WO2018061102A1 - 発光装置 - Google Patents

発光装置 Download PDF

Info

Publication number
WO2018061102A1
WO2018061102A1 PCT/JP2016/078569 JP2016078569W WO2018061102A1 WO 2018061102 A1 WO2018061102 A1 WO 2018061102A1 JP 2016078569 W JP2016078569 W JP 2016078569W WO 2018061102 A1 WO2018061102 A1 WO 2018061102A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light emitting
emitting device
wavelength
layer
Prior art date
Application number
PCT/JP2016/078569
Other languages
English (en)
French (fr)
Inventor
吉田 綾子
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to JP2018541769A priority Critical patent/JPWO2018061102A1/ja
Priority to US16/337,877 priority patent/US20200035954A1/en
Priority to PCT/JP2016/078569 priority patent/WO2018061102A1/ja
Publication of WO2018061102A1 publication Critical patent/WO2018061102A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/856Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • H10K59/1315Interconnections, e.g. wiring lines or terminals comprising structures specially adapted for lowering the resistance
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/468Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics
    • H10K10/474Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics the gate dielectric comprising a multilayered structure
    • H10K10/476Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics the gate dielectric comprising a multilayered structure comprising at least one organic layer and at least one inorganic layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/80Constructional details
    • H10K10/82Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations

Definitions

  • the present invention relates to a light emitting device.
  • This light-emitting device is used as a lighting device or a display device, and has a configuration in which an organic layer is sandwiched between a first electrode and a second electrode.
  • a transparent material is used for the first electrode
  • a metal material is used for the second electrode.
  • One of light-emitting devices using organic EL is a technique described in Patent Document 1.
  • the second electrode is provided only in a part of the pixel so that the display device using the organic EL has light transmittance (see-through).
  • the display device since the region positioned between the plurality of second electrodes transmits light, the display device can have light transmittance.
  • a transmissive light emitting device for example, it is difficult to leak light from a surface opposite to a light emitting surface.
  • the invention described in claim 1 A plurality of light emitting portions that emit light having a peak at the first wavelength, located between the first base material having translucency and the second base material having translucency; A light transmissive region located between the plurality of light emitting units,
  • the second substrate includes a reflective layer;
  • the reflective layer is a light emitting device having a reflectance of light of the first wavelength higher than an average reflectance of light within a wavelength range of 400 nm to 700 nm.
  • the invention described in claim 2 A plurality of light emitting portions that emit light having a peak at the first wavelength, located between the first base material having translucency and the second base material having translucency; A light transmissive region located between the plurality of light emitting units,
  • the second substrate includes a reflective layer; In the light emitting device, the reflectance of the reflective layer is 30% or more with respect to light in a wavelength range in which the upper and lower limits are two wavelengths that take half the intensity of the peak at the peak.
  • the invention according to claim 3 A plurality of light emitting portions that emit light having a peak at the first wavelength, located between the first base material having translucency and the second base material having translucency; A light transmissive region located between the plurality of light emitting units,
  • the second substrate includes a reflective layer; Of the reflection spectrum of light in the wavelength range of 400 nm to 700 nm of the reflective layer, the wavelength having the maximum reflectance is a wavelength having upper and lower limits of two wavelengths that take half the peak intensity at the peak. It is the light-emitting device located in the range.
  • the invention according to claim 4 A plurality of light emitting portions that emit light having a peak at the first wavelength, located between the first base material having translucency and the second base material having translucency; A light transmissive region located between the plurality of light emitting units,
  • the second substrate includes a reflective layer; When the maximum reflectance in the reflection spectrum of light in the wavelength range of 400 nm to 700 nm of the reflective layer is R max , the first reflectance is within the wavelength range where the reflectance of R max ⁇ 0.5 or more takes.
  • the light emitting device includes a wavelength.
  • the invention according to claim 13 A plurality of light emitting portions that are located between the base material having translucency and the coating layer having translucency and emit light having a peak at the first wavelength; A light transmissive region located between the plurality of light emitting units, The covering layer includes a reflective layer; The reflective layer is a light emitting device having a reflectance of light of the first wavelength higher than an average reflectance of light within a wavelength range of 400 nm to 700 nm.
  • the invention according to claim 14 A plurality of light emitting portions that are located between the base material having translucency and the coating layer having translucency and emit light having a peak at the first wavelength; A light transmissive region located between the plurality of light emitting units, The covering layer includes a reflective layer; In the light emitting device, the reflectance of the reflective layer is 30% or more with respect to light in a wavelength range having upper and lower limits of two wavelengths taking the intensity of one half of the peak intensity at the peak.
  • the invention according to claim 15 is: A plurality of light emitting portions that are located between the base material having translucency and the coating layer having translucency and emit light having a peak at the first wavelength; A light transmissive region located between the plurality of light emitting units, The covering layer includes a reflective layer; The wavelength having the highest reflectance in the reflection spectrum of light in the wavelength range of 400 nm to 700 nm of the reflective layer is a wavelength having upper and lower limits of two wavelengths taking the intensity of one half of the peak intensity at the peak. It is the light-emitting device located in the range.
  • the invention described in claim 16 A plurality of light emitting portions that are located between the base material having translucency and the coating layer having translucency and emit light having a peak at the first wavelength; A light transmissive region located between the plurality of light emitting units, The covering layer includes a reflective layer; When the maximum reflectance of the reflection spectrum of light in the wavelength range of 400 nm to 700 nm of the reflective layer is R max , the first wavelength falls within a wavelength range that takes a reflectance of R max ⁇ 0.5 or more. Is a light emitting device.
  • FIG. 1 is a cross-sectional view illustrating a configuration of a light emitting device 10 according to the first embodiment.
  • the supervisor P looks at the light emission surface of the light emitting device 10 from a direction perpendicular to the substrate 100 in FIG.
  • FIG. 2 is an enlarged view of the light emitting unit 140 of the light emitting device 10.
  • the light emitting device 10 includes a plurality of light emitting units 140 positioned between a first base 210 having translucency and a second base 220 having translucency.
  • the light emitting unit 140 emits light having a peak at the first wavelength. Further, the light emitting device 10 includes a light transmission region located between the plurality of light emitting units 140.
  • the second base material 220 includes the optical function layer 170.
  • the 2nd base material 220 contains the optical function layer 170 means that the light emission part 140 is located between the 1st base material 210 and the optical function layer 170.
  • the optical functional layer 170 may be a layer formed with respect to the first base 210 in the manufacturing process of the light emitting device 10, or may be a layer partially in contact with the first base 210. .
  • the optical functional layer 170 will be described below.
  • the optical functional layer 170 is, for example, a layer having at least one function of a wavelength selective light filter, a wavelength selective absorption filter, a wavelength selective light shielding filter, and a wavelength selective reflection layer.
  • the optical functional layer 170 may be a layer that suppresses transmission of light of wavelengths other than the partial wavelength band including the first wavelength of visible light more than transmission of light of the partial wavelength band.
  • the partial wavelength band is, for example, in the range of a wavelength that is 50 nm shorter than the first wavelength and a wavelength that is 50 nm longer than the first wavelength.
  • the optical functional layer 170 is a wavelength selective reflection layer will be described in detail.
  • the optical functional layer 170 according to the present embodiment is not particularly limited as long as it is a layer that particularly reflects the light of the first wavelength.
  • the optical functional layer 170 is a layer corresponding to at least one of the following first to fifth examples.
  • the first wavelength is a wavelength that takes the maximum peak in the emission spectrum of the light emitting unit 140.
  • the emission spectrum of the light emitting unit 140 is obtained, for example, by measuring light output from the output surface of the light emitting device 10 on the first substrate 210 side.
  • the reflection spectrum of the optical functional layer 170 is, for example, on the light emitting device 10 on the second base material 220 side. It is obtained by irradiating light from and measuring the reflected light at regular reflection.
  • the second base material 220 has translucency, a structure including the optical function layer 170 is cut out from the light emitting device 10, and the reflectance of the light measured for the structure is used as the light reflection of the optical function layer 170.
  • a rate For example, in the example shown in this figure, by cutting the adhesive layer 184, a structure including a part of the sealing member 180, the optical function layer 170, and the adhesive layer 184 can be obtained and used as a measurement target.
  • the measurement range of the emission spectrum and reflection spectrum is, for example, 400 nm to 700 nm.
  • the presence of the optical functional layer 170 and the wavelength with particularly high reflectance can be confirmed by analyzing the cross section of the light emitting device 10 and confirming the material and thickness of the laminated films.
  • the optical function layer 170 is a layer having a higher reflectance of light at the first wavelength than an average reflectance (average reflectance) of light within a wavelength range of 400 nm to 700 nm.
  • the average reflectance of the optical functional layer 170 is obtained, for example, by measuring the reflectance of the optical functional layer 170 for light of a plurality of wavelengths for each wavelength and calculating the average value thereof.
  • a wavelength range having upper and lower limits of two wavelengths taking half the peak intensity at the peak including the first wavelength is defined as the first range.
  • the reflectance of the light of the optical function layer 170 with respect to the light within the first range is 30% or more.
  • FIG. 3 is a diagram illustrating an example of an emission spectrum of the light emitting unit 140.
  • the emission spectrum shown in this figure has a maximum peak at the first wavelength. Peak intensity in the first wavelength is I a.
  • the emission intensity Ib is a half of Ia .
  • Skirt of the peak of the first wave takes the intensity I b at a second wavelength and a third wavelength.
  • the second wavelength is shorter than the third wavelength.
  • the wavelength range with the second wavelength as the lower limit and the third wavelength as the upper limit is defined as the first range.
  • the reflectance of the optical function layer 170 is 30% or more over the entire first range. Then, the back-side leakage light is felt small by human eyes.
  • the reflectance of the optical function layer 170 is more preferably 50% or more over the entire first range.
  • the emission spectrum of the light emitting portion 140 is, when taking the intensity I b at three or more wavelengths, of those wavelengths, the wavelength close to and closest to the first wavelength shorter than the first wavelength and the second wavelength To do. Of these wavelengths, a wavelength longer than the first wavelength and closest to the first wavelength is defined as a third wavelength. Note that another emission peak may exist in the first range at wavelengths other than the first wavelength.
  • the optical functional layer 170 is a layer having a maximum reflectance within the first range described in the second example. Specifically, the wavelength having the maximum reflectance in the reflection spectrum of light in the wavelength range of 400 nm to 700 nm of the optical functional layer 170 is located within the first range.
  • the maximum reflectance in the reflection spectrum of light in the wavelength range of 400 nm to 700 nm of the optical functional layer 170 is R max .
  • a wavelength range in which the reflectance is R max ⁇ 0.5 or more is taken as a second range.
  • the first wavelength is included in the second range.
  • FIG. 4 is a diagram illustrating an example of the reflection spectrum of the optical function layer 170.
  • the reflection spectrum shown in the figure shows the maximum reflectance R max at the fourth wavelength.
  • the reflectance R h is 0.5 times as large as R max .
  • a fifth wavelength and sixth wavelength indicates a wavelength to take the reflectance R h.
  • the fourth wavelength is located between the fifth wavelength and the sixth wavelength, and the fifth wavelength is shorter than the sixth wavelength.
  • the wavelength range with the fifth wavelength as the lower limit and the sixth wavelength as the upper limit can be set as the second range.
  • the fifth wavelength may not exist in the range from 400 nm to 700 nm. In that case, 400 nm is the lower limit of the second range.
  • the sixth wavelength may not exist in the range of 400 nm to 700 nm.
  • 700 nm is the upper limit of the second range.
  • the first wavelength that is the peak wavelength of the emission spectrum of the light emitting unit 140 is included in the second range.
  • the wavelength shorter than the fourth wavelength and closest to the fourth wavelength among the wavelengths is the fifth.
  • the wavelength that is longer than the fourth wavelength and closest to the fourth wavelength is defined as the sixth wavelength.
  • the difference between the wavelength that takes the maximum reflectance of the reflection spectrum of the optical function layer 170 and the first wavelength that is the peak wavelength of the emission spectrum of the light emitting unit 140 is 100 nm or less. Further, it is more preferable that the difference between the wavelength having the maximum reflectance of the reflection spectrum of the optical function layer 170 and the first wavelength that is the peak wavelength of the emission spectrum of the light emitting unit 140 is 50 nm or less.
  • the wavelength range having the upper and lower limits of the two wavelengths that take 1/5 of the peak intensity at the peak of the first wavelength is the third range
  • the light transmittance of the optical function layer 170 with respect to light within the three ranges is 50% or more on average. Then, the optical functional layer 170 can sufficiently transmit light, and the light-transmitting property of the light emitting device 10 can be ensured.
  • the wavelength shorter than the first wavelength and closest to the first wavelength among these wavelengths Is the lower limit of the third range
  • the wavelength longer than the first wavelength and closest to the first wavelength is the upper limit.
  • other peaks may exist in the third range at wavelengths other than the first wavelength.
  • the light reflectance of the optical function layer 170 at a wavelength shorter than the first wavelength by 100 nm and a wavelength longer by 100 nm is preferably 50% or less, and 20% or less. More preferably.
  • the optical functional layer 170 can sufficiently transmit light having a wavelength away from the first wavelength.
  • FIG. 5 is a diagram illustrating an example of an optical path in the light emitting device 10.
  • the first base material 210 side of the light emitting device 10 is referred to as a “front surface”
  • the second base material 220 side is referred to as a “back surface”.
  • a part of the light L 1 output from the light emitting unit 140 and traveling toward the substrate 100 is output to the outside of the light emitting device 10.
  • a part of light having the incident angle larger than the critical angle of the interface between the substrate 100 and the gas phase is totally reflected by the front surface of the light emitting device 10, it proceeds as light L 2.
  • the light emitting device 10 of the present embodiment includes the optical function layer 170.
  • the optical functional layer 170 selectively reflects the light of the first wavelength, thereby ensuring visibility of the light emitting device 10 from the front surface side to the back surface side and from the back surface side to the front surface side. be able to.
  • the light emitting device 10 includes a first base 210 having translucency and a second base 220 having translucency.
  • the second base material 220 includes an adhesive layer 184, an optical function layer 170, and a sealing member 180.
  • the sealing member 180 covers the light emitting unit 140 through the adhesive layer 184.
  • the optical functional layer 170 is in contact with the sealing member 180.
  • the optical functional layer 170 is in contact with the surface of the sealing member 180 on the light emitting portion 140 side, but is in contact with the surface of the sealing member 180 opposite to the light emitting portion 140. Also good.
  • the optical function layer 170 may be provided on both surfaces of the sealing member 180.
  • the first base material 210 of this embodiment includes a substrate 100.
  • the substrate 100 is a light-transmitting substrate such as a glass substrate or a resin substrate.
  • the substrate 100 may have flexibility. In the case of flexibility, the thickness of the substrate 100 is, for example, not less than 10 ⁇ m and not more than 1000 ⁇ m.
  • the substrate 100 is, for example, a polygon such as a rectangle or a circle.
  • the substrate 100 is formed using, for example, PEN (polyethylene naphthalate), PES (polyethersulfone), PET (polyethylene terephthalate), or polyimide.
  • the substrate 100 is a resin substrate
  • an inorganic barrier film such as SiN x or SiON is formed on at least one surface (preferably both surfaces) of the substrate 100 in order to prevent moisture from permeating the substrate 100. It is preferable.
  • the first base 210 includes the substrate 100 and an inorganic barrier film.
  • a light emitting unit 140 is formed on one surface of the substrate 100.
  • the light emitting unit 140 includes a light transmissive first electrode 110, a light shielding second electrode 130, and an organic layer 120 positioned between the first electrode 110 and the second electrode 130.
  • the second electrode 130 is located on the opposite side of the first base material 210 with respect to the first electrode 110. With such a configuration, light from the light emitting unit 140 is output to the first base material 210 side.
  • a part of the light from the light emitting unit 140 may be output to the second base material 220 side, for example, as leakage light, but the light output to the first base material 210 side is output to the second base material 220 side. The intensity is higher than the output light.
  • the plurality of light emitting units 140 When the light emitting device 10 is an illumination device, the plurality of light emitting units 140 extend in a line shape. On the other hand, when the light emitting device 10 is a display device, the plurality of light emitting units 140 are arranged so as to form a matrix, or form a segment or display a predetermined shape (for example, display icons). It may be. The plurality of light emitting units 140 are formed for each pixel.
  • the first electrode 110 is a transparent electrode having optical transparency.
  • the material of the transparent electrode is a metal-containing material, for example, a metal oxide such as ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), IWZO (Indium Tungsten Zinc Oxide), or ZnO (Zinc Oxide).
  • the thickness of the first electrode 110 is, for example, not less than 10 nm and not more than 500 nm.
  • the first electrode 110 is formed using, for example, a sputtering method or a vapor deposition method.
  • the first electrode 110 may be a carbon nanotube or a conductive organic material such as PEDOT / PSS. In this figure, a plurality of linear first electrodes 110 are formed in parallel with each other on the substrate 100, and the first electrode 110 is not located in the second region 104 and the third region 106.
  • the organic layer 120 has a light emitting layer.
  • the organic layer 120 has a configuration in which, for example, a hole injection layer, a light emitting layer, and an electron injection layer are stacked in this order.
  • a hole transport layer may be formed between the hole injection layer and the light emitting layer.
  • an electron transport layer may be formed between the light emitting layer and the electron injection layer.
  • the organic layer 120 may be formed by a vapor deposition method.
  • at least one layer of the organic layer 120, for example, a layer in contact with the first electrode 110, may be formed by a coating method such as an inkjet method, a printing method, or a spray method. In this case, the remaining layers of the organic layer 120 are formed by vapor deposition.
  • all the layers of the organic layer 120 may be formed using the apply
  • the second electrode 130 is made of, for example, a metal selected from the first group consisting of Al, Au, Ag, Pt, Mg, Sn, Zn, and In, or an alloy of a metal selected from the first group. Contains a metal layer. In this case, the second electrode 130 has a light shielding property. The thickness of the second electrode 130 is, for example, not less than 10 nm and not more than 500 nm.
  • the second electrode 130 is formed using, for example, a sputtering method or a vapor deposition method. In the example shown in this drawing, the light emitting device 10 has a plurality of linear second electrodes 130. The second electrode 130 is provided for each of the first electrodes 110 and is wider than the first electrode 110.
  • the entire first electrode 110 is overlapped and covered by the second electrode 130 in the width direction. Further, the first electrode 110 is wider than the second electrode 130, and when viewed from a direction perpendicular to the substrate 100, the first electrode 110 may be entirely covered with the first electrode 110 in the width direction. Good.
  • the edge of the first electrode 110 is covered with an insulating film 150.
  • the insulating film 150 is made of, for example, a photosensitive resin material such as polyimide, and surrounds a portion of the first electrode 110 that becomes the light emitting portion 140.
  • An edge in the width direction of the second electrode 130 is located on the insulating film 150.
  • a part of the insulating film 150 protrudes from the second electrode 130 when viewed from a direction perpendicular to the substrate 100.
  • the organic layer 120 is also formed on the top and side surfaces of the insulating film 150.
  • the organic layer 120 is divided between the adjacent light emitting units 140. However, the organic layer 120 may be provided continuously over the adjacent light emitting units 140.
  • the light emitting device 10 has a first region 102, a second region 104, and a third region 106.
  • the first region 102 is a region overlapping with the second electrode 130 when viewed from the direction perpendicular to the substrate 100.
  • the second region 104 does not overlap the second electrode 130 but overlaps the insulating film 150.
  • the organic layer 120 is also formed in the second region 104.
  • the third region 106 is a region that does not overlap the second electrode 130 or the insulating film 150.
  • the light transmission region includes a second region 104 and a third region 106. That is, the light transmission region is a region that does not overlap the second electrode 130 when viewed from the direction perpendicular to the first base material 210.
  • the organic layer 120 is not formed in at least a part of the third region 106.
  • the width of the second region 104 is narrower than the width of the third region 106.
  • the width of the third region 106 may be wider or narrower than that of the first region 102.
  • the width of the first region 102 is 1, the width of the second region 104 is, for example, 0 or more (or more than 0) 0.3 or less, and the width of the third region 106 is, for example, 0.3 or more and 5 or less. .
  • the width of the first region 102 is, for example, 50 ⁇ m or more and 500 ⁇ m or less
  • the width of the second region 104 is, for example, 0 ⁇ m or more (or more than 0 ⁇ m)
  • the width of the third region 106 is, for example, 15 ⁇ m or more, 1500 ⁇ m or less. is there.
  • the planar shape of the substrate 100 is, for example, a polygon such as a rectangle or a circle.
  • the sealing member 180 has translucency, for example, is formed using glass or resin.
  • the sealing member 180 is a polygon or a circle similar to the substrate 100, and has a shape in which a recess is provided at the center.
  • the plurality of light emitting units 140 are all located in a sealed space between the substrate 100 and the sealing member 180.
  • the sealed space is filled with an adhesive, and an adhesive layer 184 is formed.
  • the sealing member 180 may be plate-shaped. Also in this case, the sealing member 180 is fixed to the light emitting unit 140 with the adhesive layer 184.
  • the adhesive layer 184 for example, an epoxy resin can be used.
  • an optical functional layer 170 is formed on one surface of the sealing member 180.
  • the optical functional layer 170 is located between the adhesive layer 184 and the sealing member 180 and is in contact with the adhesive layer 184 and the sealing member 180.
  • the optical functional layer 170 may be formed on at least one surface of the sealing member 180. That is, the optical function layer 170 may be formed on both surfaces of the sealing member 180, and the optical function layer 170 is provided only on the surface of the sealing member 180 opposite to the light emitting unit 140. Also good.
  • the optical function layer 170 is formed in a region overlapping with the light transmission region when viewed from the direction perpendicular to the first base 210, and more specifically, the optical function layer 170 includes the entire light transmission region. They are formed in overlapping areas. Therefore, it is possible to suppress the light from the light emitting unit 140 from being reflected and pass through the light transmission region, and to more effectively reduce the back surface leakage light.
  • the optical functional layer 170 is also formed in a region overlapping the light emitting unit 140 when viewed from the direction perpendicular to the first base 210, and the first region 102, the second region 104, and It is provided so as to overlap the entire third region 106. Therefore, it is not necessary to pattern the optical functional layer 170 and can be easily formed.
  • the optical function layer 170 may be formed only in a region overlapping with the light transmission region.
  • the optical functional layer 170 is made of a laminated film in which a plurality of dielectric films are laminated, or a metal film.
  • the optical functional layer 170 is a film made of a metal such as Al or Ag, and the thickness of the optical functional layer 170 is, for example, not less than 1 nm and not more than 30 nm. If it does so, while being able to form a film stably, sufficient light transmittance can be secured.
  • the optical functional layer 170 can be formed by, for example, a vapor deposition method or a sputtering method.
  • the optical functional layer 170 is made of a metal film
  • the surface of the optical functional layer 170 is covered with an insulating member such as the sealing member 180 and the adhesive layer 184 and is electrically floating.
  • the optical function layer 170 is a layer that does not constitute the light emitting unit 140.
  • the laminated film is, for example, a film containing an inorganic material, and constitutes a dielectric mirror or an interference filter.
  • the dielectric film include a silicon oxide film, a silicon nitride film, a silicon oxynitride film, a titanium oxide film, an aluminum oxide film, and a mixed phase film thereof.
  • the laminated film includes a plurality of types of dielectric films having different dielectric constants.
  • the number of dielectric films included in the laminated film is not particularly limited, but is preferably 3 or more.
  • the thickness of each dielectric film is, for example, not less than 50 nm and not more than 1 ⁇ m.
  • the thickness of each dielectric film included in the laminated film is, for example, ⁇ / (4 ⁇ n) ⁇ 0.80 or more, ⁇ / (4 ⁇ n) ⁇ 1.20 or less.
  • the thickness of the laminated film as the optical functional layer 170 is not particularly limited, but is, for example, 100 nm or more and 5 ⁇ m or less.
  • Each dielectric film can be formed by a vacuum film forming method such as a sputtering method, a CVD method, or an ALD method.
  • FIG. 6 is a plan view of the light emitting device 10. However, some members are omitted in the figure. 1 corresponds to the AA cross section of FIG. In the example shown in this figure, the first region 102, the second region 104, and the third region 106 are all linear and extend in the same direction. As shown in FIG. 1 and FIG. 1, the second area 104, the first area 102, the second area 104, and the third area 106 are repeatedly arranged in this order.
  • the first region 102 has the lowest light transmittance among the first region 102, the second region 104, and the third region 106.
  • the second region 104 has a lower light transmittance than the third region 106 due to the presence of the insulating film 150.
  • the width of the second region 104 can be made smaller than the width of the third region 106. Then, the area occupancy of the second region 104 in the light emitting device 10 is lower than the area occupancy of the third region 106, and the light transmittance of the light emitting device 10 is increased.
  • the first electrode 110 is formed on the substrate 100 by using, for example, a sputtering method.
  • the first electrode 110 is formed into a predetermined pattern using, for example, a photolithography method.
  • the insulating film 150 is formed on the edge of the first electrode 110.
  • the organic layer 120 and the second electrode 130 are formed in this order.
  • the organic layer 120 includes a layer formed by an evaporation method, this layer is formed in a predetermined pattern using, for example, a mask.
  • the second electrode 130 is also formed in a predetermined pattern using, for example, a mask.
  • the sealing member 180 on which the optical functional layer 170 is formed is bonded with the adhesive layer 184 to seal the light emitting unit 140.
  • the light emitting device 10 includes a light transmission region positioned between the plurality of light emitting units 140.
  • the second base material 220 includes an optical functional layer 170 corresponding to at least one of the first to fifth examples. Therefore, it is possible to suppress the light reflected on the front surface side of the substrate 100 from being emitted to the back surface side of the light emitting device 10 and reduce the back surface leakage light.
  • FIG. 7 is a cross-sectional view showing the configuration of the light emitting device 10 according to the second embodiment. This figure corresponds to FIG. 1 in the first embodiment.
  • the light emitting device 10 according to the present embodiment is the same as the light emitting device 10 according to the first embodiment except for the points described below.
  • the optical functional layer 170 is formed between the light emitting unit 140 and the adhesive layer 184.
  • the optical functional layer 170 is in contact with the light emitting unit 140. Therefore, the light traveling from the front surface to the back surface of the light emitting device 10 can be reflected before entering the adhesive layer 184 or the sealing member 180. As a result, it is possible to reduce the generation frequency of diffused light that becomes backside leakage light, that is, light having a small incident angle with respect to the interface between the backside of the light emitting device 10 and the gas phase.
  • the light emitting device 10 includes a sealing film 182.
  • the sealing film 182 is formed so as to cover the light emitting unit 140.
  • the sealing film 182 is in contact with the optical functional layer 170 and covers the entire first region 102, second region 104, and third region 106 when viewed from the direction perpendicular to the substrate 100. Yes.
  • the sealing film 182 may not be formed in at least a part of the light transmission region.
  • an inorganic barrier film such as SiN x , SiON, Al 2 O 3 , or TiO 2 , a barrier laminated film including them, or a mixed film thereof can be used.
  • a vacuum film forming method such as a sputtering method, a CVD method, or an ALD method.
  • the formation of the light emitting unit 140 can be performed in the same manner as in the first embodiment.
  • the optical functional layer 170 and the sealing film 182 are then formed on the second electrode 130.
  • the sealing member 180 is bonded with the adhesive layer 184, and the light emitting unit 140 is sealed through the optical function layer 170 and the sealing film 182.
  • the optical function layer 170 and the sealing film 182 are laminated in this order from the light emitting unit 140 side, and the optical function layer 170 is in contact with the light emitting unit 140, but the sealing film 182.
  • the order of stacking the optical function layers 170 may be reversed. That is, the sealing film 182 and the optical function layer 170 may be laminated in this order from the light emitting unit 140 side, and the sealing film 182 may be in contact with the light emitting unit 140.
  • the sealing film 182 is positioned between the optical functional layer 170 and the second electrode 130 so that the optical functional layer 170 and the second electrode 130 do not contact each other. By doing so, it is possible to prevent the second electrodes 130 of the plurality of light emitting units 140 from being short-circuited.
  • the sealing film 182 may also serve as the optical function layer 170. That is, the second base material 220 may include a sealing film 182 that contacts the light emitting unit 140 and covers the light emitting unit 140, and the sealing film 182 may be the optical function layer 170. In this case, in the manufacture of the light emitting device 10, the number of film forming steps can be reduced.
  • an optical function layer 170 may be further provided on at least one surface of the sealing member 180 as in the first embodiment.
  • the light emitting device 10 does not necessarily include both the sealing film 182 and the sealing member 180, and it is sufficient that at least one of them is provided. If it does so, the light emission part 140 can be sealed and the durability of the light emission part 140 can be ensured. Further, when the light emitting device 10 does not have the sealing member 180, the adhesive layer 184 is not necessarily formed on the light emitting device 10.
  • the light emitting device 10 includes a light transmission region positioned between the plurality of light emitting units 140.
  • the second base material 220 includes an optical functional layer 170 corresponding to at least one of the first to fifth examples. Therefore, it is possible to suppress the light reflected on the front surface side of the substrate 100 from being emitted to the back surface side of the light emitting device 10 and reduce the back surface leakage light.
  • FIG. 8 is a cross-sectional view illustrating a configuration of the light emitting device 10 according to the third embodiment. This figure corresponds to FIG. 1 in the first embodiment.
  • the light emitting device 10 according to the present embodiment is the same as at least one of the light emitting devices 10 of the first embodiment and the second embodiment except for the points described below.
  • the sealing member 180 is fixed to the substrate 100 only at the edge. Therefore, the first region 102, the second region 104, and the third region 106 are not covered with the adhesive layer 184. A gas phase exists between the light emitting unit 140 and the sealing member 180.
  • the formation of the optical functional layer 170 can be performed in the same manner as in the second embodiment.
  • the light emitting unit 140 is then covered with the sealing member 180, and the edge of the sealing member 180 is fixed to the substrate 100 with an adhesive.
  • the light emitting unit 140 is sealed in the space between the sealing member 180 and the substrate 100.
  • the optical functional layer 170 is in contact with the light emitting unit 140, but the optical functional layer 170 is provided on at least one surface of the sealing member 180 as in the first embodiment. Also good.
  • the light emitting device 10 may further include a sealing film 182 as shown in the second embodiment.
  • the light emitting device 10 includes a light transmission region positioned between the plurality of light emitting units 140.
  • the second base material 220 includes an optical functional layer 170 corresponding to at least one of the first to fifth examples. Therefore, it is possible to suppress the light reflected on the front surface side of the substrate 100 from being emitted to the back surface side of the light emitting device 10 and reduce the back surface leakage light.
  • FIG. 9 is a cross-sectional view illustrating a configuration of the light emitting device 10 according to the fourth embodiment. This figure corresponds to FIG. 1 in the first embodiment.
  • the light emitting device 10 according to the present embodiment is the same as the light emitting device 10 of at least one of the first to third embodiments except that the light emitting device 10 includes a plurality of sealing films 182.
  • a sealing film 182, an optical function layer 170, a resin layer 186, and a sealing film 182 are laminated in this order from the light emitting unit 140 side.
  • the optical functional layer 170, the sealing film 182, the resin layer 186, and the sealing film 182 may be stacked in this order from the light emitting unit 140 side, for example.
  • the resin layer 186 is made of, for example, a resin such as polyimide, epoxy resin, or acrylic resin, or a coated inorganic material such as polysilazane.
  • the light emitting device 10 includes the two-layer sealing film 182 in this drawing, the light emitting device 10 may include three or more layers of the sealing film 182. Even in that case, the resin layer 186 is provided between the two sealing films 182.
  • the light emitting device 10 may include two or more optical function layers 170 between the light emitting unit 140 and the adhesive layer 184.
  • the formation of the light emitting unit 140 can be performed in the same manner as in the first embodiment.
  • the sealing film 182, the optical function layer 170, the resin layer 186, and the sealing film 182 are formed in this order on the second electrode 130.
  • the resin layer 186 can be formed by a coating method such as a spin coating method or an ink jet method.
  • the sealing member 180 is adhere
  • an optical functional layer 170 may be further provided on at least one of the sealing members 180.
  • the light emitting device 10 may not include the sealing member 180 and the adhesive layer 184.
  • the light emitting device 10 includes a light transmission region positioned between the plurality of light emitting units 140.
  • the second base material 220 includes an optical functional layer 170 corresponding to at least one of the first to fifth examples. Therefore, it is possible to suppress the light reflected on the front surface side of the substrate 100 from being emitted to the back surface side of the light emitting device 10 and reduce the back surface leakage light.
  • the light emitting device 10 of this embodiment includes a plurality of sealing films 182. Therefore, the light emitting unit 140 can be sealed more firmly, and the durability of the light emitting unit 140 can be improved.
  • FIG. 10 is a cross-sectional view illustrating a configuration of a light emitting device 10 according to the fifth embodiment. This figure corresponds to FIG. 1 in the first embodiment.
  • the light emitting device 10 according to the present embodiment is the same as the light emitting device 10 of the fourth embodiment except that the sealing film 182 also serves as the function of the optical functional layer 170.
  • the sealing film 182 is a laminated film in which a plurality of inorganic films such as SiN x , SiON, Al 2 O 3 , and TiO 2 are laminated, and has a barrier property.
  • the sealing film 182 is also a laminated film of a plurality of dielectric films as described in the first embodiment, and functions as the optical function layer 170.
  • Each inorganic film can be formed by, for example, a vacuum film forming method such as a sputtering method, a CVD method, or an ALD method.
  • the thickness of the optical functional layer 170 is preferably 100 nm or more and 5 ⁇ m or less.
  • the formation of the light emitting unit 140 can be performed in the same manner as in the first embodiment.
  • the optical function layer 170, the resin layer 186, and the optical function layer 170 are then formed in this order on the second electrode 130.
  • the resin layer 186 can be formed by a coating method such as a spin coating method or an ink jet method.
  • the sealing member 180 is adhere
  • a coating method such as a spin coating method or an ink jet method.
  • the light emitting device 10 includes a light transmission region positioned between the plurality of light emitting units 140.
  • the second base material 220 includes an optical functional layer 170 corresponding to at least one of the first to fifth examples. Therefore, it is possible to suppress the light reflected on the front surface side of the substrate 100 from being emitted to the back surface side of the light emitting device 10 and reduce the back surface leakage light.
  • the light emitting device 10 of this embodiment includes a plurality of sealing films 182. Therefore, the light emitting unit 140 can be sealed more firmly, and the durability of the light emitting unit 140 can be improved.
  • the sealing film 182 also functions as the optical function layer 170. Therefore, in manufacturing the light emitting device 10, the number of film forming steps can be reduced.
  • FIG. 11 is a cross-sectional view illustrating a configuration of a light emitting device 10 according to the sixth embodiment. This figure corresponds to FIG. 1 in the first embodiment.
  • FIG. 12 is a plan view of the light emitting device 10 according to the sixth embodiment. However, some members are omitted in the figure. 11 corresponds to the BB cross section of FIG.
  • the light emitting device 10 according to the present embodiment is the same as the light emitting device 10 according to at least one of the first to fifth embodiments except for the points described below.
  • the light emitting device 10 of the present embodiment includes a first light emitting unit 140a and a second light emitting unit 140b having a first wavelength different from that of the first light emitting unit 140a.
  • the light emitting device 10 includes a first light emitting unit 140a, a second light emitting unit 140b, and a third light emitting unit 140c as the light emitting unit 140.
  • the first light emitting unit 140a includes a first organic layer 120a
  • the second light emitting unit 140b includes a second organic layer 120b
  • the third light emitting unit 140c includes a third organic layer 120c.
  • the first light emitting unit 140a, the second light emitting unit 140b, and the third light emitting unit 140c have different emission colors, that is, different first wavelengths.
  • the peak wavelength of the emission spectrum of the first light emitting unit 140a (the first wavelength of the first light emitting unit 140a) is greater than the peak wavelength of the emission spectrum of the second light emitting unit 140b (the first wavelength of the second light emitting unit 140b). long.
  • the peak wavelength of the emission spectrum of the second light emitting unit 140b is longer than the peak wavelength of the emission spectrum of the third light emitting unit 140c (the first wavelength of the third light emitting unit 140c).
  • the emission color of the first light emitting unit 140a is, for example, red, and the first wavelength of the first light emitting unit 140a is, for example, not less than 600 nm and not more than 650 nm.
  • the emission color of the second light emitting unit 140b is, for example, green, and the first wavelength of the second light emitting unit 140b is, for example, not less than 500 nm and not more than 580 nm.
  • the emission color of the third light emitting unit 140c is, for example, blue, and the first wavelength of the third light emitting unit 140c is, for example, not less than 430 nm and not more than 470 nm.
  • the first light emitting unit 140a, the second light emitting unit 140b, and the third light emitting unit 140c are repeatedly arranged in order.
  • the light emitting device 10 includes the first light emitting unit 140a, the second light emitting unit 140b, and the third light emitting unit 140c that generate different emission colors, so that the light emitting device 10 is used as, for example, white or color illumination. Can do.
  • the color of the whole light-emitting device 10 can be adjusted by adjusting light emission of the 1st light emission part 140a, the 2nd light emission part 140b, and the 3rd light emission part 140c each independently.
  • the second substrate 220 includes a first optical functional layer 170a, a second optical functional layer 170b, and a third optical functional layer 170c as the optical functional layer 170.
  • the first optical functional layer 170a is a layer that specifically reflects the light of the first wavelength of the first light emitting unit 140a
  • the second optical functional layer 170b is a layer that particularly reflects the light of the first wavelength of the second light emitting unit 140b.
  • the third optical functional layer 170c is a layer that specifically reflects the light of the first wavelength of the third light emitting unit 140c.
  • the relationship between the light emitting unit 140c and the first wavelength is at least one of the relationships between the first to fifth examples of the optical function layer 170 and the first wavelength of the light emitting unit 140 described in the first embodiment. It corresponds to.
  • the first optical functional layer 170a, the second optical functional layer 170b, and the third optical functional layer 170c are each composed of a laminated film of a plurality of dielectric films
  • the first optical functional layer 170a, the second optical functional layer 170b, At least one of the thicknesses and materials of the plurality of dielectric films constituting the third optical function layer 170c is different from each other.
  • the stack of the first optical functional layer 170a, the second optical functional layer 170b, and the third optical functional layer 170c particularly reflects the first wavelength of the first light emitting unit 140a, the second light emitting unit 140b, and the third light emitting unit 140c.
  • the entire laminate has light transmittance. Therefore, the visibility from the front surface side to the back surface side and the front surface side from the back surface side of the light emitting device 10 can be ensured.
  • a first optical functional layer 170a, a second optical functional layer 170b, and a third optical functional layer 170c are laminated in this order.
  • the stacking order of the first optical functional layer 170a, the second optical functional layer 170b, and the third optical functional layer 170c is not particularly limited.
  • the first optical functional layer 170a, the second optical functional layer 170b, and the third optical functional layer 170c are provided in contact with each other, but the first optical functional layer 170a and the second optical functional layer 170c are provided.
  • Another layer may be provided between the functional layer 170b and the third optical functional layer 170c.
  • the first optical functional layer 170a, the second optical functional layer 170b, and the third optical functional layer 170c are viewed from the direction perpendicular to the first base member 210 in the first region 102, The second region 104 and the third region 106 are provided so as to overlap the whole. Therefore, the first optical functional layer 170a, the second optical functional layer 170b, and the third optical functional layer 170c do not need to be patterned and can be easily formed. However, the first optical functional layer 170a, the second optical functional layer 170b, and the third optical functional layer 170c may be provided in at least part of a region overlapping with the light transmission region.
  • the first light emitting unit 140a, the second light emitting unit 140b, and the third optical layer instead of the three layers of the first optical functional layer 170a, the second optical functional layer 170b, and the third optical functional layer 170c, the first light emitting unit 140a, the second light emitting unit 140b, and the third optical layer.
  • the light emitting device 10 includes a light transmission region positioned between the plurality of light emitting units 140.
  • the second base material 220 includes an optical functional layer 170 corresponding to at least one of the first to fifth examples. Therefore, it is possible to suppress the light reflected on the front surface side of the substrate 100 from being emitted to the back surface side of the light emitting device 10 and reduce the back surface leakage light.
  • the light emitting device 10 of the present embodiment includes at least a first light emitting unit 140a and a second light emitting unit 140b having a first wavelength different from that of the first light emitting unit 140a. Therefore, the color of the entire light emitting device 10 can be adjusted.
  • FIG. 13 is a cross-sectional view illustrating a configuration of the light emitting device 10 according to the seventh embodiment. This figure corresponds to FIG. 1 in the first embodiment.
  • the light emitting device 10 according to the present embodiment is the same as the light emitting device 10 according to the sixth embodiment except for the points described below.
  • the second base material 220 of the light emitting device 10 of the present embodiment includes a first optical functional layer 170a, a second optical functional layer 170b, and a third optical functional layer 170c.
  • the first optical functional layer 170a, the second optical functional layer 170b, and the third optical functional layer 170c each extend linearly and in the same direction, and are repeatedly arranged in order.
  • the first optical functional layer 170a overlaps the first light emitting portion 140a
  • the second optical functional layer 170b overlaps the second light emitting portion 140b
  • the third optical functional layer 170c It overlaps with the third light emitting unit 140c.
  • the first optical functional layer 170a, the second optical functional layer 170b, and the third optical functional layer 170c protrude from the regions that overlap the first light emitting unit 140a, the second light emitting unit 140b, and the third light emitting unit 140c, respectively. And overlaps at least a part of the light transmission region adjacent to the first light emitting unit 140a, the second light emitting unit 140b, and the third light emitting unit 140c.
  • first optical functional layer 170a, the second optical functional layer 170b, and the third optical functional layer 170c are in contact with each other at the end portions in this drawing, the present invention is not limited to this.
  • the first optical functional layer 170a, the second optical functional layer 170b, and the third optical functional layer 170c may be separated from each other, or their end portions may overlap each other.
  • the first optical functional layer 170a, the second optical functional layer 170b, and the third optical functional layer 170c according to the present embodiment can be formed by patterning using a lithography method or a mask method, respectively.
  • the light emitting device 10 includes a light transmission region positioned between the plurality of light emitting units 140.
  • the second base material 220 includes an optical functional layer 170 corresponding to at least one of the first to fifth examples. Therefore, it is possible to suppress the light reflected on the front surface side of the substrate 100 from being emitted to the back surface side of the light emitting device 10 and reduce the back surface leakage light.
  • the light emitting device 10 of the present embodiment includes at least a first light emitting unit 140a and a second light emitting unit 140b having a first wavelength different from that of the first light emitting unit 140a. Therefore, the color of the entire light emitting device 10 can be adjusted.
  • a plurality of optical function layers 170 having different wavelengths to be reflected are provided side by side in a direction parallel to the first base material 210. Accordingly, it is possible to ensure high light transmittance of the light transmission region.
  • FIG. 14 is a cross-sectional view illustrating a configuration of the light emitting device 10 according to the first embodiment.
  • FIG. 15 is a plan view of the light emitting device 10 shown in FIG. However, some members are omitted in FIG. FIG. 14 corresponds to the CC section of FIG.
  • the light emitting device 10 according to this example has the same configuration as that of the light emitting device 10 according to at least one of the first to seventh embodiments. 14 and 15 show examples in which the light emitting device 10 has the configuration of the first embodiment.
  • FIG. 1 corresponds to the AA cross-sectional view of FIG.
  • the light emitting device 10 includes a first terminal 112, a first lead wire 114, a second terminal 132, and a second lead wire 134.
  • the first terminal 112, the first lead wiring 114, the second terminal 132, and the second lead wiring 134 are all formed on the same surface of the substrate 100 as the light emitting unit 140.
  • the first terminal 112 and the second terminal 132 are located outside the sealing member 180.
  • the first lead wire 114 connects the first terminal 112 and the first electrode 110
  • the second lead wire 134 connects the second terminal 132 and the second electrode 130.
  • each of the first lead wiring 114 and the second lead wiring 134 extends from the inside to the outside of the sealing member 180.
  • the first terminal 112, the second terminal 132, the first lead wiring 114, and the second lead wiring 134 have, for example, a layer formed of the same material as that of the first electrode 110.
  • at least a part of at least one of the first terminal 112, the second terminal 132, the first lead wiring 114, and the second lead wiring 134 is a metal film having a lower resistance than the first electrode 110 on this layer. You may have.
  • This metal film has a configuration in which, for example, a first metal layer such as Mo or Mo alloy, a second metal layer such as Al or Al alloy, and a third metal layer such as Mo or Mo alloy are laminated in this order. Yes.
  • This metal film does not need to be formed on all of the first terminal 112, the second terminal 132, the first lead wiring 114, and the second lead wiring 134.
  • the first terminal 112 the first lead wire 114, the second terminal 132, and the second lead wire 134
  • a layer formed of the same material as the first electrode 110 is formed in the same process as the first electrode 110. Yes.
  • the first electrode 110 is integrated with at least a part of the layer of the first terminal 112.
  • the metal film is formed, for example, by performing film formation by sputtering or the like and patterning by etching or the like.
  • the light transmittance of the first terminal 112, the first lead wire 114, the second terminal 132, and the second lead wire 134 is lower than the light transmittance of the substrate 100.
  • the first lead-out wiring 114 and the second lead-out wiring 134 are formed one by one for one light emitting unit 140.
  • the plurality of first lead wires 114 are all connected to the same first terminal 112, and the plurality of second lead wires 134 are all connected to the same second terminal 132.
  • the first terminal 112 is connected to a positive terminal of a control circuit via a conductive member such as a bonding wire or a lead terminal, and the second terminal 132 is controlled via a conductive member such as a bonding wire or a lead terminal.
  • the negative terminal of the circuit is connected.
  • the light emitting device 10 includes a plurality of second terminals 132, and the second lead wires 134 are connected to different second terminals 132, respectively. Also good.
  • the light emitting device 10 includes a light transmission region positioned between the plurality of light emitting units 140.
  • the second base material 220 includes an optical functional layer 170 corresponding to at least one of the first to fifth examples. Therefore, it is possible to suppress the light reflected on the front surface side of the substrate 100 from being emitted to the back surface side of the light emitting device 10 and reduce the back surface leakage light.
  • the light emitting device may be a top emission type.
  • the light emitting device 10 may not include the sealing member 180.
  • the light-emitting device 10 is positioned between the first base 210 having translucency and the coating layer having translucency, and includes a plurality of light-emitting units 140 that emit light having a peak at the first wavelength, and a plurality of light-emitting units 140.
  • the covering layer includes the optical function layer 170. Examples of the layer or film that can be included in the coating layer include a protective layer formed by molding or applying a resin, a sealing film 182, and a resin layer 186.
  • a plurality of light emitting portions that emit light having a peak at the first wavelength, located between the first base material having translucency and the second base material having translucency;
  • a light transmissive region located between the plurality of light emitting units,
  • the second substrate includes a reflective layer;
  • the reflection layer is a light emitting device having a reflectance of light having the first wavelength higher than an average reflectance of light within a wavelength range of 400 nm to 700 nm.
  • a plurality of light emitting portions that emit light having a peak at the first wavelength, located between the first base material having translucency and the second base material having translucency;
  • a light transmissive region located between the plurality of light emitting units,
  • the second substrate includes a reflective layer;
  • a plurality of light emitting portions that emit light having a peak at the first wavelength, located between the first base material having translucency and the second base material having translucency;
  • a light transmissive region located between the plurality of light emitting units,
  • the second substrate includes a reflective layer;
  • the wavelength having the highest reflectance in the reflection spectrum of light in the wavelength range of 400 nm to 700 nm of the reflective layer is a wavelength having upper and lower limits of two wavelengths taking the intensity of one half of the peak intensity at the peak.
  • a light-emitting device located within the range. 1-4.
  • a plurality of light emitting portions that emit light having a peak at the first wavelength, located between the first base material having translucency and the second base material having translucency;
  • a light transmissive region located between the plurality of light emitting units,
  • the second substrate includes a reflective layer; When the maximum reflectance of the reflection spectrum of light in the wavelength range of 400 nm to 700 nm of the reflective layer is R max , the first wavelength falls within a wavelength range that takes a reflectance of R max ⁇ 0.5 or more.
  • the light emitting unit includes a light transmissive first electrode, a light shielding second electrode, and an organic layer positioned between the first electrode and the second electrode, The light emitting device, wherein the second electrode is located on a side opposite to the first base with respect to the first electrode. 1-6. 1-5.
  • the light-emitting device described in The light-emitting device is a light-emitting device that is a region that does not overlap the second electrode when viewed from a direction perpendicular to the first base material. 1-7. 1-1. To 1-6.
  • the reflective layer is a light emitting device made of a laminated film in which a plurality of dielectric films are laminated, or a metal film. 1-8. 1-7.
  • a light emitting device described in The laminated film is a light emitting device including an inorganic material. 1-9. 1-1. To 1-8.
  • the reflective layer is in contact with the light emitting unit. 1-10. 1-1. To 1-9.
  • the light transmittance of the reflective layer is 50% or more on average with respect to light within a wavelength range in which the upper and lower limits are two wavelengths having an intensity of 1/5 of the peak intensity at the peak. 1-11. 1-1. To 1-10.
  • the reflection layer is a light emitting device formed in a region overlapping with the light transmission region when viewed from a direction perpendicular to the first base material. 1-12. 1-1. To 1-11.
  • the second base material includes a sealing film that contacts the light emitting unit and covers the light emitting unit, The light emitting device, wherein the sealing film is the reflective layer.
  • a plurality of light emitting portions that are located between the base material having translucency and the coating layer having translucency and emit light having a peak at the first wavelength;
  • the covering layer includes a reflective layer;
  • the reflection layer is a light emitting device having a reflectance of light having the first wavelength higher than an average reflectance of light within a wavelength range of 400 nm to 700 nm.
  • a plurality of light emitting portions that are located between the base material having translucency and the coating layer having translucency and emit light having a peak at the first wavelength;
  • a light transmissive region located between the plurality of light emitting units,
  • the covering layer includes a reflective layer;
  • a plurality of light emitting portions that are located between the base material having translucency and the coating layer having translucency and emit light having a peak at the first wavelength;
  • a light transmissive region located between the plurality of light emitting units,
  • the covering layer includes a reflective layer;
  • the wavelength having the highest reflectance in the reflection spectrum of light in the wavelength range of 400 nm to 700 nm of the reflective layer is a wavelength having upper and lower limits of two wavelengths taking the intensity of one half of the peak intensity at the peak.
  • a light-emitting device located within the range. 2-4.
  • a plurality of light emitting portions that are located between the base material having translucency and the coating layer having translucency and emit light having a peak at the first wavelength;
  • a light transmissive region located between the plurality of light emitting units,
  • the covering layer includes a reflective layer; When the maximum reflectance of the reflection spectrum of light in the wavelength range of 400 nm to 700 nm of the reflective layer is R max , the first wavelength falls within a wavelength range that takes a reflectance of R max ⁇ 0.5 or more.
  • R max maximum reflectance of the reflection spectrum of light in the wavelength range of 400 nm to 700 nm of the reflective layer
  • the first wavelength falls within a wavelength range that takes a reflectance of R max ⁇ 0.5 or more.
  • the light emitting unit includes a light transmissive first electrode, a light shielding second electrode, and an organic layer positioned between the first electrode and the second electrode, The light emitting device, wherein the second electrode is located on a side opposite to the base with respect to the first electrode. 2-6. 2-5.
  • the light-emitting device described in The light-transmitting region is a light-emitting device that is a region that does not overlap the second electrode when viewed from a direction perpendicular to the base material. 2-7. 2-1. To 2-6.
  • the reflective layer is a light emitting device made of a laminated film in which a plurality of dielectric films are laminated, or a metal film. 2-8. 2-7.
  • a light emitting device described in The laminated film is a light emitting device including an inorganic material. 2-9. 2-1. To 2-8.
  • the reflective layer is in contact with the light emitting unit. 2-10. 2-1. To 2-9.
  • the light transmittance of the reflective layer is 50% or more on average with respect to light within a wavelength range in which the upper and lower limits are two wavelengths having an intensity of 1/5 of the peak intensity at the peak. 2-11. 2-1. To 2-10.
  • the reflective layer is formed in a region overlapping with the light transmission region when viewed from a direction perpendicular to the substrate. 2-12. 2-1. To 2-11.
  • the coating layer includes a sealing film that contacts the light emitting unit and covers the light emitting unit, The light emitting device, wherein the sealing film is the reflective layer.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Optical Filters (AREA)

Abstract

発光装置(10)は、透光性を有する第1基材(210)、透光性を有する第2基材(220)、および複数の発光部(140)を備える。発光部(140)は第1基材(210)と第2基材(220)の間に位置する。発光部(140)は第1波長にピークを有する光を発する。また、発光装置(10)は複数の発光部(140)の間に位置する光透過領域を備える。そして、第2基材(220)は光学機能層(170)を含む。光学機能層(170)は第1波長の光を特に反射する層である。

Description

発光装置
 本発明は、発光装置に関する。
 近年は有機ELを利用した発光装置の開発が進んでいる。この発光装置は、照明装置や表示装置として使用されており、第1電極と第2電極の間に有機層を挟んだ構成を有している。そして、一般的には第1電極には透明材料が用いられており、第2電極には金属材料が用いられている。
 有機ELを利用した発光装置の一つに、特許文献1に記載の技術がある。特許文献1の技術は、有機ELを利用した表示装置に光透過性(シースルー)を持たせるために、第2電極を画素の一部にのみ設けている。このような構造において、複数の第2電極の間に位置する領域は光を透過させるため、表示装置は光透過性を有することができる。
特開2011-23336号公報
 片面(おもて面)からのみ光を取り出したい透過型の発光装置において、逆側の面(裏面)からも一部の光が漏れ出てしまう場合がある。この場合、裏面側から発光装置を介して反対側を視認しにくくなったり、おもて面での光取り出し効率が低下したりする。
 本発明が解決しようとする課題としては、透過型の発光装置において、発光面とは逆の面から光を漏れにくくすることが一例として挙げられる。
 請求項1に記載の発明は、
 透光性を有する第1基材及び透光性を有する第2基材の間に位置し、第1波長にピークを有する光を発する複数の発光部と、
 前記複数の発光部の間に位置する光透過領域と、を備え、
 前記第2基材は反射層を含み、
 前記反射層は、400nm以上700nm以下の波長範囲内の光の平均反射率より前記第1波長の光の反射率が高い発光装置
である。
 請求項2に記載の発明は、
 透光性を有する第1基材及び透光性を有する第2基材の間に位置し、第1波長にピークを有する光を発する複数の発光部と、
 前記複数の発光部の間に位置する光透過領域と、を備え、
 前記第2基材は反射層を含み、
 前記ピークにおいてピーク強度の2分の1の強度をとる二つの波長を上下限とする波長範囲内の光に対する、前記反射層の反射率が30%以上である発光装置
である。
 請求項3に記載の発明は、
 透光性を有する第1基材及び透光性を有する第2基材の間に位置し、第1波長にピークを有する光を発する複数の発光部と、
 前記複数の発光部の間に位置する光透過領域と、を備え、
 前記第2基材は反射層を含み、
 前記反射層の400nm以上700nm以下の波長範囲の光の反射スペクトルのうち最大の反射率をとる波長は、前記ピークにおいてピーク強度の2分の1の強度をとる二つの波長を上下限とする波長範囲内に位置する発光装置である。
 請求項4に記載の発明は、
 透光性を有する第1基材及び透光性を有する第2基材の間に位置し、第1波長にピークを有する光を発する複数の発光部と、
 前記複数の発光部の間に位置する光透過領域と、を備え、
 前記第2基材は反射層を含み、
 前記反射層の400nm以上700nm以下の波長範囲の光の反射スペクトルのうち最大の反射率をRmaxとしたとき、Rmax×0.5以上の反射率がをとる波長範囲内に、前記第1波長が含まれる発光装置である。
 請求項13に記載の発明は、
 透光性を有する基材及び透光性を有する被覆層の間に位置し、第1波長にピークを有する光を発する複数の発光部と、
 前記複数の発光部の間に位置する光透過領域と、を備え、
 前記被覆層は反射層を含み、
 前記反射層は、400nm以上700nm以下の波長範囲内の光の平均反射率より前記第1波長の光の反射率が高い発光装置
である。
 請求項14に記載の発明は、
 透光性を有する基材及び透光性を有する被覆層の間に位置し、第1波長にピークを有する光を発する複数の発光部と、
 前記複数の発光部の間に位置する光透過領域と、を備え、
 前記被覆層は反射層を含み、
 前記ピークにおけるピーク強度の2分の1の強度をとる二つの波長を上下限とする波長範囲内の光に対する、前記反射層の反射率が30%以上である発光装置
である。
 請求項15に記載の発明は、
 透光性を有する基材及び透光性を有する被覆層の間に位置し、第1波長にピークを有する光を発する複数の発光部と、
 前記複数の発光部の間に位置する光透過領域と、を備え、
 前記被覆層は反射層を含み、
 前記反射層の400nm以上700nm以下の波長範囲の光の反射スペクトルのうち最大の反射率をとる波長は、前記ピークにおけるピーク強度の2分の1の強度をとる二つの波長を上下限とする波長範囲内に位置する発光装置
である。
 請求項16に記載の発明は、
 透光性を有する基材及び透光性を有する被覆層の間に位置し、第1波長にピークを有する光を発する複数の発光部と、
 前記複数の発光部の間に位置する光透過領域と、を備え、
 前記被覆層は反射層を含み、
 前記反射層の400nm以上700nm以下の波長範囲の光の反射スペクトルのうち最大の反射率をRmaxとしたとき、Rmax×0.5以上の反射率をとる波長範囲内に、前記第1波長が含まれる発光装置
である。
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
第1の実施形態に係る発光装置の構成を示す断面図である。 発光装置の発光部を拡大した図である。 発光部の発光スペクトルの例を示す図である。 光学機能層の反射スペクトルの例を示す図である。 発光装置における光路の例を示す図である。 発光装置の平面図である。 第2の実施形態に係る発光装置の構成を示す断面図である。 第3の実施形態に係る発光装置の構成を示す断面図である。 第4の実施形態に係る発光装置の構成を示す断面図である。 第5の実施形態に係る発光装置の構成を示す断面図である。 第6の実施形態に係る発光装置の構成を示す断面図である。 第6の実施形態に係る発光装置の平面図である。 第7の実施形態に係る発光装置の構成を示す断面図である。 実施例1に係る発光装置の構成を示す断面図である。 図14に示した発光装置の平面図である。
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
(第1の実施形態)
 図1は、第1の実施形態に係る発光装置10の構成を示す断面図である。監視者Pは、図1の基板100に垂直な方向から発光装置10の光射出面を見ている。図2は発光装置10の発光部140を拡大した図である。
 発光装置10は、透光性を有する第1基材210及び透光性を有する第2基材220の間に位置する複数の発光部140を備える。発光部140は第1波長にピークを有する光を発する。また、発光装置10は複数の発光部140の間に位置する光透過領域を備える。そして、第2基材220は光学機能層170を含む。
 なお、第2基材220が光学機能層170を含むとは、第1基材210と光学機能層170の間に発光部140が位置することを意味する。すなわち、発光装置10の製造工程等において光学機能層170は第1基材210に対して形成される層であっても良いし、第1基材210に一部が接する層であっても良い。
 光学機能層170について、以下に説明する。光学機能層170はたとえば波長選択光フィルタ、波長選択吸収フィルタ、波長選択遮光フィルタ、および波長選択型の反射層の少なくともいずれかの機能を有する層である。すなわち、光学機能層170は、可視光のうち第1波長を含む一部の波長帯以外の波長の光の透過を、その一部の波長帯の光の透過よりも抑制する層であればよい。その一部の波長帯は、たとえば第1波長より50nm短い波長以上、第1波長より50nm長い波長以下の範囲である。以下では、光学機能層170が波長選択型の反射層である例について詳しく説明する。
 本実施形態に係る光学機能層170は第1波長の光を特に反射する層であれば特に限定されないが、たとえば以下の第1例から第5例の少なくともいずれかに該当する様な層である。以下において、第1波長とは、発光部140の発光スペクトルにおける最大ピークをとる波長である。
 ここで、発光部140の発光スペクトルはたとえば、発光装置10の第1基材210側の出力面から出力される光を計測することで得られる。また、光学機能層170が第1領域102、第2領域104、および第3領域106の全体にわたって形成されている場合、光学機能層170の反射スペクトルはたとえば発光装置10に第2基材220側から光を照射し、正反射での反射光を測定することによって得られる。また、第2基材220は透光性を有するため、光学機能層170を含む構造を発光装置10から切り出し、その構造を対象として測定した光の反射率を、光学機能層170の光の反射率とみなしてもよい。たとえば、本図に示す例では接着層184を切断することで封止部材180、光学機能層170および接着層184の一部を含む構造を得、測定対象とすることができる。発光スペクトルや反射スペクトルの測定範囲はたとえば400nmから700nmとする。なお、発光装置10の断面を分析し、積層された膜の材料および厚さを確認することによって光学機能層170の存在および特に反射率の高い波長を確かめることもできる。
 第1例において、光学機能層170は、400nm以上700nm以下の波長範囲内の光の反射率の平均値(平均反射率)よりも、第1波長における光の反射率が高い層である。ここで、光学機能層170の平均反射率はたとえば、複数の波長の光に対する光学機能層170の反射率を波長ごとに計測し、それらの平均値を算出することで得られる。
 第2例において、発光部140の発光スペクトルのうち、第1波長を含むピークにおいて、ピーク強度の2分の1の強度をとる二つの波長を上下限とする波長範囲を第1範囲とする。そして、第1範囲内の光に対する、光学機能層170の光の反射率が30%以上である。
 図3は、発光部140の発光スペクトルの例を示す図である。本図を用いて第2例について説明する。本図に示す発光スペクトルでは、第1波長に最大ピークを有する。第1波長におけるピーク強度はIである。そして、本図中、発光強度IはIの2分の1の大きさである。第1波長のピークの裾は第2波長および第3波長で強度Iをとる。第2波長は第3波長よりも短い。ここで、第2波長を下限、第3波長を上限とした波長範囲を第1範囲とする。そして、第2例において、光学機能層170の反射率は、第1範囲内の全体にわたって、30%以上である。そうすれば、人の目で見て裏面漏れ光が小さく感じられる。なお、光学機能層170の反射率は、第1範囲内の全体にわたって、50%以上であることがより好ましい。
 なお、発光部140の発光スペクトルが、三つ以上の波長で上記の強度Iをとる場合、それらの波長のうち、第1波長よりも短く且つ最も第1波長に近い波長を第2波長とする。また、それらの波長のうち、第1波長よりも長く且つ最も第1波長に近い波長を第3波長とする。なお、第1範囲の中には、第1波長以外の波長においてさらに他の発光ピークが存在しても良い。
 第3例において、光学機能層170は、第2例で説明した第1範囲内で最大反射率をとる層である。具体的には、光学機能層170の400nm以上700nm以下の波長範囲の光の反射スペクトルのうち最大の反射率をとる波長が第1範囲内に位置する。
 第4例において、光学機能層170の400nm以上700nm以下の波長範囲の光の反射スペクトルのうち最大の反射率をRmaxとする。そして、反射率がRmax×0.5以上となる波長範囲を第2範囲とする。そして、第2範囲内に第1波長が含まれる。
 図4は、光学機能層170の反射スペクトルの例を示す図である。本図を用いて第4例について説明する。本図に示す反射スペクトルは、第4波長において最大の反射率Rmaxを示す。そして、本図中、反射率RはRmaxの0.5倍の大きさである。本図において、第5波長および第6波長は、反射率Rをとる波長を示している。第4波長は第5波長および第6波長の間に位置し、第5波長は第6波長よりも短い。ここで、第5波長を下限、第6波長を上限とした波長範囲を第2範囲とできる。ただし、400nm以上700nm以下の範囲には、第5波長が存在しなくても良い。その場合、400nmが第2範囲の下限となる。また、400nm以上700nm以下の範囲には、第6波長が存在しなくても良い。その場合、700nmが第2範囲の上限となる。そして、第4例において、発光部140の発光スペクトルのピーク波長である第1波長が、第2範囲内に含まれる。
 なお、光学機能層170の反射スペクトルが、三つ以上の波長で上記の反射率Rをとる場合、それらの波長のうち、第4波長よりも短く且つ最も第4波長に近い波長を第5波長とする。また、それらの波長のうち、第4波長よりも長く且つ最も第4波長に近い波長を第6波長とする。
 第5例において、光学機能層170の反射スペクトルの最大反射率をとる波長と、発光部140の発光スペクトルのピーク波長である第1波長との差は100nm以下である。また、光学機能層170の反射スペクトルの最大反射率をとる波長と、発光部140の発光スペクトルのピーク波長である第1波長との差は50nm以下であることがより好ましい。
 また、上記した第1例から第5例において、第1波長のピークにおいてピーク強度の5分の1の強度をとる二つの波長を、上下限とする波長範囲を第3範囲としたとき、第3範囲内の光に対する、光学機能層170の光透過率が平均で50%以上であることが好ましい。そうすれば、光学機能層170は光を十分に透過することができ、発光装置10の透光性を確保できる。
 なお、光学機能層170の反射スペクトルが、三つ以上の波長でピーク強度の5分の1の強度をとる場合、それらの波長のうち、第1波長よりも短く且つ最も第1波長に近い波長を第3範囲の下限とし、第1波長よりも長く且つ最も第1波長に近い波長を上限とする。また、第3範囲の中には、第1波長以外の波長においてさらに他のピークが存在しても良い。
 また、上記した第1例から第5例において、第1波長より100nm短い波長、および100nm長い波長における光学機能層170の光の反射率は、50%以下であることが好ましく、20%以下であることがより好ましい。この場合、光学機能層170は第1波長から離れた波長の光を十分に透過することができる。
 図5は、発光装置10における光路の例を示す図である。以下において、発光装置10の第1基材210側を「おもて面」、第2基材220側を「裏面」と呼ぶ。発光部140から出力され基板100側に進んだ光Lのうち、一部の光は発光装置10の外側に出力する。一方、基板100と気相との界面の臨界角よりも大きな入射角を有する一部の光は、発光装置10のおもて面で全反射し、光Lの様に進む。光Lは、その角度を保ったまま発光装置10内を伝搬した場合、発光装置10のおもて面および裏面で全反射を繰り返し、発光装置10の側面から出力されるため、裏面漏れ光にはならない。しかし、発光装置10の内部で拡散が生じた場合には、光の角度はたとえば光Lのように変化しうる。そして、仮に発光装置10の裏面と、外部の気相の界面に、臨界角よりも小さな入射角で入射すると、その光は裏面漏れ光となる。これに対し、本実施形態の発光装置10は光学機能層170を備える。したがって、本図の光Lのような裏面に対して入射角の小さい光を発光装置10の内部で反射させ、光Lのようにおもて面側に戻すことができる。一方、光学機能層170は、第1波長の光を選択的に反射することにより、発光装置10のおもて面側から裏面側、および裏面側からおもて面側の視認性を確保することができる。
 図1および図2に戻り、発光装置10の各構成について詳しく説明する。本実施形態において、発光装置10は、透光性を有する第1基材210および透光性を有する第2基材220を備える。第2基材220は、接着層184、光学機能層170、および封止部材180を含む。封止部材180は接着層184を介して発光部140を覆っている。また、本実施形態において光学機能層170は、封止部材180に接している。図1および図2に示す例において光学機能層170は、封止部材180の発光部140側の面と接しているが、封止部材180の発光部140とは逆側の面と接していても良い。また、光学機能層170は、封止部材180の両面に設けられていても良い。
 本実施形態の第1基材210は、基板100を含む。基板100は、例えばガラス基板や樹脂基板などの透光性を有する基板である。基板100は可撓性を有していてもよい。可撓性を有している場合、基板100の厚さは、例えば10μm以上1000μm以下である。基板100は、例えば矩形などの多角形や円形である。基板100が樹脂基板である場合、基板100は、例えばPEN(ポリエチレンナフタレート)、PES(ポリエーテルサルホン)、PET(ポリエチレンテレフタラート)、又はポリイミドを用いて形成されている。また、基板100が樹脂基板である場合、水分が基板100を透過することを抑制するために、基板100の少なくとも一面(好ましくは両面)に、SiNやSiONなどの無機バリア膜が形成されているのが好ましい。この場合第1基材210は、基板100および無機バリア膜を含む。
 基板100の一面には、発光部140が形成されている。発光部140は、透光性の第1電極110、遮光性の第2電極130および、第1電極110と第2電極130との間に位置する有機層120を含む。第2電極130は第1電極110に対し第1基材210とは逆側に位置する。このような構成により、発光部140からの光は第1基材210側に出力される。なお、発光部140からの光の一部が第2基材220側に、例えば漏れ光として出力されても良いが、第1基材210側に出力される光は第2基材220側に出力される光よりも高強度になる。
 発光装置10が照明装置の場合、複数の発光部140はライン状に延在している。一方、発光装置10が表示装置の場合、複数の発光部140はマトリクスを構成するように配置されているか、セグメントを構成したり所定の形状を表示したりするように(例えばアイコンを表示するように)なっていてもよい。そして複数の発光部140は、画素別に形成されている。
 第1電極110は、光透過性を有する透明電極である。透明電極の材料は、金属を含む材料、例えば、ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)、IWZO(Indium Tungsten Zinc Oxide)、ZnO(Zinc Oxide)等の金属酸化物である。第1電極110の厚さは、例えば10nm以上500nm以下である。第1電極110は、例えばスパッタリング法又は蒸着法を用いて形成される。なお、第1電極110は、カーボンナノチューブ、又はPEDOT/PSSなどの導電性有機材料であってもよい。本図において、基板100の上には、複数の線状の第1電極110が互いに平行に形成されており、第2領域104及び第3領域106には第1電極110は位置していない。
 有機層120は発光層を有している。有機層120は、例えば、正孔注入層、発光層、及び電子注入層をこの順に積層させた構成を有している。正孔注入層と発光層との間には正孔輸送層が形成されていてもよい。また、発光層と電子注入層との間には電子輸送層が形成されていてもよい。有機層120は蒸着法で形成されてもよい。また、有機層120のうち少なくとも一つの層、例えば第1電極110と接触する層は、インクジェット法、印刷法、又はスプレー法などの塗布法によって形成されてもよい。なお、この場合、有機層120の残りの層は、蒸着法によって形成されている。また、有機層120のすべての層が、塗布法を用いて形成されていてもよい。
 第2電極130は、例えば、Al、Au、Ag、Pt、Mg、Sn、Zn、及びInからなる第1群の中から選択される金属、又はこの第1群から選択される金属の合金からなる金属層を含んでいる。この場合、第2電極130は遮光性を有している。第2電極130の厚さは、例えば10nm以上500nm以下である。第2電極130は、例えばスパッタリング法又は蒸着法を用いて形成される。本図に示す例において、発光装置10は複数の線状の第2電極130を有している。第2電極130は、第1電極110のそれぞれに対して設けられており、かつ第1電極110よりも幅が広くなっている。このため、基板100に垂直な方向から見た場合において、幅方向において第1電極110の全体が第2電極130によって重なっており、また覆われている。また、第1電極110は、第2電極130よりも幅が広く、基板100に垂直な方向から見た場合において、幅方向において第2電極130の全体が第1電極110によって覆われていてもよい。
 第1電極110の縁は、絶縁膜150によって覆われている。絶縁膜150は例えばポリイミドなどの感光性の樹脂材料によって形成されており、第1電極110のうち発光部140となる部分を囲んでいる。第2電極130の幅方向の縁は、絶縁膜150上に位置している。言い換えると、基板100に垂直な方向から見た場合において、絶縁膜150の一部は第2電極130からはみ出ている。また本図に示す例において、有機層120は絶縁膜150の上及び側面にも形成されている。そして有機層120は隣り合う発光部140の間で分断されている。ただし、有機層120は、隣り合う発光部140にわたって連続して設けられていても良い。
 発光装置10は第1領域102、第2領域104、及び第3領域106を有している。第1領域102は基板100に垂直な方向から見て第2電極130と重なる領域である。第2領域104は、第2電極130とは重ならないが、絶縁膜150と重なる領域である。本図に示す例において、有機層120は第2領域104にも形成されている。第3領域106は、第2電極130とも絶縁膜150とも重ならない領域である。光透過領域は、第2領域104および第3領域106からなる。すなわち光透過領域は、第1基材210に垂直な方向から見て、第2電極130と重ならない領域である。本図に示す例において、有機層120は第3領域106の少なくとも一部には形成されていない。そしてたとえば第2領域104の幅は、第3領域106の幅よりも狭い。また第3領域106の幅は第1領域102の幅よりも広くてもよいし、狭くてもよい。第1領域102の幅を1とした場合、第2領域104の幅は例えば0以上(又は0超)0.3以下であり、第3領域106の幅は例えば0.3以上5以下である。また第1領域102の幅は、例えば50μm以上500μm以下であり、第2領域104の幅は例えば0μm以上(又は0μm超)100μm以下であり、第3領域106の幅は例えば15μm以上1500μm以下である。
 基板100の平面形状は、例えば矩形などの多角形や円形である。そして封止部材180は透光性を有しており、例えばガラス又は樹脂を用いて形成されている。封止部材180は、基板100と同様の多角形や円形であり、中央に凹部を設けた形状を有している。そして複数の発光部140は、いずれも基板100と封止部材180の間の封止された空間の中に位置している。そして封止された空間には接着剤が充填され、接着層184が形成されている。また、封止部材180は板状であってもよい。この場合にも、封止部材180は接着層184で発光部140に固定される。接着層184としてはたとえばエポキシ樹脂を用いることができる。
 さらに、本実施形態において封止部材180の一の面には光学機能層170が形成されている。図1および図2に示す例において、光学機能層170は、接着層184と封止部材180の間に位置し、接着層184および封止部材180と接している。ただし、封止部材180には少なくとも一方の面に光学機能層170が形成されていればよい。すなわち、光学機能層170は封止部材180の両方の面に形成されていても良いし、光学機能層170は封止部材180の、発光部140とは反対側の面にのみ設けられていても良い。
 本図の例において、第1基材210に垂直な方向から見て、光学機能層170は光透過領域と重なる領域に形成されており、詳しくは、光学機能層170は光透過領域の全体と重なる領域に形成されている。したがって、発光部140からの光が反射して光透過領域を通りぬけるのを抑制し、裏面漏れ光をより効果的に低減できる。また、本図の例において、光学機能層170は、第1基材210に垂直な方向から見て、発光部140と重なる領域にも形成されており、第1領域102、第2領域104および第3領域106の全体と重なる様に設けられている。したがって、光学機能層170をパターニングする必要が無く、容易に形成できる。ただし、光学機能層170は、光透過領域と重なる領域にのみ形成されていても良い。
 光学機能層170は、複数の誘電体膜が積層された積層膜、または金属膜からなる。光学機能層170が金属膜からなる場合、光学機能層170はAlやAg等の金属からなる膜であり、光学機能層170の厚さはたとえば1nm以上30nm以下である。そうすれば、安定して膜形成できるとともに、十分な光透過率を確保することができる。この場合、光学機能層170はたとえば蒸着法やスパッタリング法により形成できる。光学機能層170が金属膜からなる場合、光学機能層170の表面はたとえば封止部材180や接着層184等の絶縁性の部材に覆われており、電気的にフローティングである。そして、光学機能層170は発光部140を構成しない層である。
 光学機能層170が複数の誘電体膜の積層膜からなる場合、その積層膜はたとえば無機材料を含む膜であり、誘電体ミラーや干渉フィルタを構成している。誘電体膜としてはたとえばシリコン酸化膜、シリコン窒化膜、シリコン酸窒化膜、酸化チタン膜、酸化アルミ膜、およびこれらの混相膜が挙げられる。また積層膜は、誘電率が互いに異なる複数種類の誘電体膜を含む。積層膜に含まれる誘電体膜の層数は特に限定されないが、3層以上であることが好ましい。各誘電体膜の厚さはたとえば50nm以上1μm以下である。より詳しくは、第1波長をλ、誘電体膜の屈折率をnとしたとき、積層膜に含まれる各誘電体膜の厚さは、たとえばλ/(4×n)×0.80以上、λ/(4×n)×1.20以下である。こうすることにより、波長λの光を選択的に反射させることができる。光学機能層170としての積層膜の厚さは特に限定されないが、たとえば100nm以上5μm以下である。
 各誘電体膜は、たとえばスパッタリング法、CVD法、ALD法などの真空成膜法で形成することができる。
 図6は発光装置10の平面図である。ただし本図では一部の部材を省略している。なお、図1は図6のA-A断面に対応している。本図に示す例において、第1領域102、第2領域104、及び第3領域106は、いずれも線状かつ同一方向に延在している。そして本図及び図1に示すように、第2領域104、第1領域102、第2領域104、及び第3領域106が、この順に繰り返し並んでいる。
 本図の例において、第1領域102、第2領域104、及び第3領域106のうち第1領域102は最も光線透過率が低い。また、第2領域104は絶縁膜150が存在している分、第3領域106に対して光線透過率が低くなっている。本実施形態ではたとえば第2領域104の幅は第3領域106の幅よりも狭くすることができる。そうすれば、発光装置10において第2領域104の面積占有率は、第3領域106の面積占有率よりも低くなり、発光装置10の光線透過率は高くなる。
 次に、発光装置10の製造方法について説明する。まず、基板100に第1電極110を、例えばスパッタリング法を用いて形成する。次いで、第1電極110を例えばフォトリソグラフィー法を利用して所定のパターンにする。次いで、第1電極110の縁の上に絶縁膜150を形成する。例えば絶縁膜150が感光性の樹脂で形成されている場合、絶縁膜150は、露光及び現像工程を経ることにより、所定のパターンに形成される。次いで、有機層120及び第2電極130をこの順に形成する。有機層120が蒸着法で形成される層を含む場合、この層は、例えばマスクを用いるなどして所定のパターンに形成される。第2電極130も、例えばマスクを用いるなどして所定のパターンに形成される。次いで、光学機能層170を形成した封止部材180を接着層184で接着し、発光部140を封止する。
 以上、本実施形態によれば、発光装置10は複数の発光部140の間に位置する光透過領域を備える。そして、第2基材220は上記した第1例から第5例のうち少なくともいずれかに該当するような光学機能層170を含む。したがって、基板100のおもて面側で反射された光が発光装置10の裏面側へ出射されることを抑制し、裏面漏れ光を低減することができる。
(第2の実施形態)
 図7は、第2の実施形態に係る発光装置10の構成を示す断面図である。本図は第1の実施形態における図1に相当する。本実施形態に係る発光装置10は、以下に説明する点を除いて第1の実施形態に係る発光装置10と同じである。
 本実施形態において、光学機能層170は発光部140と接着層184との間に形成されている。特に、図7に示す例において光学機能層170は発光部140に接している。したがって、発光装置10のおもて面から裏面に向かう光を、接着層184や封止部材180に入射する前に反射させることができる。ひいては、裏面漏れ光となるような拡散光、すなわち発光装置10の裏面と気相との界面に対する入射角度が小さい光の発生頻度を下げることができる。
 本図で示す例において、発光装置10は封止膜182を備える。封止膜182は、発光部140を覆うよう形成されている。本図に示す例において、封止膜182は光学機能層170に接しており、基板100に垂直な方向から見て第1領域102、第2領域104、および第3領域106の全体を覆っている。ただし、封止膜182は光透過領域のうち少なくとも一部には形成されていなくても良い。
 封止膜182としては、例えば、SiN、SiON、Al、TiOなどの無機バリア膜や、それらを含むバリア積層膜、またはそれらの混合膜を用いることができる。これらは、例えば、スパッタリング法、CVD法、ALD法などの真空成膜法で形成することができる。
 本実施形態の発光装置10の製造方法において、発光部140の形成までは第1の実施形態と同様に行うことができる。本実施形態では、次いで、第2電極130の上に光学機能層170および封止膜182を形成する。そして、封止部材180を接着層184で接着し、光学機能層170および封止膜182を介して発光部140を封止する。
 なお、本図に示す例では、光学機能層170、および封止膜182は発光部140側からこの順に積層されており、光学機能層170は発光部140に接しているが、封止膜182および光学機能層170の積層順は逆であっても良い。すなわち、封止膜182、および光学機能層170が発光部140側からこの順に積層されており、封止膜182が発光部140に接していてもよい。ただし、光学機能層170が金属膜である場合、光学機能層170と第2電極130の間には封止膜182が位置し、光学機能層170と第2電極130が接しない様にする。そうすることにより、複数の発光部140の第2電極130が短絡することを避けられる。
 また、封止膜182は光学機能層170を兼ねていてもよい。すなわち、第2基材220は、発光部140に接して発光部140を覆う封止膜182を含み、その封止膜182が光学機能層170であってもよい。この場合、発光装置10の製造において、膜形成の工程数を低減することができる。
 また、本実施形態の構成において、第1の実施形態のように封止部材180の少なくとも一方の面にさらに光学機能層170が設けられていても良い。
 また、本実施形態において、発光装置10は、必ずしも封止膜182および封止部材180の両方を備える必要は無く、少なくとも一方が設けられていればよい。そうすれば、発光部140を封止して発光部140の耐久性を確保することができる。また、発光装置10が封止部材180を有さない場合、必ずしも発光装置10に接着層184が形成されている必要は無い。
 以上、本実施形態においても、発光装置10は複数の発光部140の間に位置する光透過領域を備える。そして、第2基材220は上記した第1例から第5例のうち少なくともいずれかに該当するような光学機能層170を含む。したがって、基板100のおもて面側で反射された光が発光装置10の裏面側へ出射されることを抑制し、裏面漏れ光を低減することができる。
(第3の実施形態)
 図8は、第3の実施形態に係る発光装置10の構成を示す断面図である。本図は第1の実施形態における図1に相当する。本実施形態に係る発光装置10は、以下に説明する点を除いて第1の実施形態および第2の実施形態の少なくとも一方の発光装置10と同じである。
 本実施形態において、封止部材180は縁でのみ基板100に固定されている。したがって、第1領域102、第2領域104および第3領域106は、接着層184で覆われていない。そして、発光部140と封止部材180との間には気相が存在する。
 本実施形態の発光装置10の製造方法において、光学機能層170の形成までは第2の実施形態と同様に行うことができる。本実施形態では、次いで、発光部140を封止部材180で覆い、封止部材180の縁を接着剤で基板100に固定する。そうして、封止部材180と基板100の間の空間に発光部140を封止する。
 なお、本図で示す例において、光学機能層170は発光部140に接しているが、第1の実施形態のように封止部材180の少なくとも一方の面に光学機能層170が設けられていても良い。
 また発光装置10は、第2の実施形態で示した様にさらに封止膜182を備えても良い。
 以上、本実施形態においても、発光装置10は複数の発光部140の間に位置する光透過領域を備える。そして、第2基材220は上記した第1例から第5例のうち少なくともいずれかに該当するような光学機能層170を含む。したがって、基板100のおもて面側で反射された光が発光装置10の裏面側へ出射されることを抑制し、裏面漏れ光を低減することができる。
(第4の実施形態)
 図9は、第4の実施形態に係る発光装置10の構成を示す断面図である。本図は第1の実施形態における図1に相当する。本実施形態に係る発光装置10は、複数の封止膜182を備える点を除いて第1から第3の実施形態の少なくともいずれかの発光装置10と同じである。
 本図に示す例において、封止膜182、光学機能層170、樹脂層186、封止膜182が発光部140側からこの順に積層されている。ただし、本図の例に限定されず、たとえば光学機能層170、封止膜182、樹脂層186、封止膜182が発光部140側からこの順に積層されていてもよい。樹脂層186はたとえばポリイミド、エポキシ樹脂、アクリル樹脂等の樹脂や、ポリシラザン等の塗布系無機材料から成る。なお、本図では、発光装置10が2層の封止膜182を含む例を示しているが、発光装置10は3層以上の封止膜182を含んでも良い。その場合においても、二つの封止膜182の間には樹脂層186が設けられる。また、発光装置10は発光部140と接着層184の間に2層以上の光学機能層170を有しても良い。
 本実施形態の発光装置10の製造方法において、発光部140の形成までは第1の実施形態と同様に行うことができる。本実施形態では、次いで、第2電極130の上に封止膜182、光学機能層170、樹脂層186、および封止膜182をこの順に形成する。ここで、樹脂層186はたとえばスピンコート法、インクジェット法等の塗布法で形成できる。そして、封止部材180を接着層184で接着し、光学機能層170および封止膜182等を介して発光部140を封止する。
 なお、第1の実施形態と同様、封止部材180の少なくとも一方に光学機能層170がさらに設けられていても良い。また、発光装置10は封止部材180および接着層184を備えていなくても良い。
 以上、本実施形態においても、発光装置10は複数の発光部140の間に位置する光透過領域を備える。そして、第2基材220は上記した第1例から第5例のうち少なくともいずれかに該当するような光学機能層170を含む。したがって、基板100のおもて面側で反射された光が発光装置10の裏面側へ出射されることを抑制し、裏面漏れ光を低減することができる。
 加えて、本実施形態の発光装置10は、複数の封止膜182を備える。したがって、発光部140をより強固に封止することができ、発光部140の耐久性を向上させることができる。
(第5の実施形態)
 図10は、第5の実施形態に係る発光装置10の構成を示す断面図である。本図は第1の実施形態における図1に相当する。本実施形態に係る発光装置10は、封止膜182が光学機能層170の機能を兼ねる点を除いて第4の実施形態の発光装置10と同じである。
 本実施形態において、封止膜182はたとえばSiN、SiON、Al、TiOなどの無機膜を複数積層した積層膜であり、バリア性を有する。そして封止膜182は、第1の実施形態において説明した様な複数の誘電体膜の積層膜でもあり、光学機能層170として機能する。各無機膜は、例えば、スパッタリング法、CVD法、ALD法などの真空成膜法で形成することができる。本実施形態において光学機能層170の厚さは100nm以上5μm以下であることが好ましい。
 本実施形態の発光装置10の製造方法において、発光部140の形成までは第1の実施形態と同様に行うことができる。本実施形態では、次いで、第2電極130の上に光学機能層170、樹脂層186、および光学機能層170をこの順に形成する。ここで、樹脂層186はたとえばスピンコート法、インクジェット法等の塗布法で形成できる。そして、封止部材180を接着層184で接着し、光学機能層170および樹脂層186等を介して発光部140を封止する。
 以上、本実施形態においても、発光装置10は複数の発光部140の間に位置する光透過領域を備える。そして、第2基材220は上記した第1例から第5例のうち少なくともいずれかに該当するような光学機能層170を含む。したがって、基板100のおもて面側で反射された光が発光装置10の裏面側へ出射されることを抑制し、裏面漏れ光を低減することができる。
 加えて、本実施形態の発光装置10は、複数の封止膜182を備える。したがって、発光部140をより強固に封止することができ、発光部140の耐久性を向上させることができる。
 また、封止膜182は光学機能層170の機能を兼ねる。したがって、発光装置10の製造において、膜形成の工程数を低減することができる。
(第6の実施形態)
 図11は、第6の実施形態に係る発光装置10の構成を示す断面図である。本図は第1の実施形態における図1に相当する。図12は第6の実施形態に係る発光装置10の平面図である。ただし本図では一部の部材を省略している。なお、図11は図12のB-B断面に対応している。本実施形態に係る発光装置10は、以下に説明する点を除いて第1~第5の実施形態の少なくともいずれかに係る発光装置10と同じである。
 本実施形態の発光装置10は、第1発光部140aと、第1発光部140aとは第1波長が異なる第2発光部140bとを備える。図11および図12に示す例において、発光装置10は発光部140として第1発光部140a、第2発光部140b、および第3発光部140cを備える。第1発光部140aは第1有機層120aを含み、第2発光部140bは第2有機層120bを含み、第3発光部140cは第3有機層120cを含む。そして、第1発光部140a、第2発光部140b、および第3発光部140cは互いに発光色が異なり、すなわち第1波長が異なる。
 例えば、第1発光部140aの発光スペクトルのピーク波長(第1発光部140aの第1波長)は、第2発光部140bの発光スペクトルのピーク波長(第2発光部140bの第1波長)よりも長い。また、第2発光部140bの発光スペクトルのピーク波長は、第3発光部140cの発光スペクトルのピーク波長(第3発光部140cの第1波長)よりも長い。第1発光部140aの発光色はたとえば赤色であり、第1発光部140aの第1波長はたとえば600nm以上650nm以下ある。第2発光部140bの発光色は、たとえば緑色であり、第2発光部140bの第1波長はたとえば500nm以上580nm以下である。第3発光部140cの発光色は、たとえば青色であり、第3発光部140cの第1波長はたとえば430nm以上470nm以下である。
 そして図11および図12に示すように、第1発光部140a、第2発光部140b、および第3発光部140cが、順に繰り返し並んでいる。
 このように、発光装置10が互いに異なる発光色を生じる第1発光部140a、第2発光部140b、および第3発光部140cを備えることにより、発光装置10はたとえば白色やカラーの照明として用いることができる。また、第1発光部140a、第2発光部140b、および第3発光部140cの発光をそれぞれ独立に調整することにより、発光装置10全体の色を調整することができる。
 本実施形態に係る第2基材220は光学機能層170として第1光学機能層170a、第2光学機能層170b、および第3光学機能層170cを含む。第1光学機能層170aは第1発光部140aの第1波長の光を特に反射する層であり、第2光学機能層170bは第2発光部140bの第1波長の光を特に反射する層であり、第3光学機能層170cは第3発光部140cの第1波長の光を特に反射する層である。第1光学機能層170aと第1発光部140aの第1波長との関係、第2光学機能層170bと第2発光部140bの第1波長との関係、および第3光学機能層170cと第3発光部140cの第1波長との関係は、それぞれ、第1の実施形態で説明した第1例から第5例の光学機能層170と発光部140の第1波長との関係のうち少なくともいずれかに該当する。たとえば第1光学機能層170a、第2光学機能層170b、および第3光学機能層170cがそれぞれ複数の誘電体膜の積層膜からなる場合、第1光学機能層170a、第2光学機能層170b、および第3光学機能層170cを構成する複数の誘電体膜の膜厚および材質の少なくとも一方は互いに異なっている。
 第1光学機能層170a、第2光学機能層170b、および第3光学機能層170cの積層体は第1発光部140a、第2発光部140b、および第3発光部140cの第1波長を特に反射する一方、積層体全体として光透過性を有する。よって、発光装置10のおもて面側から裏面側、および裏面側からおもて面側の視認性を確保することができる。
 図11に示す例では、第1光学機能層170a、第2光学機能層170b、および第3光学機能層170cがこの順に積層されている。ただし、第1光学機能層170a、第2光学機能層170b、および第3光学機能層170cの積層順は特に限定されない。また、本図に示す例では、第1光学機能層170a、第2光学機能層170b、および第3光学機能層170cが互いに接して設けられているが、第1光学機能層170a、第2光学機能層170b、および第3光学機能層170cの間には他の層が設けられていても良い。
 また、図11に示す例では、第1光学機能層170a、第2光学機能層170b、および第3光学機能層170cは、第1基材210に垂直な方向から見て、第1領域102、第2領域104および第3領域106の全体と重なる様に設けられている。したがって、第1光学機能層170a、第2光学機能層170b、および第3光学機能層170cをパターニングする必要が無く、容易に形成できる。ただし、第1光学機能層170a、第2光学機能層170b、および第3光学機能層170cは、光透過領域と重なる領域の少なくとも一部に設けられていればよい。
 なお、発光装置10は、第1光学機能層170a、第2光学機能層170b、および第3光学機能層170cの三層に代えて、第1発光部140a、第2発光部140b、および第3発光部140cの全てに対して、第1例から第3例のうち少なくともいずれかの関係を満たす一つの光学機能層170を有していても良い。そうすることにより、発光装置10の製造における層形成の工程数を減らすことができる。
 以上、本実施形態においても、発光装置10は複数の発光部140の間に位置する光透過領域を備える。そして、第2基材220は上記した第1例から第5例のうち少なくともいずれかに該当するような光学機能層170を含む。したがって、基板100のおもて面側で反射された光が発光装置10の裏面側へ出射されることを抑制し、裏面漏れ光を低減することができる。
 加えて本実施形態の発光装置10は、第1発光部140aと、第1発光部140aとは第1波長が異なる第2発光部140bとを少なくとも備える。したがって発光装置10全体の色を調整することができる。
(第7の実施形態)
 図13は、第7の実施形態に係る発光装置10の構成を示す断面図である。本図は第1の実施形態における図1に相当する。本実施形態に係る発光装置10は、以下に説明する点を除いて第6の実施形態の発光装置10と同じである。
 本実施形態の発光装置10の第2基材220は、第1光学機能層170a、第2光学機能層170b、および第3光学機能層170cを備える。第1光学機能層170a、第2光学機能層170b、および第3光学機能層170cはそれぞれ線状かつ同一方向に延在しており、順に繰り返し並んでいる。
 第1基材210に垂直な方向から見て、第1光学機能層170aは第1発光部140aに重なり、第2光学機能層170bは第2発光部140bに重なり、第3光学機能層170cは第3発光部140cに重なっている。また、第1光学機能層170a、第2光学機能層170b、および第3光学機能層170cはそれぞれ、第1発光部140a、第2発光部140b、および第3発光部140cに重なる領域からはみ出しており、第1発光部140a、第2発光部140b、および第3発光部140cと隣り合う光透過領域の少なくとも一部に重なっている。本図では、第1光学機能層170a、第2光学機能層170b、および第3光学機能層170cは端部で互いに接している例を示しているが、これに限定されない。第1光学機能層170a、第2光学機能層170b、および第3光学機能層170cは互いに離れていても良いし、互いの端部が重なっていても良い。
 本実施形態に係る第1光学機能層170a、第2光学機能層170b、および第3光学機能層170cは、それぞれリソグラフィー法やマスク法によりパターニングして形成できる。
 以上、本実施形態においても、発光装置10は複数の発光部140の間に位置する光透過領域を備える。そして、第2基材220は上記した第1例から第5例のうち少なくともいずれかに該当するような光学機能層170を含む。したがって、基板100のおもて面側で反射された光が発光装置10の裏面側へ出射されることを抑制し、裏面漏れ光を低減することができる。
 加えて、本実施形態の発光装置10は、第1発光部140aと、第1発光部140aとは第1波長が異なる第2発光部140bとを少なくとも備える。したがって発光装置10全体の色を調整することができる。
 また、本実施形態の発光装置10では、特に反射する波長が互いに異なる複数の光学機能層170が第1基材210に平行な方向に並んで設けられている。したがって、光透過領域の高い光透過性を確保することができる。
(実施例1)
 図14は、実施例1に係る発光装置10の構成を示す断面図である。図15は図14に示した発光装置10の平面図である。ただし、図15において一部の部材は省略されている。図14は図15のC-C断面に対応している。本実施例に係る発光装置10は、第1の実施形態から第7の実施形態の少なくともいずれかに係る発光装置10と同様の構成を有している。なお、図14および図15では、発光装置10が第1の実施形態の構成を有する例を示している。図1は図15のA-A断面図に相当する。
 また、発光装置10は、第1端子112、第1引出配線114、第2端子132、及び第2引出配線134を備えている。第1端子112、第1引出配線114、第2端子132、及び第2引出配線134は、いずれも基板100のうち発光部140と同一面に形成されている。第1端子112及び第2端子132は封止部材180の外部に位置している。第1引出配線114は第1端子112と第1電極110とを接続しており、第2引出配線134は第2端子132と第2電極130とを接続している。言い換えると、第1引出配線114及び第2引出配線134は、いずれも封止部材180の内側から外側に延在している。
 第1端子112、第2端子132、第1引出配線114、及び第2引出配線134は、例えば、第1電極110と同一の材料で形成された層を有している。また、第1端子112、第2端子132、第1引出配線114、及び第2引出配線134の少なくとも一つの少なくとも一部は、この層の上に、第1電極110よりも低抵抗な金属膜を有していてもよい。この金属膜は、例えばMo又はMo合金などの第1金属層、Al又はAl合金などの第2金属層、及びMo又はMo合金などの第3金属層をこの順に積層させた構成を有している。この金属膜は、第1端子112、第2端子132、第1引出配線114、及び第2引出配線134のすべてに形成されている必要はない。
 第1端子112、第1引出配線114、第2端子132、及び第2引出配線134のうち第1電極110と同一の材料で形成された層は、第1電極110と同一工程で形成されている。このため、第1電極110は、第1端子112の少なくとも一部の層と一体になっている。またこれらが金属膜を有している場合、この金属膜は、例えばスパッタリング法などによる成膜およびエッチング等によるパターニングを行って形成される。この場合、第1端子112、第1引出配線114、第2端子132、及び第2引出配線134の光線透過率は、基板100の光線透過率よりも低くなる。
 本図に示す例において、第1引出配線114及び第2引出配線134は一つの発光部140について一つずつ形成されている。複数の第1引出配線114はいずれも同一の第1端子112に接続しており、複数の第2引出配線134はいずれも同一の第2端子132に接続している。そして、第1端子112には、ボンディングワイヤ又はリード端子などの導電部材を介して制御回路の正極端子が接続され、第2端子132には、ボンディングワイヤ又はリード端子などの導電部材を介して制御回路の負極端子が接続される。ただし、発光装置10が第6または第7の実施形態の構成を有する場合、発光装置10は複数の第2端子132を備え、第2引出配線134がそれぞれ異なる第2端子132に接続されていても良い。
 以上、本実施例においても、発光装置10は複数の発光部140の間に位置する光透過領域を備える。そして、第2基材220は上記した第1例から第5例のうち少なくともいずれかに該当するような光学機能層170を含む。したがって、基板100のおもて面側で反射された光が発光装置10の裏面側へ出射されることを抑制し、裏面漏れ光を低減することができる。
 上記の実施形態及び実施例では、ボトムエミッション型の発光装置の例を示したが、それに限定されない。たとえば発光装置はトップエミッション型でもよい。
 また、上記の各実施形態および実施例において、発光装置10は封止部材180を含まなくても良い。その場合、発光装置10は、透光性を有する第1基材210及び透光性を有する被覆層の間に位置し、第1波長にピークを有する光を発する複数の発光部140と、複数の発光部140の間に位置する光透過領域とを備える。そして、被覆層は光学機能層170を含む。被覆層に含まれうる層や膜としては、たとえば、樹脂をモールドまたは塗布して形成された保護層や、封止膜182、樹脂層186が挙げられる。
 以上、図面を参照して実施形態及び実施例について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
 以下、参考形態の例を付記する。
1-1. 透光性を有する第1基材及び透光性を有する第2基材の間に位置し、第1波長にピークを有する光を発する複数の発光部と、
 前記複数の発光部の間に位置する光透過領域と、を備え、
 前記第2基材は反射層を含み、
 前記反射層は、400nm以上700nm以下の波長範囲内の光の平均反射率より前記第1波長の光の反射率が高い発光装置。
1-2. 透光性を有する第1基材及び透光性を有する第2基材の間に位置し、第1波長にピークを有する光を発する複数の発光部と、
 前記複数の発光部の間に位置する光透過領域と、を備え、
 前記第2基材は反射層を含み、
 前記ピークにおけるピーク強度の2分の1の強度をとる二つの波長を上下限とする波長範囲内の光に対する、前記反射層の反射率が30%以上である発光装置。
1-3. 透光性を有する第1基材及び透光性を有する第2基材の間に位置し、第1波長にピークを有する光を発する複数の発光部と、
 前記複数の発光部の間に位置する光透過領域と、を備え、
 前記第2基材は反射層を含み、
 前記反射層の400nm以上700nm以下の波長範囲の光の反射スペクトルのうち最大の反射率をとる波長は、前記ピークにおけるピーク強度の2分の1の強度をとる二つの波長を上下限とする波長範囲内に位置する発光装置。
1-4. 透光性を有する第1基材及び透光性を有する第2基材の間に位置し、第1波長にピークを有する光を発する複数の発光部と、
 前記複数の発光部の間に位置する光透過領域と、を備え、
 前記第2基材は反射層を含み、
 前記反射層の400nm以上700nm以下の波長範囲の光の反射スペクトルのうち最大の反射率をRmaxとしたとき、Rmax×0.5以上の反射率をとる波長範囲内に、前記第1波長が含まれる発光装置。
1-5. 1-1.から1-4.のいずれか一つに記載の発光装置において、
 前記発光部は、透光性の第1電極、遮光性の第2電極および、前記第1電極と前記第2電極との間に位置する有機層を含み、
 前記第2電極は前記第1電極に対し前記第1基材とは逆側に位置する発光装置。
1-6. 1-5.に記載の発光装置において、
 前記光透過領域は、前記第1基材に垂直な方向から見て、前記第2電極と重ならない領域である発光装置。
1-7. 1-1.から1-6.のいずれか一つに記載の発光装置において、
 前記反射層は、複数の誘電体膜が積層された積層膜、または金属膜からなる発光装置。
1-8. 1-7.に記載の発光装置において、
前記積層膜は、無機材料を含む発光装置。
1-9. 1-1.から1-8.のいずれか一つに記載の発光装置において、
 前記反射層は前記発光部に接している発光装置。
1-10. 1-1.から1-9.のいずれか一つに記載の発光装置において、
 前記ピークにおいてピーク強度の5分の1の強度をとる二つの波長を、上下限とする波長範囲内の光に対する、前記反射層の光透過率が平均で50%以上である発光装置。
1-11. 1-1.から1-10.のいずれか一つに記載の発光装置において、
 前記反射層は、前記第1基材に垂直な方向から見て、前記光透過領域と重なる領域に形成されている発光装置。
1-12. 1-1.から1-11.のいずれか一つに記載の発光装置において、
 前記第2基材は、前記発光部に接して前記発光部を覆う封止膜を含み、
 前記封止膜は前記反射層である発光装置。
2-1. 透光性を有する基材及び透光性を有する被覆層の間に位置し、第1波長にピークを有する光を発する複数の発光部と、
 前記複数の発光部の間に位置する光透過領域と、を備え、
 前記被覆層は反射層を含み、
 前記反射層は、400nm以上700nm以下の波長範囲内の光の平均反射率より前記第1波長の光の反射率が高い発光装置。
2-2. 透光性を有する基材及び透光性を有する被覆層の間に位置し、第1波長にピークを有する光を発する複数の発光部と、
 前記複数の発光部の間に位置する光透過領域と、を備え、
 前記被覆層は反射層を含み、
 前記ピークにおけるピーク強度の2分の1の強度をとる二つの波長を上下限とする波長範囲内の光に対する、前記反射層の反射率が30%以上である発光装置。
2-3. 透光性を有する基材及び透光性を有する被覆層の間に位置し、第1波長にピークを有する光を発する複数の発光部と、
 前記複数の発光部の間に位置する光透過領域と、を備え、
 前記被覆層は反射層を含み、
 前記反射層の400nm以上700nm以下の波長範囲の光の反射スペクトルのうち最大の反射率をとる波長は、前記ピークにおけるピーク強度の2分の1の強度をとる二つの波長を上下限とする波長範囲内に位置する発光装置。
2-4. 透光性を有する基材及び透光性を有する被覆層の間に位置し、第1波長にピークを有する光を発する複数の発光部と、
 前記複数の発光部の間に位置する光透過領域と、を備え、
 前記被覆層は反射層を含み、
 前記反射層の400nm以上700nm以下の波長範囲の光の反射スペクトルのうち最大の反射率をRmaxとしたとき、Rmax×0.5以上の反射率をとる波長範囲内に、前記第1波長が含まれる発光装置。
2-5. 2-1.から2-4.のいずれか一つに記載の発光装置において、
 前記発光部は、透光性の第1電極、遮光性の第2電極および、前記第1電極と前記第2電極との間に位置する有機層を含み、
 前記第2電極は前記第1電極に対し前記基材とは逆側に位置する発光装置。
2-6. 2-5.に記載の発光装置において、
 前記光透過領域は、前記基材に垂直な方向から見て、前記第2電極と重ならない領域である発光装置。
2-7. 2-1.から2-6.のいずれか一つに記載の発光装置において、
 前記反射層は、複数の誘電体膜が積層された積層膜、または金属膜からなる発光装置。
2-8. 2-7.に記載の発光装置において、
前記積層膜は、無機材料を含む発光装置。
2-9. 2-1.から2-8.のいずれか一つに記載の発光装置において、
 前記反射層は前記発光部に接している発光装置。
2-10. 2-1.から2-9.のいずれか一つに記載の発光装置において、
 前記ピークにおいてピーク強度の5分の1の強度をとる二つの波長を、上下限とする波長範囲内の光に対する、前記反射層の光透過率が平均で50%以上である発光装置。
2-11. 2-1.から2-10.のいずれか一つに記載の発光装置において、
 前記反射層は、前記基材に垂直な方向から見て、前記光透過領域と重なる領域に形成されている発光装置。
2-12. 2-1.から2-11.のいずれか一つに記載の発光装置において、
 前記被覆層は、前記発光部に接して前記発光部を覆う封止膜を含み、
 前記封止膜は前記反射層である発光装置。

Claims (16)

  1.  透光性を有する第1基材及び透光性を有する第2基材の間に位置し、第1波長にピークを有する光を発する複数の発光部と、
     前記複数の発光部の間に位置する光透過領域と、を備え、
     前記第2基材は反射層を含み、
     前記反射層は、400nm以上700nm以下の波長範囲内の光の平均反射率より前記第1波長の光の反射率が高い発光装置。
  2.  透光性を有する第1基材及び透光性を有する第2基材の間に位置し、第1波長にピークを有する光を発する複数の発光部と、
     前記複数の発光部の間に位置する光透過領域と、を備え、
     前記第2基材は反射層を含み、
     前記ピークにおけるピーク強度の2分の1の強度をとる二つの波長を上下限とする波長範囲内の光に対する、前記反射層の反射率が30%以上である発光装置。
  3.  透光性を有する第1基材及び透光性を有する第2基材の間に位置し、第1波長にピークを有する光を発する複数の発光部と、
     前記複数の発光部の間に位置する光透過領域と、を備え、
     前記第2基材は反射層を含み、
     前記反射層の400nm以上700nm以下の波長範囲の光の反射スペクトルのうち最大の反射率をとる波長は、前記ピークにおけるピーク強度の2分の1の強度をとる二つの波長を上下限とする波長範囲内に位置する発光装置。
  4.  透光性を有する第1基材及び透光性を有する第2基材の間に位置し、第1波長にピークを有する光を発する複数の発光部と、
     前記複数の発光部の間に位置する光透過領域と、を備え、
     前記第2基材は反射層を含み、
     前記反射層の400nm以上700nm以下の波長範囲の光の反射スペクトルのうち最大の反射率をRmaxとしたとき、Rmax×0.5以上の反射率をとる波長範囲内に、前記第1波長が含まれる発光装置。
  5.  請求項1~4のいずれか一項に記載の発光装置において、
     前記発光部は、透光性の第1電極、遮光性の第2電極および、前記第1電極と前記第2電極との間に位置する有機層を含み、
     前記第2電極は前記第1電極に対し前記第1基材とは逆側に位置する発光装置。
  6.  請求項5に記載の発光装置において、
     前記光透過領域は、前記第1基材に垂直な方向から見て、前記第2電極と重ならない領域である発光装置。
  7.  請求項1~6のいずれか一項に記載の発光装置において、
     前記反射層は、複数の誘電体膜が積層された積層膜、または金属膜からなる発光装置。
  8.  請求項7に記載の発光装置において、
    前記積層膜は、無機材料を含む発光装置。
  9.  請求項1~8のいずれか一項に記載の発光装置において、
     前記反射層は前記発光部に接している発光装置。
  10.  請求項1~9のいずれか一項に記載の発光装置において、
     前記ピークにおいてピーク強度の5分の1の強度をとる二つの波長を、上下限とする波長範囲内の光に対する、前記反射層の光透過率が平均で50%以上である発光装置。
  11.  請求項1~10のいずれか一項に記載の発光装置において、
     前記反射層は、前記第1基材に垂直な方向から見て、前記光透過領域と重なる領域に形成されている発光装置。
  12.  請求項1~11のいずれか一項に記載の発光装置において、
     前記第2基材は、前記発光部に接して前記発光部を覆う封止膜を含み、
     前記封止膜は前記反射層である発光装置。
  13.  透光性を有する基材及び透光性を有する被覆層の間に位置し、第1波長にピークを有する光を発する複数の発光部と、
     前記複数の発光部の間に位置する光透過領域と、を備え、
     前記被覆層は反射層を含み、
     前記反射層は、400nm以上700nm以下の波長範囲内の光の平均反射率より前記第1波長の光の反射率が高い発光装置。
  14.  透光性を有する基材及び透光性を有する被覆層の間に位置し、第1波長にピークを有する光を発する複数の発光部と、
     前記複数の発光部の間に位置する光透過領域と、を備え、
     前記被覆層は反射層を含み、
     前記ピークにおけるピーク強度の2分の1の強度をとる二つの波長を上下限とする波長範囲内の光に対する、前記反射層の反射率が30%以上である発光装置。
  15.  透光性を有する基材及び透光性を有する被覆層の間に位置し、第1波長にピークを有する光を発する複数の発光部と、
     前記複数の発光部の間に位置する光透過領域と、を備え、
     前記被覆層は反射層を含み、
     前記反射層の400nm以上700nm以下の波長範囲の光の反射スペクトルのうち最大の反射率をとる波長は、前記ピークにおけるピーク強度の2分の1の強度をとる二つの波長を上下限とする波長範囲内に位置する発光装置。
  16.  透光性を有する基材及び透光性を有する被覆層の間に位置し、第1波長にピークを有する光を発する複数の発光部と、
     前記複数の発光部の間に位置する光透過領域と、を備え、
     前記被覆層は反射層を含み、
     前記反射層の400nm以上700nm以下の波長範囲の光の反射スペクトルのうち最大の反射率をRmaxとしたとき、Rmax×0.5以上の反射率をとる波長範囲内に、前記第1波長が含まれる発光装置。
PCT/JP2016/078569 2016-09-28 2016-09-28 発光装置 WO2018061102A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018541769A JPWO2018061102A1 (ja) 2016-09-28 2016-09-28 発光装置
US16/337,877 US20200035954A1 (en) 2016-09-28 2016-09-28 Light-emitting device
PCT/JP2016/078569 WO2018061102A1 (ja) 2016-09-28 2016-09-28 発光装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/078569 WO2018061102A1 (ja) 2016-09-28 2016-09-28 発光装置

Publications (1)

Publication Number Publication Date
WO2018061102A1 true WO2018061102A1 (ja) 2018-04-05

Family

ID=61760214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/078569 WO2018061102A1 (ja) 2016-09-28 2016-09-28 発光装置

Country Status (3)

Country Link
US (1) US20200035954A1 (ja)
JP (1) JPWO2018061102A1 (ja)
WO (1) WO2018061102A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3843156A1 (en) * 2019-12-27 2021-06-30 Samsung Display Co., Ltd. Display device and method of manufacturing the same
WO2022154009A1 (ja) * 2021-01-15 2022-07-21 パイオニア株式会社 発光装置
US12127443B2 (en) 2019-12-27 2024-10-22 Samsung Display Co., Ltd. Display device and method of manufacturing the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110071155A (zh) * 2019-04-26 2019-07-30 深圳市华星光电半导体显示技术有限公司 显示面板及其封装方法、显示装置
CN110783484B (zh) * 2019-09-24 2020-11-10 昆山国显光电有限公司 显示面板及其制作方法、显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013117719A (ja) * 2011-11-04 2013-06-13 Semiconductor Energy Lab Co Ltd 表示装置、及びその駆動方法
JP2014154213A (ja) * 2013-02-04 2014-08-25 Toshiba Corp 有機電界発光素子、照明装置及び照明システム
WO2015125308A1 (ja) * 2014-02-24 2015-08-27 株式会社 東芝 有機電界発光素子、照明装置、および照明システム
WO2016042845A1 (ja) * 2014-09-19 2016-03-24 株式会社 東芝 照明装置及び照明システム
WO2016042638A1 (ja) * 2014-09-18 2016-03-24 パイオニア株式会社 発光装置
US20160099296A1 (en) * 2014-10-01 2016-04-07 Samsung Display Co., Ltd. Organic light-emitting display apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4176517B2 (ja) * 2003-03-14 2008-11-05 オプトレックス株式会社 薄膜発光表示素子、その製造方法および表示装置
JP6342191B2 (ja) * 2014-03-27 2018-06-13 株式会社 オルタステクノロジー 表示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013117719A (ja) * 2011-11-04 2013-06-13 Semiconductor Energy Lab Co Ltd 表示装置、及びその駆動方法
JP2014154213A (ja) * 2013-02-04 2014-08-25 Toshiba Corp 有機電界発光素子、照明装置及び照明システム
WO2015125308A1 (ja) * 2014-02-24 2015-08-27 株式会社 東芝 有機電界発光素子、照明装置、および照明システム
WO2016042638A1 (ja) * 2014-09-18 2016-03-24 パイオニア株式会社 発光装置
WO2016042845A1 (ja) * 2014-09-19 2016-03-24 株式会社 東芝 照明装置及び照明システム
US20160099296A1 (en) * 2014-10-01 2016-04-07 Samsung Display Co., Ltd. Organic light-emitting display apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3843156A1 (en) * 2019-12-27 2021-06-30 Samsung Display Co., Ltd. Display device and method of manufacturing the same
US11678521B2 (en) 2019-12-27 2023-06-13 Samsung Display Co., Ltd. Display device and method of manufacturing the same
US12127443B2 (en) 2019-12-27 2024-10-22 Samsung Display Co., Ltd. Display device and method of manufacturing the same
WO2022154009A1 (ja) * 2021-01-15 2022-07-21 パイオニア株式会社 発光装置

Also Published As

Publication number Publication date
JPWO2018061102A1 (ja) 2019-07-11
US20200035954A1 (en) 2020-01-30

Similar Documents

Publication Publication Date Title
WO2016042638A1 (ja) 発光装置
WO2018061102A1 (ja) 発光装置
JP6608055B2 (ja) 発光装置
JP2016062767A (ja) 発光装置
JP2022173480A (ja) 発光装置
JP2017103048A (ja) 発光装置及び発光システム
WO2017073459A1 (ja) 発光システム
KR20160043803A (ko) 유기 발광 표시 장치
JP2018037202A (ja) 発光装置
WO2017149733A1 (ja) 発光装置
JP7392076B2 (ja) 発光装置
WO2017149771A1 (ja) 発光装置および発光システム
JP2016062766A (ja) 発光装置
JP6847642B2 (ja) 発光装置
JP2017103049A (ja) 発光装置及び発光システム
WO2018173825A1 (ja) 光装置
WO2018151026A1 (ja) 発光装置
WO2017094498A1 (ja) 発光システム
JP6450124B2 (ja) 発光装置
WO2018062272A1 (ja) 発光装置
WO2018025576A1 (ja) 発光装置
WO2017094499A1 (ja) 発光装置
WO2018179528A1 (ja) 発光装置
JP2019036758A (ja) 発光装置
JP2021144128A (ja) 表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16917655

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018541769

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16917655

Country of ref document: EP

Kind code of ref document: A1