WO2017146464A1 - 올레핀 중합체 및 이의 제조 방법 - Google Patents

올레핀 중합체 및 이의 제조 방법 Download PDF

Info

Publication number
WO2017146464A1
WO2017146464A1 PCT/KR2017/001952 KR2017001952W WO2017146464A1 WO 2017146464 A1 WO2017146464 A1 WO 2017146464A1 KR 2017001952 W KR2017001952 W KR 2017001952W WO 2017146464 A1 WO2017146464 A1 WO 2017146464A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
group
olefin polymer
formula
independently hydrogen
Prior art date
Application number
PCT/KR2017/001952
Other languages
English (en)
French (fr)
Inventor
조솔
박성현
권오주
이기수
권헌용
홍대식
이명한
권현지
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=59685430&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2017146464(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201780003484.7A priority Critical patent/CN108137739B/zh
Priority to EP17756802.9A priority patent/EP3339336B1/en
Priority to US15/760,986 priority patent/US10766985B2/en
Publication of WO2017146464A1 publication Critical patent/WO2017146464A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65916Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/65925Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually non-bridged

Definitions

  • the present invention relates to olefin polymers and methods for their preparation.
  • LLDPE inear low-densi ty polyethylene has excellent mechanical properties, but it is difficult to form a film stably when processing by the melt blown method due to poor bubble stability such as bubble stabi li ty. There was.
  • a method of combining LLDPE with low-densi ty polyethylene (LDPE) has been introduced. 'Could be by using a method of adding a LDPE to LLDPE to form a stable film by a blown bubble stability is improved melt blown method.
  • the method of adding LDPE to the LLDPE caused a problem of significantly lowering the mechanical properties of the existing LLDPE even when a very small amount of LDPE was added.
  • the present invention provides an olefin polymer having excellent mechanical strength and processability.
  • the present invention also provides a process for producing the olefin polymer.
  • an olefin polymer having SF of 65 or more calculated by the following formula (1).
  • Mw means a weight average molecular weight
  • the elongational viscosity increase ratio was obtained by using the elongation viscosity device attached to an ARES rheometer for the olefin polymer at the highest elongational viscosity value measured at Henkie's strain of 1 s— 1 at 170 ° C.
  • the extrapolated straight line is a straight line having an average slope of a section in which the elongated viscosity increases constantly with time, while maintaining the average slope, and the elongated viscosity rapidly increases. It is a straight line extending to the section.
  • the olefin polymer may have an extension viscosity increase ratio of 2.5 or more.
  • the olefin polymer may have a density of 0.910 g / cm 3 to 0.940 g / cm 3 .
  • the olefin polymer may have a number average molecular weight of 20, 000 to 50, 000 g / nl.
  • the olepan polymer may have a weight average molecular weight of 100, 000 to 160,000 g / nral.
  • the olefin polymer may have a melt index of at least 0.5 g / 10 min and less than 3 g / 10 m in, measured at a temperature of 190 ° C. and a load of 2.16 kg according to ASTM D1238.
  • the olefin polymer has a melt flow rate measured at a temperature of 23 CTC and a load of 21.6 kg according to ISO 1133 (MFR 21 6 ) and a melt flow rate measured at a temperature of 230 ° C. and a load of 2.16 kg according to ISO 1133 (MF .16).
  • MFRR (21.6 / 2.16) divided by
  • the olefin polymer may be a copolymer of ethylene and alphalefin.
  • alpha olefin is propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, 1-octene, 1-decene, 1-undecene, 1-dodecene, 1- Tetradecene, 1-nuxadecene and combinations thereof.
  • a carrier a crosslinked transition metal compound supported on the carrier and represented by the following Chemical Formula 1 and a non-crosslinked transition metal compound supported on the carrier and represented by the following Chemical Formula 2 are included
  • a method for producing the olefin polymer comprises polymerizing a olefin monomer.
  • Mi and M 2 are the same as or different from each other, and are each independently Ti, Zr, or Hf,
  • Xi, 3 ⁇ 4, 3 ⁇ 4, and X4 are the same as or different from each other, and are each independently halogen, nitro group, amido group, phosphine group, phosphide group, alkyl group having 1 to 20 carbon atoms, alkoxy group having 1 to 20 carbon atoms, and 2 to carbon atoms. Any one of a 20 alkoxyalkyl group, a C1-C20 silyl group, a C2-C20 alkenyl group, a C6-C20 aryl group, a C1-C20 sulfonate group, and a C1-C20 sulfone group,
  • T is C, Si, Ge, Sn or Pb,
  • Qi and Q 2 are the same as or different from each other, and each independently hydrogen, halogen, alkyl group having 1 to 20 carbon atoms, heterocycloalkyl group having 2 to 20 carbon atoms, alkoxy group having 1 to 20 carbon atoms, alkoxyalkyl group having 2 to 20 carbon atoms, Any one of a carboxylate having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, and a heteroaryl group having 5 to 20 carbon atoms,
  • Ri to R 6 are the same as or different from each other, and are each independently hydrogen, carbon number 1-20 alkyl group, C1-C20 alkoxy group, C2-C20 alkoxyalkyl group, C1-C20 silyl group, C1-C20 silylalkyl group, C1-C20 silyloxyalkyl group, C2-C20 Any one of an alkenyl group of 20 and an aryl group having 6 to 20 carbon atoms,
  • R 7 to R 14 are the same as or different from each other, and are each independently hydrogen, carbon number
  • Ris to 4 are the same as or different from each other, and are each independently hydrogen, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an alkoxyalkyl group having 2 to 20 carbon atoms, a silyl group having 1 to 20 carbon atoms, and having 1 to 20 carbon atoms
  • One or more of the silylalkyl groups, silyloxyalkyl groups having 1 to 20 carbon atoms, alkenyl groups having 2 to 20 carbon atoms and aryl groups having 6 to 20 carbon atoms, or black, and at least one pair of substituents adjacent to each other among R 15 to R 24 are connected to each other; To form a substituted or unsubstituted aliphatic or aromatic ring.
  • Ri to 3 ⁇ 4 in Formula 1 may be each independently hydrogen, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms and an alkenyl group having 2 to 20 carbon atoms.
  • 3 ⁇ 4 and 3 ⁇ 4 in Formula 1 may be each independently hydrogen, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms and an alkenyl group having 2 to 20 carbon atoms.
  • R 7 to R 14 are each independently hydrogen, C 1 -C
  • any one of 20 alkyl groups, alkoxy groups having 1 to 20 carbon atoms and alkenyl groups having 2 to 20 carbon atoms, or one or more pairs of substituents adjacent to each other in R 7 to R 14 may be connected to each other to form a substituted or unsubstituted aliphatic ring.
  • Q 2 may be each independently an alkyl group having 1 to 20 carbon atoms and an aryl group having 6 to 20 carbon atoms.
  • each may be independently a halogen, an alkyl group having 1 to 20 carbon atoms, and an alkoxy group having 1 to 20 carbon atoms.
  • R 15 to R 24 in Formula 2 are each independently hydrogen, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and an alkenyl group having 2 to 20 carbon atoms, or adjacent to each other among R 15 to 4
  • One or more pairs of substituents may be linked to each other to form a substituted or unsubstituted aliphatic ring.
  • the crosslinking type transition metal compound represented by Chemical Formula 1 may be any one of the compounds represented by Chemical Formulas 3 and 4.
  • R 25 and R 26 are the same as or different from each other, and each independently hydrogen, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an alkoxyalkyl group having 2 to 20 carbon atoms, and having 1 to 20 carbon atoms 20 alkylsilyl groups, silylalkyl groups of 1 to 20 carbon atoms, alkoxysilyl groups of 1 to 20 carbon atoms, silyloxyalkyl groups of 1 to 20 carbon atoms, alkenyl groups of 2 to 20 carbon atoms, aryl groups of 6 to 20 carbon atoms, and 7 carbon atoms Any one of an alkylaryl group of 20 to 20 and an arylalkyl group of 7 to 20 carbon atoms, 1 is an integer between 0 and 5.
  • the non-crosslinked transition metal compound represented by Chemical Formula 2 may be any one of the compounds represented by the following Chemical Formulas 5 and 6.
  • R 27 To 0 are the same or different from each other, each independently hydrogen, an alkyl group of 1 to 20 carbon atoms, an alkoxy group of 1 to 20 carbon atoms, an alkoxyalkyl group of 2 to 20 carbon atoms, 1 to 20 carbon atoms Alkylsilyl group, silylalkyl group of 1 to 20 carbon atoms, alkoxysilyl group of 1 to 20 carbon atoms, silyloxyalkyl group of 1 to 20 carbon atoms, alkenyl group of 2 to 20 carbon atoms, aryl group of 6 to 20 carbon atoms, and 7 to 7 carbon atoms It is either an alkylaryl group of 20 and an arylalkyl group having 7 to 20 carbon atoms.
  • the common supported catalyst may further include one or more cocatalysts selected from the group consisting of compounds represented by the following Formulas 7 to 9 to activate the transition metal compounds of Formulas 1 and 2.
  • Rsi, 32 and 11 ⁇ 2 are each independently hydrogen, halogen, a hydrocarbyl group having 1 to 20 carbon atoms and a hydrocarbyl group having 1 to 20 carbon atoms substituted with halogen,
  • n is an integer of 2 or more
  • D is aluminum or boron
  • Each R 34 independently represents a halogen, a hydrocarbyl group having 1 to 20 carbon atoms, and a hydrocarbyl group having 1 to 20 carbon atoms substituted with halogen, [Formula 9]
  • L is a neutral or cationic Lewis base
  • is a hydrogen atom
  • A each independently represents a hydrocarbyl group having 1 to 20 carbon atoms; Hydrocarbyloxy group having 1 to 20 carbon atoms; And at least one hydrogen atom of these substituents is any of substituents substituted with one or more substituents among halogen, a hydrocarbyloxy group having 1 to 20 carbon atoms, and a hydrocarbylsilyl group having 1 to 20 carbon atoms.
  • the carrier may be silica, alumina, magnesia, or a mixture thereof.
  • the crosslinked transition metal compound represented by Formula 1 and the non-crosslinked transition metal compound represented by Formula 2 may be included in a weight ratio of 50: 1 to 1: 1.
  • ethylene and alpha olefin may be used as the olefin monomer.
  • the alphalefin is propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-nuxene, 1-heptene, 1-octene, 1-decene, 1-undecene, 1-dodecene, 1-tetradecene, 1-nuxadecene and combinations thereof can be used.
  • Ellefin polymer according to one embodiment of the present invention is expected to be used as a raw material for a variety of products showing excellent mechanical strength and high processability.
  • the olefin polymer can be stably produced by the melt blown method is expected to be useful as a product raw material produced by the melt blown method.
  • FIG. 1 is a graph showing a change in elongation viscosity of a conventional LLDPE, an olefin polymer according to one embodiment of the present invention (denoted by EZP), and LDPE over time.
  • Figure 2 is a graph showing the change in elongational viscosity with time of the olefin polymer according to an embodiment of the present invention, a straight line having an average slope of the interval in which the elongational viscosity is constantly increased with time, while maintaining the average slope It is a graph showing the extrapolation straight line extending to the section where the elongational viscosity increases rapidly.
  • an olefin polymer having an SF of 65 or more calculated by the following Equation 1 is provided.
  • Mw means the weight average molecular weight
  • the elongational viscosity increase ratio was obtained by obtaining the highest elongational viscosity value measured by Henky strain 1 s— 1 at 170 ° C. using an elongational viscosity device attached to an ARES rheometer for the ellepin polymer.
  • the present inventors have developed a new olefin polymer having improved bubble stability while introducing LCBGong chain branch to LLDPE, which exhibits the same or better mechanical properties as existing LLDPE.
  • the olefin polymer according to the embodiment has a high strength factor (SF) calculated by Equation 1 as 65 or more, 70 or more, 75 or more, or 80 or more.
  • SF high strength factor
  • the weight average molecular weight (Mw) of the formula 1 is a conversion value for the standard polystyrene immediately using gel permeation chromatography (GPC, gel permeat ion chromatography, manufactured by Water).
  • GPC gel permeation chromatography
  • the weight average molecular weight is not limited thereto, and may be measured by other methods known in the art.
  • Elongational viscosity increase rate of the formula 1 is ARES for ' olefin polymer Using the elongation viscosity device attached to the rheometer, the highest elongational viscosity measured at Henkie's strain 1 s— 1 at 170 ° C divided by the elongational viscosity of the extrapolated straight line at the time at which the highest elongational viscosity was obtained Value.
  • the elongational viscosity tends to increase constantly with time, but the strain hardening does not show a sharp increase in elongational viscosity.
  • the elongational viscosity is constantly increased with time, and thus the strain hardening shows a sharp increase in the elongational viscosity.
  • the strain hardenability becomes more severe, that is, as the extensional viscosity increases more rapidly, it can be predicted that the content of LCB in the olefin polymer is higher, and furthermore, it can be predicted to exhibit better processability when forming a film using an olefin polymer. Referring to FIG. 1, it is generally confirmed that the strain hardenability is more severe in the case of LDPE having a large LCB.
  • the elongational viscosity increase ratio was determined based on the following criteria. Specifically, the extension viscosity increase ratio was calculated by dividing the highest extension viscosity value measured by the extension viscosity of the extrapolated straight line at the time when the highest extension viscosity value was obtained.
  • the extrapolated straight line refers to a straight line having an average group of a section in which the elongation viscosity increases constantly with time as shown in FIG. 2, and a straight line extending to a section in which the elongation viscosity rapidly increases while maintaining the average slope. .
  • the section in which the elongation viscosity is constantly increasing with time means a section in which the X-axis (time) is 0.001 second to 1 second, 0.001 second to 0.5 second black, and 0.01 second to 0.5 second, It means the section after the section in which the elongation viscosity increases constantly with time, that is, the section in which the X-axis (time) exceeds 0.5 seconds or more than 1 second. Accordingly, the extrapolated straight line maintains the slope of the straight line in a section where the X axis (time) is 0.001 second to 1 second, and 0.001 second to 0.5 second black is 0.01 second to 0.5 second, that is, the X axis (time) is 0.5 second. Or extended to a section exceeding 1 second It means a straight line.
  • extrapolated straight lines can be obtained using Extrapolate in the Or iginpro 8.6 program.
  • the extrapolated straight line can be obtained by extending a straight line (a graph of the elongated viscosity actually measured according to time) obtained by designating the section of the X axis from 0.01 to 0.5 in the Extrapolate Manu to a section where the elongation viscosity rapidly increases.
  • the method uses B-Spl ine to obtain the extrapolated straight line and uses within the Apprent interpolat ion ⁇ -Extrapolate Manu.
  • the olefin polymer according to the embodiment may have an elongational viscosity increase ratio of 2.5 or more in order to exhibit improved processability while maintaining excellent mechanical strength.
  • the upper limit of the elongational viscosity increase rate may be adjusted to 5 or less, 4 or less or 3.5 or less to maintain a sufficient mechanical strength.
  • the SF calculated by the above formula 1 can ensure excellent workability at the time of film formation as the value is higher, and the upper limit of the SF is not particularly limited.
  • the SF may be adjusted to 200 or less or 150 or less.
  • the olefin polymer according to the embodiment may exhibit physical properties corresponding to LLDPE in order to maintain the excellent mechanical properties of the existing LLDPE.
  • the olefin polymer may have a density of 0.910 g / cm 3 to 0.940 g / cm 3 .
  • the olepin polymer may have a number average molecular weight of 2 ( ) ⁇ 000 to 50,000 g / mol, and a weight average molecular weight of 100, 000 to 160, 000 g / nral.
  • the olefin polymer may have a melt index of at least 0.5 g / 10 min and less than 3 g / 10 min measured at a temperature of 190 ° C. and a load of 2.16 kg according to ASTM D1238.
  • the olefin polymer is a melt flow rate measured under a load of 2.16kg in accordance with the temperature of the 23CTC and the molten flow rate (MFR 21.6) measured under a load of 21.6kg and the temperature of 230 ° C in accordance with ISO 1133 to ISO 1133 (MFR 2. 16 MFRR (21.6 / 2.16) divided by) may be between 20 and less than 40.
  • the olefin polymer according to the embodiment has at least one of the above-described physical properties It may have, and may have all of the above-described physical properties in order to exhibit excellent mechanical strength.
  • the urepin polymer exhibiting such physical properties may be, for example, a copolymer of ethylene and an alpha olefin.
  • the alpha olefin is propylene, 1-butene,
  • the olefin polymer may be a copolymer of ethylene and 1-nuxene.
  • the olefin polymer according to the embodiment is the copolymer described above, the above-described physical properties may be more easily implemented.
  • the type of the leupin polymer according to the embodiment is not limited to the above-described type, and may be provided to various kinds known in the art to which the present invention pertains if the above-described physical properties can be exhibited.
  • Ellefin polymer according to the embodiment is excellent in mechanical properties and processability can be usefully applied to various fields.
  • the olefin polymer has excellent bubble stability and can stably form a blown film by a melt blown method.
  • the leupin polymer according to the embodiment may provide a blown film stably even when the Blow up rat io (BUR) is adjusted to 2.7 or more, as described in Test Examples described later.
  • BUR Blow up rat io
  • the method for preparing the olefin polymer includes a carrier, a crosslinked transition metal compound supported on the carrier and represented by the following Chemical Formula 1, and a non-crosslinked transition metal compound supported on the carrier and represented by the following Chemical Formula 2. And polymerizing reaction of the olefin monomer in the presence of a common supported catalyst.
  • Xi, 3 ⁇ 4, 3 ⁇ 4 and are the same as or different from each other, and each independently halogen, nitro group, amido group, phosphine group, phosphide group alkyl group of 1 to 20 carbon atoms, alkoxy group of 1 to 20 carbon atoms, of 2 to 20 carbon atoms
  • T is C, Si, Ge, Sn or Pb,
  • Qi and Q 2 are the same as or different from each other, and each independently hydrogen, halogen, alkyl group having 1 to 20 carbon atoms, heterocycloalkyl group having 2 to 20 carbon atoms, alkoxy group having 1 to 20 carbon atoms, alkoxyalkyl group having 2 to 20 carbon atoms, Carboxylate having 1 to 20 carbon atoms, alkenyl group having 2 to 20 carbon atoms, aryl group having 6 to 20 carbon atoms and heteroaryl group having 5 to 20 carbon atoms,-
  • Ri to 3 ⁇ 4 are the same as or different from each other, and are each independently hydrogen, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and having 2 to 20 carbon atoms. Any one of an alkoxyalkyl group, a silyl group having 1 to 20 carbon atoms, a silylalkyl group having 1 to 20 carbon atoms, a silyloxyalkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, and an aryl group having 6 to 20 carbon atoms,
  • R 7 to R 14 are the same as or different from each other, and are each independently hydrogen, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an alkoxyalkyl group having 2 to 20 carbon atoms, a silyl group having 1 to 20 carbon atoms, or 1 to 20 carbon atoms.
  • R 15 to 4 are the same as or different from each other, and each independently hydrogen, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an alkoxyalkyl group having 2 to 20 carbon atoms, a silyl group having 1 to 20 carbon atoms, and 1 to 20 carbon atoms
  • a silylalkyl group, a silyloxyalkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms and an aryl group having 6 to 20 carbon atoms, or one or more pairs of substituents adjacent to each other among R 15 to 3 ⁇ 4 4 are connected to each other; To form a substituted or unsubstituted aliphatic or aromatic ring.
  • Halogen may be fluorine (F), chlorine (C1), bromine (Br) or iodine (I).
  • the alkyl group having 1 to 20 carbon atoms may be a straight chain, branched chain or cyclic alkyl group.
  • the alkyl group having 1 to 20 carbon atoms is a straight chain alkyl group having 1 to 20 carbon atoms; Straight chain alkyl groups having 1 to 10 carbon atoms; Linear alkyl groups having 1 to 5 carbon atoms; Branched or cyclic alkyl groups having 3 to 20 carbon atoms; Branched or cyclic alkyl groups having 3 to 15 carbon atoms; Or a branched or cyclic alkyl group having 3 to 10 carbon atoms.
  • the alkyl group having 1 to 20 carbon atoms is methyl group, ethyl group, n-propyl group, i so-propyl group, n-butyl group, i so-butyl group, tert-butyl group, n-pentyl group, i so- Pentyl group, neo-pentyl group or cyclonuclear group.
  • Heterocycloalkyl groups having 2 to 20 carbon atoms are oxygen, nitrogen or sulfur Cyclic alkyl groups containing atoms other than one or more carbons exemplified.
  • the heterocycloalkyl group having 2 to 20 carbon atoms may be a heterocycloalkyl group having 2 to 15 carbon atoms, a heterocycloalkyl group having 2 to 10 carbon atoms, or a heterocycloalkyl group having 4 to 7 carbon atoms.
  • the heterocycloalkyl group having 2 to 20 carbon atoms may be an epoxy group, a tetrahydrofuranyl group, a tetrahydropyranyl group, a tetrahydrothiophenyl group, or a tetrahydropyrrolyl group, or the like. Can be.
  • the alkoxy group having 1 to 20 carbon atoms may be a straight chain, branched chain or cyclic alkoxy group.
  • the alkoxy group having 1 to 20 carbon atoms is a straight alkoxy group having 1 to 20 carbon atoms; Linear alkoxy groups having 1 to 10 carbon atoms; Linear alkoxy groups having 1 to 5 carbon atoms; Branched or cyclic alkoxy groups having 3 to 20 carbon atoms; Branched or cyclic alkoxy groups having 3 to 15 carbon atoms; Or a branched or cyclic alkoxy group having 3 to 10 carbon atoms.
  • the alkoxy group having 1 to 20 carbon atoms has a meso group, an ethoxy group, an n-propoxy group, i so-propoxy group, n-subspecial group, i so- appendage group, tert-subspecial group, n-phenoxy group , i so—phenoxy group, neo-phenoxy group or cyclonucleooxy group.
  • the alkoxyalkyl group having 2 to 20 carbon atoms may be a substituent in which at least one hydrogen of the alkyl group (-Ra) is substituted with an alkoxy group (_ 0 _ ⁇ ) in a structure including -R a -0-R b .
  • the alkoxyalkyl group having 2 to 20 carbon atoms is mesopropyl methyl group, mesoethyl ethyl group, ethoxymethyl group, i so _ propoxymethyl group, i propoxyethyl group, i so -propoxy nucleotyl group, tert-subspecific methyl group, tert -Subsidiary ethyl group or tert- annex nucleus group.
  • the silyl group having 1 to 20 carbon atoms may be a substituent in which at least one hydrogen of —Si3 ⁇ 4 is substituted with an alkyl group or an alkoxy group.
  • the silyl group having 1 to 20 carbon atoms is methylsilyl group, dimethylsilyl group, trimethylsilyl group, dimethylethylsilyl group, diethylmethylsilyl group, dimethylpropylsilyl group, methoxysilyl group, dimethoxy Silyl group, trimethoxysilyl group, dimethoxyoxysilyl group, diethoxymethylsilyl group or dimethoxypropylsilyl group, and the like.
  • the silylalkyl group having 1 to 20 carbon atoms may contain at least one hydrogen of the alkyl group. It may be a substituent substituted with a silyl group. Specifically, the silylalkyl group having 1 to 20 carbon atoms may be a dimethoxypropylsilylmethyl group or the like.
  • the silyloxyalkyl group having 1 to 20 carbon atoms may be a substituent in which at least one hydrogen of the alkyl group is substituted with a silyloxy group.
  • the silyloxyalkyl group having 1 to 20 carbon atoms may be a dimethoxypropylsilyloxymethyl group or the like.
  • Alkenyl groups having 2 to 20 carbon atoms may be linear, branched or cyclic alkenyl groups. Specifically, an alkenyl group having 2 to 20 carbon atoms has a straight chain alkenyl group having 2 to 20 carbon atoms, a straight chain alkenyl group having 2 to 10 carbon atoms, a straight chain alkenyl group having 2 to 5 carbon atoms, a branched alkenyl group having 3 to 20 carbon atoms, and 3 carbon atoms It may be a branched alkenyl group of 15 to 15, a branched alkenyl group of 3 to 10 carbon atoms, a cyclic alkenyl group of 5 to 20 carbon atoms or a cyclic alkenyl group of 5 to 10 carbon atoms. More specifically, the alkenyl group having 2 to 20 carbon atoms may be an ethenyl group, propenyl group, butenyl group, pentenyl group, or cyclonucleen
  • the carboxylate having 1 to 20 carbon atoms may be a hydrocarbyl group having 1 to 20 carbon atoms having a structure of —C 0 OR c .
  • the hydrocarbyl group is a monovalent functional group in which hydrogen atoms are removed from a hydrocarbon, and may include an alkyl group and an aryl group.
  • the carboxylate having 1 to 20 carbon atoms may be pivalate or the like.
  • An aryl group having 6 to 20 carbon atoms may mean monocyclic, bicyclic or tricyclic aromatic hydrocarbons.
  • the aryl group may be used to include an aralkyl group in which at least one hydrogen of the alkyl group is substituted with an aryl group.
  • the aryl group having 6 to 20 carbon atoms may be a phenyl group, naphthyl group, anthracenyl group or benzyl group.
  • Heteroaryl groups having 5 to 20 carbon atoms may be cyclic aryl groups containing atoms other than one or more carbons exemplified by oxygen, nitrogen, sulfur, and the like.
  • the heteroaryl group having 5 to 20 carbon atoms may be a heteroaryl group having 5 to 15 carbon atoms or a heteroaryl group having 5 to 10 carbon atoms.
  • the heteroaryl group having 5 to 20 carbon atoms may be a furanyl group, a pyranyl group, a thiophenyl group, a pyrrolyl group, or the like.
  • the sulfonate group having 1 to 20 carbon atoms has a structure of —0-SO 2 —R d , and R d may be a hydrocarbyl group having 1 to 20 carbon atoms. Specifically, the sulfonate group having 1 to 20 carbon atoms may be a methanesulfonate group or a phenylsulfonate group.
  • the sulfone group having 1 to 20 carbon atoms has a structure of -R e ' -S0 2 -R e " , wherein R e ' and R e ′′ are the same as or different from each other, and may each independently be a hydrocarbyl group having 1 to 20 carbon atoms.
  • the sulfone group having 1 to 20 carbon atoms may be a methylsulfonylmethyl group, methylsulfonylpropyl group, methylsulfonylbutyl group, or phenylsulfonylpropyl group.
  • that one or more pairs of substituents adjacent to each other are connected to each other to form a substituted or unsubstituted aliphatic or aromatic ring means that one or more pairs of substituents among two pairs of adjacent substituents are connected to each other to form an aliphatic or aromatic ring.
  • the aliphatic or aromatic ring may be substituted by any substituent.
  • a pair of adjacent substituents R 16 and R 17 of Formula 2 may be connected to each other as shown in Formula 5 to be substituted with an unsubstituted aromatic ring (when 8 is hydrogen) or an aromatic ring substituted with R 28 ( 8 is not hydrogen).
  • the substituents described above may be selected from the group consisting of hydroxyl, halogen, alkyl, heterocycloalkyl, alkoxy, alkenyl, silyl, phosphine, phosphide, and sulfo. It may be substituted with one or more substituents selected from the group consisting of an ate group, a sulfone group, an aryl group and a heteroaryl group.
  • an olefin polymer having a structure in which LCB is introduced into LLDPE may be prepared.
  • Such an olefin polymer may satisfy the above-mentioned range of SF calculated by Equation 1, thereby exhibiting excellent mechanical properties and processability at the same time.
  • the cyclopentadienyl ligand in the structure of the crosslinking type transition metal compound represented by Chemical Formula 1 may, for example, affect the polymerization activity of the olefin monomer and the physical properties of the olefin polymer.
  • Ri to R 4 of the cyclopentadienyl ligand may be each independently hydrogen, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and an alkenyl group having 2 to 20 carbon atoms. More specifically, may be each independently any one of a methyl group, ethyl group, propyl group and butyl group.
  • the common supported catalyst can exhibit a very high activity in the olepin monomer polymerization process and can provide an olefin polymer of desired physical properties.
  • the tetrahydroindenyl ligand in the structure of the crosslinked transition metal compound represented by Formula 1 for example, the molecular weight of the olefin polymer prepared by adjusting the degree of steric hindrance effect according to the type of the substituted functional group It can be adjusted easily.
  • 3 ⁇ 4 and 3 ⁇ 4 in Formula 1 are each independently hydrogen, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms and an alkenyl group having 2 to 20 carbon atoms, or R 7 to R 14 are each independently hydrogen , Any one of alkyl groups of 1 to 20 carbon atoms, alkoxy group of 1 to 20 carbon atoms and alkenyl group of 2 to 20 carbon atoms, or a pair of one or more substituents adjacent to each other of R 7 to R 14 are connected to each other substituted or unsubstituted Formed aliphatic rings.
  • R 5 and 3 ⁇ 4 are each independently hydrogen, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms and an alkenyl group having 2 to 4 carbon atoms, or R 7 to R 14 Are each independently hydrogen, an alkyl group of 1 to 4 carbon atoms, an alkoxy group of 1 to 4 carbon atoms and an alkenyl group of 2 to 4 carbon atoms, or one or more pairs of substituents adjacent to each other of R 7 to Ri 4 are connected to each other Substituted or unsubstituted aliphatic rings can be formed.
  • the common supported catalyst can provide an olefin polymer having excellent processability.
  • the cyclopentadienyl ligand and tetrahydroindenyl ligand may be cross-linked by-to exhibit excellent stability.
  • 3 ⁇ 4 and are each independently a transition metal compound having any one of an alkyl group having 1 to 20 carbon atoms and an aryl group having 6 to 20 carbon atoms. More specifically, 3 ⁇ 4 and 3 ⁇ 4 are the same as each other can be used a transition metal compound of any one of a methyl group, ethyl group, propyl group, butyl group, phenyl group and benzyl group.
  • T is C, Si, Ge, Sn or Pb; C or Si; Or Si.
  • ⁇ OdXXz is present between the crosslinked cyclopentadienyl ligand and the tetrahydroindenyl ligand, and () (3 ⁇ 4) may affect the storage stability of the metal complex.
  • a transition metal compound in which d and 3 ⁇ 4 each independently represent a halogen, an alkyl group having 1 to 20 carbon atoms and an alkoxy group having 1 to 20 carbon atoms can be used. More specifically, it is possible to use a transition metal compound wherein 3 ⁇ 4 and 3 ⁇ 4 are each independently F, CI, Br or I. And Ti, Zr or Hf; Zr or Hf; Or Zr.
  • the crosslinking type transition metal compound capable of providing an olefin polymer having improved processability the compounds represented by the following Chemical Formulas 3 and 4 may be exemplified.
  • R 25 and R 26 are the same as or different from each other, and each independently hydrogen, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an alkoxyalkyl group having 2 to 20 carbon atoms, and having 1 to 20 carbon atoms 20 alkylsilyl groups, silylalkyl groups of 1 to 20 carbon atoms, alkoxysilyl groups of 1 to 20 carbon atoms, silyloxyalkyl groups of 1 to 20 carbon atoms, alkenyl groups of 2 to 20 carbon atoms, aryl groups of 6 to 20 carbon atoms, and 7 carbon atoms Any one of an alkylaryl group of 20 to 20 and an arylalkyl group of 7 to 20 carbon atoms,
  • 1 is an integer between 0 and 5.
  • R 25 and R 26, which are substituents of the tetrahydroindenyl ligand, are each independently hydrogen, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, to provide an olefin polymer having better processability. Any one of an alkenyl group having 2 to 20 carbon atoms and an aryl group having 6 to 20 carbon atoms;
  • the black may be any one of hydrogen, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, and an aryl group having 6 to 10 carbon atoms.
  • the two ligands in the structure of the non-crosslinked transition metal compound represented by Formula 2 may affect the polymerization activity of the olefin monomer and the physical properties of the olefin polymer.
  • R 15 to R 24 of the two ligands are each independently hydrogen, an alkyl group of 1 to 20 carbon atoms, an alkoxy group of 1 to 20 carbon atoms, and an alkenyl group of 2 to 20 carbon atoms, or each of R 15 to 4 Adjacent pairs of substituents may be linked to each other to form a substituted or unsubstituted aliphatic ring.
  • R 15 to R 24 are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms and an alkenyl group having 2 to 6 carbon atoms Either or black is one or more pairs of substituents adjacent to each other of R 15 to R 24 may be connected to each other to form a substituted or unsubstituted aliphatic ring.
  • the common supported catalyst can provide an olefin polymer exhibiting excellent processability while exhibiting excellent mechanical properties.
  • transition metal compounds in which 3 ⁇ 4 and ⁇ 4 are each independently any one of a halogen, an alkyl group having 1 to 20 carbon atoms and an alkoxy group having 1 to 20 carbon atoms. More specifically, it is possible to use transition metal compounds in which 3 ⁇ 4 and are each independently F, CI, Br or I. And M 2 is Ti, Zr or Hf; Zr or Hf; Black may be Zr.
  • the non-crosslinked transition metal compound capable of providing an olefin polymer having improved processability the compounds represented by the following Chemical Formulas 5 and 6 may be exemplified.
  • R 27 To 0 are the same or different from each other, each independently hydrogen, an alkyl group of 1 to 20 carbon atoms, an alkoxy group of 1 to 20 carbon atoms, an alkoxyalkyl group of 2 to 20 carbon atoms, 1 to 20 carbon atoms Alkylsilyl group, silylalkyl group of 1 to 20 carbon atoms, alkoxysilyl group of 1 to 20 carbon atoms, silyloxyalkyl group of 1 to 20 carbon atoms, alkenyl group of 2 to 20 carbon atoms, aryl group of 6 to 20 carbon atoms, Or alkylaryl having 20 carbon atoms and arylalkyl group having 7 to 20 carbon atoms.
  • R 27 to 0 which are substituents of two ligands are hydrogen, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, and 6 to 6 carbon atoms. Any of 10 aryl groups.
  • the transition metal compounds represented by Chemical Formulas 1 and 2 may be synthesized by using known reactions, and a detailed synthesis method may be referred to the preparation examples described below.
  • the common supported catalyst according to the embodiment may further include a promoter for activating the crosslinked and uncrosslinked transition metal compound.
  • a promoter for activating the crosslinked and uncrosslinked transition metal compound As the cocatalyst, a conventional use in the art to which the present invention pertains may be applied without particular limitation.
  • the promoter may be at least one compound selected from the group consisting of compounds represented by the following Chemical Formulas 7 to 9.
  • Rsi, R32 and 13 ⁇ 43 are each independently hydrogen, halogen, a hydrocarbyl group having 1 to 20 carbon atoms, and a hydrocarbyl group having 1 to 20 carbon atoms substituted with halogen,
  • n is an integer of 2 or more
  • D is aluminum or boron
  • Each R 34 independently represents a halogen, a hydrocarbyl group having 1 to 20 carbon atoms, and a hydrocarbyl group having 1 to 20 carbon atoms substituted with halogen, [Formula 9]
  • L is a neutral or cationic Lewis base
  • H is a hydrogen atom
  • Z is a Group 13 element, and A is each independently a hydrocarbyl group having 1 to 20 carbon atoms; Hydrocarbyloxy group having 1 to 20 carbon atoms; And one or more hydrogen atoms of these substituents are substituted with one or more substituents among halogen, a hydrocarbyloxy group having 1 to 20 carbon atoms, and a hydrocarbylsilyl group having 1 to 20 carbon atoms.
  • Non-limiting examples of the compound represented by the formula (7) include methyl aluminoxane, ethyl aluminoxane, isobutyl aluminoxane or tert- butyl aluminoxane.
  • Non-limiting examples of the compound represented by Formula 8 include trimethylaluminum, triethylaluminum triisobutylaluminum, tripropylaluminum, tributylaluminum dimethylchloroaluminum, triisopropylaluminum and tribune sec-butylaluminum tricyclopentyl Aluminum, tripentyl aluminum, triisopentyl aluminum, trinuclear sil aluminum, trioctyl aluminum, ethyl dimethyl aluminum methyl diethyl aluminum, triphenyl aluminum, tri-P-allyl aluminum dimethyl aluminum methoxide or dimethyl aluminum.
  • non-limiting examples of the compound represented by Formula 9 include trimethylammonium tetrakis (pentafluorophenyl) borate triethylammonium tetrakis (pentafluorophenyl) borate ⁇ , ⁇ -dimethylanilinium tetrakis (pentafluoro Lophenyl) borate ⁇ , ⁇ -dimethylanilinium ⁇ -butyltris (pentafluorophenyl) borate ⁇ , ⁇ -dimethylanilinium benzyltris (pentafluorophenyl) borate ⁇ , ⁇ -dimethylanilinium tetrakis (4- (t_butyldimethylsilyl) -2, 3, 5, 6-tetrafluorophenyl) borate, ⁇ , ⁇ -dimethylanilinium tetrakis (4- (triisopropylsilyl) -2,3,5,6-tetra
  • a carrier of the common supported catalyst according to the embodiment may be used a carrier containing a hydroxyl group or a siloxane group on the surface.
  • the carrier may be a carrier containing a hydroxyl group or a siloxane group having high reaction properties by drying at a high temperature to remove moisture on the surface.
  • the carrier may be used silica, alumina, magnesia or a mixture thereof.
  • the carrier may be dried at high temperature, and they may typically include oxides, carbonates, sulfates, nitrates, such as Na 2 O, K 2 CO 3 , BaSO 4 and Mg (N0 3 ) 2 .
  • the common supported catalyst according to the embodiment includes, for example, supporting a promoter on a carrier; And supporting the crosslinking type transition metal compound and the non-crosslinked transition metal compound one by one in any order or black simultaneously on the promoter-supported carrier.
  • the carrier and the promoter can be mixed and stirred at a temperature of about 20 to 120 ° C. to prepare a carrier supported carrier.
  • a crosslinked and non-crosslinked transition metal compound is mixed and added simultaneously to the promoter-supported carrier; Alternatively, any one of crosslinked and uncrosslinked transition metal compounds may be added. And, the resulting solution can be stirred at a temperature of about 20 to 120 ° C. If only one transition metal compound is added before, the supported catalyst may be prepared by adding the remaining transition metal compound and stirring the solution obtained at a temperature of about 20 to 120 ° C.
  • the crosslinked transition metal compound and the non-crosslinked transition metal compound may be used in, for example, a weight ratio of 50: 1 to 1: 1, a weight ratio of 20: 1 to 1: 1, or a weight ratio of 20: 1 to 5: 1. have. If the crosslinking type transition metal compound exceeds the above range, the processing load in forming the film of the olefin polymer produced therefrom may be too large to cause problems in the process, and if the crosslinked transition metal compound is below the above range, the mechanical properties of the film to be produced may be deteriorated. There is concern.
  • the content of the carrier, cocatalyst, promoter supported carrier, crosslinked and uncrosslinked transition metal compound used to use the common supported catalyst can be appropriately adjusted according to the properties or effects of the desired supported catalyst.
  • reaction solvent in the preparation of the common supported catalyst for example, aliphatic hydrocarbon solvents such as pentane, nucleic acid, heptane, nonane, decane and isomers thereof; Aromatic hydrocarbon solvents such as toluene, xylene and benzene; Or a hydrocarbon solvent substituted with a chlorine atom such as dichloromethane and chlorobenzene.
  • aliphatic hydrocarbon solvents such as pentane, nucleic acid, heptane, nonane, decane and isomers thereof
  • Aromatic hydrocarbon solvents such as toluene, xylene and benzene
  • a hydrocarbon solvent substituted with a chlorine atom such as dichloromethane and chlorobenzene.
  • the common supported catalyst since the common supported catalyst is sensitively reacted with moisture or oxygen, it may be prepared under an inert atmosphere such as nitrogen or argon.
  • ethylene and alphalefin can be used as an olefin monomer.
  • the alphalefin is propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-nuxene, 1-heptene, 1-octene, 1-decene, 1-undecene, 1-dodecene , 1-tetradecene, 1-nuxadecene and combinations thereof can be used.
  • the olefin polymer which stratifies the above-mentioned physical property can be easily manufactured using ethylene and 1-nuxene as an olefin monomer.
  • polymerization reaction of the lepin monomer a variety of polymerization known as polymerization reaction of the lepin monomer, such as continuous solution polymerization process, bulk polymerization process, suspension polymerization process, slurry polymerization process or emulsion polymerization process Process can be employ
  • Such polymerization reaction can be carried out under a temperature of about 50 to 110 ° C or about 60 to 100 ° C and a pressure of about l to 100 bar or about 10 to 80 bar.
  • the common supported catalyst in the polymerization reaction, may be used in a dissolved or diluted state in a solvent such as pentane, nucleic acid, heptane, nonane, decane, toluene, benzene, dichloromethane, chlorobenzene and the like.
  • a solvent such as pentane, nucleic acid, heptane, nonane, decane, toluene, benzene, dichloromethane, chlorobenzene and the like.
  • TMCP Tetramethylcyclopentadiene
  • n-BuLi 2.5 M, 4.8 mL, 12 ⁇ ol
  • MTBE 50 mL
  • THF 38 mL
  • reaction product was then filtered to give dimethylsilylene (tetramethylcyclopentadienyl) (indenyl) zirconium in the form of a yellow solid.
  • the mini Ixmibe contains platinum oxide (52.4 mg, 0.231 mmol) as a stock price, and a mini bombe was assembled, anhydrous THF (30 mL) was added to the mini bombe using a cannula, and hydrogen to a pressure of about 30 bar. Filled up. Subsequently, the mixture contained in the mini bombe was stirred at about 60 ° C. for about 1 day, the temperature of the mini bombe was changed to room temperature, and hydrogen was replaced with argon while gradually decreasing the pressure of the mini bombe.
  • TMCP-Li 1.3 g, 10 mmol
  • CuCN 45 mg, 5 mol
  • THF 10 mL
  • dichlorodiphenylsilane 2.5 g, 10 ⁇ l ol
  • diphenyl (indenyl) (tetramethylcyclopentadienyl) silane (4.2 g, 10 ⁇ l ol) synthesized above was dissolved in THF (15 mL). Then, after cooling the solution to -20 ° C or less, slowly added dropwise n-BuLi (2.5 M in hexane, 8.4 mL, 21 mmol) to the solution, the resulting solution was stirred for 6 hours at room temperature.
  • ZrCl 4 (THF) 2 (3.8 g, 10 ⁇ l ol) was dispersed in toluene (15 mL) in a separately prepared 250 mL schlenk flask, and the resulting mixture was then mixed at -20 ° C. Stirred. Subsequently, the lithiated ligand solution prepared above was slowly injected into the mixture. And the obtained mixture was stirred at room temperature for 48 hours.
  • Diphenylsilylene (tetramethylcyclopentadienyl) (indenyl) zirconium dichloride (1.0 g, 1.7 Mol), Pd / C (10 mol), DCM (40 mL) synthesized above was a high-pressure reactor of 100 mL. Was injected and filled with hydrogen to a pressure of about 60 bar. Subsequently, the mixture contained in the high pressure reactor was stirred at about 80 ° C. for about 24 hours.
  • reaction product is passed through a celite pad to remove solids from the reaction product and diphenylsilylene (tetramethylcyclopentadienyl) (tetrahydroindenyl) zirconium dichloride (hereinafter referred to as' metallocene catalyst) Precursor B 1 ) (0.65 g, 1.1 mmol,
  • 'metallocene catalyst precursor C' Bis (indenyl) zirconium dichloride (CAS Number: 12148-49-1, manufactured by Strem, hereinafter referred to as 'metallocene catalyst precursor C') (2.0 g, 5.1 mmol), Pt0 2 (0.08 g) , DCM (40 mL) was injected into 100 mL of high pressure reactor and charged with hydrogen to a pressure of about 60 bar. Subsequently, the mixture contained in the high pressure reactor was stirred at room temperature for about 24 hours.
  • reaction product was passed through a celite pad to remove solids from the reaction product and bis (tetrahydroindenyl) zirconium dichloride (hereinafter referred to as 'metallocene catalyst precursor 4 g, 3.5 ⁇ ol, 69% yield)'. .
  • 'metallocene catalyst precursor 4 g bis (tetrahydroindenyl) zirconium dichloride
  • metallocene catalyst precursor A (68 g), metallocene catalyst precursor D (5.1 g), 1 liter of toluene, and 25 g of triisobutylaluminum were added to a 2 L schlenk flask, which was then heated at 40 ° C. Stir for 60 minutes. Then, the obtained mixture was introduced into the high pressure reactor, the temperature of the glass reactor was lowered to 80 ° C and stirred for 2 hours.
  • Example 4 metallocene catalyst precursor B (60 g) was used instead of metallocene catalyst precursor A (68 g), and metallocene catalyst precursor C (instead of metallocene catalyst precursor D (5.1 g)) A supported catalyst was prepared in the same manner as in Preparation Example 4, except that 3.9 g) was used.
  • Examples 1 and 2 Preparation of Olefin Polymers
  • a 140 L continuous polymerization reactor was used in which the isobutane slurry loop process was possible.
  • the continuous polymerization reactor was operated at a reaction flow rate of about 7 m / s.
  • Ethylene and hydrogen gas used in the polymerization reaction and comonomer 1-hexene (1-hexene) was continuously added in a constant amount to the content shown in Table 1 below.
  • the concentrations of all gases and comonomers supplied to the continuous polymerization reactor were confirmed by on-in gas chromatography.
  • the supported catalyst was prepared by preparing the supported catalyst shown in Table 1 as an isobutane slurry having the concentration shown in Table 1.
  • the pressure in the continuous polymerization reactor was maintained at 40 bar and the polymerization temperature was 84 ° C.
  • the slurry density is the density of the polymer present in the continuous polymerization reactor. This is measured by the density indicator installed in the continuous polymerization reactor.
  • the activity of the catalysts used in Examples 1 and 2 and the physical properties of the olefin polymers prepared using the catalysts were measured by the methods described below and are shown in Table 2 below.
  • the olefin polymers prepared in Examples 1 and 2 In order to compare the physical properties with those of commercially available products, Daexeon's EP2001 products were prepared by using ExxonMobil Co., Ltd. 2010 as a comparative example 1, M2010 by Hanwha Chemical Co., Ltd. as a comparative example 3, and Comparative Example 3, and the physical properties thereof were measured by the methods described below. 2 is shown.
  • Catalytic activity was calculated by measuring the weight of silica (Si0 2 ), the carrier of the catalyst used in the polymerization reaction, and the weight of the olefin polymer calculated per hour from the reaction (unit: kgPol./ (kgSi0 2 * hr)).
  • MI 2 .i6 and MFRR (21.6 / 2.16) Melt Index (. MI 2 16) is measured according to ASTM D1238 (condition E, 190 ° C, 2.16kg load) standard, Melt Flow Rate Ratio (MFRR (21.6 / 2.16)) converts MFR 2L6 to MFR 2 . Calculated by dividing by 16 , MFR 21 . 6 measured according to ISO 1133 at a temperature of 230 ° C and a load of 21.6 kg,! ⁇ 3 ⁇ 4. 16 is ISO It was measured under a silver degree of 230 ° C and a load of 2. 16 kg according to 1133.
  • Elongational Viscosity Increase Ratio First, the elongational viscosity of the olefin polymer was determined using an elongational viscosity apparatus (EVF) attached to an ARES rheometer of TA Instruments (New Castle, Delaway, USA). in ° C was measured with a Hencky (Hencky) byeonhyeongreul 1 s_ 1. When the elongational viscosity increases constantly and then rapidly increases, the elongational viscosity increase rate is quantified based on the following criteria.
  • EDF elongational viscosity apparatus
  • the highest stretched viscosity measured was divided by the value of the stretched viscosity of the extrapolated straight line at the time when the highest stretched viscosity was obtained.
  • the extrapolated straight line is obtained by extending a straight line having an average slope of a section in which the stretched viscosity increases with time to a section in which the stretched viscosity increases rapidly while maintaining the average slope as shown in FIG. 2.
  • the extrapolated straight line is obtained by using Extrapolate in the Or iginpro 8.6 program.
  • a graph of the elongated viscosity actually measured) was extended to a section where the elongated viscosity rapidly increased. In this case, B-Spline was used to obtain extrapolated straight lines, and Apprent interpolat ions were used in Extrapolate Manu.
  • BUR Blow up ratio
  • the olefin polymers prepared according to Examples 1 and 2 have higher molecular weights than commercially available olefin polymers, but have excellent melt flowability, especially when the blow up ratio is adjusted to 2.7 or more. It is confirmed to indicate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

본 발명은 올레핀 중합체와 이의 제조 방법에 관한 것이다. 상기 올레핀 중합체는 우수한 기계적 강도와 고가공성을 나타내 다양한 제품 원료로 활용될 것으로 기대된다. 특히, 상기 올레핀 중합체는 멜트 블로운 공법에 의해 안정적으로 필름을 생산할 수 있어 멜트 블로운 공법에 의해 제조되는 제품 원료로 유용하게 사용될 것으로 기대된다.

Description

【명세서】
【발명의 명칭】
올레핀 중합체 및 이의 제조 방법
【기술분야】
관련 출원 (들)과의 상호 인용
본 출원은 2016년 2월 24일자 한국 특허 출원 제 10-2016-0022085 호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 올레핀 중합체 및 이의 제조 방법에 관한 것이다.
【배경기술】
기존 LLDPE l inear low-densi ty polyethylene)는 기계적 물성이 우수하지만 기포 안정성 (bubble stabi l i ty) 등이 열악하여 멜트 블로운 (me It blown) 공법 등에 의해 가공할 때 안정적으로 필름을 형성하기 어려운 문제가 있었다. 이러한 문제를 해결하기 위해, LLDPE를 LDPE( low-densi ty polyethylene)와 배합하여 사용하는 방법이 소개되었다. ' LLDPE에 LDPE를 첨가하는 방법을 이용하면 기포 안정성이 개선되어 멜트 블로운 공법 등에 의해 안정적으로 블로운 필름을 형성할 수 있었다. 하지만, 상기 LLDPE에 LDPE를 첨가하는 방법은 LDPE를 매우 소량 첨가하더라도 기존의 LLDPE의 기계적 물성을 현저하게 저하시키는 문제를 초래하였다.
【발명의 내용】
【해결하려는 과제】
본 발명은 우수한 기계적 강도 및 가공성을 가지는 올레핀 중합체를 제공한다.
본 발명은 또한 상기 올레핀 증합체의 제조 방법을 제공한다.
【과제의 해결 수단】
발명의 일 구현예에 따르면, 하기 식 1로 계산되는 SF가 65 이상인 올레핀 중합체가 제공된다.
[식 1]
SF = Mw/104 + 5/(Mw/105) * exp (신장 점도 증가비율)
상기 식 1에서, Mw는중량평균분자량을 의미하고, 신장 점도 증가비율은 상기 올레핀 중합체에 대하여 ARES 레오미터에 부착된 신장 점도 장치를 이용하여 170°C에서 헨키 변형률 1 s— 1로 측정한 가장 높은 신장 점도 값을, 가장 높은 신장 점도 값을 얻은 시간에서의 외삽 직선의 신장 점도의 값으로 나눈 값이며, 여기서 상기 외삽 직선은 신장 점도가 시간에 따라 일정하게 증가하는 구간의 평균 기울기를 갖는 직선을, 상기 평균 기울기를 유지하면서, 신장 점도가 급격히 증가하는 구간까지 연장한 직선이다.
상기 올레핀 중합체는 신장 점도 증가비율이 2.5 이상일 수 있다.
상기 올레핀 중합체는 밀도가 0.910 g/cm3 내지 0.940 g/cm3일 수 있다. 상기 올레핀 중합체는 수평균분자량이 20, 000 내지 50 , 000 g/n l일 수 있다.
상기 올레판 중합체는 중량평균분자량이 100, 000 내지 160 ,000 g/nral일 수 있다.
상기 올레핀 중합체는 ASTM D1238 규격에 따라 190°C의 온도 및 2.16 kg의 하중 하에서 측정된 용융 지수가 0.5 g/10min 이상 3 g/ 10m in 미만일 수 있다.
상기 올레핀 중합체는 ISO 1133에 따라 23CTC의 온도 및 21.6kg의 하중 하에서 측정된 용융 유동를 (MFR21 6)을 ISO 1133에 따라 230°C의 온도 및 2.16kg의 하중 하에서 측정된 용융 유동률 (MF .16)로 나눈 MFRR(21.6/2.16)이 20 이상 40 미만일 수 있다.
상기 올레핀 중합체는 에틸렌과 알파을레핀의 공중합체일 수 있다. 여기서 알파올레핀은 프로필렌, 1-부텐, 1-펜텐, 4-메틸 -1-펜텐, 1-헥센, 1- 헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1-테트라데센, 1-핵사데센 및 이들의 흔합물일 수 있다.
한편 , 발명의 다른 일 구현예에 따르면, 담체, 상기 담체에 담지되어 있으며 하기 화학식 1로 표시되는 가교형 전이 금속 화합물 및 상기 담체에 담지되어 있으며 하기 화학식 2로 표시되는 비가교형 전이 금속 화합물을 포함하는 흔성 담지 촉매 존재 하에, 올레핀 단량체를 중합 반응시키는 단계를 포함하는 상기 올레핀 중합체의 제조 방법이 제공된다.
[화학식 1]
Figure imgf000005_0001
상기 화학식 1 및 2에서, Mi 및 M2는 서로 동일하거나 상이하며 각각 독립적으로 Ti , Zr 또는 Hf이고,
Xi , ¾, ¾ 및 X4는 서로 동일하거나 상이하며 각각 독립적으로 할로겐, 니트로기, 아미도기, 포스파인기, 포스파이드기, 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 2 내지 20의 알콕시알킬기, 탄소수 1 내지 20의 실릴기, 탄소수 2 내지 20의 알케닐기, 탄소수 6 내지 20의 아릴기 , 탄소수 1 내지 20의 술포네이트기 및 탄소수 1 내지 20의 술폰기 중 어느 하나이고,
T는 C, Si , Ge , Sn또는 Pb이며,
Qi 및 Q2는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, 탄소수 1 내지 20의 알킬기, 탄소수 2 내지 20의 헤테로사이클로알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 2 내지 20의 알콕시알킬기, 탄소수 1 내지 20의 카복실레이트, 탄소수 2 내지 20의 알케닐기, 탄소수 6 내지 20의 아릴기 및 탄소수 5 내지 20의 헤테로아릴기 중 어느 하나이고,
Ri 내지 R6는 서로 동일하거나 상이하며 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 2 내지 20의 알콕시알킬기, 탄소수 1 내지 20의 실릴기, 탄소수 1 내지 20의 실릴알킬기, 탄소수 1 내지 20의 실릴옥시알킬기, 탄소수 2 내지 20의 알케닐기 및 탄소수 6 내지 20의 아릴기 중 어느 하나이고,
R7 내지 R14는 서로 동일하거나 상이하며 각각 독립적으로 수소, 탄소수
1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 2 내지 20의 알콕시알킬기, 탄소수 1 내지 20의 실릴기, 탄소수 1 내지 20의 실릴알킬기, 탄소수 1 내지 20의 실릴옥시알킬기, 탄소수 2 내지 20의 알케닐기 및 탄소수 6 내지 20의 아릴기 중 어느 하나이거나 혹은, R7 내지 R14 중 서로 인접하는 한 쌍 이상의 치환기는 서로 연결되어 치환 또는 비치환된 지방족 또는 방향족 고리를 형성하는 것이며,
Ris 내지 4는 서로 동일하거나 상이하며 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 2 내지 20의 알콕시알킬기, 탄소수 1 내지 20의 실릴기, 탄소수 1 내지 20의 실릴알킬기, 탄소수 1 내지 20의 실릴옥시알킬기, 탄소수 2 내지 20의 알케닐기 및 탄소수 6 내지 20의 아릴기 중 어느 하나이거나 흑은, R15 내지 R24 중 서로 인접하는 한 쌍 이상의 치환기는 서로 연결되어 치환 또는 비치환된 지방족 또는 방향족 고리를 형성하는 것이다.
상기 화학식 1에서 Ri 내지 ¾는 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기 및 탄소수 2 내지 20의 알케닐기 중 어느 하나일 수 있다.
상기 화학식 1에서 ¾ 및 ¾는 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기 및 탄소수 2 내지 20의 알케닐기 중 어느 하나일 수 있다.
상기 화학식 1에서 R7 내지 R14는 각각 독립적으로 수소, 탄소수 1 내지
20의 알킬기, 탄소수 1 내지 20의 알콕시기 및 탄소수 2 내지 20의 알케닐기 중 어느 하나이거나 혹은, R7 내지 R14 중 서로 인접하는 한 쌍 이상의 치환기들은 서로 연결되어 치환 또는 비치환된 지방족 고리를 형성할 수 있다. 상기 화학식 1에서 및 Q2는 각각 독립적으로 탄소수 1 내지 20의 알킬기 및 탄소수 6 내지 20의 아릴기 중 어느 하나일 수 있다. 상기 화학식 1에서 내지 는 각각 독립적으로 할로겐, 탄소수 1 내지 20의 알킬기 및 탄소수 1 내지 20의 알콕시기 중 어느 하나일 수 있다. 상기 화학식 2에서 R15 내지 R24는 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기 및 탄소수 2 내지 20의 알케닐기 중 어느 하나이거나 혹은, R15 내지 4 중 서로 인접하는 한 쌍 이상의 치환기들이 서로 연결되어 치환 또는 비치환된 지방족 고리를 형성할 수 있다.
상기 화학식 1로 표시되는 가교형 전이 금속 화합물은 하기 화학식 3 및 4로 표시되는 화합물 중 어느 하나일 수 있다.
Figure imgf000007_0001
상기 화학식 3 및 4에서, R25 및 R26은 서로 동일하거나 상이하며, 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 2 내지 20의 알콕시알킬기, 탄소수 1 내지 20의 알킬실릴기, 탄소수 1 내지 20의 실릴알킬기, 탄소수 1 내지 20의 알콕시실릴기, 탄소수 1 내지 20의 실릴옥시알킬기, 탄소수 2 내지 20의 알케닐기, 탄소수 6 내지 20의 아릴기, 탄소수 7 내지 20의 알킬아릴기 및 탄소수 7 내지 20의 아릴알킬기 중 어느 하나이고, 1은 0 내지 5사이의 정수이다.
상기 화학식 2로 표시되는 비가교형 전이 금속 화합물은 하기 화학식 5 및 6으로 표시되는 화합물 중 어느 하나일 수 있다.
Figure imgf000008_0001
상기 화학식 5 및 6에서, R27 내지 0은 서로 동일하거나 상이하며, 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 2 내지 20의 알콕시알킬기 , 탄소수 1 내지 20의 알킬실릴기, 탄소수 1 내지 20의 실릴알킬기, 탄소수 1 내지 20의 알콕시실릴기, 탄소수 1 내지 20의 실릴옥시알킬기, 탄소수 2 내지 20의 알케닐기, 탄소수 6 내지 20의 아릴기, 탄소수 7 내지 20의 알킬아릴기 및 탄소수 7 내지 20의 아릴알킬기 중 어느 하나이다.
상기 흔성 담지 촉매는 상기 화학식 1 및 2의 전이 금속 화합물을 활성화시키기 위해, 하기 화학식 7 내지 9로 표시되는 화합물로 이루어진 군에서 선택된 1 종 이상의 조촉매를 추가로 포함할 수 있다.
[화학식 7] R31-[Al (¾2)-0]n-R33
상기 화학식 7에서,
Rsi, 32 및 1½은 각각 독립적으로 수소, 할로겐, 탄소수 1 내지 20 의 하이드로카빌기 및 할로겐으로 치환된 탄소수 1 내지 20 의 하이드로카빌기 중 어느 하나이고,
n은 2 이상의 정수이며,
[화학식 8]
D(R34)3
상기 화학식 8에서 ,
D는 알루미늄 또는 보론이고,
R34는 각각 독립적으로 할로겐, 탄소수 1 내지 20 의 하이드로카빌기, 및 할로겐으로 치환된 탄소수 1 내지 20의 하이드로카빌기 중 어느 하나이며 , [화학식 9]
[L-H] + [Z(A)4r 또는 [υ + [Ζ(Α)4]
상기 화학식 9에서,
L은 중성 또는 양이온성 루이스 염기이고, Η는 수소 원자이며,
Ζ는 13 족 원소이며, Α는 각각 독립적으로 탄소수 1 내지 20 의 하이드로카빌기; 탄소수 1 내지 20 의 하이드로카빌옥시기; 및 이들 치환기의 1 .이상의 수소 원자가 할로겐, 탄소수 1 내지 20 의 하이드로카빌옥시기 및 탄소수 1 내지 20 의 하이드로카빌실릴기 중 1 이상의 치환기로 치환된 치환기들 중 어느 하나이다.
상기 흔성 담지 촉매에서 상기 담체는 실리카, 알루미나, 마그네시아 또는 이들의 흔합물일 수 있다.
상기 흔성 담지 촉매에서 상기 화학식 1로 표시되는 가교형 전이 금속 화합물과 상기 화학식 2로 표시되는 비가교형 전이 금속 화합물은 50 : 1 내지 1 : 1의 중량비로 포함될 수 있다.
상기 올레핀 중합체의 제조 방법에서 상기 올레핀 단량체로는 에틸렌과 알파올레핀을 사용할 수 있다. 여기서 상기 알파을레핀으로는 프로필렌, 1- 부텐, 1—펜텐, 4-메틸 -1-펜텐, 1-핵센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1- 도데센, 1-테트라데센, 1-핵사데센 및 이들의 흔합물을 사용할 수 있다. 【발명의 효과】
본 발명의 일 구현예에 따른 을레핀 중합체는 우수한 기계적 강도와 고가공성을 나타내 다양한 제품 원료로 활용될 것으로 기대된다. 특히, 상기 올레핀 중합체는 멜트 블로운 공법에 의해 안정적으로 필름을 생산할 수 있어 멜트 블로운 공법에 의해 제조되는 제품 원료로 유용하게 사용될 것으로 기대된다.
【도면의 간단한 설명】
도 1은 기존의 LLDPE , 본 발명의 일 구현예에 따른 올레핀 중합체 (EZP로 표시), LDPE의 시간에 따른 신장 점도 변화를 보여주는 그래프이다.
도 2는 본 발명의 일 구현예에 따른 올레핀 중합체의 시간에 따른 신장 점도 변화를 보여주는 그래프로서, 신장 점도가 시간에 따라 일정하게 증가하는 구간의 평균 기울기를 갖는 직선을, 상기 평균 기울기를 유지하면서 신장 점도가 급격히 증가하는 구간까지 연장한 외삽 직선이 표시되어 있는 그래프이다.
【발명을 실시하기 위한 구체적인 내용】
이하 발명의 구체적인 구현예에 따른 올레핀 중합체 및 상기 을레핀 중합체의 제조 방법 등에 대해 설명하기로 한다.
발명의 일 구현예에 따르면 하기 식 1로 계산되는 SF가 65 이상인 올레핀 중합체가 제공된다.
[식 1]
SF = Mw/104 + 5/ (Mw/105) * exp (신장 점도 증가비율)
상기 식 1에서, Mw는 중량평균분자량을 의미하고
신장 점도 증가비율은 상기 을레핀 중합체에 대하여 ARES 레오미터에 부착된 신장 점도 장치를 이용하여 170°C에서 헨키 변형률 1 s— 1로 측정한 가장 높은 신장 점도 값을, 가장 높은 신장 점도 값을 얻은 시간에서의 외삽 직선의 신장 점도의 값으로 나눈 값이며, 여기서 상기 외삽 직선은 신장 점도가 시간에 따라 일정하게 증가하는 구간의 평균 기울기를 갖는 직선을, 상기 평균 기을기를 유지하면서, 신장 점도가 급격히 증가하는 구간까지 연장한 직선이다. 기존 LLDPEO inear low-dens i ty polyethylene)는 기계적 물성이 우수하지만 기포 안정성 (bubble stabi l i ty) 등이 열악하여 멜트 블로운 (mel t blown) 공법 등에 의해 가공할 때 안정적으로 필름을 형성하기 어려운 문제가 있었다. 이러한 문제를 해결하기 위해, LLDPE와 LDPE( low-dens i ty polyethylene)를 배합하여 사용하는 방법이 소개되었다. 이러한 방법을 이용하면 기포 안정성이 개선되어 멜트 블로운 공법 등에 의해 안정적으로 블로운 필름을 형성할 수 있었다. 하지만, 상기 방법은 기존의 LLDPE에 LDPE를 매우 소량 첨가하더라도 기존의 LLDPE의 기계적 물성을 현저하게 저하시키는 문제를 초래하였다.
이에 본 발명자들은 LLDPE에 LCBGong chain branch)를 도입하여 기존의 LLDPE와 동등하거나 또는 보다 우수한 수준의 기계적 물성을 나타내면서 기포 안정성이 개선된 새로운 올레핀 중합체를 개발하였다.
상기 일 구현예에 따른 올레핀 중합체는 상기 식 1로 계산되는 SF( strength factor )가 65 이상, 70 이상, 75 이상 혹은 80 이상으로 높은 특징을 갖는다.
상기 식 1에 올레핀 중합체의 중량평균분자량과 신장 점도 증가비율을 대입하여 계산되는 SF를 통해 올레핀 중합체 내의 LCB 함량을 수치화할 수 있다. 올레핀 중합체의 물성 중 하나인 용융강도 (mel t strength)도 올레핀 중합체 내의 LCB 함량에 따라 증가하는 경향을 보인다. 그러나, 용융강도는 을레핀 중합체의 분자량이 작을 경우 분자량이 큰 경우에 비해 LCB 함량 변화에 더 크게 영향을 받아 LCB 함량을 정확하게 예측하는데 한계가 있다. 이에 반해, 상기 식 1로 계산되는 SF는 식 1에 중량평균분자량 인자를 포함시켜 다양한 분자량을 가지는 올레핀 중합체의 LCB 함량을 객관적으로 예측할 수 있다.
상기 식 1의 중량평균분자량 (Mw)은 겔 투과 크로마토그래피 (GPC , gel permeat ion chromatography, Water사 제조)를 이용하여 즉정한 표준 폴리스티렌에 대한 환산 수치이다. 그러나, 상기 중량평균분자량은 이에 한정되는 것은 아니며 본 발명이 속한 기술분야에 알려진 다른 방법으로 측정될 수 있다.
상기 식 1의 신장 점도 증가비율은 올레핀 중합체에 '대하여 ARES 레오미터에 부착된 신장 점도 장치를 이용하여 170°C에서 헨키 변형률 1 s— 1로 측정한 가장 높은 신장 점도 값을, 가장 높은 신장 점도 값을 얻은 시간에서의 외삽 직선의 신장 점도의 값으로 나눈 값이다.
구체적으로, ARES 레오미터에 부착된 신장 점도 장치를 이용하여 올레핀 중합체의 신장 점도를 측정하면 도 1 및 도 2와 같이 시간에 따른 신장 점도 (단위 : Pa*s) 변화를 확인할 수 있는 그래프를 얻을 수 있다.
도 1을 참고하면, 기존 LLDPE의 경우에는 시간에 따라 신장 점도가 일정하게 증가하는 경향을 보이나, 신장 점도가 급격하게 증가하는 변형 경화성 (strain hardening)을 보이지 않는다. 반면, 본 발명의 일 구현예에 따른 을레핀 중합체의 경우에는 시간에 따라 신장 점도가 일정하게 증가하다가 신장 점도가 급격히 증가하는 변형 경화성 (strain hardening)을 보이게 된다. 이러한 변형 경화성이 심하게 나타날수록, 즉 신장 점도가 보다 급격히 증가할수록, 을레핀 중합체 내의 LCB 함량이 많다고 예측할 수 있으며, 더 나아가 올레핀 중합체를 이용하여 필름 형성 시에 보다 우수한 가공성을 나타낼 것으로 예측할 수 있다. 도 1을 참조하면, 일반적으로, LCB가 많은 LDPE의 경우 변형 경화성이 더욱 심하게 나타나는 것이 확인된다.
상기 변형 경화성의 정도를 수치화하기 위해 다음과 같은 기준으로 신장 점도 증가비율을 구하였다. 구체적으로, 상기 신장 점도 증가비율은 측정된 가장 높은 신장 점도 값을, 가장 높은 신장 점도 값을 얻은 시간에서의 외삽 직선의 신장 점도의 값으로 나눠 구하였다. 여기서, 상기 외삽 직선은 도 2와 같이 신장 점도가 시간에 따라 일정하게 증가하는 구간의 평균 기을기를 갖는 직선을, 상기 평균 기울기를 유지하면서, 신장 점도가 급격히 증가하는 구간까지 연장한 직선을 의미한다. 상기 신장 점도가 시간에 따라 일정하게 증가하는 구간은 X축 (시간)이 0.001 초 내지 1 초, 0.001 초 내지 0.5 초 흑은 0.01 초 내지 0.5 초인 구간을 의미하고, 신장 점도가 급격히 증가하는 구간은 신장 점도가 시간에 따라 일정하게 증가하는 구간 이후의 구간, 즉 X축 (시간)이 0.5 초를 초과하는 구간 혹은 1 초를 초과하는 구간을 의미한다. 따라서, 상기 외삽 직선은 X축 (시간)이 0.001 초 내지 1 초, 0.001 초 내지 0.5 초 흑은 0.01 초 내지 0.5 초인 구간의 직선을 상기 직선의 기울기를 유지하면서 즉 X축 (시간)이 0.5 초 혹은 1 초를 초과하는 구간까지 연장한 직선을 의미한다.
일 예로, 외삽 직선은 Or iginpro 8.6 프로그램 내에서 Extrapolate를 이용하여 얻을 수 있다. 구체적으로, Extrapolate Manu에서 X축의 구간을 0.01부터 0.5까지로 지정하여 얻은 직선 (시간에 따라 실제 측정된 신장 점도의 그래프)을 신장 점도가 급격히 증가하는 구간까지 연장하여 외삽된 직선을 얻을 수 있다. 이때, 외삽된 직선을 얻기 위해 Method는 B-Spl ine을 사용하며 Apprent interpolat ion^- Extrapolate Manu 내에서 !"용한다.
상기 일 구현예에 따른 올레핀 중합체는 우수한 기계적 강도를 유지하면서 개선된 가공성을 나타내기 위해 신장 점도 증가비율이 2.5 이상일 수 있다. 상기 신장 점도 증가비율의 상한은 층분한 기계적 강도를 유지하기 위해 5 이하, 4 이하 혹은 3.5 이하로 조절될 수 있다.
상기 식 1로 계산되는 SF는 그 값이 높을수록 필름 형성 시의 우수한 가공성을 담보할 수 있어 상기 SF의 상한은 특별히 한정되지 않는다. 비제한적인 예로, 상기 SF는 200 이하 혹은 150 이하로 조절될 수 있다.
상기 일 구현예에 따른 올레핀 중합체는 기존의 LLDPE의 우수한 기계적 물성을 유지하기 위해 LLDPE에 준하는 물성을 나타낼 수 있다.
일 예로, 상기 올레핀 중합체는 밀도가 0.910 g/cm3 내지 0.940 g/cm3일 수 있다. 상기 을레핀 중합체는 수평균분자량이 2()ᅳ 000 내지 50 ,000 g/mol이고, 중량평균분자량이 100, 000 내지 160, 000 g/nral일 수 있다. 상기 올레핀 중합체는 ASTM D1238 규격에 따라 190°C의 온도 및 2.16 kg의 하중 하에서 측정된 용융 지수가 0.5 g/10min 이상 3 g/10min 미만일 수 있다. 상기 올레핀 중합체는 ISO 1133에 따라 230°C의 온도 및 21.6kg의 하중 하에서 측정된 용융 유동률 (MFR21.6)을 ISO 1133에 따라 23CTC의 온도 및 2.16kg의 하중 하에서 측정된 용융 유동률 (MFR2.16)로 나눈 MFRR(21.6/2.16)이 20 이상 40 미만일 수 있다.
만일 상기 식 1에 의해 계산되는 SF가 상술한 범위를 만족한다 하더라도 LDPE와 같이 상술한 밀도, 수평균분자량, 중량평균분자량, 용융 지수, MFRR 등을 만족하지 못하면 충분한 기계적 강도를 나타내지 못해 가공성이 우수하다 하더라도 실제 제품에 적용하기 어려운 문제가 있다. 상기 일 구현예에 따른 올레핀 중합체는 상술한 물성 중 적어도 어느 하나의 물성을 가질 수 있으며, 우수한 기계적 강도를 나타내기 위해 상술할 물성 모두를 가질 수 있다.
이러한 물성을 나타내는 을레핀 중합체는, 예를 들면, 에틸렌과 알파올레핀의 공중합체일 수 있다. 이때, 상기 알파올레핀은 프로필렌, 1-부텐,
1-펜텐, 4-메틸 -1-펜텐, 1-핵센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1-테트라데센, 1-핵사데센 및 이들의 흔합물을 포함하는 것일 수 있다. 이 중에서도 상기 올레핀 중합체로는 에틸렌과 1-핵센의 공중합체일 수 있다. 상기 일 구현예에 따른 올레핀 중합체가 상술한 공중합체인 경우 상술한 물성을 보다 용이하게 구현할 수 있다. 그러나, 상기 일 구현예에 따른 을레핀 중합체의 종류가 상술한 종류에 한정되는 것은 아니며, 상술한 물성을 나타낼 수 있다면 본 발명이 속한 기술분야에 알려진 다양한 종류의 것으로 제공될 수 있다.
상기 일 구현예에 따른 을레핀 중합체는 우수한 기계적 물성 및 가공성을 나타내 다양한 분야에 유용하게 적용될 수 있다. 특히, 상기 올레핀 중합체는 기포 안정성이 우수하여 멜트 블로운 공법 등에 의해 안정적으로 블로운 필름을 형성할 수 있다. 일 예로, 상기 일 구현예에 따른 을레핀 중합체는 후술하는 시험예에 기재된 바와 같이 Blow up rat io (BUR)를 2.7 이상으로 조절하였을 때에도 안정적으로 블로운 필름을 제공할 수 있다.
한편, 발명의 다른 구현예에 따르면, 상기 올레핀 중합체를 제조하는 방법이 제공된다. 구체적으로, 상기 올레핀 중합체의 제조 방법은 담체, 상기 담체에 담지되어 있으며 하기 화학식 1로 표시되는 가교형 전이 금속 화합물 및 상기 담체에 담지되어 있으며 하기 화학식 2로 표시되는 비가교형 전이 금속 화합물을 포함하는 흔성 담지 촉매 존재 하에, 올레핀 단량체를 중합 반웅시키는 단계를 포함할 수 있다.
[화학식 1]
Figure imgf000015_0001
상기 화학식 1 및 2에서, 및 M2는 서로 동일하거나 상이하며 각각 독립적으로 Ti , Zr 또는 Hf이고,
Xi , ¾, ¾ 및 는 서로 동일하거나 상이하며 각각 독립적으로 할로겐, 니트로기, 아미도기, 포스파인기, 포스파이드기 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 2 내지 20의 알콕시알킬기, 탄소수 1 내지 20의 실릴기, 탄소수 2 내지 20의 알케닐기, 탄소수 6 내지 20의 아릴기, 탄소수 1 내지 20의 술포네이트기 및 탄소수 1 내지 20의 술폰기 중 어느 하나이고,
T는 C , Si , Ge , Sn또는 Pb이며,
Qi 및 Q2는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, 탄소수 1 내지 20의 알킬기, 탄소수 2 내지 20의 헤테로사이클로알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 2 내지 20의 알콕시알킬기, 탄소수 1 내지 20의 카복실레이트, 탄소수 2 내지 20의 알케닐기, 탄소수 6 내지 20의 아릴기 및 탄소수 5 내지 20의 헤테로아릴기 중 어느 하나이고, -
Ri 내지 ¾는 서로 동일하거나 상이하며 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 2 내지 20의 알콕시알킬기, 탄소수 1 내지 20의 실릴기, 탄소수 1 내지 20의 실릴알킬기, 탄소수 1 내지 20의 실릴옥시알킬기, 탄소수 2 내지 20의 알케닐기 및 탄소수 6 내지 20의 아릴기 중 어느 하나이고,
R7 내지 R14는 서로 동일하거나 상이하며 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 2 내지 20의 알콕시알킬기, 탄소수 1 내지 20의 실릴기, 탄소수 1 내지 20의 실릴알킬기, 탄소수 1 내지 20의 실릴옥시알킬기, 탄소수 2 내지 20의 알케닐기 및 탄소수 6 내지 20의 아릴기 중 어느 하나이거나 흑은, R7 내지 R14 중 서로 인접하는 한 쌍 이상의 치환기는 서로 연결되어 치환 또는 비치환된 지방족 또는 방향족 고리를 형성하는 것이며,
R15 내지 4는 서로 동일하거나 상이하며 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 2 내지 20의 알콕시알킬기, 탄소수 1 내지 20의 실릴기, 탄소수 1 내지 20의 실릴알킬기, 탄소수 1 내지 20의 실릴옥시알킬기, 탄소수 2 내지 20의 알케닐기 및 탄소수 6 내지 20의 아릴기 중 어느 하나이거나 혹은, R15 내지 ¾4 중 서로 인접하는 한 쌍 이상의 치환기는 서로 연결되어 치환 또는 비치환된 지방족 또는 방향족 고리를 형성하는 것이다.
본 명세서에서 특별한 제한이 없는 한 다음 용어는 하기와 같이 정의될 수 있다.
할로겐 (halogen)은 불소 (F) , 염소 (C1 ) , 브롬 (Br ) 또는 요오드 ( I )일 수 있다.
탄소수 1 내지 20의 알킬기는 직쇄, 분지쇄 또는 고리형 알킬기일 수 있다. 구체적으로, 탄소수 1 내지 20의 알킬기는 탄소수 1 내지 20의 직쇄 알킬기; 탄소수 1 내지 10의 직쇄 알킬기; 탄소수 1 내지 5의 직쇄 알킬기; 탄소수 3 내지 20의 분지쇄 또는 고리형 알킬기; 탄소수 3 내지 15의 분지쇄 또는 고리형 알킬기 ; 또는 탄소수 3 내지 10의 분지쇄 또는 고리형 알킬기일 수 있다. 보다 구체적으로, 탄소수 1 내지 20의 알킬기는 메틸기, 에틸기, n- 프로필기, i so-프로필기, n-부틸기, i so-부틸기, tert-부틸기, n-펜틸기, i so- 펜틸기, neo-펜틸기 또는 사이클로핵실기 등일 수 있다.
탄소수 2 내지 20의 헤테로사이클로알킬기는 산소, 질소 또는 황 등으로 예시되는 하나 이상의 탄소 이외의 원자를 포함하는 고리형 알킬기일 수 있다. 구체적으로, 탄소수 2 내지 20의 헤테로사이클로알킬기는 탄소수 2 내지 15의 헤테로사이클로알킬기, 탄소수 2 내지 10의 헤테로사이클로알킬기 또는 탄소수 4 내지 7의 헤테로사이클로알킬기일 수 있다. 보다 구체적으로, 탄소수 2 내지 20의 헤테로사이클로알킬기는 에폭시기, 테트라하이드로퓨라닐기, 테트라하이드로파이라닐 (tetrahydropyranyl )기, 테트라하이드로싸이오페닐 (tetrahydrothiophenyl )기 또는 테트라하이드로피를릴 (tetrahydropyrrolyl )기 등일 수 있다.
탄소수 1 내지 20의 알콕시기는 직쇄, 분지쇄 또는 고리형 알콕시기일 수 있다. 구체적으로, 탄소수 1 내지 20의 알콕시기는 탄소수 1 내지 20의 직쇄 알콕시기; 탄소수 1 내지 10의 직쇄 알콕시기; 탄소수 1 내지 5의 직쇄 알콕시기; 탄소수 3 내지 20의 분지쇄 또는 고리형 알콕시기; 탄소수 3 내지 15의 분지쇄 또는 고리형 알콕시기; 또는 탄소수 3 내지 10의 분지쇄 또는 고리형 알콕시기일 수 있다. 보다 구체적으로, 탄소수 1 내지 20의 알콕시기는 메특시기, 에록시기, n-프로폭시기, i so-프로폭시기, n-부특시기, i so- 부록시기, tert-부특시기, n-펜록시기, i so—펜록시기, neo-펜록시기 또는 사이클로핵록시기 등일 수 있다.
탄소수 2 내지 20의 알콕시알킬기는 -Ra-0-Rb를 포함하는 구조로 알킬기 (-Ra)의 하나 이상의 수소가 알콕시기(_0_^)로 치환된 치환기일 수 있다. 구체적으로, 탄소수 2 내지 20의 알콕시알킬기는 메특시메틸기, 메특시에틸기, 에록시메틸기, i so_프로폭시메틸기, i 프로폭시에틸기, i so- 프로폭시핵틸기, tert-부특시메틸기, tert-부특시에틸기 또는 tert— 부록시핵실기 등일 수 있다.
탄소수 1 내지 20의 실릴기는 -Si¾의 하나 이상의 수소가 알킬기 또는 알콕시기로 치환된 치환기일 수 있다. 구체적으로, 탄소수 1 내지 20의 실릴기는 메틸실릴기, 다이메틸실릴기, 트라이메틸실릴기, 다이메틸에틸실릴기, 다이에틸메틸실릴기, 다이메틸프로필실릴기, 메록시실릴기, 다이메록시실릴기, 트라이메톡시실릴기, 다이메특시에록시실릴기, 다이에톡시메틸실릴기 또는 다이메록시프로필실릴기 등일 수 있다.
탄소수 1 내지 20의 실릴알킬기는 알킬기의 하나 이상의 수소가 실릴기로 치환된 치환기일 수 있다. 구체적으로, 탄소수 1 내지 20의 실릴알킬기는 다이메록시프로필실릴메틸기 등일 수 있다.
탄소수 1 내지 20의 실릴옥시알킬기는 알킬기의 하나 이상의 수소가 실릴옥시기로 치환된 치환기일 수 있다. 구체적으로, 탄소수 1 내지 20의 실릴옥시알킬기는 다이메톡시프로필실릴옥시메틸기 등일 수 있다.
탄소수 2 내지 20의 알케닐기는 직쇄, 분지쇄 또는 고리형 알케닐기일 수 있다. 구체적으로, 탄소수 2 내지 20의 알케닐기는 탄소수 2 내지 20의 직쇄 알케닐기, 탄소수 2 내지 10의 직쇄 알케닐기, 탄소수 2 내지 5의 직쇄 알케닐기, 탄소수 3 내지 20의 분지쇄 알케닐기, 탄소수 3 내지 15의 분지쇄 알케닐기, 탄소수 3 내지 10의 분지쇄 알케닐기, 탄소수 5 내지 20의 고리형 알케닐기 또는 탄소수 5 내지 10의 고리형 알케닐기일 수 있다. 보다 구체적으로, 탄소수 2 내지 20의 알케닐기는 에테닐기, 프로페닐기, 부테닐기, 펜테닐기 또는 사이클로핵세닐기 등일 수 있다.
탄소수 1 내지 20의 카복실레이트는 -C0ORc의 구조로 !^는 탄소수 1 내지 20의 하이드로카빌기일 수 있다. 상기 하이드로카빌기는 하이드로카본으로부터 수소 원자를 제거한 형태의 1가 작용기로서, 알킬기 및 아릴기 등을 포함할 수 있다. 구체적으로, 탄소수 1 내지 20의 카복실레이트는 피발레이트 (pival ate) 등일 수 있다.
탄소수 6 내지 20의 아릴기는 모노사이클릭, 바이사이클릭 또는 트라이사이클릭 방향족 탄화수소를 의미할 수 있다. 또한, 상기 아릴기는 알킬기의 하나 이상의 수소가 아릴기로 치환된 아르알킬기 (aralkyl group)을 포함하는 의미로 사용될 수 있다. 구체적으로, 탄소수 6 내지 20의 아릴기는 페닐기, 나프틸기, 안트라세닐기 또는 벤질기 등일 수 있다.
탄소수 5 내지 20의 헤테로아릴기는 산소, 질소 및 황 등으로 예시되는 하나 이상의 탄소 이외의 원자를 포함하는 고리형 아릴기일 수 있다. 구체적으로, 탄소수 5 내지 20의 헤테로아릴기는 탄소수 5 내지 15의 헤테로아릴기 또는 탄소수 5 내지 10의 헤테로아릴기일 수 있다. 보다 구체적으로, 탄소수 5 내지 20의 헤테로아릴기는 퓨라닐 ( furanyl )기, 파이라닐 (pyranyl )기, 싸이오페닐 (thiophenyl )기 또는 피를릴 (pyrrolyl )기 등일 수 있다. 탄소수 1 내지 20의 술포네이트기는 -0-S02-Rd의 구조로 Rd는 탄소수 1 내지 20의 하이드로카빌기일 수 있다. 구체적으로, 탄소수 1 내지 20의 술포네이트기는 메탄설포네이트기 또는 페닐설포네이트기 등일 수 있다.
탄소수 1 내지 20의 술폰기는 -Re '-S02-Re"의 구조로 여기서 Re' 및 Re"는 서로 동일하거나 상이하며 각각 독립적으로 탄소수 1 내지 20의 하이드로카빌기일 수 있다. 구체적으로, 탄소수 1 내지 20의 술폰기는 메틸설포닐메틸기, 메틸설포닐프로필기, 메틸설포닐부틸기 또는 페닐설포닐프로필기 등일 수 있다.
또한, 본 명세서에서 서로 인접하는 한 쌍 이상의 치환기가 서로 연결되어 치환 또는 비치환된 지방족 또는 방향족 고리를 형성한다는 것은 서로 인접하는 2개의 치환기의 쌍 중에서 한 쌍 이상의 치환기가 서로 연결되어 지방족 또는 방향족 고리를 형성하며, 상기 지방족 또는 방향족 고리는 임의의 치환기에 의하여 치환될 수 있음을 의미하는 것이다. 예를 들어, 화학식 2의 서로 인접하는 한 쌍의 치환기 R16 및 R17은 후술하는 화학식 5와 같이 서로 연결되어 비치환된 방향족 고리 ( 8이 수소인 경우) 또는 R28로 치환된 방향족 고리 ( 8이 수소가 아닌 경우)를 형성할 수 있다. 또한, 화학식 2의 서로 인접하는 한 쌍의 치환기 R16 및 R17은 후술하는 화학식 6과 같이 서로 연결되어 비치환된 지방족 고리 0½이 수소인 경우) 또는 R28로 치환된 지방족 고리 (R28이 수소가 아닌 경우)를 형성할 수 있다.
상술한 치환기들은 목적하는 효과와 동일 내지 유사한 효과를 발휘하는 범위 내에서 임의적으로 하이드록시기, 할로겐, 알킬기, 헤테로사이클로알킬기, 알콕시기, 알케닐기, 실릴기, 포스파인기, 포스파이드기, 술포네이트기, 술폰기, 아릴기 및 헤테로아릴기로 이루어진 군에서 선택된 1 이상의 치환기로 치환될 수 있다.
상기 화학식 1로 표시되는 가교형 전이 금속 화합물과 화학식 2로 표시되는 비가교형 전이 금속 화합물이 흔성 담지된 촉매를 이용하면, LLDPE에 LCB가 도입된 구조의 올레핀 중합체를 제조할 수 있다. 이러한 올레핀 중합체는 상술한 식 1로 계산되는 SF가 상술한 범위를 만족할 수 있으며, 이에 따라 우수한 기계적 물성과 가공성을 동시에 나타낼 수 있다.
이하, 상기 화학식 1 및 2의 전이 금속 화합물의 구조에 대해 상세히 설명한다.
상기 화학식 1로 표시되는 가교형 전이 금속 화합물의 구조 내에서 사이클로펜타다이에닐 리간드는, 예를 들면, 올레핀 단량체의 중합 활성과 올레핀 중합체의 물성에 영향을 미칠 수 있다.
상기 사이클로펜타다이에닐 리간드의 Ri 내지 R4는 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기 및 탄소수 2 내지 20의 알케닐기 중 어느 하나일 수 있다. 보다 구체적으로, 내지 는 각각 독립적으로 메틸기, 에틸기, 프로필기 및 부틸기 중 어느 하나일 수 있다. 이 경우, 상기 흔성 담지 촉매는 을레핀 단량체 중합 공정에서 매우 높은 활성을 나타낼 수 있고 원하는 물성의 올레핀 중합체를 제공할 수 있다.
또한, 상기 화학식 1로 표시되는 가교형 전이 금속 화합물의 구조 내에서 테트라하이드로인데닐 리간드는, 예를 들면, 치환된 작용기의 종류에 따라 입체 장애 효과의 정도를 조절하여 제조되는 올레핀 중합체의 분자량을 용이하게 조절할 수 있다.
상기 화학식 1에서 ¾ 및 ¾는 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기 및 탄소수 2 내지 20의 알케닐기 중 어느 하나이거나, R7 내지 R14는 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기 및 탄소수 2 내지 20의 알케닐기 중 어느 하나이거나 혹은, R7 내지 R14 중 서로 인접하는 한 쌍 이상의 치환기들은 서로 연결되어 치환 또는 비치환된 지방족 고리를 형성할 수 있다. 보다 구체적으로, 상기 화학식 1에서 R5 및 ¾는 각각 독립적으로 수소, 탄소수 1 내지 4의 알킬기, 탄소수 1 내지 4의 알콕시기 및 탄소수 2 내지 4의 알케닐기 중 어느 하나이거나, R7 내지 R14는 각각 독립적으로 수소, 탄소수 1 내지 4의 알킬기, 탄소수 1 내지 4의 알콕시기 및 탄소수 2 내지 4의 알케닐기 중 어느 하나이거나 혹은, R7 내지 Ri4 중 서로 인접하는 한 쌍 이상의 치환기들은 서로 연결되어 치환 또는 비치환된 지방족 고리를 형성할 수 있다. 이러한 경우 상기 흔성 담지 촉매는 우수한 가공성을 가지는 올레핀 중합체를 제공할 수 있다.
상기 사이클로펜타다이에닐 리간드와 테트라하이드로인데닐 리간드는 - 에 의하여 가교되어 우수한 안정성을 나타낼 수 있다. 이러한 효과를 더욱 효과적으로 담보하기 위하여 ¾ 및 가 각각 독립적으로 탄소수 1 내지 20의 알킬기 및 탄소수 6 내지 20의 아릴기 중 어느 하나인 전이 금속 화합물을 사용할 수 있다. 보다 구체적으로, ¾ 및 ¾가 서로 동일하며 메틸기, 에틸기, 프로필기, 부틸기, 페닐기 및 벤질기 중 어느 하나인 전이 금속 화합물을 사용할 수 있다. 그리고, T는 C , Si , Ge , Sn 또는 Pb이거나; C또는 Si이거나; 혹은 Si일 수 있다.
한편, 가교된 사이클로펜타다이에닐 리간드와 테트라하이드로인데닐 리간드 사이에는 ^OdXXz)이 존재하는데, ( ) (¾)는 금속 착물의 보관 안정성에 영향을 미칠 수 있다.
이러한 효과를 더욱 효과적으로 담보하기 위하여 d 및 ¾가 각각 독립적으로 할로겐, 탄소수 1 내지 20의 알킬기 및 탄소수 1 내지 20의 알콕시기 중 어느 하나인 전이 금속 화합물을 사용할 수 있다. 보다 구체적으로, ¾ 및 ¾가 각각 독립적으로 F , CI , Br 또는 I인 전이 금속 화합물을 사용할 수 있다. 그리고, Ti , Zr 또는 Hf이거나; Zr 또는 Hf이거나; 혹은 Zr일 수 있다.
하나의 예시로 보다 향상된 가공성을 가지는 올레핀 중합체를 제공할 수 있는 가교형 전이 금속 화합물로는 하기 화학식 3 및 4로 표시되는 화합물을 예시할 수 있다.
Figure imgf000021_0001
[화학식 4]
Figure imgf000022_0001
상기 화학식 3 및 4에서, R25 및 R26은 서로 동일하거나 상이하며, 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 2 내지 20의 알콕시알킬기, 탄소수 1 내지 20의 알킬실릴기, 탄소수 1 내지 20의 실릴알킬기, 탄소수 1 내지 20의 알콕시실릴기, 탄소수 1 내지 20의 실릴옥시알킬기, 탄소수 2 내지 20의 알케닐기, 탄소수 6 내지 20의 아릴기, 탄소수 7 내지 20의 알킬아릴기 및 탄소수 7 내지 20의 아릴알킬기 중 어느 하나이고,
1은 0 내지 5사이의 정수이다.
상기 화학식 3 및 4에서 테트라하이드로인데닐 리간드의 치환기인 R25 및 R26은 보다 우수한 가공성을 가지는 올레핀 중합체 제공을 위해 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 2 내지 20의 알케닐기 및 탄소수 6 내지 20의 아릴기 중 어느 하나이거나; 흑은 수소, 탄소수 1 내지 4의 알킬기, 탄소수 1 내지 4의 알콕시기, 탄소수 2 내지 4의 알케닐기 및 탄소수 6 내지 10의 아릴기 중 어느 하나일 수 있다.
한편, 상기 화학식 2로 표시되는 비가교형 전이 금속 화합물의 구조 내에서 2개의 리간드는, 예를 들면, 올레핀 단량체의 중합 활성과 올레핀 중합체의 물성에 영향을 미칠 수 있다.
상기 2개 리간드의 R15 내지 R24는 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기 및 탄소수 2 내지 20의 알케닐기 중 어느 하나이거나 혹은, R15 내지 4 중 서로 인접하는 한 쌍 이상의 치환기들이 서로 연결되어 치환 또는 비치환된 지방족 고리를 형성할 수 있다. 보다 구체적으로, R15 내지 R24는 각각 독립적으로, 수소, 탄소수 1 내지 6의 알킬기, 탄소수 1 내지 6의 알콕시기 및 탄소수 2 내지 6의 알케닐기 중 어느 하나이거나 흑은 R15 내지 R24 중 서로 인접하는 한 쌍 이상의 치환기들이 서로 연결되어 치환 또는 비치환된 지방족 고리를 형성할 수 있다. 이 경우, 상기 흔성 담지 촉매는 우수한 기계적 물성을 타나타내면서 우수한 가공성을 나타내는 올레핀 중합체를 제공할 수 있다.
그리고, 상기 2개의 리간드 사이에는 M2(X3) ( )이 존재하는데, Μ23) Οί4)는 금속 착물의 보관 안정성에 영향을 미칠 수 있다.
이러한 효과를 더욱 효과적으로 담보하기 위하여 ¾ 및 Χ4가 각각 독립적으로 할로겐, 탄소수 1 내지 20의 알킬기 및 탄소수 1 내지 20의 알콕시기 중 어느 하나인 전이 금속 화합물을 사용할 수 있다. 보다 구체적으로, ¾ 및 가 각각 독립적으로 F, CI , Br 또는 I인 전이 금속 화합물을 사용할 수 있다. 그리고, M2는 Ti , Zr 또는 Hf이거나; Zr 또는 Hf이거나; 흑은 Zr일 수 있다.
하나의 예시로 보다 향상된 가공성을 가지는 올레핀 중합체를 제공할 수 있는 비가교형 전이 금속 화합물로는 하기 화학식 5 및 6으로 표시되는 화합물을 예시할 수 있다.
Figure imgf000023_0001
[화학식 6]
Figure imgf000024_0001
상기 화학식 5 및 6에서, R27 내지 0은 서로 동일하거나 상이하며, 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 2 내지 20의 알콕시알킬기, 탄소수 1 내지 20의 알킬실릴기, 탄소수 1 내지 20의 실릴알킬기, 탄소수 1 내지 20의 알콕시실릴기, 탄소수 1 내지 20의 실릴옥시알킬기, 탄소수 2 내지 20의 알케닐기, 탄소수 6 내지 20의 아릴기, 탄소수 7 내지 20의 알킬아릴가 및 탄소수 7 내지 20의 아릴알킬기 중 어느 하나이다.
보다 구체적으로, 상기 화학식 5 및 6에서, 2개의 리간드의 치환기인 R27 내지 0은 수소, 탄소수 1 내지 6의 알킬기, 탄소수 1 내지 6의 알콕시기, 탄소수 2 내지 6의 알케닐기 및 탄소수 6 내지 10의 아릴기 중 어느 하나이다. 이러한 구조의 비가교형 전이 금속 화합물을 사용하면 보다 안정적으로 상술한 물성의 을레핀 중합체를 제공할 수 있는 흔성 담지 촉매를 제조할 수 있다. 상기 화학식 1 및 2로 표시되는 전이 금속 화합물은 공지의 반웅들을 웅용하여 합성될 수 있으며, 보다 상세한 합성 방법은 후술하는 제조예를 참고할 수 있다.
상기 일 구현예에 따른 흔성 담지 촉매는 상기 가교형 및 비가교형 전이 금속 화합물을 활성화시키기 위하여 조촉매를 추가로 포함할 수 있다. 상기 조촉매로는 본 발명이 속하는 기술분야에서 통상적으로 사용하는 것이 특별한 제한 없이 적용될 수 있다. 비제한적인 예로, 상기 조촉매는 하기 화학식 7 내지 9로 표시되는 화합물로 이루어진 군에서 선택된 1종 이상의 화합물일 수 있다.
[화학식 7]
Figure imgf000024_0002
상기 화학식 7에서,
Rsi , R32 및 1¾3은 각각 독립적으로 수소, 할로겐, 탄소수 1 내지 20 의 하이드로카빌기 및 할로겐으로 치환된 탄소수 1 내지 20 의 하이드로카빌기 중 어느 하나이고,
n은 2 이상의 정수이며 ,
[화학식 8]
D(R34)3
상기 화학식 8에서,
D는 알루미늄 또는 보론이고,
R34는 각각 독립적으로 할로겐, 탄소수 1 내지 20 의 하이드로카빌기, 및 할로겐으로 치환된 탄소수 1 내지 20의 하이드로카빌기 중 어느 하나이며, [화학식 9]
[L-H] + [Z(A)4]" 또는 [L] + [Z(A)4r
상기 화학식 9에서,
L은 중성 또는 양이온성 루이스 염기이고, H는 수소 원자이며,
Z는 13 족 원소이며, A는 각각 독립적으로 탄소수 1 내지 20 의 하이드로카빌기; 탄소수 1 내지 20 의 하이드로카빌옥시기; 및 이들 치환기의 1 이상의 수소 원자가 할로겐, 탄소수 1 내지 20 의 하이드로카빌옥시기 및 탄소수 1 내지 20 의 하이드로카빌실릴기 중 1 이상의 치환기로 치환된 치환기들 중 어느 하나이다.
상기에서 화학식 7로 표시되는 화합물의 비제한적인 예로는 메틸알루미녹산, 에틸알루미녹산, 이소부틸알루미녹산 또는 tert- 부틸알루미녹산 등을 들 수 있다. 그리고, 화학식 8로 표시되는 화합물의 비제한적인 예로는 트리메틸알루미늄, 트리에틸알루미늄 트리이소부틸알루미늄, 트리프로필알루미늄, 트리부틸알루미늄 디메틸클로로알루미늄, 트리이소프로필알루미늄, 트리ᅳ sec-부틸알루미늄 트리사이클로펜틸알루미늄, 트리펜틸알루미늄, 트리이소펜틸알루미늄 트리핵실알루미늄, 트리옥틸알루미늄, 에틸디메틸알루미늄 메틸디에틸알루미늄, 트리페닐알루미늄, 트리 -P-를릴알루미늄 디메틸알루미늄메록시드 또는 디메틸알루미늄에특 등을 들 수 있다 마지막으로, 화학식 9로 표시되는 화합물의 비제한적인 예로는 트리메틸암모늄 테트라키스 (펜타플루오로페닐)보레이트 트리에틸암모늄 테트라키스 (펜타플루오로페닐)보레이트 Ν,Ν-디메틸아닐리늄 테트라키스 (펜타플루오로페닐)보레이트 Ν ,Ν-디메틸아닐리늄 η- 부틸트리스 (펜타플루오로페닐)보레이트 Ν,Ν-디메틸아닐리늄 벤질트리스 (펜타플루오로페닐)보레이트 Ν ,Ν-디메틸아닐리늄 테트라키스 (4-(t_ 부틸디메틸실릴 )-2, 3, 5, 6-테트라플루오로페닐 )보레이트, Ν,Ν-디메틸아닐리늄 테트라키스 (4- (트리이소프로필실릴) -2,3,5,6-테트라플루오로페닐)보레이트, Ν,Ν-디메틸아닐리늄 펜타플루오로페녹시트리스 (펜타플루오로페닐)보레이트, Ν,Ν-디메틸 -2,4,6-트리메틸아닐리늄 테트라키스 (펜타플루오로페닐)보레이트, 트리메틸암모늄 테트라키스 (2,3 , 4,6-테트라플루오로페닐)보레이트, Ν,Ν- 디메틸아닐리늄 테트라키스 (2,3,4,6-테트라플루오로페닐)보레이트, 핵사데실디메틸암모늄 테트라키스 (펜타플루오로페닐)보레이트, Ν-메틸 -Ν- 도데실아닐리늄 테트라키스 (펜타플루오로페닐)보레이트 또는 메틸디 (도데실)암모늄 테트라키스 (펜타플루오로페닐)보레이트 등올 들 수 있다. 상기 조촉매는 상기 가교형 및 비가교형 전이 금속 화합물의 활성화가 층분히 진행될 수 있도록 적절한 함량으로 사용될 수 있다.
한편, 상기 일 구현예에 따른 흔성 담지 촉매의 담체로는 표면에 하이드록시기 또는 실록산기를 함유하는 담체를 사용할 수 있다. 구체적으로, 상기 담체로는 고온에서 건조하여 표면에 수분을 제거함으로써 반웅성이 큰 하이드록시기 또는 실록산기를 함유하는 담체를 사용할 수 있다. 보다 구체적으로, 상기 담체로는 실리카, 알루미나, 마그네시아 또는 이들의 흔합물 등을 사용할 수 있다. 상기 담체는 고온에서 건조된 것일 수 있고, 이들은 통상적으로 Na20, K2C03 , BaS04 및 Mg(N03)2 등의 산화물, 탄산염, 황산염, 질산염 성분을 포함할 수 있다.
상기 일 구현예에 따른 흔성 담지 촉매는, 예를 들면, 담체에 조촉매를 담지시키는 단계; 및 조촉매 담지 담체에 가교형 전이 금속 화합물 및 비가교형 전이 금속 화합물을 순서에 상관 없이 하나씩 담지시키거나 흑은 동시에 담지시키는 단계를 통해 제조될 수 있다.
구체적으로, 담체에 조촉매를 담지시키는 단계에서는, 고온에서 건조된 담체 및 조촉매를 흔합하고, 이를 약 20 내지 120°C의 온도에서 교반하여 조촉매 담지 담체를 제조할 수 있다.
그리고, 조촉매 담지 담체에 전이 금속 화합물을 담지시키는 단계에서는 조촉매 담지 담체에 가교형 및 비가교형의 전이 금속 화합물을 흔합하여 동시에 첨가하거나; 혹은 가교형 및 비가교형의 전이 금속 화합물 중 어느 하나를 첨가할 수 있다. 그리고, 얻어지는 용액을 약 20 내지 120°C의 온도에서 교반할 수 있다. 만일 앞서 1 종의 전이 금속 화합물만 첨가하였다면 나머지 1 종의 전이 금속 화합물을 첨가하고 다시 얻어지는 용액을 약 20 내지 120 °C의 온도에서 교반하여 담지 촉매를 제조할 수 있다.
상기 가교형 전이 금속 화합물과 비가교형 전이 금속 화합물은, 예를 들면, 50 : 1 내지 1 : 1의 중량비, 20 : 1 내지 1 : 1의 중량비 혹은 20 : 1 내지 5: 1의 중량비로 사용될 수 있다. 만일 가교형 전이 금속 화합물이 상기 범위를 초과하면 이로부터 생성된 올레핀 중합체의 필름 형성 시 가공 부하가 지나치게 커져 공정 상에 문제를 발생시킬 수 있고, 상기 범위 미만이면 제조되는 필름의 기계적 물성이 저하될 우려가 있다.
상기 흔성 담지 촉매를 사용하기 위하여 사용되는 담체, 조촉매, 조촉매 담지 담체, 가교형 및 비가교형의 전이 금속 화합물의 함량은 목적하는 담지 촉매의 물성 또는 효과에 따라 적절하게 조절될 수 있다.
상기 흔성 담지 촉매 제조 시에 반웅 용매로는, 예를 들어, 펜탄, 핵산, 헵탄, 노난, 데칸 및 이들의 이성질체와 같은 지방족 탄화수소 용매; 를루엔, 자일렌 및 벤젠과 같은 방향족 탄화수소 용매; 또는 디클로로메탄 및 클로로벤젠과 같은 염소 원자로 치환된 탄화수소 용매 등을 사용할 수 있다. 그리고, 상기 흔성 담지 촉매는 수분이나 산소에 민감하게 반웅하기 때문에, 질소 또는 아르곤과 같은 불활성 분위기 하에서 제조될 수 있다. ,
상기 흔성 담지 촉매의 구체적인 제조 방법은 후술하는 제조예 등을 참고할 수 있다. 그러나, 흔성 담지 촉매의 제조 방법이 본 명세서에 기술한 내용에 한정되는 것은 아니며, 상기 제조 방법은 본 발명이 속한 기술분야에서 통상적으로 채용하는 단계를 추가로 채용할 수 있고, 상기 제조 방법의 단계 (들)는 통상적으로 변경 가능한 단계 (들)에 의하여 변경될 수 있다.
한편, 상기 다른 일 구현예에 따른 제조 방법에서는 올레핀 단량체로, 예를 들면, 에틸렌과 알파을레핀을 사용할 수 있다. 이때, 상기 알파을레핀으로는 프로필렌, 1-부텐, 1-펜텐, 4-메틸 -1-펜텐, 1-핵센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1-테트라데센, 1-핵사데센 및 이들의 흔합물을 사용할 수 있다. 이 중에서도 올레핀 단량체로 에틸렌과 1-핵센을 사용하여 상술한 물성을 층족하는 을레핀 중합체를 용이하게 제조할 수 있다. 상기 다른 일 구현예에 따른 제조 방법에서는 올레핀 단량체의 중합 반웅을 위하여 , 연속식 용액 중합 공정, 벌크 중합 공정, 현탁 중합 공정, 슬러리 중합 공정 또는 유화 중합 공정 등 을레핀 단량체의 중합 반웅으로 알려진 다양한 중합 공정을 채용할 수 있다. 이러한 중합 반웅은 약 50 내지 110°C 또는 약 60 내지 100°C의 온도와 약 l 내지 lOObar 또는 약 10 내지 80bar의 압력 하에서 수행될 수 있다.
또한, 상기 중합 반응에서, 상기 흔성 담지 촉매는 펜탄, 핵산, 헵탄, 노난, 데칸, 를루엔, 벤젠, 디클로로메탄, 클로로벤젠 등과 같은 용매에 용해 또는 희석된 상태로 이용될 수 있다. 이때, 상기 용매를 소량의 알킬알루미늄 등으로 처리함으로써, 촉매에 악영향을 줄 수 있는 소량의 물 또는 공기 등을 미리 제거할 수 있다.
일 예로, 상기 흔성 담지 촉매를 이용하면 우수한 기계적 물성과 고가공성을 가지는 을레핀 중합체를 제조할 수 있다. 특히, 상기 을레핀 중합체는 기포 안정성이 매우 우수하여 멜트 블로운 공법에 의해 제조되는 제품 원료에 유용하게 사용될 것으로 기대된다. 이하 발명의 구체적인 실시예를 통해 발명의 작용, 효과를 보다 구체적으로 설명하기로 한다. 다만, 이는 발명의 예시로서 제시된 것으로 이에 의해 발명의 권리범위가 어떠한 의미로든 한정되는 것은 아니다. 제조예 1 : 전이 금속 화합물 (메탈로센 촉매 전구체 A)의 제조
건조된 250 mL schlenk f lask에서 테트라메틸사이클로펜타디엔 (TMCP,
6.0 mL , 40 mmol )을 THF (60 mL)에 녹인 후, 이 용액을 -78°C로 넁각하였다. 이어서, 상기 용액에 n-BuLi (2.5 M, 17 mL , 42 mmol )을 천천히 적가한 후, 얻어지는 용액을 상은에서 하룻밤 동안 교반하였다. 한편, 별도의 250 mL schlenk flask에서 dichlorodimethylsi lane (4.8 mL, 40 mmol)을 n-hexane에 녹인 후, 이 용액을 _78°C로 넁각하였다. 이어서, 이 용액에 앞서 제조한 TMCP-lithiation 용액을 천천히 주입하였다. 그리고 얻어지는 용액을 상온에서 하룻밤 동안 교반하였다.
이후, 얻어지는 용액을 감압하여 상기 용액으로부터 용매를 제거하였다. 그리고, 얻어지는 고체를 를루엔에 용해시키고, 여과하여 남아있는 LiCl를 제거하여 증간체를 얻었다 (yellow liquid, 7.0 g, 33瞧 ol, 83% yield).
¾ NMR (500 MHz, CDC13): 0.24 (6H, s), 1.82 (6H, s), 1.98 (6H, s), 3.08 (1H, s). 건조된 250mL schlenk flask에서 indene (0.93 mL, 8.0 瞧 ol)을 THF (30 mL)에 녹인 후, 이 용액을 -78°C로 냉각하였다. 이어서, 상기 용액에 n- BuLi (2.5 M, 3.4 mL, 8.4 mmol)을 천천히 적가한 후, 얻어지는 용액을 상온에서 약 5 시간 동안 교반하였다.
한편, 별도의 250 mL schlenk flask에서 앞서 합성한 중간체 (1.7 g,
8.0醒 ol)를 THF에 녹이고, 이 용액을 -78°C로 넁각하였다. 이어서, 이 용액에 앞서 제조한 indene-lithiation 용액을 천천히 주입하였다. 그리고 얻어지는 용액을 상은에서 하룻밤 동안 교반하여 자주색 용액을 얻었다.
이후, 반웅기에 물을 부어 반웅을 종료하고 (quenching), 상기 흔합물로부터 ether로 유기층을 추출하였다. 상기 유기층에는 디메틸 (인데닐) (테트라메틸사이클로¾타디에닐)실란과 다른 종의 유기 화합물이 포함되어 있음을 NMR을 통하여 확인하였다. 상기 유기층은 정제 없이 농축되어 metalation에 그대로 이용되었다. 250 mL schlenk flask에서 앞서 합성한 디메틸 (인데닐) (테트라메틸사이클로펜타디에닐)실란 (1.7 g, 5.7 匪 ol)을 를루엔 (30 mL) 및 MTBE (3.0 mL)에 녹였다. 그리고, 이 용액을 _78°C로 냉각한 다음, 상기 용액에 n-BuLi (2.5 M, 4.8 mL, 12 匪 ol)을 천천히 적가한 후, 얻어지는 용액을 상온에서 하룻밤 동안 교반하였다. 그러나, 상기 용액 내에 노란색 고체가 생성되어 균일하게 교반되지 않아 MTBE (50 mL) 및 THF (38 mL)를 추가로 투입하였다.
한편, 별도로 준비된 250 mL schlenk flask에서 ZrCl4(THF)2를 를루엔에 분산시킨 후, 얻어지는 흔합물을 _78°C로 냉각하였다. 이어서, 상기 흔합물에 앞서 제조한 lithiation된 리간드 용액을 천천히 주입하였다. 그리고, 얻어지는 흔합물을 하룻밤 동안 교반하였다.
이후, 반웅 생성물을 여과하여 노란색 고체 형상의 디메틸실릴렌 (테트라메틸사이클로펜타디에닐) (인데닐)지르코늄
디클로라이드 (1.3 g, LiCl (0.48 g) 포함, 1.8 誦 ol)를 얻었고, 여액에서 용매를 제거한 후, n-hexane으로 세척하여 노란색 고체 (320 mg, 0.70 mmol)를 추가로 얻었다 (total 44% yield).
¾ NMR (500 MHz, CDC13): 0.96 (3H, s), 1.16 (3H, s), 1.91 (3H, s),
1.93 (3H, s), 1.96 (3H, s), 1.97 (3H, s), 5.98 (1H, d), 7.07 (1H, t), 7.23 (1H, d), 7.35 (1H, t), 7.49 (1H, d) , 7.70 (1H, d) . 앞서 합성한 디메틸실릴렌 (테트라메틸사이클로펜타디에닐) (인데닐)지르코늄 디클로라이드 (1.049 g, 2.3 隱 ol)를 글러브 박스에서 mini bombe에 담았다. 그리고, 상기 mini Ixmibe에 platinum oxide (52.4 mg, 0.231 mmol)을 주가로 담고, mini bombe를 조립한 푸, mini bombe에 anhydrous THF (30 mL)를 cannula를 이용하여 넣고, 약 30 bar의 압력까지 수소를 채웠다. 이어서, mini bombe에 담긴 흔합물을 약 60°C에서 약 1 일간 교반한 후, mini bombe의 온도를 상온으로 넁각시키고, mini bombe의 압력을 서서히 낮추면서 수소를 아르곤으로 치환하였다.
한편, 약 120 °C의 오븐에서 약 2 시간 정도 건조한 celite를 schlenk filter에 깔고, 이를 이용하여 상기 mini bombe의 반응 생성물을 아르곤 하에서 여과하였다. 상기 celite에 의하여 반응 생성물로부터 Pt02 촉매가 제거되었다. 이어서, 촉매를 제거한 반웅 생성물을 감압하여 용매를 제거하고, 연노란색 . 고체인 디메틸실릴렌 (테트라메틸사이클로펜타디에닐) (테트라하이드로인데닐)지르코늄 디클로라이드 (이하 '메탈로센 촉매 전구체 A'라 함)을 얻었다 (0.601 g, 1.31 mmol , .
Figure imgf000031_0001
¾ 證 (500 MHz, CDCls): 0.82 (3H, s), 0.88 (3H, s), 1.92 (6H, 1.99 (3H, s), 2.05 (3H, s), 2.34 (2H, m) , 2.54 (2H, m), 2.68 (2H, 3.03 (2H, m), 5.45 (1H, s), 6.67 (1H, s). 제조예 2: 전이 금속 화합물 (메탈로센 촉매 전구체 B)의 제조
건조된 250 mL schlenk flask에 TMCP— Li (1.3 g, 10 mmol), CuCN (45 mg, 5 mol ), THF (10 mL)를 투입하였다. 이어서, 상기 플라스크의 온도를 - 20 °C 이하로 냉각한 다음 dichlorodiphenylsilane (2.5 g, 10 瞧 ol)을 적가하고, 얻어지는 흔합물을 상온에서 16 시간 교반하였다.
그리고, 상기 플라스크의 온도를 -20°C 이하로 넁각한 다음 인덴- lithiation 용액 (1.2 g, 10 mmol in THF 10 mL)을 적가하고 얻어지는 흔합물을 상온에서 24 시간 교반하였다.
이후, 얻어지는 용액을 감압 건조하여 상기 용액으로부터 용매를 제거하였다. 그리고, 얻어지는 고체를 핵산에 용해시켜 여과하여 남아 있는
LiCl을 제거하고 여액 (filtrate) 감압 건조하여 여액에서 핵산을 제거함으로써 디페닐 (인데닐) (테트라메틸사이클로펜타디에닐)실란을 얻었다. 100 mL schlenk flask에서 앞서 합성한 디페닐 (인데닐) (테트라메틸사이클로펜타디에닐)실란 (4.2 g, 10 匪 ol)을 THF (15 mL)에 녹였다. 그리고, 이 용액을 -20°C 이하로 냉각한 다음, 상기 용액에 n-BuLi (2.5 M in hexane, 8.4 mL, 21 mmol)을 천천히 적가한 후, 얻어지는 용액을 상온에서 6 시간 교반하였다.
한편, 별도로 준비된 250 mL schlenk flask에서 ZrCl4(THF)2 (3.8 g, 10 匪 ol)를 를루엔 (15 mL)에 분산시킨 후, 얻어지는 흔합물을 -20°C에서 교반하였다. 이어서, 상기 흔합물에 앞서 제조한 lithiation된 리간드 용액을 천천히 주입하였다. 그리고, 얻어지는 흔합물을 상온에서 48 시간 동안 교반하였다.
이후, 얻어지는 용액을 감압 건조하여 용액으로부터 용매를 제거하였다. 그리고, 얻어지는 고체를 다이클로로메탄 (DCM)에 용해시킨 후 여과하여 남아 있는 LiCl을 제거하고 여액 (filtrate)을 감압 건조하여 DCM올 제거하였다. 이어서, 얻어지는 고체를 를루엔 30 mL에 넣어 16 시간 동안 교반한 후 여과하여 레몬색 고체 형상의 디페닐실릴렌 (테트라메틸사이클로펜타디에닐) (인데닐)지르코늄
디클로라이드 (2.1 g, 3.6隱 ol)를 얻었다 (36% yield).
¾ NMR (500 MHz, CDC13): 8.08-8.12 (2H, m), 7.98-8.05 (2H, m), 7.77 (1H, d), 7.47-7.53 (3H, m), 7.42-7.46 (3H, m) , 7.37-7.41 (2H, m) , 6.94 (1H, t), 6.23 (1H, d), 1.98 (3H, s), 1.95 (3H, s), 1.68 (3H, s), 1.52 (3H, s). 앞서 합성한 디페닐실릴렌 (테트라메틸사이클로펜타디에닐) (인데닐)지르코늄 디클로라이드 (1.0 g, 1.7 隱 ol), Pd/C (10 mol ), DCM (40 mL)를 100 mL의 고압 반응기에 주입하고, 약 60 bar의 압력까지 수소를 채웠다. 이어서, 상기 고압 반웅기에 담긴 흔합물을 약 80°C에서 약 24 시간 동안 교반하였다. 반웅이 종료되면, 반웅 생성물을 celite pad에 통과시켜 반웅 생성물로부터 고체를 제거하고 디페닐실릴렌 (테트라메틸사이클로펜타디에닐) (테흐라하이드로인데닐)지르코늄 디클로라이드 (이하, '메탈로센 촉매 전구체 B1라 함)를 얻었다 (0.65 g, 1.1 mmol,
Figure imgf000032_0001
H NMR (500顧 z, CDCls): 7.90-8.00 (4H, m) , 7.38-7.45 (6H, m) , 6.80 (1H, s), 5.71 (1H, s), 3.15-3.50 (1H, m) , 2.75-2.85 (1H, m), 2.50—2.60 (1H, m), 2.12 (3H, s), 2.03 (3H, s), 1.97-2.07 (1H, m) ' 1.76 (3H, s), 1.53-1.70 (4H, m), 1.48 (3H, s). 제조예 3: 전이 금속 화합물 (메탈로센 촉매 전구체 D)의 제조
비스 (인데닐)지르코늄 디클로라이드 (CAS Number: 12148-49-1, St rem 사 제조, 이하 '메탈로센 촉매 전구체 C'라 함) (2.0 g, 5.1 隱 ol), Pt02 (0.08 g), DCM (40 mL)를 100 mL의 고압 반웅기에 주입하고, 약 60 bar의 압력까지 수소를 채웠다. 이어서, 상기 고압 반웅기에 담긴 흔합물을 상온에서 약 24 시간 동안 교반하였다. 반응이 종료되면, 반응 생성물을 celite pad에 통과시켜 반웅 생성물로부터 고체를 제거하고 비스 (테트라하이드로인데닐)지르코늄 디클로라이드 (이하, '메탈로센 촉매 전구체 4 g, 3.5瞧 ol, 69% yield).
Figure imgf000033_0001
제조예 4: 담지 촉매의 제조
10 L 고압 반응기에 를루엔 4.0 kg 및 실리카 (Grace Davison, SP2410) 800 g을 투입하고, 반웅기의 온도를 40°C로 올리면서 교반하였다. 상기 반웅기에 30 중량 %의 메틸알루미녹산 (MA0)/를루엔 용액 (Albemarle 사 제조) 1.5 kg을 투입하고, 온도를 80°C로 올린 후 약 200 rpm으로 약 12 시간 교반하였다.
한편, 2 L의 schlenk flask에 메탈로센 촉매 전구체 A (68 g), 메탈로센 촉매 전구체 D (5.1 g), 를루엔 1 L, 트리이소부틸알루미늄 25 g을 투입하고, 이를 40°C에서 60 분간 교반하였다. 그리고, 얻어지는 흔합물을 상기 고압 반응기에 투입하고 유리 반응기의 온도를 80°C로 을린 다음 2 시간 동안 교반하였다.
이후, 반웅기의 온도를 상온으로 낮춘 후、 교반을 중지하여 반웅 생성물을 30 분간 정치시킨 후 decant at ion하였다. 그리고, 반웅기에 핵산 3 kg을 투입하여 슬러리를 얻은 후 f i l ter dryer로 이송하여 여과하였다. 얻어지는 반웅 생성물에 1.5 bar의 아르곤으로 10 분간 퍼징시킨 후 생성물을 40°C에서 3 시간 동안 진공 건조하여 담지 촉매를 얻었다. 제조예 5 : 담지 촉매의 제조
상기 제조예 4에서 메탈로센 촉매 전구체 A (68 g) 대신 메탈로센 촉매 전구체 B (60 g)를 사용하고, 메탈로센 촉매 전구체 D (5. 1 g) 대신 메탈로센 촉매 전구체 C (3.9 g)를 사용한 것을 제외하고 제조예 4와 동일한 방법으로 담지 촉매를 제조하였다. 실시예 1 및 2 : 올레핀 중합체의 제조
중합 반웅기로 이소부탄 슬러리 루프 공정이 가능한 140 L의 연속 중합 반웅기를 이용하였다. 상기 연속 중합 반웅기는 약 7 m/s의 반웅 유속으로 운전되었다. 중합 반웅에 사용되는 에틸렌 및 수소 가스와 공단량체인 1- 핵센 ( 1-hexene)은 하기 표 1에 기재된 함량으로 일정하게 연속적으로 투입되었다. 상기 연속 중합 반웅기에 공급되는 모든 가스 및 공단량체의 농도는 on-l ine gas chromatography로 확인하였다. 담지 촉매는 하기 표 1에 기재된 담지 촉매를 표 1에 기재된 농도의 이소부탄 슬러리로 제조하여 투입되었다. 연속 중합 반응기의 압력은 40 bar로 유지되었으며, 중합 온도는 84°C이었다.
【표 1】
Figure imgf000034_0001
(a) 슬러리 밀도는 연속 중합 반웅기 내에 존재하는 중합체의 밀도로서 연속 중합 반웅기에 설치되어 있는 밀도 표시기 (density indicator)를 통해 측정되는 수치이다. 시험예: 을레핀 중합체의 물성 평가
상기 실시예 1 및 2에서 사용한 촉매의 활성 및 상기 촉매를 이용하여 제조한 올레핀 중합체의 물성을 하기 기재된 방법으로 측정하여 표 2에 나타내었다ᅳ 그리고, 상기 실시예 1 및 2에서 제조한 올레핀 중합체의 물성을 시판 제품의 물성과 비교하기 위해 비교예 1로 ExxonMobil사의 enable 2010, 비교예 2로 한화케미칼사의 M2010, 비교예 3으로 대림사의 EP2001 제품을 준비하고 이들의 물성을 하기 기재된 방법으로 측정하여 표 2에 나타내었다.
(1) 촉매활성: 중합 반웅에 이용된 촉매의 담체인 실리카 (Si02)의 무게와 상기 반응으로부터 시간당 산출된 올레핀 중합체의 무게를 측정하여 촉매 활성 (activity)을 산출하였다 (단위: kgPol./(kgSi02*hr)).
(2) 걸보기 밀도 (bulk density, g/mL) 및 밀도 (g/cm3): 을레핀 중합체의 걸보기 밀도는 IPT model 1132를 이용하여 100 mL 용기에 들어가는 올레핀 중합체의 무게 (g)를 측정하여 구하였으며, 올레핀 중합체의 밀도는 ASTM D792 규격에 따라 측정하였다.
(3) Settling efficiency (%) : 실시예 1 및 2에서 생성된 중합체의 무게를, 사용된 에틸렌, 이소부탄, 1-핵센의 무게의 총합으로 나눈 값에 100을 곱하여 산출하였다.
(4) 분자량 측정 : 겔 투과 크로마토그래피 (GPC, gel permeation chromatography, Water사 제조)를 이용하여 상기 올레핀 중합체의 중량평균분자량 (Mw)과 수평균 분자량 (Mn)을 측정하였다. 분석 온도는 160°C로 하였고, 용매는 트리클로로벤젠을 사용하였으며, 폴리스티렌으로 표준화하여 분자량을 구하였다.
(5) MI2.i6 및 MFRR (21.6/2.16): Melt Index (MI2.16)는 ASTM D1238 (조건 E, 190 °C, 2.16kg 하중) 규격에 따라 측정하였다, Melt Flow Rate Ratio (MFRR (21.6/2.16))는 MFR2L6을 MFR2.16으로 나누어 계산하였으며, MFR21.6은 ISO 1133에 따라 230°C의 온도 및 21.6kg의 하중 하에서 측정하고, !^¾.16은 ISO 1133에 따라 230 °C의 은도 및 2. 16kg의 하중 하에서 측정하였다.
(6) Mel t Strength: 올레핀 중합체의 용융강도는 모델 3211 인스트론 capi l l ary 레오미터가 부착된 고에트페르트 레오텐 (Goet t fert Rheotens) 71.97을 이용하여 측정하였다. 올레핀 공중합체 용융물은 직경 (di ameter : D)에 대한 길이 ( length : L)의 비율 (L/D)이 15인 capi l l ary 다이 (평면 다이, 180도 각도)를 통해 배출되었다. 10 분 동안 190 °C에서 샘플을 평형화시킨후, 피스톤을 1 인치 /분 (2.54 cm/분)의 속도로 움직였다. 표준 시험 온도는 190°C이었다. 샘플을 1.2 mm/s2의 가속으로 다이 100 匪 아래 위치한 가속 닙 (nip)의 세트로 단축으로 잡아당겼다. 장력은 닙 를의 잡아당김 속도의 함수로서 기록되었다. 용융강도는 스트랜드가 파단되기 전 플라토 힘 (mN)으로서 규정되었다. 용융강도 측정에 하기 조건들이 이용되었다.
플렁거 속도: 0.423 瞧 /s
Ca i 1 l ary die L/D : 15
전단속도: 72 /s
휠 초기 속도: 18 匪 /s
휠 가속도: 12 mm/s2
배텔 직경: 9.52誦
Shear rate : 100-150 평균값
(7) 신장 점도 증가비율: 우선, 올레핀 중합체의 신장 점도를 TA 인스트러먼츠 (TA Instruments) (미국 델라웨이주, 뉴 캐슬)의 ARES 레오미터에 부착된 신장 점도 장치 (EVF)를 이용하여 170°C에서 헨키 (Hencky) 변형를 1 s_ 1로 측정하였다. 신장 점도가 시간에 따라 일정하게 증가하다가 급격히 증가하는 경우 신장 점도 증가비율을 다음과 같은 기준으로 수치화하였다. 구체적으로, 측정된 가장 높은 신장 점도 값을, 가장 높은 신장 점도 값을 얻은 시간에서의 외삽 직선의 신장 점도의 값으로 나눠 구하였다. 여기서, 상기 외삽 직선은 도 2와 같이 신장 점도가 시간에 따라 일정하게 증가하는 구간의 평균 기울기를 갖는 직선을 상기 평균 기울기를 유지하면서 신장 점도가 급격히 증가하는 구간까지 연장하여 얻었다. 구체적으로, 외삽 직선은 Or iginpro 8.6 프로그램 내에서 Extrapolate를 이용하여, Extrapol ate Manu에서 X축의 구간을 0.이부터 0.5까지로 지정하여 얻은 직선 (시간에 따라 실제 측정된 신장 점도의 그래프)을 신장 점도가 급격히 증가하는 구간까지 연장하여 얻었다. 이때, 외삽된 직선을 얻기 위해 Method는 B-Spline을 사용하였으며 Apprent interpolat ion을 Extrapolate Manu 내에서 사용하였다.
(8) Strength Factor (SF): SF는 다음 식 1을 통해 구하였다. [식 1]
SF = Mw/104 + 5/(Mw/105) * exp (신장 점도 증가비율)
(9) Blow up ratio (BUR): 다음의 제막 조건에서 BUR을 2.7 이상으로 조절하였을 때 안정적으로 필름이 제조되면 '0'로 표시하고, BUR을 2.6 이하로 조절하였을 때 안정적으로 필름이 제조되면 'Δ'로 표시하였다.
Screw rpm: 40 rpm
가공온도: 160 °C
Die gap: 3瞧
Dies: 100 mm
필름 두께: 60
【표 2】
Figure imgf000037_0001
상기 표 1을 참고하면, 실시예 1 및 2에 따라 제조된 올레핀 중합체의 경우 시판되는 을레핀 중합체 보다 고분자량을 가지나 용융 흐름성이 우수하며 특히 Blow up ratio를 2.7 이상으로 조절하였을 때에도 우수한 가공성을 나타내는 것이 확인된다.

Claims

【특허청구범위】 【청구항 1】 하기 식 1로 계산되는 SF가 65 이상인 올레핀 중합체:
[식 1]
SF = Mw/104 + 5/(Mw/105) * exp (신장 점도 증가비율)
상기 식 1에서, Mw는 증량평균분자량을 의미하고,
신장 점도 증가비율은 상기 올레핀 중합체에 대하여 ARES 레오미터에 부착된 신장 점도 장치를 이용하여 170°C에서 헨키 변형률 1 s— 1로 측정한 가장 높은 신장 점도 값을, 가장 높은 신장 점도 값을 얻은 시간에서의 외삽 직선의 신장 점도의 값으로 나눈 값이며, 여기서 상기 외삽 직선은 신장 점도가 시간에 따라 일정하게 증가하는 구간의 평균 기을기를 갖는 직선을, 상기 평균 기을기를 유지하면서, 신장 점도가 급격히 증가하는 구간까지 연장한 직선이다.
【청구항 2】
제 1 항에 있어서, 상기 신장 점도 증가비율이 2.5 이상인 올레핀 중합체 ·
【청구항 3】
제 1 항에 있어서, 밀도가 0.910 g/cm3 내지 0.940 g/cm3인 올레핀 중합체 .
【청구항 4】
제 1 항에 있어서, 수평균분자량이 20 , 000 내지 50 , 000 g/irol인 을레핀 중합체 .
【청구항 5】
제 1 항에 있어서, 중량평균분자량이 100 , 000 내지 160 , 000 g/rrol인 올레핀 중합체.
【청구항 6】
제 1 항에 있어서, ASTM D1238 규격에 따라 190 °C의 온도 및 2. 16 kg의 하중 하에서 측정된 용융 지수가 0.5 g/10min 이상 3 g/10min 미만인 올레핀 중합체ᅳ
【청구항 7】
제 1 항에 있어서, ISO 1133에 따라 230°C의 온도 및 21.6kg의 하중 하에서 측정된 용융 유동를 (MFR21.6)을 ISO 1133에 따라 230°C의 온도 및 2.16kg의 하중 하에서 측정된 용융 유동률 (MFR2.16)로 나눈 MFRR(21.6/2.16)이 20 이상 40 미만인 올레핀 중합체 .
【청구항 8】
제 1 항에 있어서, 에틸렌과 알파올레핀의 공중합체인 을레판 중합체.
【청구항 9】
제 8 항에 있어서, 상기 알파을레핀은 프로필렌, 1-부텐, 1-펜텐, 4- 메틸 -1-펜텐, 1-핵센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1- 테트라데센, 1-핵사데센 및 이들의 흔합물을 포함하는 올레핀 중합체.
【청구항 10】
담체, 상기 담체에 담지되어 있으며 하기 화학식 1로 표시되는 가교형 전이 금속 화합물 및 상기 담체에 담지되어 있으며 하기 화학식 2로 표시되는 비가교형 전이 금속 화합물을 포함하는 흔성 담지 촉매 존재 하에, 을레핀 단량체를 중합 반응시키는 단계를 포함하는 제 1 항에 따른 을레핀 중합체의 제조 방법:
[화학식 1]
Figure imgf000040_0001
상기 화학식 1 및 2에서, 및 M2는 서로 동일하거나 상이하며 각각 독립적으로 Ti , Zr 또는 Hf이고,
, ¾, 및 ¾는 서로 동일하거나 상이하며 각각 독립적으로 할로겐, 니트로기, 아미도기, 포스파인기, 포스파이드기, 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 2 내지 20의 알콕시알킬기, 탄소수 1 내지 20의 실릴기, 탄소수 2 내지 20의 알케닐기, 탄소수 6 내지 20의 아릴기, 탄소수 1 내지 20의 술포네이트기 및 탄소수 1 내지 20의 술폰기 중 어느 하나이고,
T는 C , Si , Ge , Sn또는 Pb이며,
Qi 및 Q2는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, 탄소수 1 내지 20의 알킬기, 탄소수 2 내지 20의 헤테로사이클로알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 2 내지 20의 알콕시알킬기, 탄소수 1 내지 20의 카복실레이트, 탄소수 2 내지 20의 알케닐기, 탄소수 6 내지 20의 아릴기 및 탄소수 5 내지 20의 헤테로아릴기 중 어느 하나이고,
Ri 내지 R6는 서로 동일하거나 상이하며 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 2 내지 20의 알콕시알킬기, 탄소수 1 내지 20의 실릴기, 탄소수 1 내지 20의 실릴알킬기, 탄소수 1 내지 20의 실릴옥시알킬기, 탄소수 2 내지 20의 알케닐기 및 탄소수 6 내지 20의 아릴기 중 어느 하나이고,
R7 내지 R14는 서로 동일하거나 상이하며 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 2 내지 20의 알콕시알킬기, 탄소수 1 내지 20의 실릴기, 탄소수 1 내지 20의 실릴알킬기, 탄소수 1 내지 20의 실릴옥시알킬기, 탄소수 2 내지 20의 알케닐기 및 탄소수 6 내지 20의 아릴기 중 어느 하나이거나 혹은, R7 내지 R14 중 서로 인접하는 한 쌍 이상의 치환기는 서로 연결되어 치환 또는 비치환된 지방족 또는 방향족 고리를 형성하는 것이며,
R15 내지 4는 서로 동일하거나 상이하며 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 2 내지 20의 알콕시알킬기, 탄소수 1 내지 20의 실릴기, 탄소수 1 내지 20의 실릴알킬기, 탄소수 1 내지 20의 실릴옥시알킬기ᅤ 탄소수 2 내지 20의 알케닐기 및 탄소수 6 내지 20의 아릴기 중 어느 하나이거나 혹은, R15 내지 4 중 서로 인접하는 한 쌍 이상의 치환기는 서로 연결되어 치환 또는 비치환된 지방족 또는 방향족 고리를 형성하는 것이다.
【청구항 111
제 10 항에 있어서, Ri 내지 는 각각 독립적으로 수소 탄소수 1 내지
20의 알킬기, 탄소수 1 내지 20의 알콕시기 및 탄소수 2 내 7 20의 알케닐기 중 어느 하나인 올레핀 중합체의 제조 방법.
【청구항 12]
제 10 항에 있어서, R5 및 ¾는 각각 독립적으로 수소, 탄소수 1 내지
20의 알킬기, 탄소수 1 내지 20의 알콕시기 및 탄소수 2 내지 20의 알케닐기 중 어느 하나인 올레핀 중합체의 제조 방법 .
【청구항 13】
제 10 항에 있어서, R7 내지 R14는 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기 및 탄소수 2 내지 20의 알케닐기 중 어느 하나이거나 혹은, R7 내지 R14 중 서로 인접하는 한 쌍 이상의 치환기들은 서로 연결되어 치환 또는 비치환된 지방족 고리를 형성하는 올레핀 중합체의 제조 방법 .
【청구항 14】
제 10 항에 있어서, Qi 및 Q2는 각각 독립적으로 탄소수 1 내지 20의 알킬기 및 탄소수 6 내지 20의 아릴기 중 어느 하나인 올레핀 중합체의 제조 방법 .
【청구항 15】
제 10 항에 있어서, 내지 는 각각 독립적으로 할로겐, 탄소수 1 내지 20의 알킬기 및 탄소수 1 내지 20의 알콕시기 중 어느 하나인 올레핀 중합체의 제조 방법 .
【청구항 16]
제 10 항에 있어서, R15 내지 R24는 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기 및 탄소수 2 내지 20의 알케닐기 중 어느 하나이거나 혹은, R15 내지 R24 중 서로 인접하는 한 쌍 이상의 치환기들이 서로 연결되어 치환 또는 비치환된 지방족 고리를 형성하는 올레핀 중합체의 제조 방법 .
【청구항 17】
제 10 항에 있어서, 상기 화학식 1로 표시되는 가교형 전이 화합물은 하기 화학식 3 및 4로 표시되는 화합물 중 어느 하나인 올 중합체의 제조 방법 :
[화학식 3]
Figure imgf000043_0001
상기 화학식 3 및 4에서, R25 및 R26은 서로 동일하거나 상이하며, 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 2 내지 20의 알콕시알킬기, 탄소수 1 내지 20의 알킬실릴기, 탄소수 1 내지 20의 실릴알킬기, 탄소수 1 내지 20의 알콕시실릴기, 탄소수 1 내지 20의 실릴옥시알킬기, 탄소수 2 내지 20의 알케닐기, 탄소수 6 내지 20의 아릴기, 탄소수 7 내지 20의 알킬아릴기 및 탄소수 7 내지 20의 아릴알킬기 중 어느 하나이고,
1은 0 내지 5사이의 정수이다.
【청구항 18】
제 10 항에 있어서, 상기 화학식 2로 표시되는 비가교형 전이 금속 화합물은 하기 화학식 5 및 6으로 표시되는 화합물 중 어느 하나인 올레핀 중합체의 제조 방법 :
[화학식 5]
Figure imgf000044_0001
상기 화학식 5 및 6에서, R27 내지 R30은 서로 동일하거나 상이하며, 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 2 내지 20의 알콕시알킬기, 탄소수 1 내지 20의 알킬실릴기, 탄소수 1 내지 20의 실릴알킬기, 탄소수 1 내지 20의 알콕시실릴기, 탄소수 1 내지 20의 실릴옥시알킬기, 탄소수 2 내지 20의 알케닐기, 탄소수 6 내지 20의 아릴기 , 탄소수 7 내지 20의 알킬아릴기 및 탄소수 7 내지 20의 아릴알킬기 중 어느 하나이다.
【청구항 19】
제 10 항에 있어서, 하기 화학식 7 내지 9로 표시되는 화합물로 이루어진 군에서 선택된 1 종 이상의 조촉매를 추가로 포함하는 올레핀 중합체의 제조 방법 :
[화학식 7]
Figure imgf000044_0002
상기 화학식 7에서, si , R32 및 3은 각각 독립적으로 수소, 할로겐, 탄소수 1 내지 20 의 하이드로카빌기 및 할로겐으로 치환된 탄소수 1 내지 20 의 하이드로카빌기 중 어느 하나이고,
n은 2 이상의 정수이며,
[화학식 8]
D(R34)3
상기 화학식 8에서 ,
D는 알루미늄 또는 보론이고,
R34는 각각 독립적으로 할로겐, 탄소수 1 내지 20 의 하이드로카빌기, 및 할로겐으로 치환된 탄소수 1 내지 20의 하이드로카빌기 중 어느 하나이며, [화학식 9]
[L-H] + [Z(A)4]—또는 [L] + [Z(A)4]- 상기 화학식 9에서,
L은 중성 또는 양이온성 루이스 염기이고, H는 수소 원자이며,
Z는 13 족 원소이며, A는 각각 독립적으로 탄소수 1 내지 20 의 하이드로카빌기; 탄소수 1 내지 20 의 하이드로카빌옥시기; 및 이들 치환기의 1 이상의 수소 원자가 할로겐, 탄소수 1 내지 20 의 하이드로카빌옥시기 및 탄소수 1 내지 20 의 하이드로카빌실릴기 중 1 이상의 치환기로 치환된 치환기들 중 어느 하나이다.
【청구항 20】
제 10 항에 있어서, 상기 담체는 실리카, 알루미나, 마그네시아 또는 이들의 흔합물인 올레핀 중합체의 제조 방법.
【청구항 21】
제 10 항에 있어서, 상기 흔성 담지 촉매에 상기 화학식 1로 표시되는 가교형 전이 금속 화합물과 상기 화학식 2로 표시되는 비가교형 전이 금속 화합물이 50 : 1 내지 1 : 1의 중량비로 포함되는 올레핀 중합체의 제조 방법.
【청구항 22】 제 10 항에 있어서, 상기 올레핀 단량체로 에틸렌과 알파을레핀을 사용하는 올레핀 중합체의 제조 방법.
【청구항 23]
제 22 항에 있어서, 상기 알파올레핀으로 프로필렌, 1-부텐, 1-펜텐, 4-메틸 -1-펜텐, 1-핵센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1- 테트라데센, 1-핵사데센 및 이들의 흔합물을 사용하는 올레핀 중합체의 제조 방법.
PCT/KR2017/001952 2016-02-24 2017-02-22 올레핀 중합체 및 이의 제조 방법 WO2017146464A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780003484.7A CN108137739B (zh) 2016-02-24 2017-02-22 烯烃聚合物及其制备方法
EP17756802.9A EP3339336B1 (en) 2016-02-24 2017-02-22 Olefin polymer and preparation method thereof
US15/760,986 US10766985B2 (en) 2016-02-24 2017-02-22 Olefin polymer and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0022085 2016-02-24
KR1020160022085A KR101950462B1 (ko) 2016-02-24 2016-02-24 올레핀 중합체 및 이의 제조 방법

Publications (1)

Publication Number Publication Date
WO2017146464A1 true WO2017146464A1 (ko) 2017-08-31

Family

ID=59685430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/001952 WO2017146464A1 (ko) 2016-02-24 2017-02-22 올레핀 중합체 및 이의 제조 방법

Country Status (5)

Country Link
US (1) US10766985B2 (ko)
EP (1) EP3339336B1 (ko)
KR (1) KR101950462B1 (ko)
CN (1) CN108137739B (ko)
WO (1) WO2017146464A1 (ko)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101927460B1 (ko) 2016-01-27 2018-12-10 주식회사 엘지화학 혼성 담지 촉매 및 이를 이용하는 올레핀 중합체의 제조 방법
KR101711788B1 (ko) 2016-03-09 2017-03-14 한화케미칼 주식회사 혼성 촉매 조성물, 이의 제조방법, 및 이를 이용하여 제조된 폴리올레핀
KR101725004B1 (ko) 2016-04-27 2017-04-18 한화케미칼 주식회사 혼성 담지 메탈로센 촉매 및 이를 이용한 가공성이 우수한 폴리올레핀 수지
KR102140260B1 (ko) 2016-12-22 2020-07-31 주식회사 엘지화학 올레핀 중합체 및 이의 제조 방법
KR101939777B1 (ko) * 2017-11-21 2019-01-18 한화케미칼 주식회사 올레핀계 중합체
KR102351569B1 (ko) * 2017-12-18 2022-01-14 주식회사 엘지화학 폴리에틸렌 수지 필름
WO2019124817A1 (ko) 2017-12-18 2019-06-27 주식회사 엘지화학 폴리에틸렌 수지 필름
KR102352033B1 (ko) * 2018-01-11 2022-01-14 주식회사 엘지화학 테트라하이드로인덴 유도체의 제조 방법
KR102479346B1 (ko) 2018-11-12 2022-12-19 주식회사 엘지화학 폴리올레핀 제조 공정에서의 파울링 예측 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6153549A (en) * 1996-10-31 2000-11-28 Targor Gmbh Metallocenes
JP2012214780A (ja) * 2011-03-30 2012-11-08 Japan Polyethylene Corp オレフィン重合用触媒成分、該成分を含むオレフィン重合用触媒、該触媒を用いたオレフィン系重合体の製造方法、および該方法によって製造したオレフィン系重合体
JP2013227271A (ja) * 2012-03-29 2013-11-07 Japan Polyethylene Corp メタロセン化合物、それを含むオレフィン重合用触媒成分およびオレフィン重合用触媒、並びにそのオレフィン重合用触媒を用いたオレフィン重合体の製造方法
JP2013227482A (ja) * 2012-03-29 2013-11-07 Japan Polyethylene Corp エチレン系重合体の製造方法

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1146586C (zh) 1995-10-18 2004-04-21 智索股份有限公司 烯烃均聚物或共聚物组合物及其制造方法
AR009520A1 (es) * 1996-09-04 2000-04-26 Dow Chemical Co Interpolimeros de monomeros de alfa-olefinas/vinilideno aromaticas y/o monomeros alifaticos o de vinilidenocicloalifaticos y proceso para obtenerlos.
US6420298B1 (en) 1999-08-31 2002-07-16 Exxonmobil Oil Corporation Metallocene catalyst compositions, processes for making polyolefin resins using such catalyst compositions, and products produced thereby
US20010007896A1 (en) * 1999-12-10 2001-07-12 Agarwal Pawan Kumar Propylene diene copolymers
US7041617B2 (en) 2004-01-09 2006-05-09 Chevron Phillips Chemical Company, L.P. Catalyst compositions and polyolefins for extrusion coating applications
CN1257198C (zh) 2001-08-17 2006-05-24 出光兴产株式会社 乙烯基共聚物和包含它的膜
US7741417B2 (en) * 2004-01-07 2010-06-22 Exxonmobil Chemical Patents Inc. Preparation of polymerization catalyst activators utilizing indole-modified silica supports
US20050288461A1 (en) * 2004-06-25 2005-12-29 Jensen Michael D Polymerization catalysts for producing polymers with low levels of long chain branching
EP1964860B1 (en) * 2005-12-19 2017-07-05 Tosoh Corporation Ethylene polymer, catalyst for production of ethylene polymer, and process for production of ethylene polymer
DE102007046291A1 (de) * 2006-09-29 2008-06-19 Sumitomo Chemical Company, Ltd. Ethylen-α-olefincopolymer und Lebensmittelverpackungsmaterial
JP5271518B2 (ja) * 2007-08-10 2013-08-21 日本ポリプロ株式会社 溶融物性が改良されたプロピレン系重合体の製造方法
TW200936619A (en) 2007-11-15 2009-09-01 Univation Tech Llc Polymerization catalysts, methods of making, methods of using, and polyolefin products made therefrom
CN101878237B (zh) * 2007-11-30 2013-04-24 住友化学株式会社 乙烯-α-烯烃共聚物和成型体
US8106127B2 (en) * 2008-12-15 2012-01-31 Exxonmobil Chemical Patents Inc. Heterogeneous in-reactor polymer blends
US8679602B2 (en) 2009-02-06 2014-03-25 Dow Global Technologies Llc Ethylene-based polymers and compositions, methods of making the same and articles prepared therefrom
JP5622841B2 (ja) * 2009-05-07 2014-11-12 エルジー・ケム・リミテッド オレフィン系重合体およびそれを含む繊維
EP2438094B1 (en) 2009-06-03 2018-08-08 Basell Polyolefine GmbH Polyethylene composition and finished products made thereof
JP5487089B2 (ja) 2009-12-02 2014-05-07 日本ポリエチレン株式会社 エチレン系重合体の製造方法
WO2012133717A1 (ja) * 2011-03-30 2012-10-04 日本ポリエチレン株式会社 エチレン系重合体、ポリエチレン系樹脂組成物とその用途、オレフィン重合用触媒成分、該成分を含むオレフィン重合用触媒および該触媒を用いたエチレン系重合体の製造方法
ES2648254T3 (es) 2011-05-02 2017-12-29 Borealis Ag Polipropileno para espuma y espuma de polipropileno
EP2800766B1 (en) 2012-03-05 2019-09-04 Univation Technologies, LLC Methods for making catalyst compositions and polymer products produced therefrom
KR101331556B1 (ko) 2012-03-30 2013-11-20 대림산업 주식회사 멀티모달 폴리올레핀 수지 및 이로부터 제조되는 성형체
CN103509138A (zh) * 2012-06-27 2014-01-15 大林产业株式会社 烯烃聚合催化剂组合物以及使用所述烯烃聚合催化剂组合物的烯烃聚合方法
RU2529020C2 (ru) 2012-10-17 2014-09-27 ЭлДжи КЕМ, ЛТД. Новое металлоценовое соединение, содержащая его каталитическая композиция и способ получения полимеров на основе олефинов с ее применением
US9611348B2 (en) * 2013-04-11 2017-04-04 Exxonmobil Chemical Patents Inc. Process of producing polyolefins using metallocene polymerization catalysts and copolymers therefrom
CN104250332B (zh) * 2013-06-28 2017-07-25 Lg化学株式会社 含二烯的三元弹性共聚物及其制备方法
US9023959B2 (en) * 2013-07-15 2015-05-05 Chevron Phillips Chemical Company Lp Methods for producing fluorided-chlorided silica-coated alumina activator-supports and catalyst systems containing the same
JP2015039876A (ja) * 2013-08-23 2015-03-02 日本ポリエチレン株式会社 ポリエチレン系多層フィルム
KR101721194B1 (ko) 2013-11-28 2017-03-29 주식회사 엘지화학 담지 메탈로센 촉매의 제조방법
KR101606825B1 (ko) 2013-11-28 2016-03-28 주식회사 엘지화학 혼성 담지 메탈로센 촉매의 제조방법
KR102028063B1 (ko) 2014-12-22 2019-10-02 주식회사 엘지화학 전이 금속 화합물, 이를 포함하는 촉매 조성물 및 이를 이용하는 올레핀 중합체의 제조 방법
JP2015227459A (ja) 2015-07-07 2015-12-17 日本ポリエチレン株式会社 容器用ポリエチレン樹脂組成物及びそれよりなる成形体
KR101927460B1 (ko) 2016-01-27 2018-12-10 주식회사 엘지화학 혼성 담지 촉매 및 이를 이용하는 올레핀 중합체의 제조 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6153549A (en) * 1996-10-31 2000-11-28 Targor Gmbh Metallocenes
JP2012214780A (ja) * 2011-03-30 2012-11-08 Japan Polyethylene Corp オレフィン重合用触媒成分、該成分を含むオレフィン重合用触媒、該触媒を用いたオレフィン系重合体の製造方法、および該方法によって製造したオレフィン系重合体
JP2013227271A (ja) * 2012-03-29 2013-11-07 Japan Polyethylene Corp メタロセン化合物、それを含むオレフィン重合用触媒成分およびオレフィン重合用触媒、並びにそのオレフィン重合用触媒を用いたオレフィン重合体の製造方法
JP2013227482A (ja) * 2012-03-29 2013-11-07 Japan Polyethylene Corp エチレン系重合体の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHO, E. S. ET AL.: "Syntheses, Characterizations, and Olefin Polymerizations of Methylene-bridged 1,3-dimethylcyclopentadienyl/indenyl and 1,3-dimethylcyclopentadi enyl/tetrahydroindenyl Zirconium Complexes", INORGANICA CHIMICA ACTA, vol. 357, no. 8, 27 February 2004 (2004-02-27), pages 2301 - 2308, XP055414909 *

Also Published As

Publication number Publication date
US10766985B2 (en) 2020-09-08
EP3339336A1 (en) 2018-06-27
EP3339336B1 (en) 2022-04-13
CN108137739B (zh) 2020-07-07
CN108137739A (zh) 2018-06-08
US20180251584A1 (en) 2018-09-06
EP3339336A4 (en) 2018-10-03
KR20170099694A (ko) 2017-09-01
KR101950462B1 (ko) 2019-02-20

Similar Documents

Publication Publication Date Title
WO2017146464A1 (ko) 올레핀 중합체 및 이의 제조 방법
US11746168B2 (en) Olefin polymer and preparation method thereof
EP3476871B1 (en) Preparation method for an olefin polymer
EP3640269A1 (en) Polyethylene copolymer and preparation method therefor
WO2016167601A1 (ko) 가공성이 우수한 에틸렌/알파-올레핀 공중합체
JP6446137B2 (ja) フィルム加工性および透明度に優れた低密度ポリエチレン共重合体
RU2671499C1 (ru) Этилен/альфа-олефиновые сополимеры, характеризующиеся превосходной перерабатываемостью
KR20160084181A (ko) 혼성 담지 촉매 및 이를 이용하는 올레핀 중합체의 제조 방법
KR20150063885A (ko) 혼성 담지 메탈로센 촉매 및 이를 이용하는 올레핀계 중합체의 제조방법
KR20150058105A (ko) 가공성이 우수한 올레핀계 중합체
WO2018117363A1 (ko) 폴리올레핀계 필름
WO2017131490A2 (ko) 혼성 담지 촉매 및 이를 이용하는 올레핀 중합체의 제조 방법
EP3476870A1 (en) Olefin polymer and method for preparing same
JP7118500B2 (ja) 混成担持触媒およびそれを用いたポリオレフィンの製造方法
KR102074510B1 (ko) 혼성 담지 촉매 및 이를 이용하는 올레핀 중합체의 제조 방법
CN113631592B (zh) 聚乙烯及其氯化聚乙烯
EP3398976A1 (en) Hybrid supported metallocene catalyst, method for preparing olefin polymer by using same, and olefin polymer having improved melt strength
WO2018117408A1 (ko) 올레핀 중합체 및 이의 제조 방법
RU2773517C2 (ru) Полиэтиленовый сополимер и способ его получения
KR20180066677A (ko) 올레핀 중합체의 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15760986

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2017756802

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE