WO2017158775A1 - 発光装置及び発光システム - Google Patents

発光装置及び発光システム Download PDF

Info

Publication number
WO2017158775A1
WO2017158775A1 PCT/JP2016/058394 JP2016058394W WO2017158775A1 WO 2017158775 A1 WO2017158775 A1 WO 2017158775A1 JP 2016058394 W JP2016058394 W JP 2016058394W WO 2017158775 A1 WO2017158775 A1 WO 2017158775A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
light
substrate
emitting device
electrode
Prior art date
Application number
PCT/JP2016/058394
Other languages
English (en)
French (fr)
Inventor
健見 岡田
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2016/058394 priority Critical patent/WO2017158775A1/ja
Publication of WO2017158775A1 publication Critical patent/WO2017158775A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details

Definitions

  • the present invention relates to a light emitting device and a light emitting system.
  • This light-emitting device is used as a lighting device or a display device, and has a configuration in which an organic layer is sandwiched between a first electrode and a second electrode.
  • a transparent material is used for the first electrode
  • a metal material is used for the second electrode.
  • Patent Document 1 One of light-emitting devices using organic EL is a technique described in Patent Document 1.
  • the second electrode is provided only on a part of the substrate in order to give the organic EL element optical transparency (see-through).
  • the organic EL element can have light transmittance.
  • a mirror layer is provided at a position overlapping an active region of an organic layer in an organic EL element in which a part of the organic layer is an inactive region and the second electrode is made transparent. It is described.
  • a light extraction structure for example, a light extraction film
  • the light extraction structure is often provided on the entire surface of the light extraction surface.
  • the light transmittance of the light emitting device is lowered.
  • An example of a problem to be solved by the present invention is to reduce the amount of light leaking to the back surface side and improve the light extraction efficiency while maintaining the light transmittance in the light emitting device having light transmittance. As mentioned.
  • the invention according to claim 1 is a substrate having a thickness d; A plurality of light emitting portions disposed on the first surface of the substrate and having a light transmitting first electrode, a light reflecting second electrode, and an organic layer positioned between the first electrode and the second electrode When, A translucent region located between the plurality of light emitting units; A sealing member that covers the light emitting part; A lens disposed on the second surface of the substrate and overlapping the light emitting unit; With In a cross section perpendicular to the substrate, at least one end portion of the lens is protruded from the light emitting portion, and when the width of the portion corresponding protruded was OL 1, d / 2 ⁇ OL 1 Is a light emitting device.
  • the invention according to claim 9 is a substrate having a thickness d; A plurality of light emitting portions disposed on the first surface of the substrate and having a light transmitting first electrode, a light reflecting second electrode, and an organic layer positioned between the first electrode and the second electrode When, A translucent region located between the plurality of light emitting units; A lens disposed on the second surface of the substrate and overlapping a part of the light emitting unit; A sealing member that covers the light emitting part; With In a cross section perpendicular to the substrate, one end portion of the lens protrudes from the light emitting portion, and when the width of the protruding portion is OL 1 , d / 2 ⁇ OL 1 It is a certain light emitting device.
  • the invention according to claim 13 is a translucent partition member that partitions the space from the outside, A light-transmitting thickness d substrate disposed on the space-side surface of the partition member; A plurality of light emitting portions disposed on the first surface of the substrate and having a light transmitting first electrode, a light reflecting second electrode, and an organic layer positioned between the first electrode and the second electrode When, A translucent region located between the plurality of light emitting units; A lens disposed on the second surface of the substrate and overlapping the light emitting unit; A sealing member that covers the light emitting part; With In a cross section perpendicular to the substrate, at least one end portion of the lens is protruded from the light emitting portion, and when the width of the portion corresponding protruded was OL 1, d / 2 ⁇ OL 1 Is a light emitting system.
  • the invention according to claim 14 is a translucent partition member that partitions the space from the outside, A light-transmitting thickness d substrate disposed on the space-side surface of the partition member; A plurality of light emitting portions disposed on the first surface of the substrate and having a light transmitting first electrode, a light reflecting second electrode, and an organic layer positioned between the first electrode and the second electrode When, A translucent region located between the plurality of light emitting units; A lens disposed on the second surface of the substrate and overlapping a part of the light emitting unit; A sealing member that covers the light emitting part; With In a cross section perpendicular to the substrate, one end portion of the lens protrudes from the light emitting portion, and when the width of the protruding portion is OL 1 , d / 2 ⁇ OL 1 It is a lighting system.
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG. It is the top view which looked at the light-emitting device from the opposite side to FIG. 6 is a cross-sectional view illustrating a configuration of a light emitting device according to Modification Example 1.
  • FIG. 11 is a cross-sectional view illustrating a configuration of a light emitting device according to Modification 2.
  • FIG. 11 is a cross-sectional view illustrating a configuration of a light emitting device according to Modification 3. It is sectional drawing which shows the structure of the light-emitting device which concerns on the modification 4.
  • FIG. 11 is a cross-sectional view taken along the line AA in FIG. It is the top view which looked at the light-emitting device from the opposite side to FIG. 6 is a cross-sectional view illustrating a configuration of a light emitting device according to Modification Example 1.
  • FIG. FIG. 11 is a cross-sectional view illustrating a configuration of a light emitting device according to Modification
  • FIG. 10 is a cross-sectional view illustrating a configuration of a light emitting device according to Modification Example 5.
  • 1 is a cross-sectional view illustrating a configuration of a light emitting system according to Example 1.
  • FIG. 6 is a cross-sectional view illustrating a configuration of a light emitting system according to Example 2.
  • FIG. 6 is a cross-sectional view illustrating a configuration of a light emitting system according to Example 3.
  • FIG. It is sectional drawing which shows the modification of FIG. 6 is a cross-sectional view showing a configuration of a light emitting system according to Example 4.
  • FIG. 10 is a cross-sectional view illustrating a configuration of a light emitting system according to Example 5.
  • FIG. FIG. 10 is a cross-sectional view illustrating a configuration of a light emitting system according to Example 6.
  • FIG. 1 is a plan view showing a configuration of a light emitting device 10 according to the embodiment.
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG.
  • FIG. 3 is a plan view of the light emitting device 10 as viewed from the opposite side to FIG.
  • the light emitting device 10 according to the embodiment includes a substrate 100, a plurality of light emitting units 140, translucent regions (second region 104 and third region 106), a sealing member 170, and a lens 300.
  • the plurality of light emitting units 140 are disposed on the first surface 100 a of the substrate 100, and all include the first electrode 110, the organic layer 120, and the second electrode 130.
  • the first electrode 110 is a translucent electrode
  • the second electrode 130 is a light reflective electrode.
  • the organic layer 120 is located between the first electrode 110 and the second electrode 130.
  • the translucent region is located between the plurality of light emitting units 140.
  • the sealing member 170 covers the light emitting unit 140.
  • the lens 300 is disposed on the second surface 100 b of the substrate 100 and overlaps the light emitting unit 140. In the cross section perpendicular to the substrate 100, at least one end of the lens 300 protrudes from the light emitting unit 140. When the width of the protruding portion is OL 1 and the thickness of the substrate 100 is d, d / 2 ⁇ OL 1 is satisfied. Details will be described below.
  • the substrate 100 is a light-transmitting substrate such as a glass substrate or a resin substrate.
  • the substrate 100 may have flexibility.
  • the thickness d of the substrate 100 is, for example, 10 ⁇ m or more and 1000 ⁇ m or less, preferably 10 ⁇ m or more and 100 ⁇ m or less.
  • the substrate 100 is, for example, a polygon such as a rectangle or a circle.
  • the substrate 100 is formed using, for example, PEN (polyethylene naphthalate), PES (polyethersulfone), PET (polyethylene terephthalate), or polyimide.
  • an inorganic barrier film such as SiN x or SiON is formed on at least one surface (preferably both surfaces) of the substrate 100 in order to prevent moisture from permeating the substrate 100. It is preferable.
  • This inorganic barrier film is formed by using, for example, a sputtering method, a CVD method, or an ALD method.
  • a method of directly forming a first electrode 110 or an organic layer 120 described later on the resin substrate and after forming the layers after the first electrode 110 on the glass substrate.
  • the first electrode 110 and the glass substrate are peeled, and the peeled laminate is disposed on a resin substrate.
  • a plurality of light emitting portions 140 are formed on the first surface 100 a of the substrate 100.
  • the light emitting unit 140 has a configuration in which a first electrode 110, an organic layer 120 including a light emitting layer, and a second electrode 130 are stacked in this order.
  • the second surface 100b of the substrate 100 is a surface from which light is emitted.
  • the first electrode 110 is a transparent electrode having optical transparency.
  • the material of the transparent electrode is a metal-containing material, for example, a metal oxide such as ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), IWZO (Indium Tungsten Zinc Oxide), or ZnO (Zinc Oxide).
  • the thickness of the first electrode 110 is, for example, not less than 10 nm and not more than 500 nm.
  • the first electrode 110 is formed using, for example, a sputtering method or a vapor deposition method.
  • the first electrode 110 may be a carbon nanotube or a conductive organic material such as PEDOT / PSS.
  • the first electrode 110 may have a stacked structure in which a plurality of films are stacked. In this figure, a plurality of rectangular (striped) first electrodes 110 are formed on a substrate 100 in parallel with each other. For this reason, the 1st electrode 110 is not located in the 2nd field 104 and the 3rd field
  • the organic layer 120 has a configuration in which, for example, a hole injection layer, a light emitting layer, and an electron injection layer are stacked in this order.
  • a hole transport layer may be formed between the hole injection layer and the light emitting layer.
  • an electron transport layer may be formed between the light emitting layer and the electron injection layer.
  • the organic layer 120 may be formed by a vapor deposition method.
  • at least one layer of the organic layer 120 for example, a layer in contact with the first electrode 110, may be formed by a coating method such as an inkjet method, a printing method, or a spray method. In this case, the remaining layers of the organic layer 120 are formed by vapor deposition.
  • all the layers of the organic layer 120 may be formed using the apply
  • the emission color of the light emitting layer (or the color of light emitted from the organic layer 120) is different from the emission color of the light emitting layer of the adjacent light emitting unit 140 (or the color of light emitted from the organic layer 120). May be the same or the same.
  • the second electrode 130 has light reflectivity, for example, a metal selected from the first group consisting of Al, Au, Ag, Pt, Mg, Sn, Zn, and In, or the first electrode. A metal layer comprising an alloy of metals selected from the group is included.
  • the thickness of the second electrode 130 is, for example, not less than 10 nm and not more than 500 nm.
  • the second electrode 130 may be formed using the material exemplified as the material of the first electrode 110.
  • the second electrode 130 is formed using, for example, a sputtering method or a vapor deposition method. In the example shown in this drawing, the light emitting device 10 has a plurality of linear second electrodes 130.
  • the second electrode 130 is provided for each of the first electrodes 110 and is wider than the first electrode 110. For this reason, when viewed from the direction perpendicular to the substrate 100, the entire first electrode 110 is overlapped and covered by the second electrode 130 in the width direction. With such a configuration, the extraction direction of light emitted from the light emitting layer of the organic layer 120 can be adjusted. Specifically, the emission of light to the side opposite to the second surface 100b of the light emitting device 10 can be suppressed.
  • the edge of the first electrode 110 is covered with an insulating film 150.
  • the insulating film 150 is made of, for example, a photosensitive resin material such as polyimide, and surrounds a portion of the first electrode 110 that becomes the light emitting portion 140.
  • the plurality of light emitting units 140 When viewed from a direction perpendicular to the substrate 100, the plurality of light emitting units 140 extend in parallel to each other. In the example illustrated in FIG. 1, the plurality of light emitting units 140 all extend in a rectangular shape (stripe shape). However, the light emitting unit 140 may be bent halfway.
  • the substrate 100 When viewed from the direction perpendicular to the substrate 100, the substrate 100 has a first region 102, a second region 104, and a third region 106.
  • the first region 102 is a region overlapping with the second electrode 130.
  • the second electrode 130 has a light shielding property
  • the first region 102 is a region that does not transmit light from the front surface to the back surface and from the back surface to the front surface of the light emitting device 10 or the substrate 100.
  • the second region 104 is a region that does not overlap the second electrode 130 but overlaps the insulating film 150.
  • the third region 106 is a region that does not overlap the second electrode 130 and the insulating film 150.
  • region 104 is narrower than the width
  • the organic layer 120 is also formed in the second region 104 and the third region 106.
  • the organic layers 120 of the plurality of light emitting units 140 are formed continuously.
  • the organic layer 120 may not be formed in the third region 106.
  • the organic layer 120 may not be formed in the second region 104.
  • the width of the second region 104 is narrower than the width of the third region 106.
  • the width of the third region 106 may be wider or narrower than that of the first region 102.
  • the width of the first region 102 is 1, the width of the second region 104 is, for example, 0 or more (or more than 0 or 0.1 or more) 0.2 or less, and the width of the third region 106 is, for example, 0.3. It is 2 or less.
  • the width of the first region 102 is, for example, 50 ⁇ m or more and 500 ⁇ m or less
  • the width of the second region 104 is, for example, 0 ⁇ m or more (or more than 0 ⁇ m)
  • the width of the third region 106 is, for example, 15 ⁇ m or more and 1000 ⁇ m or less. is there.
  • the light emitting device 10 has a sealing member 170.
  • the sealing member 170 has a sealing plate 171 and a barrier film 172.
  • the sealing plate 171 is a plate-shaped member made of, for example, resin.
  • the resin constituting the sealing plate 171 is, for example, PEN (polyethylene naphthalate), PES (polyethersulfone), PET (polyethylene terephthalate), or polyimide.
  • the barrier film 172 is an inorganic film, for example, and is formed on at least one surface (preferably both surfaces) of the sealing plate 171.
  • the barrier film 172 is, for example, SiN x or SiON, and is formed by using, for example, a sputtering method, a CVD method, or an ALD method.
  • the sealing member 170 is fixed to the first surface 100a of the substrate 100 and a structure (for example, the light emitting unit 140) on the substrate 100 using, for example, an insulating layer 174 (for example, an adhesive layer or an adhesive layer). Note that at least part of the insulating layer 174 may be in contact with the second electrode 130.
  • the sealing member 170 may be a sealing film, for example, an inorganic film.
  • the sealing film is formed on at least the surface of the substrate 100 where the light emitting unit 140 is formed, and covers the light emitting unit 140. At least a part of the sealing film is in direct contact with the first surface 100 a of the substrate 100.
  • the sealing film is made of an inorganic material such as aluminum oxide or titanium oxide.
  • the thickness of the sealing film is preferably 300 nm or less.
  • the thickness of the sealing film is, for example, 50 nm or more.
  • the sealing film is formed after the second electrode 130 is formed.
  • the sealing film is formed using, for example, an ALD (Atomic Layer Deposition) method.
  • the sealing film may have a multilayer structure in which a plurality of layers are stacked.
  • the sealing film has a structure in which a first sealing layer made of a first material (for example, aluminum oxide) and a second sealing layer made of a second material (for example, titanium oxide) are repeatedly laminated. You may do it.
  • the lowermost layer may be either the first sealing layer or the second sealing layer.
  • the uppermost layer may be either the first sealing layer or the second sealing layer.
  • the sealing film may be a single layer in which the first material and the second material are mixed.
  • the sealing film may be formed using another film forming method, for example, a CVD method or a sputtering method.
  • the sealing film is formed of SiO 2 or SiN, and the film thickness is, for example, 10 nm or more and 1000 nm or less.
  • the light emitting device 10 may have both the above-described inorganic film and the sealing member 170 shown in FIG. Furthermore, the light emitting device 10 may have a sealing member having a so-called can sealing structure as the sealing member 170.
  • the light emitting device 10 has a lens 300.
  • the lens 300 is disposed on the second surface 100 b of the substrate 100 and overlaps the light emitting unit 140 when viewed from a direction perpendicular to the substrate 100.
  • the lens 300 is provided for each of the plurality of light emitting units 140.
  • P ⁇ W is preferable, and P ⁇ 2W is more preferable. In this way, it can reduce that the light transmittance of the light-emitting device 10 is impaired.
  • at least a part of the at least one light emitting unit 140 may not overlap with the lens 300.
  • the plurality of light emitting units 140 When viewed from a direction perpendicular to the substrate 100, as described above, the plurality of light emitting units 140 extend in parallel to each other. In the example illustrated in FIG. 1, the plurality of light emitting units 140 all extend in a rectangular shape (stripe shape). However, as described above, the light emitting unit 140 may be bent halfway.
  • the lens 300 also extends in the direction along the light emitting unit 140. In the example shown in this drawing, the lens 300 has the same configuration as a part of the lenticular lens, specifically, a shape obtained by cutting a column having a curved side surface along the axial direction.
  • the lens 300 When viewed from a direction perpendicular to the substrate 100, a part of the lens 300 protrudes from the light emitting unit 140. For this reason, in the cross section perpendicular to the substrate 100, at least one end of the lens 300 is located outside the light emitting unit 140.
  • the width of the protruding portion of one end of the lens 300 is OL 1 , d / 2 ⁇ OL 1 .
  • the width OL 1 is, for example, not less than 5 ⁇ m and not more than 500 ⁇ m.
  • the width of the lens 300 is larger than the width of the light emitting unit 140, and therefore the other end of the lens 300 protrudes from the light emitting unit 140. Then, when the width of the portion protruding out of the end of the other and OL 2, OL 2 below 1.05 times 0.95 times the OL 1, in other words OL 2 is almost the same as OL 1 Is preferred.
  • the lens 300 is formed using, for example, a photocurable resin (for example, an ultraviolet curable resin). However, the lens 300 may be formed using other materials.
  • a photocurable resin for example, an ultraviolet curable resin.
  • the lens 300 may be formed using other materials.
  • the first electrode 110 is formed on the first surface 100 a of the substrate 100.
  • the insulating film 150 is formed, and the organic layer 120 and the second electrode 130 are further formed. Thereby, the light emission part 140 is formed.
  • a sealing plate 171 is prepared.
  • a barrier film 172 is formed on the sealing plate 171.
  • the sealing member 170 is formed.
  • the sealing member 170 is fixed to the surface of the substrate 100 where the light emitting unit 140 is formed using the insulating layer 174.
  • a translucent resin material to be used as the lens 300 is applied in a stripe shape to a region where the lens 300 is to be formed on the second surface 100b of the substrate 100.
  • the coating method used here is, for example, a method using a dispenser or a screen printing method.
  • this resin material is cured.
  • the resin material is a photocurable resin material
  • the resin material is irradiated with light.
  • the resin material is a thermosetting resin material
  • the resin material is subjected to heat treatment. Thereby, the lens 300 is formed.
  • the lens 300 When the lens 300 is formed using a photosensitive resin material, the lens 300 may be formed by exposure and development. The lens 300 may be formed using a nanoimprint method. Alternatively, the lens 300 may be formed in advance, and the lens 300 may be fixed to the second surface 100b of the substrate 100 using an adhesive or the like. In this case, a sheet having the lens 300 may be attached to the second surface 100b. In this case, the thickness of the sheet is added to the thickness of the substrate 100.
  • the intensity of reflected light (regular reflected light) at an incident angle of 0 ° is ((n ⁇ 1) / (n + 1)) 2 .
  • the lens 300 is provided on the second surface 100b of the substrate 100 as a light extraction structure.
  • the width OL1 of the protruded portion is equal to or more than half of the thickness d of the substrate. .
  • the width OL1 is positive on the second surface 100b when the width OL1 is more than half the thickness d of the substrate.
  • More than 80% of the light that should be reflected is incident on the lens 300. Most of the light incident on the lens 300 is radiated to the outside of the lens 300. Therefore, light leaking to the back side of the light emitting device 10 is reduced, and the light extraction efficiency of the light emitting device 10 is improved.
  • arcsin (1 / n) is a critical angle of the material constituting the substrate 100
  • OL 1 is set so as to satisfy the above formula, all of the light that should be regularly reflected by the second surface 100b of the substrate 100 is obtained.
  • the light enters the lens 300. Most of the light is radiated to the outside of the light emitting device 10 through the lens 300. Thereby, the light leaked to the back surface side of the light emitting device 10 is reduced, and the light extraction efficiency of the light emitting device 10 is improved.
  • the surface of the lens 300 is a curved surface and is convex toward the outside of the lens 300.
  • Most of the light is incident on the second electrode 130.
  • the second electrode 130 is a light reflective electrode. For this reason, even if the lens 300 is provided, the amount of light leaking to the back surface side is unlikely to increase. Furthermore, since most of the third region 106 of the light emitting device 10 does not overlap the lens 300, the light transmittance of the light emitting device 10 is also maintained.
  • FIG. 4 is a cross-sectional view illustrating a configuration of the light emitting device 10 according to the first modification, and corresponds to FIG. 2 in the embodiment.
  • the light emitting device 10 according to this modification has the same configuration as the light emitting device 10 according to the embodiment except for the configuration of the lens 300.
  • two lenses 300 are provided for one light emitting unit 140. Most of the light emitting unit 140 does not overlap any lens 300. In the cross section of the light emitting unit 140 in the width direction, one lens 300 covers one end of the light emitting unit 140, and the other lens 300 covers the other end of the light emitting unit 140. In other words, each of the two lenses 300 overlaps a part of the light emitting unit 140 and protrudes from the light emitting unit 140.
  • the width OL 1 of the portion protruding from the light emitting unit 140 is d / 2 or more.
  • the OL 1 of one lens 300, OL 1 of the other lens 300 may be the same value or may be different values. For example, OL 1 of one lens 300 is less 1.05 times 0.95 times the OL 1 of the other lens 300. Further, as in the embodiment, d ⁇ tan (arcsin (1 / n)) ⁇ OL 1 may be satisfied.
  • the leakage light to the back surface side of the light emitting device 10 is reduced and the light extraction efficiency of the light emitting device 10 is improved as in the embodiment.
  • the light transmittance of the light emitting device 10 is also maintained.
  • the light emitting device 10 can be made thinner than the embodiment.
  • FIG. 5 is a cross-sectional view illustrating a configuration of the light emitting device 10 according to the second modification.
  • FIG. 5 shows a cross section of the light emitting device 10 taken along the direction in which the lens 300 extends.
  • the light emitting device 10 according to this modification has the same configuration as that of the light emitting device 10 according to the embodiment or the modification 1 except that the lens 300 includes a plurality of convex portions 310.
  • the convex portion 310 is repeatedly provided along the direction in which the lens 300 extends, in other words, along the longitudinal direction of the light emitting portion 140.
  • the surface of the convex portion 310 has a curved surface (for example, a part of a spherical surface). For this reason, the convex part 310 functions as a lens.
  • the leakage light to the back surface side of the light emitting device 10 is reduced and the light extraction efficiency of the light emitting device 10 is improved as in the embodiment. Moreover, the light transmittance of the light emitting device 10 is also maintained.
  • the lens 300 has a plurality of convex portions 310. For this reason, a part of the light reflected toward the direction in which the light emitting unit 140 extends can be extracted to the second surface 100b side of the substrate 100 according to the principle described in the embodiment.
  • the lens 300 may have a concave portion instead of the convex portion 310.
  • FIG. 6 is a cross-sectional view illustrating a configuration of a light emitting device 10 according to Modification Example 3, and corresponds to FIG. 2 in the embodiment.
  • the light emitting device 10 according to this modification is the same as the light emitting device 10 according to the embodiment except that the first electrode 110 is formed in all of the first region 102, the second region 104, and the third region 106. It is the same composition. In other words, the first electrodes 110 of each of the plurality of light emitting units 140 are connected to each other.
  • the leakage light to the back surface side of the light emitting device 10 is reduced and the light extraction efficiency of the light emitting device 10 is improved as in the embodiment. Moreover, the light transmittance of the light emitting device 10 is also maintained.
  • the first electrode 110 may have the same configuration as that of this modification.
  • FIG. 7 is a cross-sectional view illustrating a configuration of a light emitting device 10 according to Modification Example 4, and corresponds to FIG. 2 in the embodiment.
  • the light emitting device 10 according to this modification has the same configuration as that of the light emitting device 10 according to the embodiment, except that the organic layer 120 is divided between adjacent light emitting units 140.
  • the organic layer 120 is not formed in part or all of the third region 106.
  • the organic layer 120 may not be formed in a region on the third region 106 side in the second region 104.
  • the organic layer 120 may be formed in a region of the second region 104 and the third region 106 on the second region 104 side.
  • the leakage light to the back surface side of the light emitting device 10 is reduced and the light extraction efficiency of the light emitting device 10 is improved as in the embodiment. Moreover, the light transmittance of the light emitting device 10 is also maintained.
  • the organic layer 120 may have a configuration similar to that of the present modification.
  • FIG. 8 is a cross-sectional view showing a configuration of a light emitting device 10 according to Modification Example 5, and corresponds to FIG. 2 in the embodiment.
  • the light emitting device 10 according to this modification has the same configuration as that of the light emitting device 10 according to the embodiment except that the first electrode 110 has a conductive layer 180.
  • the conductive layer 180 is an auxiliary electrode of the first electrode 110 and has a configuration in which, for example, a Mo alloy layer, an Al alloy layer, and a Mo alloy layer are stacked in this order.
  • the conductive layer 180 may be formed using an Ag alloy.
  • the conductive layer 180 is formed on a portion of the first electrode 110 covered with the insulating film 150. However, the conductive layer 180 may be formed between the first electrode 110 and the substrate 100.
  • the leakage light to the back surface side of the light emitting device 10 is reduced and the light extraction efficiency of the light emitting device 10 is improved as in the embodiment. Moreover, the light transmittance of the light emitting device 10 is also maintained.
  • the conductive layer 180 may be provided.
  • FIG. 9 is a cross-sectional view illustrating the configuration of the light emitting system according to the first embodiment.
  • the light emitting system includes a light emitting device 10 and a partition member 20.
  • the partition member 20 has translucency and partitions the space from the outside. This space is, for example, a space where a person stays or a space where goods or the like are arranged.
  • the light emitting device 10 has the same configuration as that of any of the above-described embodiments and modifications.
  • the surface (first surface 100a) on the side where the light emitting unit 140 is provided in the substrate 100 faces the space where a person stays.
  • the partition member 20 is, for example, a window of the moving body 30 for a person to move or a window of a showcase, and is formed using glass or translucent resin.
  • the moving body 30 is, for example, a car, a train, or an airplane.
  • the partition member 20 is a windshield, a rear glass, or a window glass (for example, a door glass) attached to the side of the seat.
  • the plurality of light emitting units 140 function as, for example, brake lamps. Further, when the partition member 20 is a windshield or a rear glass, the plurality of light emitting units 140 may be turn lamps.
  • the partition member 20 may be a window that partitions the inside and the outside of a room such as a conference room.
  • a light emitting system that can identify whether or not the conference room is used by turning on / off the light emitting unit 140 may be used.
  • the second surface 100 b of the light emitting device 10, that is, the light extraction side surface is fixed to the inner surface (first surface 22) of the partition member 20 via the adhesive layer 200. For this reason, the light radiated from the light emitting unit 140 of the light emitting device 10 is radiated to the outside of the space (for example, the moving body 30) through the partition member 20.
  • the light emitting device 10 is light transmissive. For this reason, a person can visually recognize the outside and the inside of the space through the partition member 20. For example, a person located inside the moving body 30 can visually recognize the outside of the moving body 30 through the partition member 20.
  • the entire second surface 100b of the substrate 100 may be fixed to the first surface 22 of the partition member 20 via the adhesive layer 200, or a part of the second surface 100b (for example, two sides facing each other). May be fixed to the first surface 22 of the partition member 20.
  • the adhesive layer 200 fixes the light emitting device 10 to the partition member 20.
  • the material of the adhesive layer 200 is not particularly limited.
  • the refractive index of the partition member 20 and the refractive index of the substrate 100 of the light emitting device 10 are substantially the same, for example, when the partition member 20 and the substrate 100 are both formed of glass, the adhesive layer 200 is the same as both.
  • a material having a close refractive index is used.
  • the refractive index of the adhesive layer 200 is the same as that of the partition member 20.
  • a numerical value between the refractive index and the refractive index of the substrate 100 is preferred. If it does in this way, light emission of the light-emitting device 10 can be efficiently taken out outside through the partition member 20.
  • the light emitting device 10 has the configuration shown in any of the embodiments and the respective modifications. Therefore, light leakage to the back side (right side in FIG. 9) of the light emitting device 10 is reduced, and the light extraction efficiency of the light emitting device 10 is improved. Moreover, the light transmittance of the light emitting device 10 is also maintained.
  • FIG. 10 is a cross-sectional view illustrating the configuration of the light emitting system according to the second embodiment.
  • the light emitting system according to the present embodiment is the same as the light emitting system according to the first embodiment, except that the light emitting device 10 is attached to the outer surface (second surface 24) of the moving body 30 in the partition member 20. It is the composition.
  • the light emitting device 10 has the same configuration as that of any of the above-described embodiments and modifications.
  • the surface opposite to the partition member 20 is a light extraction surface.
  • the first surface 100 a of the light emitting device 10 may be opposed to the partition member 20.
  • the light from the light emitting device 10 is directly emitted to the outside of the moving body 30 without passing through the partition member 20. For this reason, compared with Example 1, the person outside the moving body 30 can easily recognize the light from the light emitting device 10. Further, since the light emitting device 10 is attached to the outside of the moving body 30, that is, the second surface 24 side of the partition member 20, the light emitted from the light emitting device 10 is reflected by the partition member 20 and enters the inside of the moving body 30. Can be suppressed.
  • FIG. 11 is a cross-sectional view illustrating the configuration of the light emitting system according to the third embodiment.
  • the light emitting system according to the present embodiment has the same configuration as the light emitting system according to the first embodiment, except that the light emitting device 10 is fixed to the partition member 20 using the fixing member 210.
  • the fixing member 210 is a frame-like member, and the lower surface is fixed to the partition member 20 using the adhesive layer 200.
  • the upper part of the fixing member 210 is bent toward the inside of the fixing member 210, and the edge of the light emitting device 10 is pressed by the bent part.
  • the shape of the fixing member 210 is not limited to the example shown in this figure.
  • the partition member 20 may be curved in a direction that protrudes toward the outside of the moving body 30. In such a case, it is difficult to directly fix the light emitting device 10 on the flat plate to the inner surface (first surface 22) of the partition member 20. However, when the fixing member 210 is used, the light emitting device 10 can be fixed to the first surface 22 of the partition member 20 even in such a case.
  • FIG. 13 is a cross-sectional view illustrating the configuration of the light emitting system according to the fourth embodiment.
  • the light emitting system according to the present embodiment has the same configuration as the light emitting system according to the first embodiment, except that the light emitting section 140 is formed on the first surface 22 or the second surface 24 of the partition member 20.
  • the partition member 20 also serves as the substrate 100 in the first embodiment.
  • a concave portion may be formed on the surface of the partition member 20 where the light emitting portion 140 is formed, and the light emitting portion 140 may be formed in the concave portion.
  • one recess may be formed in a region where the plurality of light emitting units 140 are formed, and the plurality of light emitting units 140 may be formed on the bottom surface of the recess. It may be formed.
  • the light-emitting portion 140 may be sealed with a highly transmissive structure, for example, a structure in which a plurality of recesses are sealed at once by film sealing or the like.
  • the concave portion is individual or plural with respect to the light emitting portion 140, it is possible to suppress the light emitting portion 140 from protruding from the partition member 20.
  • the upper part of the light emission part 140 may protrude from the 1st surface 22 (or 2nd surface 24) of the partition member 20, or the light emission part 140 of FIG. The whole may be located below the first surface 22 (or the second surface 24).
  • FIG. 14 is a cross-sectional view illustrating a configuration of a light emitting system according to Example 5.
  • the light emitting system according to the present example has the same configuration as that of any of the above-described embodiment, each modified example, and Examples 1 to 4 except that the plurality of light emitting devices 10 are attached to the partition member 20. .
  • the plurality of light emitting devices 10 may be controlled to emit and extinguish according to the same control signal, or may be controlled to emit and extinguish according to different control signals.
  • FIG. 15 is a cross-sectional view illustrating a configuration of a light emitting system according to Example 6.
  • the light emitting system according to the present embodiment has the same configuration as the light emitting system according to the first embodiment, except for the configuration of the partition member 20 and the position of the light emitting device 10.
  • the partition member 20 has a configuration in which a plurality of translucent members 21 (for example, a glass plate or a resin plate) are stacked.
  • the light emitting device 10 is attached to the partition member 20 by being sandwiched between the adjacent translucent members 21.

Abstract

複数の発光部(140)は、基板(100)の第1面(100a)に配置されており、いずれも第1電極(110)、有機層(120)、及び第2電極(130)を有している。第1電極(110)は透光性の電極であり、第2電極(130)は光反射性の電極である。有機層(120)は第1電極(110)と第2電極(130)の間に位置している。透光性領域は、複数の発光部(140)の間に位置している。封止部材(170)は発光部(140)を覆っている。レンズ(300)は基板(100)の第2面(100b)に配置されており、発光部(140)と重なっている。基板(100)に垂直な断面において、レンズ(300)の少なくとも一方の端部は発光部(140)から食み出している。この食み出している部分の幅をOLとして、基板(100)の厚さをdとすると、d/2≦OLである。

Description

発光装置及び発光システム
 本発明は、発光装置及び発光システムに関する。
 近年は有機ELを利用した発光装置の開発が進んでいる。この発光装置は、照明装置や表示装置として使用されており、第1電極と第2電極の間に有機層を挟んだ構成を有している。そして、一般的には第1電極には透明材料が用いられており、第2電極には金属材料が用いられている。
 有機ELを利用した発光装置の一つに、特許文献1に記載の技術がある。特許文献1の技術は、有機EL素子に光透過性(シースルー)を持たせるために、第2電極を基板の一部にのみ設けている。このような構造において、複数の第2電極の間に位置する領域は光を透過させるため、有機EL素子は光透過性を有することができる。
 また、特許文献2には、有機層の一部を非活性領域にして、さらに第2電極に透光性を持たせた有機EL素子において、有機層の活性領域と重なる位置にミラー層を設けることが記載されている。
特開2013-149376号公報 特表2012-506604号公報
 発光装置の光取出効率を高めるために、発光装置の光取出面に、光取出用の構造物(例えば光取出フィルム)を設けることがある。一般的に、光取出用の構造物は、光取出面の全面に設けられることが多い。しかし、このようにすると、光透過性を有する発光装置において、発光装置の光透過性が低下してしまう。また、発光部が発光した光を表面(光出射側の面)からのみ出射させたい場合がある。このような場合において、光取出用の構造物の構造を工夫しないと、この構造物で生じる光の反射に起因して、裏面側へ漏れる光の量が多くなってしまう。
 本発明が解決しようとする課題としては、光透過性を有する発光装置において、光透過性を維持しつつ、裏面側へ漏れる光の量を少なくし、さらに、光取出効率を向上させることが一例として挙げられる。
 請求項1に記載の発明は、厚さdの基板と、
 前記基板の第1面に配置され、透光性の第1電極、光反射性の第2電極、及び前記第1電極と前記第2電極との間に位置する有機層を有する複数の発光部と、
 前記複数の発光部の間に位置する透光性領域と、
 前記発光部を覆う封止部材と、
 前記基板の第2面に配置され、前記発光部と重なるレンズと、
を備え、
 前記基板に垂直な断面において、前記レンズの少なくとも一方の端部は前記発光部から食み出しており、かつ当該食み出している部分の幅をOLとしたとき、d/2≦OLである発光装置である。
 請求項9に記載の発明は、厚さdの基板と、
 前記基板の第1面に配置され、透光性の第1電極、光反射性の第2電極、及び前記第1電極と前記第2電極との間に位置する有機層を有する複数の発光部と、
 前記複数の発光部の間に位置する透光性領域と、
 前記基板の第2面に配置され、前記発光部の一部と重なるレンズと、
 前記発光部を覆う封止部材と、
を備え、
 前記基板に垂直な断面において、前記レンズの一方の端部は前記発光部から食み出しており、かつ当該食み出している部分の幅をOLとしたとき、d/2≦OLである発光装置である。
 請求項13に記載の発明は、空間を外部から仕切る透光性の仕切部材と、
 前記仕切部材の前記空間側の面に配置された透光性の厚さdの基板と、
 前記基板の第1面に配置され、透光性の第1電極、光反射性の第2電極、及び前記第1電極と前記第2電極との間に位置する有機層を有する複数の発光部と、
 前記複数の発光部の間に位置する透光性領域と、
 前記基板の第2面に配置され、前記発光部と重なるレンズと、
 前記発光部を覆う封止部材と、
を備え、
 前記基板に垂直な断面において、前記レンズの少なくとも一方の端部は前記発光部から食み出しており、かつ当該食み出している部分の幅をOLとしたとき、d/2≦OLである発光システムである。
 請求項14に記載の発明は、空間を外部から仕切る透光性の仕切部材と、
 前記仕切部材の前記空間側の面に配置された透光性の厚さdの基板と、
 前記基板の第1面に配置され、透光性の第1電極、光反射性の第2電極、及び前記第1電極と前記第2電極との間に位置する有機層を有する複数の発光部と、
 前記複数の発光部の間に位置する透光性領域と、
 前記基板の第2面に配置され、前記発光部の一部と重なるレンズと、
 前記発光部を覆う封止部材と、
を備え、
 前記基板に垂直な断面において、前記レンズの一方の端部は前記発光部から食み出しており、かつ当該食み出している部分の幅をOLとしたとき、d/2≦OLである発光システムである。
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
実施形態に係る発光装置の構成を示す平面図である。 図1のA-A断面図である。 発光装置を図1とは逆側から見た平面図である。 変形例1に係る発光装置の構成を示す断面図である。 変形例2に係る発光装置の構成を示す断面図である。 変形例3に係る発光装置の構成を示す断面図である。 変形例4に係る発光装置の構成を示す断面図である。 変形例5に係る発光装置の構成を示す断面図である。 実施例1に係る発光システムの構成を示す断面図である。 実施例2に係る発光システムの構成を示す断面図である。 実施例3に係る発光システムの構成を示す断面図である。 図11の変形例を示す断面図である。 実施例4に係る発光システムの構成を示す断面図である。 実施例5に係る発光システムの構成を示す断面図である。 実施例6に係る発光システムの構成を示す断面図である。
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
(実施形態)
 図1は、実施形態に係る発光装置10の構成を示す平面図である。図2は図1のA-A断面図である。図3は、発光装置10を図1とは逆側から見た平面図である。実施形態に係る発光装置10は、基板100、複数の発光部140、透光性領域(第2領域104及び第3領域106)、封止部材170、及びレンズ300を有している。複数の発光部140は、基板100の第1面100aに配置されており、いずれも第1電極110、有機層120、及び第2電極130を有している。第1電極110は透光性の電極であり、第2電極130は光反射性の電極である。有機層120は第1電極110と第2電極130の間に位置している。透光性領域は、複数の発光部140の間に位置している。封止部材170は発光部140を覆っている。レンズ300は基板100の第2面100bに配置されており、発光部140と重なっている。基板100に垂直な断面において、レンズ300の少なくとも一方の端部は発光部140から食み出している。この食み出している部分の幅をOLとして、基板100の厚さをdとすると、d/2≦OLである。以下、詳細に説明する。
 基板100は、例えばガラス基板や樹脂基板などの透光性を有する基板である。基板100は可撓性を有していてもよい。可撓性を有している場合、基板100の厚さdは、例えば10μm以上1000μm以下、好ましくは10μm以上100μm以下である。基板100は、例えば矩形などの多角形や円形である。基板100が樹脂基板である場合、基板100は、例えばPEN(ポリエチレンナフタレート)、PES(ポリエーテルサルホン)、PET(ポリエチレンテレフタラート)、又はポリイミドを用いて形成されている。また、基板100が樹脂基板である場合、水分が基板100を透過することを抑制するために、基板100の少なくとも一面(好ましくは両面)に、SiNやSiONなどの無機バリア膜が形成されているのが好ましい。この無機バリア膜は、例えばスパッタリング法、CVD法、又はALD法を用いて形成される。なお、基板100を樹脂基板で形成する場合は、樹脂基板に直接後述する第1電極110や有機層120を成膜する方法と、ガラス基板の上に第1電極110以降の層を形成した後に、第1電極110とガラス基板を剥離し、さらに、剥離した積層体を樹脂基板に配置する方法などがある。
 基板100の第1面100aには、複数の発光部140が形成されている。発光部140は、第1電極110、発光層を含む有機層120、及び第2電極130をこの順に積層させた構成を有している。そして基板100の第2面100bは、光が出射する面となっている。
 第1電極110は、光透過性を有する透明電極である。透明電極の材料は、金属を含む材料、例えば、ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)、IWZO(Indium Tungsten Zinc Oxide)、ZnO(Zinc Oxide)等の金属酸化物である。第1電極110の厚さは、例えば10nm以上500nm以下である。第1電極110は、例えばスパッタリング法又は蒸着法を用いて形成される。なお、第1電極110は、カーボンナノチューブ、又はPEDOT/PSSなどの導電性有機材料であってもよい。また、第1電極110は複数の膜を積層した積層構造を有していてもよい。本図において、基板100の上には、複数の長方形状(ストライプ状)の第1電極110が互いに平行に形成されている。このため、後述する第2領域104及び第3領域106には第1電極110は位置していない。
 有機層120は、例えば、正孔注入層、発光層、及び電子注入層をこの順に積層させた構成を有している。正孔注入層と発光層との間には正孔輸送層が形成されていてもよい。また、発光層と電子注入層との間には電子輸送層が形成されていてもよい。有機層120は蒸着法で形成されてもよい。また、有機層120のうち少なくとも一つの層、例えば第1電極110と接触する層は、インクジェット法、印刷法、又はスプレー法などの塗布法によって形成されてもよい。なお、この場合、有機層120の残りの層は、蒸着法によって形成されている。また、有機層120のすべての層が、塗布法を用いて形成されていてもよい。なお、有機層120の代わりに他の発光層(例えば無機発光層)を有していてもよい。また、発光層の発光する発光色(又は有機層120から放射される光の色)は、隣の発光部140の発光層の発光色(又は有機層120から放射される光の色)と異なっていてもよいし、同じでも良い。
 第2電極130は、光反射性を有しており、例えば、Al、Au、Ag、Pt、Mg、Sn、Zn、及びInからなる第1群の中から選択される金属、又はこの第1群から選択される金属の合金からなる金属層を含んでいる。第2電極130の厚さは、例えば10nm以上500nm以下である。ただし、第2電極130は、第1電極110の材料として例示した材料を用いて形成されていてもよい。第2電極130は、例えばスパッタリング法又は蒸着法を用いて形成される。本図に示す例において、発光装置10は複数の線状の第2電極130を有している。第2電極130は、第1電極110のそれぞれに対して設けられており、かつ第1電極110よりも幅が広くなっている。このため、基板100に垂直な方向から見た場合において、幅方向において第1電極110の全体が第2電極130によって重なっており、また覆われている。このような構成にすることで、有機層120の発光層で発光した光の取出し方向を調整することができる。具体的には、発光装置10の第2面100bとは逆側への光の放射を抑えることができる。
 第1電極110の縁は、絶縁膜150によって覆われている。絶縁膜150は例えばポリイミドなどの感光性の樹脂材料によって形成されており、第1電極110のうち発光部140となる部分を囲んでいる。
 基板100に垂直な方向から見た場合、複数の発光部140は、互いに平行に延在している。図1に示す例では、複数の発光部140はいずれも長方形状(ストライプ状)に延在している。ただし、発光部140は途中で曲がっていてもよい。
 そして、基板100に垂直な方向から見た場合において、基板100は、第1領域102、第2領域104、及び第3領域106を有している。第1領域102は第2電極130と重なっている領域である。第2電極130が遮光性を有している場合、第1領域102は、発光装置10または基板100の表面から裏面、及び裏面から表面のそれぞれにおいて光を通さない領域である。第2領域104は、第2電極130に重なっていないが絶縁膜150には重なる領域である。第3領域106は、第2電極130及び絶縁膜150と重ならない領域である。そして、第2領域104の幅は第3領域106の幅よりも狭いため、発光装置10は、十分な光透過性を有している。
 本図に示す例において、有機層120は第2領域104及び第3領域106にも形成されている。言い換えると、複数の発光部140の有機層120は連続的に形成されている。ただし、有機層120は第3領域106に形成されていなくてもよい。また、有機層120は、第2領域104に形成されていなくてもよい。
 第2領域104の幅は、第3領域106の幅よりも狭い。また第3領域106の幅は第1領域102の幅よりも広くてもよいし、狭くてもよい。第1領域102の幅を1とした場合、第2領域104の幅は例えば0以上(又は0超若しくは0.1以上)0.2以下であり、第3領域106の幅は例えば0.3以上2以下である。また第1領域102の幅は、例えば50μm以上500μm以下であり、第2領域104の幅は例えば0μm以上(又は0μm超)100μm以下であり、第3領域106の幅は例えば15μm以上1000μm以下である。
 発光装置10は、封止部材170を有している。封止部材170は、封止板171及びバリア膜172を有している。封止板171は、例えば樹脂からなる板状の部材である。封止板171を構成する樹脂は、例えばPEN(ポリエチレンナフタレート)、PES(ポリエーテルサルホン)、PET(ポリエチレンテレフタラート)、又はポリイミドである。バリア膜172は、例えば無機膜であり、封止板171の少なくとも一方の面(好ましくは両面)に形成されている。バリア膜172は、例えばSiN又はSiONであり、例えばスパッタリング法、CVD法、又はALD法を用いて形成されている。封止部材170は、例えば絶縁層174(例えば接着層又は粘着層)を用いて基板100の第1面100a及び基板100上の構造物(例えば発光部140)に固定されている。なお、絶縁層174の少なくとも一部は、第2電極130に接していてもよい。
 なお、封止部材170は封止膜、例えば無機膜であってもよい。この場合、封止膜は、基板100のうち、少なくとも発光部140が形成されている面に形成されており、発光部140を覆っている。そして、封止膜の少なくとも一部は、直接基板100の第1面100aに接している。
 封止膜は、例えば酸化アルミニウムや酸化チタンなどの無機材料によって形成されている。また、封止膜の厚さは、好ましくは300nm以下である。また封止膜の厚さは、例えば50nm以上である。封止膜は、第2電極130を形成した後に形成される。
 封止膜は、例えばALD(Atomic Layer Deposition)法を用いて形成されている。封止膜は、複数の層を積層した多層構造を有していてもよい。この場合、封止膜は、第1の材料(例えば酸化アルミニウム)からなる第1封止層と、第2の材料(例えば酸化チタン)からなる第2封止層とを繰り返し積層した構造を有していてもよい。最下層は第1封止層及び第2封止層のいずれであってもよい。また、最上層も第1封止層及び第2封止層のいずれであってもよい。また、封止膜は第1の材料と第2の材料の混在する単層であってもよい。
 ただし、封止膜は、他の成膜法、例えばCVD法やスパッタリング法を用いて形成されていてもよい。この場合、封止膜は、SiO又はSiNなどによって形成されており、その膜厚は、例えば10nm以上1000nm以下である。
 また、発光装置10は、上記した無機膜と、図2に示した封止部材170の双方を有していてもよい。さらに発光装置10は、封止部材170としていわゆる缶封止構造の封止部材を有していてもよい。
 発光装置10は、レンズ300を有している。レンズ300は基板100の第2面100bに配置されており、基板100に垂直な方向から見た場合において、発光部140と重なっている。本図に示す例において、レンズ300は複数の発光部140のそれぞれに対して設けられている。そして、レンズ300の幅をW、隣り合うレンズ300の間隔をPとしたとき、P≧Wであるのが好ましく、P≧2Wであるのがより好ましい。このようにすると、発光装置10の光透過性を損なうことを低減できる。なお、少なくとも一つの発光部140の少なくとも一部はレンズ300と重なっていなくてもよい。
 基板100に垂直な方向から見た場合、上記したように、複数の発光部140は、互いに平行に延在している。図1に示す例では、複数の発光部140はいずれも長方形状(ストライプ状)に延在している。ただし、上記したように、発光部140は途中で曲がっていてもよい。そして、レンズ300も、発光部140に沿う方向に延在している。本図に示す例において、レンズ300は、レンチキュラーレンズの一部と同様の構成、具体的には、側面が曲面の柱を軸方向に沿って切断した形状を有している。
 基板100に垂直な方向から見た場合、レンズ300の一部は、発光部140から食み出している。このため、基板100に垂直な断面において、レンズ300の少なくとも一方の端部は、発光部140の外側に位置している。そして、レンズ300の一方の端部のうち食み出している部分の幅をOLとすると、d/2≦OLである。また、幅OLは、例えば5μm以上500μm以下である。また、基板100を構成する材料の屈折率をnとすると、d×tan(arcsin(1/n))≦OLであるのが好ましい。
 なお、図2に示す例では、レンズ300の幅は発光部140の幅よりも大きく、そのため、レンズ300の他方の端部も発光部140から食み出している。そして、この他方の端部のうち食み出している部分の幅をOLとすると、OLはOLの0.95倍以上1.05倍以下、言い換えるとOLはOLとほぼ同じであるのが好ましい。
 レンズ300は、例えば光硬化性の樹脂(例えば紫外線硬化性の樹脂)を用いて形成されている。ただし、レンズ300は、他の材料を用いて形成されていてもよい。
 次に、発光装置10の製造方法について説明する。まず、基板100の第1面100aに、第1電極110を形成する。次いで、絶縁膜150を形成し、さらに、有機層120及び第2電極130を形成する。これにより、発光部140が形成される。
 また、封止板171を準備する。次いで、封止板171にバリア膜172を形成する。これにより、封止部材170が形成される。次いで、絶縁層174を用いて、基板100のうち発光部140が形成されている面に封止部材170を固定する。
 その後、基板100の第2面100bのうちレンズ300が形成されるべき領域に、レンズ300となる透光性の樹脂材料をストライプ状に塗布する。ここで用いられる塗布法は、例えばディスペンサーを用いた方法、又はスクリーン印刷法である。次いで、この樹脂材料を硬化させる。例えば樹脂材料が光硬化型の樹脂材料の場合は、樹脂材料に光が照射される。また樹脂材料が熱硬化型の樹脂材料の場合は、樹脂材料に熱処理が行われる。これにより、レンズ300が形成される。
 なお、レンズ300を感光性の樹脂材料を用いて形成する場合、レンズ300は露光及び現像により形成されてもよい。また、レンズ300はナノインプリント法を用いて形成されてもよい。また、レンズ300を予め形成しておき、このレンズ300を接着剤等を用いて基板100の第2面100bに固定してもよい。この場合、レンズ300を有するシートを第2面100bに張り付けてもよい。この場合、基板100の厚さには、このシートの厚さも加わる。
 発光部140が発光した光が基板100の第2面100bに到達すると、その光の入射角が基板100の臨界角未満であっても、入射した光の一部はスネル則により反射してしまう。例えば入射角が0°における反射光(正反射光)の強度は、((n-1)/(n+1))である。例えばn=1.5の場合は、約4%になる。この正反射光の角度は基板100の臨界角未満であるため、この反射光の一部は、第1面100a側から発光装置10の外部に放射される。この結果、発光装置10に漏れ光が生じてしまう。
 これに対して、本実施形態において、基板100の第2面100bには、光取出用の構造物としてレンズ300が設けられている。基板100に垂直な断面において、レンズ300の少なくとも一方の端部は発光部140から食み出しており、かつ、その食み出した部分の幅OL1は、基板の厚さdの半分以上である。このようにすると、第2面100bにおいて正反射されるはずの光の少なくとも一部を、レンズ300に入射させることができる。例えば基板100の屈折率が1.5以上の場合であり、レンズ300を光硬化型の樹脂で形成した場合、幅OL1は、基板の厚さdの半分以上にすると、第2面100bで正反射されるはずの光の80%以上はレンズ300に入射する。そして、レンズ300に入射した光の大部分は、レンズ300の外部に放射される。従って、発光装置10の裏面側への漏れ光は少なくなり、かつ発光装置10の光取出効率は向上する。
 さらに具体な例として、d×tan(arcsin(1/n))≦OLの場合を考える。arcsin(1/n)は基板100を構成する材料の臨界角であるため、上記式を満たすようにOLを設定すると、基板100の第2面100bで正反射されるはずの光のすべてがレンズ300に入射する。そして、この光の大部分は、レンズ300を介して発光装置10の外部に放射される。これにより、発光装置10の裏面側への漏れ光は少なくなり、かつ発光装置10の光取出効率は向上する。
 また、レンズ300の表面で発光部140からの光の一部は反射するが、レンズ300の表面は曲面であり、かつ、レンズ300の外部に向けて凸になっているため、この反射光の大部分は第2電極130に入射する。第2電極130は光反射性の電極である。このため、レンズ300を設けても、裏面側へ漏れる光の量は増加しにくい。さらに、発光装置10の第3領域106の大部分はレンズ300と重なっていないため、発光装置10の光透過性も維持される。
(変形例1)
 図4は、変形例1に係る発光装置10の構成を示す断面図であり、実施形態における図2に対応している。本変形例に係る発光装置10は、レンズ300の構成を除いて、実施形態に係る発光装置10と同様の構成である。
 本変形例において、一つの発光部140に対してレンズ300は2つ設けられている。発光部140の大部分はいずれのレンズ300とも重なっていない。そして、発光部140の幅方向の断面において、一方のレンズ300は発光部140の一方の端部を覆っており、他方のレンズ300は発光部140の他方の端部を覆っている。言い換えると、2つのレンズ300は、いずれも発光部140の一部と重なっており、かつ発光部140から食み出している。そして、いずれのレンズ300においても、発光部140から食み出している部分の幅OLは、d/2以上である。なお、一方のレンズ300のOLと、他方のレンズ300のOLは、同じ値であってもよいし、異なる値であってもよい。例えば、一方のレンズ300のOLは、他方のレンズ300のOLの0.95倍以上1.05倍以下である。また、実施形態と同様に、d×tan(arcsin(1/n))≦OLであってもよい。
 本変形例によっても、実施形態と同様に、発光装置10の裏面側への漏れ光は少なくなり、かつ発光装置10の光取出効率は向上する。また、発光装置10の第3領域106の大部分はレンズ300と重なっていないため、発光装置10の光透過性も維持される。
 また、実施形態と比較してレンズ300の幅が狭くなるため、レンズ300の高さは小さくなる。従って、実施形態と比較して、発光装置10を薄くすることができる。
(変形例2)
 図5は、変形例2に係る発光装置10の構成を示す断面図である。図5は、発光装置10をレンズ300が延在する方向に沿って切った断面を示している。本変形例に係る発光装置10は、レンズ300が複数の凸部310を有している点を除いて、実施形態又は変形例1に係る発光装置10と同様の構成である。
 凸部310は、レンズ300が延在する方向、言い換えると発光部140の長手方向に沿って繰り返し設けられている。凸部310の表面は、曲面(例えば球面の一部)を有している。このため、凸部310はレンズとして機能する。
 本変形例によっても、実施形態と同様に、発光装置10の裏面側への漏れ光は少なくなり、かつ発光装置10の光取出効率は向上する。また、発光装置10の光透過性も維持される。
 また、レンズ300は複数の凸部310を有している。このため、発光部140が延在する方向に向けて反射した光の一部を、実施形態で説明した原理により、基板100の第2面100b側に取り出すことができる。
 なお、本変形例において、レンズ300は、凸部310の代わりに凹部を有していてもよい。
(変形例3)
 図6は、変形例3に係る発光装置10の構成を示す断面図であり、実施形態における図2に対応している。本変形例に係る発光装置10は、第1領域102、第2領域104、及び第3領域106のすべてに第1電極110が形成されている点を除いて、実施形態に係る発光装置10と同様の構成である。言い換えると、複数の発光部140それぞれの第1電極110は、互いに繋がっている。
 本変形例によっても、実施形態と同様に、発光装置10の裏面側への漏れ光は少なくなり、かつ発光装置10の光取出効率は向上する。また、発光装置10の光透過性も維持される。なお、変形例1及び変形例2に係る発光装置10において、第1電極110は本変形例と同様の構成を有していてもよい。
(変形例4)
 図7は、変形例4に係る発光装置10の構成を示す断面図であり、実施形態における図2に対応している。本変形例に係る発光装置10は、隣り合う発光部140の間で有機層120が分断している点を除いて、実施形態に係る発光装置10と同様の構成である。有機層120は、例えば第3領域106の一部または全部に形成されていない。有機層120は、第2領域104のうち第3領域106側の領域にも形成されていなくてもよい。ただし、有機層120は、第2領域104、及び第3領域106のうち第2領域104側の領域に形成されていてもよい。
 本変形例によっても、実施形態と同様に、発光装置10の裏面側への漏れ光は少なくなり、かつ発光装置10の光取出効率は向上する。また、発光装置10の光透過性も維持される。なお、変形例1~3のいずれかに係る発光装置10において、有機層120は本変形例と同様の構成を有していてもよい。
(変形例5)
 図8は、変形例5に係る発光装置10の構成を示す断面図であり、実施形態における図2に対応している。本変形例に係る発光装置10は、第1電極110が導電層180を有している点を除いて、実施形態に係る発光装置10と同様の構成である。導電層180は第1電極110の補助電極であり、例えばMo合金層、Al合金層、及びMo合金層をこの順に積層した構成を有している。導電層180は、Ag合金を用いて形成されていてもよい。導電層180は、第1電極110のうち絶縁膜150に覆われた部分の上に形成されている。ただし、導電層180は第1電極110と基板100の間に形成されていてもよい。
 本変形例によっても、実施形態と同様に、発光装置10の裏面側への漏れ光は少なくなり、かつ発光装置10の光取出効率は向上する。また、発光装置10の光透過性も維持される。なお、変形例1~4のいずれかに係る発光装置10において、導電層180が設けられていてもよい。
(実施例1)
 図9は、実施例1に係る発光システムの構成を示す断面図である。この発光システムは、発光装置10及び仕切部材20を有している。仕切部材20は透光性を有しており、空間を外部から仕切っている。この空間は、例えば人が滞在する空間、又は商品等のものが配置されている空間である。発光装置10は、上記した実施形態及び変形例のいずれかと同様の構成を有している。本図に示す例において、基板100のうち発光部140が設けられている側の面(第1面100a)は、人が滞在する空間を向いている。
 仕切部材20は、例えば人が移動するための移動体30の窓、又はショーケースの窓であり、ガラス又は透光性の樹脂を用いて形成されている。移動体30は、例えば自動車、列車、又は飛行機である。移動体30が自動車の場合、仕切部材20はフロントガラス、リアガラス、又は座席の横に取り付けられた窓ガラス(例えばドアガラス)である。仕切部材20がリアガラスの場合、複数の発光部140は例えばブレーキランプとして機能する。また、仕切部材20がフロントガラス又はリアガラスの場合、複数の発光部140はターンランプであってもよい。また、仕切部材20は、会議室などの部屋の内部と外部を仕切る窓であってもよい。発光部140の点灯/非点灯により、会議室を利用しているか否かを識別できる発光システムでも良い。仕切部材20は、水平面に対して角度θ(例えば45°<θ<90°)で傾いていてもよいし、水平面に対して垂直(θ=90°)であってもよい。
 そして、発光装置10の第2面100b、すなわち光取出側の面は、接着層200を介して仕切部材20の内面(第1面22)に固定されている。このため、発光装置10の発光部140から放射された光は、仕切部材20を介して上記した空間(例えば移動体30)の外部に放射される。一方、発光装置10は光透過性を有している。このため、人は、仕切部材20を介して空間の外部や内部を視認することができる。例えば移動体30の内側に位置する人は、仕切部材20を介して移動体30の外部を視認することができる。なお、基板100の第2面100bの全面が接着層200を介して仕切部材20の第1面22に固定されていてもよいし、第2面100bの一部(例えば互いに対向する2辺)が仕切部材20の第1面22に固定されていてもよい。
 接着層200は発光装置10を仕切部材20に固定している。このような機能を果たす材料であれば、接着層200の材料はとくに限定はされない。また、例えば仕切部材20と基板100がともにガラスで形成された場合など、仕切部材20の屈折率と発光装置10の基板100の屈折率がほぼ同じ場合は、接着層200には、両者と同じか近い屈折率を有する材料を用いる。また、仕切部材20と基板100とで屈折率とが異なる(例えば、仕切部材20がプラスチックで形成され、基板100がガラスで形成される)場合は、接着層200の屈折率は仕切部材20の屈折率と基板100の屈折率の間の数値が好ましい。このようにすると、発光装置10の発光を、仕切部材20を介して外部へ効率よく光取り出しができる。
 発光装置10は、実施形態及び各変形例のいずれかに示した構成を有している。従って、発光装置10の裏面側(図9においては右側)への漏れ光は少なくなり、かつ発光装置10の光取出効率は向上する。また、発光装置10の光透過性も維持される。
(実施例2)
 図10は、実施例2に係る発光システムの構成を示す断面図である。本実施例に係る発光システムは、発光装置10が仕切部材20のうち移動体30の外側の面(第2面24)に取り付けられている点を除いて、実施例1に係る発光システムと同様の構成である。
 本実施例に係る発光装置10は、上記した実施形態及び各変形例のいずれかと同じ構成を有している。ただし、発光装置10は、仕切部材20とは逆側の面が光取出面となっている。このようにするためには、発光装置10の第1面100aを仕切部材20に対向させればよい。
 本実施例によっても、実施例1と同様に、発光装置10の裏面側への漏れ光は少なくなり、かつ発光装置10の光取出効率は向上する。また、発光装置10の光透過性も維持される。
 また、発光装置10からの光は仕切部材20を介さずに直接移動体30の外部に放射される。このため、実施例1と比較して、移動体30の外部にいる人は発光装置10からの光を認識しやすい。また、移動体30の外部すなわち仕切部材の20の第2面24側に発光装置10を取り付けているので、発光装置10の発光が仕切部材20で反射して移動体30の内部へ入ることを抑制できる。
(実施例3)
 図11は、実施例3に係る発光システムの構成を示す断面図である。本実施例に係る発光システムは、固定部材210を用いて発光装置10を仕切部材20に固定している点を除いて、実施例1に係る発光システムと同様の構成である。
 固定部材210は枠状の部材であり、下面が接着層200を用いて仕切部材20に固定されている。固定部材210の上部は固定部材210の内側に向けて折れ曲がっており、この折れ曲がっている部分で発光装置10の縁を押さえている。ただし、固定部材210の形状は本図に示す例に限定されない。
 本実施例によっても、実施例1と同様に、発光装置10の裏面側への漏れ光は少なくなり、かつ発光装置10の光取出効率は向上する。また、発光装置10の光透過性も維持される。
 また、図12に示すように、移動体30の外側に向けて凸になる方向に仕切部材20が湾曲している場合がある。このような場合において、平板上の発光装置10を仕切部材20の内面(第1面22)に直接固定することは難しい。しかし、固定部材210を用いると、このような場合でも発光装置10を仕切部材20の第1面22に固定することができる。
(実施例4)
 図13は、実施例4に係る発光システムの構成を示す断面図である。本実施例に係る発光システムは、発光部140が仕切部材20の第1面22又は第2面24に形成されている点を除いて、実施例1に係る発光システムと同様の構成である。言い換えると、本実施例において、仕切部材20は実施例1における基板100を兼ねている。
 なお、本実施例において、仕切部材20のうち発光部140が形成される面に凹部を形成し、この凹部内に発光部140を形成してもよい。例えば、複数の発光部140が形成される領域に一つの凹部を形成し、この凹部の底面に複数の発光部140を形成してもよいし、複数の発光部140のそれぞれに個別に凹部を形成してもよい。この場合、発光部140の封止は透過性の高い構成、例えば膜封止などによって、複数の凹部を一度に封止する構成であってもよい。凹部が発光部140に対して個別、または複数のいずれの場合においても、仕切部材20から発光部140が突出することを抑制できる。なお、仕切部材20の凹部に発光部140を形成する場合において、発光部140の上部は仕切部材20の第1面22(又は第2面24)から突出していてもよいし、発光部140の全体が第1面22(又は第2面24)の下方に位置していてもよい。
 本実施例によっても、実施例1と同様に、発光装置10の裏面側への漏れ光は少なくなり、かつ発光装置10の光取出効率は向上する。また、発光装置10の光透過性も維持される。
(実施例5)
 図14は、実施例5に係る発光システムの構成を示す断面図である。本実施例に係る発光システムは、仕切部材20に複数の発光装置10が取り付けられている点を除いて、上記した実施形態及び各変形例並びに実施例1~4のいずれかと同様の構成である。複数の発光装置10は、互いに同一の制御信号に従って発光及び消灯が制御されていてもよいし、互いに異なる制御信号に従って発光及び消灯が制御されていてもよい。
 本実施例によっても、実施例1と同様に、発光装置10の裏面側への漏れ光は少なくなり、かつ発光装置10の光取出効率は向上する。また、発光装置10の光透過性も維持される。
(実施例6)
 図15は、実施例6に係る発光システムの構成を示す断面図である。本実施例に係る発光システムは、仕切部材20の構成及び発光装置10の位置を除いて、実施例1に係る発光システムと同様の構成である。
 本実施例において、仕切部材20は、複数枚の透光部材21(例えばガラス板や樹脂板)を重ねた構成を有している。そして、発光装置10は、隣り合う透光部材21の間に挟まれることにより、仕切部材20に取り付けられている。
 本実施例によっても、実施例1と同様に、発光装置10の裏面側への漏れ光は少なくなり、かつ発光装置10の光取出効率は向上する。また、発光装置10の光透過性も維持される。
 以上、図面を参照して実施形態及び実施例について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。

Claims (14)

  1.  厚さdの基板と、
     前記基板の第1面に配置され、透光性の第1電極、光反射性の第2電極、及び前記第1電極と前記第2電極との間に位置する有機層を有する複数の発光部と、
     前記複数の発光部の間に位置する透光性領域と、
     前記発光部を覆う封止部材と、
     前記基板の第2面に配置され、前記発光部と重なるレンズと、
    を備え、
     前記基板に垂直な断面において、前記レンズの少なくとも一方の端部は前記発光部から食み出しており、かつ当該食み出している部分の幅をOLとしたとき、d/2≦OLである発光装置。
  2.  請求項1に記載の発光装置において、
     前記封止部材は、直接、又は接着層を介して前記発光部に固定されている発光装置。
  3.  請求項1又は2に記載の発光装置において、
     前記複数の発光部は、前記基板に垂直な方向から見て互いに同一方向に延在しており、
     前記レンズは、側面が曲面の柱を軸方向に沿って切断した形状を有しており、かつ、前記複数の発光部に沿う方向に延在している発光装置。
  4.  請求項1~3のいずれか一項に記載の発光装置において、
     前記レンズの幅をW、隣り合う前記レンズの間隔をPとしたとき、P≧Wである発光装置。
  5.  請求項1~3のいずれか一項に記載の発光装置において、
     前記レンズの幅をW、隣り合う前記レンズの間隔をPとしたとき、P≧2Wである発光装置。
  6.  請求項1~5に記載の発光装置において、
     前記基板を構成する材料の屈折率をnとしたとき、
     d×tan(arcsin(1/n))≦OLである発光装置。
  7.  請求項1~6のいずれか一項に記載の発光装置において、
     前記基板の前記厚さdは100μm以下である発光装置。
  8.  請求項1~7のいずれか一項に記載の発光装置において、
     前記基板に垂直な断面において、前記レンズの他方の端部も前記発光部から食み出しており、かつ当該食み出している部分の幅OLは前記OLの0.95倍以上1.05倍以下である発光装置。
  9.  厚さdの基板と、
     前記基板の第1面に配置され、透光性の第1電極、光反射性の第2電極、及び前記第1電極と前記第2電極との間に位置する有機層を有する複数の発光部と、
     前記複数の発光部の間に位置する透光性領域と、
     前記基板の第2面に配置され、前記発光部の一部と重なるレンズと、
     前記発光部を覆う封止部材と、
    を備え、
     前記基板に垂直な断面において、前記レンズの一方の端部は前記発光部から食み出しており、かつ当該食み出している部分の幅をOLとしたとき、d/2≦OLである発光装置。
  10.  請求項9に記載の発光装置において、
     前記基板に垂直な断面において、前記レンズは前記発光部の両端のそれぞれに位置する発光装置。
  11.  請求項10に記載の発光装置において、
     一方の前記レンズの前記OLは、他方のレンズの前記OLの0.95倍以上10.5倍以下である発光装置。
  12.  請求項1~11のいずれか一項に記載の発光装置において、
     前記レンズには前記発光部の長手方向に凹部または凸部が繰り返し設けられている発光装置。
  13.  空間を外部から仕切る透光性の仕切部材と、
     前記仕切部材の前記空間側の面に配置された透光性の厚さdの基板と、
     前記基板の第1面に配置され、透光性の第1電極、光反射性の第2電極、及び前記第1電極と前記第2電極との間に位置する有機層を有する複数の発光部と、
     前記複数の発光部の間に位置する透光性領域と、
     前記基板の第2面に配置され、前記発光部と重なるレンズと、
     前記発光部を覆う封止部材と、
    を備え、
     前記基板に垂直な断面において、前記レンズの少なくとも一方の端部は前記発光部から食み出しており、かつ当該食み出している部分の幅をOLとしたとき、d/2≦OLである発光システム。
  14.  空間を外部から仕切る透光性の仕切部材と、
     前記仕切部材の前記空間側の面に配置された透光性の厚さdの基板と、
     前記基板の第1面に配置され、透光性の第1電極、光反射性の第2電極、及び前記第1電極と前記第2電極との間に位置する有機層を有する複数の発光部と、
     前記複数の発光部の間に位置する透光性領域と、
     前記基板の第2面に配置され、前記発光部の一部と重なるレンズと、
     前記発光部を覆う封止部材と、
    を備え、
     前記基板に垂直な断面において、前記レンズの一方の端部は前記発光部から食み出しており、かつ当該食み出している部分の幅をOLとしたとき、d/2≦OLである発光システム。
PCT/JP2016/058394 2016-03-16 2016-03-16 発光装置及び発光システム WO2017158775A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/058394 WO2017158775A1 (ja) 2016-03-16 2016-03-16 発光装置及び発光システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/058394 WO2017158775A1 (ja) 2016-03-16 2016-03-16 発光装置及び発光システム

Publications (1)

Publication Number Publication Date
WO2017158775A1 true WO2017158775A1 (ja) 2017-09-21

Family

ID=59851039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/058394 WO2017158775A1 (ja) 2016-03-16 2016-03-16 発光装置及び発光システム

Country Status (1)

Country Link
WO (1) WO2017158775A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080106192A1 (en) * 2006-11-07 2008-05-08 Koo Won-Hoe Organic electroluminescent display and method of manufacture
JP2011049000A (ja) * 2009-08-26 2011-03-10 Panasonic Electric Works Co Ltd 有機el発光装置
JP2011054407A (ja) * 2009-09-01 2011-03-17 Panasonic Electric Works Co Ltd 有機発光素子
JP2012038631A (ja) * 2010-08-10 2012-02-23 Canon Inc 有機エレクトロルミネッセンス表示装置
JP2012049113A (ja) * 2010-07-26 2012-03-08 Semiconductor Energy Lab Co Ltd 発光装置及び照明装置
JP2012109230A (ja) * 2010-10-22 2012-06-07 Semiconductor Energy Lab Co Ltd 発光素子、発光装置、及び照明装置
JP2013016271A (ja) * 2011-06-30 2013-01-24 Canon Inc 表示装置
JP2013200964A (ja) * 2012-03-23 2013-10-03 Harison Toshiba Lighting Corp 発光装置
JP2015011997A (ja) * 2013-06-28 2015-01-19 ユニバーサル ディスプレイ コーポレイション バリア被覆されたマイクロレンズフィルム

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080106192A1 (en) * 2006-11-07 2008-05-08 Koo Won-Hoe Organic electroluminescent display and method of manufacture
JP2011049000A (ja) * 2009-08-26 2011-03-10 Panasonic Electric Works Co Ltd 有機el発光装置
JP2011054407A (ja) * 2009-09-01 2011-03-17 Panasonic Electric Works Co Ltd 有機発光素子
JP2012049113A (ja) * 2010-07-26 2012-03-08 Semiconductor Energy Lab Co Ltd 発光装置及び照明装置
JP2012038631A (ja) * 2010-08-10 2012-02-23 Canon Inc 有機エレクトロルミネッセンス表示装置
JP2012109230A (ja) * 2010-10-22 2012-06-07 Semiconductor Energy Lab Co Ltd 発光素子、発光装置、及び照明装置
JP2013016271A (ja) * 2011-06-30 2013-01-24 Canon Inc 表示装置
JP2013200964A (ja) * 2012-03-23 2013-10-03 Harison Toshiba Lighting Corp 発光装置
JP2015011997A (ja) * 2013-06-28 2015-01-19 ユニバーサル ディスプレイ コーポレイション バリア被覆されたマイクロレンズフィルム

Similar Documents

Publication Publication Date Title
US10930876B2 (en) Light-emitting device
US20230320128A1 (en) Light-emitting device and light-emitting system
WO2017138633A1 (ja) 発光装置
JP2017103048A (ja) 発光装置及び発光システム
WO2017158775A1 (ja) 発光装置及び発光システム
JP6754826B2 (ja) 発光装置
JP6986599B2 (ja) 発光装置
WO2018061117A1 (ja) 発光システム
JP6602950B2 (ja) 発光装置及び発光システム
JP2022016679A (ja) 発光装置
JP6692889B2 (ja) 発光装置および発光システム
JP2023058745A (ja) 発光装置
JP2023107844A (ja) 発光装置
JP2021128945A (ja) 発光装置
JP2017103049A (ja) 発光装置及び発光システム
JP2018055930A (ja) 発光システム

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16894393

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16894393

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP