 용해한 후, 암모니아 수용액(킬레이팅제), NaOH 수용액(염기성 수용액)과 함께 반응기에 투입하면 NixCoyMn1 -x-y(OH)2이 고상으로 합성된 후 침전된다.
리튬이차전지의 양극 활물질의 출력특성을 높이기 위하여, 양극 물질 내의 니켈의 함량을 높일 필요가 있으나, 니켈의 함량을 높이는 경우에는 리튬으로 인하여 안정성이 떨어지는 단점이 공존한다. 특히, 이러한 니켈계 리튬 복합산화물 중에서 니켈의 함량이 50%를 초과하는 니켈 고함량(Ni-rich) 조성에서는 충방전에 따른 전지특성의 열화가 문제가 된다. 이는 양극과 전해액 반응으로 인한 양극 활물질로부터 니켈의 용출에 의한 것으로 알려져 있으며. 특히 고온 수명 특성의 저하를 가져오는 것으로 알려져 있다. 또한, 니켈 고함량(Ni-rich) 조성에서는 구조적 안정성 및 화학적 안정성이 떨어져 양극의 열안정성, 특히 고온에서 열 안정성의 저하가 심각한 문제점으로 지적되고 있다.
이러한 문제점으로 인해 최근에는 니켈-코발트-망간 양극 활물질 전구체에 이종원소로 일부를 치환하거나 양극 활물질의 표면에 이종원소를 코팅함으로써 열안정성, 용량, 사이클 특성들을 개선하려는 많은 시도들이 이루어지고 있으나, 아직 그 개선의 정도가 미흡하다. 예를 들어, 특허등록 제10-1493932호는 실리콘 산화물이 코팅된 리튬 이차전지용 양극 활물질 및 그의 제조 방법에 관한 기술을 공개하고 있다.
본 발명은 연속공정을 통하여 니켈-코발트-망간 복합 전구체에 이종원소를 코팅하는 방법을 제공하는 것을 목적으로 한다.
특히, 본 발명은 쿠에트 테일러 반응기를 이용하여 니켈-코발트-망간 복합 전구체를 연속식으로 코팅하는 방법을 제공하는 것을 목적으로 한다.
상기 목적을 실현하기 위하여 본 발명은 쿠에트 테일러 반응기 내의 제1주입구에 니켈-코발트-망간 복합 전구체를 연속식으로 주입하고, 제2주입구를 통해 이종원소를 연속식으로 주입하여 쿠에트 테일러 반응기 내에서 니켈-코발트-망간 복합 전구체의 표면에 이종원소를 코팅하는 것을 특징으로 하는 쿠에트 테일러 반응기를 이용한 니켈-코발트-망간 복합 전구체의 이종원소 코팅 방법을 제공한다.
특히, 상기 이종원소는 Ti, Zr, Si, Ce, La, Y, W, Sn, Gd, Nb 중 하나 이상이 가능하다.
특히, 상기 쿠에트 테일러 반응기 내의 니켈-코발트-망간 복합 전구체 또는 이종원소의 체류 시간, 이종원소의 주입 농도, 니켈-코발트-망간 복합 전구체의 주입 농도, 쿠에트 테일러 반응기 내 온도, 쿠에트 테일러 반응기 내의 교반력, 쿠에트 테일러 반응기 내의 pH 중 어느 하나 이상을 조절함으로써 이종원소의 코팅 두께를 조절하는 것이 바람직하다.
특히, 상기 제2주입구는 다수 개 구비되며, 상기 다수 개의 제2주입구로 이종원소가 공급되게 함으로써, 이종원소가 쿠에트 테일러 반응기 내에서 균일한 농도를 유지하도록 하는 것이 바람직하다.
본 발명은 쿠에트 테일러 반응기를 이용함으로써, 종래 기술과 달리 "연속식"으로 균일하게 니켈-코발트-망간 복합 전구체의 표면에 이종원소, 예를 들어, Ti, Zr 등의 원소를 코팅할 수 있다. 특히, 쿠에트 테일러 반응기의 특징상 니켈-코발트-망간 복합 전구체의 표면 전체에 균일한 두께로 이종원소가 코팅되게 할 수 있을 뿐만 아니라, 쿠에트 테일러 반응기 내의 공정 조건을 바꿈으로써 용이하게 이종원소의 코팅 두께를 조절할 수도 있다.
또한, 배치 반응기를 통한 연속식 공침 반응을 통해 니켈-코발트-망간 복합 전구체를 제조한 후, 후단에 본 발명의 코팅 방법인 쿠에트 테일러 반응기를 통해 이종원소를 코팅하는 경우 이종원소가 코팅된 니켈-코발트-망간 복합 전구체를 연속식으로 제조할 수 있어, 대용량으로 이종원소가 코팅된 니켈-코발트-망간 복합 전구체를 제조할 수 있다.
도 1은 종래기술로서 대한민국특허등록 제10-1275845호의 대표도이다.
도 2는 본 발명의 쿠에트 테일러 반응기를 이용한 이종원소의 코팅 방법을 설명하는 도면이다.
도 3은 실험예 1에서 제조한 니켈-코발트-망간 복합 전구체의 SEM 측정사진이다.
도 4는 실험예 1에서 제조한 니켈-코발트-망간 복합 전구체의 입도분포도이다.
도 5는 실험예 2에서 제조한 Zr이 코팅된 니켈-코발트-망간 복합 전구체의 입도분포도와 실험예 1에서 제조한 Zr이 코팅되지 않은 니켈-코발트-망간 복합 전구체의 입도분포도를 동시에 플로팅한 그래프이다.
도 6은 실험예 2에서 제조한 Zr이 코팅된 니켈-코발트-망간 복합 전구체의 EDS 매핑 결과 이미지이다.
도 7은 실험예 2에서 제조한 Zr이 코팅된 니켈-코발트-망간 복합 전구체의 라인 스캐닝(line scanning) 측정 결과이다.
이하 본 발명에 대하여 설명하기로 하되, 이하 설명에서 니켈-코발트-망간 복합 전구체는 NixCoyMn1 -x-y(OH)2 전구체를 의미하며, 여기서, 0<x<1, 0<y<1, 0<x+y<1이다.
본 발명에서는 쿠에트 테일러 반응기를 니켈-코발트-망간 복합 전구체의 표면에 이종원소를 코팅하는 것을 특징으로 한다.
쿠에트 테일러 반응기는 주지의 기술로서, 다양한 관련 기술이 공개되어 있다. 예를 들어, 특허등록 제10-1275845호에서는 쿠에트 테일러 반응기를 이용한 리튬 이차전지용 양극 활물질 전구체 제조 장치에 관한 기술을 공개하고 있다(도 1 참조). 본 발명에서는 쿠에트 테일러 반응기에 대한 자세한 설명은 생략하기로 한다.
종래에는 배치식 반응기를 이용하여 니켈-코발트-망간 복합 전구체의 표면에 이종원소를 코팅하였으나, 본 발명에서는 이종원소의 코팅이 니켈-코발트-망간 복합 전구체의 구형 표면에 균일화게 코팅되며, 이종원소의 코팅 시간을 줄이고, 연속식으로 코팅이 가능하도록 쿠에트 테일러 반응기를 이용하여 니켈-코발트-망간 복합 전구체의 표면에 이종원소를 코팅한다. 본 발명에서 이종원소는 니켈, 코발트 및 망간 이외의 원소를 의미하며, 예를 들어, Ti, Zr, Si, Ce, La, Y, W, Sn, Gd, Nb 등 다양한 원소가 가능하다. 후술하는 실험예에서는 Zr을 예로 하여 실험하였으나, 본 발명의 방법은 이종원소의 종류에 한정되지 않고 적용 가능하다.
도 2는 본 발명의 쿠에트 테일러 반응기를 이용한 이종원소의 코팅 방법을 설명하는 도면이다. 도 2을 참고하면, 쿠에트 테일러 반응기(10)는 최소한 2개의 주입구, 즉, 제1주입구(1)와 제2주입구(2)를 구비하며, 상기 제1주입구(1)를 통해 니켈-코발트-망간 복합 전구체가 연속식으로 주입되고, 상기 제2주입구(2)를 통해 이종원소, 예를 들어, Ti, Zr 등이 주입된다. 상기 이종원소는 액상에 용해된 상태 또는 액상에 분산된 상태로 주입되는 것이 바람직하다. 이때 전단에서 후단으로 갈수록 Zr의 농도가 감소하므로, 도 1과 같이 제2주입구(2)는 쿠에트 테일러 반응기(10)의 원통형의 케이스(4)를 따라 다수 개 설치되며, 각 제2주입구(2)를 통해 이종원소를 공급하는 것이 바람직하다.
한편, 이종원소의 코팅 두께는 다양한 인자를 통해 제어 가능하다. 예를 들어, 상기 쿠에트 테일러 반응기 내의 니켈-코발트-망간 복합 전구체 또는 이종원소의 체류 시간, 이종원소의 주입 농도, 니켈-코발트-망간 복합 전구체의 주입 농도, 쿠에트 테일러 반응기 내 온도, 쿠에트 테일러 반응기 내의 교반력, 쿠에트 테일러 반응기 내의 pH 등 다양한 인자를 통해 이종원소의 코팅 두께를 제어할 수 있다. 예를 들어, 이종원소의 농도가 높고, 체류시간이 길면 당연히 코팅되는 이종원소의 두께가 두꺼워질 것이다.
최종적으로 코팅이 완료된 니켈-코발트-망간 복합 전구체는 쿠에트 테일러 반응기(10)의 후단에 위치하는 배출구(3)를 통해 외부로 배출되며, 추가적으로 세척 및 건조 과정을 더 추가하여 최종적으로 이종원소가 코팅된 니켈-코발트-망간 복합 전구체를 제조할 수 있다.
이하에서는 실험예를 통하여 본 발명에 대하여 보다 자세히 설명하기로 한다.
실험예 1 (10um 대 NCM811 전구체 연속식 제조)
먼저, NCM811 전구체(Ni0.8Co0.1Mn0.1(OH)2)를 제조하였다. 5L 이중 수조 반응기에 증류수 3L를 채우고 온도 유지 장치를 이용하여 50~60℃로 온도를 올려주었다. 반응 전, NH4OH용액 200ml를 넣고 임펠러를 이용하여 900~1000rpm의 속도로 교반하였다. 황산니켈, 황산코발트, 황산망간을 0.8:0.1:0.1의 몰비로 혼합하여 30M 농도의 금속 수용액을 준비하였고, 30~40% 수산화나트륨 수용액을 20L를 준비하였다. 상기 금속 수용액은 0.48L/hr로 반응기에 정량 펌프로 연속적으로 펌핑하였고, 이는 N2 가스 2L/m과 혼합되어 반응기 안으로 투입되었다. 상기 수산화나트륨 수용액은 반응 시 pH분위기를 조절하기 위해 사용되었으며, pH는 9.8~10.4가 유지되도록 컨트롤 장비를 통해 펌프와 연동되어 반응기에 펌핑되었다. NH4OH용액은 반응 3시간 이후 30mL/hr로 반응기에 연속적으로 넣어 주었다.
안정화를 위해 15시간 동안 5L 반응 수조에 연속적으로 만들어진 전구체는 오버플로우(overflow)되어 흘러나가도록 하였고, 15시간 안정화 시간 이후 오버플로우되는 공침물은 쿠에트-테일러 반응기에 투입되도록 설치하였다.
도 3은 상기 실시예에 의해 제조된 니켈-코발트-망간 복합 전구체의 SEM 측정사진(상부에서 하부로 갈수록 배율을 크게 함)으로 비교적 구형도가 높은 니켈-코발트-망간 복합 전구체가 제조되었음을 확인할 수 있었다.
한편, 평균 입자 크기를 측정하기 위하여 입도분석을 한 결과는 도 4와 같다. 메디안 사이즈(median size)가 약 11.2 ㎛였다.
실험예 2: 이종원소의 전구체 연속식 코팅(쿠에트-테일러 반응기)
전술한 도 2와 같은 공정을 통해, 실시예 1에서 제조된 니켈-코발트-망간 복합 전구체에 Zr을 코팅하였다.
먼저, 1L 쿠에트-테일러 반응기에 탈이온수를 가득 채우고 온도 유지 장치를 이용하여 50~60℃로 온도를 올려주었다. 또한, 1.5 kg의 10% ZrO2(수계코팅액)을 준비하였고, 상온을 유지하여 주었다.
실험예 1에 사용된 연속식 공침 반응에서 오버플로우되는 공침물을 쿠에트 테일러 반응기에 오버플로우되는 속도 그대로 투입시켜 주었고, 먼저 준비한 Zr 우원료로서 ZrO2(수계코팅액) 수용액을 5~7mL/min로 정량펌프로 연속적으로 투입하여 주었다. 이때 ZrO2 코팅액은 N2 가스 2L/min 과 혼합하여 투입하였다. 쿠에트 테일러 반응기의 교반 rpm은 800~900으로 고정하였고, 쿠에트 테일러 반응기를 거쳐 나오는 반응물을 계속해서 축적하였다. 이렇게 연속식으로 축적된 전구체는 100℃에서 10시간 동안 건조하였다.
도 5는, 실험예 2에서 제조된 ZrO2이 코팅된 니켈-코발트-망간 복합 전구체의 입자 크기 측정 결과와 실험예 1에서 제조된 ZrO2이 코팅되지 않은 니켈-코발트-망간 복합 전구체의 입자 크기를 함께 플로팅한 그래프이다. ZrO2가 코팅됨으로써, 메디안 입자 크기는 11.2에서 12.2 ㎛로 증가되었음을 도 5를 통해 확인할 수 있었다. 즉, 본 발명에 의해 코팅이 잘 되고 있음을 확인할 수 있었다.
도 6은 실험예 2에서 제조된 Zr이 코팅된 니켈-코발트-망간 복합 전구체의 EDS 매핑 결과이며, 도 7은 상기 전구체의 라인 스캐닝을 통한 Zr 분포도이다. 도 6 및 7을 참고하면, 전구체 표면에 Zr이 균일하게 분포되어 있으며, 전구체 표면 쪽으로 Zr이 코팅되어 있는 것을 확인할 수 있어, 본 발명의 방법으로 Zr 코팅이 잘 이루어졌음을 확인할 수 있었다.

Claims (4)

  1. 쿠에트 테일러 반응기 내의 제1주입구에 니켈-코발트-망간 복합 전구체를 연속식으로 주입하고, 쿠에트 테일러 반응기의 내의 제2주입구를 통해 이종원소를 연속식으로 주입하여 쿠에트 테일러 반응기 내에서 니켈-코발트-망간 복합 전구체의 표면을 이종원소로 코팅하는 것을 특징으로 하는 쿠에트 테일러 반응기를 이용한 니켈―코발트―망간 복합 전구체의 이종원소 코팅 방법.
  2. 제1항에서, 상기 이종원소는 Ti, Zr, Si, Ce, La, Y, W, Sn, Gd 및 Nb 중 하나 이상인 것을 특징으로 하는 쿠에트 테일러 반응기를 이용한 니켈―코발트―망간 복합 전구체의 이종원소 코팅 방법.
  3. 제1항에서, 상기 쿠에트 테일러 반응기 내의 니켈-코발트-망간 복합 전구체 또는 이종원소의 체류 시간, 이종원소의 주입 농도, 니켈-코발트-망간 복합 전구체의 주입 농도, 쿠에트 테일러 반응기 내 온도, 쿠에트 테일러 반응기 내의 교반력 및 쿠에트 테일러 반응기 내의 pH 중 어느 하나 이상을 조절함으로써 이종원소의 코팅 두께를 조절하는 것을 특징으로 하는 쿠에트 테일러 반응기를 이용한 니켈―코발트―망간 복합 전구체의 이종원소 코팅 방법.
  4. 제1항에서, 상기 제2주입구는 다수 개 구비되며, 상기 다수 개의 제2주입구로 이종원소를 공급하는 것을 특징으로 하는 쿠에트 테일러 반응기를 이용한 니켈―코발트―망간 복합 전구체의 이종원소 코팅 방법.
PCT/KR2016/002386 2016-03-03 2016-03-10 쿠에트 테일러 반응기를 이용한 니켈-코발트-망간 복합 전구체의 이종원소 코팅 방법 WO2017150756A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0025585 2016-03-03
KR20160025585 2016-03-03

Publications (1)

Publication Number Publication Date
WO2017150756A1 true WO2017150756A1 (ko) 2017-09-08

Family

ID=59743052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/002386 WO2017150756A1 (ko) 2016-03-03 2016-03-10 쿠에트 테일러 반응기를 이용한 니켈-코발트-망간 복합 전구체의 이종원소 코팅 방법

Country Status (1)

Country Link
WO (1) WO2017150756A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101275845B1 (ko) * 2011-09-21 2013-06-17 에스케이씨 주식회사 쿠에트 테일러 와류를 이용한 리튬 이차전지용 양극 활물질 전구체 제조 장치
KR101373094B1 (ko) * 2011-04-08 2014-03-12 로베르트 보쉬 게엠베하 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
KR20150095428A (ko) * 2014-02-13 2015-08-21 주식회사 이엔드디 쿠에트 테일러 반응기를 이용한 니켈―코발트―망간 복합 전구체의 연속식 제조 방법
KR20150139100A (ko) * 2014-06-02 2015-12-11 재단법인 포항산업과학연구원 반응기, 이를 이용한 전구체 제조 장치와 제조방법 및 이로부터 제조되는 전구체

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101373094B1 (ko) * 2011-04-08 2014-03-12 로베르트 보쉬 게엠베하 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
KR101275845B1 (ko) * 2011-09-21 2013-06-17 에스케이씨 주식회사 쿠에트 테일러 와류를 이용한 리튬 이차전지용 양극 활물질 전구체 제조 장치
KR20150095428A (ko) * 2014-02-13 2015-08-21 주식회사 이엔드디 쿠에트 테일러 반응기를 이용한 니켈―코발트―망간 복합 전구체의 연속식 제조 방법
KR20150139100A (ko) * 2014-06-02 2015-12-11 재단법인 포항산업과학연구원 반응기, 이를 이용한 전구체 제조 장치와 제조방법 및 이로부터 제조되는 전구체

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KIM, JONG-MIN: "Agglomeration of nickel/cobalt/manganese hydroxide crystals in Couette-Taylor crystallizer", COLLOIDS AND SURFACES A: PHYSICOCHEMICAL AND ENGINEERING ASPECTS, vol. 384, no. 1-3, July 2011 (2011-07-01), pages 31 - 39, XP055602865 *

Similar Documents

Publication Publication Date Title
WO2015122554A1 (ko) 쿠에트 테일러 반응기를 이용한 니켈 코발트 망간 복합 전구체의 연속식 제조 방법
WO2013115446A1 (ko) 리튬 복합 전이금속 산화물의 전구체 제조용 반응기 및 전구체 제조방법
WO2012093798A2 (ko) 입자 전체 농도 구배 리튬이차전지 양극활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
WO2016188477A2 (zh) 碳包覆三元正极材料及其制备方法、锂离子电池
WO2013002457A1 (ko) 양극활물질, 상기 양극활물질을 포함하는 전극, 및 리튬 전기 화학 전지
WO2015105225A1 (ko) 니켈-코발트-망간 복합 전구체 제조 방법
WO2012033369A2 (ko) 리튬 이차 전지용 양극 활물질 및 이의 제조방법
WO2016108385A1 (ko) 리튬이차전지용 양극 활물질의 전구체, 그 제조방법, 리튬이차전지용 양극 활물질, 그 제조방법, 및 상기 양극 활물질을 포함하는 리튬이차전지
WO2016108376A1 (ko) 양극활물질 및 이의 제조 방법
WO2016039511A1 (ko) 리튬 이차 전지용 양극활물질 및 이를 포함하는 리튬 이차 전지
WO2013165150A1 (ko) 리튬 복합 전이금속 산화물 제조용 전구체 및 그 제조방법
CN108701820A (zh) 表面涂布的正极活性材料粒子和包含其的二次电池
WO2009145471A1 (ko) 리튬 복합 전이금속 산화물 제조용 신규 전구체
WO2020013667A1 (ko) 무기 전해액을 포함하는 리튬 이차전지
WO2014116064A1 (ko) 산화철 나노입자의 제조 방법
WO2013137577A1 (ko) 리튬 복합 전이금속 산화물 제조용 전구체 및 그 제조방법
WO2017119681A1 (ko) 코발트 코팅 전구체의 제조 방법, 이에 의하여 제조된 코발트 코팅 전구체 및 이를 이용하여 제조된 양극활물질
WO2018155746A1 (ko) 고비표면적의 니켈-코발트-망간 복합전구체의 제조 방법
WO2014077662A1 (ko) 공침법을 이용한 나트륨 이차전지용 양극활물질 전구체의 제조 방법 및 이에 의하여 제조된 나트륨 이차전지용 양극활물질 전구체
WO2014104811A1 (ko) 리튬 이차전지용 양극활물질의 제조 방법 및 그에 의한 리튬 이차전지용 양극 활물질
WO2016068681A1 (ko) 전이금속 산화물의 전구체, 그 제조방법, 리튬 복합 전이금속 산화물, 이를 포함하는 양극 및 이차전지
WO2014107022A1 (ko) 리튬 복합 전이금속 산화물 제조용 장치, 이를 이용하여 제조된 리튬 복합 전이금속 산화물, 및 그 제조방법
WO2014077663A1 (ko) 나트륨 이차전지용 양극활물질 및 이의 제조 방법
WO2013085306A1 (ko) 리튬이차전지용 양극 활물질의 제조방법
WO2020130181A1 (ko) 고밀도 니켈-코발트-망간 복합전구체의 제조 방법

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16892769

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16892769

Country of ref document: EP

Kind code of ref document: A1