WO2017146270A1 - 車両用空気調和装置 - Google Patents
車両用空気調和装置 Download PDFInfo
- Publication number
- WO2017146270A1 WO2017146270A1 PCT/JP2017/008043 JP2017008043W WO2017146270A1 WO 2017146270 A1 WO2017146270 A1 WO 2017146270A1 JP 2017008043 W JP2017008043 W JP 2017008043W WO 2017146270 A1 WO2017146270 A1 WO 2017146270A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- compressor
- valve
- refrigerant
- control
- heat exchanger
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/20—Disposition of valves, e.g. of on-off valves or flow control valves
- F25B41/24—Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/00357—Air-conditioning arrangements specially adapted for particular vehicles
- B60H1/00385—Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/00507—Details, e.g. mounting arrangements, desaeration devices
- B60H1/00557—Details of ducts or cables
- B60H1/00564—Details of ducts or cables of air ducts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/00507—Details, e.g. mounting arrangements, desaeration devices
- B60H1/00557—Details of ducts or cables
- B60H1/00571—Details of ducts or cables of liquid ducts, e.g. for coolant liquids or refrigerants
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/00642—Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
- B60H1/00814—Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
- B60H1/00878—Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
- B60H1/00885—Controlling the flow of heating or cooling liquid, e.g. valves or pumps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/00642—Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
- B60H1/00814—Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
- B60H1/00878—Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
- B60H1/00899—Controlling the flow of liquid in a heat pump system
- B60H1/00907—Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant changes and an evaporator becomes condenser
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/00642—Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
- B60H1/00814—Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
- B60H1/00878—Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
- B60H1/00899—Controlling the flow of liquid in a heat pump system
- B60H1/00921—Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant does not change and there is an extra subcondenser, e.g. in an air duct
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/22—Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/32—Cooling devices
- B60H1/3204—Cooling devices using compression
- B60H1/3228—Cooling devices using compression characterised by refrigerant circuit configurations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H3/00—Other air-treating devices
- B60H3/02—Moistening ; Devices influencing humidity levels, i.e. humidity control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B40/00—Subcoolers, desuperheaters or superheaters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/20—Disposition of valves, e.g. of on-off valves or flow control valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B5/00—Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
- F25B5/04—Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/32—Cooling devices
- B60H1/3204—Cooling devices using compression
- B60H1/3205—Control means therefor
- B60H1/3213—Control means therefor for increasing the efficiency in a vehicle heat pump
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/00507—Details, e.g. mounting arrangements, desaeration devices
- B60H2001/006—Noise reduction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/22—Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
- B60H2001/2228—Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant controlling the operation of heaters
- B60H2001/224—Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant controlling the operation of heaters automatic operation, e.g. control circuits or methods
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/32—Cooling devices
- B60H2001/3236—Cooling devices information from a variable is obtained
- B60H2001/3238—Cooling devices information from a variable is obtained related to the operation of the compressor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/32—Cooling devices
- B60H2001/3236—Cooling devices information from a variable is obtained
- B60H2001/3248—Cooling devices information from a variable is obtained related to pressure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/32—Cooling devices
- B60H2001/3286—Constructional features
- B60H2001/3288—Additional heat source
Definitions
- the present invention relates to a heat pump type air conditioner that air-conditions the interior of a vehicle, and more particularly to an air conditioner that can be applied to a hybrid vehicle or an electric vehicle.
- Hybrid vehicles and electric vehicles have come into widespread use due to the emergence of environmental problems in recent years.
- a compressor that compresses and discharges the refrigerant
- an internal condenser that is provided on the vehicle interior side and dissipates the refrigerant, and is provided on the vehicle interior side.
- An evaporator that absorbs the refrigerant, an external condenser that dissipates or absorbs heat from the passenger compartment, a first expansion valve that expands the refrigerant that flows into the external condenser, and a refrigerant that flows into the evaporator
- a second expansion valve for expanding the internal combustion engine, piping for bypassing the internal condenser and the first expansion valve, and flowing the refrigerant discharged from the compressor to the internal condenser or bypassing the internal condenser and the first expansion valve
- a first valve that switches between direct flow from the pipe to the external condenser, the refrigerant discharged from the compressor is caused to flow through the internal condenser by the first valve to dissipate the heat, and the discharged refrigerant is passed through the first expansion valve.
- the refrigerant discharged from the compressor is radiated in the internal condenser by the first valve, the radiated refrigerant is depressurized by the second expansion valve, and the refrigerant absorbs heat in the evaporator.
- the dehumidification mode to be performed, and the refrigerant discharged from the compressor bypasses the internal condenser and the first expansion valve by the first valve and flows to the external condenser to radiate heat, and after the pressure is reduced by the second expansion valve,
- a device that switches and executes a cooling mode for absorbing heat has been developed (see, for example, Patent Document 1).
- a normal accumulator is provided on the refrigerant suction side of the normal compressor, and the refrigerant is temporarily supplied to the accumulator particularly in the heating mode.
- a configuration is adopted in which gas and liquid are separated by storing, and a liquid refrigerant is sucked into the compressor to prevent or suppress liquid return to the compressor.
- a header section (receiver) is provided on the downstream side of the refrigerant in the outdoor heat exchanger so that the refrigerant from the outdoor heat exchanger is temporarily received by the header section in each operation mode of dehumidifying heating, dehumidifying cooling, and cooling.
- the refrigerant and oil that have flowed out of the compressor and flowed in the refrigerant circuit flow in, and a portion of the liquid is accumulated in the accumulator, and a light specific gravity oil is layered on the liquid refrigerant. It is in the state that made a lid.
- the heating mode that is executed in an environment where the outside air temperature is low, the amount of liquid refrigerant and oil that exits the outdoor heat exchanger and flows into the accumulator and accumulates in the accumulator increases, so that it is close to the accumulator outlet. Until the oil level (the liquid level in the accumulator) rises.
- the present invention has been made to solve the conventional technical problems, and is equipped with a bypass pipe that bypasses a radiator and an outdoor expansion valve, and an air conditioner for a vehicle that includes an on-off valve for switching a flow path.
- An object of the present invention is to suppress liquid return and noise generation in an accumulator when switching from a heating mode to another operation mode.
- An air conditioner for a vehicle includes a compressor that compresses a refrigerant, an air flow passage through which air supplied to the vehicle interior flows, and air that radiates the refrigerant and supplies the refrigerant to the vehicle interior from the air flow passage.
- An auxiliary heating device for heating the air supplied from the flow passage to the vehicle interior;
- An accumulator connected to the refrigerant suction side of the compressor, a receiver connected to the refrigerant downstream side of the outdoor heat exchanger, and a control device.
- the control device opens the first on-off valve, and opens the second open / close By closing the valve, the refrigerant discharged from the compressor flows through the radiator to dissipate the heat, and after the decompressed refrigerant is decompressed by the outdoor expansion valve, the heat is absorbed by the outdoor heat exchanger, and the absorbed refrigerant is accumulated in the accumulator.
- the refrigerant is discharged from the compressor by bypassing the heating mode in which the compressor is drawn into the compressor and the outdoor expansion valve is fully closed, the first on-off valve is closed, and the second on-off valve is opened.
- the rotational speed of the compressor is controlled or stopped to reduce the pressure difference before and after the second on-off valve, then the second on-off valve is opened, and the first The on-off valve is closed, the outdoor expansion valve is fully closed, and the control of the compressor is shifted to the control in the dehumidifying heating mode or the maximum cooling mode.
- the control device adjusts the rotational speed of the compressor so that the pressure difference before and after the second on-off valve is equal to or less than a predetermined value, and the pressure difference is Open the second on-off valve, close the first on-off valve, and fully close the outdoor expansion valve when the pressure falls below the specified value, then shift the compressor control to control in the dehumidifying heating mode or maximum cooling mode And increasing the rotational speed of the compressor until it shifts.
- a vehicular air conditioner according to the first aspect of the present invention, wherein the control device sets the number of rotations of the compressor to a predetermined low value, and the pressure difference before and after the second on-off valve is equal to or less than a predetermined value.
- the second on-off valve is opened, the first on-off valve is closed, the outdoor expansion valve is fully closed, and the control of the compressor is shifted to the control in the dehumidifying heating mode or the maximum cooling mode, Alternatively, after the outdoor expansion valve is fully closed, the control of the compressor is shifted to the control in the dehumidifying heating mode or the maximum cooling mode.
- a vehicle air conditioner according to the first aspect of the present invention, wherein the control device stops the compressor and the pressure difference between the front and rear of the second on-off valve becomes equal to or smaller than a predetermined value, or After a predetermined time has elapsed since the compressor was stopped, the second on-off valve is opened, the first on-off valve is closed, the outdoor expansion valve is fully closed, and the compressor is controlled in the dehumidifying heating mode or the maximum cooling mode. After the control or the outdoor expansion valve is fully closed, the control of the compressor is transferred to the control in the dehumidifying heating mode or the maximum cooling mode, and the speed of increase in the compressor speed is reduced until the control is transferred. It is characterized by making it.
- the air conditioning apparatus for a vehicle wherein the control device includes the compressor until the second predetermined time elapses after the pressure difference before and after the second on-off valve becomes a predetermined value or less. It is characterized by prohibiting an increase in the number of revolutions.
- a vehicular air conditioner according to the first aspect of the present invention wherein the control device sets the rotational speed of the compressor to a predetermined low value, and the pressure difference before and after the second on-off valve is equal to or less than a predetermined value.
- the second on-off valve is opened, the first on-off valve is closed, the outdoor expansion valve is fully closed, and the compressor
- the control of the compressor is shifted to the control in the dehumidifying heating mode or the maximum cooling mode, or after the outdoor expansion valve is fully closed, the control of the compressor is shifted to the control in the dehumidifying heating mode or the maximum cooling mode. It is characterized in that the speed of increase in the number of revolutions of the compressor is reduced to a maximum.
- the control device when the control device switches from the heating mode to the dehumidifying heating mode, the control device causes the auxiliary heating device to generate heat, and the temperature of the auxiliary heating device becomes a predetermined value or more. In this case, the refrigerant is switched to a state in which the refrigerant discharged from the outdoor heat exchanger flows to the receiver, and the opening degree of the outdoor expansion valve is increased.
- An air conditioner for a vehicle includes a compressor that compresses a refrigerant, an air flow passage through which air supplied to the vehicle interior flows, and air that radiates the refrigerant and supplies the refrigerant to the vehicle interior from the air flow passage.
- a receiver connected to the flow side and a control device are provided, and by this control device, the first on-off valve is opened and the second on-off valve is closed so that the refrigerant discharged from the compressor flows to the radiator.
- an air conditioning apparatus for a vehicle wherein the control device reduces the pressure difference before and after the second on-off valve by reducing the rotational speed of the compressor to a predetermined low value.
- the control of the compressor is shifted to the control in the cooling mode when the difference is equal to or less than a predetermined value or after a predetermined time has elapsed since the rotation speed of the compressor is set to the low value.
- the control device reduces the pressure difference before and after the second on-off valve by stopping the compressor, and the pressure difference is equal to or less than a predetermined value. If it becomes, or after a predetermined time has elapsed since the compressor was stopped, the control of the compressor is shifted to the control in the cooling mode, and the increase speed of the compressor speed is decreased until the compressor is shifted. It is characterized by.
- the control device adjusts the rotational speed of the compressor so that the pressure difference before and after the second on-off valve is a predetermined value or less.
- a vehicle air conditioner includes a compressor that compresses a refrigerant, an air flow passage through which air supplied to the vehicle interior flows, and air that radiates the refrigerant and supplies the refrigerant to the vehicle interior from the air flow passage.
- a receiver connected to the downstream side and a control device are provided.
- the first on-off valve is opened and the second on-off valve is closed so that the refrigerant discharged from the compressor flows to the radiator.
- a heating mode in which heat is radiated and the radiated refrigerant is depressurized by an outdoor expansion valve, then absorbed by an outdoor heat exchanger, the absorbed refrigerant is caused to flow into an accumulator, and the compressor is sucked into the compressor, and a first opening and closing By opening the valve and closing the second on-off valve, the refrigerant discharged from the compressor is caused to flow from the radiator to the outdoor heat exchanger and radiated by the radiator and the outdoor heat exchanger.
- the dehumidifying and cooling mode in which heat is absorbed by the heat absorber is switched and executed.
- the control device switches the cooling air from the outdoor heat exchanger when switching from the heating mode to the dehumidifying and cooling mode.
- the pressure difference before and after the second on-off valve is reduced by controlling or stopping the rotation speed of the compressor Then, the control of the compressor is shifted to the control in the dehumidifying and cooling mode.
- the control device reduces the pressure difference before and after the second on-off valve by reducing the number of rotations of the compressor to a predetermined low value.
- the control of the compressor is shifted to the control in the dehumidifying and cooling mode when the difference is equal to or less than a predetermined value or after a predetermined time has elapsed since the rotation speed of the compressor is set to the low value.
- the control device reduces the pressure difference before and after the second on-off valve by stopping the compressor, and the pressure difference is equal to or less than a predetermined value. If it becomes, or after a predetermined time has passed since the compressor was stopped, the control of the compressor is shifted to the control in the dehumidifying and cooling mode, and the speed of increase in the rotational speed of the compressor is decreased until the compressor is shifted. It is characterized by that.
- the control device adjusts the rotation speed of the compressor so that the pressure difference before and after the second on-off valve is a predetermined value or less.
- the control of the compressor is shifted to the control in the dehumidifying and cooling mode, and until the transition It is characterized in that the speed of increase in the rotational speed of the compressor is reduced.
- the control device controls or stops the rotation speed of the compressor so that the pressure before and after the second on-off valve Since the difference is reduced, it is possible to suppress a sudden drop in the pressure in the accumulator due to a large amount of refrigerant being sucked into the compressor from the accumulator when switching the mode in which the refrigerant moves from the accumulator to the receiver.
- the occurrence of bumping in the accumulator can be effectively prevented or suppressed. Further, as in the fifth aspect of the invention, it is effective to prohibit the increase in the rotational speed of the compressor until the pressure difference before and after the second on-off valve becomes a predetermined value or less and the second predetermined time elapses. is there. Furthermore, when the mode is switched from the heating mode to the dehumidifying heating mode as in the seventh aspect of the invention, the auxiliary heating device generates heat, thereby reducing the blowout temperature generated by controlling the rotation speed of the compressor during the mode switching. It will be eliminated and comfortable air conditioning in the passenger compartment can be continued.
- FIG. 1 It is a block diagram of the air conditioning apparatus for vehicles of one Embodiment to which this invention is applied (heating mode, dehumidification heating mode, dehumidification cooling mode, and cooling mode). It is a block diagram of the electric circuit of the controller of the vehicle air conditioner of FIG. It is a block diagram at the time of the MAX cooling mode (maximum cooling mode) of the vehicle air conditioner of FIG. It is a timing chart of each apparatus explaining the example of the bump boiling countermeasure control which the controller of FIG. 2 performs when switching from heating mode to dehumidification heating mode or MAX cooling mode. It is a timing chart of each apparatus explaining the other example of bump bump countermeasure control which the controller of FIG.
- FIG. 1 shows a configuration diagram of a vehicle air conditioner 1 according to an embodiment of the present invention.
- a vehicle according to an embodiment to which the present invention is applied is an electric vehicle (EV) in which an engine (internal combustion engine) is not mounted, and travels by driving an electric motor for traveling with electric power charged in a battery. Yes (both not shown), the vehicle air conditioner 1 of the present invention is also driven by the power of the battery.
- EV electric vehicle
- an engine internal combustion engine
- the vehicle air conditioner 1 of the embodiment performs a heating mode by a heat pump operation using a refrigerant circuit in an electric vehicle that cannot be heated by engine waste heat, and further includes a dehumidifying heating mode, a dehumidifying cooling mode, a cooling mode, Each operation mode of the MAX cooling mode (maximum cooling mode) is selectively executed.
- the present invention is effective not only for electric vehicles but also for so-called hybrid vehicles that use an engine and an electric motor for traveling, and is also applicable to ordinary vehicles that run on an engine. Needless to say.
- the vehicle air conditioner 1 performs air conditioning (heating, cooling, dehumidification, and ventilation) in a vehicle interior of an electric vehicle, and includes an electric compressor 2 that compresses refrigerant and vehicle interior air. Is provided in the air flow passage 3 of the HVAC unit 10 through which air is circulated, and the high-temperature and high-pressure refrigerant discharged from the compressor 2 flows in through the refrigerant pipe 13G, and dissipates the refrigerant into the vehicle compartment.
- an outdoor expansion valve 6 comprising an electric valve that decompresses and expands the refrigerant during heating, and functions as a radiator during cooling and functions as a radiator during heating, and exchanges heat between the refrigerant and the outside air so as to function as an evaporator during heating.
- An outdoor heat exchanger 7 that performs the above operation, an indoor expansion valve 8 that is an electric valve that decompresses and expands the refrigerant, and a heat absorber 9 that is provided in the air flow passage 3 and absorbs heat from outside the vehicle interior to the refrigerant during cooling and dehumidification.
- And accumulator 12 etc. Are sequentially connected by a refrigerant pipe 13, the refrigerant circuit R is formed.
- the refrigerant circuit R is filled with a predetermined amount of refrigerant and lubricating oil.
- the outdoor heat exchanger 7 is provided with an outdoor blower 15.
- the outdoor blower 15 exchanges heat between the outside air and the refrigerant by forcibly passing outside air through the outdoor heat exchanger 7, so that the outdoor air blower 15 can also be used outdoors even when the vehicle is stopped (that is, the vehicle speed is 0 km / h). It is comprised so that external air may be ventilated by the heat exchanger 7.
- the outdoor heat exchanger 7 has a receiver dryer section 14 and a supercooling section 16 sequentially on the downstream side of the refrigerant, and the refrigerant pipe 13A exiting from the outdoor heat exchanger 7 is received via an electromagnetic valve 17 opened during cooling.
- the refrigerant pipe 13 ⁇ / b> B connected to the dryer unit 14 and on the outlet side of the supercooling unit 16 is connected to the inlet side of the heat absorber 9 via the indoor expansion valve 8.
- the receiver dryer part 14 and the supercooling part 16 structurally constitute a part of the outdoor heat exchanger 7.
- the refrigerant pipe 13B between the subcooling section 16 and the indoor expansion valve 8 is provided in a heat exchange relationship with the refrigerant pipe 13C on the outlet side of the heat absorber 9, and constitutes an internal heat exchanger 19 together.
- the refrigerant flowing into the indoor expansion valve 8 through the refrigerant pipe 13B is cooled (supercooled) by the low-temperature refrigerant that has exited the heat absorber 9.
- the refrigerant pipe 13A exiting from the outdoor heat exchanger 7 is branched into a refrigerant pipe 13D, and this branched refrigerant pipe 13D is downstream of the internal heat exchanger 19 via an electromagnetic valve 21 opened during heating.
- the refrigerant pipe 13C is connected in communication.
- the refrigerant pipe 13 ⁇ / b> C is connected to the accumulator 12, and the accumulator 12 is connected to the refrigerant suction side of the compressor 2.
- the refrigerant pipe 13E on the outlet side of the radiator 4 is connected to the inlet side of the outdoor heat exchanger 7 via the outdoor expansion valve 6.
- a refrigerant pipe 13G between the discharge side of the compressor 2 and the inlet side of the radiator 4 is provided with a solenoid valve 30 (which constitutes a flow path switching device) that is closed during dehumidification heating and MAX cooling described later. Yes.
- the refrigerant pipe 13G is branched into a bypass pipe 35 on the upstream side of the electromagnetic valve 30, and the bypass pipe 35 is opened by the electromagnetic valve 40 (which also constitutes a flow path switching device) during dehumidifying heating and MAX cooling. )
- the electromagnetic valve 40 which also constitutes a flow path switching device during dehumidifying heating and MAX cooling.
- the bypass device 45 is configured by the bypass pipe 35, the electromagnetic valve 30, and the electromagnetic valve 40, the dehumidifying heating mode or the MAX for allowing the refrigerant discharged from the compressor 2 to directly flow into the outdoor heat exchanger 7 as will be described later. Switching between the cooling mode and the heating mode in which the refrigerant discharged from the compressor 2 flows into the radiator 4, the dehumidifying cooling mode, and the cooling mode can be performed smoothly.
- the air flow passage 3 on the air upstream side of the heat absorber 9 is formed with each of an outside air inlet and an inside air inlet (represented by the inlet 25 in FIG. 1).
- a suction switching damper 26 for switching the air introduced into the air flow passage 3 between the inside air (inside air circulation mode) which is air inside the passenger compartment and the outside air (outside air introduction mode) which is outside the passenger compartment.
- an indoor blower (blower fan) 27 for supplying the introduced inside air or outside air to the air flow passage 3 is provided on the air downstream side of the suction switching damper 26.
- 23 is an auxiliary heater as an auxiliary heating device provided in the vehicle air conditioner 1 of the embodiment.
- the auxiliary heater 23 of the embodiment is composed of a PTC heater which is an electric heater, and is provided in the air flow passage 3 on the air upstream side of the radiator 4 with respect to the air flow in the air flow passage 3. Yes.
- the auxiliary heater 23 When the auxiliary heater 23 is energized and generates heat, the air in the air flow passage 3 flowing into the radiator 4 through the heat absorber 9 is heated.
- the auxiliary heater 23 serves as a so-called heater core, which heats or complements the passenger compartment.
- air in the air flow passage 3 on the upstream side of the auxiliary heater 23 flows into the air flow passage 3 and assists air (inside air or outside air) in the air flow passage 3 after passing through the heat absorber 9.
- An air mix damper 28 is provided for adjusting the ratio of ventilation through the heater 23 and the radiator 4.
- FOOT foot
- VENT vent
- DEF (def) outlets represented by the outlet 29 as a representative in FIG.
- reference numeral 32 denotes a controller (ECU) as a control device composed of a microcomputer which is an example of a computer provided with a processor.
- the controller 32 detects the outside air temperature (Tam) of the vehicle.
- the outside air temperature sensor 33 for detecting the outside air humidity
- the HVAC suction temperature sensor 36 for detecting the temperature of the air sucked into the air flow passage 3 from the suction port 25, and the air (inside air) in the passenger compartment.
- the refrigerant pressure of the heat absorber 9 (the heat absorber 9 Or the pressure of the refrigerant immediately after exiting the heat absorber 9), a photosensor type solar radiation sensor 51 for detecting the amount of solar radiation into the vehicle interior, and the vehicle moving speed.
- Each output of the outdoor heat exchanger pressure sensor 56 for detecting the pressure of the refrigerant immediately after coming out of the inside or the outdoor heat exchanger 7: the outdoor heat exchanger pressure PXO) is connected.
- the input of the controller 32 further includes an auxiliary heater temperature sensor for detecting the temperature of the auxiliary heater 23 (the temperature of the air immediately after being heated by the auxiliary heater 23 or the temperature of the auxiliary heater 23 itself: the auxiliary heater temperature Tptc). 50 outputs are also connected.
- the output of the controller 32 includes the compressor 2, the outdoor blower 15, the indoor blower (blower fan) 27, the suction switching damper 26, the air mix damper 28, the outlet switching damper 31, and the outdoor expansion. Solenoid valve 6, indoor expansion valve 8, auxiliary heater 23, solenoid valve 30 (for dehumidification), solenoid valve 17 (for cooling), solenoid valve 21 (for heating), solenoid valve 40 (also for dehumidification) Is connected.
- the controller 32 controls these based on the output of each sensor, and the setting input in the air-conditioning operation part 53.
- the controller 32 switches between the operation modes of the heating mode, the dehumidifying heating mode, the dehumidifying cooling mode, the cooling mode, and the MAX cooling mode (maximum cooling mode).
- the controller 32 opens the electromagnetic valve 21 (for heating) and the electromagnetic valve 17 (for cooling). Close.
- the electromagnetic valve 30 (for dehumidification) is opened, and the electromagnetic valve 40 (for dehumidification) is closed. Then, the compressor 2 and each of the blowers 15 and 27 are operated, and the air mix damper 28 is blown out from the indoor blower 27 and passes through the heat absorber 9 as shown by a broken line in FIG. It is assumed that air is passed through the auxiliary heater 23 and the radiator 4. As a result, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 from the refrigerant pipe 13G via the electromagnetic valve 30.
- the air in the airflow passage 3 Since the air in the airflow passage 3 is passed through the radiator 4, the air in the airflow passage 3 is converted into the high-temperature refrigerant in the radiator 4 (when the auxiliary heater 23 operates, the auxiliary heater 23 and the radiator 4.
- the refrigerant in the radiator 4 is cooled by being deprived of heat by the air, and is condensed and liquefied.
- the refrigerant liquefied in the radiator 4 exits the radiator 4 and then reaches the outdoor expansion valve 6 through the refrigerant pipe 13E.
- the refrigerant flowing into the outdoor expansion valve 6 is decompressed there and then flows into the outdoor heat exchanger 7.
- the refrigerant flowing into the outdoor heat exchanger 7 evaporates, and pumps up heat from the outside air that is ventilated by traveling or by the outdoor blower 15. That is, the refrigerant circuit R becomes a heat pump. Then, the low-temperature refrigerant exiting the outdoor heat exchanger 7 enters the accumulator 12 from the refrigerant pipe 13C through the refrigerant pipe 13A, the electromagnetic valve 21 and the refrigerant pipe 13D, and is separated into gas and liquid there. Repeated circulation inhaled. Since the air heated by the radiator 4 (when the auxiliary heater 23 is operated, the auxiliary heater 23 and the radiator 4) is blown out from the outlet 29, the vehicle interior is thereby heated.
- the controller 32 calculates a target radiator pressure PCO (target value of the radiator pressure PCI) from a target radiator temperature TCO (target value of the radiator temperature TH) calculated from a target outlet temperature TAO described later, and this target heat dissipation.
- the number of revolutions of the compressor 2 is controlled based on the compressor pressure PCO and the refrigerant pressure of the radiator 4 detected by the radiator pressure sensor 47 (radiator pressure PCI; high pressure of the refrigerant circuit R). Further, the controller 32 determines the valve opening degree of the outdoor expansion valve 6 based on the temperature of the radiator 4 (the radiator temperature TH) detected by the radiator temperature sensor 46 and the radiator pressure PCI detected by the radiator pressure sensor 47.
- the controller 32 opens the electromagnetic valve 17 and closes the electromagnetic valve 21.
- the electromagnetic valve 30 is closed, the electromagnetic valve 40 is opened, and the valve opening degree of the outdoor expansion valve 6 is fully closed. Then, the compressor 2 and each of the blowers 15 and 27 are operated, and the air mix damper 28 is blown out from the indoor blower 27 and passes through the heat absorber 9 as shown by a broken line in FIG. It is assumed that air is passed through the auxiliary heater 23 and the radiator 4. Accordingly, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 to the refrigerant pipe 13G flows into the bypass pipe 35 without going to the radiator 4, passes through the electromagnetic valve 40, and is connected to the refrigerant pipe on the downstream side of the outdoor expansion valve 6. 13E.
- the refrigerant flows into the outdoor heat exchanger 7.
- the refrigerant flowing into the outdoor heat exchanger 7 is cooled and condensed by running there or by the outside air ventilated by the outdoor blower 15.
- the refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 ⁇ / b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16.
- the refrigerant is supercooled.
- the refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 ⁇ / b> B, reaches the indoor expansion valve 8 through the internal heat exchanger 19.
- the refrigerant After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates.
- the air blown out from the indoor blower 27 by the heat absorption action at this time is cooled, and moisture in the air condenses and adheres to the heat absorber 9, so that the air in the air flow passage 3 is cooled, and Dehumidified.
- the refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 through the refrigerant pipe 13C through the internal heat exchanger 19, and repeats circulation that is sucked into the compressor 2 there through.
- the controller 32 energizes the auxiliary heater 23 to generate heat. As a result, the air cooled and dehumidified by the heat absorber 9 is further heated in the process of passing through the auxiliary heater 23 and the temperature rises, so that the dehumidifying heating in the passenger compartment is performed.
- the controller 32 controls the rotational speed of the compressor 2 on the basis of the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO that is the target value, and the auxiliary heater temperature.
- the energization (heat generation) of the auxiliary heater 23 based on the auxiliary heater temperature Tptc detected by the sensor 50 and the target radiator temperature TCO described above, while appropriately cooling and dehumidifying the air in the heat absorber 9, A decrease in the temperature of the air blown from the outlet 29 into the passenger compartment by heating by the auxiliary heater 23 is accurately prevented.
- the air mix damper 28 is in a state where all the air in the air flow passage 3 is passed through the auxiliary heater 23 and the radiator 4, so that the air passing through the heat absorber 9 is efficiently assisted. Heating by the heater 23 can improve the energy saving performance, and the controllability of the dehumidifying heating air conditioning can also be improved.
- the auxiliary heater 23 is disposed on the air upstream side of the radiator 4, the air heated by the auxiliary heater 23 passes through the radiator 4.
- the controller 32 opens the electromagnetic valve 17 and closes the electromagnetic valve 21. Further, the electromagnetic valve 30 is opened and the electromagnetic valve 40 is closed. Then, the compressor 2 and each of the blowers 15 and 27 are operated, and the air mix damper 28 is blown out from the indoor blower 27 and passes through the heat absorber 9 as shown by a broken line in FIG.
- the refrigerant flowing into the outdoor heat exchanger 7 is cooled and condensed by running there or by the outside air ventilated by the outdoor blower 15.
- the refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 ⁇ / b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.
- the refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 ⁇ / b> B, reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates.
- the air Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.
- the refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 through the refrigerant pipe 13C through the internal heat exchanger 19, and repeats circulation that is sucked into the compressor 2 there through.
- the controller 32 does not energize the auxiliary heater 23, so the air cooled by the heat absorber 9 is reheated in the process of passing through the radiator 4 (the heat dissipation capability is lower than that during heating). The As a result, dehumidifying and cooling in the passenger compartment is performed.
- the controller 32 controls the rotational speed of the compressor 2 based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48, and also uses the outdoor expansion valve based on the high pressure of the refrigerant circuit R described above. 6 is controlled to control the refrigerant pressure of the radiator 4 (radiator pressure PCI).
- the controller 32 fully opens the valve opening degree of the outdoor expansion valve 6 in the dehumidifying and cooling mode.
- the controller 32 controls the air mix damper 28, and the air in the air flow passage 3 after being blown out from the indoor blower 27 and passing through the heat absorber 9 as shown by a solid line in FIG. The rate of ventilation through the vessel 4 is adjusted.
- the controller 32 does not energize the auxiliary heater 23.
- the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 from the refrigerant pipe 13G via the electromagnetic valve 30, and the refrigerant exiting the radiator 4 passes through the refrigerant pipe 13E and the outdoor expansion valve 6.
- the outdoor expansion valve 6 since the outdoor expansion valve 6 is fully opened, the refrigerant passes through it and flows into the outdoor heat exchanger 7 as it is, where it is cooled by air or by outside air that is ventilated by the outdoor blower 15 and condensed. Liquefaction.
- the refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 ⁇ / b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.
- the refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 ⁇ / b> B, reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates.
- the air blown out from the indoor blower 27 by the heat absorption action at this time is cooled. Further, moisture in the air condenses and adheres to the heat absorber 9.
- the refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 through the refrigerant pipe 13C through the internal heat exchanger 19, and repeats circulation that is sucked into the compressor 2 there through. Since the air cooled and dehumidified by the heat absorber 9 is blown into the vehicle interior from the air outlet 29 (partly passes through the radiator 4 to exchange heat), the vehicle interior is thereby cooled. become.
- the controller 32 rotates the compressor 2 based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO that is the target value. To control.
- MAX cooling mode (maximum cooling mode)
- the controller 32 opens the electromagnetic valve 17 and closes the electromagnetic valve 21. Further, the electromagnetic valve 30 is closed, the electromagnetic valve 40 is opened, and the valve opening degree of the outdoor expansion valve 6 is fully closed. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 keeps the air in the air flow passage 3 from passing through the auxiliary heater 23 and the radiator 4 as shown in FIG. However, there is no problem even if it is ventilated somewhat. Further, the controller 32 does not energize the auxiliary heater 23.
- the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 to the refrigerant pipe 13G flows into the bypass pipe 35 without going to the radiator 4, passes through the electromagnetic valve 40, and is connected to the refrigerant pipe on the downstream side of the outdoor expansion valve 6. 13E.
- the outdoor expansion valve 6 since the outdoor expansion valve 6 is fully closed, the refrigerant flows into the outdoor heat exchanger 7.
- the refrigerant flowing into the outdoor heat exchanger 7 is cooled and condensed by running there or by the outside air ventilated by the outdoor blower 15.
- the refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 ⁇ / b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16.
- the refrigerant is supercooled.
- the refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 ⁇ / b> B, reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. The air blown out from the indoor blower 27 by the heat absorption action at this time is cooled. In addition, since moisture in the air condenses and adheres to the heat absorber 9, the air in the air flow passage 3 is dehumidified.
- the refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 through the refrigerant pipe 13C through the internal heat exchanger 19, and repeats circulation that is sucked into the compressor 2 there through.
- the outdoor expansion valve 6 since the outdoor expansion valve 6 is fully closed, similarly, it is possible to suppress or prevent the disadvantage that the refrigerant discharged from the compressor 2 flows backward from the outdoor expansion valve 6 into the radiator 4. . Thereby, the fall of a refrigerant
- the high-temperature refrigerant flows through the radiator 4 in the cooling mode described above, direct heat conduction from the radiator 4 to the HVAC unit 10 occurs not a little, but in this MAX cooling mode, the refrigerant flows into the radiator 4. Therefore, the air in the air flow passage 3 from the heat absorber 9 is not heated by the heat transmitted from the radiator 4 to the HVAC unit 10. Therefore, powerful cooling of the passenger compartment is performed, and particularly in an environment where the outside air temperature Tam is high, the passenger compartment can be quickly cooled to realize comfortable air conditioning in the passenger compartment.
- the controller 32 rotates the compressor 2 based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO that is the target value. Control the number.
- (6) Switching operation mode The air flowing through the air flow passage 3 is subjected to cooling from the heat absorber 9 and heating action from the heat radiator 4 (and the auxiliary heater 23) (adjusted by the air mix damper 28) in each of the above operation modes. Is blown out into the passenger compartment.
- the controller 32 is set by the air-conditioning operation unit 53, the outside air temperature Tam detected by the outside air temperature sensor 33, the temperature in the vehicle interior detected by the inside air temperature sensor 37, the blower voltage, the amount of solar radiation detected by the solar radiation sensor 51, and the like.
- the target blowout temperature TAO is calculated based on the target passenger compartment temperature (set temperature) in the passenger compartment, and the temperature of the air blown from the blowout port 29 is controlled to this target blowout temperature TAO by switching each operation mode.
- the controller 32 determines whether the outside air temperature Tam, the humidity in the vehicle interior, the target outlet temperature TAO, the radiator temperature TH, the target radiator temperature TCO, the heat absorber temperature Te, the target heat absorber temperature TEO, or the dehumidification request in the vehicle interior.
- the controller 32 determines whether the outside air temperature Tam, the humidity in the vehicle interior, the target outlet temperature TAO, the radiator temperature TH, the target radiator temperature TCO, the heat absorber temperature Te, the target heat absorber temperature TEO, or the dehumidification request in the vehicle interior.
- the controller 32 determines whether the outside air temperature Tam, the humidity in the vehicle interior, the target outlet temperature TAO, the radiator temperature TH, the target radiator temperature TCO, the heat absorber temperature Te, the target heat absorber temperature TEO, or the dehumidification request in the vehicle interior.
- FIGS. 4 and 5 an example of bumping countermeasure control executed by the controller 32 when the operation mode of the vehicle air conditioner 1 is switched from the heating mode to the dehumidifying heating mode or the MAX cooling mode described above. Will be described.
- the timing charts of FIGS. 4 and 5 show the pressure difference ⁇ Pdx before and after the solenoid valve 40 (second on-off valve of the present invention) when switching from the heating mode to the dehumidifying heating mode or the MAX cooling mode, and the solenoid valve.
- the pressure difference ⁇ Pdx before and after the electromagnetic valve 40 is determined by the pressure Pd on the upstream side (front) of the refrigerant of the electromagnetic valve 40 detected by the discharge pressure sensor 42 and the outdoor heat exchanger temperature sensor 54.
- the outdoor heat exchanger pressure PXO on the downstream side (rear side) of the solenoid valve 40 converted from the temperature of the refrigerant immediately after coming out of the outdoor heat exchanger 7 to be detected (outdoor heat exchanger temperature TXO) (outdoor as in the embodiment)
- the controller 32 calculates. Further, the pressure difference ⁇ Pix before and after the electromagnetic valve 30 (first on-off valve) is detected by the pressure Pd on the refrigerant upstream side (front) of the electromagnetic valve 30 detected by the discharge pressure sensor 42 and the radiator pressure sensor 47.
- the controller 32 executes bumping countermeasure control described below.
- the controller 32 switches from the heating mode to the dehumidifying heating mode or the MAX cooling mode, first, the electromagnetic valve 17 is opened, the electromagnetic valve 21 is closed, and the refrigerant discharged from the outdoor heat exchanger 7 flows into the receiver dryer unit 14. .
- the rotational speed NC of the compressor 2 is adjusted (controlled in a decreasing direction) so that the pressure difference Pdx before and after the electromagnetic valve 40 is equal to or less than a predetermined value A (for example, 0.2 MPa), and the outdoor expansion valve.
- the valve opening of 6 is shifted to the fully open state.
- the controller 32 opens the electromagnetic valve 40, closes the electromagnetic valve 30, and shifts the outdoor expansion valve 6 to the fully closed state. Is shifted to control in the dehumidifying and heating mode or the MAX cooling mode, thereby shifting to the air conditioning operation in the dehumidifying and heating mode or the MAX cooling mode.
- a normal speed of increase (Hz to be increased per unit time) when the rotational speed NC is increased is determined.
- the increase speed of the rotational speed NC of the compressor 2 is set to the normal increase speed (see the solid line L2 in FIG. 4).
- the bumping of the refrigerant in the inside 12 is prevented or suppressed.
- the control of the compressor 2 reduces the rising speed until it shifts to the control of the dehumidifying heating mode or the MAX cooling mode, so that the decrease of the pressure in the accumulator 12 at the time of mode switching is further suppressed.
- the control of the compressor 2 is shifted to the control of the dehumidifying heating mode (MAX cooling mode), so that the occurrence of bumping in the accumulator 12 is accurately performed Can be prevented or suppressed.
- the controller 32 controls the rotational speed NC of the compressor 2 so that the pressure difference ⁇ Pdx before and after the solenoid valve 40 is equal to or less than the predetermined value A.
- the rotational speed NC of the compressor 2 may be set to a predetermined rotational speed NC1 (FIG. 4, for example, 800 rpm to 1500 rpm), which is a predetermined low value.
- the discharge pressure Pd decreases and the outdoor heat exchanger pressure PXO increases.
- the pressure difference Pdx before and after becomes smaller.
- the controller 32 opens the electromagnetic valve 40, closes the electromagnetic valve 30, and shifts the outdoor expansion valve 6 to the fully closed state.
- the control of the compressor 2 is shifted to the control in the dehumidifying heating mode or the MAX cooling mode, thereby shifting to the air conditioning operation in the dehumidifying heating mode or the MAX cooling mode.
- Such bumping countermeasure control can also prevent or suppress the occurrence of bumping in the accumulator 12.
- (7-3) Bump countermeasure control at the time of switching from heating mode to dehumidifying heating mode or MAX cooling mode (part 3) In the bump boiling countermeasure control (part 2) of the above embodiment, the control of the compressor 2 is shifted to the control in the dehumidifying heating mode or the MAX cooling mode at the same time as the outdoor expansion valve 6 is shifted to the fully closed state. Without being limited thereto, the compressor 32 confirms that the outdoor expansion valve 6 is fully closed after the outdoor expansion valve 6 starts to be fully closed as indicated by a solid line L3 in FIG. The control 2 may be shifted to the control in the dehumidifying / heating mode or the MAX cooling mode.
- Such bumping countermeasure control can also prevent or suppress the occurrence of bumping in the accumulator 12.
- the compressor 2 may be stopped (also shown in FIG. 4).
- the discharge pressure Pd decreases and the outdoor heat exchanger pressure PXO increases, so the pressure difference Pdx before and after the electromagnetic valve 40 decreases.
- the controller 32 opens the electromagnetic valve 40, closes the electromagnetic valve 30, and shifts the outdoor expansion valve 6 to the fully closed state.
- the compressor 2 is started and the control is shifted to the control in the dehumidifying / heating mode or the MAX cooling mode, thereby shifting to the air conditioning operation in the dehumidifying / heating mode or the MAX cooling mode.
- the rising speed of the rotational speed NC of the compressor 2 is lowered from the normal rising speed until the control shifts to the dehumidifying heating mode or the MAX cooling mode.
- the controller 32 opens the electromagnetic valve 40 and closes the electromagnetic valve 30.
- the outdoor expansion valve 6 is shifted to the fully closed state
- the present invention is not limited to this, and after a predetermined time 1 (FIG. 4, for example, 10 seconds) has elapsed since the compressor 2 was stopped, the electromagnetic valve 40 is The electromagnetic valve 30 may be opened and the outdoor expansion valve 6 may be shifted to a fully closed state. (7-6) Countermeasure against bumping when switching from heating mode to dehumidifying heating mode or MAX cooling mode (No.
- the control of the compressor 2 is shifted to the control in the dehumidifying heating mode or the MAX cooling mode at the same time as the outdoor expansion valve 6 is shifted to the fully closed state.
- the present invention is not limited to this, and after confirming that the outdoor expansion valve 6 is fully closed, the control of the compressor 2 is shifted to the control in the dehumidifying heating mode or the MAX cooling mode. Also good. Also in this case, the rising speed of the rotational speed NC of the compressor 2 is reduced from the normal rising speed. The occurrence of bumping in the accumulator 12 can be accurately prevented or suppressed by such bumping countermeasure control.
- the second predetermined time 2 (in the embodiment, the predetermined time 1 is exceeded) after the pressure difference ⁇ Pdx before and after the electromagnetic valve 40 becomes equal to or less than the predetermined value A.
- a long time for example, 20 seconds
- the increase in the rotational speed of the compressor 2 may be prohibited (indicated by a solid line L5 in FIG. 5). Thereby, generation
- the control of the compressor 2 is shifted to the control in the dehumidifying heating mode or the MAX cooling mode to shift to the air conditioning operation in the dehumidifying heating mode or the MAX cooling mode.
- the rising speed of the rotational speed NC of the compressor 2 is made lower than the normal rising speed (solid line L2 in FIG. 4). Also good.
- Such bumping countermeasure control can also prevent or suppress the occurrence of bumping in the accumulator 12 accurately.
- the control of the compressor 2 is shifted to the control in the dehumidifying heating mode or the MAX cooling mode at the same time when the outdoor expansion valve 6 is shifted to the fully closed state.
- the control of the compressor 2 is shifted to the control in the dehumidifying heating mode or the MAX cooling mode after confirming that the outdoor expansion valve 6 is fully closed as indicated by a solid line L7 in FIG. May be.
- the rising speed of the rotational speed NC of the compressor 2 is reduced below the normal rising speed (solid line L3 in FIG. 4).
- Such bumping countermeasure control can also prevent or suppress the occurrence of bumping in the accumulator 12 accurately.
- FIG. 6 shows the pressure difference ⁇ Pdx before and after the electromagnetic valve 40 (second on-off valve) when switching from the heating mode to the dehumidifying heating mode, and the blowing temperature detected by the blowing temperature sensor 41 (the above-described blowing port). 29), the auxiliary heater temperature Tptc detected by the auxiliary heater temperature sensor 50, the rotational speed NC of the compressor 2, the valve opening degree of the outdoor expansion valve 6, and the auxiliary heater 23.
- Output (energization amount or heat generation amount) of solenoid valve 40, solenoid valve 30 (first on-off valve), solenoid valve 17 (fourth on-off valve), and solenoid valve 21 (third on-off valve). Indicates the state.
- (-1) Bumping countermeasure control when switching from heating mode to dehumidifying heating mode (part 1)
- the controller 32 when switching from the heating mode to the dehumidifying heating mode, the controller 32 first causes the auxiliary heater 23 to generate heat and increase its output (energization amount or heat generation amount). In this case, the controller 32 increases the output to the predetermined value D (FIG. 6) higher than the target value C (FIG.
- the controller 32 opens the electromagnetic valve 17 and closes the electromagnetic valve 21.
- the refrigerant discharged from the outdoor heat exchanger 7 flows to the receiver dryer section 14 and then flows to the heat absorber 9 via the supercooling section 16, the internal heat exchanger 19, and the indoor expansion valve 8. Switch to.
- the controller 32 then controls the output of the auxiliary heater 23 to be the target value C in the dehumidifying and heating mode described above.
- the controller 32 determines that the pressure difference Pdx before and after the electromagnetic valve 40 is the above-described predetermined value A (The opening degree of the outdoor expansion valve 6 is increased and the rotational speed NC of the compressor 2 is adjusted (controlled in a decreasing direction) so as to be equal to or lower than 0.2 MPa.
- the controller 32 opens the electromagnetic valve 40, closes the electromagnetic valve 30, and shifts the outdoor expansion valve 6 to the fully closed state.
- the operation moves to the air conditioning operation in the dehumidifying and heating mode.
- the speed of increase of the rotational speed NC of the compressor 2 is decreased from the speed of normal increase until the control shifts to the dehumidifying and heating mode.
- the controller 32 increases the valve opening degree of the outdoor expansion valve 6 so that the pressure difference ⁇ Pdx before and after the solenoid valve 40 is equal to or less than the predetermined value A, and the rotational speed NC of the compressor 2 is reached.
- the present invention is not limited to this, and the valve opening degree of the outdoor expansion valve 6 is fully opened (FIG. 6), and the rotational speed NC of the compressor 2 is a predetermined rotational speed NC1 (FIG. 6) which is a predetermined low value. 800 rpm to 1500 rpm).
- the outdoor expansion valve 6 Since the outdoor expansion valve 6 is fully opened and the rotational speed NC of the compressor 2 is controlled to a low predetermined rotational speed NC1, the outdoor heat exchanger pressure PXO increases and the discharge pressure Pd decreases. The pressure difference Pdx before and after becomes smaller. Also in this case, when the pressure difference ⁇ Pdx is reduced to the predetermined value A or less, the controller 32 opens the electromagnetic valve 40, closes the electromagnetic valve 30, and fully closes the outdoor expansion valve 6, thereby dehumidifying. Transition to air conditioning operation in heating mode.
- the controller 32 fully opens the outdoor expansion valve 6 and sets the rotational speed NC of the compressor 2 to the predetermined rotational speed NC1. 6)
- the solenoid valve 40 may be opened after the passage, the solenoid valve 30 may be closed, and the outdoor expansion valve 6 may be fully closed to shift to the air conditioning operation in the dehumidifying and heating mode.
- the increase in the rotational speed of the compressor 2 may be prohibited (indicated by a solid line L9 in FIG. 6). Thereby, generation
- bumping countermeasure control since the rotational speed NC of the compressor 2 decreases, the temperature of the air blown into the passenger compartment (blowing temperature) may decrease and the comfort may deteriorate. There is.
- bumping countermeasure control when the controller 32 switches from the heating mode to the dehumidifying heating mode, the auxiliary heater 23 first generates heat, and the temperature Tptc of the auxiliary heater 23 becomes equal to or higher than a predetermined value B.
- the solenoid valve 17 and the solenoid valve 21 are switched so that the refrigerant discharged from the outdoor heat exchanger 7 flows to the receiver dryer section 14, and control of the compressor 2 and the outdoor expansion valve 6 in the bumping countermeasure control is started. Therefore, as shown in FIG. 6, the blowing temperature is kept substantially constant even in the process of switching from the heating mode to the dehumidifying heating mode. Thereby, the fall of the blowing temperature produced at the time of switching from heating mode to dehumidification heating mode is suppressed, and it becomes possible to implement
- the controller 32 Since it switches to a state where it flows to the dryer section 14 (receiver), if the rotation speed of the compressor 2 increases after the mode switching, the pressure in the accumulator 12 suddenly decreases, bumping occurs, and excessive liquid return to the compressor 2 And sound (noise) will be generated. Therefore, the controller 32 also performs bumping countermeasure control described below when switching the operation mode from the heating mode to the cooling mode.
- the controller 32 first opens the electromagnetic valve 17 and closes the electromagnetic valve 21 so that the refrigerant discharged from the outdoor heat exchanger 7 flows into the receiver dryer section 14. Further, the rotational speed NC of the compressor 2 is set to a predetermined low speed NC1 (FIG.
- the compressor 2 may be stopped in the bumping countermeasure control at the time of switching from the heating mode to the cooling mode (shown together with FIG. 7).
- the control of the compressor 2 is shifted to the control in the cooling mode, thereby shifting to the air conditioning operation in the cooling mode.
- the speed of increase of the rotational speed NC of the compressor 2 is lowered from the normal speed of increase as indicated by a broken line L12 in FIG. (9-4) Crash boiling countermeasure control at the time of switching from heating mode to cooling mode (part 4)
- the controller 32 confirms that a predetermined time 3 (10 seconds to 60 seconds) has elapsed since the compressor 2 was stopped, and when the predetermined time 3 has elapsed, a solid line L13 in FIG.
- the control of the compressor 2 may be shifted to the control in the cooling mode.
- (9-5) Countermeasure against bumping when switching from heating mode to cooling mode (5)
- the controller 32 adjusts the rotational speed NC of the compressor 2 so that the pressure difference ⁇ Pdx before and after the electromagnetic valve 40 becomes a predetermined value A or less. May be.
- the control of the compressor 2 is shifted to the control in the cooling mode, thereby shifting to the air conditioning operation in the cooling mode.
- the increasing speed of the rotational speed NC of the compressor 2 may be decreased from the normal increasing speed until the control is transferred to the cooling mode.
- the controller 32 executes bump boiling countermeasure control described below also when switching the operation mode from the heating mode to the dehumidifying and cooling mode.
- the controller 32 first opens the electromagnetic valve 17 and closes the electromagnetic valve 21 so that the refrigerant discharged from the outdoor heat exchanger 7 flows into the receiver dryer section 14. Further, the rotational speed NC of the compressor 2 is set to a predetermined low speed NC1 (FIG. 8, 800 rpm to 1500 rpm) which is a predetermined low value, and the valve opening degree of the outdoor expansion valve 6 is controlled in the dehumidifying and cooling mode. Transition.
- the control of the compressor 2 is shifted to the control in the dehumidifying cooling mode as indicated by the solid line L15 in FIG. Transition to driving.
- the control of the compressor 2 may be shifted to the control in the dehumidifying and cooling mode as indicated by a solid line L16 in FIG. (10-3) Crash boiling countermeasure control at the time of switching from the heating mode to the dehumidifying cooling mode (part 3) Moreover, in the bumping countermeasure control at the time of switching from the heating mode to the dehumidifying and cooling mode, the compressor 2 may be stopped (shown together with FIG. 8).
- the controller 32 confirms that the predetermined time 4 (FIG. 8, 10 to 30 seconds) has elapsed since the compressor 2 was stopped, and when the predetermined time 4 has elapsed, The control is shifted to the control in the dehumidifying and cooling mode, and in this case as well, the rising speed of the rotational speed NC of the compressor 2 is decreased from the normal rising speed until the control is shifted to the control in the dehumidifying and cooling mode. Good.
- the present invention is applied to the vehicle air conditioner 1 that switches and executes each operation mode of the heating mode, the dehumidifying heating mode, the dehumidifying cooling mode, the cooling mode, and the MAX cooling mode.
- the present invention is also effective for a vehicle air conditioner that is executed by switching between a heating mode, a dehumidifying heating mode, and a MAX cooling mode.
- the heating mode and the dehumidifying device are used.
- the present invention is also effective for a vehicle air conditioner that switches and executes a heating mode.
- the present invention is also effective for a vehicle air conditioner that is executed by switching between the heating mode and the cooling mode.
- the heating mode and the dehumidification are performed.
- the present invention is also effective for a vehicle air conditioner that switches and executes a cooling mode.
- the switching control of each operation mode shown in the embodiment is not limited thereto, and the outside air temperature Tam, the humidity in the passenger compartment, the target outlet temperature TAO, depending on the capability and usage environment of the vehicle air conditioner, Adopt any one of parameters such as radiator temperature TH, target radiator temperature TCO, heat absorber temperature Te, target heat absorber temperature TEO, presence / absence of dehumidification request in vehicle interior, or a combination thereof, or all of them. Appropriate conditions should be set.
- the auxiliary heating device is not limited to the auxiliary heater 23 shown in the embodiment, and a heat medium circulation circuit for heating the air in the air flow passage by circulating the heat medium heated by the heater, an engine You may utilize the heater core etc. which circulate the radiator water heated by.
- the configuration of the refrigerant circuit R described in each of the above embodiments is not limited thereto, and it is needless to say that the refrigerant circuit R can be changed without departing from the gist of the present invention.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Air-Conditioning For Vehicles (AREA)
Abstract
放熱器と室外膨張弁をバイパスするバイパス配管と開閉弁を備えた車両用空気調和装置において、暖房モードから他の運転モードに切り換えるときの液戻りとアキュムレータ内での騒音の発生を抑制する。 電磁弁30を開き、電磁弁40を閉じる暖房モードと、電磁弁30を閉じ、電磁弁40を開いて冷媒を室外熱交換器7で放熱させ、吸熱器9で吸熱させ、補助ヒータ23を発熱させる除湿暖房モードを実行する。暖房モードから除湿暖房モードに切り換える際、冷媒をレシーバドライヤ部14に流す状態に切り換えた後、圧縮機を制御して電磁弁40の前後の圧力差を縮小した後、電磁弁40を開き、電磁弁30を閉じ、室外膨張弁を全閉とし、圧縮機を除湿暖房モードの制御に移行させる。
Description
本発明は、車両の車室内を空調するヒートポンプ方式の空気調和装置、特にハイブリッド自動車や電気自動車に適用可能な空気調和装置に関するものである。
近年の環境問題の顕在化から、ハイブリッド自動車や電気自動車が普及するに至っている。そして、このような車両に適用することができる空気調和装置として、冷媒を圧縮して吐出する圧縮器と、車室内側に設けられて冷媒を放熱させる内部凝縮機と、車室内側に設けられて冷媒を吸熱させる蒸発器と、車室外側に設けられて冷媒を放熱又は吸熱させる外部凝縮機と、この外部凝縮機に流入する冷媒を膨張させる第1膨張バルブと、蒸発器に流入する冷媒を膨張させる第2膨張バルブと、内部凝縮機及び第1膨張バルブをバイパスする配管と、圧縮器から吐出された冷媒を内部凝縮機に流すか、この内部凝縮機と第1膨張バルブをバイパスして前記配管から外部凝縮機に直接流すかを切り換える第1バルブを備え、圧縮器から吐出された冷媒を第1バルブにより内部凝縮機に流して放熱させ、この放熱した冷媒を第1膨張バルブで減圧した後、外部凝縮機において吸熱させる暖房モードと、圧縮器から吐出された冷媒を第1バルブにより内部凝縮機において放熱させ、放熱した冷媒を第2膨張バルブで減圧した後、蒸発器において吸熱させる除湿モードと、圧縮器から吐出された冷媒を第1バルブにより内部凝縮機及び第1膨張バルブをバイパスして外部凝縮機に流して放熱させ、第2膨張バルブで減圧した後、蒸発器において吸熱させる冷房モードを切り換えて実行するものが開発されている(例えば、特許文献1参照)。
また、上記特許文献1では示されていないが、この種の車両用空気調和装置では、通常圧縮機の冷媒吸込側には通常アキュムレータが設けられ、特に暖房モードのときにこのアキュムレータに冷媒を一旦貯留することで気液を分離し、ガス冷媒を圧縮機に吸い込ませることによって圧縮機への液戻りを防止若しくは抑制する構成が採られる。また、室外熱交換器の冷媒下流側にはヘッダー部(レシーバ)を設け、除湿暖房や除湿冷房、冷房の各運転モードでは室外熱交換器から出た冷媒をこのヘッダー部で一旦受容する構成が採られる(例えば、特許文献2参照)。
また、上記特許文献1では示されていないが、この種の車両用空気調和装置では、通常圧縮機の冷媒吸込側には通常アキュムレータが設けられ、特に暖房モードのときにこのアキュムレータに冷媒を一旦貯留することで気液を分離し、ガス冷媒を圧縮機に吸い込ませることによって圧縮機への液戻りを防止若しくは抑制する構成が採られる。また、室外熱交換器の冷媒下流側にはヘッダー部(レシーバ)を設け、除湿暖房や除湿冷房、冷房の各運転モードでは室外熱交換器から出た冷媒をこのヘッダー部で一旦受容する構成が採られる(例えば、特許文献2参照)。
ここで、アキュムレータ内では、圧縮機から出て冷媒回路内を流れて来た冷媒とオイルが流入し、そのうちの液体の部分がアキュムレータ内に溜まり、比重の軽いオイルが液状の冷媒の上に層を作り、蓋をしたような状態となっている。また、外気温度が低い環境で実行されることになる暖房モードでは、室外熱交換器から出てアキュムレータに流入し、当該アキュムレータ内に溜まる液冷媒とオイルの量も多くなるため、アキュムレータの出口近くまでオイル面(アキュムレータ内の液面)が上昇するようになる。
このような状態で運転モードが他のモード(除湿暖房や除湿冷房、冷房)に切り換えられると、室外熱交換器から出た冷媒がレシーバに流れるようになるため、アキュムレータ内に溜まっていた冷媒がレシーバに移動するかたちとなり、アキュムレータ内の圧力が急激に下がる。このようにアキュムレータ内の圧力が急激に下がると、オイルより下の冷媒が一気に沸騰して気化し、上のオイルの層を激しく突き破る所謂突沸と称される現象が発生する。特に、モード切り換え後に圧縮機の回転数が早い段階で高くなると、アキュムレータ内の圧力も急激に低下して突沸が発生し易くなる。
そして、この突沸が激しくなると、アキュムレータ内の多くの液冷媒が出口から外部に押し出されるようになるため、圧縮機へ過剰な液戻りが発生し、液圧縮により圧縮機の信頼性が損なわれることになる。また、アキュムレータ内での突沸現象は比較的大きな音を伴うため、騒音の発生により搭乗者の快適性が損なわれる問題もあった。
本発明は、係る従来の技術的課題を解決するために成されたものであり、放熱器と室外膨張弁をバイパスするバイパス配管と、流路を切り換えるための開閉弁を備えた車両用空気調和装置において、暖房モードから他の運転モードに切り換えるときの液戻りとアキュムレータ内での騒音の発生を抑制することを目的とする。
このような状態で運転モードが他のモード(除湿暖房や除湿冷房、冷房)に切り換えられると、室外熱交換器から出た冷媒がレシーバに流れるようになるため、アキュムレータ内に溜まっていた冷媒がレシーバに移動するかたちとなり、アキュムレータ内の圧力が急激に下がる。このようにアキュムレータ内の圧力が急激に下がると、オイルより下の冷媒が一気に沸騰して気化し、上のオイルの層を激しく突き破る所謂突沸と称される現象が発生する。特に、モード切り換え後に圧縮機の回転数が早い段階で高くなると、アキュムレータ内の圧力も急激に低下して突沸が発生し易くなる。
そして、この突沸が激しくなると、アキュムレータ内の多くの液冷媒が出口から外部に押し出されるようになるため、圧縮機へ過剰な液戻りが発生し、液圧縮により圧縮機の信頼性が損なわれることになる。また、アキュムレータ内での突沸現象は比較的大きな音を伴うため、騒音の発生により搭乗者の快適性が損なわれる問題もあった。
本発明は、係る従来の技術的課題を解決するために成されたものであり、放熱器と室外膨張弁をバイパスするバイパス配管と、流路を切り換えるための開閉弁を備えた車両用空気調和装置において、暖房モードから他の運転モードに切り換えるときの液戻りとアキュムレータ内での騒音の発生を抑制することを目的とする。
請求項1の発明の車両用空気調和装置は、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、車室外に設けられた室外熱交換器と、放熱器を出て室外熱交換器に流入する冷媒を減圧するための室外膨張弁と、圧縮機の吐出側と放熱器の入口側の間に設けられた第1の開閉弁と、この第1の開閉弁の上流側で分岐し、放熱器及び室外膨張弁をバイパスして圧縮機から吐出された冷媒を室外熱交換器に流すためのバイパス配管と、このバイパス配管に設けられた第2の開閉弁と、空気流通路から車室内に供給する空気を加熱するための補助加熱装置と、圧縮機の冷媒吸込側に接続されたアキュムレータと、室外熱交換器の冷媒下流側に接続されたレシーバと、制御装置を備え、この制御装置により、第1の開閉弁を開き、第2の開閉弁を閉じることで、圧縮機から吐出された冷媒を放熱器に流して放熱させ、放熱した当該冷媒を室外膨張弁で減圧した後、室外熱交換器にて吸熱させ、吸熱した当該冷媒をアキュムレータに流し、このアキュムレータから圧縮機に吸い込ませる暖房モードと、室外膨張弁を全閉とし、第1の開閉弁を閉じ、第2の開閉弁を開くことで、圧縮機から吐出された冷媒をバイパス配管により室外熱交換器に流して放熱させ、放熱した当該冷媒をレシーバに流し、減圧した後、吸熱器にて吸熱させ、且つ、補助加熱装置を発熱させる除湿暖房モードと、室外膨張弁を全閉とし、第1の開閉弁を閉じ、第2の開閉弁を開くことで、圧縮機から吐出された冷媒をバイパス配管により室外熱交換器に流して放熱させ、放熱した当該冷媒をレシーバに流し、減圧した後、吸熱器にて吸熱させる最大冷房モードを切り換えて実行するものであって、制御装置は、暖房モードから除湿暖房モード又は最大冷房モードに切り換える際、室外熱交換器から出た冷媒をレシーバに流す状態に切り換えた後、圧縮機の回転数を制御し、若しくは、停止させることで第2の開閉弁前後の圧力差を縮小した後、当該第2の開閉弁を開き、第1の開閉弁を閉じ、室外膨張弁を全閉とし、圧縮機の制御を除湿暖房モード又は最大冷房モードにおける制御に移行させることを特徴とする。
請求項2の発明の車両用空気調和装置は、上記発明において制御装置は、第2の開閉弁前後の圧力差が所定値以下となるように圧縮機の回転数を調整し、当該圧力差が所定値以下となった場合に第2の開閉弁を開き、第1の開閉弁を閉じ、室外膨張弁を全閉とした後、圧縮機の制御を除湿暖房モード又は最大冷房モードにおける制御に移行させると共に、移行するまで圧縮機の回転数の上昇速度を低下させることを特徴とする。
請求項3の発明の車両用空気調和装置は、請求項1の発明において制御装置は、圧縮機の回転数を予め定めた低い値とし、第2の開閉弁前後の圧力差が所定値以下となった場合に、当該第2の開閉弁を開き、第1の開閉弁を閉じ、室外膨張弁を全閉とし、且つ、圧縮機の制御を除湿暖房モード又は最大冷房モードにおける制御に移行させ、若しくは、室外膨張弁が全閉となった後、圧縮機の制御を除湿暖房モード又は最大冷房モードにおける制御に移行させることを特徴とする。
請求項4の発明の車両用空気調和装置は、請求項1の発明において制御装置は、圧縮機を停止させ、第2の開閉弁前後の圧力差が所定値以下となった場合に、若しくは、圧縮機を停止してから所定時間経過後に第2の開閉弁を開き、第1の開閉弁を閉じ、室外膨張弁を全閉とし、且つ、圧縮機の制御を除湿暖房モード又は最大冷房モードにおける制御に移行させ、若しくは、室外膨張弁が全閉となった後、圧縮機の制御を除湿暖房モード又は最大冷房モードにおける制御に移行させると共に、移行するまで圧縮機の回転数の上昇速度を低下させることを特徴とする。
請求項5の発明の車両用空気調和装置は、上記発明において制御装置は、第2の開閉弁前後の圧力差が所定値以下となってから第2の所定時間が経過するまでは当該圧縮機の回転数の上昇を禁止することを特徴とする。
請求項6の発明の車両用空気調和装置は、請求項1の発明において制御装置は、圧縮機の回転数を予め定めた低い値とし、第2の開閉弁前後の圧力差が所定値以下となった場合に、若しくは、圧縮機の回転数を前記低い値としてから所定時間経過後に第2の開閉弁を開き、第1の開閉弁を閉じ、室外膨張弁を全閉とし、且つ、圧縮機の制御を除湿暖房モード又は最大冷房モードにおける制御に移行させ、若しくは、室外膨張弁が全閉となった後、圧縮機の制御を除湿暖房モード又は最大冷房モードにおける制御に移行させると共に、移行するまで圧縮機の回転数の上昇速度を低下させることを特徴とする。
請求項7の発明の車両用空気調和装置は、上記各発明において制御装置は、暖房モードから除湿暖房モードに切り換える際、補助加熱装置を発熱させ、当該補助加熱装置の温度が所定値以上となった場合に、室外熱交換器から出た冷媒をレシーバに流す状態に切り換え、且つ、室外膨張弁の弁開度を拡大することを特徴とする。
請求項8の発明の車両用空気調和装置は、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、車室外に設けられた室外熱交換器と、放熱器を出て室外熱交換器に流入する冷媒を減圧するための室外膨張弁と、圧縮機の吐出側と放熱器の入口側の間に設けられた第1の開閉弁と、この第1の開閉弁の上流側で分岐し、放熱器及び室外膨張弁をバイパスして圧縮機から吐出された冷媒を室外熱交換器に流すためのバイパス配管と、このバイパス配管に設けられた第2の開閉弁と、圧縮機の冷媒吸込側に接続されたアキュムレータと、室外熱交換器の冷媒下流側に接続されたレシーバと、制御装置を備え、この制御装置により、第1の開閉弁を開き、第2の開閉弁を閉じることで、圧縮機から吐出された冷媒を放熱器に流して放熱させ、放熱した当該冷媒を室外膨張弁で減圧した後、室外熱交換器にて吸熱させ、吸熱した当該冷媒をアキュムレータに流し、このアキュムレータから圧縮機に吸い込ませる暖房モードと、第1の開閉弁を開き、第2の開閉弁を閉じ、室外膨張弁を全開とすることで、圧縮機から吐出された冷媒を放熱器から室外熱交換器に流して当該室外熱交換器にて放熱させ、放熱した当該冷媒をレシーバに流し、減圧した後、吸熱器にて吸熱させる冷房モードを切り換えて実行するものであって、制御装置は、暖房モードから冷房モードに切り換える際、室外熱交換器から出た冷媒をレシーバに流す状態に切り換え、室外膨張弁を全開とした後、圧縮機の回転数を制御し、若しくは、停止させることで第2の開閉弁前後の圧力差を縮小した後、圧縮機の制御を冷房モードにおける制御に移行させることを特徴とする。
請求項9の発明の車両用空気調和装置は、上記発明において制御装置は、圧縮機の回転数を予め定めた低い値とすることで第2の開閉弁前後の圧力差を縮小させ、当該圧力差が所定値以下となった場合に、若しくは、圧縮機の回転数を前記低い値としてから所定時間経過後に、圧縮機の制御を冷房モードにおける制御に移行させることを特徴とする。
請求項10の発明の車両用空気調和装置は、請求項8の発明において制御装置は、圧縮機を停止させることで第2の開閉弁前後の圧力差を縮小させ、当該圧力差が所定値以下となった場合に、若しくは、圧縮機を停止させてから所定時間経過後に、圧縮機の制御を冷房モードにおける制御に移行させ、且つ、移行するまで圧縮機の回転数の上昇速度を低下させることを特徴とする。
請求項11の発明の車両用空気調和装置は、請求項8の発明において制御装置は、第2の開閉弁前後の圧力差が所定値以下となるように圧縮機の回転数を調整し、当該圧力差が所定値以下となった場合に、若しくは、圧縮機の回転数の調整を開始してから所定時間経過後に、圧縮機の制御を冷房モードにおける制御に移行させ、且つ、移行するまで圧縮機の回転数の上昇速度を低下させることを特徴とする。
請求項12の発明の車両用空気調和装置は、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、車室外に設けられた室外熱交換器と、放熱器を出て室外熱交換器に流入する冷媒を減圧するための室外膨張弁と、圧縮機の吐出側と放熱器の入口側の間に設けられた第1の開閉弁と、この第1の開閉弁の上流側で分岐し、放熱器及び室外膨張弁をバイパスして圧縮機から吐出された冷媒を室外熱交換器に流すためのバイパス配管と、このバイパス配管に設けられた第2の開閉弁と、圧縮機の冷媒吸込側に接続されたアキュムレータと、室外熱交換器の冷媒下流側に接続されたレシーバと、制御装置を備え、この制御装置により、第1の開閉弁を開き、第2の開閉弁を閉じることで、圧縮機から吐出された冷媒を放熱器に流して放熱させ、放熱した当該冷媒を室外膨張弁で減圧した後、室外熱交換器にて吸熱させ、吸熱した当該冷媒をアキュムレータに流し、このアキュムレータから圧縮機に吸い込ませる暖房モードと、第1の開閉弁を開き、第2の開閉弁を閉じることで、圧縮機から吐出された冷媒を放熱器から室外熱交換器に流して当該放熱器及び室外熱交換器にて放熱させ、放熱した当該冷媒をレシーバに流し、減圧した後、吸熱器にて吸熱させる除湿冷房モードを切り換えて実行するものであって、制御装置は、暖房モードから除湿冷房モードに切り換える際、室外熱交換器から出た冷媒をレシーバに流す状態に切り換え、室外膨張弁の制御を除湿冷房モードにおける制御に移行した後、圧縮機の回転数を制御し、若しくは、停止させることで第2の開閉弁前後の圧力差を縮小した後、圧縮機の制御を除湿冷房モードにおける制御に移行させることを特徴とする。
請求項13の発明の車両用空気調和装置は、上記発明において制御装置は、圧縮機の回転数を予め定めた低い値とすることで第2の開閉弁前後の圧力差を縮小させ、当該圧力差が所定値以下となった場合に、若しくは、圧縮機の回転数を前記低い値としてから所定時間経過後に、圧縮機の制御を除湿冷房モードにおける制御に移行させることを特徴とする。
請求項14の発明の車両用空気調和装置は、請求項12の発明において制御装置は、圧縮機を停止させることで第2の開閉弁前後の圧力差を縮小させ、当該圧力差が所定値以下となった場合に、若しくは、圧縮機を停止させてから所定時間経過後に、圧縮機の制御を除湿冷房モードにおける制御に移行させ、且つ、移行するまで圧縮機の回転数の上昇速度を低下させることを特徴とする。
請求項15の発明の車両用空気調和装置は、請求項12の発明において制御装置は、第2の開閉弁前後の圧力差が所定値以下となるように圧縮機の回転数を調整し、当該圧力差が所定値以下となった場合に、若しくは、圧縮機の回転数の調整を開始してから所定時間経過後に、圧縮機の制御を除湿冷房モードにおける制御に移行させ、且つ、移行するまで圧縮機の回転数の上昇速度を低下させることを特徴とする。
請求項2の発明の車両用空気調和装置は、上記発明において制御装置は、第2の開閉弁前後の圧力差が所定値以下となるように圧縮機の回転数を調整し、当該圧力差が所定値以下となった場合に第2の開閉弁を開き、第1の開閉弁を閉じ、室外膨張弁を全閉とした後、圧縮機の制御を除湿暖房モード又は最大冷房モードにおける制御に移行させると共に、移行するまで圧縮機の回転数の上昇速度を低下させることを特徴とする。
請求項3の発明の車両用空気調和装置は、請求項1の発明において制御装置は、圧縮機の回転数を予め定めた低い値とし、第2の開閉弁前後の圧力差が所定値以下となった場合に、当該第2の開閉弁を開き、第1の開閉弁を閉じ、室外膨張弁を全閉とし、且つ、圧縮機の制御を除湿暖房モード又は最大冷房モードにおける制御に移行させ、若しくは、室外膨張弁が全閉となった後、圧縮機の制御を除湿暖房モード又は最大冷房モードにおける制御に移行させることを特徴とする。
請求項4の発明の車両用空気調和装置は、請求項1の発明において制御装置は、圧縮機を停止させ、第2の開閉弁前後の圧力差が所定値以下となった場合に、若しくは、圧縮機を停止してから所定時間経過後に第2の開閉弁を開き、第1の開閉弁を閉じ、室外膨張弁を全閉とし、且つ、圧縮機の制御を除湿暖房モード又は最大冷房モードにおける制御に移行させ、若しくは、室外膨張弁が全閉となった後、圧縮機の制御を除湿暖房モード又は最大冷房モードにおける制御に移行させると共に、移行するまで圧縮機の回転数の上昇速度を低下させることを特徴とする。
請求項5の発明の車両用空気調和装置は、上記発明において制御装置は、第2の開閉弁前後の圧力差が所定値以下となってから第2の所定時間が経過するまでは当該圧縮機の回転数の上昇を禁止することを特徴とする。
請求項6の発明の車両用空気調和装置は、請求項1の発明において制御装置は、圧縮機の回転数を予め定めた低い値とし、第2の開閉弁前後の圧力差が所定値以下となった場合に、若しくは、圧縮機の回転数を前記低い値としてから所定時間経過後に第2の開閉弁を開き、第1の開閉弁を閉じ、室外膨張弁を全閉とし、且つ、圧縮機の制御を除湿暖房モード又は最大冷房モードにおける制御に移行させ、若しくは、室外膨張弁が全閉となった後、圧縮機の制御を除湿暖房モード又は最大冷房モードにおける制御に移行させると共に、移行するまで圧縮機の回転数の上昇速度を低下させることを特徴とする。
請求項7の発明の車両用空気調和装置は、上記各発明において制御装置は、暖房モードから除湿暖房モードに切り換える際、補助加熱装置を発熱させ、当該補助加熱装置の温度が所定値以上となった場合に、室外熱交換器から出た冷媒をレシーバに流す状態に切り換え、且つ、室外膨張弁の弁開度を拡大することを特徴とする。
請求項8の発明の車両用空気調和装置は、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、車室外に設けられた室外熱交換器と、放熱器を出て室外熱交換器に流入する冷媒を減圧するための室外膨張弁と、圧縮機の吐出側と放熱器の入口側の間に設けられた第1の開閉弁と、この第1の開閉弁の上流側で分岐し、放熱器及び室外膨張弁をバイパスして圧縮機から吐出された冷媒を室外熱交換器に流すためのバイパス配管と、このバイパス配管に設けられた第2の開閉弁と、圧縮機の冷媒吸込側に接続されたアキュムレータと、室外熱交換器の冷媒下流側に接続されたレシーバと、制御装置を備え、この制御装置により、第1の開閉弁を開き、第2の開閉弁を閉じることで、圧縮機から吐出された冷媒を放熱器に流して放熱させ、放熱した当該冷媒を室外膨張弁で減圧した後、室外熱交換器にて吸熱させ、吸熱した当該冷媒をアキュムレータに流し、このアキュムレータから圧縮機に吸い込ませる暖房モードと、第1の開閉弁を開き、第2の開閉弁を閉じ、室外膨張弁を全開とすることで、圧縮機から吐出された冷媒を放熱器から室外熱交換器に流して当該室外熱交換器にて放熱させ、放熱した当該冷媒をレシーバに流し、減圧した後、吸熱器にて吸熱させる冷房モードを切り換えて実行するものであって、制御装置は、暖房モードから冷房モードに切り換える際、室外熱交換器から出た冷媒をレシーバに流す状態に切り換え、室外膨張弁を全開とした後、圧縮機の回転数を制御し、若しくは、停止させることで第2の開閉弁前後の圧力差を縮小した後、圧縮機の制御を冷房モードにおける制御に移行させることを特徴とする。
請求項9の発明の車両用空気調和装置は、上記発明において制御装置は、圧縮機の回転数を予め定めた低い値とすることで第2の開閉弁前後の圧力差を縮小させ、当該圧力差が所定値以下となった場合に、若しくは、圧縮機の回転数を前記低い値としてから所定時間経過後に、圧縮機の制御を冷房モードにおける制御に移行させることを特徴とする。
請求項10の発明の車両用空気調和装置は、請求項8の発明において制御装置は、圧縮機を停止させることで第2の開閉弁前後の圧力差を縮小させ、当該圧力差が所定値以下となった場合に、若しくは、圧縮機を停止させてから所定時間経過後に、圧縮機の制御を冷房モードにおける制御に移行させ、且つ、移行するまで圧縮機の回転数の上昇速度を低下させることを特徴とする。
請求項11の発明の車両用空気調和装置は、請求項8の発明において制御装置は、第2の開閉弁前後の圧力差が所定値以下となるように圧縮機の回転数を調整し、当該圧力差が所定値以下となった場合に、若しくは、圧縮機の回転数の調整を開始してから所定時間経過後に、圧縮機の制御を冷房モードにおける制御に移行させ、且つ、移行するまで圧縮機の回転数の上昇速度を低下させることを特徴とする。
請求項12の発明の車両用空気調和装置は、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、車室外に設けられた室外熱交換器と、放熱器を出て室外熱交換器に流入する冷媒を減圧するための室外膨張弁と、圧縮機の吐出側と放熱器の入口側の間に設けられた第1の開閉弁と、この第1の開閉弁の上流側で分岐し、放熱器及び室外膨張弁をバイパスして圧縮機から吐出された冷媒を室外熱交換器に流すためのバイパス配管と、このバイパス配管に設けられた第2の開閉弁と、圧縮機の冷媒吸込側に接続されたアキュムレータと、室外熱交換器の冷媒下流側に接続されたレシーバと、制御装置を備え、この制御装置により、第1の開閉弁を開き、第2の開閉弁を閉じることで、圧縮機から吐出された冷媒を放熱器に流して放熱させ、放熱した当該冷媒を室外膨張弁で減圧した後、室外熱交換器にて吸熱させ、吸熱した当該冷媒をアキュムレータに流し、このアキュムレータから圧縮機に吸い込ませる暖房モードと、第1の開閉弁を開き、第2の開閉弁を閉じることで、圧縮機から吐出された冷媒を放熱器から室外熱交換器に流して当該放熱器及び室外熱交換器にて放熱させ、放熱した当該冷媒をレシーバに流し、減圧した後、吸熱器にて吸熱させる除湿冷房モードを切り換えて実行するものであって、制御装置は、暖房モードから除湿冷房モードに切り換える際、室外熱交換器から出た冷媒をレシーバに流す状態に切り換え、室外膨張弁の制御を除湿冷房モードにおける制御に移行した後、圧縮機の回転数を制御し、若しくは、停止させることで第2の開閉弁前後の圧力差を縮小した後、圧縮機の制御を除湿冷房モードにおける制御に移行させることを特徴とする。
請求項13の発明の車両用空気調和装置は、上記発明において制御装置は、圧縮機の回転数を予め定めた低い値とすることで第2の開閉弁前後の圧力差を縮小させ、当該圧力差が所定値以下となった場合に、若しくは、圧縮機の回転数を前記低い値としてから所定時間経過後に、圧縮機の制御を除湿冷房モードにおける制御に移行させることを特徴とする。
請求項14の発明の車両用空気調和装置は、請求項12の発明において制御装置は、圧縮機を停止させることで第2の開閉弁前後の圧力差を縮小させ、当該圧力差が所定値以下となった場合に、若しくは、圧縮機を停止させてから所定時間経過後に、圧縮機の制御を除湿冷房モードにおける制御に移行させ、且つ、移行するまで圧縮機の回転数の上昇速度を低下させることを特徴とする。
請求項15の発明の車両用空気調和装置は、請求項12の発明において制御装置は、第2の開閉弁前後の圧力差が所定値以下となるように圧縮機の回転数を調整し、当該圧力差が所定値以下となった場合に、若しくは、圧縮機の回転数の調整を開始してから所定時間経過後に、圧縮機の制御を除湿冷房モードにおける制御に移行させ、且つ、移行するまで圧縮機の回転数の上昇速度を低下させることを特徴とする。
第2の開閉弁前後の圧力差が小さくなるということは、圧縮機の吐出圧力と室外熱交換器の出口側の圧力との差が小さくなることであり、これはアキュムレータから圧縮機に吸い込まれる冷媒量が減少することを意味する。
そこで、請求項1、請求項8又は請求項12の発明では、室外熱交換器から出た冷媒をアキュムレータに流す暖房モードから、冷媒をレシーバに流す除湿暖房モードや最大冷房モード、冷房モードや除湿冷房モードに切り換える際、室外熱交換器から出た冷媒をレシーバに流す状態に切り換えた後、制御装置が圧縮機の回転数を制御し、若しくは、停止させることで第2の開閉弁前後の圧力差を縮小させるようにしたので、アキュムレータからレシーバに冷媒が移動するモード切り換え時に、アキュムレータから圧縮機に多量の冷媒が吸い込まれて当該アキュムレータ内の圧力が急激に低下することを抑制することが可能となる。
これにより、暖房モードから除湿暖房モードや最大冷房モード、冷房モードや除湿冷房モードに切り換えたときのアキュムレータ内での冷媒の突沸を防止若しくは抑制し、圧縮機での液圧縮やアキュムレータ内での騒音の発生を効果的に解消若しくは抑制することができるようになり、車両用空気調和装置の信頼性を向上させ、搭乗者の快適性も効果的に改善することができるようになる。
特に、請求項2、請求項4~請求項6、請求項10、請求項11、請求項14又は請求項15の発明の如く、圧縮機の制御が移行後のモードにおける制御に移行するまで圧縮機の回転数の上昇速度を低下させるようにすれば、モード切り換え時のアキュムレータ内圧力の低下を一層抑制し、アキュムレータにおける突沸の発生をより効果的に防止若しくは抑制することが可能となる。
また、請求項2~4、請求項6、請求項9~請求項11、請求項13~請求項15の発明の如く、第2の開閉弁前後の圧力差が所定値以下となった場合に圧縮機の制御を移行後のモードの制御に移行させるようにすれば、的確にアキュムレータにおける突沸の発生を防止若しくは抑制することができるようになる。
尚、請求項4、請求項6、請求項9~請求項11、請求項13~請求項15の発明の如く、所定時間経過後に圧縮機の制御を移行後のモードの制御に移行させるようにしても、有効にアキュムレータにおける突沸の発生を防止若しくは抑制することができるようになる。更に、請求項5の発明の如く第2の開閉弁前後の圧力差が所定値以下となって第2の所定時間が経過するまで圧縮機の回転数上昇を禁止するようにしても効果的である。
更にまた、請求項7の発明の如く暖房モードから除湿暖房モードへの切り換え時に、補助加熱装置を発熱させることで、モード切り換え時に圧縮機の回転数を制御することによって発生する吹出温度の低下を解消し、快適な車室内空調を継続することができるようになる。
そこで、請求項1、請求項8又は請求項12の発明では、室外熱交換器から出た冷媒をアキュムレータに流す暖房モードから、冷媒をレシーバに流す除湿暖房モードや最大冷房モード、冷房モードや除湿冷房モードに切り換える際、室外熱交換器から出た冷媒をレシーバに流す状態に切り換えた後、制御装置が圧縮機の回転数を制御し、若しくは、停止させることで第2の開閉弁前後の圧力差を縮小させるようにしたので、アキュムレータからレシーバに冷媒が移動するモード切り換え時に、アキュムレータから圧縮機に多量の冷媒が吸い込まれて当該アキュムレータ内の圧力が急激に低下することを抑制することが可能となる。
これにより、暖房モードから除湿暖房モードや最大冷房モード、冷房モードや除湿冷房モードに切り換えたときのアキュムレータ内での冷媒の突沸を防止若しくは抑制し、圧縮機での液圧縮やアキュムレータ内での騒音の発生を効果的に解消若しくは抑制することができるようになり、車両用空気調和装置の信頼性を向上させ、搭乗者の快適性も効果的に改善することができるようになる。
特に、請求項2、請求項4~請求項6、請求項10、請求項11、請求項14又は請求項15の発明の如く、圧縮機の制御が移行後のモードにおける制御に移行するまで圧縮機の回転数の上昇速度を低下させるようにすれば、モード切り換え時のアキュムレータ内圧力の低下を一層抑制し、アキュムレータにおける突沸の発生をより効果的に防止若しくは抑制することが可能となる。
また、請求項2~4、請求項6、請求項9~請求項11、請求項13~請求項15の発明の如く、第2の開閉弁前後の圧力差が所定値以下となった場合に圧縮機の制御を移行後のモードの制御に移行させるようにすれば、的確にアキュムレータにおける突沸の発生を防止若しくは抑制することができるようになる。
尚、請求項4、請求項6、請求項9~請求項11、請求項13~請求項15の発明の如く、所定時間経過後に圧縮機の制御を移行後のモードの制御に移行させるようにしても、有効にアキュムレータにおける突沸の発生を防止若しくは抑制することができるようになる。更に、請求項5の発明の如く第2の開閉弁前後の圧力差が所定値以下となって第2の所定時間が経過するまで圧縮機の回転数上昇を禁止するようにしても効果的である。
更にまた、請求項7の発明の如く暖房モードから除湿暖房モードへの切り換え時に、補助加熱装置を発熱させることで、モード切り換え時に圧縮機の回転数を制御することによって発生する吹出温度の低下を解消し、快適な車室内空調を継続することができるようになる。
以下、本発明の実施の形態について、図面に基づき詳細に説明する。
図1は本発明の一実施例の車両用空気調和装置1の構成図を示している。本発明を適用する実施例の車両は、エンジン(内燃機関)が搭載されていない電気自動車(EV)であって、バッテリに充電された電力で走行用の電動モータを駆動して走行するものであり(何れも図示せず)、本発明の車両用空気調和装置1も、バッテリの電力で駆動されるものとする。即ち、実施例の車両用空気調和装置1は、エンジン廃熱による暖房ができない電気自動車において、冷媒回路を用いたヒートポンプ運転により暖房モードを行い、更に、除湿暖房モード、除湿冷房モード、冷房モード、MAX冷房モード(最大冷房モード)の各運転モードを選択的に実行するものである。
尚、車両として電気自動車に限らず、エンジンと走行用の電動モータを供用する所謂ハイブリッド自動車にも本発明は有効であり、更には、エンジンで走行する通常の自動車にも適用可能であることは云うまでもない。
実施例の車両用空気調和装置1は、電気自動車の車室内の空調(暖房、冷房、除湿、及び、換気)を行うものであり、冷媒を圧縮する電動式の圧縮機2と、車室内空気が通気循環されるHVACユニット10の空気流通路3内に設けられ、圧縮機2から吐出された高温高圧の冷媒が冷媒配管13Gを介して流入し、この冷媒を車室内に放熱させる放熱器4と、暖房時に冷媒を減圧膨張させる電動弁から成る室外膨張弁6と、車室外に設けられて冷房時には放熱器として機能し、暖房時には蒸発器として機能すべく冷媒と外気との間で熱交換を行わせる室外熱交換器7と、冷媒を減圧膨張させる電動弁から成る室内膨張弁8と、空気流通路3内に設けられて冷房時及び除湿時に車室内外から冷媒に吸熱させる吸熱器9と、アキュムレータ12等が冷媒配管13により順次接続され、冷媒回路Rが構成されている。
そして、この冷媒回路Rには所定量の冷媒と潤滑用のオイルが充填されている。尚、室外熱交換器7には、室外送風機15が設けられている。この室外送風機15は、室外熱交換器7に外気を強制的に通風することにより、外気と冷媒とを熱交換させるものであり、これにより停車中(即ち、車速が0km/h)にも室外熱交換器7に外気が通風されるよう構成されている。
また、室外熱交換器7は冷媒下流側にレシーバドライヤ部14と過冷却部16を順次有し、室外熱交換器7から出た冷媒配管13Aは冷房時に開放される電磁弁17を介してレシーバドライヤ部14に接続され、過冷却部16の出口側の冷媒配管13Bは室内膨張弁8介して吸熱器9の入口側に接続されている。尚、レシーバドライヤ部14及び過冷却部16は構造的に室外熱交換器7の一部を構成している。
また、過冷却部16と室内膨張弁8間の冷媒配管13Bは、吸熱器9の出口側の冷媒配管13Cと熱交換関係に設けられ、両者で内部熱交換器19を構成している。これにより、冷媒配管13Bを経て室内膨張弁8に流入する冷媒は、吸熱器9を出た低温の冷媒により冷却(過冷却)される構成とされている。
また、室外熱交換器7から出た冷媒配管13Aは冷媒配管13Dに分岐しており、この分岐した冷媒配管13Dは、暖房時に開放される電磁弁21を介して内部熱交換器19の下流側における冷媒配管13Cに連通接続されている。この冷媒配管13Cがアキュムレータ12に接続され、アキュムレータ12は圧縮機2の冷媒吸込側に接続されている。更に、放熱器4の出口側の冷媒配管13Eは室外膨張弁6を介して室外熱交換器7の入口側に接続されている。
また、圧縮機2の吐出側と放熱器4の入口側の間の冷媒配管13Gには後述する除湿暖房とMAX冷房時に閉じられる電磁弁30(流路切換装置を構成する)が介設されている。この場合、冷媒配管13Gは電磁弁30の上流側でバイパス配管35に分岐しており、このバイパス配管35は除湿暖房とMAX冷房時に開放される電磁弁40(これも流路切換装置を構成する)を介して室外膨張弁6の下流側の冷媒配管13Eに連通接続されている。これらバイパス配管35、電磁弁30及び電磁弁40により本発明におけるバイパス装置45が構成される。
このようなバイパス配管35、電磁弁30及び電磁弁40によりバイパス装置45を構成したことで、後述する如く圧縮機2から吐出された冷媒を室外熱交換器7に直接流入させる除湿暖房モードやMAX冷房モードと、圧縮機2から吐出された冷媒を放熱器4に流入させる暖房モードや除湿冷房モード、冷房モードとの切り換えを円滑に行うことができるようになる。
また、吸熱器9の空気上流側における空気流通路3には、外気吸込口と内気吸込口の各吸込口が形成されており(図1では吸込口25で代表して示す)、この吸込口25には空気流通路3内に導入する空気を車室内の空気である内気(内気循環モード)と、車室外の空気である外気(外気導入モード)とに切り換える吸込切換ダンパ26が設けられている。更に、この吸込切換ダンパ26の空気下流側には、導入した内気や外気を空気流通路3に送給するための室内送風機(ブロワファン)27が設けられている。
また、図1において23は実施例の車両用空気調和装置1に設けられた補助加熱装置としての補助ヒータである。実施例の補助ヒータ23は電気ヒータであるPTCヒータにて構成されており、空気流通路3の空気の流れに対して、放熱器4の空気上流側となる空気流通路3内に設けられている。そして、補助ヒータ23に通電されて発熱すると、吸熱器9を経て放熱器4に流入する空気流通路3内の空気が加熱される。即ち、この補助ヒータ23が所謂ヒータコアとなり、車室内の暖房を行い、或いは、それを補完する。
また、補助ヒータ23の空気上流側における空気流通路3内には、当該空気流通路3内に流入し、吸熱器9を通過した後の空気流通路3内の空気(内気や外気)を補助ヒータ23及び放熱器4に通風する割合を調整するエアミックスダンパ28が設けられている。更に、放熱器4の空気下流側における空気流通路3には、FOOT(フット)、VENT(ベント)、DEF(デフ)の各吹出口(図1では代表して吹出口29で示す)が形成されており、この吹出口29には上記各吹出口から空気の吹き出しを切換制御する吹出口切換ダンパ31が設けられている。
次に、図2において32はプロセッサを備えたコンピュータの一例であるマイクロコンピュータから構成された制御装置としてのコントローラ(ECU)であり、このコントローラ32の入力には車両の外気温度(Tam)を検出する外気温度センサ33と、外気湿度を検出する外気湿度センサ34と、吸込口25から空気流通路3に吸い込まれる空気の温度を検出するHVAC吸込温度センサ36と、車室内の空気(内気)の温度を検出する内気温度センサ37と、車室内の空気の湿度を検出する内気湿度センサ38と、車室内の二酸化炭素濃度を検出する室内CO2濃度センサ39と、吹出口29から車室内に吹き出
される空気の温度を検出する吹出温度センサ41と、圧縮機2の吐出冷媒圧力(吐出圧力Pd)を検出する吐出圧力センサ42と、圧縮機2の吐出冷媒温度を検出する吐出温度センサ43と、圧縮機2の吸込冷媒圧力を検出する吸込圧力センサ44と、圧縮機2の吸込冷媒温度を検出する吸込温度センサ55と、放熱器4の温度(放熱器4を経た空気の温度、又は、放熱器4自体の温度:放熱器温度TH)を検出する放熱器温度センサ46と、放熱器4の冷媒圧力(放熱器4内、又は、放熱器4を出た直後の冷媒の圧力:放熱器圧力PCI)を検出する放熱器圧力センサ47と、吸熱器9の温度(吸熱器9を経た空気の温度、又は、吸熱器9自体の温度:吸熱器温度Te)を検出する吸熱器温度センサ48と、吸熱器9の冷媒圧力(吸熱器9内、又は、吸熱器9を出た直後の冷媒の圧力)を検出する吸熱器圧力センサ49と、車室内への日射量を検出するための例えばフォトセンサ式の日射センサ51と、車両の移動速度(車速)を検出するための車速センサ52と、設定温度や運転モードの切り換えを設定するための空調(エアコン)操作部53と、室外熱交換器7の温度(室外熱交換器7から出た直後の冷媒の温度、又は、室外熱交換器7自体の温度:室外熱交換器温度TXO)を検出する室外熱交換器温度センサ54と、室外熱交換器7の冷媒圧力(室外熱交換器7内、又は、室外熱交換器7から出た直後の冷媒の圧力:室外熱交換器圧力PXO)を検出する室外熱交換器圧力センサ56の各出力が接続されている。また、コントローラ32の入力には更に、補助ヒータ23の温度(補助ヒータ23で加熱された直後の空気の温度、又は、補助ヒータ23自体の温度:補助ヒータ温度Tptc)を検出する補助ヒータ温度センサ50の出力も接続されている。
一方、コントローラ32の出力には、前記圧縮機2と、室外送風機15と、室内送風機(ブロワファン)27と、吸込切換ダンパ26と、エアミックスダンパ28と、吹出口切換ダンパ31と、室外膨張弁6、室内膨張弁8と、補助ヒータ23、電磁弁30(除湿用)、電磁弁17(冷房用)、電磁弁21(暖房用)、電磁弁40(これも除湿用)の各電磁弁が接続されている。そして、コントローラ32は各センサの出力と空調操作部53にて入力された設定に基づいてこれらを制御する。
以上の構成で、次に実施例の車両用空気調和装置1の動作を説明する。コントローラ32は実施例では暖房モード、除湿暖房モード、除湿冷房モード、冷房モード及びMAX冷房モード(最大冷房モード)の各運転モードを切り換えて実行する。先ず、各運転モードにおける冷媒の流れと制御の概略について説明する。
(1)暖房モード
コントローラ32により(オートモード)或いは空調操作部53へのマニュアル操作(マニュアルモード)により暖房モードが選択されると、コントローラ32は電磁弁21(暖房用)を開放し、電磁弁17(冷房用)を閉じる。また、電磁弁30(除湿用)を開放し、電磁弁40(除湿用)を閉じる。
そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は図1に破線で示す如く、室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の全ての空気が補助ヒータ23及び放熱器4に通風される状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は電磁弁30を経て冷媒配管13Gから放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒(補助ヒータ23が動作するときは当該補助ヒータ23及び放熱器4)により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化する。
放熱器4内で液化した冷媒は当該放熱器4を出た後、冷媒配管13Eを経て室外膨張弁6に至る。室外膨張弁6に流入した冷媒はそこで減圧された後、室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は蒸発し、走行により、或いは、室外送風機15にて通風される外気中から熱を汲み上げる。即ち、冷媒回路Rがヒートポンプとなる。そして、室外熱交換器7を出た低温の冷媒は冷媒配管13A及び電磁弁21及び冷媒配管13Dを経て冷媒配管13Cからアキュムレータ12に入り、そこで気液分離された後、ガス冷媒が圧縮機2に吸い込まれる循環を繰り返す。放熱器4(補助ヒータ23が動作するときは当該補助ヒータ23及び放熱器4)にて加熱された空気は吹出口29から吹き出されるので、これにより車室内の暖房が行われることになる。
コントローラ32は、後述する目標吹出温度TAOから算出される目標放熱器温度TCO(放熱器温度THの目標値)から目標放熱器圧力PCO(放熱器圧力PCIの目標値)を算出し、この目標放熱器圧力PCOと、放熱器圧力センサ47が検出する放熱器4の冷媒圧力(放熱器圧力PCI。冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数を制御する。また、コントローラ32は、放熱器温度センサ46が検出する放熱器4の温度(放熱器温度TH)及び放熱器圧力センサ47が検出する放熱器圧力PCIに基づいて室外膨張弁6の弁開度を制御し、放熱器4の出口における冷媒の過冷却度SCを制御する。前記目標放熱器温度TCOは基本的にはTCO=TAOとされるが、制御上の所定の制限が設けられる。
また、コントローラ32はこの暖房モードにおいては、車室内空調に要求される暖房能力に対して放熱器4による暖房能力が不足する場合、その不足する分を補助ヒータ23の発熱で補完するように補助ヒータ23の通電を制御する。それにより、快適な車室内暖房を実現し、且つ、室外熱交換器7の着霜も抑制する。このとき、補助ヒータ23は放熱器4の空気上流側に配置されているので、空気流通路3を流通する空気は放熱器4の前に補助ヒータ23に通風されることになる。
ここで、補助ヒータ23が放熱器4の空気下流側に配置されていると、実施例の如くPCTヒータで補助ヒータ23を構成した場合には、補助ヒータ23に流入する空気の温度が放熱器4によって上昇するため、PTCヒータの抵抗値が大きくなり、電流値も低くなって発熱量が低下してしまうが、放熱器4の空気上流側に補助ヒータ23を配置することで、実施例の如くPTCヒータから構成される補助ヒータ23の能力を十分に発揮させることができるようになる。
(2)除湿暖房モード
次に、除湿暖房モードでは、コントローラ32は電磁弁17を開放し、電磁弁21を閉じる。また、電磁弁30を閉じ、電磁弁40を開放すると共に、室外膨張弁6の弁開度は全閉とする。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は図1に破線で示す如く、室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の全ての空気が補助ヒータ23及び放熱器4に通風される状態とする。
これにより、圧縮機2から冷媒配管13Gに吐出された高温高圧のガス冷媒は、放熱器4に向かうこと無くバイパス配管35に流入し、電磁弁40を経て室外膨張弁6の下流側の冷媒配管13Eに至るようになる。このとき、室外膨張弁6は全閉とされているので、冷媒は室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
室外熱交換器7の過冷却部16を出た冷媒は冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気は冷却され、且つ、当該空気中の水分が吸熱器9に凝結して付着するので、空気流通路3内の空気は冷却され、且つ、除湿される。吸熱器9で蒸発した冷媒は内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。
このとき、室外膨張弁6の弁開度は全閉とされているので、圧縮機2から吐出された冷媒が室外膨張弁6から放熱器4に逆流入する不都合を抑制若しくは防止することが可能となる。これにより、冷媒循環量の低下を抑制若しくは解消して空調能力を確保することができるようになる。更に、この除湿暖房モードにおいてコントローラ32は、補助ヒータ23に通電して発熱させる。これにより、吸熱器9にて冷却され、且つ、除湿された空気は補助ヒータ23を通過する過程で更に加熱され、温度が上昇するので車室内の除湿暖房が行われることになる。
コントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)とその目標値である目標吸熱器温度TEOに基づいて圧縮機2の回転数を制御すると共に、補助ヒータ温度センサ50が検出する補助ヒータ温度Tptcと前述した目標放熱器温度TCOに基づいて補助ヒータ23の通電(発熱)を制御することで、吸熱器9での空気の冷却と除湿を適切に行いながら、補助ヒータ23による加熱で吹出口29から車室内に吹き出される空気温度の低下を的確に防止する。
これにより、車室内に吹き出される空気を除湿しながら、その温度を適切な暖房温度に制御することが可能となり、車室内の快適且つ効率的な除湿暖房を実現することができるようになる。また、前述した如く除湿暖房モードではエアミックスダンパ28は空気流通路3内の全ての空気を補助ヒータ23及び放熱器4に通風する状態とされるので、吸熱器9を経た空気を効率良く補助ヒータ23で加熱して省エネ性を向上させ、且つ、除湿暖房空調の制御性も向上させることができるようになる。
尚、補助ヒータ23は放熱器4の空気上流側に配置されているので、補助ヒータ23で加熱された空気は放熱器4を通過することになるが、この除湿暖房モードでは放熱器4に冷媒は流されないので、補助ヒータ23にて加熱された空気から放熱器4が吸熱してしまう不都合も解消される。即ち、放熱器4によって車室内に吹き出される空気の温度が低下してしまうことが抑制され、COPも向上することになる。
(3)除湿冷房モード
次に、除湿冷房モードでは、コントローラ32は電磁弁17を開放し、電磁弁21を閉じる。また、電磁弁30を開放し、電磁弁40を閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は図1に破線で示す如く、室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の全ての空気が補助ヒータ23及び放熱器4に通風される状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は電磁弁30を経て冷媒配管13Gから放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化していく。
放熱器4を出た冷媒は冷媒配管13Eを経て室外膨張弁6に至り、開き気味で制御される室外膨張弁6を経て室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
室外熱交換器7の過冷却部16を出た冷媒は冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
吸熱器9で蒸発した冷媒は内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。この除湿冷房モードではコントローラ32は補助ヒータ23に通電しないので、吸熱器9にて冷却され、除湿された空気は放熱器4を通過する過程で再加熱(暖房時よりも放熱能力は低い)される。これにより車室内の除湿冷房が行われることになる。
コントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)に基づいて圧縮機2の回転数を制御すると共に、前述した冷媒回路Rの高圧圧力に基づいて室外膨張弁6の弁開度を制御し、放熱器4の冷媒圧力(放熱器圧力PCI)を制御する。
(4)冷房モード
次に、冷房モードでは、コントローラ32は上記除湿冷房モードの状態において室外膨張弁6の弁開度を全開とする。尚、コントローラ32はエアミックスダンパ28を制御し、図1に実線で示す如く、室内送風機27から吹き出されて吸熱器9を通過した後の空気流通路3内の空気が、補助ヒータ23及び放熱器4に通風される割合を調整する。また、コントローラ32は補助ヒータ23に通電しない。
これにより、圧縮機2から吐出された高温高圧のガス冷媒は電磁弁30を経て冷媒配管13Gから放熱器4に流入すると共に、放熱器4を出た冷媒は冷媒配管13Eを経て室外膨張弁6に至る。このとき室外膨張弁6は全開とされているので冷媒はそれを通過し、そのまま室外熱交換器7に流入し、そこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮液化する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
室外熱交換器7の過冷却部16を出た冷媒は冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気は冷却される。また、空気中の水分は吸熱器9に凝結して付着する。
吸熱器9で蒸発した冷媒は内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却され、除湿された空気が吹出口29から車室内に吹き出されるので(一部は放熱器4を通過して熱交換する)、これにより車室内の冷房が行われることになる。また、この冷房モードにおいては、コントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)とその目標値である目標吸熱器温度TEOに基づいて圧縮機2の回転数を制御する。
(5)MAX冷房モード(最大冷房モード)
次に、最大冷房モードとしてのMAX冷房モードでは、コントローラ32は電磁弁17を開放し、電磁弁21を閉じる。また、電磁弁30を閉じ、電磁弁40を開放すると共に、室外膨張弁6の弁開度は全閉とする。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は図3に示す如く補助ヒータ23及び放熱器4に空気流通路3内の空気が通風されない状態とする。但し、多少通風されても支障はない。また、コントローラ32は補助ヒータ23に通電しない。
これにより、圧縮機2から冷媒配管13Gに吐出された高温高圧のガス冷媒は、放熱器4に向かうこと無くバイパス配管35に流入し、電磁弁40を経て室外膨張弁6の下流側の冷媒配管13Eに至るようになる。このとき、室外膨張弁6は全閉とされているので、冷媒は室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
室外熱交換器7の過冷却部16を出た冷媒は冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気は冷却される。また、空気中の水分は吸熱器9に凝結して付着するので、空気流通路3内の空気は除湿される。吸熱器9で蒸発した冷媒は内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。このとき、室外膨張弁6は全閉とされているので、同様に圧縮機2から吐出された冷媒が室外膨張弁6から放熱器4に逆流入する不都合を抑制若しくは防止することが可能となる。これにより、冷媒循環量の低下を抑制若しくは解消して空調能力を確保することができるようになる。
ここで、前述した冷房モードでは放熱器4に高温の冷媒が流れているため、放熱器4からHVACユニット10への直接の熱伝導が少なからず生じるが、このMAX冷房モードでは放熱器4に冷媒が流れないため、放熱器4からHVACユニット10に伝達される熱で吸熱器9からの空気流通路3内の空気が加熱されることも無くなる。そのため、車室内の強力な冷房が行われ、特に外気温度Tamが高いような環境下では、迅速に車室内を冷房して快適な車室内空調を実現することができるようになる。また、このMAX冷房モードにおいても、コントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)とその目標値である目標吸熱器温度TEOに基づいて圧縮機2の回転数を制御する。
(6)運転モードの切換
空気流通路3内を流通される空気は上記各運転モードにおいて吸熱器9からの冷却や放熱器4(及び補助ヒータ23)からの加熱作用(エアミックスダンパ28で調整)を受けて吹出口29から車室内に吹き出される。コントローラ32は外気温度センサ33が検出する外気温度Tam、内気温度センサ37が検出する車室内の温度、前記ブロワ電圧、日射センサ51が検出する日射量等と、空調操作部53にて設定された車室内の目標車室内温度(設定温度)とに基づいて目標吹出温度TAOを算出し、各運転モードを切り換えて吹出口29から吹き出される空気の温度をこの目標吹出温度TAOに制御する。
この場合、コントローラ32は、外気温度Tam、車室内の湿度、目標吹出温度TAO、放熱器温度TH、目標放熱器温度TCO、吸熱器温度Te、目標吸熱器温度TEO、車室内の除湿要求の有無、等のパラメータに基づいて各運転モードの切り換えを行うことで、環境条件や除湿の要否に応じて的確に暖房モード、除湿暖房モード、除湿冷房モード、冷房モード及びMAX冷房モードを切り換え、快適且つ効率的な車室内空調を実現する。
(7)暖房モードから除湿暖房モード又はMAX冷房モードへの切り換え時の突沸対策制御
次に、図4、図5を参照しながら、車両用空気調和装置1の運転モードを、前述した暖房モードから除湿暖房モード又はMAX冷房モードに切り換える際にコントローラ32が実行する突沸対策制御の例について説明する。図4、図5のタイミングチャートは、暖房モードから除湿暖房モード、又は、MAX冷房モードに切り換わる際の電磁弁40(本発明の第2の開閉弁)の前後の圧力差ΔPdxと、電磁弁30(本発明の第1の開閉弁)の前後の圧力差ΔPixと、圧縮機2の回転数NCと、室外膨張弁6の弁開度と、電磁弁40、電磁弁30、電磁弁17(第4の開閉弁)及び電磁弁21(第3の開閉弁)の状態を示している。
尚、電磁弁40(第2の開閉弁)の前後の圧力差ΔPdxは、吐出圧力センサ42が検出する電磁弁40の冷媒上流側(前)の圧力Pdと、室外熱交換器温度センサ54が検出する室外熱交換器7から出た直後の冷媒の温度(室外熱交換器温度TXO)から換算される電磁弁40の冷媒下流側(後)の室外熱交換器圧力PXO(実施例の如く室外熱交換器圧力センサ56が設けられている場合には、室外熱交換器圧力センサ56が検出する室外熱交換器圧力PCOを用いてもよい)との差(ΔPdx=Pd−PXO)であり、コントローラ32が算出する。
また、電磁弁30(第1の開閉弁)の前後の圧力差ΔPixは、吐出圧力センサ42が検出する電磁弁30の冷媒上流側(前)の圧力Pdと、放熱器圧力センサ47が検出する電磁弁30の冷媒下流側(後)の圧力である放熱器圧力PCIとの差(ΔPix=Pd−PCI)であり、コントローラ32が算出する。
(7−1)暖房モードから除湿暖房モード又はMAX冷房モードへの切り換え時の突沸対策制御(その1)
運転モードが暖房モードから除湿暖房モード又はMAX冷房モードに切り換わる際、暖房モードにおいては室外熱交換器7から電磁弁21を経てアキュムレータ12に流れていた冷媒は、室外熱交換器7から電磁弁17を経てレシーバドライヤ部14(本発明のレシーバ)に流れる状態に切り換わる。即ち、アキュムレータ12内に溜まっていた冷媒がレシーバドライヤ部14に移動するかたちとなる。そのため、モード切り換え後に圧縮機2の回転数が高くなると、アキュムレータ12内の圧力が急激に下がり、突沸が発生して圧縮機2へ過剰な液戻りや音(騒音)が発生することになる。
そこで、コントローラ32は暖房モードから除湿暖房モード又はMAX冷房モードに運転モードを切り換える際、以下に説明する突沸対策制御を実行する。コントローラ32は暖房モードから除湿暖房モード又はMAX冷房モードに切り換える場合、先ず、電磁弁17を開き、電磁弁21を閉じて室外熱交換器7から出た冷媒がレシーバドライヤ部14に流れる状態とする。また、電磁弁40の前後の圧力差Pdxが所定値A(例えば、0.2MPa等)以下となるように、圧縮機2の回転数NCを調整(下げる方向に制御)すると共に、室外膨張弁6の弁開度を全開状態に移行させる。
圧縮機2の回転数NCを下げる方向に調整することで、吐出圧力Pdは低下すると共に、室外膨張弁6を全開とすることで、室外熱交換器圧力PXOは上昇するため、電磁弁40の前後の圧力差Pdx(=Pd−PXO)は小さくなっていく。そして、圧力差ΔPdxが図4中の所定値A以下となった場合、コントローラ32は電磁弁40を開くと共に、電磁弁30を閉じ、室外膨張弁6を全閉状態に移行させ、圧縮機2の制御を除湿暖房モード又はMAX冷房モードでの制御に移行することで、除湿暖房モード又はMAX冷房モードの空調運転に移行する。
ここで、前述した圧縮機2の回転数NCの制御では、当該回転数NCを上昇させる際の通常の上昇速度(単位時間当たりに上昇させるHz)が決められているが、この実施例の場合、除湿暖房モード又はMAX冷房モードでの制御に移行するまで、図4に実線L1で示す如く圧縮機2の回転数NCの上昇速度を、上記通常時の上昇速度(図4の実線L2を参照)よりも低下させる。即ち、単位時間当たりに上昇させるHzを小さくする(実線L1は後述する所定回転数NC1から立ち上がっているが、実際にはNC1に限らない)。
この実施例では、上記のように電磁弁40の前後の圧力差ΔPdxを小さくすることで、アキュムレータ12から圧縮機2に吸い込まれる冷媒量は減少するので、アキュムレータ12からレシーバドライヤ部14に冷媒が移動する暖房モードから除湿暖房モード(又は、MAX冷房モード)への切り換え時に、アキュムレータ12から圧縮機2に多量の冷媒が吸い込まれてアキュムレータ12内の圧力が急激に低下することが抑制され、アキュムレータ12内での冷媒の突沸が防止若しくは抑制される。
特に、圧縮機2の制御は除湿暖房モードやMAX冷房モードの制御に移行するまで上昇速度が低下されるので、モード切り換え時のアキュムレータ12内圧力の低下は一層抑制されることになる。また、電磁弁40の前後の圧力差ΔPdxが所定値A以下となった場合に圧縮機2の制御を除湿暖房モード(MAX冷房モード)の制御に移行させるので、的確にアキュムレータ12における突沸の発生を防止若しくは抑制することができるようになる。
(7−2)暖房モードから除湿暖房モード又はMAX冷房モードへの切り換え時の突沸対策制御(その2)
ここで、上記実施例の突沸対策制御(その1)では、コントローラ32が電磁弁40の前後の圧力差ΔPdxが所定値A以下となるように圧縮機2の回転数NCを制御するようにしたが、それに限らず、圧縮機2の回転数NCを予め定めた低い値である所定回転数NC1(図4。例えば、800rpm~1500rpm)とするようにしてもよい。圧縮機2の回転数NCを低い所定回転数NC1に制御し、室外膨張弁6を全開とすることで、吐出圧力Pdは低下し、室外熱交換器圧力PXOは上昇するため、電磁弁40の前後の圧力差Pdxは小さくなっていく。
そして、この場合も圧力差ΔPdxが前述した所定値A以下となった場合に、コントローラ32は電磁弁40を開くと共に、電磁弁30を閉じ、室外膨張弁6を全閉状態に移行する。同時に図4中に実線L2で示す如く圧縮機2の制御を除湿暖房モード又はMAX冷房モードでの制御に移行することで、除湿暖房モード又はMAX冷房モードの空調運転に移行する。このような突沸対策制御によっても、アキュムレータ12における突沸の発生を防止若しくは抑制することができるようになる。
(7−3)暖房モードから除湿暖房モード又はMAX冷房モードへの切り換え時の突沸対策制御(その3)
尚、上記実施例の突沸対策制御(その2)では、室外膨張弁6を全閉状態に移行すると同時に圧縮機2の制御を除湿暖房モード又はMAX冷房モードでの制御に移行するようにしたが、それに限らず、図4に実線L3で示す如く室外膨張弁6が全閉状態に移行を開始した後、当該室外膨張弁6が全閉となったことをコントローラ32が確認してから圧縮機2の制御を除湿暖房モード又はMAX冷房モードでの制御に移行するようにしてもよい。このような突沸対策制御によっても、アキュムレータ12における突沸の発生を防止若しくは抑制することができるようになる。
(7−4)暖房モードから除湿暖房モード又はMAX冷房モードへの切り換え時の突沸対策制御(その4)
また、突沸対策制御においては圧縮機2を停止するようにしてもよい(図4に合わせて示す)。圧縮機2を停止し、室外膨張弁6を全開とすることで、吐出圧力Pdは低下し、室外熱交換器圧力PXOは上昇するため、電磁弁40の前後の圧力差Pdxは小さくなっていく。そして、この場合も圧力差ΔPdxが前述した所定値A以下となった場合に、コントローラ32は電磁弁40を開くと共に、電磁弁30を閉じ、室外膨張弁6を全閉状態に移行する。同時に圧縮機2を起動して、その制御を除湿暖房モード又はMAX冷房モードでの制御に移行することで、除湿暖房モード又はMAX冷房モードの空調運転に移行するが、この場合も図4に実線L4で示す如く除湿暖房モード又はMAX冷房モードでの制御に移行するまで、圧縮機2の回転数NCの上昇速度を、通常時の上昇速度よりも低下させる。
(7−5)暖房モードから除湿暖房モード又はMAX冷房モードへの切り換え時の突沸対策制御(その5)
ここで、上記実施例の突沸対策制御(その4)では、電磁弁40の前後の圧力差Pdxが所定値A以下となった場合に、コントローラ32は電磁弁40を開き、電磁弁30を閉じ、室外膨張弁6を全閉状態に移行するようにしたが、それに限らず、圧縮機2を停止してから所定時間1(図4。例えば10秒等)が経過した後、電磁弁40を開き、電磁弁30を閉じ、室外膨張弁6を全閉状態に移行するようにしてもよい。
(7−6)暖房モードから除湿暖房モード又はMAX冷房モードへの切り換え時の突沸対策制御(その6)
尚、上記各実施例の突沸対策制御(その4、その5)では、室外膨張弁6を全閉状態に移行すると同時に圧縮機2の制御を除湿暖房モード又はMAX冷房モードでの制御に移行するようにしたが、この場合もそれに限らず、室外膨張弁6が全閉となったことを確認してから圧縮機2の制御を除湿暖房モード又はMAX冷房モードでの制御に移行するようにしてもよい。その場合も圧縮機2の回転数NCの上昇速度を、通常時の上昇速度よりも低下させる。これらのような突沸対策制御によっても、的確にアキュムレータ12における突沸の発生を防止若しくは抑制することができるようになる。
(7−7)暖房モードから除湿暖房モード又はMAX冷房モードへの切り換え時の突沸対策制御(その7)
また、前記実施例の突沸対策制御(その5)に加えて、電磁弁40の前後の圧力差ΔPdxが所定値A以下となってから第2の所定時間2(実施例では所定時間1よりも長い例えば20秒等)が経過するまでは、圧縮機2の回転数の上昇を禁止するようにしてもよい(図5に実線L5で示す)。それにより、一層効果的にアキュムレータ12における突沸の発生を防止若しくは抑制することができるようになる。
(7−8)暖房モードから除湿暖房モード又はMAX冷房モードへの切り換え時の突沸対策制御(その8)
ここで、前記実施例の突沸対策制御(その2)では、圧縮機2の回転数NCを予め定めた低い値である所定回転数NC1に制御し、室外膨張弁6を全開とすることで、電磁弁40の前後の圧力差Pdxは縮小させ、圧力差ΔPdxが前述した所定値A以下となった場合に、コントローラ32は電磁弁40を開くと共に、電磁弁30を閉じ、室外膨張弁6を全閉状態に移行する。そして、同時に圧縮機2の制御を除湿暖房モード又はMAX冷房モードでの制御に移行することで、除湿暖房モード又はMAX冷房モードの空調運転に移行するようにしたが、この場合も除湿暖房モード又はMAX冷房モードでの制御に移行するまで、図5に実線L6で示す如く圧縮機2の回転数NCの上昇速度を、通常時の上昇速度(図4の実線L2)よりも低下させるようにしてもよい。このような突沸対策制御によっても、的確にアキュムレータ12における突沸の発生を防止若しくは抑制することができるようになる。
(7−9)暖房モードから除湿暖房モード又はMAX冷房モードへの切り換え時の突沸対策制御(その9)
尚、上記実施例の突沸対策制御(その8)では、室外膨張弁6を全閉状態に移行すると同時に圧縮機2の制御を除湿暖房モード又はMAX冷房モードでの制御に移行するようにしたが、それに限らず、図5中実線L7で示す如く室外膨張弁6が全閉となったことを確認してから圧縮機2の制御を除湿暖房モード又はMAX冷房モードでの制御に移行するようにしてもよい。その場合も圧縮機2の回転数NCの上昇速度を、通常時の上昇速度(図4の実線L3)よりも低下させる。このような突沸対策制御によっても、的確にアキュムレータ12における突沸の発生を防止若しくは抑制することができるようになる。
(8)暖房モードから除湿暖房モードへの切り換え時の突沸対策制御
次に、図6を参照しながら、車両用空気調和装置1の運転モードを、暖房モードから除湿暖房モードに切り換える際にコントローラ32が実行する突沸対策制御の例について説明する。図6のタイミングチャートは、暖房モードから除湿暖房モードに切り換わる際の電磁弁40(第2の開閉弁)の前後の圧力差ΔPdxと、吹出温度センサ41が検出する吹出温度(前述した吹出口29から車室内に吹き出される空気の温度)と、補助ヒータ温度センサ50が検出する補助ヒータ温度Tptcと、圧縮機2の回転数NCと、室外膨張弁6の弁開度と、補助ヒータ23の出力(通電量若しくは発熱量)と、電磁弁40、電磁弁30(第1の開閉弁)、電磁弁17(第4の開閉弁)、及び、電磁弁21(第3の開閉弁)の状態を示している。
(8−1)暖房モードから除湿暖房モードへの切り換え時の突沸対策制御(その1)
この実施例では、コントローラ32は暖房モードから除湿暖房モードに切り換える場合、先ず、補助ヒータ23を発熱させ、その出力(通電量、或いは、発熱量)を増大させる。この場合、コントローラ32は除湿暖房モードにおける補助ヒータ23の出力の目標値C(図6)よりも予め定めた値分高い所定値D(図6)まで増大させる。これにより、補助ヒータ温度Tptcは上昇していく。
そして、補助ヒータ温度Tptcが図6中の所定値B以上となった場合、コントローラ32は電磁弁17を開き、電磁弁21を閉じる。これにより冷媒回路Rは、室外熱交換器7から出た冷媒が、レシーバドライヤ部14に流れ、その後、過冷却部16、内部熱交換器19、室内膨張弁8を経て吸熱器9に流れる状態に切り換わる。尚、コントローラ32はその後補助ヒータ23の出力を前述した除湿暖房モードでの目標値Cとするように制御する。
また、コントローラ32は補助ヒータ温度Tptcが所定値B以上となった場合、電磁弁40及び電磁弁30を切り換える前に、実施例では電磁弁40の前後の圧力差Pdxが前述した所定値A(0.2MPa等)以下となるように、室外膨張弁6の弁開度を拡大し、且つ、圧縮機2の回転数NCを調整(下げる方向に制御)する。室外膨張弁6の弁開度を拡大することで、室外熱交換器圧力PXOは上昇すると共に、圧縮機2の回転数NCを下げる方向に制御することで、吐出圧力Pdは低下するため、電磁弁40の前後の圧力差Pdx(=Pd−PXO)は小さくなっていく。
そして、圧力差ΔPdxが図6中の所定値A以下に縮小した場合、コントローラ32は電磁弁40を開くと共に、電磁弁30を閉じ、室外膨張弁6を全閉状態に移行させ、圧縮機2の制御を除湿暖房モードにおける制御に移行することで、除湿暖房モードの空調運転に移行する。更に、この場合も除湿暖房モードでの制御に移行するまで、圧縮機2の回転数NCの上昇速度を、通常時の上昇速度よりも低下させる。
(8−2)暖房モードから除湿暖房モードへの切り換え時の突沸対策制御(その2)
ここで、上記実施例では、コントローラ32が電磁弁40の前後の圧力差ΔPdxが所定値A以下となるように室外膨張弁6の弁開度を拡大し、且つ、圧縮機2の回転数NCを制御するようにしたが、それに限らず、室外膨張弁6の弁開度を全開(図6)とし、圧縮機2の回転数NCを予め定めた低い値である所定回転数NC1(図6。800rpm~1500rpm)とするようにしてもよい。室外膨張弁6を全開とし、且つ、圧縮機2の回転数NCを低い所定回転数NC1に制御することで、室外熱交換器圧力PXOは上昇し、吐出圧力Pdは低下するため、電磁弁40の前後の圧力差Pdxは小さくなっていく。そして、この場合も圧力差ΔPdxが前述した所定値A以下に縮小したとき、コントローラ32は電磁弁40を開くと共に、電磁弁30を閉じ、室外膨張弁6を全閉状態にすることで、除湿暖房モードの空調運転に移行する。
(8−3)暖房モードから除湿暖房モードへの切り換え時の突沸対策制御(その3)
また、上記実施例の突沸対策制御で、コントローラ32により室外膨張弁6を全開とし、且つ、圧縮機2の回転数NCを所定回転数NC1としてから予め定めた所定時間1(10秒等。図6)経過後に電磁弁40を開き、電磁弁30を閉じ、室外膨張弁6を全閉状態として除湿暖房モードの空調運転に移行するようにしてもよい。
(8−4)暖房モードから除湿暖房モードへの切り換え時の突沸対策制御(その4)
また、前記実施例の突沸対策制御で、コントローラ32により室外膨張弁6を全開に移行を開始した後、当該室外膨張弁6が全閉となったことをコントローラ32確認してから、図6に実線L8で示す如く圧縮機2の制御を除湿暖房モードでの制御に移行するようにしてもよい。
(8−5)暖房モードから除湿暖房モードへの切り換え時の突沸対策制御(その5)
更に、前記実施例の突沸対策制御に加えて、圧縮機2の回転数を所定回転数NC1としてから第2の所定時間2(実施例では所定時間1よりも長い例えば20秒等)が経過するまでは、圧縮機2の回転数の上昇を禁止するようにしてもよい(図6に実線L9で示す)。それにより、一層効果的にアキュムレータ12における突沸の発生を防止若しくは抑制することができるようになる。
前述した実施例((7)の突沸対策制御)では圧縮機2の回転数NCが低下するため、車室内に吹き出される空気の温度(吹出温度)が低下して快適性が悪化する危険性がある。しかしながら、この実施例((8)の突沸対策制御)では、コントローラ32は暖房モードから除湿暖房モードに切り換える際、先ず補助ヒータ23を発熱させ、当該補助ヒータ23の温度Tptcが所定値B以上となった場合に、室外熱交換器7から出た冷媒をレシーバドライヤ部14に流す状態に電磁弁17及び電磁弁21を切り換えると共に、突沸対策制御における圧縮機2や室外膨張弁6の制御を開始するようにしたので、図6に示されるように吹出温度は暖房モードから除湿暖房モードに切り換わる過程でも略一定に保たれるようになる。これにより、暖房モードから除湿暖房モードへの切り換え時に生じる吹出温度の低下が抑制され、快適な車室内空調を実現することができるようになる。
(9)暖房モードから冷房モードへの切り換え時の突沸対策制御
次に、図7を参照しながら、車両用空気調和装置1の運転モードを、暖房モードから冷房モードに切り換える際にコントローラ32が実行する突沸対策制御の例について説明する。
(9−1)暖房モードから冷房モードへの切り換え時の突沸対策制御(その1)
運転モードが暖房モードから冷房モードに切り換わる際も、暖房モードにおいては室外熱交換器7から電磁弁21を経てアキュムレータ12に流れていた冷媒は、室外熱交換器7から電磁弁17を経てレシーバドライヤ部14(レシーバ)に流れる状態に切り換わるので、モード切り換え後に圧縮機2の回転数が高くなると、アキュムレータ12内の圧力が急激に下がり、突沸が発生して圧縮機2へ過剰な液戻りや音(騒音)が発生することになる。
そこで、コントローラ32は暖房モードから冷房モードに運転モードを切り換える際も、以下に説明する突沸対策制御を実行する。コントローラ32は暖房モードから冷房モードに切り換える場合も、先ず、電磁弁17を開き、電磁弁21を閉じて室外熱交換器7から出た冷媒がレシーバドライヤ部14に流れる状態とする。また、圧縮機2の回転数NCを予め定めた低い値である所定回転数NC1(図7。800rpm~1500rpm)とすると共に、室外膨張弁6の弁開度を全開状態に移行させる。
圧縮機2の回転数NCを所定回転数NC1に下げることで、吐出圧力Pdは低下すると共に、室外膨張弁6を全開とすることで、室外熱交換器圧力PXOは上昇するため、電磁弁40の前後の圧力差Pdx(=Pd−PXO)は小さくなっていく。そして、圧力差ΔPdxが図7中の所定値A以下となった場合、図7に実線L10で示す如く圧縮機2の制御を冷房モードでの制御に移行することで、冷房モードの空調運転に移行する。
(9−2)暖房モードから冷房モードへの切り換え時の突沸対策制御(その2)
ここで、上記実施例(9−1)では電磁弁40の前後の圧力差ΔPdxが所定値A以下となった場合、圧縮機2の制御を冷房モードでの制御に移行するようにしたが、それに限らず、圧縮機2の回転数NCを所定回転数NC1に下げてから所定時間3(図7。例えば、10秒~60秒)が経過したことをコントローラ32が確認し、所定時間3が経過した場合に、図7に実線L11で示す如く圧縮機2の制御を冷房モードでの制御に移行するようにしてもよい。
(9−3)暖房モードから冷房モードへの切り換え時の突沸対策制御(その3)
また、暖房モードから冷房モードへの切り換え時の突沸対策制御において、圧縮機2を停止するようにしてもよい(図7に合わせて示す)。圧縮機2を停止することで、吐出圧力Pdは低下すると共に、室外膨張弁6を全開とすることで、室外熱交換器圧力PXOは上昇するため、電磁弁40の前後の圧力差Pdx(=Pd−PXO)は小さくなっていく。そして、この場合も圧力差ΔPdxが所定値A以下となった場合、圧縮機2の制御を冷房モードでの制御に移行することで、冷房モードの空調運転に移行する。更に、この場合は冷房モードでの制御に移行するまで、図7に破線L12で示す如く圧縮機2の回転数NCの上昇速度を、通常時の上昇速度よりも低下させる。
(9−4)暖房モードから冷房モードへの切り換え時の突沸対策制御(その4)
ここで、上記実施例(9−3)では電磁弁40の前後の圧力差ΔPdxが所定値A以下となった場合、圧縮機2の制御を冷房モードでの制御に移行するようにしたが、それに限らず、圧縮機2を停止してから所定時間3(図7。10秒~60秒)が経過したことをコントローラ32が確認し、所定時間3が経過した場合に、図7に実線L13で示す如く圧縮機2の制御を冷房モードでの制御に移行するようにしてもよい。
(9−5)暖房モードから冷房モードへの切り換え時の突沸対策制御(その5)
また、暖房モードから冷房モードへの切り換え時の突沸対策制御においてコントローラ32により、電磁弁40の前後の圧力差ΔPdxが所定値A以下となるように圧縮機2の回転数NCを調整するようにしてもよい。そして、この場合も圧力差ΔPdxが所定値A以下となった場合、圧縮機2の制御を冷房モードでの制御に移行することで、冷房モードの空調運転に移行する。更に、この場合も冷房モードでの制御に移行するまで、図7に実線L14で示す如く圧縮機2の回転数NCの上昇速度を、通常時の上昇速度よりも低下させる(実線L14は所定回転数NC1から立ち上がっているが、実際にはNC1に限らない)。
(9−6)暖房モードから冷房モードへの切り換え時の突沸対策制御(その6)
ここで、上記実施例(9−5)では電磁弁40の前後の圧力差ΔPdxが所定値A以下となった場合、圧縮機2の制御を冷房モードでの制御に移行するようにしたが、それに限らず、圧縮機2を停止してから所定時間3(図7。10秒~60秒)が経過したことをコントローラ32が確認し、所定時間3が経過した場合に、圧縮機2の制御を冷房モードでの制御に移行させ、この場合も冷房モードでの制御に移行するまで、圧縮機2の回転数NCの上昇速度を通常時の上昇速度よりも低下させるようにしてもよい。
このように電磁弁40の前後の圧力差ΔPdxを小さくすることで、アキュムレータ12から圧縮機2に吸い込まれる冷媒量は減少するので、アキュムレータ12からレシーバドライヤ部14に冷媒が移動する暖房モードから冷房モードへの切り換え時にも、アキュムレータ12から圧縮機2に多量の冷媒が吸い込まれてアキュムレータ12内の圧力が急激に低下することが抑制され、アキュムレータ12内での冷媒の突沸が防止若しくは抑制される。
特に、上記実施例(9−3)~(9−6)の如く圧縮機2の制御を冷房モードでの制御に移行するまでその回転数NCの上昇速度を低下させれば、モード切り換え時のアキュムレータ12内圧力の低下は一層抑制されることになる。また、(9)の各実施例の如く電磁弁40の前後の圧力差ΔPdxが所定値A以下となった場合に圧縮機2の制御を冷房モードの制御に移行させ、或いは、所定時間3の経過後に移行するようにすれば、的確にアキュムレータ12における突沸の発生を防止若しくは抑制することができるようになる。
(10)暖房モードから除湿冷房モードへの切り換え時の突沸対策制御
次に、図8を参照しながら、車両用空気調和装置1の運転モードを、暖房モードから除湿冷房モードに切り換える際にコントローラ32が実行する突沸対策制御の例について説明する。
(10−1)暖房モードから除湿冷房モードへの切り換え時の突沸対策制御(その1)
運転モードが暖房モードから除湿冷房モードに切り換わる際も、暖房モードにおいては室外熱交換器7から電磁弁21を経てアキュムレータ12に流れていた冷媒は、室外熱交換器7から電磁弁17を経てレシーバドライヤ部14(レシーバ)に流れる状態に切り換わるので、モード切り換え後に圧縮機2の回転数が高くなると、アキュムレータ12内の圧力が急激に下がり、突沸が発生して圧縮機2へ過剰な液戻りや音(騒音)が発生することになる。
そこで、コントローラ32は暖房モードから除湿冷房モードに運転モードを切り換える際も、以下に説明する突沸対策制御を実行する。コントローラ32は暖房モードから除湿冷房モードに切り換える場合も、先ず、電磁弁17を開き、電磁弁21を閉じて室外熱交換器7から出た冷媒がレシーバドライヤ部14に流れる状態とする。また、圧縮機2の回転数NCを予め定めた低い値である所定回転数NC1(図8。800rpm~1500rpm)とすると共に、室外膨張弁6の弁開度の制御を除湿冷房モードにおける制御に移行させる。
圧縮機2の回転数NCを所定回転数NC1に下げることで、吐出圧力Pdは低下すると共に、室外膨張弁6も除湿冷房モードにおける比較的大きい開度の制御となることで、室外熱交換器圧力PXOは上昇するため、電磁弁40の前後の圧力差Pdx(=Pd−PXO)は小さくなっていく。そして、圧力差ΔPdxが図8中の所定値A以下となった場合、図8に実線L15で示す如く圧縮機2の制御を除湿冷房モードでの制御に移行することで、除湿冷房モードの空調運転に移行する。
(10−2)暖房モードから除湿冷房モードへの切り換え時の突沸対策制御(その2)
ここで、上記実施例(10−1)では電磁弁40の前後の圧力差ΔPdxが所定値A以下となった場合、圧縮機2の制御を除湿冷房モードでの制御に移行するようにしたが、それに限らず、圧縮機2の回転数NCを所定回転数NC1に下げてから所定時間4(図8。例えば、10秒~30秒)が経過したことをコントローラ32が確認し、所定時間4が経過した場合に、図8に実線L16で示す如く圧縮機2の制御を除湿冷房モードでの制御に移行するようにしてもよい。
(10−3)暖房モードから除湿冷房モードへの切り換え時の突沸対策制御(その3)
また、暖房モードから除湿冷房モードへの切り換え時の突沸対策制御においては、圧縮機2を停止するようにしてもよい(図8に合わせて示す)。圧縮機2を停止することで、吐出圧力Pdは低下すると共に、室外膨張弁6の弁開度が拡大することで、室外熱交換器圧力PXOは上昇するため、電磁弁40の前後の圧力差Pdx(=Pd−PXO)は小さくなっていく。そして、この場合も圧力差ΔPdxが所定値A以下となった場合、圧縮機2の制御を除湿冷房モードでの制御に移行することで、除湿冷房モードの空調運転に移行する。更に、この場合は除湿冷房モードでの制御に移行するまで、図8に破線L17で示す如く圧縮機2の回転数NCの上昇速度を、通常時の上昇速度よりも低下させる。
(10−4)暖房モードから除湿冷房モードへの切り換え時の突沸対策制御(その4)
ここで、上記実施例(10−3)では電磁弁40の前後の圧力差ΔPdxが所定値A以下となった場合、圧縮機2の制御を除湿冷房モードでの制御に移行するようにしたが、それに限らず、圧縮機2を停止してから所定時間4(図8。10秒~30秒)が経過したことをコントローラ32が確認し、所定時間4が経過した場合に、図8に実線L18で示す如く圧縮機2の制御を除湿冷房モードでの制御に移行するようにしてもよい。
(10−5)暖房モードから除湿冷房モードへの切り換え時の突沸対策制御(その5)
また、暖房モードから除湿冷房モードへの切り換え時の突沸対策制御においてコントローラ32により、電磁弁40の前後の圧力差ΔPdxが所定値A以下となるように圧縮機2の回転数NCを調整するようにしてもよい。そして、この場合も圧力差ΔPdxが所定値A以下となった場合、圧縮機2の制御を除湿冷房モードでの制御に移行することで、除湿冷房モードの空調運転に移行する。更に、この場合も除湿冷房モードでの制御に移行するまで、図8に実線L19で示す如く圧縮機2の回転数NCの上昇速度を、通常時の上昇速度よりも低下させる(実線L19は所定回転数NC1から立ち上がっているが、実際にはNC1に限らない)。
(10−6)暖房モードから除湿冷房モードへの切り換え時の突沸対策制御(その6)
ここで、上記実施例(10−5)では電磁弁40の前後の圧力差ΔPdxが所定値A以下となった場合、圧縮機2の制御を除湿冷房モードでの制御に移行するようにしたが、それに限らず、圧縮機2を停止してから所定時間4(図8。10秒~30秒)が経過したことをコントローラ32が確認し、所定時間4が経過した場合に、圧縮機2の制御を除湿冷房モードでの制御に移行させ、この場合も除湿冷房モードでの制御に移行するまで、圧縮機2の回転数NCの上昇速度を通常時の上昇速度よりも低下させるようにしてもよい。
このように電磁弁40の前後の圧力差ΔPdxを小さくすることで、アキュムレータ12から圧縮機2に吸い込まれる冷媒量は減少するので、アキュムレータ12からレシーバドライヤ部14に冷媒が移動する暖房モードから除湿冷房モードへの切り換え時にも、アキュムレータ12から圧縮機2に多量の冷媒が吸い込まれてアキュムレータ12内の圧力が急激に低下することが抑制され、アキュムレータ12内での冷媒の突沸が防止若しくは抑制される。
特に、上記実施例(10−3)~(10−6)の如く圧縮機2の制御を除湿冷房モードでの制御に移行するまでその回転数NCの上昇速度を低下させれば、モード切り換え時のアキュムレータ12内圧力の低下は一層抑制されることになる。また、(10)の各実施例の如く電磁弁40の前後の圧力差ΔPdxが所定値A以下となった場合に圧縮機2の制御を除湿冷房モードの制御に移行させ、或いは、所定時間4の経過後に移行するようにすれば、的確にアキュムレータ12における突沸の発生を防止若しくは抑制することができるようになる。
尚、実施例では暖房モード、除湿暖房モード、除湿冷房モード、冷房モード、及び、MAX冷房モードの各運転モードを切り換えて実行する車両用空気調和装置1に本発明を適用したが、それに限らず、請求項1~請求項6の発明では暖房モードと除湿暖房モードとMAX冷房モードを切り換えて実行する車両用空気調和装置にも本発明は有効であり、請求項7の発明では暖房モードと除湿暖房モードを切り換えて実行する車両用空気調和装置にも本発明は有効である。また、請求項8~請求項11の発明では暖房モードと冷房モードを切り換えて実行する車両用空気調和装置にも本発明は有効であり、請求項12~請求項15の発明では暖房モードと除湿冷房モードを切り換えて実行する車両用空気調和装置にも本発明は有効である。
更に、実施例で示した各運転モードの切換制御は、それに限られるものでは無く、車両用空気調和装置の能力や使用環境に応じて、外気温度Tam、車室内の湿度、目標吹出温度TAO、放熱器温度TH、目標放熱器温度TCO、吸熱器温度Te、目標吸熱器温度TEO、車室内の除湿要求の有無、等のパラメータの何れか、又は、それらの組み合わせ、それらの全てを採用して適切な条件を設定すると良い。
更にまた、補助加熱装置は、実施例で示した補助ヒータ23に限られるものでは無く、ヒータで加熱された熱媒体を循環させて空気流通路内の空気を加熱する熱媒体循環回路や、エンジンで加熱されたラジエター水を循環するヒータコア等を利用してもよい。また、上記各実施例で説明した冷媒回路Rの構成はそれに限定されるものでは無く、本発明の趣旨を逸脱しない範囲で変更可能であることは云うまでもない。
図1は本発明の一実施例の車両用空気調和装置1の構成図を示している。本発明を適用する実施例の車両は、エンジン(内燃機関)が搭載されていない電気自動車(EV)であって、バッテリに充電された電力で走行用の電動モータを駆動して走行するものであり(何れも図示せず)、本発明の車両用空気調和装置1も、バッテリの電力で駆動されるものとする。即ち、実施例の車両用空気調和装置1は、エンジン廃熱による暖房ができない電気自動車において、冷媒回路を用いたヒートポンプ運転により暖房モードを行い、更に、除湿暖房モード、除湿冷房モード、冷房モード、MAX冷房モード(最大冷房モード)の各運転モードを選択的に実行するものである。
尚、車両として電気自動車に限らず、エンジンと走行用の電動モータを供用する所謂ハイブリッド自動車にも本発明は有効であり、更には、エンジンで走行する通常の自動車にも適用可能であることは云うまでもない。
実施例の車両用空気調和装置1は、電気自動車の車室内の空調(暖房、冷房、除湿、及び、換気)を行うものであり、冷媒を圧縮する電動式の圧縮機2と、車室内空気が通気循環されるHVACユニット10の空気流通路3内に設けられ、圧縮機2から吐出された高温高圧の冷媒が冷媒配管13Gを介して流入し、この冷媒を車室内に放熱させる放熱器4と、暖房時に冷媒を減圧膨張させる電動弁から成る室外膨張弁6と、車室外に設けられて冷房時には放熱器として機能し、暖房時には蒸発器として機能すべく冷媒と外気との間で熱交換を行わせる室外熱交換器7と、冷媒を減圧膨張させる電動弁から成る室内膨張弁8と、空気流通路3内に設けられて冷房時及び除湿時に車室内外から冷媒に吸熱させる吸熱器9と、アキュムレータ12等が冷媒配管13により順次接続され、冷媒回路Rが構成されている。
そして、この冷媒回路Rには所定量の冷媒と潤滑用のオイルが充填されている。尚、室外熱交換器7には、室外送風機15が設けられている。この室外送風機15は、室外熱交換器7に外気を強制的に通風することにより、外気と冷媒とを熱交換させるものであり、これにより停車中(即ち、車速が0km/h)にも室外熱交換器7に外気が通風されるよう構成されている。
また、室外熱交換器7は冷媒下流側にレシーバドライヤ部14と過冷却部16を順次有し、室外熱交換器7から出た冷媒配管13Aは冷房時に開放される電磁弁17を介してレシーバドライヤ部14に接続され、過冷却部16の出口側の冷媒配管13Bは室内膨張弁8介して吸熱器9の入口側に接続されている。尚、レシーバドライヤ部14及び過冷却部16は構造的に室外熱交換器7の一部を構成している。
また、過冷却部16と室内膨張弁8間の冷媒配管13Bは、吸熱器9の出口側の冷媒配管13Cと熱交換関係に設けられ、両者で内部熱交換器19を構成している。これにより、冷媒配管13Bを経て室内膨張弁8に流入する冷媒は、吸熱器9を出た低温の冷媒により冷却(過冷却)される構成とされている。
また、室外熱交換器7から出た冷媒配管13Aは冷媒配管13Dに分岐しており、この分岐した冷媒配管13Dは、暖房時に開放される電磁弁21を介して内部熱交換器19の下流側における冷媒配管13Cに連通接続されている。この冷媒配管13Cがアキュムレータ12に接続され、アキュムレータ12は圧縮機2の冷媒吸込側に接続されている。更に、放熱器4の出口側の冷媒配管13Eは室外膨張弁6を介して室外熱交換器7の入口側に接続されている。
また、圧縮機2の吐出側と放熱器4の入口側の間の冷媒配管13Gには後述する除湿暖房とMAX冷房時に閉じられる電磁弁30(流路切換装置を構成する)が介設されている。この場合、冷媒配管13Gは電磁弁30の上流側でバイパス配管35に分岐しており、このバイパス配管35は除湿暖房とMAX冷房時に開放される電磁弁40(これも流路切換装置を構成する)を介して室外膨張弁6の下流側の冷媒配管13Eに連通接続されている。これらバイパス配管35、電磁弁30及び電磁弁40により本発明におけるバイパス装置45が構成される。
このようなバイパス配管35、電磁弁30及び電磁弁40によりバイパス装置45を構成したことで、後述する如く圧縮機2から吐出された冷媒を室外熱交換器7に直接流入させる除湿暖房モードやMAX冷房モードと、圧縮機2から吐出された冷媒を放熱器4に流入させる暖房モードや除湿冷房モード、冷房モードとの切り換えを円滑に行うことができるようになる。
また、吸熱器9の空気上流側における空気流通路3には、外気吸込口と内気吸込口の各吸込口が形成されており(図1では吸込口25で代表して示す)、この吸込口25には空気流通路3内に導入する空気を車室内の空気である内気(内気循環モード)と、車室外の空気である外気(外気導入モード)とに切り換える吸込切換ダンパ26が設けられている。更に、この吸込切換ダンパ26の空気下流側には、導入した内気や外気を空気流通路3に送給するための室内送風機(ブロワファン)27が設けられている。
また、図1において23は実施例の車両用空気調和装置1に設けられた補助加熱装置としての補助ヒータである。実施例の補助ヒータ23は電気ヒータであるPTCヒータにて構成されており、空気流通路3の空気の流れに対して、放熱器4の空気上流側となる空気流通路3内に設けられている。そして、補助ヒータ23に通電されて発熱すると、吸熱器9を経て放熱器4に流入する空気流通路3内の空気が加熱される。即ち、この補助ヒータ23が所謂ヒータコアとなり、車室内の暖房を行い、或いは、それを補完する。
また、補助ヒータ23の空気上流側における空気流通路3内には、当該空気流通路3内に流入し、吸熱器9を通過した後の空気流通路3内の空気(内気や外気)を補助ヒータ23及び放熱器4に通風する割合を調整するエアミックスダンパ28が設けられている。更に、放熱器4の空気下流側における空気流通路3には、FOOT(フット)、VENT(ベント)、DEF(デフ)の各吹出口(図1では代表して吹出口29で示す)が形成されており、この吹出口29には上記各吹出口から空気の吹き出しを切換制御する吹出口切換ダンパ31が設けられている。
次に、図2において32はプロセッサを備えたコンピュータの一例であるマイクロコンピュータから構成された制御装置としてのコントローラ(ECU)であり、このコントローラ32の入力には車両の外気温度(Tam)を検出する外気温度センサ33と、外気湿度を検出する外気湿度センサ34と、吸込口25から空気流通路3に吸い込まれる空気の温度を検出するHVAC吸込温度センサ36と、車室内の空気(内気)の温度を検出する内気温度センサ37と、車室内の空気の湿度を検出する内気湿度センサ38と、車室内の二酸化炭素濃度を検出する室内CO2濃度センサ39と、吹出口29から車室内に吹き出
される空気の温度を検出する吹出温度センサ41と、圧縮機2の吐出冷媒圧力(吐出圧力Pd)を検出する吐出圧力センサ42と、圧縮機2の吐出冷媒温度を検出する吐出温度センサ43と、圧縮機2の吸込冷媒圧力を検出する吸込圧力センサ44と、圧縮機2の吸込冷媒温度を検出する吸込温度センサ55と、放熱器4の温度(放熱器4を経た空気の温度、又は、放熱器4自体の温度:放熱器温度TH)を検出する放熱器温度センサ46と、放熱器4の冷媒圧力(放熱器4内、又は、放熱器4を出た直後の冷媒の圧力:放熱器圧力PCI)を検出する放熱器圧力センサ47と、吸熱器9の温度(吸熱器9を経た空気の温度、又は、吸熱器9自体の温度:吸熱器温度Te)を検出する吸熱器温度センサ48と、吸熱器9の冷媒圧力(吸熱器9内、又は、吸熱器9を出た直後の冷媒の圧力)を検出する吸熱器圧力センサ49と、車室内への日射量を検出するための例えばフォトセンサ式の日射センサ51と、車両の移動速度(車速)を検出するための車速センサ52と、設定温度や運転モードの切り換えを設定するための空調(エアコン)操作部53と、室外熱交換器7の温度(室外熱交換器7から出た直後の冷媒の温度、又は、室外熱交換器7自体の温度:室外熱交換器温度TXO)を検出する室外熱交換器温度センサ54と、室外熱交換器7の冷媒圧力(室外熱交換器7内、又は、室外熱交換器7から出た直後の冷媒の圧力:室外熱交換器圧力PXO)を検出する室外熱交換器圧力センサ56の各出力が接続されている。また、コントローラ32の入力には更に、補助ヒータ23の温度(補助ヒータ23で加熱された直後の空気の温度、又は、補助ヒータ23自体の温度:補助ヒータ温度Tptc)を検出する補助ヒータ温度センサ50の出力も接続されている。
一方、コントローラ32の出力には、前記圧縮機2と、室外送風機15と、室内送風機(ブロワファン)27と、吸込切換ダンパ26と、エアミックスダンパ28と、吹出口切換ダンパ31と、室外膨張弁6、室内膨張弁8と、補助ヒータ23、電磁弁30(除湿用)、電磁弁17(冷房用)、電磁弁21(暖房用)、電磁弁40(これも除湿用)の各電磁弁が接続されている。そして、コントローラ32は各センサの出力と空調操作部53にて入力された設定に基づいてこれらを制御する。
以上の構成で、次に実施例の車両用空気調和装置1の動作を説明する。コントローラ32は実施例では暖房モード、除湿暖房モード、除湿冷房モード、冷房モード及びMAX冷房モード(最大冷房モード)の各運転モードを切り換えて実行する。先ず、各運転モードにおける冷媒の流れと制御の概略について説明する。
(1)暖房モード
コントローラ32により(オートモード)或いは空調操作部53へのマニュアル操作(マニュアルモード)により暖房モードが選択されると、コントローラ32は電磁弁21(暖房用)を開放し、電磁弁17(冷房用)を閉じる。また、電磁弁30(除湿用)を開放し、電磁弁40(除湿用)を閉じる。
そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は図1に破線で示す如く、室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の全ての空気が補助ヒータ23及び放熱器4に通風される状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は電磁弁30を経て冷媒配管13Gから放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒(補助ヒータ23が動作するときは当該補助ヒータ23及び放熱器4)により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化する。
放熱器4内で液化した冷媒は当該放熱器4を出た後、冷媒配管13Eを経て室外膨張弁6に至る。室外膨張弁6に流入した冷媒はそこで減圧された後、室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は蒸発し、走行により、或いは、室外送風機15にて通風される外気中から熱を汲み上げる。即ち、冷媒回路Rがヒートポンプとなる。そして、室外熱交換器7を出た低温の冷媒は冷媒配管13A及び電磁弁21及び冷媒配管13Dを経て冷媒配管13Cからアキュムレータ12に入り、そこで気液分離された後、ガス冷媒が圧縮機2に吸い込まれる循環を繰り返す。放熱器4(補助ヒータ23が動作するときは当該補助ヒータ23及び放熱器4)にて加熱された空気は吹出口29から吹き出されるので、これにより車室内の暖房が行われることになる。
コントローラ32は、後述する目標吹出温度TAOから算出される目標放熱器温度TCO(放熱器温度THの目標値)から目標放熱器圧力PCO(放熱器圧力PCIの目標値)を算出し、この目標放熱器圧力PCOと、放熱器圧力センサ47が検出する放熱器4の冷媒圧力(放熱器圧力PCI。冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数を制御する。また、コントローラ32は、放熱器温度センサ46が検出する放熱器4の温度(放熱器温度TH)及び放熱器圧力センサ47が検出する放熱器圧力PCIに基づいて室外膨張弁6の弁開度を制御し、放熱器4の出口における冷媒の過冷却度SCを制御する。前記目標放熱器温度TCOは基本的にはTCO=TAOとされるが、制御上の所定の制限が設けられる。
また、コントローラ32はこの暖房モードにおいては、車室内空調に要求される暖房能力に対して放熱器4による暖房能力が不足する場合、その不足する分を補助ヒータ23の発熱で補完するように補助ヒータ23の通電を制御する。それにより、快適な車室内暖房を実現し、且つ、室外熱交換器7の着霜も抑制する。このとき、補助ヒータ23は放熱器4の空気上流側に配置されているので、空気流通路3を流通する空気は放熱器4の前に補助ヒータ23に通風されることになる。
ここで、補助ヒータ23が放熱器4の空気下流側に配置されていると、実施例の如くPCTヒータで補助ヒータ23を構成した場合には、補助ヒータ23に流入する空気の温度が放熱器4によって上昇するため、PTCヒータの抵抗値が大きくなり、電流値も低くなって発熱量が低下してしまうが、放熱器4の空気上流側に補助ヒータ23を配置することで、実施例の如くPTCヒータから構成される補助ヒータ23の能力を十分に発揮させることができるようになる。
(2)除湿暖房モード
次に、除湿暖房モードでは、コントローラ32は電磁弁17を開放し、電磁弁21を閉じる。また、電磁弁30を閉じ、電磁弁40を開放すると共に、室外膨張弁6の弁開度は全閉とする。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は図1に破線で示す如く、室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の全ての空気が補助ヒータ23及び放熱器4に通風される状態とする。
これにより、圧縮機2から冷媒配管13Gに吐出された高温高圧のガス冷媒は、放熱器4に向かうこと無くバイパス配管35に流入し、電磁弁40を経て室外膨張弁6の下流側の冷媒配管13Eに至るようになる。このとき、室外膨張弁6は全閉とされているので、冷媒は室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
室外熱交換器7の過冷却部16を出た冷媒は冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気は冷却され、且つ、当該空気中の水分が吸熱器9に凝結して付着するので、空気流通路3内の空気は冷却され、且つ、除湿される。吸熱器9で蒸発した冷媒は内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。
このとき、室外膨張弁6の弁開度は全閉とされているので、圧縮機2から吐出された冷媒が室外膨張弁6から放熱器4に逆流入する不都合を抑制若しくは防止することが可能となる。これにより、冷媒循環量の低下を抑制若しくは解消して空調能力を確保することができるようになる。更に、この除湿暖房モードにおいてコントローラ32は、補助ヒータ23に通電して発熱させる。これにより、吸熱器9にて冷却され、且つ、除湿された空気は補助ヒータ23を通過する過程で更に加熱され、温度が上昇するので車室内の除湿暖房が行われることになる。
コントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)とその目標値である目標吸熱器温度TEOに基づいて圧縮機2の回転数を制御すると共に、補助ヒータ温度センサ50が検出する補助ヒータ温度Tptcと前述した目標放熱器温度TCOに基づいて補助ヒータ23の通電(発熱)を制御することで、吸熱器9での空気の冷却と除湿を適切に行いながら、補助ヒータ23による加熱で吹出口29から車室内に吹き出される空気温度の低下を的確に防止する。
これにより、車室内に吹き出される空気を除湿しながら、その温度を適切な暖房温度に制御することが可能となり、車室内の快適且つ効率的な除湿暖房を実現することができるようになる。また、前述した如く除湿暖房モードではエアミックスダンパ28は空気流通路3内の全ての空気を補助ヒータ23及び放熱器4に通風する状態とされるので、吸熱器9を経た空気を効率良く補助ヒータ23で加熱して省エネ性を向上させ、且つ、除湿暖房空調の制御性も向上させることができるようになる。
尚、補助ヒータ23は放熱器4の空気上流側に配置されているので、補助ヒータ23で加熱された空気は放熱器4を通過することになるが、この除湿暖房モードでは放熱器4に冷媒は流されないので、補助ヒータ23にて加熱された空気から放熱器4が吸熱してしまう不都合も解消される。即ち、放熱器4によって車室内に吹き出される空気の温度が低下してしまうことが抑制され、COPも向上することになる。
(3)除湿冷房モード
次に、除湿冷房モードでは、コントローラ32は電磁弁17を開放し、電磁弁21を閉じる。また、電磁弁30を開放し、電磁弁40を閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は図1に破線で示す如く、室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の全ての空気が補助ヒータ23及び放熱器4に通風される状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は電磁弁30を経て冷媒配管13Gから放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化していく。
放熱器4を出た冷媒は冷媒配管13Eを経て室外膨張弁6に至り、開き気味で制御される室外膨張弁6を経て室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
室外熱交換器7の過冷却部16を出た冷媒は冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
吸熱器9で蒸発した冷媒は内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。この除湿冷房モードではコントローラ32は補助ヒータ23に通電しないので、吸熱器9にて冷却され、除湿された空気は放熱器4を通過する過程で再加熱(暖房時よりも放熱能力は低い)される。これにより車室内の除湿冷房が行われることになる。
コントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)に基づいて圧縮機2の回転数を制御すると共に、前述した冷媒回路Rの高圧圧力に基づいて室外膨張弁6の弁開度を制御し、放熱器4の冷媒圧力(放熱器圧力PCI)を制御する。
(4)冷房モード
次に、冷房モードでは、コントローラ32は上記除湿冷房モードの状態において室外膨張弁6の弁開度を全開とする。尚、コントローラ32はエアミックスダンパ28を制御し、図1に実線で示す如く、室内送風機27から吹き出されて吸熱器9を通過した後の空気流通路3内の空気が、補助ヒータ23及び放熱器4に通風される割合を調整する。また、コントローラ32は補助ヒータ23に通電しない。
これにより、圧縮機2から吐出された高温高圧のガス冷媒は電磁弁30を経て冷媒配管13Gから放熱器4に流入すると共に、放熱器4を出た冷媒は冷媒配管13Eを経て室外膨張弁6に至る。このとき室外膨張弁6は全開とされているので冷媒はそれを通過し、そのまま室外熱交換器7に流入し、そこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮液化する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
室外熱交換器7の過冷却部16を出た冷媒は冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気は冷却される。また、空気中の水分は吸熱器9に凝結して付着する。
吸熱器9で蒸発した冷媒は内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却され、除湿された空気が吹出口29から車室内に吹き出されるので(一部は放熱器4を通過して熱交換する)、これにより車室内の冷房が行われることになる。また、この冷房モードにおいては、コントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)とその目標値である目標吸熱器温度TEOに基づいて圧縮機2の回転数を制御する。
(5)MAX冷房モード(最大冷房モード)
次に、最大冷房モードとしてのMAX冷房モードでは、コントローラ32は電磁弁17を開放し、電磁弁21を閉じる。また、電磁弁30を閉じ、電磁弁40を開放すると共に、室外膨張弁6の弁開度は全閉とする。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は図3に示す如く補助ヒータ23及び放熱器4に空気流通路3内の空気が通風されない状態とする。但し、多少通風されても支障はない。また、コントローラ32は補助ヒータ23に通電しない。
これにより、圧縮機2から冷媒配管13Gに吐出された高温高圧のガス冷媒は、放熱器4に向かうこと無くバイパス配管35に流入し、電磁弁40を経て室外膨張弁6の下流側の冷媒配管13Eに至るようになる。このとき、室外膨張弁6は全閉とされているので、冷媒は室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
室外熱交換器7の過冷却部16を出た冷媒は冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気は冷却される。また、空気中の水分は吸熱器9に凝結して付着するので、空気流通路3内の空気は除湿される。吸熱器9で蒸発した冷媒は内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。このとき、室外膨張弁6は全閉とされているので、同様に圧縮機2から吐出された冷媒が室外膨張弁6から放熱器4に逆流入する不都合を抑制若しくは防止することが可能となる。これにより、冷媒循環量の低下を抑制若しくは解消して空調能力を確保することができるようになる。
ここで、前述した冷房モードでは放熱器4に高温の冷媒が流れているため、放熱器4からHVACユニット10への直接の熱伝導が少なからず生じるが、このMAX冷房モードでは放熱器4に冷媒が流れないため、放熱器4からHVACユニット10に伝達される熱で吸熱器9からの空気流通路3内の空気が加熱されることも無くなる。そのため、車室内の強力な冷房が行われ、特に外気温度Tamが高いような環境下では、迅速に車室内を冷房して快適な車室内空調を実現することができるようになる。また、このMAX冷房モードにおいても、コントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)とその目標値である目標吸熱器温度TEOに基づいて圧縮機2の回転数を制御する。
(6)運転モードの切換
空気流通路3内を流通される空気は上記各運転モードにおいて吸熱器9からの冷却や放熱器4(及び補助ヒータ23)からの加熱作用(エアミックスダンパ28で調整)を受けて吹出口29から車室内に吹き出される。コントローラ32は外気温度センサ33が検出する外気温度Tam、内気温度センサ37が検出する車室内の温度、前記ブロワ電圧、日射センサ51が検出する日射量等と、空調操作部53にて設定された車室内の目標車室内温度(設定温度)とに基づいて目標吹出温度TAOを算出し、各運転モードを切り換えて吹出口29から吹き出される空気の温度をこの目標吹出温度TAOに制御する。
この場合、コントローラ32は、外気温度Tam、車室内の湿度、目標吹出温度TAO、放熱器温度TH、目標放熱器温度TCO、吸熱器温度Te、目標吸熱器温度TEO、車室内の除湿要求の有無、等のパラメータに基づいて各運転モードの切り換えを行うことで、環境条件や除湿の要否に応じて的確に暖房モード、除湿暖房モード、除湿冷房モード、冷房モード及びMAX冷房モードを切り換え、快適且つ効率的な車室内空調を実現する。
(7)暖房モードから除湿暖房モード又はMAX冷房モードへの切り換え時の突沸対策制御
次に、図4、図5を参照しながら、車両用空気調和装置1の運転モードを、前述した暖房モードから除湿暖房モード又はMAX冷房モードに切り換える際にコントローラ32が実行する突沸対策制御の例について説明する。図4、図5のタイミングチャートは、暖房モードから除湿暖房モード、又は、MAX冷房モードに切り換わる際の電磁弁40(本発明の第2の開閉弁)の前後の圧力差ΔPdxと、電磁弁30(本発明の第1の開閉弁)の前後の圧力差ΔPixと、圧縮機2の回転数NCと、室外膨張弁6の弁開度と、電磁弁40、電磁弁30、電磁弁17(第4の開閉弁)及び電磁弁21(第3の開閉弁)の状態を示している。
尚、電磁弁40(第2の開閉弁)の前後の圧力差ΔPdxは、吐出圧力センサ42が検出する電磁弁40の冷媒上流側(前)の圧力Pdと、室外熱交換器温度センサ54が検出する室外熱交換器7から出た直後の冷媒の温度(室外熱交換器温度TXO)から換算される電磁弁40の冷媒下流側(後)の室外熱交換器圧力PXO(実施例の如く室外熱交換器圧力センサ56が設けられている場合には、室外熱交換器圧力センサ56が検出する室外熱交換器圧力PCOを用いてもよい)との差(ΔPdx=Pd−PXO)であり、コントローラ32が算出する。
また、電磁弁30(第1の開閉弁)の前後の圧力差ΔPixは、吐出圧力センサ42が検出する電磁弁30の冷媒上流側(前)の圧力Pdと、放熱器圧力センサ47が検出する電磁弁30の冷媒下流側(後)の圧力である放熱器圧力PCIとの差(ΔPix=Pd−PCI)であり、コントローラ32が算出する。
(7−1)暖房モードから除湿暖房モード又はMAX冷房モードへの切り換え時の突沸対策制御(その1)
運転モードが暖房モードから除湿暖房モード又はMAX冷房モードに切り換わる際、暖房モードにおいては室外熱交換器7から電磁弁21を経てアキュムレータ12に流れていた冷媒は、室外熱交換器7から電磁弁17を経てレシーバドライヤ部14(本発明のレシーバ)に流れる状態に切り換わる。即ち、アキュムレータ12内に溜まっていた冷媒がレシーバドライヤ部14に移動するかたちとなる。そのため、モード切り換え後に圧縮機2の回転数が高くなると、アキュムレータ12内の圧力が急激に下がり、突沸が発生して圧縮機2へ過剰な液戻りや音(騒音)が発生することになる。
そこで、コントローラ32は暖房モードから除湿暖房モード又はMAX冷房モードに運転モードを切り換える際、以下に説明する突沸対策制御を実行する。コントローラ32は暖房モードから除湿暖房モード又はMAX冷房モードに切り換える場合、先ず、電磁弁17を開き、電磁弁21を閉じて室外熱交換器7から出た冷媒がレシーバドライヤ部14に流れる状態とする。また、電磁弁40の前後の圧力差Pdxが所定値A(例えば、0.2MPa等)以下となるように、圧縮機2の回転数NCを調整(下げる方向に制御)すると共に、室外膨張弁6の弁開度を全開状態に移行させる。
圧縮機2の回転数NCを下げる方向に調整することで、吐出圧力Pdは低下すると共に、室外膨張弁6を全開とすることで、室外熱交換器圧力PXOは上昇するため、電磁弁40の前後の圧力差Pdx(=Pd−PXO)は小さくなっていく。そして、圧力差ΔPdxが図4中の所定値A以下となった場合、コントローラ32は電磁弁40を開くと共に、電磁弁30を閉じ、室外膨張弁6を全閉状態に移行させ、圧縮機2の制御を除湿暖房モード又はMAX冷房モードでの制御に移行することで、除湿暖房モード又はMAX冷房モードの空調運転に移行する。
ここで、前述した圧縮機2の回転数NCの制御では、当該回転数NCを上昇させる際の通常の上昇速度(単位時間当たりに上昇させるHz)が決められているが、この実施例の場合、除湿暖房モード又はMAX冷房モードでの制御に移行するまで、図4に実線L1で示す如く圧縮機2の回転数NCの上昇速度を、上記通常時の上昇速度(図4の実線L2を参照)よりも低下させる。即ち、単位時間当たりに上昇させるHzを小さくする(実線L1は後述する所定回転数NC1から立ち上がっているが、実際にはNC1に限らない)。
この実施例では、上記のように電磁弁40の前後の圧力差ΔPdxを小さくすることで、アキュムレータ12から圧縮機2に吸い込まれる冷媒量は減少するので、アキュムレータ12からレシーバドライヤ部14に冷媒が移動する暖房モードから除湿暖房モード(又は、MAX冷房モード)への切り換え時に、アキュムレータ12から圧縮機2に多量の冷媒が吸い込まれてアキュムレータ12内の圧力が急激に低下することが抑制され、アキュムレータ12内での冷媒の突沸が防止若しくは抑制される。
特に、圧縮機2の制御は除湿暖房モードやMAX冷房モードの制御に移行するまで上昇速度が低下されるので、モード切り換え時のアキュムレータ12内圧力の低下は一層抑制されることになる。また、電磁弁40の前後の圧力差ΔPdxが所定値A以下となった場合に圧縮機2の制御を除湿暖房モード(MAX冷房モード)の制御に移行させるので、的確にアキュムレータ12における突沸の発生を防止若しくは抑制することができるようになる。
(7−2)暖房モードから除湿暖房モード又はMAX冷房モードへの切り換え時の突沸対策制御(その2)
ここで、上記実施例の突沸対策制御(その1)では、コントローラ32が電磁弁40の前後の圧力差ΔPdxが所定値A以下となるように圧縮機2の回転数NCを制御するようにしたが、それに限らず、圧縮機2の回転数NCを予め定めた低い値である所定回転数NC1(図4。例えば、800rpm~1500rpm)とするようにしてもよい。圧縮機2の回転数NCを低い所定回転数NC1に制御し、室外膨張弁6を全開とすることで、吐出圧力Pdは低下し、室外熱交換器圧力PXOは上昇するため、電磁弁40の前後の圧力差Pdxは小さくなっていく。
そして、この場合も圧力差ΔPdxが前述した所定値A以下となった場合に、コントローラ32は電磁弁40を開くと共に、電磁弁30を閉じ、室外膨張弁6を全閉状態に移行する。同時に図4中に実線L2で示す如く圧縮機2の制御を除湿暖房モード又はMAX冷房モードでの制御に移行することで、除湿暖房モード又はMAX冷房モードの空調運転に移行する。このような突沸対策制御によっても、アキュムレータ12における突沸の発生を防止若しくは抑制することができるようになる。
(7−3)暖房モードから除湿暖房モード又はMAX冷房モードへの切り換え時の突沸対策制御(その3)
尚、上記実施例の突沸対策制御(その2)では、室外膨張弁6を全閉状態に移行すると同時に圧縮機2の制御を除湿暖房モード又はMAX冷房モードでの制御に移行するようにしたが、それに限らず、図4に実線L3で示す如く室外膨張弁6が全閉状態に移行を開始した後、当該室外膨張弁6が全閉となったことをコントローラ32が確認してから圧縮機2の制御を除湿暖房モード又はMAX冷房モードでの制御に移行するようにしてもよい。このような突沸対策制御によっても、アキュムレータ12における突沸の発生を防止若しくは抑制することができるようになる。
(7−4)暖房モードから除湿暖房モード又はMAX冷房モードへの切り換え時の突沸対策制御(その4)
また、突沸対策制御においては圧縮機2を停止するようにしてもよい(図4に合わせて示す)。圧縮機2を停止し、室外膨張弁6を全開とすることで、吐出圧力Pdは低下し、室外熱交換器圧力PXOは上昇するため、電磁弁40の前後の圧力差Pdxは小さくなっていく。そして、この場合も圧力差ΔPdxが前述した所定値A以下となった場合に、コントローラ32は電磁弁40を開くと共に、電磁弁30を閉じ、室外膨張弁6を全閉状態に移行する。同時に圧縮機2を起動して、その制御を除湿暖房モード又はMAX冷房モードでの制御に移行することで、除湿暖房モード又はMAX冷房モードの空調運転に移行するが、この場合も図4に実線L4で示す如く除湿暖房モード又はMAX冷房モードでの制御に移行するまで、圧縮機2の回転数NCの上昇速度を、通常時の上昇速度よりも低下させる。
(7−5)暖房モードから除湿暖房モード又はMAX冷房モードへの切り換え時の突沸対策制御(その5)
ここで、上記実施例の突沸対策制御(その4)では、電磁弁40の前後の圧力差Pdxが所定値A以下となった場合に、コントローラ32は電磁弁40を開き、電磁弁30を閉じ、室外膨張弁6を全閉状態に移行するようにしたが、それに限らず、圧縮機2を停止してから所定時間1(図4。例えば10秒等)が経過した後、電磁弁40を開き、電磁弁30を閉じ、室外膨張弁6を全閉状態に移行するようにしてもよい。
(7−6)暖房モードから除湿暖房モード又はMAX冷房モードへの切り換え時の突沸対策制御(その6)
尚、上記各実施例の突沸対策制御(その4、その5)では、室外膨張弁6を全閉状態に移行すると同時に圧縮機2の制御を除湿暖房モード又はMAX冷房モードでの制御に移行するようにしたが、この場合もそれに限らず、室外膨張弁6が全閉となったことを確認してから圧縮機2の制御を除湿暖房モード又はMAX冷房モードでの制御に移行するようにしてもよい。その場合も圧縮機2の回転数NCの上昇速度を、通常時の上昇速度よりも低下させる。これらのような突沸対策制御によっても、的確にアキュムレータ12における突沸の発生を防止若しくは抑制することができるようになる。
(7−7)暖房モードから除湿暖房モード又はMAX冷房モードへの切り換え時の突沸対策制御(その7)
また、前記実施例の突沸対策制御(その5)に加えて、電磁弁40の前後の圧力差ΔPdxが所定値A以下となってから第2の所定時間2(実施例では所定時間1よりも長い例えば20秒等)が経過するまでは、圧縮機2の回転数の上昇を禁止するようにしてもよい(図5に実線L5で示す)。それにより、一層効果的にアキュムレータ12における突沸の発生を防止若しくは抑制することができるようになる。
(7−8)暖房モードから除湿暖房モード又はMAX冷房モードへの切り換え時の突沸対策制御(その8)
ここで、前記実施例の突沸対策制御(その2)では、圧縮機2の回転数NCを予め定めた低い値である所定回転数NC1に制御し、室外膨張弁6を全開とすることで、電磁弁40の前後の圧力差Pdxは縮小させ、圧力差ΔPdxが前述した所定値A以下となった場合に、コントローラ32は電磁弁40を開くと共に、電磁弁30を閉じ、室外膨張弁6を全閉状態に移行する。そして、同時に圧縮機2の制御を除湿暖房モード又はMAX冷房モードでの制御に移行することで、除湿暖房モード又はMAX冷房モードの空調運転に移行するようにしたが、この場合も除湿暖房モード又はMAX冷房モードでの制御に移行するまで、図5に実線L6で示す如く圧縮機2の回転数NCの上昇速度を、通常時の上昇速度(図4の実線L2)よりも低下させるようにしてもよい。このような突沸対策制御によっても、的確にアキュムレータ12における突沸の発生を防止若しくは抑制することができるようになる。
(7−9)暖房モードから除湿暖房モード又はMAX冷房モードへの切り換え時の突沸対策制御(その9)
尚、上記実施例の突沸対策制御(その8)では、室外膨張弁6を全閉状態に移行すると同時に圧縮機2の制御を除湿暖房モード又はMAX冷房モードでの制御に移行するようにしたが、それに限らず、図5中実線L7で示す如く室外膨張弁6が全閉となったことを確認してから圧縮機2の制御を除湿暖房モード又はMAX冷房モードでの制御に移行するようにしてもよい。その場合も圧縮機2の回転数NCの上昇速度を、通常時の上昇速度(図4の実線L3)よりも低下させる。このような突沸対策制御によっても、的確にアキュムレータ12における突沸の発生を防止若しくは抑制することができるようになる。
(8)暖房モードから除湿暖房モードへの切り換え時の突沸対策制御
次に、図6を参照しながら、車両用空気調和装置1の運転モードを、暖房モードから除湿暖房モードに切り換える際にコントローラ32が実行する突沸対策制御の例について説明する。図6のタイミングチャートは、暖房モードから除湿暖房モードに切り換わる際の電磁弁40(第2の開閉弁)の前後の圧力差ΔPdxと、吹出温度センサ41が検出する吹出温度(前述した吹出口29から車室内に吹き出される空気の温度)と、補助ヒータ温度センサ50が検出する補助ヒータ温度Tptcと、圧縮機2の回転数NCと、室外膨張弁6の弁開度と、補助ヒータ23の出力(通電量若しくは発熱量)と、電磁弁40、電磁弁30(第1の開閉弁)、電磁弁17(第4の開閉弁)、及び、電磁弁21(第3の開閉弁)の状態を示している。
(8−1)暖房モードから除湿暖房モードへの切り換え時の突沸対策制御(その1)
この実施例では、コントローラ32は暖房モードから除湿暖房モードに切り換える場合、先ず、補助ヒータ23を発熱させ、その出力(通電量、或いは、発熱量)を増大させる。この場合、コントローラ32は除湿暖房モードにおける補助ヒータ23の出力の目標値C(図6)よりも予め定めた値分高い所定値D(図6)まで増大させる。これにより、補助ヒータ温度Tptcは上昇していく。
そして、補助ヒータ温度Tptcが図6中の所定値B以上となった場合、コントローラ32は電磁弁17を開き、電磁弁21を閉じる。これにより冷媒回路Rは、室外熱交換器7から出た冷媒が、レシーバドライヤ部14に流れ、その後、過冷却部16、内部熱交換器19、室内膨張弁8を経て吸熱器9に流れる状態に切り換わる。尚、コントローラ32はその後補助ヒータ23の出力を前述した除湿暖房モードでの目標値Cとするように制御する。
また、コントローラ32は補助ヒータ温度Tptcが所定値B以上となった場合、電磁弁40及び電磁弁30を切り換える前に、実施例では電磁弁40の前後の圧力差Pdxが前述した所定値A(0.2MPa等)以下となるように、室外膨張弁6の弁開度を拡大し、且つ、圧縮機2の回転数NCを調整(下げる方向に制御)する。室外膨張弁6の弁開度を拡大することで、室外熱交換器圧力PXOは上昇すると共に、圧縮機2の回転数NCを下げる方向に制御することで、吐出圧力Pdは低下するため、電磁弁40の前後の圧力差Pdx(=Pd−PXO)は小さくなっていく。
そして、圧力差ΔPdxが図6中の所定値A以下に縮小した場合、コントローラ32は電磁弁40を開くと共に、電磁弁30を閉じ、室外膨張弁6を全閉状態に移行させ、圧縮機2の制御を除湿暖房モードにおける制御に移行することで、除湿暖房モードの空調運転に移行する。更に、この場合も除湿暖房モードでの制御に移行するまで、圧縮機2の回転数NCの上昇速度を、通常時の上昇速度よりも低下させる。
(8−2)暖房モードから除湿暖房モードへの切り換え時の突沸対策制御(その2)
ここで、上記実施例では、コントローラ32が電磁弁40の前後の圧力差ΔPdxが所定値A以下となるように室外膨張弁6の弁開度を拡大し、且つ、圧縮機2の回転数NCを制御するようにしたが、それに限らず、室外膨張弁6の弁開度を全開(図6)とし、圧縮機2の回転数NCを予め定めた低い値である所定回転数NC1(図6。800rpm~1500rpm)とするようにしてもよい。室外膨張弁6を全開とし、且つ、圧縮機2の回転数NCを低い所定回転数NC1に制御することで、室外熱交換器圧力PXOは上昇し、吐出圧力Pdは低下するため、電磁弁40の前後の圧力差Pdxは小さくなっていく。そして、この場合も圧力差ΔPdxが前述した所定値A以下に縮小したとき、コントローラ32は電磁弁40を開くと共に、電磁弁30を閉じ、室外膨張弁6を全閉状態にすることで、除湿暖房モードの空調運転に移行する。
(8−3)暖房モードから除湿暖房モードへの切り換え時の突沸対策制御(その3)
また、上記実施例の突沸対策制御で、コントローラ32により室外膨張弁6を全開とし、且つ、圧縮機2の回転数NCを所定回転数NC1としてから予め定めた所定時間1(10秒等。図6)経過後に電磁弁40を開き、電磁弁30を閉じ、室外膨張弁6を全閉状態として除湿暖房モードの空調運転に移行するようにしてもよい。
(8−4)暖房モードから除湿暖房モードへの切り換え時の突沸対策制御(その4)
また、前記実施例の突沸対策制御で、コントローラ32により室外膨張弁6を全開に移行を開始した後、当該室外膨張弁6が全閉となったことをコントローラ32確認してから、図6に実線L8で示す如く圧縮機2の制御を除湿暖房モードでの制御に移行するようにしてもよい。
(8−5)暖房モードから除湿暖房モードへの切り換え時の突沸対策制御(その5)
更に、前記実施例の突沸対策制御に加えて、圧縮機2の回転数を所定回転数NC1としてから第2の所定時間2(実施例では所定時間1よりも長い例えば20秒等)が経過するまでは、圧縮機2の回転数の上昇を禁止するようにしてもよい(図6に実線L9で示す)。それにより、一層効果的にアキュムレータ12における突沸の発生を防止若しくは抑制することができるようになる。
前述した実施例((7)の突沸対策制御)では圧縮機2の回転数NCが低下するため、車室内に吹き出される空気の温度(吹出温度)が低下して快適性が悪化する危険性がある。しかしながら、この実施例((8)の突沸対策制御)では、コントローラ32は暖房モードから除湿暖房モードに切り換える際、先ず補助ヒータ23を発熱させ、当該補助ヒータ23の温度Tptcが所定値B以上となった場合に、室外熱交換器7から出た冷媒をレシーバドライヤ部14に流す状態に電磁弁17及び電磁弁21を切り換えると共に、突沸対策制御における圧縮機2や室外膨張弁6の制御を開始するようにしたので、図6に示されるように吹出温度は暖房モードから除湿暖房モードに切り換わる過程でも略一定に保たれるようになる。これにより、暖房モードから除湿暖房モードへの切り換え時に生じる吹出温度の低下が抑制され、快適な車室内空調を実現することができるようになる。
(9)暖房モードから冷房モードへの切り換え時の突沸対策制御
次に、図7を参照しながら、車両用空気調和装置1の運転モードを、暖房モードから冷房モードに切り換える際にコントローラ32が実行する突沸対策制御の例について説明する。
(9−1)暖房モードから冷房モードへの切り換え時の突沸対策制御(その1)
運転モードが暖房モードから冷房モードに切り換わる際も、暖房モードにおいては室外熱交換器7から電磁弁21を経てアキュムレータ12に流れていた冷媒は、室外熱交換器7から電磁弁17を経てレシーバドライヤ部14(レシーバ)に流れる状態に切り換わるので、モード切り換え後に圧縮機2の回転数が高くなると、アキュムレータ12内の圧力が急激に下がり、突沸が発生して圧縮機2へ過剰な液戻りや音(騒音)が発生することになる。
そこで、コントローラ32は暖房モードから冷房モードに運転モードを切り換える際も、以下に説明する突沸対策制御を実行する。コントローラ32は暖房モードから冷房モードに切り換える場合も、先ず、電磁弁17を開き、電磁弁21を閉じて室外熱交換器7から出た冷媒がレシーバドライヤ部14に流れる状態とする。また、圧縮機2の回転数NCを予め定めた低い値である所定回転数NC1(図7。800rpm~1500rpm)とすると共に、室外膨張弁6の弁開度を全開状態に移行させる。
圧縮機2の回転数NCを所定回転数NC1に下げることで、吐出圧力Pdは低下すると共に、室外膨張弁6を全開とすることで、室外熱交換器圧力PXOは上昇するため、電磁弁40の前後の圧力差Pdx(=Pd−PXO)は小さくなっていく。そして、圧力差ΔPdxが図7中の所定値A以下となった場合、図7に実線L10で示す如く圧縮機2の制御を冷房モードでの制御に移行することで、冷房モードの空調運転に移行する。
(9−2)暖房モードから冷房モードへの切り換え時の突沸対策制御(その2)
ここで、上記実施例(9−1)では電磁弁40の前後の圧力差ΔPdxが所定値A以下となった場合、圧縮機2の制御を冷房モードでの制御に移行するようにしたが、それに限らず、圧縮機2の回転数NCを所定回転数NC1に下げてから所定時間3(図7。例えば、10秒~60秒)が経過したことをコントローラ32が確認し、所定時間3が経過した場合に、図7に実線L11で示す如く圧縮機2の制御を冷房モードでの制御に移行するようにしてもよい。
(9−3)暖房モードから冷房モードへの切り換え時の突沸対策制御(その3)
また、暖房モードから冷房モードへの切り換え時の突沸対策制御において、圧縮機2を停止するようにしてもよい(図7に合わせて示す)。圧縮機2を停止することで、吐出圧力Pdは低下すると共に、室外膨張弁6を全開とすることで、室外熱交換器圧力PXOは上昇するため、電磁弁40の前後の圧力差Pdx(=Pd−PXO)は小さくなっていく。そして、この場合も圧力差ΔPdxが所定値A以下となった場合、圧縮機2の制御を冷房モードでの制御に移行することで、冷房モードの空調運転に移行する。更に、この場合は冷房モードでの制御に移行するまで、図7に破線L12で示す如く圧縮機2の回転数NCの上昇速度を、通常時の上昇速度よりも低下させる。
(9−4)暖房モードから冷房モードへの切り換え時の突沸対策制御(その4)
ここで、上記実施例(9−3)では電磁弁40の前後の圧力差ΔPdxが所定値A以下となった場合、圧縮機2の制御を冷房モードでの制御に移行するようにしたが、それに限らず、圧縮機2を停止してから所定時間3(図7。10秒~60秒)が経過したことをコントローラ32が確認し、所定時間3が経過した場合に、図7に実線L13で示す如く圧縮機2の制御を冷房モードでの制御に移行するようにしてもよい。
(9−5)暖房モードから冷房モードへの切り換え時の突沸対策制御(その5)
また、暖房モードから冷房モードへの切り換え時の突沸対策制御においてコントローラ32により、電磁弁40の前後の圧力差ΔPdxが所定値A以下となるように圧縮機2の回転数NCを調整するようにしてもよい。そして、この場合も圧力差ΔPdxが所定値A以下となった場合、圧縮機2の制御を冷房モードでの制御に移行することで、冷房モードの空調運転に移行する。更に、この場合も冷房モードでの制御に移行するまで、図7に実線L14で示す如く圧縮機2の回転数NCの上昇速度を、通常時の上昇速度よりも低下させる(実線L14は所定回転数NC1から立ち上がっているが、実際にはNC1に限らない)。
(9−6)暖房モードから冷房モードへの切り換え時の突沸対策制御(その6)
ここで、上記実施例(9−5)では電磁弁40の前後の圧力差ΔPdxが所定値A以下となった場合、圧縮機2の制御を冷房モードでの制御に移行するようにしたが、それに限らず、圧縮機2を停止してから所定時間3(図7。10秒~60秒)が経過したことをコントローラ32が確認し、所定時間3が経過した場合に、圧縮機2の制御を冷房モードでの制御に移行させ、この場合も冷房モードでの制御に移行するまで、圧縮機2の回転数NCの上昇速度を通常時の上昇速度よりも低下させるようにしてもよい。
このように電磁弁40の前後の圧力差ΔPdxを小さくすることで、アキュムレータ12から圧縮機2に吸い込まれる冷媒量は減少するので、アキュムレータ12からレシーバドライヤ部14に冷媒が移動する暖房モードから冷房モードへの切り換え時にも、アキュムレータ12から圧縮機2に多量の冷媒が吸い込まれてアキュムレータ12内の圧力が急激に低下することが抑制され、アキュムレータ12内での冷媒の突沸が防止若しくは抑制される。
特に、上記実施例(9−3)~(9−6)の如く圧縮機2の制御を冷房モードでの制御に移行するまでその回転数NCの上昇速度を低下させれば、モード切り換え時のアキュムレータ12内圧力の低下は一層抑制されることになる。また、(9)の各実施例の如く電磁弁40の前後の圧力差ΔPdxが所定値A以下となった場合に圧縮機2の制御を冷房モードの制御に移行させ、或いは、所定時間3の経過後に移行するようにすれば、的確にアキュムレータ12における突沸の発生を防止若しくは抑制することができるようになる。
(10)暖房モードから除湿冷房モードへの切り換え時の突沸対策制御
次に、図8を参照しながら、車両用空気調和装置1の運転モードを、暖房モードから除湿冷房モードに切り換える際にコントローラ32が実行する突沸対策制御の例について説明する。
(10−1)暖房モードから除湿冷房モードへの切り換え時の突沸対策制御(その1)
運転モードが暖房モードから除湿冷房モードに切り換わる際も、暖房モードにおいては室外熱交換器7から電磁弁21を経てアキュムレータ12に流れていた冷媒は、室外熱交換器7から電磁弁17を経てレシーバドライヤ部14(レシーバ)に流れる状態に切り換わるので、モード切り換え後に圧縮機2の回転数が高くなると、アキュムレータ12内の圧力が急激に下がり、突沸が発生して圧縮機2へ過剰な液戻りや音(騒音)が発生することになる。
そこで、コントローラ32は暖房モードから除湿冷房モードに運転モードを切り換える際も、以下に説明する突沸対策制御を実行する。コントローラ32は暖房モードから除湿冷房モードに切り換える場合も、先ず、電磁弁17を開き、電磁弁21を閉じて室外熱交換器7から出た冷媒がレシーバドライヤ部14に流れる状態とする。また、圧縮機2の回転数NCを予め定めた低い値である所定回転数NC1(図8。800rpm~1500rpm)とすると共に、室外膨張弁6の弁開度の制御を除湿冷房モードにおける制御に移行させる。
圧縮機2の回転数NCを所定回転数NC1に下げることで、吐出圧力Pdは低下すると共に、室外膨張弁6も除湿冷房モードにおける比較的大きい開度の制御となることで、室外熱交換器圧力PXOは上昇するため、電磁弁40の前後の圧力差Pdx(=Pd−PXO)は小さくなっていく。そして、圧力差ΔPdxが図8中の所定値A以下となった場合、図8に実線L15で示す如く圧縮機2の制御を除湿冷房モードでの制御に移行することで、除湿冷房モードの空調運転に移行する。
(10−2)暖房モードから除湿冷房モードへの切り換え時の突沸対策制御(その2)
ここで、上記実施例(10−1)では電磁弁40の前後の圧力差ΔPdxが所定値A以下となった場合、圧縮機2の制御を除湿冷房モードでの制御に移行するようにしたが、それに限らず、圧縮機2の回転数NCを所定回転数NC1に下げてから所定時間4(図8。例えば、10秒~30秒)が経過したことをコントローラ32が確認し、所定時間4が経過した場合に、図8に実線L16で示す如く圧縮機2の制御を除湿冷房モードでの制御に移行するようにしてもよい。
(10−3)暖房モードから除湿冷房モードへの切り換え時の突沸対策制御(その3)
また、暖房モードから除湿冷房モードへの切り換え時の突沸対策制御においては、圧縮機2を停止するようにしてもよい(図8に合わせて示す)。圧縮機2を停止することで、吐出圧力Pdは低下すると共に、室外膨張弁6の弁開度が拡大することで、室外熱交換器圧力PXOは上昇するため、電磁弁40の前後の圧力差Pdx(=Pd−PXO)は小さくなっていく。そして、この場合も圧力差ΔPdxが所定値A以下となった場合、圧縮機2の制御を除湿冷房モードでの制御に移行することで、除湿冷房モードの空調運転に移行する。更に、この場合は除湿冷房モードでの制御に移行するまで、図8に破線L17で示す如く圧縮機2の回転数NCの上昇速度を、通常時の上昇速度よりも低下させる。
(10−4)暖房モードから除湿冷房モードへの切り換え時の突沸対策制御(その4)
ここで、上記実施例(10−3)では電磁弁40の前後の圧力差ΔPdxが所定値A以下となった場合、圧縮機2の制御を除湿冷房モードでの制御に移行するようにしたが、それに限らず、圧縮機2を停止してから所定時間4(図8。10秒~30秒)が経過したことをコントローラ32が確認し、所定時間4が経過した場合に、図8に実線L18で示す如く圧縮機2の制御を除湿冷房モードでの制御に移行するようにしてもよい。
(10−5)暖房モードから除湿冷房モードへの切り換え時の突沸対策制御(その5)
また、暖房モードから除湿冷房モードへの切り換え時の突沸対策制御においてコントローラ32により、電磁弁40の前後の圧力差ΔPdxが所定値A以下となるように圧縮機2の回転数NCを調整するようにしてもよい。そして、この場合も圧力差ΔPdxが所定値A以下となった場合、圧縮機2の制御を除湿冷房モードでの制御に移行することで、除湿冷房モードの空調運転に移行する。更に、この場合も除湿冷房モードでの制御に移行するまで、図8に実線L19で示す如く圧縮機2の回転数NCの上昇速度を、通常時の上昇速度よりも低下させる(実線L19は所定回転数NC1から立ち上がっているが、実際にはNC1に限らない)。
(10−6)暖房モードから除湿冷房モードへの切り換え時の突沸対策制御(その6)
ここで、上記実施例(10−5)では電磁弁40の前後の圧力差ΔPdxが所定値A以下となった場合、圧縮機2の制御を除湿冷房モードでの制御に移行するようにしたが、それに限らず、圧縮機2を停止してから所定時間4(図8。10秒~30秒)が経過したことをコントローラ32が確認し、所定時間4が経過した場合に、圧縮機2の制御を除湿冷房モードでの制御に移行させ、この場合も除湿冷房モードでの制御に移行するまで、圧縮機2の回転数NCの上昇速度を通常時の上昇速度よりも低下させるようにしてもよい。
このように電磁弁40の前後の圧力差ΔPdxを小さくすることで、アキュムレータ12から圧縮機2に吸い込まれる冷媒量は減少するので、アキュムレータ12からレシーバドライヤ部14に冷媒が移動する暖房モードから除湿冷房モードへの切り換え時にも、アキュムレータ12から圧縮機2に多量の冷媒が吸い込まれてアキュムレータ12内の圧力が急激に低下することが抑制され、アキュムレータ12内での冷媒の突沸が防止若しくは抑制される。
特に、上記実施例(10−3)~(10−6)の如く圧縮機2の制御を除湿冷房モードでの制御に移行するまでその回転数NCの上昇速度を低下させれば、モード切り換え時のアキュムレータ12内圧力の低下は一層抑制されることになる。また、(10)の各実施例の如く電磁弁40の前後の圧力差ΔPdxが所定値A以下となった場合に圧縮機2の制御を除湿冷房モードの制御に移行させ、或いは、所定時間4の経過後に移行するようにすれば、的確にアキュムレータ12における突沸の発生を防止若しくは抑制することができるようになる。
尚、実施例では暖房モード、除湿暖房モード、除湿冷房モード、冷房モード、及び、MAX冷房モードの各運転モードを切り換えて実行する車両用空気調和装置1に本発明を適用したが、それに限らず、請求項1~請求項6の発明では暖房モードと除湿暖房モードとMAX冷房モードを切り換えて実行する車両用空気調和装置にも本発明は有効であり、請求項7の発明では暖房モードと除湿暖房モードを切り換えて実行する車両用空気調和装置にも本発明は有効である。また、請求項8~請求項11の発明では暖房モードと冷房モードを切り換えて実行する車両用空気調和装置にも本発明は有効であり、請求項12~請求項15の発明では暖房モードと除湿冷房モードを切り換えて実行する車両用空気調和装置にも本発明は有効である。
更に、実施例で示した各運転モードの切換制御は、それに限られるものでは無く、車両用空気調和装置の能力や使用環境に応じて、外気温度Tam、車室内の湿度、目標吹出温度TAO、放熱器温度TH、目標放熱器温度TCO、吸熱器温度Te、目標吸熱器温度TEO、車室内の除湿要求の有無、等のパラメータの何れか、又は、それらの組み合わせ、それらの全てを採用して適切な条件を設定すると良い。
更にまた、補助加熱装置は、実施例で示した補助ヒータ23に限られるものでは無く、ヒータで加熱された熱媒体を循環させて空気流通路内の空気を加熱する熱媒体循環回路や、エンジンで加熱されたラジエター水を循環するヒータコア等を利用してもよい。また、上記各実施例で説明した冷媒回路Rの構成はそれに限定されるものでは無く、本発明の趣旨を逸脱しない範囲で変更可能であることは云うまでもない。
1 車両用空気調和装置
2 圧縮機
3 空気流通路
4 放熱器
6 室外膨張弁
7 室外熱交換器
8 室内膨張弁
9 吸熱器
12 アキュムレータ
14 レシーバドライヤ部(レシーバ)
17 電磁弁(第4の開閉弁)
21 電磁弁(第3の開閉弁)
23 補助ヒータ(補助加熱装置)
27 室内送風機(ブロワファン)
28 エアミックスダンパ
30 電磁弁(第1の開閉弁)
40 電磁弁(第2の開閉弁)
31 吹出口切換ダンパ
32 コントローラ(制御装置)
35 バイパス配管
45 バイパス装置
R 冷媒回路
2 圧縮機
3 空気流通路
4 放熱器
6 室外膨張弁
7 室外熱交換器
8 室内膨張弁
9 吸熱器
12 アキュムレータ
14 レシーバドライヤ部(レシーバ)
17 電磁弁(第4の開閉弁)
21 電磁弁(第3の開閉弁)
23 補助ヒータ(補助加熱装置)
27 室内送風機(ブロワファン)
28 エアミックスダンパ
30 電磁弁(第1の開閉弁)
40 電磁弁(第2の開閉弁)
31 吹出口切換ダンパ
32 コントローラ(制御装置)
35 バイパス配管
45 バイパス装置
R 冷媒回路
Claims (15)
- 冷媒を圧縮する圧縮機と、
車室内に供給する空気が流通する空気流通路と、
冷媒を放熱させて前記空気流通路から前記車室内に供給する空気を加熱するための放熱器と、
冷媒を吸熱させて前記空気流通路から前記車室内に供給する空気を冷却するための吸熱器と、
前記車室外に設けられた室外熱交換器と、
前記放熱器を出て前記室外熱交換器に流入する冷媒を減圧するための室外膨張弁と、
前記圧縮機の吐出側と前記放熱器の入口側の間に設けられた第1の開閉弁と、
該第1の開閉弁の上流側で分岐し、前記放熱器及び前記室外膨張弁をバイパスして前記圧縮機から吐出された冷媒を前記室外熱交換器に流すためのバイパス配管と、
該バイパス配管に設けられた第2の開閉弁と、
前記空気流通路から前記車室内に供給する空気を加熱するための補助加熱装置と、
前記圧縮機の冷媒吸込側に接続されたアキュムレータと、
前記室外熱交換器の冷媒下流側に接続されたレシーバと、
制御装置を備え、
該制御装置により、前記第1の開閉弁を開き、前記第2の開閉弁を閉じることで、前記圧縮機から吐出された冷媒を前記放熱器に流して放熱させ、放熱した当該冷媒を前記室外膨張弁で減圧した後、前記室外熱交換器にて吸熱させ、吸熱した当該冷媒を前記アキュムレータに流し、該アキュムレータから前記圧縮機に吸い込ませる暖房モードと、
前記室外膨張弁を全閉とし、前記第1の開閉弁を閉じ、前記第2の開閉弁を開くことで、前記圧縮機から吐出された冷媒を前記バイパス配管により前記室外熱交換器に流して放熱させ、放熱した当該冷媒を前記レシーバに流し、減圧した後、前記吸熱器にて吸熱させ、且つ、前記補助加熱装置を発熱させる除湿暖房モードと、
前記室外膨張弁を全閉とし、前記第1の開閉弁を閉じ、前記第2の開閉弁を開くことで、前記圧縮機から吐出された冷媒を前記バイパス配管により前記室外熱交換器に流して放熱させ、放熱した当該冷媒を前記レシーバに流し、減圧した後、前記吸熱器にて吸熱させる最大冷房モードを切り換えて実行する車両用空気調和装置において、
前記制御装置は、前記暖房モードから前記除湿暖房モード又は前記最大冷房モードに切り換える際、前記室外熱交換器から出た冷媒を前記レシーバに流す状態に切り換えた後、前記圧縮機の回転数を制御し、若しくは、停止させることで前記第2の開閉弁前後の圧力差を縮小した後、当該第2の開閉弁を開き、前記第1の開閉弁を閉じ、前記室外膨張弁を全閉とし、前記圧縮機の制御を前記除湿暖房モード又は前記最大冷房モードにおける制御に移行させることを特徴とする車両用空気調和装置。 - 前記制御装置は、前記第2の開閉弁前後の圧力差が所定値以下となるように前記圧縮機の回転数を調整し、当該圧力差が前記所定値以下となった場合に前記第2の開閉弁を開き、前記第1の開閉弁を閉じ、前記室外膨張弁を全閉とした後、前記圧縮機の制御を前記除湿暖房モード又は前記最大冷房モードにおける制御に移行させると共に、移行するまで前記圧縮機の回転数の上昇速度を低下させることを特徴とする請求項1に記載の車両用空気調和装置。
- 前記制御装置は、前記圧縮機の回転数を予め定めた低い値とし、前記第2の開閉弁前後の圧力差が所定値以下となった場合に、当該第2の開閉弁を開き、前記第1の開閉弁を閉じ、前記室外膨張弁を全閉とし、且つ、前記圧縮機の制御を前記除湿暖房モード又は前記最大冷房モードにおける制御に移行させ、若しくは、前記室外膨張弁が全閉となった後、前記圧縮機の制御を前記除湿暖房モード又は前記最大冷房モードにおける制御に移行させることを特徴とする請求項1に記載の車両用空気調和装置。
- 前記制御装置は、前記圧縮機を停止させ、前記第2の開閉弁前後の圧力差が所定値以下となった場合に、若しくは、前記圧縮機を停止してから所定時間経過後に前記第2の開閉弁を開き、前記第1の開閉弁を閉じ、前記室外膨張弁を全閉とし、且つ、前記圧縮機の制御を前記除湿暖房モード又は前記最大冷房モードにおける制御に移行させ、若しくは、前記室外膨張弁が全閉となった後、前記圧縮機の制御を前記除湿暖房モード又は前記最大冷房モードにおける制御に移行させると共に、移行するまで前記圧縮機の回転数の上昇速度を低下させることを特徴とする請求項1に記載の車両用空気調和装置。
- 前記制御装置は、前記第2の開閉弁前後の圧力差が前記所定値以下となってから第2の所定時間が経過するまでは当該圧縮機の回転数の上昇を禁止することを特徴とする請求項4に記載の車両用空気調和装置。
- 前記制御装置は、前記圧縮機の回転数を予め定めた低い値とし、前記第2の開閉弁前後の圧力差が所定値以下となった場合に、若しくは、前記圧縮機の回転数を前記低い値としてから所定時間経過後に前記第2の開閉弁を開き、前記第1の開閉弁を閉じ、前記室外膨張弁を全閉とし、且つ、前記圧縮機の制御を前記除湿暖房モード又は前記最大冷房モードにおける制御に移行させ、若しくは、前記室外膨張弁が全閉となった後、前記圧縮機の制御を前記除湿暖房モード又は前記最大冷房モードにおける制御に移行させると共に、移行するまで前記圧縮機の回転数の上昇速度を低下させることを特徴とする請求項1に記載の車両用空気調和装置。
- 前記制御装置は、前記暖房モードから前記除湿暖房モードに切り換える際、前記補助加熱装置を発熱させ、当該補助加熱装置の温度が所定値以上となった場合に、前記室外熱交換器から出た冷媒を前記レシーバに流す状態に切り換え、且つ、前記室外膨張弁の弁開度を拡大することを特徴とする請求項1乃至請求項6のうちの何れかに記載の車両用空気調和装置。
- 冷媒を圧縮する圧縮機と、
車室内に供給する空気が流通する空気流通路と、
冷媒を放熱させて前記空気流通路から前記車室内に供給する空気を加熱するための放熱器と、
冷媒を吸熱させて前記空気流通路から前記車室内に供給する空気を冷却するための吸熱器と、
前記車室外に設けられた室外熱交換器と、
前記放熱器を出て前記室外熱交換器に流入する冷媒を減圧するための室外膨張弁と、
前記圧縮機の吐出側と前記放熱器の入口側の間に設けられた第1の開閉弁と、
該第1の開閉弁の上流側で分岐し、前記放熱器及び前記室外膨張弁をバイパスして前記圧縮機から吐出された冷媒を前記室外熱交換器に流すためのバイパス配管と、
該バイパス配管に設けられた第2の開閉弁と、
前記圧縮機の冷媒吸込側に接続されたアキュムレータと、
前記室外熱交換器の冷媒下流側に接続されたレシーバと、
制御装置を備え、
該制御装置により、前記第1の開閉弁を開き、前記第2の開閉弁を閉じることで、前記圧縮機から吐出された冷媒を前記放熱器に流して放熱させ、放熱した当該冷媒を前記室外膨張弁で減圧した後、前記室外熱交換器にて吸熱させ、吸熱した当該冷媒を前記アキュムレータに流し、該アキュムレータから前記圧縮機に吸い込ませる暖房モードと、
前記第1の開閉弁を開き、前記第2の開閉弁を閉じ、前記室外膨張弁を全開とすることで、前記圧縮機から吐出された冷媒を前記放熱器から前記室外熱交換器に流して当該室外熱交換器にて放熱させ、放熱した当該冷媒を前記レシーバに流し、減圧した後、前記吸熱器にて吸熱させる冷房モードを切り換えて実行する車両用空気調和装置において、
前記制御装置は、前記暖房モードから前記冷房モードに切り換える際、前記室外熱交換器から出た冷媒を前記レシーバに流す状態に切り換え、前記室外膨張弁を全開とした後、前記圧縮機の回転数を制御し、若しくは、停止させることで前記第2の開閉弁前後の圧力差を縮小した後、前記圧縮機の制御を前記冷房モードにおける制御に移行させることを特徴とする車両用空気調和装置。 - 前記制御装置は、前記圧縮機の回転数を予め定めた低い値とすることで前記第2の開閉弁前後の圧力差を縮小させ、当該圧力差が所定値以下となった場合に、若しくは、前記圧縮機の回転数を前記低い値としてから所定時間経過後に、前記圧縮機の制御を前記冷房モードにおける制御に移行させることを特徴とする請求項8に記載の車両用空気調和装置。
- 前記制御装置は、前記圧縮機を停止させることで前記第2の開閉弁前後の圧力差を縮小させ、当該圧力差が所定値以下となった場合に、若しくは、前記圧縮機を停止させてから所定時間経過後に、前記圧縮機の制御を前記冷房モードにおける制御に移行させ、且つ、移行するまで前記圧縮機の回転数の上昇速度を低下させることを特徴とする請求項8に記載の車両用空気調和装置。
- 前記制御装置は、前記第2の開閉弁前後の圧力差が所定値以下となるように前記圧縮機の回転数を調整し、当該圧力差が所定値以下となった場合に、若しくは、前記圧縮機の回転数の調整を開始してから所定時間経過後に、前記圧縮機の制御を前記冷房モードにおける制御に移行させ、且つ、移行するまで前記圧縮機の回転数の上昇速度を低下させることを特徴とする請求項8に記載の車両用空気調和装置。
- 冷媒を圧縮する圧縮機と、
車室内に供給する空気が流通する空気流通路と、
冷媒を放熱させて前記空気流通路から前記車室内に供給する空気を加熱するための放熱器と、
冷媒を吸熱させて前記空気流通路から前記車室内に供給する空気を冷却するための吸熱器と、
前記車室外に設けられた室外熱交換器と、
前記放熱器を出て前記室外熱交換器に流入する冷媒を減圧するための室外膨張弁と、
前記圧縮機の吐出側と前記放熱器の入口側の間に設けられた第1の開閉弁と、
該第1の開閉弁の上流側で分岐し、前記放熱器及び前記室外膨張弁をバイパスして前記圧縮機から吐出された冷媒を前記室外熱交換器に流すためのバイパス配管と、
該バイパス配管に設けられた第2の開閉弁と、
前記圧縮機の冷媒吸込側に接続されたアキュムレータと、
前記室外熱交換器の冷媒下流側に接続されたレシーバと、
制御装置を備え、
該制御装置により、前記第1の開閉弁を開き、前記第2の開閉弁を閉じることで、前記圧縮機から吐出された冷媒を前記放熱器に流して放熱させ、放熱した当該冷媒を前記室外膨張弁で減圧した後、前記室外熱交換器にて吸熱させ、吸熱した当該冷媒を前記アキュムレータに流し、該アキュムレータから前記圧縮機に吸い込ませる暖房モードと、
前記第1の開閉弁を開き、前記第2の開閉弁を閉じることで、前記圧縮機から吐出された冷媒を前記放熱器から前記室外熱交換器に流して当該放熱器及び室外熱交換器にて放熱させ、放熱した当該冷媒を前記レシーバに流し、減圧した後、前記吸熱器にて吸熱させる除湿冷房モードを切り換えて実行する車両用空気調和装置において、
前記制御装置は、前記暖房モードから前記除湿冷房モードに切り換える際、前記室外熱交換器から出た冷媒を前記レシーバに流す状態に切り換え、前記室外膨張弁の制御を前記除湿冷房モードにおける制御に移行した後、前記圧縮機の回転数を制御し、若しくは、停止させることで前記第2の開閉弁前後の圧力差を縮小した後、前記圧縮機の制御を前記除湿冷房モードにおける制御に移行させることを特徴とする車両用空気調和装置。 - 前記制御装置は、前記圧縮機の回転数を予め定めた低い値とすることで前記第2の開閉弁前後の圧力差を縮小させ、当該圧力差が所定値以下となった場合に、若しくは、前記圧縮機の回転数を前記低い値としてから所定時間経過後に、前記圧縮機の制御を前記除湿冷房モードにおける制御に移行させることを特徴とする請求項12に記載の車両用空気調和装置。
- 前記制御装置は、前記圧縮機を停止させることで前記第2の開閉弁前後の圧力差を縮小させ、当該圧力差が所定値以下となった場合に、若しくは、前記圧縮機を停止させてから所定時間経過後に、前記圧縮機の制御を前記除湿冷房モードにおける制御に移行させ、且つ、移行するまで前記圧縮機の回転数の上昇速度を低下させることを特徴とする請求項12に記載の車両用空気調和装置。
- 前記制御装置は、前記第2の開閉弁前後の圧力差が所定値以下となるように前記圧縮機の回転数を調整し、当該圧力差が所定値以下となった場合に、若しくは、前記圧縮機の回転数の調整を開始してから所定時間経過後に、前記圧縮機の制御を前記除湿冷房モードにおける制御に移行させ、且つ、移行するまで前記圧縮機の回転数の上昇速度を低下させることを特徴とする請求項12に記載の車両用空気調和装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/076,963 US10843527B2 (en) | 2016-02-26 | 2017-02-21 | Vehicle air conditioning device |
CN201780011952.5A CN108698475A (zh) | 2016-02-26 | 2017-02-21 | 车用空调装置 |
DE112017000443.8T DE112017000443T5 (de) | 2016-02-26 | 2017-02-21 | Fahrzeugklimatisierungseinrichtung |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016035678A JP6738157B2 (ja) | 2016-02-26 | 2016-02-26 | 車両用空気調和装置 |
JP2016-035678 | 2016-02-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017146270A1 true WO2017146270A1 (ja) | 2017-08-31 |
Family
ID=59686406
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/008043 WO2017146270A1 (ja) | 2016-02-26 | 2017-02-21 | 車両用空気調和装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10843527B2 (ja) |
JP (1) | JP6738157B2 (ja) |
CN (1) | CN108698475A (ja) |
DE (1) | DE112017000443T5 (ja) |
WO (1) | WO2017146270A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020129495A1 (ja) * | 2018-12-19 | 2020-06-25 | サンデン・オートモーティブクライメイトシステム株式会社 | 車両用空気調和装置 |
EP4012293A4 (en) * | 2019-08-07 | 2022-08-10 | Mitsubishi Electric Corporation | REFRIGERATION CIRCUIT DEVICE |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6418779B2 (ja) * | 2014-05-08 | 2018-11-07 | サンデンホールディングス株式会社 | 車両用空気調和装置 |
JP6710061B2 (ja) * | 2016-02-26 | 2020-06-17 | サンデン・オートモーティブクライメイトシステム株式会社 | 車両用空気調和装置 |
JP6738157B2 (ja) * | 2016-02-26 | 2020-08-12 | サンデン・オートモーティブクライメイトシステム株式会社 | 車両用空気調和装置 |
JP6692678B2 (ja) | 2016-04-14 | 2020-05-13 | サンデン・オートモーティブクライメイトシステム株式会社 | 車両用空気調和装置 |
JP6680601B2 (ja) | 2016-04-14 | 2020-04-15 | サンデン・オートモーティブクライメイトシステム株式会社 | 車両用空気調和装置 |
JP2018192938A (ja) * | 2017-05-18 | 2018-12-06 | サンデン・オートモーティブクライメイトシステム株式会社 | 車両用空気調和装置 |
EP3695175B1 (en) * | 2017-11-01 | 2023-05-17 | Siam Compressor Industry Co., Ltd. | Refrigerating cycle apparatus |
JP6925288B2 (ja) * | 2018-01-30 | 2021-08-25 | サンデン・オートモーティブクライメイトシステム株式会社 | 車両用空気調和装置 |
US20190351740A1 (en) * | 2018-05-18 | 2019-11-21 | Nio Usa, Inc. | Use of an inside condenser to maximize total thermal system performance |
JP7233953B2 (ja) * | 2019-02-15 | 2023-03-07 | サンデン株式会社 | 車両用空気調和装置 |
JP6628911B1 (ja) * | 2019-02-21 | 2020-01-15 | 三菱電機株式会社 | 冷凍サイクル装置 |
CN109849617B (zh) * | 2019-03-11 | 2022-02-01 | 中国科学院广州能源研究所 | 一种用于电动汽车的热管理系统 |
JP2021031026A (ja) * | 2019-08-29 | 2021-03-01 | 株式会社ヴァレオジャパン | 車両用空調装置 |
KR20210059276A (ko) * | 2019-11-15 | 2021-05-25 | 현대자동차주식회사 | 차량용 히트펌프 시스템 |
WO2023199912A1 (ja) * | 2022-04-15 | 2023-10-19 | 株式会社デンソー | ヒートポンプサイクル装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09295506A (ja) * | 1996-05-01 | 1997-11-18 | Sanden Corp | 車両用空調装置 |
JP2014062675A (ja) * | 2012-09-20 | 2014-04-10 | Denso Corp | 冷凍サイクル制御装置 |
JP2015039999A (ja) * | 2013-08-23 | 2015-03-02 | サンデン株式会社 | 車両用空気調和装置 |
Family Cites Families (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101241222B1 (ko) | 2011-07-21 | 2013-03-13 | 기아자동차주식회사 | 차량용 히트펌프 시스템 제어방법 |
US5299431A (en) * | 1991-04-26 | 1994-04-05 | Nippondenso Co., Ltd. | Automotive air conditioner having condenser and evaporator provided within air duct |
US6430951B1 (en) * | 1991-04-26 | 2002-08-13 | Denso Corporation | Automotive airconditioner having condenser and evaporator provided within air duct |
US5228301A (en) * | 1992-07-27 | 1993-07-20 | Thermo King Corporation | Methods and apparatus for operating a refrigeration system |
JP3952545B2 (ja) * | 1997-07-24 | 2007-08-01 | 株式会社デンソー | 車両用空調装置 |
DE60031808T2 (de) * | 1999-07-26 | 2007-09-20 | Denso Corp., Kariya | Kühlkreisvorrichtung |
US6588222B1 (en) * | 2002-05-08 | 2003-07-08 | Delphi Technologies, Inc. | Low-cost energy-efficient vehicle air conditioning system |
JP3841039B2 (ja) * | 2002-10-25 | 2006-11-01 | 株式会社デンソー | 車両用空調装置 |
US8517087B2 (en) * | 2007-02-20 | 2013-08-27 | Bergstrom, Inc. | Combined heating and air conditioning system for vehicles |
JP5446524B2 (ja) * | 2009-07-08 | 2014-03-19 | 株式会社デンソー | 車両用空調装置 |
JP2011140291A (ja) * | 2010-01-11 | 2011-07-21 | Denso Corp | 車両用空調装置 |
US9222710B2 (en) * | 2010-11-01 | 2015-12-29 | Mitsubishi Heavy Industries, Ltd. | Heat-pump automotive air conditioner and defrosting method of the heat-pump automotive air conditioner |
DE112012000758T5 (de) * | 2011-02-10 | 2013-11-21 | Sanden Corporation | Fahrzeugklimatisierungseinrichtung |
JP5780166B2 (ja) * | 2011-02-11 | 2015-09-16 | 株式会社デンソー | ヒートポンプサイクル |
DE102012205200B4 (de) * | 2011-04-04 | 2020-06-18 | Denso Corporation | Kältemittelkreislaufvorrichtung |
JP5821756B2 (ja) * | 2011-04-21 | 2015-11-24 | 株式会社デンソー | 冷凍サイクル装置 |
JP5944135B2 (ja) * | 2011-10-17 | 2016-07-05 | サンデンホールディングス株式会社 | 車両用空気調和装置 |
JP5984842B2 (ja) * | 2011-12-09 | 2016-09-06 | サンデンホールディングス株式会社 | 車両用空気調和装置 |
CN104271373B (zh) * | 2012-02-28 | 2016-10-05 | 日本空调系统股份有限公司 | 车辆用空调装置 |
JP6088753B2 (ja) * | 2012-06-13 | 2017-03-01 | サンデンホールディングス株式会社 | 車両用空気調和装置 |
JP5999637B2 (ja) | 2012-11-09 | 2016-09-28 | サンデンホールディングス株式会社 | 車両用空気調和装置 |
JP5967022B2 (ja) * | 2012-11-16 | 2016-08-10 | 株式会社デンソー | 冷凍サイクル装置 |
WO2014084343A1 (ja) * | 2012-11-30 | 2014-06-05 | サンデン株式会社 | 車両用空気調和装置 |
JP6125312B2 (ja) * | 2013-04-26 | 2017-05-10 | サンデンホールディングス株式会社 | 車両用空気調和装置 |
JP6125330B2 (ja) * | 2013-05-28 | 2017-05-10 | サンデンホールディングス株式会社 | 車両用空気調和装置 |
JP6040099B2 (ja) * | 2013-05-28 | 2016-12-07 | サンデンホールディングス株式会社 | 車両用空気調和装置 |
JP6192434B2 (ja) * | 2013-08-23 | 2017-09-06 | サンデンホールディングス株式会社 | 車両用空気調和装置 |
JP6223753B2 (ja) * | 2013-09-04 | 2017-11-01 | サンデンホールディングス株式会社 | 車両用空気調和装置 |
CN104515335B (zh) * | 2013-10-08 | 2017-09-26 | 翰昂汽车零部件有限公司 | 车辆用热泵系统 |
JP6197657B2 (ja) * | 2014-01-14 | 2017-09-20 | 株式会社デンソー | 車両用熱管理システム |
KR101859512B1 (ko) * | 2014-01-21 | 2018-06-29 | 한온시스템 주식회사 | 차량용 히트 펌프 시스템 |
JP6339419B2 (ja) * | 2014-06-03 | 2018-06-06 | サンデンホールディングス株式会社 | 車両用空気調和装置 |
JP6496958B2 (ja) * | 2014-09-19 | 2019-04-10 | サンデンホールディングス株式会社 | 車両用空気調和装置 |
JP6353328B2 (ja) * | 2014-09-24 | 2018-07-04 | サンデンホールディングス株式会社 | 車両用空気調和装置 |
JP6539116B2 (ja) * | 2015-05-29 | 2019-07-03 | サンデン・オートモーティブクライメイトシステム株式会社 | 車両用空気調和装置 |
JP6633303B2 (ja) * | 2015-06-25 | 2020-01-22 | サンデン・オートモーティブクライメイトシステム株式会社 | 車両用空気調和装置 |
JP6590551B2 (ja) * | 2015-06-26 | 2019-10-16 | サンデン・オートモーティブクライメイトシステム株式会社 | 車両用空気調和装置 |
JP6619572B2 (ja) * | 2015-07-01 | 2019-12-11 | サンデン・オートモーティブクライメイトシステム株式会社 | 車両用空気調和装置 |
JP6590558B2 (ja) * | 2015-07-01 | 2019-10-16 | サンデン・オートモーティブクライメイトシステム株式会社 | 車両用空気調和装置 |
JP6571430B2 (ja) * | 2015-07-21 | 2019-09-04 | サンデン・オートモーティブクライメイトシステム株式会社 | 車両用空気調和装置 |
JP6332193B2 (ja) * | 2015-08-06 | 2018-05-30 | 株式会社デンソー | 車両用空調装置 |
JP6481668B2 (ja) * | 2015-12-10 | 2019-03-13 | 株式会社デンソー | 冷凍サイクル装置 |
JP6607638B2 (ja) * | 2015-12-14 | 2019-11-20 | サンデン・オートモーティブクライメイトシステム株式会社 | 車両用空気調和装置 |
JP6710061B2 (ja) * | 2016-02-26 | 2020-06-17 | サンデン・オートモーティブクライメイトシステム株式会社 | 車両用空気調和装置 |
JP6738157B2 (ja) * | 2016-02-26 | 2020-08-12 | サンデン・オートモーティブクライメイトシステム株式会社 | 車両用空気調和装置 |
JP6485390B2 (ja) * | 2016-03-08 | 2019-03-20 | 株式会社デンソー | 冷凍サイクル装置 |
JP6692678B2 (ja) * | 2016-04-14 | 2020-05-13 | サンデン・オートモーティブクライメイトシステム株式会社 | 車両用空気調和装置 |
JP6680601B2 (ja) * | 2016-04-14 | 2020-04-15 | サンデン・オートモーティブクライメイトシステム株式会社 | 車両用空気調和装置 |
JP6680600B2 (ja) * | 2016-04-14 | 2020-04-15 | サンデン・オートモーティブクライメイトシステム株式会社 | 車両用空気調和装置 |
JP6692723B2 (ja) * | 2016-09-02 | 2020-05-13 | サンデン・オートモーティブクライメイトシステム株式会社 | 車両用空気調和装置 |
JP2018091536A (ja) * | 2016-12-01 | 2018-06-14 | 株式会社デンソー | 冷凍サイクル装置 |
JP2018122635A (ja) * | 2017-01-30 | 2018-08-09 | サンデン・オートモーティブクライメイトシステム株式会社 | 車両用空気調和装置 |
KR102610903B1 (ko) * | 2018-05-11 | 2023-12-07 | 주식회사 두원공조 | 차량용 냉난방 시스템 |
-
2016
- 2016-02-26 JP JP2016035678A patent/JP6738157B2/ja active Active
-
2017
- 2017-02-21 CN CN201780011952.5A patent/CN108698475A/zh active Pending
- 2017-02-21 WO PCT/JP2017/008043 patent/WO2017146270A1/ja active Application Filing
- 2017-02-21 DE DE112017000443.8T patent/DE112017000443T5/de active Pending
- 2017-02-21 US US16/076,963 patent/US10843527B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09295506A (ja) * | 1996-05-01 | 1997-11-18 | Sanden Corp | 車両用空調装置 |
JP2014062675A (ja) * | 2012-09-20 | 2014-04-10 | Denso Corp | 冷凍サイクル制御装置 |
JP2015039999A (ja) * | 2013-08-23 | 2015-03-02 | サンデン株式会社 | 車両用空気調和装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020129495A1 (ja) * | 2018-12-19 | 2020-06-25 | サンデン・オートモーティブクライメイトシステム株式会社 | 車両用空気調和装置 |
EP4012293A4 (en) * | 2019-08-07 | 2022-08-10 | Mitsubishi Electric Corporation | REFRIGERATION CIRCUIT DEVICE |
Also Published As
Publication number | Publication date |
---|---|
DE112017000443T5 (de) | 2018-10-18 |
CN108698475A (zh) | 2018-10-23 |
JP2017149365A (ja) | 2017-08-31 |
JP6738157B2 (ja) | 2020-08-12 |
US20190047362A1 (en) | 2019-02-14 |
US10843527B2 (en) | 2020-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017146270A1 (ja) | 車両用空気調和装置 | |
JP6571405B2 (ja) | 車両用空気調和装置 | |
JP6418787B2 (ja) | 車両用空気調和装置 | |
JP6040099B2 (ja) | 車両用空気調和装置 | |
JP6207958B2 (ja) | 車両用空気調和装置 | |
JP6241595B2 (ja) | 車両用空気調和装置 | |
WO2017146268A1 (ja) | 車両用空気調和装置 | |
WO2015041209A1 (ja) | 車両用空気調和装置 | |
JP6963405B2 (ja) | 車両用空気調和装置 | |
WO2017002547A1 (ja) | 車両用空気調和装置 | |
JP6680600B2 (ja) | 車両用空気調和装置 | |
JP6680601B2 (ja) | 車両用空気調和装置 | |
JP6571430B2 (ja) | 車両用空気調和装置 | |
WO2017146266A1 (ja) | 車両用空気調和装置 | |
WO2017179597A1 (ja) | 車両用空気調和装置 | |
WO2017146267A1 (ja) | 車両用空気調和装置 | |
JP2018069964A (ja) | 車両用空気調和装置及びその製造方法 | |
JP6948179B2 (ja) | 車両用空気調和装置 | |
JP2019055648A (ja) | 車両用空気調和装置 | |
WO2017179595A1 (ja) | 車両用空気調和装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 112017000443 Country of ref document: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17756704 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17756704 Country of ref document: EP Kind code of ref document: A1 |