WO2017149733A1 - 発光装置 - Google Patents

発光装置 Download PDF

Info

Publication number
WO2017149733A1
WO2017149733A1 PCT/JP2016/056672 JP2016056672W WO2017149733A1 WO 2017149733 A1 WO2017149733 A1 WO 2017149733A1 JP 2016056672 W JP2016056672 W JP 2016056672W WO 2017149733 A1 WO2017149733 A1 WO 2017149733A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
electrode
light
emitting device
layer
Prior art date
Application number
PCT/JP2016/056672
Other languages
English (en)
French (fr)
Inventor
北原 弘昭
重則 村上
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to US16/081,885 priority Critical patent/US11127916B2/en
Priority to PCT/JP2016/056672 priority patent/WO2017149733A1/ja
Priority to JP2018502459A priority patent/JP6754826B2/ja
Publication of WO2017149733A1 publication Critical patent/WO2017149733A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/877Arrangements for extracting light from the devices comprising scattering means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/818Reflective anodes, e.g. ITO combined with thick metallic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/822Cathodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/828Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/854Arrangements for extracting light from the devices comprising scattering means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80518Reflective anodes, e.g. ITO combined with thick metallic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80521Cathodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80524Transparent cathodes, e.g. comprising thin metal layers

Definitions

  • the present invention relates to a light emitting device.
  • This light-emitting device is used as a lighting device or a display device, and has a configuration in which an organic layer is sandwiched between a first electrode and a second electrode.
  • a transparent material is used for the first electrode
  • a metal material is used for the second electrode.
  • Patent Document 1 One of light-emitting devices using organic EL is a technique described in Patent Document 1.
  • the second electrode is provided only on a part of the substrate in order to give the organic EL element optical transparency (see-through).
  • the organic EL element can have light transmittance.
  • Patent Document 1 it is described that a light scattering layer is formed between a substrate and a first electrode. This light scattering layer is not formed in the region through which the light passes.
  • the light extraction efficiency from the light emitting part such as an organic EL element is improved.
  • a light-emitting device having optical transparency there is a case where it is desired to emit light emitted from the light-emitting unit only from one surface.
  • a part of the light emitted from the light emitting unit may be emitted from the surface of the light emitting device where light is not desired to be emitted or the light emission is restricted.
  • a part of the light emitted from the light-emitting unit is not emitted from the surface where the light is not desired to be emitted.
  • the invention according to claim 1 is a substrate; An optical functional layer located on a portion of the substrate; A light transmissive first electrode located on the optical functional layer; A light-reflective second electrode positioned on the first electrode; A light-emitting layer positioned between the first electrode and the second electrode; With A plurality of the second electrodes are formed on the substrate, At least a portion of the region between the plurality of second electrodes has optical transparency; At least a part of the edge of the second electrode is a light emitting device located outside the optical functional layer.
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG. 6 is a cross-sectional view illustrating a configuration of a light emitting device according to Modification Example 1.
  • FIG. 11 is a cross-sectional view illustrating a configuration of a light emitting device according to Modification 2.
  • FIG. 11 is a cross-sectional view illustrating a configuration of a light emitting device according to Modification 3. It is sectional drawing which shows the structure of the light-emitting device which concerns on the modification 4.
  • FIG. 10 is a cross-sectional view illustrating a configuration of a light emitting device according to Modification Example 5.
  • FIG. 10 is a cross-sectional view illustrating a configuration of a light emitting device according to Modification Example 5.
  • FIG. 11 is a cross-sectional view illustrating a configuration of a light emitting device according to Modification Example 6.
  • FIG. 10 is a cross-sectional view illustrating a configuration of a light emitting device according to Modification Example 7.
  • 1 is a cross-sectional view illustrating a configuration of a light emitting system according to Example 1.
  • FIG. It is the figure which expanded a part of FIG. It is a figure which shows the modification of FIG. 6 is a cross-sectional view illustrating a configuration of a light emitting system according to Example 2.
  • FIG. 6 is a cross-sectional view illustrating a configuration of a light emitting system according to Example 3.
  • FIG. It is sectional drawing which shows the modification of FIG. 6 is a cross-sectional view showing a configuration of a light emitting system according to Example 4.
  • FIG. 10 is a cross-sectional view illustrating a configuration of a light emitting system according to Example 5.
  • FIG. 10 is a cross-sectional view illustrating
  • FIG. 1 is a plan view showing a configuration of a light emitting device 10 according to the embodiment.
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG.
  • the light emitting device 10 according to the embodiment includes a substrate 100, an optical functional layer 160, a first electrode 110, an organic layer 120, and a second electrode 130.
  • the optical functional layer 160 is formed on a part of the second surface 100 b of the substrate 100.
  • the first electrode 110 is formed on the optical functional layer 160, and the second electrode 130 is formed on the first electrode 110.
  • the organic layer 120 is located between the first electrode 110 and the second electrode 130 and includes a light emitting layer.
  • a plurality of second electrodes 130 are formed.
  • At least a part of a region between the plurality of second electrodes 130 (hereinafter referred to as a second region 104 and a third region 106) has light transmittance. At least a part of the edge of the second electrode 130 is located outside the optical functional layer 160.
  • the light emitting device 10 will be described in detail.
  • the substrate 100 is a light-transmitting substrate such as a glass substrate or a resin substrate.
  • the substrate 100 may have flexibility. In the case of flexibility, the thickness of the substrate 100 is, for example, not less than 10 ⁇ m and not more than 1000 ⁇ m.
  • the substrate 100 is, for example, a polygon such as a rectangle or a circle.
  • the substrate 100 is formed using, for example, PEN (polyethylene naphthalate), PES (polyethersulfone), PET (polyethylene terephthalate), or polyimide.
  • an inorganic barrier film such as SiN x or SiON is formed on at least one surface (preferably both surfaces) of the substrate 100 in order to prevent moisture from permeating the substrate 100. It is preferable.
  • the substrate 100 is formed of a resin substrate, a method of directly forming a first electrode 110 or an organic layer 120 described later on the resin substrate, and after forming the layers after the first electrode 110 on the glass substrate. There is a method in which the first electrode 110 and the glass substrate are peeled, and the peeled laminate is disposed on a resin substrate.
  • a light emitting unit 140 is formed on the second surface 100 b of the substrate 100.
  • the light emitting unit 140 has a configuration in which a first electrode 110, an organic layer 120 including a light emitting layer, and a second electrode 130 are stacked in this order.
  • the first surface 100a of the substrate 100 is a surface from which light is emitted.
  • the first electrode 110 is a transparent electrode having optical transparency.
  • the material of the transparent electrode is a metal-containing material, for example, a metal oxide such as ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), IWZO (Indium Tungsten Zinc Oxide), or ZnO (Zinc Oxide).
  • the thickness of the first electrode 110 is, for example, not less than 10 nm and not more than 500 nm.
  • the first electrode 110 is formed using, for example, a sputtering method or a vapor deposition method.
  • the first electrode 110 may be a carbon nanotube or a conductive organic material such as PEDOT / PSS.
  • the first electrode 110 may have a stacked structure in which a plurality of films are stacked. In this figure, a plurality of rectangular (striped) first electrodes 110 are formed on a substrate 100 in parallel with each other. For this reason, the 1st electrode 110 is not located in the 3rd field 106 and the 2nd field
  • the organic layer 120 has a configuration in which, for example, a hole injection layer, a light emitting layer, and an electron injection layer are stacked in this order.
  • a hole transport layer may be formed between the hole injection layer and the light emitting layer.
  • an electron transport layer may be formed between the light emitting layer and the electron injection layer.
  • the organic layer 120 may be formed by a vapor deposition method.
  • at least one layer of the organic layer 120 for example, a layer in contact with the first electrode 110, may be formed by a coating method such as an inkjet method, a printing method, or a spray method. In this case, the remaining layers of the organic layer 120 are formed by vapor deposition.
  • all the layers of the organic layer 120 may be formed using the apply
  • the emission color of the light emitting layer (or the color of light emitted from the organic layer 120) is different from the emission color of the light emitting layer of the adjacent light emitting unit 140 (or the color of light emitted from the organic layer 120). May be the same or the same.
  • the second electrode 130 has a light shielding property or a light reflecting property, for example, a metal selected from the first group consisting of Al, Au, Ag, Pt, Mg, Sn, Zn, and In, or A metal layer made of a metal alloy selected from the first group is included.
  • the thickness of the second electrode 130 is, for example, not less than 10 nm and not more than 500 nm.
  • the second electrode 130 may be formed using the material exemplified as the material of the first electrode 110.
  • the second electrode 130 is formed using, for example, a sputtering method or a vapor deposition method. In the example shown in this drawing, the light emitting device 10 has a plurality of linear second electrodes 130.
  • the second electrode 130 is provided for each of the first electrodes 110 and is wider than the first electrode 110. For this reason, when viewed from the direction perpendicular to the substrate 100, the entire first electrode 110 is overlapped and covered by the second electrode 130 in the width direction. With such a configuration, the extraction direction of light emitted from the light emitting layer of the organic layer 120 can be adjusted. Specifically, the emission of light in the direction opposite to the first surface 100a of the light emitting device 10 (second surface 100b described later) can be suppressed.
  • the edge of the first electrode 110 is covered with an insulating layer 150.
  • the insulating layer 150 is formed by including a photosensitive material in a resin material such as polyimide, and surrounds a portion of the first electrode 110 that becomes the light emitting portion 140.
  • the edge in the width direction of the second electrode 130 is located on the insulating layer 150. In other words, part of the insulating layer 150 protrudes from the second electrode 130 when viewed from a direction perpendicular to the substrate 100.
  • the organic layer 120 is also formed on the top and side surfaces of the insulating layer 150. However, the organic layer 120 is preferably electrically separated between the adjacent light emitting units 140, but may be formed continuously with the adjacent light emitting units 140.
  • the plurality of light emitting units 140 extend in parallel with each other. In the example illustrated in FIG. 1, the plurality of light emitting units 140 all extend in a rectangular shape (stripe shape). However, the light emitting unit 140 may be bent halfway.
  • the substrate 100 When viewed from the direction perpendicular to the substrate 100, the substrate 100 has a first region 102, a second region 104, and a third region 106.
  • the first region 102 is a region overlapping with the second electrode 130.
  • the second electrode 130 has a light shielding property
  • the first region 102 is a region that does not transmit light from the front surface to the back surface and from the back surface to the front surface of the light emitting device 10 or the substrate 100.
  • the second region 104 is a region that overlaps with the insulating layer 150 and does not overlap with the second electrode 130.
  • the third region 106 is a region that does not overlap with the insulating layer 150 and the second electrode 130.
  • region 104 is narrower than the width
  • the organic layer 120 is also formed in the second region 104 and the third region 106.
  • the organic layers 120 of the plurality of light emitting units 140 are formed continuously.
  • the organic layer 120 may not be formed in the third region 106.
  • the organic layer 120 may not be formed in the second region 104.
  • the width of the second region 104 is narrower than the width of the third region 106.
  • the width of the third region 106 may be wider or narrower than that of the first region 102.
  • the width of the first region 102 is 1, the width of the second region 104 is, for example, 0 or more (or more than 0 or 0.1 or more) 0.2 or less, and the width of the third region 106 is, for example, 0.3. It is 2 or less.
  • the width of the first region 102 is, for example, 50 ⁇ m or more and 500 ⁇ m or less
  • the width of the second region 104 is, for example, 0 ⁇ m or more (or more than 0 ⁇ m)
  • the width of the third region 106 is, for example, 15 ⁇ m or more and 1000 ⁇ m or less. is there.
  • the optical functional layer 160 is formed in the first region 102 of the second surface 100b of the substrate 100.
  • the optical functional layer 160 is a layer that scatters light, for example, and is a mixture of a plurality of particles in a binder made of an organic material or an inorganic material, for example.
  • the optical functional layer 160 is located between the first electrode 110 and the substrate 100.
  • the thickness of the optical functional layer 160 is, for example, not less than 100 nm and not more than 100 ⁇ m. More specifically, the optical functional layer 160 is formed at a position overlapping each of the plurality of second electrodes 130.
  • the plurality of optical functional layers 160 extend in stripes in parallel to each other, like the second electrode 130.
  • the optical functional layer 160 scatters the light emitted from the light emitting unit 140.
  • the binder (base material) of the optical functional layer 160 may be, for example, an imide-based, acrylic-based, ether-based, silane-based, or siloxane-based organic material, glass paste, glass frit, or SiO 2 sol. It may be an inorganic material.
  • the refractive index of the binder of the optical functional layer 160 is, for example, 1.2 or more and 2.2 or less, preferably 1.6 or more and 1.9 or less.
  • the particles of the optical functional layer 160 are made of, for example, an inorganic material.
  • the material constituting the particles is, for example, an oxide such as titanium oxide, zirconium oxide, or silicon oxide.
  • the average particle diameter, for example, the equivalent sphere diameter (diameter) is, for example, 100 nm or more and 5 ⁇ m or less.
  • the optical functional layer 160 may be a diffraction grating, a microprism, a microlens array, or a transflective film.
  • the optical functional layer 160 overlapping the light emitting portion 140 is covered with the second electrode 130.
  • the edge of the second electrode 130 is not overlapped with the optical functional layer 160.
  • the edge of the second electrode 130 is the optical functional layer. What is necessary is just to be located outside 160.
  • the distance w between the edge of the optical functional layer 160 and the edge of the second electrode 130 is preferably, for example, 1 ⁇ m or more, and preferably 100 ⁇ m or less.
  • the optical functional layer 160 is formed on the second surface 100 b of the substrate 100.
  • the optical functional layer 160 can be formed using, for example, an inkjet method.
  • the optical functional layer 160 can also be formed by a coating method using a mask.
  • a binder containing particles is used as the coating material.
  • the first electrode 110, the organic layer 120, and the second electrode 130 are formed in this order.
  • the portion of the light emitting device 10 that overlaps the third region 106 has light transmittance. For this reason, the light emitting device 10 has light transmittance in each of the direction from the second surface 100b toward the first surface 100a and the direction from the first surface 100a toward the second surface 100b.
  • the 2nd electrode 130 of the light emission part 140 has light reflectivity or light-shielding property. Therefore, the light from the organic layer 120 is emitted from the first surface 100a side to the outside of the light emitting device 10, but is not emitted to the opposite side of the first surface 100a.
  • the optical functional layer 160 is formed between the first electrode 110 and the substrate 100. For this reason, the light of the organic layer 120 becomes easy to be radiated
  • the optical functional layer 160 when the optical functional layer 160 is provided, part of the light traveling from the organic layer 120 toward the optical functional layer 160 may be reflected to the side opposite to the first surface 100a.
  • the edge of the second electrode 130 does not overlap the optical functional layer 160 and is located outside the optical functional layer 160. Therefore, the light reflected from the optical functional layer 160 to the side opposite to the first surface 100 a is reflected again toward the substrate 100 by the second electrode 130. Therefore, even if the optical functional layer 160 is provided, it is difficult for the light from the light emitting unit 140 to be emitted to the side opposite to the first surface 100a.
  • the light emitting unit 140 has a stripe shape.
  • the light emitting unit 140 may have a lattice shape.
  • the third region 106 is a region surrounded by the second electrode 130 in the substrate 100.
  • FIG. 3 is a cross-sectional view illustrating a configuration of the light emitting device 10 according to the first modification, and corresponds to FIG. 2 in the embodiment.
  • the light emitting device 10 according to the present embodiment is the same as the light emitting device 10 according to the embodiment except that the first electrode 110 is formed in all of the first region 102, the second region 104, and the third region 106. It is the same composition. In other words, the first electrodes 110 of each of the plurality of light emitting units 140 are connected to each other.
  • the light of the organic layer 120 is easily emitted from the first surface 100a to the outside by providing the optical functional layer 160 as in the embodiment. Further, since the edge of the second electrode 130 does not overlap with the optical function layer 160, even if the optical function layer 160 is provided, the light from the light emitting unit 140 is not easily emitted to the side opposite to the first surface 100a. Further, the first electrodes 110 of the plurality of light emitting units 140 are connected to each other. Therefore, it is not necessary to pattern the first electrode 110, and as a result, the manufacturing cost of the light emitting device 10 is reduced.
  • FIG. 4 is a cross-sectional view illustrating a configuration of the light emitting device 10 according to Modification Example 2, and corresponds to FIG. 2 in the embodiment.
  • the light emitting device 10 according to this modification has the same configuration as that of the light emitting device 10 according to the embodiment, except that the organic layer 120 is divided between adjacent light emitting units 140.
  • the organic layer 120 is not formed in part or all of the third region 106.
  • the organic layer 120 may not be formed in a region on the third region 106 side in the second region 104.
  • the organic layer 120 may be formed in a region of the second region 104 and the third region 106 on the second region 104 side.
  • the light of the organic layer 120 is easily emitted from the first surface 100a to the outside by providing the optical functional layer 160 as in the embodiment.
  • the edge of the second electrode 130 is located outside the optical functional layer 160, even if the optical functional layer 160 is provided, the light from the light emitting unit 140 is not easily emitted to the side opposite to the first surface 100a.
  • the organic layer 120 may have a structure similar to that of the present modification.
  • FIG. 5 is a cross-sectional view illustrating a configuration of the light emitting device 10 according to the third modification, and corresponds to FIG. 2 in the embodiment.
  • the light emitting device 10 according to this modification has the same configuration as that of the light emitting device 10 according to the embodiment except that the first electrode 110 has a conductive layer 180.
  • the conductive layer 180 is an auxiliary electrode of the first electrode 110 and has a configuration in which, for example, a Mo alloy layer, an Al alloy layer, and a Mo alloy layer are stacked in this order.
  • the conductive layer 180 is formed on a portion of the first electrode 110 covered with the insulating layer 150. However, the conductive layer 180 may be formed between the first electrode 110 and the substrate 100 (or between the first electrode 110 and the optical functional layer 160).
  • the light of the organic layer 120 is easily emitted from the first surface 100a to the outside by providing the optical functional layer 160 as in the embodiment.
  • the edge of the second electrode 130 is located outside the optical functional layer 160, even if the optical functional layer 160 is provided, the light from the light emitting unit 140 is not easily emitted to the side opposite to the first surface 100a.
  • the conductive layer 180 is provided, the apparent resistance of the first electrode 110 can be reduced.
  • the light emitting device 10 may have a conductive layer 180.
  • FIG. 6 is a cross-sectional view illustrating a configuration of a light emitting device 10 according to Modification Example 4, and corresponds to FIG. 2 in the embodiment.
  • the light emitting device 10 according to this modification has the same configuration as that of the light emitting device 10 according to the embodiment, except that the light transmitting device 152 is provided instead of the insulating layer 150.
  • the light transmissive layer 152 is a light transmissive insulating film, and continuously covers the region of the substrate 100 where the light functional layer 160 is not formed and the light functional layer 160. For this reason, the translucent layer 152 functions as a planarization layer.
  • the translucent layer 152 is formed using a transparent material such as an imide-based, acrylic-based, ether-based, silane-based, or siloxane-based organic material, or an inorganic material such as glass paste, glass frit, or SiO 2 sol.
  • the thickness is, for example, 100 nm or more and 100 ⁇ m or less.
  • the light transmitting layer 152 is formed by using, for example, an ink jet method or a coating method.
  • the first electrode 110 and the organic layer 120 are continuously formed on the light transmitting layer 152.
  • the second electrode 130 has a layout similar to that of the embodiment.
  • the light emitting device 10 has the first region 102 and the third region 106, but does not have the second region 104.
  • the first region 102 matches the light emitting unit 140.
  • the light of the organic layer 120 is easily emitted from the first surface 100a to the outside by providing the optical functional layer 160 as in the embodiment.
  • the edge of the second electrode 130 is located outside the optical functional layer 160, even if the optical functional layer 160 is provided, the light from the light emitting unit 140 is not easily emitted to the side opposite to the first surface 100a.
  • the light-transmitting layer 152 shown in this modification may be provided instead of the insulating layer 150.
  • FIG. 7 is a cross-sectional view illustrating a configuration of the light emitting device 10 according to the fifth modification, and corresponds to FIG. 6 in the fourth modification.
  • the light emitting device 10 according to this modification has the same configuration as the light emitting device 10 according to modification 4 except for the following points.
  • the light emitting device 10 does not have the light transmitting layer 152.
  • the first electrode 110 is formed directly on the substrate 100.
  • the optical functional layer 160 is formed on the surface of the substrate 100 opposite to the light emitting unit 140.
  • the position and size of the optical functional layer 160 with respect to the second electrode 130 are the same as in the fourth modification.
  • the light of the organic layer 120 is easily emitted from the first surface 100a to the outside by providing the optical functional layer 160 as in the embodiment.
  • the edge of the second electrode 130 is located outside the optical functional layer 160, even if the optical functional layer 160 is provided, the light from the light emitting unit 140 is not easily emitted to the side opposite to the first surface 100a.
  • FIG. 8 is a cross-sectional view illustrating a configuration of a light emitting device 10 according to Modification Example 6, and corresponds to FIG. 2 in the embodiment.
  • the light emitting device 10 according to this modification has the same configuration as the light emitting device 10 according to the embodiment except that the edge of the first electrode 110 is located on the optical functional layer 160.
  • the first electrode 110 is located in the first region 102, but is not located in the second region 104 and the third region 106.
  • the light emitting device 10 may include the conductive layer 180 shown in the modification 3.
  • the light of the organic layer 120 is easily emitted from the first surface 100a to the outside by providing the optical functional layer 160 as in the embodiment.
  • the edge of the second electrode 130 is located outside the optical functional layer 160, even if the optical functional layer 160 is provided, the light from the light emitting unit 140 is not easily emitted to the side opposite to the first surface 100a.
  • FIG. 9 is a cross-sectional view illustrating a configuration of a light-emitting device 10 according to Modification Example 7, and corresponds to FIG. 2 in the embodiment.
  • the light emitting device 10 according to this modification has the same configuration as the light emitting device 10 according to the embodiment, except that the edge of the second electrode 130 is located outside the insulating layer 150.
  • the width of the second electrode 130 is wider than that of the embodiment, and as a result, the distance w between the edge of the optical functional layer 160 and the edge of the second electrode 130 is larger than that of the embodiment.
  • the light emitting device 10 may include the conductive layer 180 shown in the modification 3.
  • the light of the organic layer 120 is easily emitted to the outside from the first surface 100a by providing the optical functional layer 160 as in the embodiment.
  • the width of the second electrode 130 is wider than that of the embodiment, the light from the light emitting unit 140 is less likely to be emitted to the side opposite to the first surface 100a.
  • FIG. 10 is a cross-sectional view illustrating a configuration of the light emitting system according to the first embodiment.
  • the light emitting system includes a light emitting device 10 and a partition member 20.
  • the partition member 20 has translucency, and partitions the space where a person stays from the outside.
  • the light emitting device 10 has the same configuration as that of any of the above-described embodiments and modifications.
  • the light emitting unit 140 is disposed on a surface (second surface 100 b) on the space side where a person stays in the substrate 100. In this state, the translucent first electrode 110, the organic layer 120, and the second electrode 130 overlap in this order from the outside.
  • the partition member 20 is, for example, a window of the moving body 30 for a person to move, and is formed using glass or translucent resin.
  • the moving body 30 is, for example, a car, a train, or an airplane.
  • the partition member 20 is a windshield, a rear glass, or a window glass (for example, a door glass) attached to the side of the seat.
  • the plurality of light emitting units 140 function as, for example, brake lamps.
  • the partition member 20 is a windshield or a rear glass
  • the plurality of light emitting units 140 may be turn lamps.
  • it may be a window that partitions the interior and exterior of a room such as a conference room.
  • a light emitting system that can identify whether or not the conference room is used by turning on / off the light emitting unit 140 may be used.
  • the light extraction side surface of the light emitting device 10 (for example, the first surface 100 a of the substrate 100) is fixed to the inner surface (first surface 22) of the partition member 20 via the adhesive layer 200. For this reason, the light emitted from the light emitting unit 140 of the light emitting device 10 is emitted to the outside of the moving body 30 via the partition member 20.
  • the light emitting device 10 is light transmissive. For this reason, a person located inside the moving body 30 can visually recognize the outside of the moving body 30 through the partition member 20.
  • the entire first surface 100a of the substrate 100 may be fixed to the first surface 22 of the partition member 20 via the adhesive layer 200, or a part of the first surface 100a (for example, two sides facing each other). May be fixed to the first surface 22 of the partition member 20.
  • the adhesive layer 200 is for bonding the partition member 20 and the light emitting device 10 together.
  • the material is not particularly limited as long as it has such a function.
  • the refractive index of the partition member 20 and the refractive index of the substrate 100 of the light emitting device 10 are the same, for example, when both are formed of glass, the adhesive layer 200 having the same or close refractive index as both. Is used.
  • the refractive index of the adhesive layer 200 is the same as that of the partition member 20. A numerical value between the substrates 100 is preferred.
  • the light emitting device 10 can be efficiently extracted outside through the partition member 20.
  • the light emitting device 10 and the partition member 20 are bonded without a gap. This is because if there is a gap, the light emitted from the light emitting device 10 is reflected by the partition member 20 and the reflected light is transmitted to the inside through the second region 104 and the third region 106 of the light emitting device 10.
  • the light emitting device 10 has the configuration shown in any of the embodiments and the respective modifications. Therefore, the light extraction efficiency of the light emitting device 10 is high. Moreover, it can suppress that the light of the light-emitting device 10 is radiated
  • the insulating layer 150 is formed of a light-transmitting material, generally, the light transmittance of the light-transmitting material varies depending on the wavelength of light. For this reason, when the width of the insulating layer 150 is wide, when light passes through the insulating layer 150, the spectral distribution of the light changes. In this case, when an object is viewed through the light emitting device 10, the color of the object looks different from the actual color. That is, the color of the object changes through the light emitting device 10. For example, when the absorption at a blue wavelength of 400 nm to 600 nm is 50% and is larger than the absorption at other wavelengths, the blue color becomes weak and yellowish when viewed through the light emitting device 10. On the other hand, since the width of the second region 104 is narrower than the width of the third region 106 in this embodiment, the above-described color change can be suppressed.
  • the partition member 20 is inclined at an angle ⁇ 1 (0 ° ⁇ 1 ⁇ 90 °) with respect to the horizontal plane. For this reason, the substrate 100 of the light emitting device 10 is also inclined at an angle ⁇ 1 (0 ° ⁇ 1 ⁇ 90 °) with respect to the horizontal plane.
  • FIG. 11 is an enlarged view of a part of FIG.
  • the substrate 100 of the light emitting device 10 is inclined at an angle ⁇ 1 (0 ° ⁇ 1 ⁇ 90 °) with respect to the horizontal plane.
  • the width of the second electrode 130 is a
  • the width of the optical functional layer 160 is b
  • the second electrode 130 is based on the second surface 100b of the substrate 100 (the surface on which the optical functional layer 160 is formed).
  • the reflected light is less likely to be emitted from the optical functional layer 160 in the lower direction in the figure than the horizontal direction. Therefore, the visibility from the inside of the moving body 30 to the outside is hardly further lowered.
  • the center of the optical function layer 160 and the center of the second electrode 130 do not have to overlap.
  • the height of the second electrode 130 with respect to the second surface 100b of the substrate 100 is t
  • the tilt angle of the light emitting device 10 is the perpendicular and horizontal plane of the substrate 100.
  • the width of the second electrode 130 may be increased by t ⁇ tan ⁇ 2 on one side with respect to the width b of the optical functional layer 160.
  • a planarization layer 162 is formed between the first electrode 110 and the second surface 100 b of the substrate 100.
  • the planarization layer 162 is formed using an insulating material such as a resin, for example, and planarizes unevenness caused by the presence or absence of the optical functional layer 160.
  • FIG. 13 is a cross-sectional view illustrating the configuration of the light emitting system according to the second embodiment.
  • the light emitting system according to the present embodiment is the same as the light emitting system according to the embodiment except that the light emitting device 10 is attached to the outer surface (second surface 24) of the moving body 30 in the partition member 20. It is a configuration.
  • the light emitting device 10 has the same configuration as that of any of the above-described embodiments and modifications.
  • the surface opposite to the partition member 20 is a light extraction surface.
  • the second surface 100b side of the light emitting device 10 may be opposed to the partition member 20.
  • a person inside the moving body 30 can visually recognize the outside of the moving body 30 through the light emitting device 10 and the partition member 20. Further, the light extraction efficiency of the light emitting device 10 is high. Moreover, it can suppress that the light of the light-emitting device 10 is radiated
  • the light from the light emitting device 10 is directly emitted to the outside of the moving body 30 without passing through the partition member 20. For this reason, compared with the embodiment, a person outside the moving body 30 can easily recognize the light from the light emitting device 10. Further, since the light emitting device 10 is attached to the outside of the moving body 30, that is, the second surface 24 side of the partition member 20, the light emitted from the light emitting device 10 is reflected by the partition member 20 and enters the inside of the moving body 30. Can be suppressed.
  • FIG. 14 is a cross-sectional view illustrating a configuration of the light emitting system according to the third embodiment.
  • the light emitting system according to the present embodiment has the same configuration as the light emitting system according to the first embodiment, except that the light emitting device 10 is fixed to the partition member 20 using the fixing member 210.
  • the fixing member 210 is a frame-like member, and the lower surface is fixed to the partition member 20 using the adhesive layer 200.
  • the upper part of the fixing member 210 is bent toward the inside of the fixing member 210, and the edge of the light emitting device 10 is pressed by the bent part.
  • the shape of the fixing member 210 is not limited to the example shown in this figure.
  • a person inside the moving body 30 can visually recognize the outside of the moving body 30 through the light emitting device 10 and the partition member 20. Further, the light extraction efficiency of the light emitting device 10 is high. Moreover, it can suppress that the light of the light-emitting device 10 is radiated
  • the partition member 20 may be curved in a direction that protrudes toward the outside of the moving body 30. In such a case, it is difficult to directly fix the light emitting device 10 on the flat plate to the inner surface (first surface 22) of the partition member 20. However, when the fixing member 210 is used, the light emitting device 10 can be fixed to the first surface 22 of the partition member 20 even in such a case.
  • the gap between the partition member 20 and the light-emitting device 10 may be filled with a filler.
  • the refractive index of the partition member 20 and the refractive index of the substrate 100 of the light emitting device 10 are substantially the same (for example, when both are formed of glass), is the refractive index of the filling member the same as these refractive indexes? A close value is preferable.
  • the refractive index of the filler is the refractive index of the partition member 20.
  • a numerical value between the refractive index and the refractive index of the substrate 100 of the light emitting device 10 is preferable.
  • FIG. 16 is a cross-sectional view illustrating a configuration of a light emitting system according to Example 4.
  • the light emitting system according to the present embodiment has the same configuration as the light emitting system according to the first embodiment, except that the light emitting section 140 is formed on the first surface 22 or the second surface 24 of the partition member 20.
  • the partition member 20 also serves as the substrate 100 in the first embodiment.
  • a concave portion may be formed on the surface of the partition member 20 where the light emitting portion 140 is formed, and the light emitting portion 140 may be formed in the concave portion.
  • one recess may be formed in a region where the plurality of light emitting units 140 are formed, and the plurality of light emitting units 140 may be formed on the bottom surface of the recess. It may be formed.
  • the light-emitting portion 140 may be sealed with a highly transmissive structure, for example, a structure in which a plurality of recesses are sealed at once by film sealing or the like.
  • the light emitting unit 140 can be prevented from protruding from the partition member 20.
  • the upper part of the light emission part 140 may protrude from the 1st surface 22 (or 2nd surface 24) of the partition member 20, or the light emission part 140 of FIG. The whole may be located below the first surface 22 (or the second surface 24).
  • a person inside the moving body 30 can visually recognize the outside of the moving body 30 through the light emitting device 10 and the partition member 20. Further, the light extraction efficiency of the light emitting device 10 is high. Moreover, it can suppress that the light of the light-emitting device 10 is radiated
  • FIG. 17 is a cross-sectional view illustrating a configuration of a light emitting system according to Example 5.
  • the light emitting system according to the present example has the same configuration as that of any of the above-described embodiment, each modified example, and Examples 1 to 4 except that the plurality of light emitting devices 10 are attached to the partition member 20. .
  • the plurality of light emitting devices 10 may be controlled to emit and extinguish according to the same control signal, or may be controlled to emit and extinguish according to different control signals.
  • a person inside the moving body 30 can visually recognize the outside of the moving body 30 through the light emitting device 10 and the partition member 20. Further, the light extraction efficiency of the light emitting device 10 is high. Moreover, it can suppress that the light of the light-emitting device 10 is radiated

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

光機能層(160)は基板(100)の第2面(100b)の一部の上に形成されている。第1電極(110)は光機能層(160)の上に形成されており、第2電極(130)は第1電極(110)の上に形成されている。有機層(120)は第1電極(110)と第2電極(130)の間に位置しており、発光層を含んでいる。第2電極(130)は複数形成されている。複数の第2電極(130)の間の領域の少なくとも一部は、光透過性を有している。そして、第2電極(130)の縁の少なくとも一部は光機能層(160)の外側に位置している。

Description

発光装置
 本発明は、発光装置に関する。
 近年は有機ELを利用した発光装置の開発が進んでいる。この発光装置は、照明装置や表示装置として使用されており、第1電極と第2電極の間に有機層を挟んだ構成を有している。そして、一般的には第1電極には透明材料が用いられており、第2電極には金属材料が用いられている。
 有機ELを利用した発光装置の一つに、特許文献1に記載の技術がある。特許文献1の技術は、有機EL素子に光透過性(シースルー)を持たせるために、第2電極を基板の一部にのみ設けている。このような構造において、複数の第2電極の間に位置する領域は光を透過させるため、有機EL素子は光透過性を有することができる。
 また、特許文献1において、基板と第1電極の間に光散乱層を形成することが記載されている。この光散乱層は、上記した光が透過する領域には形成されていない。
特開2013-149376号公報
 基板と第1電極の間に光散乱層を設けると、有機EL素子などの発光部からの光取り出し効率は向上する。一方、光透過性を有する発光装置において、発光部が発光した光を一方の面からのみ出射させたい場合がある。このような場合において、上記した光散乱層を設けると、発光部が発光した光の一部が発光装置のうち光を出射させたくない面や、光の射出を制限したい面から出射する可能性が出てくる。
 本発明が解決しようとする課題としては、光透過性を有する発光装置において、光の取り出し効率を向上させつつ、発光部が発光した光の一部が光を出射させたくない面から出射しないようにすることが一例として挙げられる。
 請求項1に記載の発明は、基板と、
 前記基板の一部の上に位置している光機能層と、
 前記光機能層の上に位置している光透過性の第1電極と、
 前記第1電極の上に位置している光反射性の第2電極と、
 前記第1電極と前記第2電極の間に位置している発光層と、
を備え、
 前記第2電極は前記基板の上に複数形成され、
 前記複数の第2電極の間の領域の少なくとも一部は光透過性を有しており、
 前記第2電極の縁の少なくとも一部は前記光機能層の外側に位置している発光装置である。
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
実施形態に係る発光装置の構成を示す平面図である。 図1のA-A断面図である。 変形例1に係る発光装置の構成を示す断面図である。 変形例2に係る発光装置の構成を示す断面図である。 変形例3に係る発光装置の構成を示す断面図である。 変形例4に係る発光装置の構成を示す断面図である。 変形例5に係る発光装置の構成を示す断面図である。 変形例6に係る発光装置の構成を示す断面図である。 変形例7に係る発光装置の構成を示す断面図である。 実施例1に係る発光システムの構成を示す断面図である。 図10の一部を拡大した図である。 図11の変形例を示す図である。 実施例2に係る発光システムの構成を示す断面図である。 実施例3に係る発光システムの構成を示す断面図である。 図14の変形例を示す断面図である。 実施例4に係る発光システムの構成を示す断面図である。 実施例5に係る発光システムの構成を示す断面図である。
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
(実施形態)
 図1は、実施形態に係る発光装置10の構成を示す平面図である。図2は、図1のA-A断面図である。実施形態に係る発光装置10は、基板100、光機能層160、第1電極110、有機層120、及び第2電極130を有している。光機能層160は基板100の第2面100bの一部の上に形成されている。第1電極110は光機能層160の上に形成されており、第2電極130は第1電極110の上に形成されている。有機層120は第1電極110と第2電極130の間に位置しており、発光層を含んでいる。第2電極130は複数形成されている。複数の第2電極130の間の領域(以下、第2領域104及び第3領域106と記載)の少なくとも一部は、光透過性を有している。そして、第2電極130の縁の少なくとも一部は光機能層160の外側に位置している。以下、発光装置10について詳細に説明する。
 基板100は、例えばガラス基板や樹脂基板などの透光性を有する基板である。基板100は可撓性を有していてもよい。可撓性を有している場合、基板100の厚さは、例えば10μm以上1000μm以下である。基板100は、例えば矩形などの多角形や円形である。基板100が樹脂基板である場合、基板100は、例えばPEN(ポリエチレンナフタレート)、PES(ポリエーテルサルホン)、PET(ポリエチレンテレフタラート)、又はポリイミドを用いて形成されている。また、基板100が樹脂基板である場合、水分が基板100を透過することを抑制するために、基板100の少なくとも一面(好ましくは両面)に、SiNやSiONなどの無機バリア膜が形成されているのが好ましい。なお、基板100を樹脂基板で形成する場合は、樹脂基板に直接後述する第1電極110や有機層120を成膜する方法と、ガラス基板の上に第1電極110以降の層を形成した後に、第1電極110とガラス基板を剥離し、さらに、剥離した積層体を樹脂基板に配置する方法などがある。
 基板100の第2面100bには、発光部140が形成されている。発光部140は、第1電極110、発光層を含む有機層120、及び第2電極130をこの順に積層させた構成を有している。そして基板100の第1面100aは、光が出射する面となっている。
 第1電極110は、光透過性を有する透明電極である。透明電極の材料は、金属を含む材料、例えば、ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)、IWZO(Indium Tungsten Zinc Oxide)、ZnO(Zinc Oxide)等の金属酸化物である。第1電極110の厚さは、例えば10nm以上500nm以下である。第1電極110は、例えばスパッタリング法又は蒸着法を用いて形成される。なお、第1電極110は、カーボンナノチューブ、又はPEDOT/PSSなどの導電性有機材料であってもよい。また、第1電極110は複数の膜を積層した積層構造を有していてもよい。本図において、基板100の上には、複数の長方形状(ストライプ状)の第1電極110が互いに平行に形成されている。このため、第3領域106、及び後述する第2領域104には第1電極110は位置していない。
 有機層120は、例えば、正孔注入層、発光層、及び電子注入層をこの順に積層させた構成を有している。正孔注入層と発光層との間には正孔輸送層が形成されていてもよい。また、発光層と電子注入層との間には電子輸送層が形成されていてもよい。有機層120は蒸着法で形成されてもよい。また、有機層120のうち少なくとも一つの層、例えば第1電極110と接触する層は、インクジェット法、印刷法、又はスプレー法などの塗布法によって形成されてもよい。なお、この場合、有機層120の残りの層は、蒸着法によって形成されている。また、有機層120のすべての層が、塗布法を用いて形成されていてもよい。なお、有機層120の代わりに他の発光層(例えば無機発光層)を有していてもよい。また、発光層の発光する発光色(又は有機層120から放射される光の色)は、隣の発光部140の発光層の発光色(又は有機層120から放射される光の色)と異なっていてもよいし、同じでも良い。
 第2電極130は、遮光性あるいは光反射性を有しており、例えば、Al、Au、Ag、Pt、Mg、Sn、Zn、及びInからなる第1群の中から選択される金属、又はこの第1群から選択される金属の合金からなる金属層を含んでいる。第2電極130の厚さは、例えば10nm以上500nm以下である。ただし、第2電極130は、第1電極110の材料として例示した材料を用いて形成されていてもよい。第2電極130は、例えばスパッタリング法又は蒸着法を用いて形成される。本図に示す例において、発光装置10は複数の線状の第2電極130を有している。第2電極130は、第1電極110のそれぞれに対して設けられており、かつ第1電極110よりも幅が広くなっている。このため、基板100に垂直な方向から見た場合において、幅方向において第1電極110の全体が第2電極130によって重なっており、また覆われている。このような構成にすることで、有機層120の発光層で発光した光の取出し方向を調整することができる。具体的には、発光装置10の第1面100aとは逆側(後述する第2面100b)方向への光の放射を抑えることができる。
 第1電極110の縁は、絶縁層150によって覆われている。絶縁層150は例えばポリイミドなどの樹脂材料に感光性の材料を含んで形成されており、第1電極110のうち発光部140となる部分を囲んでいる。第2電極130の幅方向の縁は、絶縁層150上に位置している。言い換えると、基板100に垂直な方向から見た場合において、絶縁層150の一部は第2電極130から食み出ている。また本図に示す例において、有機層120は絶縁層150の上及び側面にも形成されている。ただし、有機層120は隣り合う発光部140の間で電気的には分断されていることが好ましいが、隣り合う発光部140と連続して形成されていてもよい。
 複数の発光部140は、互いに平行に延在している。図1に示す例では、複数の発光部140はいずれも長方形状(ストライプ状)に延在している。ただし、発光部140は途中で曲がっていてもよい。
 そして、基板100に垂直な方向から見た場合において、基板100は、第1領域102、第2領域104、及び第3領域106を有している。第1領域102は第2電極130と重なっている領域である。第2電極130が遮光性を有している場合、第1領域102は、発光装置10または基板100の表面から裏面、及び裏面から表面のそれぞれにおいて光を通さない領域である。第2領域104は、絶縁層150に重なるとともに第2電極130と重ならない領域である。第3領域106は、絶縁層150及び第2電極130と重ならない領域である。そして、第2領域104の幅は第3領域106の幅よりも狭いため、発光装置10は、十分な光透過性を有している。
 本図に示す例において、有機層120は第2領域104及び第3領域106にも形成されている。言い換えると、複数の発光部140の有機層120は連続的に形成されている。ただし、有機層120は第3領域106に形成されていなくてもよい。また、有機層120は、第2領域104に形成されていなくてもよい。
 第2領域104の幅は、第3領域106の幅よりも狭い。また第3領域106の幅は第1領域102の幅よりも広くてもよいし、狭くてもよい。第1領域102の幅を1とした場合、第2領域104の幅は例えば0以上(又は0超若しくは0.1以上)0.2以下であり、第3領域106の幅は例えば0.3以上2以下である。また第1領域102の幅は、例えば50μm以上500μm以下であり、第2領域104の幅は例えば0μm以上(又は0μm超)100μm以下であり、第3領域106の幅は例えば15μm以上1000μm以下である。
 そして、基板100の第2面100bの第1領域102には、光機能層160が形成されている。光機能層160は、例えば光を散乱させる層であり、例えば、有機材料又は無機材料からなるバインダーに複数の粒子を混ぜたものである。光機能層160は、第1電極110と基板100の間に位置している。光機能層160の厚さは、例えば100nm以上100μm以下である。さらに詳細には、光機能層160は、複数の第2電極130のそれぞれと重なる位置に形成されている。そして、複数の光機能層160は、第2電極130と同様に、互いに平行にストライプ状に延在している。光機能層160は、発光部140が発光した光を散乱する。
 光機能層160のバインダー(ベース材)は、例えばイミド系、アクリル系、エーテル系、シラン系、又はシロキサン系の有機材料であってもよいし、ガラスペースト、ガラスフリット、又はSiOゾルなどの無機材料であってもよい。光機能層160のバインダーの屈折率は、例えば1.2以上2.2以下、好ましくは1.6以上1.9以下である。
 光機能層160の粒子は、例えば無機材料からなる。この粒子を構成する材料は、例えば酸化チタン、酸化ジルコニウム、又は酸化シリコンなどの酸化物である。粒子の粒径、例えば球相当径(直径)の平均値は、例えば100nm以上5μm以下である。
 なお、光機能層160は、回折格子、マイクロプリズム、マイクロレンズアレイ、又は半透過反射膜であってもよい。
 光機能層160のうち少なくとも発光部140と重なる部分は、第2電極130で覆われているのが好ましい。このようにするためには、例えば、光機能層160の幅方向において、第2電極130の縁を光機能層160と重ならないようにする、言い換えると、第2電極130の縁は光機能層160の外側に位置すればよい。光機能層160の縁と第2電極130の縁の距離wは、例えば1μm以上であるのが好ましく、また、100μm以下であるのが好ましい。
 次に、発光装置10の製造方法について説明する。まず、基板100の第2面100bの上に光機能層160を形成する。光機能層160は、例えばインクジェット法を用いて形成することができる。また、光機能層160は、マスクを用いた塗布法を用いて形成することもできる。この際、塗布材料には、粒子を含むバインダーが用いられる。次いで、第1電極110、有機層120、及び第2電極130をこの順に形成する。
 本実施形態において、発光装置10のうち第3領域106と重なる部分は、光透過性を有している。このため、発光装置10は、第2面100bから第1面100aに向かう方向及び第1面100aから第2面100bに向かう方向のそれぞれで光透過性を有している。一方、発光部140の第2電極130は光反射性又は遮光性を有している。従って、有機層120からの光は第1面100a側から発光装置10の外部に出射するが、第1面100aの逆側には出射しない。
 さらに本実施形態において、第1電極110と基板100の間には光機能層160が形成されている。このため、有機層120の光が第1面100aから外部に放射されやすくなる。
 一方、光機能層160を設けると、有機層120から光機能層160に向かってきた光の一部が第1面100aとは逆側に反射することがある。これに対して本実施形態では、第2電極130の縁は光機能層160と重なっておらず、光機能層160の外側に位置している。このため、光機能層160から第1面100aとは逆側に反射した光は、第2電極130で再び基板100に向けて反射される。従って、光機能層160を設けても、発光部140からの光は第1面100aとは逆側に出射しにくい。
 なお、上記した実施形態及び後述する各変形例において、発光部140はストライプ状である。ただし、発光部140は格子状であってもよい。この場合、第3領域106は、基板100のうち第2電極130で囲まれた領域になる。
(変形例1)
 図3は、変形例1に係る発光装置10の構成を示す断面図であり、実施形態における図2に対応している。本実施形態に係る発光装置10は、第1領域102、第2領域104、及び第3領域106のすべてに第1電極110が形成されている点を除いて、実施形態に係る発光装置10と同様の構成である。言い換えると、複数の発光部140それぞれの第1電極110は、互いに繋がっている。
 本変形例によっても、実施形態と同様に、光機能層160を設けることにより、有機層120の光が第1面100aから外部に放射されやすくなる。また、第2電極130の縁は光機能層160と重なっていないため、光機能層160を設けても、発光部140からの光は第1面100aとは逆側に出射しにくい。さらに、複数の発光部140それぞれの第1電極110は、互いに繋がっている。従って、第1電極110をパターニングする必要はなく、その結果、発光装置10の製造コストは低くなる。
(変形例2)
 図4は、変形例2に係る発光装置10の構成を示す断面図であり、実施形態における図2に対応している。本変形例に係る発光装置10は、隣り合う発光部140の間で有機層120が分断している点を除いて、実施形態に係る発光装置10と同様の構成である。有機層120は、例えば第3領域106の一部または全部に形成されていない。有機層120は、第2領域104のうち第3領域106側の領域にも形成されていなくてもよい。ただし、有機層120は、第2領域104、及び第3領域106のうち第2領域104側の領域に形成されていてもよい。
 本変形例によっても、実施形態と同様に、光機能層160を設けることにより、有機層120の光が第1面100aから外部に放射されやすくなる。また、第2電極130の縁は光機能層160の外側に位置するため、光機能層160を設けても、発光部140からの光は第1面100aとは逆側に出射しにくい。
 なお、変形例1において、有機層120が本変形例と同様の構造を有していてもよい。
(変形例3)
 図5は、変形例3に係る発光装置10の構成を示す断面図であり、実施形態における図2に対応している。本変形例に係る発光装置10は、第1電極110が導電層180を有している点を除いて、実施形態に係る発光装置10と同様の構成である。導電層180は第1電極110の補助電極であり、例えばMo合金層、Al合金層、及びMo合金層をこの順に積層した構成を有している。導電層180は、第1電極110のうち絶縁層150に覆われた部分の上に形成されている。ただし、導電層180は第1電極110と基板100の間(又は第1電極110と光機能層160の間)に形成されていてもよい。
 本変形例によっても、実施形態と同様に、光機能層160を設けることにより、有機層120の光が第1面100aから外部に放射されやすくなる。また、第2電極130の縁は光機能層160の外側に位置するため、光機能層160を設けても、発光部140からの光は第1面100aとは逆側に出射しにくい。また、導電層180を設けたため、第1電極110の見かけ上の抵抗を低くすることができる。
 なお、変形例1又は変形例2において、発光装置10は導電層180を有していてもよい。
(変形例4)
 図6は、変形例4に係る発光装置10の構成を示す断面図であり、実施形態における図2に対応している。本変形例に係る発光装置10は、絶縁層150の代わりに透光層152を有している点を除いて、実施形態に係る発光装置10と同様の構成である。
 透光層152は透光性の絶縁膜であり、基板100のうち光機能層160が形成されていない領域、及び光機能層160を連続して覆っている。このため、透光層152は平坦化層として機能する。透光層152は、例えばイミド系、アクリル系、エーテル系、シラン系、又はシロキサン系の有機材料や、ガラスペースト、ガラスフリット、又はSiOゾルなどの無機材料などの透明材料を用いて形成されており、その厚さは、例えば100nm以上100μm以下である。透光層152は、例えばインクジェット法や塗布法を用いて形成されている。
 そして、第1電極110及び有機層120は、透光層152の上に連続的に形成されている。一方、第2電極130は実施形態と同様のレイアウトを有している。本変形例において、発光装置10は第1領域102及び第3領域106を有しているが、第2領域104を有していない。そして、第1領域102が発光部140と一致している。
 本変形例によっても、実施形態と同様に、光機能層160を設けることにより、有機層120の光が第1面100aから外部に放射されやすくなる。また、第2電極130の縁は光機能層160の外側に位置するため、光機能層160を設けても、発光部140からの光は第1面100aとは逆側に出射しにくい。
 なお、変形例1~3において、絶縁層150の代わりに本変形例に示した透光層152を有していてもよい。
(変形例5)
 図7は、変形例5に係る発光装置10の構成を示す断面図であり、変形例4における図6に対応している。本変形例に係る発光装置10は、以下の点を除いて変形例4に係る発光装置10と同様の構成である。
 まず、発光装置10は透光層152を有してない。このため、基板100の上に直接第1電極110が形成されている。また、光機能層160は基板100のうち発光部140とは逆側の面に形成されている。ただし、基板100に垂直な方向から見た場合、第2電極130に対する光機能層160の位置及び大きさは、変形例4と同様である。
 本変形例によっても、実施形態と同様に、光機能層160を設けることにより、有機層120の光が第1面100aから外部に放射されやすくなる。また、第2電極130の縁は光機能層160の外側に位置するため、光機能層160を設けても、発光部140からの光は第1面100aとは逆側に出射しにくい。
(変形例6)
 図8は、変形例6に係る発光装置10の構成を示す断面図であり、実施形態における図2に対応している。本変形例に係る発光装置10は、第1電極110の縁が光機能層160の上に位置している点を除いて、実施形態に係る発光装置10と同様の構成である。本変形例において、第1電極110は、第1領域102に位置しているが、第2領域104及び第3領域106に位置していない。なお、本変形例において、発光装置10は変形例3に示した導電層180を有していてもよい。
 本変形例によっても、実施形態と同様に、光機能層160を設けることにより、有機層120の光が第1面100aから外部に放射されやすくなる。また、第2電極130の縁は光機能層160の外側に位置するため、光機能層160を設けても、発光部140からの光は第1面100aとは逆側に出射しにくい。
(変形例7)
 図9は、変形例7に係る発光装置10の構成を示す断面図であり、実施形態における図2に対応している。本変形例に係る発光装置10は、第2電極130の縁が絶縁層150の外側に位置している点を除いて、実施形態に係る発光装置10と同様の構成である。言い換えると、本変形例において、第2電極130の幅は実施形態よりも広く、その結果、光機能層160の縁と第2電極130の縁の距離wは実施形態よりも大きい。なお、本変形例において、発光装置10は変形例3に示した導電層180を有していてもよい。
 本変形例によれば、実施形態と同様に、光機能層160を設けることにより、有機層120の光が第1面100aから外部に放射されやすくなる。また、第2電極130の幅は実施形態よりも広いため、発光部140からの光は、さらに第1面100aとは逆側に出射しにくい。
(実施例1)
 図10は、実施例1に係る発光システムの構成を示す断面図である。この発光システムは、発光装置10及び仕切部材20を有している。仕切部材20は透光性を有しており、人が滞在する空間を外部から仕切っている。発光装置10は、上記した実施形態及び変形例のいずれかと同様の構成を有している。発光部140は基板100のうち人が滞在する空間側の面(第2面100b)に配置されている。この状態において、透光性の第1電極110、有機層120、及び第2電極130は、外部側からこの順に重なっている。
 仕切部材20は、例えば人が移動するための移動体30の窓であり、ガラス又は透光性の樹脂を用いて形成されている。移動体30は、例えば自動車、列車、又は飛行機である。移動体30が自動車の場合、仕切部材20はフロントガラス、リアガラス、又は座席の横に取り付けられた窓ガラス(例えばドアガラス)である。仕切部材20がリアガラスの場合、複数の発光部140は例えばブレーキランプとして機能する。また、仕切部材20がフロントガラス又はリアガラスの場合、複数の発光部140はターンランプであってもよい。または、会議室などの部屋の内部と外部を仕切る窓であってもよい。発光部140の点灯/非点灯により、会議室を利用しているか否かを識別できる発光システムでも良い。
 そして、発光装置10の光取出側の面(例えば基板100の第1面100a)は、接着層200を介して仕切部材20の内面(第1面22)に固定されている。このため、発光装置10の発光部140から放射された光は、仕切部材20を介して移動体30の外部に放射される。一方、発光装置10は光透過性を有している。このため、移動体30の内側に位置する人は、仕切部材20を介して移動体30の外部を視認することができる。なお、基板100の第1面100aの全面が接着層200を介して仕切部材20の第1面22に固定されていてもよいし、第1面100aの一部(例えば互いに対向する2辺)が仕切部材20の第1面22に固定されていてもよい。
 接着層200は仕切部材20と発光装置10とを接着させるものである。このような機能を果たす材料であればとくに限定はされない。また、仕切部材20の屈折率と発光装置10の基板100の屈折率とが、例えば両者ともにガラスで形成された場合などのように同じ場合は、両者と同じか近い屈折率を有する接着層200を用いる。他方で仕切部材20と基板100とで屈折率とが異なる(例えば、仕切部材20がプラスチックで形成され、基板100がガラスで形成される)場合は、接着層200の屈折率は仕切部材20と基板100の間の数値が好ましい。このようにすると、発光装置10の発光を、仕切部材20を介して外部へ効率よく光取り出しができるためである。また、発光装置10と仕切部材20とは隙間なく接着されるのが好ましい。隙間があると発光装置10からの発光が仕切部材20で反射され、その反射光が発光装置10の第2領域104、第3領域106を介して内部に伝わるからである。
 発光装置10は、実施形態及び各変形例のいずれかに示した構成を有している。従って、発光装置10の光取出効率は高い。また、発光装置10の光が移動体30の内部に向けて放射されることを抑制できる。このため、移動体30の内部から外部への視認性は、発光部140からの光に起因して低下しない。
 また、絶縁層150は透光性の材料によって形成されているが、一般的に、透光性の材料の光線透過率は光の波長によって異なる。このため、絶縁層150の幅が広いと、絶縁層150を光が透過する際に、その光のスペクトル分布が変わってしまう。この場合、発光装置10を介して物を見ると、その物の色が実際とは異なる色に見えてしまう。すなわち発光装置10を介することによって物の色が変化してしまう。例えば、青色の波長400nm~600nmの吸収が50%となり、他の波長の吸収より大きい場合、発光装置10を介して物を見たときに青色が弱くなり、黄みがかって見えてしまう。これに対して本実施例では第2領域104の幅は第3領域106の幅よりも狭いため、上記した色の変化を抑制できる。
 なお、図10に示す例において、仕切部材20は水平面に対して角度θ(0°<θ<90°)で傾いている。このため、発光装置10の基板100も水平面に対して角度θ(0°<θ<90°)で傾いている。
 図11は、図10の一部を拡大した図である。上記したように、発光装置10の基板100は、水平面に対して角度θ(0°<θ<90°)で傾いている。ここで、第2電極130の幅をa、光機能層160の幅をb、基板100の第2面100b(光機能層160が形成されている面)を基準としたときの第2電極130の高さをtとしたとき、下記(1)式が満たされている。
  a≧b+2t×tanθ・・・(1)
 このようにすると、発光部140からの光の一部が光機能層160で反射されても、この反射光は、光機能層160から、水平方向より図中下の方向には放射されにくい。従って、移動体30の内部から外部への視認性は、さらに低下しにくい。
 また、図12に示すように、光機能層160の中心と第2電極130の中心が重なっていなくてもよい。例えば、基板100の第2面100b(光機能層160が形成されている面)を基準としたときの第2電極130の高さをt、発光装置10の倒れ角(基板100の垂線と水平面が成す角度)をθとすると、光機能層160の幅bに対して、片側にt・tanθだけ第2電極130の幅を広くしてしても良い。なお、図12において、第1電極110と基板100の第2面100bの間には平坦化層162が形成されている。平坦化層162は、例えば樹脂などの絶縁材料を用いて形成されており、光機能層160の有無に起因した凹凸を平坦化している。
(実施例2)
 図13は、実施例2に係る発光システムの構成を示す断面図である。本実施例に係る発光システムは、発光装置10が仕切部材20のうち移動体30の外側の面(第2面24)に取り付けられている点を除いて、実施例に係る発光システムと同様の構成である。
 本実施例に係る発光装置10は、上記した実施形態及び各変形例のいずれかと同じ構成を有している。ただし、発光装置10は、仕切部材20とは逆側の面が光取出面となっている。このようにするためには、発光装置10の第2面100b側を仕切部材20に対向させればよい。
 本実施例によっても、実施例1と同様に、移動体30の内部にいる人は、発光装置10及び仕切部材20を介して移動体30の外部を視認することができる。また、発光装置10の光取出効率は高い。また、発光装置10の光が移動体30の内部に向けて放射されることを抑制できる。このため、移動体30の内部から外部への視認性は、発光部140からの光に起因して低下しない。
 また、発光装置10からの光は仕切部材20を介さずに直接移動体30の外部に放射される。このため、実施形態と比較して、移動体30の外部にいる人は発光装置10からの光を認識しやすい。また、移動体30の外部すなわち仕切部材の20の第2面24側に発光装置10を取り付けているので、発光装置10の発光が仕切部材20で反射して移動体30の内部へ入ることを抑制できる。
(実施例3)
 図14は、実施例3に係る発光システムの構成を示す断面図である。本実施例に係る発光システムは、固定部材210を用いて発光装置10を仕切部材20に固定している点を除いて、実施例1に係る発光システムと同様の構成である。
 固定部材210は枠状の部材であり、下面が接着層200を用いて仕切部材20に固定されている。固定部材210の上部は固定部材210の内側に向けて折れ曲がっており、この折れ曲がっている部分で発光装置10の縁を押さえている。ただし、固定部材210の形状は本図に示す例に限定されない。
 本実施例によっても、実施例1と同様に、移動体30の内部にいる人は、発光装置10及び仕切部材20を介して移動体30の外部を視認することができる。また、発光装置10の光取出効率は高い。また、発光装置10の光が移動体30の内部に向けて放射されることを抑制できる。このため、移動体30の内部から外部への視認性は、発光部140からの光に起因して低下しない。
 また、図15に示すように、移動体30の外側に向けて凸になる方向に仕切部材20が湾曲している場合がある。このような場合において、平板上の発光装置10を仕切部材20の内面(第1面22)に直接固定することは難しい。しかし、固定部材210を用いると、このような場合でも発光装置10を仕切部材20の第1面22に固定することができる。
 このような方法で湾曲する仕切部材20と平板上の発光装置10とを固定した場合、仕切部材20と発光装置10との間の隙間に充填剤を充填してもよい。前述の通り、隙間があると発光装置10からの発光が仕切部材20で反射され、その反射光が発光装置10の第2領域104、第3領域106を介して内部に伝わるからである。仕切部材20の屈折率と発光装置10の基板100の屈折率とが互いにほぼ同じ場合(例えば両者ともにガラスで形成されている場合)は、充填部材の屈折率は、これらの屈折率と同じか近い値であることが好ましい。また、仕切部材20と基板100とで屈折率とが異なる(例えば、仕切部材20がプラスチックで形成され、基板100がガラスで形成される)場合は、充填剤の屈折率は仕切部材20の屈折率と発光装置10の基板100の屈折率の間の数値が好ましい。
(実施例4)
 図16は、実施例4に係る発光システムの構成を示す断面図である。本実施例に係る発光システムは、発光部140が仕切部材20の第1面22又は第2面24に形成されている点を除いて、実施例1に係る発光システムと同様の構成である。言い換えると、本実施例において、仕切部材20は実施例1における基板100を兼ねている。
 なお、本実施例において、仕切部材20のうち発光部140が形成される面に凹部を形成し、この凹部内に発光部140を形成してもよい。例えば、複数の発光部140が形成される領域に一つの凹部を形成し、この凹部の底面に複数の発光部140を形成してもよいし、複数の発光部140のそれぞれに個別に凹部を形成してもよい。この場合、発光部140の封止は透過性の高い構成、例えば膜封止などによって、複数の凹部を一度に封止する構成であってもよい。凹部が発光部140に対して個別、または複数のいずれの場合においても、仕切部材20から発光部140が突出することを抑制できる。なお、仕切部材20の凹部に発光部140を形成する場合において、発光部140の上部は仕切部材20の第1面22(又は第2面24)から突出していてもよいし、発光部140の全体が第1面22(又は第2面24)の下方に位置していてもよい。
 本実施例によっても、実施例1と同様に、移動体30の内部にいる人は、発光装置10及び仕切部材20を介して移動体30の外部を視認することができる。また、発光装置10の光取出効率は高い。また、発光装置10の光が移動体30の内部に向けて放射されることを抑制できる。このため、移動体30の内部から外部への視認性は、発光部140からの光に起因して低下しない。また、発光システムは基板100を有していないため、発光システムの製造コストは低くなる。
(実施例5)
 図17は、実施例5に係る発光システムの構成を示す断面図である。本実施例に係る発光システムは、仕切部材20に複数の発光装置10が取り付けられている点を除いて、上記した実施形態及び各変形例並びに実施例1~4のいずれかと同様の構成である。複数の発光装置10は、互いに同一の制御信号に従って発光及び消灯が制御されていてもよいし、互いに異なる制御信号に従って発光及び消灯が制御されていてもよい。
 本実施例によっても、移動体30の内部にいる人は、発光装置10及び仕切部材20を介して移動体30の外部を視認することができる。また、発光装置10の光取出効率は高い。また、発光装置10の光が移動体30の内部に向けて放射されることを抑制できる。このため、移動体30の内部から外部への視認性は、発光部140からの光に起因して低下しない。
 以上、図面を参照して実施形態及び実施例について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。

Claims (5)

  1.  基板と、
     前記基板の一部の上に位置している光機能層と、
     前記光機能層の上に位置している光透過性の第1電極と、
     前記第1電極の上に位置している光反射性の第2電極と、
     前記第1電極と前記第2電極の間に位置している発光層と、
    を備え、
     前記第2電極は前記基板の上に複数形成され、
     前記複数の第2電極の間の領域の少なくとも一部は光透過性を有しており、
     前記第2電極の縁の少なくとも一部は前記光機能層の外側に位置している発光装置。
  2.  請求項1に記載の発光装置において、
     前記第2電極の縁の前記少なくとも一部において、前記第2電極の縁と前記光機能層の縁の距離は1μm以上である発光装置。
  3.  請求項1又は2に記載の発光装置において、
     前記光機能層は、前記複数の第2電極それぞれと重なる位置にあり、
     前記複数の光機能層及び前記複数の第2電極はストライプ状に延在している発光装置。
  4.  請求項3に記載の発光装置において、
     前記基板は水平方向に対して傾きθ(ただし0°<θ<90°)を有し、
     前記第2電極の幅をa、前記光機能層の幅をb、前記基板のうち前記光機能層が形成されている面を基準としたときの前記第2電極の高さをtとしたとき、
     a≧b+2t×tanθ
    を満たす発光装置。
  5.  請求項1~4のいずれか一項に記載の発光装置において、
     前記第1電極の縁を覆う絶縁層を備え、
     前記基板は、
     前記第2電極に重なる第1領域と、
     前記第2電極と重ならずに前記絶縁層と重なる第2領域と、
     前記第2電極及び前記絶縁層と重ならない領域である第3領域と、
    を備え、
     前記第2領域の幅は前記第3領域の幅よりも狭い発光装置。
PCT/JP2016/056672 2016-03-03 2016-03-03 発光装置 WO2017149733A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/081,885 US11127916B2 (en) 2016-03-03 2016-03-03 Light emitting device
PCT/JP2016/056672 WO2017149733A1 (ja) 2016-03-03 2016-03-03 発光装置
JP2018502459A JP6754826B2 (ja) 2016-03-03 2016-03-03 発光装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/056672 WO2017149733A1 (ja) 2016-03-03 2016-03-03 発光装置

Publications (1)

Publication Number Publication Date
WO2017149733A1 true WO2017149733A1 (ja) 2017-09-08

Family

ID=59743645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056672 WO2017149733A1 (ja) 2016-03-03 2016-03-03 発光装置

Country Status (3)

Country Link
US (1) US11127916B2 (ja)
JP (1) JP6754826B2 (ja)
WO (1) WO2017149733A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018006382A (ja) * 2016-06-27 2018-01-11 株式会社小糸製作所 発光装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005116193A (ja) * 2003-10-02 2005-04-28 Toyota Industries Corp 有機電界発光素子及び当該素子を備えた有機電界発光デバイス
JP2006023683A (ja) * 2004-07-09 2006-01-26 Seiko Epson Corp マイクロレンズの製造方法及び有機エレクトロルミネッセンス素子の製造方法
US20090097234A1 (en) * 2007-09-28 2009-04-16 Osram Opto Semiconductors Gmbh Illumination Device, Luminaire and Display Device
JP2009152148A (ja) * 2007-12-21 2009-07-09 Rohm Co Ltd 有機発光装置
JP2010272471A (ja) * 2009-05-25 2010-12-02 Nec Lighting Ltd 面発光装置
JP2015515720A (ja) * 2012-03-23 2015-05-28 エルジー・ケム・リミテッド 有機電子素子用基板の製造方法
JP2016009571A (ja) * 2014-06-24 2016-01-18 凸版印刷株式会社 有機エレクトロルミネッセンス素子

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5758314B2 (ja) * 2012-01-17 2015-08-05 株式会社東芝 有機電界発光素子、及び照明装置
KR102010789B1 (ko) * 2012-12-27 2019-10-21 엘지디스플레이 주식회사 투명 유기 발광 표시 장치 및 투명 유기 발광 표시 장치 제조 방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005116193A (ja) * 2003-10-02 2005-04-28 Toyota Industries Corp 有機電界発光素子及び当該素子を備えた有機電界発光デバイス
JP2006023683A (ja) * 2004-07-09 2006-01-26 Seiko Epson Corp マイクロレンズの製造方法及び有機エレクトロルミネッセンス素子の製造方法
US20090097234A1 (en) * 2007-09-28 2009-04-16 Osram Opto Semiconductors Gmbh Illumination Device, Luminaire and Display Device
JP2009152148A (ja) * 2007-12-21 2009-07-09 Rohm Co Ltd 有機発光装置
JP2010272471A (ja) * 2009-05-25 2010-12-02 Nec Lighting Ltd 面発光装置
JP2015515720A (ja) * 2012-03-23 2015-05-28 エルジー・ケム・リミテッド 有機電子素子用基板の製造方法
JP2016009571A (ja) * 2014-06-24 2016-01-18 凸版印刷株式会社 有機エレクトロルミネッセンス素子

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018006382A (ja) * 2016-06-27 2018-01-11 株式会社小糸製作所 発光装置

Also Published As

Publication number Publication date
US11127916B2 (en) 2021-09-21
JPWO2017149733A1 (ja) 2018-12-27
US20190074473A1 (en) 2019-03-07
JP6754826B2 (ja) 2020-09-16

Similar Documents

Publication Publication Date Title
WO2018061102A1 (ja) 発光装置
US20230320128A1 (en) Light-emitting device and light-emitting system
WO2017138633A1 (ja) 発光装置
JP2017103048A (ja) 発光装置及び発光システム
US20200052238A1 (en) Light-emitting device and light-emitting system
WO2017149733A1 (ja) 発光装置
WO2017073459A1 (ja) 発光システム
WO2017131143A1 (ja) 発光装置
US11930666B2 (en) Light-emitting device and light-emitting system
JP2017103049A (ja) 発光装置及び発光システム
JP6986599B2 (ja) 発光装置
US20200028118A1 (en) Light-emitting system
WO2017094499A1 (ja) 発光装置
US20240215326A1 (en) Light-emitting device and light-emitting system
WO2017158775A1 (ja) 発光装置及び発光システム
JP6847642B2 (ja) 発光装置
WO2017094498A1 (ja) 発光システム
JP6692889B2 (ja) 発光装置および発光システム
JP2022016679A (ja) 発光装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018502459

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16892573

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16892573

Country of ref document: EP

Kind code of ref document: A1