WO2017145999A1 - 親水性嵩高不織布 - Google Patents

親水性嵩高不織布 Download PDF

Info

Publication number
WO2017145999A1
WO2017145999A1 PCT/JP2017/006196 JP2017006196W WO2017145999A1 WO 2017145999 A1 WO2017145999 A1 WO 2017145999A1 JP 2017006196 W JP2017006196 W JP 2017006196W WO 2017145999 A1 WO2017145999 A1 WO 2017145999A1
Authority
WO
WIPO (PCT)
Prior art keywords
nonwoven fabric
fiber
bulky nonwoven
hydrophilic bulky
water
Prior art date
Application number
PCT/JP2017/006196
Other languages
English (en)
French (fr)
Inventor
早織 田中
矢放 正広
一哉 税所
一史 加藤
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=59686648&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2017145999(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to MYPI2018702640A priority Critical patent/MY186401A/en
Priority to JP2018501677A priority patent/JP6600069B2/ja
Priority to CN201780011405.7A priority patent/CN108699744B/zh
Publication of WO2017145999A1 publication Critical patent/WO2017145999A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/51Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the outer layers
    • A61F13/511Topsheet, i.e. the permeable cover or layer facing the skin
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/06Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyolefin as constituent
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/14Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic yarns or filaments produced by welding

Definitions

  • the present invention relates to a hydrophilic bulky nonwoven fabric that absorbs urine and body fluids without stagnation, particularly when used as a surface material such as a sanitary material.
  • the nonwoven fabric used as a top sheet of a diaper is required to have a performance (water permeability) that allows body fluid to pass through and further passes the passed body fluid to the absorbent body quickly.
  • a material generally used as a material for a top sheet that requires water permeability is a hydrophobic polyolefin-based nonwoven fabric, and water permeability is imparted by applying a surfactant as a water-permeable agent.
  • Patent Document 1 So far, in order to improve water permeability, for example, in Patent Document 1 below, many techniques for improving a water permeable agent have been adopted to improve water permeability.
  • the improvement in water permeability requires the selection of a surfactant with higher activity, so when used as a surface material for sanitary materials, it tends to cause skin irritation and rash on the skin that comes into contact. It is not preferable from the viewpoint of irritation.
  • the nonwoven fabric is subjected to a shaping process, and the structure of the nonwoven fabric surface is formed into a concavo-convex structure, so that the contact area with the skin is reduced, and the wettability return performance and the durable water permeability are the indicators of water permeability.
  • the performance has been improved.
  • processing by special embossing or the like is necessary, which increases the manufacturing cost and the productivity.
  • the part which becomes thin by forming between the rolls is generated, and the resulting water permeability improvement effect is not dramatic.
  • Patent Document 3 the nonwoven fabric is subjected to uneven processing to improve body fluid drawing.
  • this method gives a moist feel to the skin.
  • a flat nonwoven fabric is used as a surface sheet for diapers, sanitary products, etc.
  • the entire surface of the nonwoven fabric comes into contact with a mixture of pulp and polymer absorber, which is an absorber located under the surface sheet.
  • the weight of the user is applied to the topsheet and absorbent body, and the nonwoven fabric and absorbent body, which are the topsheet, come into closer contact with each other, so the body fluid attached to the nonwoven fabric surface quickly moves to the absorbent body.
  • the problem to be solved by the present invention is to provide a hydrophilic bulky nonwoven fabric that is excellent in water permeability and suitable for the surface material of sanitary materials such as diaper top sheets.
  • the design of a surfactant to be imparted as a water permeable agent and the surface structure of the nonwoven fabric are important for exhibiting excellent water permeability.
  • the surface of the nonwoven fabric has a rough structure with fine irregularities
  • a body fluid such as urine or sweat adheres to the surface of the nonwoven fabric
  • the rougher the surface structure the lower the contact angle between the body fluid and the surface of the nonwoven fabric. Is easily drawn into the nonwoven fabric.
  • the present inventors pay attention to the fine structure of the nonwoven fabric surface, and as a result of earnestly examining the number of crimps of the fibers of the long-fiber nonwoven fabric, the bonding method, and the water permeability imparting method, and repeating the experiment, the nonwoven fabric in which the fibers are arranged in an appropriate range As a result, the present inventors have succeeded in improving the water permeability 45-degree inclined flow length value and the durable water permeability index, which are indicators of water permeability, and have completed the present invention.
  • the non-woven fabric has a non-woven fabric surface structure in which the ratio of sections of 30% or more with respect to the height (thickness) when no load is applied in the Z direction is 50% or more per 40000 sections corresponding to the non-woven fabric surface area of 20 mm ⁇ 20 mm.
  • the hydrophilic bulky nonwoven fabric is characterized by having a water permeability of 45 ° inclined flow length value of 25 mm or less and a fourth durable water permeability index of 85% or more.
  • thermoplastic fiber is a side-by-side or eccentric sheath-core type composite fiber.
  • thermoplastic fiber is a polyolefin-based fiber.
  • thermoplastic fiber is a long fiber.
  • the hydrophilic bulky nonwoven fabric of the present invention has excellent water permeability, it can be suitably used as a top sheet on the surface of sanitary materials such as sanitary napkins, incontinence pads, disposable diapers, etc. It can also be used for masks, warmers, tape bases, patch bases, first aid bases, packaging materials, wipe products, medical gowns, bandages, clothing, skin care sheets, and the like.
  • the nonwoven fabric of this embodiment is made of thermoplastic fibers, and may be a long fiber nonwoven fabric manufactured by a spunbond method, a short fiber nonwoven fabric manufactured by a card method or the like.
  • the fibers are aligned in the X direction or the Y direction during carding, and the surface tends to be smooth, strength, productivity, and skin irritation reduction.
  • a long fiber manufactured by a spunbond method is preferable.
  • a long fiber is a fiber having a fiber length of 55 mm or more. The shorter the fiber length, the more likely that the end portion of the fiber will come into contact with the skin, so that a tactile feel is given, and therefore the fiber length is preferably 55 mm or more.
  • thermoplastic resin constituting the thermoplastic fiber examples include polyolefin resins such as polyethylene, polypropylene and copolymer polypropylene, polyester resins such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate and copolymer polyester, and nylon-6. And polyamide-based resins such as nylon-66 and copolymer nylon, and biodegradable resins such as polylactic acid, polybutylene succinate, and polyethylene succinate, and are not particularly limited. In view of the texture of the nonwoven fabric and many of the uses used are disposable materials, polyolefin resins are preferred from the viewpoints of general use and convenience of recovery.
  • the fiber is crimped from the viewpoint of imparting characteristics to the surface structure of the nonwoven fabric.
  • the number of crimps is preferably 5 pieces / 2.54 cm (inch) or more, more preferably 5 pieces / inch to 45 pieces / inch, still more preferably 10 pieces / inch to 40 pieces / inch, particularly preferably 10 pieces. Pcs / inch to 25 pcs / inch.
  • a non-woven fabric composed of fibers having a number of crimps exceeding 45 / inch shrinkage and spots due to the crimps of the fibers are conspicuous, the appearance of the non-woven fabric is deteriorated, and the wetting return index is deteriorated due to the spots.
  • a nonwoven fabric composed of fibers having a number of crimps of less than 5 / inch does not provide the desired surface roughness, and the thickness is reduced, the texture is impaired, and the desired water permeability is difficult to obtain. Become.
  • crimps can be imparted by making the fiber cross-section into an irregular cross-sectional shape and performing uneven cooling during spinning cooling.
  • a composite fiber composed of two or more kinds of thermoplastic resins it is possible to cause crimping even in a composite fiber composed of two or more kinds of thermoplastic resins, and the structure is changed to a side-by-side type (S / S), an eccentric sheath-core type (biased S / C), or the like.
  • crimps can be easily expressed.
  • the core part may protrude from the fiber surface, and the ratio of the core part to the fiber surface is preferably 0 to 50%, more preferably 0 to 30%. %. If the ratio of the core portion on the fiber surface is higher than 50%, it affects the adhesion at the time of joining as a non-woven fabric, the cloth strength is likely to be lowered, and fluff is likely to occur.
  • Deviation of core part (%) (shortest distance between the center of gravity of the cross-sectional area of the composite fiber and the center of gravity of the cross-sectional area of the core part) / (diameter of yarn) ⁇ 100
  • thermoplastic resins When the fiber is a combination of two or more thermoplastic resins, any combination of the thermoplastic resins is possible as long as the desired effect is achieved, from the viewpoint of bonding between the fibers, A combination of thermoplastic resins having different melting points is preferred.
  • the weight ratio of the resin having the higher melting point difference in the fiber is preferably 20 wt% or more and 80 wt% or less, more preferably 30 wt% or more and 80 wt% or less, and further preferably 50 wt% or more and 70 wt% or less. From the viewpoint of the texture of the resulting nonwoven fabric, it is preferable to use a combination of polyolefin resins, or a combination of polyolefin resins and polyester resins.
  • examples thereof include composite fibers obtained by combining resins such as polyethylene, polypropylene, and copolymers of these monomers with other ⁇ -olefins.
  • Other ⁇ -olefins are those having 3 to 10 carbon atoms, such as propylene, 1-butene, 1-pentene, 1-hexane, 4-methyl-1-pentene, and 1-octene. It is done.
  • a polyethylene terephthalate single component or a copolymer containing isophthalic acid or the like isophthalic acid or the like as the polyester resin.
  • the polyethylene terephthalate may be modified by blending or the like, or may be provided with an additive.
  • the strength is strong, it is difficult to break at the time of use, and it is excellent in processing suitability at the time of production of sanitary materials.
  • the component is preferably polyethylene, and when the conjugate fiber is an eccentric sheath core type, the core portion is preferably the first component and the sheath portion is preferably the second component.
  • the first component polypropylene may be a polymer synthesized by a general Ziegler Natta catalyst or a polymer synthesized by a single site active catalyst typified by metallocene. Good. Further, ethylene random copolymer polypropylene may be used. These may be used alone or in combination of two or more.
  • the main component is homopolypropylene from the viewpoint of texture, strength, and dimensional stability.
  • the lower limit of the MFR of polypropylene is preferably 20 g / 10 minutes or more, more preferably more than 30 g / 10 minutes, still more preferably more than 40 g / 10 minutes, in terms of the spinnability in fiber production and the strength of the resulting fiber. Most preferably, it is more than 53 g / 10 minutes.
  • the upper limit of MFR is preferably 85 g / 10 min or less, more preferably 70 g / 10 min or less, and still more preferably 60 g / 10 min or less. MFR was measured according to JIS-K7210 “Testing methods for plastics-thermoplastic melt mass flow rate (MFR) and melt volume flow rate (MVR)”, test temperature 230 ° C., test load 2.16 kg. .
  • the second component polyethylene may be a polymer synthesized by a general Ziegler-Natta catalyst, or a polymer synthesized by a single site active catalyst typified by metallocene. There may be.
  • the polyethylene is preferably high-density polyethylene or linear low-density polyethylene, and the density is preferably 0.92 to 0.97 g / cm 3 , more preferably 0.925 to 0.96 g / cm 3. It is.
  • the lower limit of polyethylene MI is preferably 10 g / 10 min or more, more preferably more than 15 g / 10 min.
  • the upper limit of MI is preferably 100 g / 10 min or less, more preferably 60 g / 10 min or less, and still more preferably 40 g / 10 min or less.
  • MI was measured according to JIS-K7210 “Testing methods for plastics-thermoplastic melt mass flow rate (MFR) and melt volume flow rate (MVR)”, test temperature 190 ° C., test load 2.16 kg. .
  • the minimum of solution viscosity (eta) sp / c is 0.2 or more, More preferably, it is 0.6 or more.
  • the upper limit of the solution viscosity ⁇ sp / c is preferably 0.9 or less, more preferably 0.8 or less.
  • the fibers constituting the nonwoven fabric of this embodiment are preferably in the form of a long-fiber web using a spunbond method from the viewpoint of strength and productivity.
  • a composite long fiber combined with two or more thermoplastic resins for example, two or more different thermoplastic resins are melt-extruded from two or more different extruders, and two or more types from a spinneret having a large number of spinning holes are used.
  • the thermoplastic resin In the state where the thermoplastic resin is combined, it is discharged as a thread. Next, the discharged yarn is pulled by a traction device while being cooled by applying cold air controlled at 5 ° C. to 20 ° C. The yarn coming out of the pulling device is deposited on a transport conveyor and transported as a web.
  • the webs being conveyed may be laminated to form a multilayer laminated nonwoven web.
  • each layer may be formed with a different fiber diameter, or may be a laminate of special shaped fibers such as irregular cross-section yarns, crimped fibers, and hollow fibers.
  • thermocompression bonding For joining the nonwoven web, a method using an adhesive, a method using a low-melting fiber or a composite fiber, a method in which a hot-melt binder is sprayed and melt-bonded during web formation, a needle punch, a water flow, etc.
  • a method such as entanglement of fibers can be used, and is not particularly limited.
  • a web can be bonded between heated embossed / flat rolls that can provide bonding points such as pinpoint, elliptical, diamond and rectangular shapes.
  • the thermocompression bonding area ratio in partial thermocompression bonding is preferably 5 to 40%, more preferably from the viewpoints of strength retention and flexibility, maintaining the bulk of the nonwoven fabric, and preventing the surface uneven structure from being crushed between rolls. Is 5-25%.
  • the temperature is higher than the temperature at which the intersection of the fibers can be melted and bonded.
  • Any heating method can be used without particular limitation. Examples of the heating method include a hot air circulation type, a hot air penetration type, an infrared heater type, a method of blowing hot air on both surfaces of a nonwoven fabric, a method of introducing into a heated gas, and the like. Various heating methods can be used. From the viewpoint of obtaining more fiber adhesion points at the intersections of the fibers and increasing the breaking strength of the nonwoven fabric, heating with hot air is preferred, and hot air penetration type is particularly preferred.
  • the temperature of the hot air in the hot air penetration type is preferably adjusted to a temperature suitable for the thermoplastic resin having a low melting point and contributing to bonding among the combined thermoplastic resins.
  • the resin on the low melting point side of two or more kinds of thermoplastic resins is polyethylene
  • the preferred hot air temperature is 120 to 155 ° C., preferably 135 to 155 ° C., more preferably 140 ° C., at which the polyethylene melts and adheres. ⁇ 150 ° C.
  • the bonding temperature is higher than 120 ° C., the bonding between the fibers is expressed at the intersection of the fibers, and the strength as the nonwoven fabric can be expressed.
  • the bonding temperature is 155 ° C.
  • the wind speed of the hot air is preferably 0.5 to 3.0 m / s, more preferably 0.7 to 2.5 m / s, and still more preferably 2.0 m / s or less.
  • the wind speed is slow, hot air does not penetrate in the thickness direction of the nonwoven fabric, and the strength is lowered.
  • the wind speed is high, the hot air penetrates, but the fibers are crushed at the same time, resulting in a nonwoven fabric having a low bulk.
  • thermal bonding may be applied to the non-woven web before the heat bonding with the hot air.
  • the thermal bonding is passed through a pair of rolls of a combination of a metal embossing roll and a metal flat roll.
  • the embossed area ratio is preferably 5 to 30%, more preferably 5 to 20%, still more preferably 6 to 15%.
  • the thickness of the nonwoven fabric can be maintained, and is preferably 0.5 to 2.0 mm, more preferably 0.7 to 1.5 mm.
  • the embossed shape is not particularly limited, but is preferably a circular shape, an elliptical shape, a diamond shape, or a rectangular shape.
  • the average fiber diameter of the nonwoven fabric fibers is preferably 8.0 ⁇ m or more and 38.0 ⁇ m or less, more preferably 9.0 ⁇ m or more and 33.5 ⁇ m or less, and further preferably 11.0 ⁇ m or more and 26.5 ⁇ m or less. From the viewpoint of spinning stability, the average fiber diameter is preferably 8.0 ⁇ m or more, and more preferably 38.0 ⁇ m or less from the viewpoint of the texture of the nonwoven fabric used for the sanitary material.
  • Basis weight of the nonwoven fabric is preferably 8 g / m 2 or more 80 g / m 2 or less, more preferably 10 g / m 2 or more 40 g / m 2 or less, further preferably 10 g / m 2 or more 30 g / m 2 or less. If the basis weight is 8 g / m 2 or more, the nonwoven fabric used for the sanitary material is strong, and if it is 80 g / m 2 or less, the texture of the nonwoven fabric used for the sanitary material is satisfied. Does not give a thick impression.
  • the height of the nonwoven fabric when no load is applied is preferably 140 ⁇ m or more, more preferably 140 ⁇ m or more and 3000 ⁇ m or less, and still more preferably 140 ⁇ m or more and 2000 ⁇ m or less. From the viewpoint of the texture of the nonwoven fabric and water permeability, the height under no load is preferably 140 ⁇ m or more, and when it exceeds 3000 ⁇ m, it gives an impression of being thick in appearance and is rigid and used as a sanitary material. Is not suitable.
  • the orientation index of the nonwoven fabric by X-ray CT is 0.43 or less, preferably 0.425 or less. If the orientation index by X-ray CT is within this range, the number of fibers that occupy the thickness direction of the nonwoven fabric increases, and the bulk does not collapse even under load, resulting in a bulky nonwoven fabric, and excellent cushioning and wetting index It is possible to obtain a hydrophilic bulky nonwoven fabric having a low viscosity. The lower the lower limit, the better. However, the orientation index is preferably 0.30 or more, more preferably 0.33 or more.
  • the compression work WC of the nonwoven fabric of the present embodiment is preferably 0.20 gf ⁇ cm / cm 2 or more and 1.00 gf ⁇ cm / cm 2 or less, more preferably 0.20 gf ⁇ cm / cm 2 or more and 0.0. It is 80 gf ⁇ cm ⁇ cm 2 or less, and maintaining the compression work WC in this range can provide cushioning properties and an excellent rewetting index as a nonwoven fabric used for sanitary materials.
  • the hydrophilic bulky nonwoven fabric of the present embodiment contains or is coated with a water-permeable agent.
  • a water-permeable agent used, in consideration of safety to the human body, safety in the process, etc., non-ionic active agents added with ethylene oxide such as higher alcohols, higher fatty acids, alkylphenols, alkyl phosphate salts, Examples include surfactants composed of anionic surfactants such as alkyl sulfates alone or as a mixture.
  • the water-permeable agent for example, polyether compounds, polyethylene ether-modified silicones, polyether-modified silicones, polyester compounds, polyamide compounds, polyglycerin compounds and the like are also preferably used.
  • the adhesion amount of the water permeable agent varies depending on the intended use. For example, for sanitary materials, a range of 0.10 wt% to 1.50 wt% is usually preferable with respect to the nonwoven fabric, and more preferably 0.15 wt%. % Or more and 1.20 wt% or less. If it is less than 0.10 wt%, satisfactory water permeability cannot be obtained. On the other hand, if it exceeds 1.50 wt%, skin irritation and rash are likely to occur.
  • the water-permeable agent may be diluted with a solvent such as water and applied as an aqueous solution. Further, in order not to cause insufficient drying in the drying process accompanying the increase in the speed of equipment, it is preferable that the coating amount of the water-permeable agent aqueous solution is small.
  • the coating amount (wt%) for the nonwoven fabric is preferably 1.0 wt% or more and 65 wt% or less, more preferably 3.0 wt% or more and 60 wt% or less, and even more preferably 5.0 wt% or more in any of the above coating methods. It is 50 wt% or less. If it is less than 1.0 wt%, uniform coating cannot be obtained. On the other hand, if it exceeds 65 wt%, the required drying capacity increases, equipment costs increase, and insufficient drying may occur.
  • the gravure roll handle may be a lattice type or a pyramid type, but is preferably a diagonal type in which the water permeable agent does not remain on the gravure cell bottom.
  • the cell volume is preferably 5 cm 3 / m 2 or more and 40 cm 3 / m 2 or less. If the cell volume is less than 5 cm 3 / m 2 , the coating amount is too small to make uniform coating difficult, and if it exceeds 40 cm 3 / m 2 , Since the amount becomes too large, problems such as insufficient drying in the drying process and uneven adhesion of the water-permeable agent due to migration occur.
  • the depth of the gravure cell is preferably 10 ⁇ m or more and 80 ⁇ m or less, and the interval is preferably within the range of 80 mesh or more and 250 mesh or less, so that the cell volume is designed.
  • a spraying method a generally known spraying method by air compression or a method of directly compressing and spraying a water-permeable agent aqueous solution may be used, but a rotor dampening method is particularly preferable from the viewpoint of uniform application to a nonwoven fabric. .
  • the rotor dampening method is a method in which a water permeable agent aqueous solution is supplied onto a rotating rotor, and the water permeable agent aqueous solution is sprayed using centrifugal force of rotor rotation.
  • the opening is limited so that the liquid particles of the water-permeable agent aqueous solution that is blown off by rotating the rotor in the application direction can be sprayed only on the nonwoven fabric side to be applied, and can be uniformly applied in the CD direction of the nonwoven fabric. It is possible to adjust the spray particle diameter according to the rotational speed of the rotor.
  • a rotor having a diameter of 40 mm or more and 100 mm or less is selected, and the nonwoven fabric surface to be applied and the center of the rotor are applied so that the water-permeable agent aqueous solution can uniformly adhere in the CD direction of the nonwoven fabric to be applied.
  • Set the distance It is desirable to set so that one half of the application distribution range sprayed from the adjacent rotor overlaps. Further, it is desirable that the rotors are arranged at equal intervals in the range of 60 mm or more and 220 mm or less in the CD direction, and two stages are provided.
  • the point of applying uniformly is to make spray particles reach the inside of the nonwoven fabric to be applied, and the spray particle diameter is preferably 0.010 mm or more and 0.200 mm or less, and more preferably 0.030 mm or more and 0.070 mm or less. preferable.
  • the surface tension of the water-permeable agent aqueous solution is important, and the spray particle size is calculated by the following equation.
  • Spray particle diameter ( ⁇ m) ⁇ 100000 ⁇ ⁇ (surface tension (N / m)) ⁇ / (rotor diameter (mm) ⁇ rotor rotational speed (rpm))
  • the temperature of the water-permeable agent aqueous solution in these coating methods is preferably 5 ° C. or more and 50 ° C. or less, and more preferably 12 ° C. or more and 40 ° C. or less from the viewpoint of uniform dispersion and stability of the solution.
  • the viscosity of the water-permeable agent aqueous solution is preferably 0.5 mPa ⁇ s or more and 50 mPa ⁇ s or less, and more preferably 0.8 mPa ⁇ s or more and 20 mPa ⁇ s or less from the viewpoint of easier application. When the viscosity exceeds 50 mPa ⁇ s, the permeability of the water-permeable agent aqueous solution to the nonwoven fabric is inferior, and uniform application becomes difficult.
  • a general drying method can be used for drying after the application of the water-permeable agent aqueous solution, and is not particularly limited, and a known method using convection heat transfer, conduction heat transfer, radiant heat transfer, etc. is adopted.
  • Various drying methods such as a hot air circulation type, a hot air penetration type, an infrared heater type, a method of blowing hot air on both surfaces of the nonwoven fabric, and a method of introducing into a heated gas can be used.
  • the feature of the surface structure of the nonwoven fabric of the present embodiment is that the maximum height in the unit section defined by the X direction Y direction when the measurement reference length on the nonwoven fabric surface is 100 ⁇ m,
  • the ratio of the section which is 30% or more with respect to the height (thickness) of the nonwoven fabric when no load is applied is 50% or more per 40000 sections corresponding to the nonwoven fabric surface area of 20 mm ⁇ 20 mm.
  • the measurement reference length and the maximum height on the nonwoven fabric surface are as follows. Using a digital microscope KH-8700 (manufactured by Hilox), height information on the surface of the nonwoven fabric is measured and sampled at intervals of 20 ⁇ m in each direction in the MD direction 20 mm and CD direction 20 mm.
  • the height information obtained in the MD direction 20 mm ⁇ CD direction 20 mm of the nonwoven fabric was partitioned every 100 ⁇ m, and the partitioned length at this time was defined as the measurement reference length. Moreover, the difference between the maximum value and the minimum value in the unit compartment was the maximum height on the nonwoven fabric surface.
  • the ratio of the maximum height to the non-loaded height (thickness) of the nonwoven fabric was calculated from the maximum height ( ⁇ m) / no-load height ( ⁇ m) ⁇ 100. That is, the higher the ratio of the section whose maximum height is 30% or more with respect to the height (thickness) of the nonwoven fabric when there is no load, the greater the unevenness difference in the fine section on the nonwoven fabric surface.
  • a section in which the ratio of the maximum height to the height (thickness) of the nonwoven fabric under no load is 30% or more is defined as a measurement reference length of 100 ⁇ m in the MD direction 20 mm ⁇ CD direction 20 mm. More than 50% per 40,000 plots made.
  • the ratio of the sections whose maximum height is 30% or more with respect to the height (thickness) of the nonwoven fabric when no load is applied is 50% or more, preferably 52% or more, more preferably 55% or more, and further preferably 60% or more.
  • the ratio is within the range, good water permeability is expressed. The higher the ratio, the better, but 98% or less is preferable because the touch is deteriorated.
  • the 45-degree inclined water flow length value which is an index of water permeability of the nonwoven fabric of this embodiment, is 25 mm or less, preferably 22 mm or less, more preferably 20 mm or less, and most preferably 18 mm or less.
  • the water permeation 45-degree inclined flow length value exceeds 25 mm, for example, when used for a surface material such as a disposable diaper, the liquid flow on the surface increases and urine leakage is likely to occur.
  • the fourth durable permeability index that is an index of water permeability of the nonwoven fabric of this embodiment is 85% or more.
  • the value of the durable permeability index of the fourth time is less than 85%, for example, when used as a surface material such as a disposable diaper, the surface material cannot be passed through multiple times of urination and the function as the surface material is lost. , Easy to cause urine leakage.
  • the wetting return index that is an index of water permeability of the nonwoven fabric of the present embodiment is preferably 0.8 g or less, and more preferably 0.5 g or less.
  • the wetting return index value exceeds 0.8 g for example, when used as a surface material of a disposable diaper, when the surface material touches the skin, there is a very moist feeling and the usability is deteriorated.
  • a value of 0.01 g or less is the lower limit of measurement, and the measurement variation is large.
  • the present invention will be specifically described by way of examples and comparative examples, but the present invention is not limited to the following examples.
  • the evaluation method of each characteristic is as follows, and the obtained physical property is shown in the following Table 1.
  • the flow direction in nonwoven fabric production is referred to as the MD direction, the direction perpendicular to that direction, and the width direction as the CD direction.
  • Average fiber diameter ( ⁇ m) A 1 cm square test piece was cut into 5 equal parts in the CD direction of the nonwoven fabric, 20 diameters of each fiber were measured with a Keyence microscope VHX-700F, and the average value was calculated.
  • Non-woven fabric weight (g / m 2 )
  • g / m 2 The weight per unit area was calculated as a basis weight (g / m 2 ).
  • Non-load height (thickness) of nonwoven fabric Ten test pieces of 4 mm in the MD direction ⁇ 10 mm in the CD direction were arbitrarily collected, and a photograph of a cross section of the nonwoven fabric was taken using a SEM (VE-8800) manufactured by KEYENCE. Using the same image analysis software made by KEYENCE, the obtained image was measured for five distances per image in the thickness direction, and the average value was defined as the height (thickness) ( ⁇ m) under no load.
  • the ratio of the maximum height on the nonwoven fabric surface to the height (thickness) ( ⁇ m) when the nonwoven fabric was unloaded was calculated by (maximum height ( ⁇ m) / unloaded height (thickness) ( ⁇ m)) ⁇ 100. Further, the number of sections in which the ratio of the maximum height to the height (thickness) at the time of no load of the nonwoven fabric is 30% or more is defined as a measurement reference length of 100 ⁇ m in each side direction 20 mm ⁇ 20 mm of the square of the nonwoven fabric 40000 The ratio (%) was calculated by dividing by the number of compartments.
  • Orientation index (X-ray CT) A test piece of 5 mm in the MD direction ⁇ 5 mm in the CD direction was arbitrarily cut and measured with a visual field of about 3 mm ⁇ 3 mm during image analysis.
  • the measurement apparatus was a high-resolution 3DX-ray microscope nano3DX (manufactured by Rigaku Corporation), and was subjected to CT measurement using low-energy high-intensity X-rays that can provide contrast even with light elements. Detailed conditions are shown below.
  • X-ray target Cu X-ray tube voltage: 40 kV X-ray tube current: 30 mA Lens: 1.08 ⁇ m / pix Binning: 2 Rotation angle: 180 ° Number of projections: 1000 sheets Exposure time: 10 seconds / sheet Number of camera pixels: 3300 ⁇ 2500 Reconstruction: Feldkamp method A three-dimensional tomogram obtained by CT measurement was subjected to image analysis, and orientation indices Ix, Iy, Iz of three orthogonal axes (x, y, z) were obtained. The thickness direction of the sample to be mainly evaluated was matched with the z direction.
  • Compression work Five 5 cm square test pieces were collected in the CD direction and measured using a compression test apparatus (KES-G5) manufactured by Kato Tech. The test piece was placed on a metal sample stage and compressed between steel plates having a circular plane with a pressure area of 2 cm 2 . The compression speed was 0.067 mm / s, and the maximum compression load was 3.4 kPa (35 gf / cm 2 ). The recovery process was also measured at the same speed, and the average value of the compression work was calculated.
  • Number of crimps (pieces / 2.54 cm (inch)) Divide the CD into 5 parts in the CD direction of the nonwoven fabric, collect 5cm square test pieces, select 5 fibers with no load on the fibers with Keyence Microscope VH-Z450, and measure the length per inch. The number of crimps was measured, and the number of crimps (pieces / inch) was calculated from the average value.
  • 0.1 cc of physiological saline was added dropwise. The distance that the physiological saline flowed from the dropping position to the end of absorption was read. This measurement was arbitrarily performed at 20 points in the test cloth, and the average value was defined as a 45-degree water-permeable gradient flow length value (mm).
  • Application amount of water permeable agent solution (wt%) The value calculated by the following formula from the consumption amount of the water-permeable agent solution for 1 hour for the water-permeability imparting process was defined as the coating amount (wt%) of the water-permeable agent solution.
  • Application amount (wt%) Water-permeable agent aqueous solution consumption (g) / ⁇ nonwoven fabric basis weight (g / m 2 ) ⁇ width (m) ⁇ processing speed (m / min) ⁇ 60 (min) ⁇ ⁇ 100
  • C (wt%) [W2 / W1] ⁇ 100
  • Sampling of the nonwoven fabric sample is performed at a distance of 30 cm in the MD direction and 5 locations at equal intervals within the width of the nonwoven fabric in the CD direction, and the length of the nonwoven fabric sample is about 2 g with a cutting width of 5 cm to 10 cm. Collect a total of 10 test cloths. The said measurement was performed and those average values were made into the permeation
  • Dispersion Nonwoven fabric was sampled at 50 cm ⁇ 50 cm, and was visually graded according to the following evaluation criteria for the appearance of the nonwoven fabric. From the viewpoint of evaluation of dispersion, it was determined whether there was regularity in spots such as streaks, or whether the single yarn spread uniformly (whether it was not agglomerated). The higher the grade, the better the dispersion. 5: Very good 4: Good 3: Normal (level that can be used as a product) 2: Bad 1: Very bad
  • Example 1 Polypropylene (PP) resin having an MFR of 55 g / 10 min (measured according to JIS-K7210, at a temperature of 230 ° C. and a load of 2.16 kg) is the first component, and MI is 26 g / 10 min (according to JIS-K7210, temperature High-density polyethylene (HDPE) resin (measured at 190 ° C. and a load of 2.16 kg) is the second component, the first component discharge rate is 0.4 g / min ⁇ hole, and the second component discharge rate is 0.4 g / Extruded at a spinning temperature of 220 ° C.
  • PP Polypropylene
  • An eccentric sheath-core composite long fiber web having an average fiber diameter of 17.9 ⁇ m was prepared by extrusion at a spinning speed of 3200 m / min using an air jet at a spinning speed of 3200 m / min. Subsequently, the fibers were bonded to each other with hot air having a hot air temperature of 142 ° C. and a hot air speed of 0.7 m / s to obtain a composite long fiber nonwoven fabric having a basis weight of 18 g / m 2 and a crimp number of 15 pieces / inch.
  • a 3 wt% aqueous solution of a water-permeable agent composed of a mixture of hexaglycerin monostearate, polyether-modified silicone and polyoxyalkylene castor oil ether was added to the obtained nonwoven fabric as a water-permeable agent aqueous solution. It adjusted to 2 mPa * s and it apply
  • the diameter of the rotor used was 80 mm, and each rotor was arranged at intervals of 115 mm in the CD direction so that the distance between the rotor center and the nonwoven fabric to be applied was 180 mm.
  • the rotational speed of the rotor was adjusted so that the sprayed particle diameter of the water-permeable agent aqueous solution to be sprayed was 35 ⁇ m.
  • the ratio of the section where the maximum height in the section when the measurement reference length on the surface of the obtained nonwoven fabric is 100 ⁇ m is 30% or more with respect to the height (thickness) of the nonwoven fabric when no load is applied is 85%.
  • the non-woven fabric had a water permeability of 45 ° inclined flow length value of 16 mm, a fourth durable water permeability index of 99%, and a wetting return index of 0.12 g. The results are shown in Table 1 below.
  • Example 2 In the same manner as in Example 1, an eccentric sheath-core composite long fiber nonwoven fabric having an average fiber diameter of 17.9 ⁇ m, a basis weight of 10 g / m 2 , and a crimp number of 15 / inch was obtained. Subsequently, the same water-permeable agent aqueous solution as Example 1 was apply
  • the nonwoven fabric had a water permeability of 45 ° inclined flow length value of 14 mm, a fourth durable water permeability index of 99%, and a wetting return index of 0.50 g. The results are shown in Table 1 below.
  • Example 3 The discharge amount of the first component is 0.54 g / min ⁇ hole, the discharge amount of the second component is 0.26 g / minute ⁇ hole, and the total discharge amount is 0.80 g / minute ⁇ hole.
  • An eccentric sheath-core composite long fiber web having an average fiber diameter of 17.9 ⁇ m was prepared in the same manner as in Example 1 except that the component ratio was about 2/1.
  • the resulting eccentric sheath-core composite long fiber web was bonded to each other with hot air having a hot air temperature of 145 ° C. and a hot air wind speed of 1.0 m / s, and a composite having a basis weight of 18 g / m 2 and a crimp number of 10 pieces / inch.
  • a long fiber nonwoven fabric was obtained. Subsequently, the same water-permeable agent aqueous solution as Example 1 was apply
  • the ratio of the section where the maximum height in the section when the measurement reference length on the surface of the obtained nonwoven fabric is 100 ⁇ m is 30% or more with respect to the height (thickness) of the nonwoven fabric at no load is 74%.
  • the non-woven fabric had a water permeability of 45 ° inclined flow length value of 16 mm, a fourth durable water permeability index of 99%, and a wetting return index of 0.12 g.
  • Table 1 The results are shown in Table 1 below.
  • Example 4 In the same manner as in Example 3, a composite long-fiber nonwoven fabric having an average fiber diameter of 17.9 ⁇ m, a basis weight of 18 g / m 2 and a crimp number of 10 pieces / inch was obtained. To the obtained composite long fiber nonwoven fabric, a 1 wt% aqueous solution of a water permeable agent is adjusted to a liquid temperature of 20 ° C. and a liquid concentration of 2.3 mPa ⁇ s by a gravure coating method, and a diagonal pattern so that the coating amount becomes 30 wt%.
  • the gravure roll of 120 meshes and cell volume 22cm ⁇ 3 > / m ⁇ 2 >, Then, it passed through a 120 degreeC cylinder dryer, and wound up.
  • the ratio of the section where the maximum height in the section when the measurement standard length on the surface of the obtained nonwoven fabric is 100 ⁇ m is 30% or more with respect to the height (thickness) of the nonwoven fabric when no load is applied is 70%.
  • the non-woven fabric had a water permeability of 45 ° inclined flow length of 17 mm, a fourth durable water permeability index of 97%, and a wetting return index of 0.22 g. The results are shown in Table 1 below.
  • the first component is the same polypropylene resin as in Example 1, and the second component is a linear low-density polyethylene having an MI of 16.8 g / 10 min (measured according to JIS-K7210 at a temperature of 190 ° C. and a load of 2.16 kg).
  • LLDPE LLDPE
  • the discharge amount of the first component is 0.54 g / minute ⁇ hole
  • the discharge amount of the second component is 0.26 g / minute ⁇ hole
  • the total discharge amount is 0.8 g / minute ⁇ hole
  • a fiber in which the ratio of the first component to the second component is about 2/1 is extruded by a spunbond method at a spinning temperature of 220 ° C., and this filament group is directed to a moving collection surface using a high-speed airflow traction device using an air jet.
  • an eccentric sheath core type long fiber web having an average fiber diameter of 20.5 ⁇ m was prepared.
  • the resulting eccentric sheath-core long fiber web is bonded to each other with hot air having a hot air temperature of 150 ° C.
  • Example 1 the same water-permeable agent aqueous solution as Example 1 was apply
  • the ratio of the section in which the maximum height in the section when the measurement reference length on the surface of the obtained nonwoven fabric is 100 ⁇ m is 30% or more with respect to the height (thickness) of the nonwoven fabric at no load is 92%
  • the non-woven fabric had a water permeability of 45 ° inclined flow length value of 15 mm, a fourth durable water permeability index of 99%, and a wetting return index of 0.35 g.
  • Table 1 The results are shown in Table 1 below.
  • Example 6 In the same manner as in Example 5, an eccentric sheath-core composite long fiber nonwoven fabric having an average fiber diameter of 20.5 ⁇ m, a basis weight of 18 g / m 2 , and a crimp number of 40 / inch was obtained. Subsequently, the same water permeable agent aqueous solution as Example 1 was apply
  • the ratio of the section in which the maximum height in the section when the measurement reference length on the surface of the obtained nonwoven fabric is 100 ⁇ m is 30% or more with respect to the height (thickness) of the nonwoven fabric at no load is 92%
  • the non-woven fabric had a water permeability of 45 ° inclined flow length value of 13 mm, a fourth durable water permeability index of 99%, and a wetting return index of 0.47 g.
  • Table 1 The results are shown in Table 1 below.
  • Example 7 In the same manner as in Example 1, an eccentric sheath-core composite continuous fiber web having an average fiber diameter of 17.9 ⁇ m was prepared. Subsequently, the obtained eccentric sheath-core type composite long fiber nonwoven web was subjected to a flat roll and an embossing roll at 100 ° C. (pattern specification: circular with a diameter of 1.00 mm, staggered arrangement, horizontal pitch 4.4 mm, vertical pitch 4.4 mm, The fibers are temporarily bonded to each other through a bonding area ratio of 7.9%), and then the fibers are bonded to each other with hot air having a hot air temperature of 142 ° C. and a hot air speed of 0.7 m / s.
  • pattern specification circular with a diameter of 1.00 mm, staggered arrangement, horizontal pitch 4.4 mm, vertical pitch 4.4 mm
  • the basis weight is 18 g / m 2 , A composite long fiber nonwoven fabric having a reduced number of 17 pieces / inch was obtained. Subsequently, the same water-permeable agent aqueous solution as Example 1 was apply
  • the ratio of the section where the maximum height in the section when the measurement reference length on the surface of the obtained nonwoven fabric is 100 ⁇ m is 30% or more with respect to the height (thickness) of the nonwoven fabric when no load is applied is 72%.
  • the non-woven fabric had a water permeability of 45 ° inclined flow length value of 18 mm, a fourth durable water permeability index of 95%, and a wetting return index of 0.18 g. The results are shown in Table 1 below.
  • Example 8 In the same manner as in Example 7, an eccentric sheath-core type composite continuous fiber nonwoven fabric having an average fiber diameter of 17.9 ⁇ m, a basis weight of 8 g / m 2 , and a crimp number of 17 pieces / inch was obtained. Subsequently, the same water-permeable agent aqueous solution as Example 1 was apply
  • the non-woven fabric had a water permeability of 45 ° inclined flow length value of 16 mm, a fourth durable water permeability index of 97%, and a wetting return index of 0.42 g. The results are shown in Table 1 below.
  • Example 9 Using the same components as in Example 1, the discharge amount of the first component is 0.40 g / min ⁇ hole, the discharge amount of the second component is 0.40 g / minute ⁇ hole, and the total discharge amount is 0.8 g / minute.
  • a fiber having a hole and a ratio of the first component to the second component of 1/1 was extruded at a spinning temperature of 220 ° C. by a spunbond method. This filament group was extruded toward the moving collection surface at a spinning speed of 3200 m / min using a high-speed airflow traction device using an air jet to prepare a side-by-side type composite long fiber web having an average fiber diameter of 17.9 ⁇ m.
  • Example 7 the obtained side-by-side type composite long fiber web was bonded to each other in the same manner as in Example 7 to obtain a composite long fiber nonwoven fabric having a basis weight of 18 g / m 2 and a crimp number of 23 pieces / inch.
  • Example 1 the same water-permeable agent aqueous solution as Example 1 was apply
  • the non-woven fabric had a water permeability of 45 ° inclined flow length value of 15 mm, a fourth durable water permeability index of 99%, and a wetting return index of 0.15 g. The results are shown in Table 1 below.
  • the first component is polyethylene terephthalate (PET) having a solution viscosity ⁇ sp / c 0.75
  • the second component is high-density polyethylene (HDPE) similar to Example 1
  • the discharge amount of the first component is 0.54 g / min. hole
  • the total discharge rate is 0.80 g / min ⁇ hole
  • the ratio of the first component to the second component is about 2/1. Extruded at a spinning temperature of 295 ° C.
  • the ratio of the section where the maximum height in the section when the measurement standard length on the surface of the obtained nonwoven fabric is 100 ⁇ m is 30% or more with respect to the height (thickness) of the nonwoven fabric when no load is applied is 87%.
  • the non-woven fabric had a water permeability of 45 ° inclined flow length value of 15 mm, a fourth durable water permeability index of 99%, and a wetting return index of 0.15 g. The results are shown in Table 1 below.
  • Example 11 Using the same components as in Example 1, the discharge amount of the first component is 0.24 g / min ⁇ hole, the discharge amount of the second component is 0.56 g / minute ⁇ hole, and the total discharge amount is 0.8 g / minute. -Prepared an eccentric sheath-core type composite long fiber web having an average fiber diameter of 17.9 ⁇ m in the same manner as in Example 1 except that it was hole and the ratio of the first component to the second component was 3/7. did. Fibers of the obtained eccentric sheath-core composite long fiber web were bonded together in the same manner as in Example 1 to obtain a composite long fiber nonwoven fabric having a basis weight of 18 g / m 2 and a crimp number of 17 pieces / inch.
  • the water-permeable agent aqueous solution similar to Example 4 was apply
  • the ratio of the section where the maximum height in the section when the measurement reference length on the surface of the obtained nonwoven fabric is 100 ⁇ m is 30% or more with respect to the height (thickness) of the non-woven fabric is 70%.
  • the non-woven fabric had a water permeability of 45 ° inclined flow length value of 18 mm, a fourth durable water permeability index of 95%, and a wetting return index of 0.18 g.
  • Table 1 The results are shown in Table 1 below.
  • Example 12 Using the same components as in Example 1, the discharge amount of the first component is 0.16 g / min ⁇ hole, the discharge amount of the second component is 0.64 g / minute ⁇ hole, and the total discharge amount is 0.8 g / minute.
  • An eccentric sheath-core type composite long fiber web having an average fiber diameter of 18.7 ⁇ m was prepared in the same manner as in Example 1 except that the ratio was 1: 4 and the ratio of the first component to the second component was 1: 4. did.
  • the resulting eccentric sheath-core composite long fiber web was bonded to each other in the same manner as in Example 1 to obtain a composite long fiber nonwoven fabric having a basis weight of 18 g / m 2 and a crimp number of 5 pieces / inch.
  • Example 2 the same water-permeable agent aqueous solution as Example 1 was apply
  • the non-woven fabric had a water permeability of 45 ° inclined flow length value of 22 mm, a fourth durable water permeability index of 85%, and a wetting return index of 0.45 g. The results are shown in Table 1 below.
  • Example 13 Using the same components as in Example 1, the discharge amount of the first component is 0.40 g / min ⁇ hole, the discharge amount of the second component is 0.40 g / minute ⁇ hole, and the total discharge amount is 0.8 g / minute.
  • a fiber having a hole and a ratio of the first component to the second component of 1: 1 was extruded at a spinning temperature of 220 ° C. by a spunbond method. The extruded filament is stretched in the traction zone using the suction force of the moving collection surface, and then deposited on the moving collection surface through a diffuser, and a side-by-side type composite long fiber web having an average fiber diameter of 20.5 ⁇ m. Was prepared.
  • Example 2 the obtained side-by-side type composite long fiber web was bonded to each other in the same manner as in Example 1 to obtain a composite long fiber nonwoven fabric having a basis weight of 18 g / m 2 and a crimp number of 25 pieces / inch. Subsequently, the same water-permeable agent aqueous solution as Example 1 was apply
  • the ratio of the section where the maximum height in the section when the measurement standard length on the surface of the obtained nonwoven fabric is 100 ⁇ m is 30% or more with respect to the height (thickness) of the non-woven fabric is 90%
  • the non-woven fabric had a water permeability of 45 ° inclined flow length value of 14 mm, a fourth durable water permeability index of 99%, and a wetting return index of 0.17 g.
  • Table 1 The results are shown in Table 1 below.
  • Example 14 In the same manner as in Example 13, an eccentric sheath-core composite long fiber nonwoven fabric having an average fiber diameter of 20.5 ⁇ m, a basis weight of 30 g / m 2 , and a crimp number of 25 pieces / inch was obtained. Subsequently, the same water-permeable agent aqueous solution as Example 1 was apply
  • the non-woven fabric had a water permeability of 45 ° inclined flow length value of 14 mm, a fourth durable water permeability index of 99%, and a wetting return index of 0.12 g. The results are shown in Table 1 below.
  • Example 15 Polypropylene (PP) with an MFR of 38 g / 10 min was extruded at a spinning temperature of 240 ° C. and a discharge rate of 0.80 g / min ⁇ hole using a spinneret with a C-shaped nozzle, and this filament group was formed by air jet. Using a high-speed airflow traction device, extrusion was performed toward the moving collection surface to obtain a long fiber web having an average fiber diameter of 18.7 ⁇ m. Next, a flat roll and an embossing roll (pattern specifications: diameter 0.425 mm circular, staggered arrangement, horizontal pitch 2.1 mm, vertical pitch 1.1 mm, the temperature of the obtained long fiber web set at 135 ° C.
  • the fibers were partially bonded to each other through a crimping area ratio of 6.3% to obtain a long fiber nonwoven fabric having a basis weight of 25 g / m 2 and a crimp number of 28 pieces / inch.
  • the water-permeable agent aqueous solution similar to Example 4 was apply
  • the ratio of the section where the maximum height in the section when the measurement standard length on the surface of the obtained nonwoven fabric is 100 ⁇ m is 30% or more with respect to the height (thickness) of the nonwoven fabric when no load is applied is 55%.
  • the non-woven fabric had a water permeability of 45 ° inclined flow length value of 23 mm, a fourth durable water permeability index of 89%, and a wetting return index of 0.12 g. The results are shown in Table 1 below.
  • Comparative Example 2 The continuous-fiber-shaped nonwoven fabric obtained in Comparative Example 1 having a side of 0.9 mm and a line width of 0.1 mm (tortoise shell concave pattern) (pressing area ratio: 12.5%, handle pitch: vertical 2.8 mm, The handle was pressed at a pressure of 2 kg / cm 2 through an embossing roll (80 ° C.) having a width of 3.2 mm and a depth of 0.7 mm and a rubber roll having a surface hardness of 60 degrees (JIS-A hardness). A flexible long-fiber nonwoven fabric with a high-density area pressed around the turtle shell and a raised center was obtained.
  • the water-permeable agent aqueous solution similar to Example 4 was apply
  • the ratio of the section where the maximum height in the section when the measurement reference length on the surface of the obtained nonwoven fabric is 100 ⁇ m is 30% or more with respect to the height (thickness) of the nonwoven fabric when no load is applied is 42%.
  • the non-woven fabric had a water permeability of 45 ° inclined flow length value of 27 mm, a fourth durable water permeability index of 80%, and a wetting return index of 0.68 g. The results are shown in Table 2 below.
  • Example 3 Using the same components as in Example 1, the discharge amount of the first component is 0.72 g / min ⁇ hole, the discharge amount of the second component is 0.08 g / minute ⁇ hole, and the total discharge amount is 0.8 g / minute. ⁇ Hole, a fiber with a ratio of the first component to the second component of 9/1 is extruded by a spunbond method at a spinning temperature of 220 ° C., and this filament group is moved using a high-speed airflow traction device using an air jet. Extrusion was performed toward the collecting surface to prepare an eccentric sheath-core type composite continuous fiber web having an average fiber diameter of 16.7 ⁇ m.
  • the obtained eccentric sheath-core type composite continuous fiber web was bonded to each other with hot air having a hot air temperature of 142 ° C. and a hot air speed of 0.7 m / s, and the basis weight was 18 g / m 2 and the number of crimps was 0 / inch.
  • a composite long fiber nonwoven fabric was obtained.
  • the same water-permeable agent aqueous solution as Example 4 was apply
  • the ratio of the section in which the maximum height in the section when the measurement reference length on the surface of the obtained nonwoven fabric is 100 ⁇ m is 30% or more with respect to the height (thickness) of the nonwoven fabric when no load is applied is 48%.
  • the non-woven fabric had a water permeability of 45 ° inclined flow length value of 28 mm, a fourth durable water permeability index of 64%, and a wetting return index of 0.52 g. The results are shown in Table 2 below.
  • Example 4 Using the same components as in Example 1, the discharge amount of the first component is 0.54 g / min ⁇ hole, the discharge amount of the second component is 0.26 g / minute ⁇ hole, and the total discharge amount is 0.8 g / minute. ⁇ Hole, a fiber with a ratio of the first component to the second component of 2/1 is extruded by a spunbond method at a spinning temperature of 220 ° C., and this filament group is moved using a high-speed airflow traction device using an air jet. Extrusion was performed toward the collecting surface to prepare a sheath-core type composite continuous fiber web having an average fiber diameter of 16.7 ⁇ m.
  • the obtained web was bonded to each other using the same method and conditions as in Comparative Example 3, and then a water-permeable agent aqueous solution was applied thereto, and a composite long fiber nonwoven fabric having a basis weight of 18 g / m 2 and a crimp number of 0 pieces / inch.
  • the ratio of the section where the maximum height in the section when the measurement reference length on the surface of the obtained nonwoven fabric is 100 ⁇ m is 30% or more with respect to the height (thickness) of the nonwoven fabric when no load is applied is 46%.
  • the non-woven fabric had a water permeability of 45 ° inclined flow length value of 26 mm, a fourth durable water permeability index of 73%, and a wetting return index of 0.60 g.
  • Table 2 The results are shown in Table 2 below.
  • the hydrophilic bulky nonwoven fabric of the present invention has excellent water permeability, it can be suitably used for the production of sanitary materials. About a sanitary material, it can be used conveniently for the top sheet of the surface of a disposable diaper, a sanitary napkin, or an incontinence pad.
  • the hydrophilic bulky nonwoven fabric of the present invention is not limited to the above-mentioned applications, for example, masks, warmers, tape base fabrics, patch medicinal base fabrics, first aid base fabrics, packaging materials, wipe products, medical gowns, bandages, It can also be used for clothing, skin care sheets, and the like.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Epidemiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Absorbent Articles And Supports Therefor (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

透水性に優れ、特におむつのトップシートなどの衛生材料の表面素材に適した親水性嵩高不織布の提供。本発明に係る前記親水性嵩高不織布は、熱可塑性繊維からなる親水性嵩高不織布であって、該不織布表面における測定基準長さを100μmとしたときのX方向Y方向により規定する単位区画内での最大高さが、該不織布のZ方向無荷重時の高さ(厚み)に対し30%以上である区画の比率が、該不織布表面積20mm×20mmに相当する区画数40000当たり50%以上である不織布表面構造を有し、該不織布の透水45度傾斜流長値が25mm以下であり、かつ、4回目耐久透水指数が85%以上であることを特徴とする。

Description

親水性嵩高不織布
 本発明は、特に衛生材料などの表面素材として用いた場合に、尿や体液などがよどみなく吸収される親水性嵩高不織布に関する。
 近年、使い捨ておむつの普及はめざましく、要求される品質や性能は向上してきている。おむつのトップシートとして使用される不織布には、体液を通過し、さらに通過させた体液をすばやく吸収体へ移行する性能(透水性)が求められる。透水性を必要とするトップシートの素材として一般的に用いられる素材は、疎水性のポリオレフィン系の不織布であり、透水剤として界面活性剤を塗布することで、透水性を付与させている。
 これまで透水性の改善には、例えば、以下の特許文献1では、透水剤を改良する手法が多く採用され、透水性の向上が計られている。透水性が向上するということはより活性能が高い界面活性剤を選択せざるを得ないので、衛生材料の表面素材として用いた場合に、接触する肌面のかぶれやしっしんを引き起こしやすくなり、肌への刺激性の点からは好ましくない。
 他方、以下の特許文献2では、不織布に賦型加工を施し、不織布表面の構造を凹凸構造にすることで、肌への接触面積を減らし、且つ透水性の指標である濡れ戻り性能及び耐久透水性能を改善している。しかしながら、凹凸構造を付与するには、特殊エンボスなどによる加工が必要となるため、製造コストが高くなり、生産性も高くない。また、ロール間を通して型付けすることにより厚みが薄くなる部分が発生し、得られる透水性の向上効果も劇的なものではない。
 また、以下の特許文献3では、不織布に凹凸加工を施し、体液の引き込みを改良している。しかしながら、この手法では肌に湿った感触を与える懸念がある。フラット形状の不織布をおむつや生理用品などの表面シートとして用いた場合、表面シート下部に位置する吸収体であるパルプと高分子吸収体の混合物に不織布全面が接触する。おむつや生理用品着用時は表面シート及び吸収体に使用者の体重がかかり、表面シートである不織布と吸収体がより密接に接触するため、不織布表面に付着した体液は速やかに吸収体へと移行することができるが、特許文献3のような凹凸形状であり、凸部の内部が空洞である不織布を表面シートとして用いた場合、不織布の凸部と吸収体は接触していない状態となる。そのため、不織布表面に体液が付着した場合、体液が吸収体へ速やかに移行することは難しい。更に凸部に付着した体液は表面張力により不織布内部へ保持されたままであるため、肌に湿った感触を与えかねない。さらに、排尿した際、フラット形状の不織布であれば不織布表面全体で尿を処理するが、凹凸形状の不織布の場合、尿は流れやすい凹部に集中する。つまり凸部よりも凹部に流れる尿の量が多くなり、凹部に付着している透水剤が尿によって洗い流されてしまう。凹部の透水剤が尿によって洗い流されてしまうと、尿は凹部に留まるため着用者に湿った感触を与える可能性がある。また、時間経過と共に凹部に留まった尿が蒸発し、肌面のかぶれやしっしんを引き起こす懸念がある。
特開平10-53955号公報 特開2004-113489号公報 国際公開第2012-086730号公報
 以上に鑑み、本発明が解決しようとする課題は、透水性に優れ、おむつのトップシートなどの衛生材料の表面素材に適した親水性嵩高不織布を提供することである。
 前述の通り、優れた透水性能を発現させるには透水剤として付与する界面活性剤の設計と不織布表面構造が重要となる。特に不織布表面を微細な凹凸のある粗い構造とすることで、尿や汗等の体液が不織布表面に付着した際、表面構造が粗くなる程、体液と不織布表面との接触角が低くなり、体液が不織布内部へと引き込まれやすくなる。本発明者らは不織布表面の微細構造に着目し、長繊維不織布の繊維の捲縮数、ボンディング方法、透水付与方法を鋭意検討し実験を重ねた結果、適切な範囲に繊維が配置された不織布を開発することで、透水性の指標となる透水45度傾斜流長値と耐久透水指数を向上させることに成功し、本発明を完成するに至ったものである。
 すなわち、本発明は下記の通りのものである。
 [1]熱可塑性繊維からなる親水性嵩高不織布であって、該不織布表面における測定基準長さを100μmとしたときのX方向Y方向により規定する単位区画内での最大高さが、該不織布のZ方向無荷重時の高さ(厚み)に対し30%以上である区画の比率が、該不織布表面積20mm×20mmに相当する区画数40000当たり50%以上である不織布表面構造を有し、該不織布の透水45度傾斜流長値が25mm以下であり、かつ、4回目耐久透水指数が85%以上であることを特徴とする前記親水性嵩高不織布。
 [2]前記親水性嵩高不織布のX線CTでの厚み方向の配向指数が0.43以下である、前記[1]に記載の親水性嵩高不織布。
 [3]前記親水性嵩高不織布の圧縮仕事量が0.20gf・cm/cm以上1.00gf・cm/cm以下である、前記[1]又は[2]に記載の親水性嵩高不織布。
 [4]前記親水性嵩高不織布を構成する繊維の捲縮数が5~45個/2.54cm(インチ)である、前記[1]~[3]のいずれかに記載の親水性嵩高不織布。
 [5]前記熱可塑性繊維がサイドバイサイド型又は偏芯鞘芯型の複合繊維である、前記[1]~[4]のいずれかに記載の親水性嵩高不織布。
 [6]前記熱可塑性繊維がポリオレフィン系繊維である、前記[1]~[5]のいずれかに記載の親水性嵩高不織布。
 [7]前記熱可塑性繊維が長繊維である、前記[1]~[6]のいずれかに記載の親水性嵩高不織布。
 [8]前記[1]~[7]のいずれかに記載の親水性嵩高不織布を用いてなる衛生材料。
 本発明の親水性嵩高不織布は優れた透水性を有するため、衛生材料、例えば、生理用ナプキン、失禁パット、使い捨ておむつ等の表面のトップシートとして好適に使用することができ、さらには、例えば、マスク、カイロ、テープ基布、貼布薬基布、救急絆基布、包装材、ワイプ製品、医療用ガウン、包帯、衣料、スキンケア用シートなどにも使用することができる。
不織布表面における単位区画内の最大高さ(μm)の測定を説明するための図面である。
 以下、本発明の実施形態について詳述する。
 本実施形態の不織布は熱可塑性繊維から成り、スパンボンド法により製造された長繊維不織布、カード法などで製造された短繊維不織布でもよい。しかしながら、短繊維不織布の場合、カーディング時に繊維がX方向またはY方向にひき揃えられ、表面が平滑になりやすいこと、強度、生産性の観点、肌への刺激低減などの観点から、ウェブを構成する繊維としては、スパンボンド法により製造された長繊維が好ましい。本願明細書中、長繊維とは、繊維長が55mm以上のものという。繊維長が短いほど、繊維の端部分が肌に触れる確立が増えるため、ちくちくした触感を与えることから、繊維長は55mm以上が好ましい。
 熱可塑性繊維を構成する熱可塑性樹脂としては、例えば、ポリエチレン、ポリプロピレン、共重合ポリプロピレンなどのポリオレフィン系樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、共重合ポリエステルなどのポリエステル系樹脂、ナイロン-6、ナイロン-66、共重合ナイロンなどのポリアミド系樹脂、及び、ポリ乳酸、ポリブチレンサクシネート、ポリエチレンサクシネートなどの生分解性樹脂が挙げられ、特に限定はされない。不織布の風合いの観点、使用される用途の多くが使い捨て材料であることから、汎用、回収の利便性の観点からは、ポリオレフィン系樹脂が好ましい。
 熱可塑性繊維の形態としては、不織布の表面構造に特徴を付与させる観点から、繊維が捲縮していることが好ましい。捲縮数は、5個/2.54cm(インチ)以上が好ましく、より好ましくは5個/インチ以上45個/インチ以下、更に好ましくは10個/インチ以上40個/インチ以下、特に好ましくは10個/インチ以上25個/インチ以下である。捲縮数が45個/インチを超える繊維で構成された不織布では、繊維の捲縮による縮みや斑が目立ち、不織布の見栄えが悪くなってしまう他、斑により濡れ戻り指数が悪くなる。また、捲縮数が5個/インチ未満の繊維で構成された不織布では所望する表面粗さが得られない上に、厚みが薄くなり、風合いが損なわれたり、所望する透水性が得られにくくなる。
 前記繊維に捲縮を付与させる手段としては、繊維断面を異形断面形状とし紡糸冷却時に偏冷却させることで捲縮を付与することができる。また、熱可塑性樹脂2種類以上から構成させた複合繊維でも捲縮を発現させることが可能であり、その構成をサイドバイサイド型(S/S)、偏芯鞘芯型(偏S/C)などにすることで、更に、容易に捲縮を発現することが可能である。偏芯鞘芯型(偏S/C)の場合、芯部は繊維表面に出てもよく、芯部が繊維表面を占める割合は面積率が0~50%が好ましく、より好ましくは0~30%である。繊維表面の芯部の占める比率が50%を超えるほど高くなると、不織布としての接合時の接着に影響し、布強度が低下しやすく毛羽立ちも発生しやすい。
 偏芯鞘芯型(偏S/C)の場合、所望する捲縮数を得る為に芯部の断面積の重心は複合繊維の断面積の重心に対し5~40%ずれていることが好ましい。芯部のずれは次式により算出される。
   芯部のずれ(%)=(複合繊維の断面積の重心と芯部の断面積の重心の最短距離)/(糸の直径)×100
 前記繊維が、2種類以上の熱可塑性樹脂で組み合わせたものである場合、所望の効果が奏される限り、前記熱可塑性樹脂の何れの組合せでも可能であり、繊維同士の接合の観点からは、融点差のある熱可塑性樹脂の組合せが好ましい。融点差の高い方の樹脂が繊維内に占める重量比率は、好ましくは20wt%以上80wt%以下であり、より好ましくは30wt%以上80wt%以下、更に好ましくは50wt%以上70wt%以下である。
 また得られる不織布の風合いの観点からは、ポリオレフィン系樹脂同士の組み合わせ、ポリオレフィン系樹脂とポリエステル系樹脂を組み合わせて用いることが好ましい。ポリオレフィン系樹脂を組み合わせて用いる場合、ポリエチレン、ポリプロピレン、及びそれらのモノマーと他のα-オレフィンとの共重合体などの樹脂から組み合わせた複合繊維が挙げられる。他のα-オレフィンとしては、炭素数3~10のものであり、具体的にはプロピレン、1-ブテン、1-ペンテン、1-ヘキサン、4-メチル-1-ペンテン、1-オクテンなどが挙げられる。
 ポリオレフィン系樹脂とポリエステル系樹脂を組み合わせる場合、ポリエステル系樹脂は、ポリエチレンテレフタレート単一成分を、又はイソフタル酸等を含んだ共重合体を使用することが好ましい。また、ポリエチレンテレフタレートはブレンド等により改質したものでも、添加剤等を付与したものでもよい。
 その中でも、熱可塑性樹脂の組み合わせとして強度が強く使用時において破断しにくく、且つ衛生材料の生産時における加工適正に優れていること、また、風合いも良いことから、第1成分をポリプロピレン、第2成分をポリエチレンとすることが好ましく、複合繊維が偏芯鞘芯型の場合には、芯部を第1成分、鞘部を第2成分とすることが好ましい。
 繊維を前記2種の熱可塑性樹脂で形成する場合、第1成分のポリプロピレンは、一般的なチーグラナッタ触媒により合成されるポリマーでもよいし、メタロセンに代表されるシングルサイト活性触媒により合成されたポリマーでもよい。また、エチレンランダム共重合ポリプロピレンでもよい。これらは1種類単独でも2種類以上を組み合わせてもよい。特に風合い、強度、寸法安定性からホモポリプロピレンを主成分とするものであることが好ましい。
 また、繊維の製造における紡糸性、得られる繊維の強度の面からポリプロピレンのMFRとして、下限が好ましくは20g/10分以上、より好ましくは30g/10分超え、更に好ましくは40g/10分超え、最も好ましくは、53g/10分超えである。MFRの上限は好ましくは85g/10分以下、より好ましくは70g/10分以下、更に好ましくは60g/10分以下である。MFRは、JIS-K7210「プラスチック-熱可塑性プラスチックのメルトマスフローレイト(MFR)及びメルトボリュームフローレイト(MVR)の試験方法」の表1、試験温度230℃、試験荷重2.16kgに準じて測定した。
 繊維を前記2種の熱可塑性樹脂で形成する場合、第2成分のポリエチレンは、一般的なチーグラナッタ触媒により合成されるポリマーでもよいし、メタロセンに代表されるシングルサイト活性触媒により合成されたポリマーであってもよい。ポリエチレンは、高密度ポリエチレン、直鎖状低密度ポリエチレンであることが好ましく、密度は0.92~0.97g/cmであることが好ましく、より好ましくは0.925~0.96g/cmである。
 また、繊維の製造における紡糸性の観点から、ポリエチレンのMIの下限は10g/10分以上が好ましく、より好ましくは15g/10分超えである。MIの上限は、好ましくは100g/10分以下であり、より好ましくは60g/10分以下、更に好ましくは、40g/10分以下である。MIは、JIS-K7210「プラスチック-熱可塑性プラスチックのメルトマスフローレイト(MFR)及びメルトボリュームフローレイト(MVR)の試験方法」の表1、試験温度190℃、試験荷重2.16kgに準じて測定した。
 また、ポリエステル系樹脂を用いる場合は、溶液粘度ηsp/cの下限が0.2以上であることが好ましく、より好ましくは、0.6以上である。溶液粘度ηsp/cの上限は好ましくは0.9以下であり、より好ましくは0.8以下である。
 本実施形態の不織布を構成する繊維は、強度、生産性の観点から、スパンボンド法を用いた長繊維のウェブの形態であることが好ましい。2種以上の熱可塑性樹脂と組み合わせた複合長繊維とする場合には、例えば、2つ以上の異なる押出機からそれぞれ異なる熱可塑性樹脂を溶融押出し、多数の紡糸孔を有する紡糸口金から2種以上の熱可塑性樹脂が複合された状態で糸条として吐出させる。次いで、吐出された糸条を5℃~20℃に制御した冷風をあて、冷却しながら牽引装置により牽引する。牽引装置より出た糸条は、搬送コンベア上に堆積されウェブとして搬送する。搬送中のウェブを積層し、多層積層の不織ウェブとしてもよい。多層積層の不織布の場合、各層毎が異なる繊維径で形成されてもよく、異形断面糸、捲縮繊維、中空糸などの特殊な形態の繊維のものが積層されたものでもよい。
 前記不織ウェブの接合には、接着剤を用いて接合する方法、低融点繊維や複合繊維により接合する方法、ホットメルトバインダーをウェブ形成中に散布して溶融接合する方法、ニードルパンチ、水流等で繊維を交絡するなどの方法を用いることができ、特に限定はされない。高速生産性の観点から、部分熱圧着により接合してもよい。例えば、ピンポイント状、楕円形状、ダイヤ形状、矩形状などの接合点を付与できる加熱したエンボス/フラットロール間にウェブを通して接合することができる。部分熱圧着における熱圧着面積率は、強度保持および柔軟性、また、不織布の嵩の保持、表面の凹凸構造がロール間で潰れされない様にするという観点から、5~40%が好ましく、より好ましくは5~25%である。
 また、不織布表面構造の特徴や不織布の厚みを維持しやすいという観点から、特に2種以上の熱可塑性樹脂を組み合わせた複合長繊維の場合には、繊維同士の交点が溶融し接着できる温度以上に加熱する方法であれば特に限定せず用いることができ、加熱する方法としては、熱風循環型、熱風貫通型、赤外線ヒーター型、不織布の両面に熱風を吹き付ける方法、加熱気体中に導入する方法等、各種の加熱方法を用いることができる。繊維同士の交点でより多くの繊維接着点が得られ且つ不織布の破断強度が高くなる観点から、熱風による加熱が好ましく、特に熱風貫通型が好ましい。
 熱風貫通型における熱風の温度は、組み合わせた熱可塑性樹脂の中でも、融点が低く且つ接合に寄与する熱可塑性樹脂に適した温度に調整することが好ましい。例えば、2種以上の熱可塑性樹脂の低融点側の樹脂がポリエチレンの場合、好ましい熱風の温度はポリエチレンが溶融し接着する120~155℃であり、好ましくは135~155℃、より好ましくは140℃~150℃である。接着温度が120℃より高いと繊維同士の交点で繊維同士の接着が発現し、不織布としての強度を発現することが可能となる。また、接着温度が155℃以上であると、繊維の溶解度が非常に高くなり風合いの硬いものとなる。
 熱風の風速は0.5~3.0m/sが好ましく、より好ましくは0.7~2.5m/s、更に好ましくは2.0m/s以下である。風速が遅いと不織布の厚み方向に熱風が貫通せず、強度が低くなってしまう。また、風速が速いと熱風は貫通するが、繊維も同時に潰れてしまい嵩の低い不織布となってしまう。
 不織布の表面構造に悪影響を及ぼさない限り、前記の熱風による加熱接合の前の不織ウェブに熱接着を施してもよい。生産性の観点から、熱接着は、金属エンボスロールと金属フラットロールの組合せの一対のロールに通すものが好ましい。不織ウェブの形態保持や最終的に得られる不織布の強度の観点から、エンボス面積率は好ましくは5~30%、より好ましくは5~20%、更に好ましくは6~15%である。また、エンボスの深さは深いほど、不織布の厚みを保持することが可能であり、好ましくは0.5~2.0mm、更に好ましくは0.7~1.5mmである。エンボス形状は、特に限定されないが、円形状、楕円形状、ダイヤ形状、矩形状であることが好ましい。
 不織布の繊維の平均繊維径は8.0μm以上38.0μm以下であることが好ましく、より好ましくは9.0μm以上33.5μm以下、更に好ましくは11.0μm以上26.5μm以下である。紡糸安定性の観点から、平均繊維径は8.0μm以上であることが好ましく、衛生材料に使用される不織布の風合いの観点から、38.0μm以下であることがより好ましい。
 不織布の目付は8g/m以上80g/m以下が好ましく、より好ましくは10g/m以上40g/m以下、更に好ましくは10g/m以上30g/m以下である。目付が8g/m以上であれば、衛生材料に使用される不織布としては強力を満足し、80g/m以下であれば、衛生材料に使用される不織布の風合いを満足し、外観的に厚ぼったい印象を与えない。
 不織布の無荷重時の高さは140μm以上が好ましく、より好ましくは140μm以上3000μm以下、更に好ましくは140μm以上2000μm以下である。不織布の風合いおよび透水性の濡れ戻り性能の観点、無荷重時の高さは140μm以上であることが好ましく、3000μmを超えると外観的に厚ぼったい印象を与えるとともに、剛性があり衛生材料としての使用には適さない。
 不織布のX線CTによる配向指標は0.43以下であり、好ましくは0.425以下である。X線CTによる配向指数がこの範囲であると不織布の厚み方向を占有する繊維が多くなり、荷重下においても嵩が潰れることがなく、嵩高性を有する不織布となり、優れたクッション性および濡れ戻り指数の低い親水性嵩高不織布を得ることが可能となる。下限は低ければ低い方がよいが、配向指標は、好ましくは0.30以上、より好ましくは0.33以上である。
 本実施形態の不織布の圧縮仕事量WCは0.20gf・cm/cm以上1.00gf・cm/cm以下であることが好ましく、より好ましくは、0.20gf・cm/cm以上0.80gf・cm・cm以下であり、この範囲の圧縮仕事量WCを保持することは、衛生材料に使用される不織布としてのクッション性および優れた濡れ戻り指数を得ることができる。
 本実施形態の親水性嵩高不織布は透水剤を含有させるか又は塗布したものである。使用される透水剤としては、人体への安全性、工程での安全性等を考慮して、高級アルコール、高級脂肪酸、アルキルフェノール等のエチレンオキサイドを付加した非イオン系活性剤、アルキルフォスフェート塩、アルキル硫酸塩等のアニオン系活性剤等の単独又は混合物等で構成される界面活性剤が挙げられる。透水剤としては、例えば、ポリエーテル化合物、ポリエチレンエーテル変性シリコーン、ポリエーテル変性シリコーン、ポリエステル化合物、ポリアミド化合物、ポリグリセリン化合物等も好ましく用いられる。
 透水剤を含有させる又は塗布する方法としては、繊維の中への練り込みやコーティング法(グラビアコーター、キスコーター)、噴霧法等の既存の方法が採用でき、コロナ放電処理、常圧プラズマ放電処理などの前処理も必要に応じて採用してもよい。塗布後の乾燥方法としては、対流伝熱、伝導伝熱、放射伝熱等を利用した既知の方法が採用でき、熱風や赤外線による乾燥、熱接触による乾燥方法等を用いることができる。
 透水剤の付着量は、目的とする用途によって異なるが、例えば、衛生材料用としては、通常、不織布に対して0.10wt%以上1.50wt%以下の範囲が好ましく、より好ましくは0.15wt%以上1.20wt%以下である。0.10wt%未満では満足する透水性能は得られにくく、他方、1.50wt%を超えると肌へのかぶれやしっしんが発生しやすくなる。
 透水剤は、水などの溶媒で希釈し、水溶液として塗布されてもよい。また、設備の高速化に伴う乾燥工程での乾燥不足などを発生させないためには、透水剤水溶液の塗布量は少ない方が好ましい。不織布に対する塗布量(wt%)は、前記塗布方法のいずれにおいても1.0wt%以上65wt%以下が好ましく、より好ましくは3.0wt%以上60wt%以下であり、更に好ましくは5.0wt%以上50wt%以下である。1.0wt%未満では均一な塗布は得られず、他方、65wt%を超えると、必要な乾燥能力が大きくなり、設備コストが増大し、また乾燥不足を生じかねない。
 例えば、グラビアコーターによる透水剤の塗布においては、グラビアロールの柄は、格子型やピラミッド型でもよいが、グラビアのセル底に透水剤が残りにくい斜線型が好ましい。セル容積は、5cm/m以上40cm/m以下が好ましく、5cm/m未満では、塗布量が少なすぎるため均一な塗布が困難となり、40cm/mを超えると、塗布量が多くなりすぎるため乾燥工程での乾燥不足やマイグレーションによる透水剤の付着ムラが生じるなどの問題が発生する。
 前記グラビアのセルの深さは、好ましくは10μm以上80μm以下、その間隔は、好ましくは80メッシュ以上250メッシュ以下の範囲内で、上記セル容積となるように設計するのが好ましい。
 設備の高速化に対応でき、効率良く塗布できること、厚みのある不織布でも厚み方向に均一に塗工可能であること、また、透水剤と不織布の浸透性が若干悪くても均一に塗工できること、且つ一対のロール間に不織布を通す工程が無いため、不織布の厚みを維持しやすいことから噴霧法での透水剤の塗布が好ましい。噴霧法としては、一般的に公知であるエア圧縮による吹付け法や、透水剤水溶液を直接圧縮して噴霧する方法でもよいが、不織布に均一に塗布できる観点から、ローターダンプニング方式が特に好ましい。塗布時の透水剤水溶液の飛散防止策を施すことで設備の高速時でも塗布が可能である。ローターダンプニング方式とは、回転しているローター上に透水剤水溶液を供給し、ローター回転の遠心力を用いて透水剤水溶液を噴霧する方法である。ローターダンプニング方式では、塗布する方向にローター回転によって飛ばされる透水剤水溶液の液粒子を塗布する不織布側にのみ噴霧できるように、且つ不織布のCD方向に均一に塗布できるように開口部が限定され、ローター回転数により噴霧粒子径を調整することが可能である。
 前記ローターダンプニング方式の場合、例えば、ローターの直径は40mm以上100mm以下のものを選定し、塗布する不織布のCD方向に透水剤水溶液が均一に付着できるように塗布する不織布面とローターの中心との距離を設定する。隣のローターから噴霧される塗布分布範囲の2分の1が重なるように設定されることが望ましい。また、ローターはCD方向に60mm以上220mm以下の範囲において等間隔で配置させ、2段にすることが望ましい。
 均一に塗布するポイントは、塗布する不織布の内部にまで噴霧粒子を行き届かせることであり、その噴霧粒子径は0.010mm以上0.200mm以下が好ましく、0.030mm以上0.070mm以下がさらに好ましい。最適な噴霧粒子径を形成するには透水剤水溶液の表面張力が重要となり、噴霧粒子径は次式により算出される。
   噴霧粒子径(μm)={100000×√(表面張力(N/m))}/(ローター直径(mm)×ローター回転数(rpm))
 また、これら塗布方法における透水剤水溶液の温度は、5℃以上50℃以下が好ましく、溶液の均一分散、安定性の観点から、12℃以上40℃以下がより好ましい。透水剤水溶液の粘度は、0.5mPa・s以上50mPa・s以下であることが好ましく、より均一に塗布しやすい観点から、0.8mPa・s以上20mPa・s以下がより好ましい。粘度が50mPa・sを超えると、透水剤水溶液の不織布への浸透性が劣り、均一な塗布が困難となる。
 透水剤水溶液の塗布後の乾燥には、一般的な乾燥方式を用いることができ、特に限定されるものではなく、対流伝熱、伝導伝熱、放射伝熱等を利用した既知の方法が採用でき、熱風循環型、熱風貫通型、赤外線ヒーター型、不織布の両面に熱風を吹き付ける方法、加熱気体中に導入する方法等、各種の乾燥方法を用いることができる。
 本実施形態の不織布の表面構造の特徴は、図1に示すように、該不織布表面における測定基準長さを100μmとしたときのX方向Y方向により規定する単位区画内での最大高さが、不織布の無荷重時の高さ(厚み)に対し30%以上である区画の比率が、該不織布表面積20mm×20mmに相当する区画数40000当たり50%以上となることである。
 不織布表面における測定基準長さ、及び最大高さは次の通りである。デジタルマイクロスコープKH-8700(ハイロックス製)を用いて不織布のMD方向20mm、CD方向20mmで各方向に20μm間隔で不織布表面の高さ情報を測定採取する。不織布のMD方向20mm×CD方向20mmにおいて得られた高さ情報を100μm毎で区画し、このときの区画した長さを測定基準長さとした。また、該単位区画内での最大値と最小値の差を不織布表面における最大高さとした。不織布の無荷重時の高さ(厚み)に対する最大高さの割合は、最大高さ(μm)/無荷重時の高さ(μm)×100より算出した。
 すなわち、不織布の無荷重時の高さ(厚み)に対する最大高さの割合が30%以上である区画の比率が高いほど、不織布表面の微細な区画内での凹凸差は大きくなる。本実施形態においては、不織布の無荷重時の高さ(厚み)に対する最大高さの割合が30%以上である区画が、該不織布のMD方向20mm×CD方向20mmにおいて測定基準長さ100μmとして区画された40000区画当たり50%以上である。このような不織布表面の構造の特徴を有することで、例えば、不織布に付与している透水剤に関わらず、尿などの液体が不織布表面に付着した際、その接触角は低くなり、不織布表面から不織布内部への液移行を速やかにする。不織布の液移行性の観点から、本実施形態においては、最大高さが不織布の無荷重時の高さ(厚み)に対し30%以上である区画の比率は、50%以上であり、好ましくは52%以上、より好ましくは55%以上、さらに好ましくは60%以上である。かかる比率が当該範囲内にあることで、良好な透水性が発現される。かかる比率は高い方がよりよいが、肌触りが悪化することから98%以下が好ましい。
 本実施形態の不織布の透水性の指標となる透水45度傾斜流長値は、25mm以下であり、好ましくは22mm以下、更に好ましくは20mm以下、最も好ましくは18mm以下である。透水45度傾斜流長値が25mmを超えると、例えば、使い捨ておむつなどの表面材に用いた場合、表面の液流れが多くなり、尿漏れを起こしやすくなる。
 本実施形態の不織布の透水性の指標となる4回目の耐久透水指数は、85%以上である。4回目の耐久透水指数の値が85%未満では、例えば、使い捨ておむつなどの表面材に用いた場合、複数回の排尿に対して表面材の通水が出来ずに表面材としての機能を失い、尿漏れを起こしやすくなる。
 また、本実施形態の不織布の透水性の指標となる濡れ戻り指数は、0.8g以下であることが好ましく、より好ましくは0.5g以下である。濡れ戻り指数の値が0.8gを超えると、例えば、使い捨ておむつの表面材に用いた場合、肌に表面材が触れたとき非常に湿った感触があり使用感が悪くなる。濡れ戻り指数は低いほど良いが、0.01g以下の値は測定下限であり、測定ばらつきが大きい。
 以下、実施例、比較例により本発明を具体的に説明するが、本発明は以下の実施例のみに限定されるものではない。尚、各特性の評価方法は下記のとおりであり、得られた物性を以下の表1に示す。以下、不織布製造における流れ方向をMD方向、その方向と直角方向で巾方向をCD方向という。
1.平均繊維径(μm)
 不織布のCD方向に5等分して1cm角の試験片を採取し、キーエンス社製マイクロスコープVHX-700Fで繊維の直径を各20点ずつ測定し、その平均値を算出した。
2.不織布の目付(g/m
 JIS-L1906に準じ、MD方向20cm×CD方向5cmの試験片を不織布のCD方向に採取位置が均等になるように5枚採取して質量を測定し、その平均値を単位面積あたりの重量に換算して目付(g/m)として求めた。
3.不織布の無荷重時の高さ(厚み)(μm)
 MD方向4mm×CD方向10mmの試験片を任意に10枚採取し、KEYENCE製SEM(VE-8800)を用いて不織布断面の写真を撮影した。得られた画像は同じKEYENCE製の画像解析ソフトを使用して厚み方向の距離を1画像につき、5点測定し、その平均値を無荷重時の高さ(厚み)(μm)とした。
4.不織布表面における最大高さ(μm)
 不織布を任意の方向で20mm×20mmの正方形の寸法で切取り採取する。次いでデジタルマイクロスコープKH-8700(ハイロックス製)の3Dプロファイル機能を用いて、この不織布の正方形の各辺方向20mmで各方向に20μm間隔で不織布表面の高さ情報を測定採取する。不織布の正方形の各辺20mm×20mmにおいて得られた高さ情報を100μm毎で区画し、このときの区画した長さを測定基準長さとした。また該区画内での最大値と最小値の差を不織布表面における最大高さとした。この測定手順を模式的に図1に示す。
 不織布の無荷重時の高さ(厚み)(μm)に対する不織布表面における最大高さの割合を、最大高さ(μm)/無荷重時の高さ(厚み)(μm)×100により算出した。
 さらに不織布の無荷重時の高さ(厚み)に対する最大高さの割合が30%以上である区画数を、該不織布の正方形の各辺方向20mm×20mmにおいて測定基準長さ100μmとして区画された40000区画数で除して、比率(%)を算出した。
5.配向指数(X線CT)
 MD方向5mm×CD方向5mmの試験片を任意にカットし、画像解析時の視野約3mm×3mmで測定した。測定装置は高分解能3DX線顕微鏡nano3DX(株式会社リガク製)を用い、軽元素でもコントラストが得られる低エネルギー高輝度X線によるCT測定で行った。詳細な条件を以下に示す。
  X線ターゲット:Cu
  X線管電圧:40kV
  X線管電流:30mA
  レンズ:1.08μm/pix
  ビニング:2
  回転角度:180°
  投影数:1000枚
  露光時間:10秒/枚
  カメラ画素数:3300×2500
  再構成:Feldkamp法
 CT測定により得られた3次元のトモグラムを画像解析し、直交する3軸(x、y、z)の配向性指標Ix、Iy、Izを求めた。主に評価したいサンプルの厚み方向をz方向と一致させた。ここで、配向性指標Ix、Iy、Izとは、x、y、zの各方向から見た繊維表面の面積の和(各方向での繊維表面の延べ投影面積の和)をそれぞれAx、Ay、Azとしたとき、
  Ix=Ax/(Ax+Ay+Az)
  Iy=Ay/(Ax+Ay+Az)
  Iz=Az/(Ax+Ay+Az)
 で定義した。Ax、Ay、Azはトモグラムから求めた。この指標においては、値の小さい方向に配向していることになる。また、等方的構造においてはすべて1/3となる。
6.圧縮仕事量(WC)
 CD方向に5点の5cm角の試験片を採取し、カトーテック社製圧縮試験装置(KES-G5)を用いて測定した。試験片を金属製試料台の上に設置し、加圧面積2cmの円形平面を持つ鋼板間で圧縮した。圧縮速度は0.067mm/sで、圧縮最大荷重は3.4kPa(35gf/cm)とした。回復過程も同一速度で測定し、圧縮仕事量の平均値を算出した。
7.捲縮数(個/2.54cm(インチ))
 不織布のCD方向に5等分して5cm角の試験片を採取し、キーエンス社製マイクロスコープVH-Z450にて繊維に荷重がかからない状態で5本の繊維を選んで、長さ1インチ当たりの捲縮数を測定し、その平均値から捲縮数(個/インチ)を算出した。
8.透水45度傾斜流長値(mm)
 45度に傾斜した板上に吸収体としてトイレットペーパー(イトマン株式会社製ハードシングル1R55m)を10枚重ねて、その上に試験布(20cm角)を置いてセットし、布の上方10mmの高さから0.1ccの生理食塩水を滴下した。滴下位置から吸収終了までの生理食塩水が流れ落ちた距離を読み取った。この測定を試験布内で任意に20点行い、その平均値を透水45度傾斜流長値(mm)とした。
9.耐久透水指数(%)
 吸収体としてトイレットペーパー(イトマン株式会社製ハードシングル1R55m)を10枚重ねて、その上に試験布(20cm×30cm)を置く。さらにその上に直径1.5cmの穴を等間隔に10ヶ所開けたステンレス製の板を置き、それぞれの穴に位置する布の上方10mmの高さから生理食塩水0.3ccを滴下し、3分経過後、再度同様に滴下する。3回目の滴下後、10秒以内に吸収される穴の数(A)を数える。これを同じ試料の40ヶ所について試験し{((A)/(穴10ヶ所×試料40ヶ所)×100)}を3回目透水耐久指数(%)とした。また、継続して4回目の滴下後も3回目と同様に10秒以内に吸収される穴の数(B)を数え、{((B)/(穴10ヶ所×試料40ヶ所)×100)}を4回目透水耐久指数(%)とした。
10.濡れ戻り指数(g)
 吸収体として吸収体の特性を一定化しておくため、特定濾紙(Ahlstrоm社製 GRADE:989)3枚の上に試験布を置く。さらにその上に10cm角で中央に直径25mmの穴を開けた板(約800g)を置き、中央穴の上部25mm高さより、生理食塩水(吸収体重量の3.5倍の液量)を滴下し、吸収させる。次に、試験布の上の板を取り除き、3.5kgの錘(10cm角)をしずかに載せて3分間かけ、吸収体中の液の分布を一定化する。次いで、3.5kgの錘を一旦取り除き、試験布の上に予め秤量した測定用濾紙(HOLLINGSWORTH&VOSE.CONPANY製 ERTMWWSSHEETS 12.5cm角)2枚を速やかに置き、再度3.6kgの錘を静かに載せる。2分後にその測定濾紙の重量増加を秤量する。その増加分の値(g)を濡れ戻り指数とした。
11.透水剤水溶液の塗布量(wt%)
 透水付与加工1時間分の透水剤水溶液消費量から下記式にて算出した値を透水剤水溶液の塗布量(wt%)とした。
   塗布量(wt%)=透水剤水溶液消費量(g)/{不織布目付(g/m)×幅(m)×加工速度(m/min)×60(min)}×100
12.透水剤純分付着量(wt%)
 25℃×40%RHの温湿度で24時間調湿した透水剤が付着した不織布試料の重量(W1)およびについて、この不織布試料からメタノールを用いて、ソックスレー抽出した、透水剤の重量(W2)を測定し、透水剤純分付着量C(wt%)を下記の式より求めた。
   C(wt%)=[W2/W1]×100
 不織布試料のサンプリングはMD方向に30cm間隔で5ヶ所、CD方向に不織布の巾内で等間隔に5ヶ所から、切取り巾が5cm~10cm範囲で不織布試料が約2gとなるような長さで切取り、合計10枚の試験布を採取する。上記測定を行ない、それらの平均値を透水剤純分付着量(wt%)とした。
13.分散
 不織布を50cm×50cmで採取し、目視判定によって不織布の見栄えの以下の評価基準で等級づけした。分散の評価の観点は、筋状など斑に規則性がないか、単糸が均一に広がっているか(塊状になっていないか)とした。等級が高いほど、分散は良好であることを示す。
   5:非常に良い
   4:良い
   3:通常(製品として使用可能なレベル)
   2:悪い
   1:非常に悪い
[実施例1]
 MFRが55g/10分(JIS-K7210に準じ、温度230℃、荷重2.16kgで測定)のポリプロピレン(PP)樹脂を第1成分とし、MIが26g/10分(JIS-K7210に準じ、温度190℃、荷重2.16kgで測定)の高密度ポリエチレン(HDPE)樹脂を第2成分とし、第1成分の吐出量が0.4g/分・hоle、第2成分の吐出量が0.4g/分・hоleで全吐出量が0.8g/分・hоleであり、第1成分と第2成分の比が1/1となる繊維をスパンボンド法により紡糸温度220℃で押出し、このフィラメント群をエアジェットによる高速気流牽引装置を使用して紡速3200m/minで、移動捕集面に向けて押出し平均繊維径17.9μmの偏芯鞘芯型複合長繊維ウェブを調製した。
 次いで、得られたウェブを熱風温度142℃、熱風風速0.7m/sの熱風により繊維同士を接着し、目付18g/m、捲縮数15個/インチの複合長繊維不織布を得た。
 次いで、得られた不織布に透水剤水溶液として、ヘキサグリセリンモノステアリン酸エステル、ポリエーテル変性シリコーンとポリオキシアルキレンひまし油エーテルの混合物からなる透水剤の3wt%水溶液を、液温20℃、液粘度3.2mPa・sに調整し、塗布量が10wt%となるように、ローターダンプニング方式にて上記不織布に塗布した。使用したローターの直径は80mmであり、各ローターは、CD方向に115mm間隔、塗布する不織布とのローター中心の距離を180mmとなるように配置した。また、ローター回転数を調整し、噴霧される透水剤水溶液の噴霧粒子径が35μmとなるようにした。
 得られた不織布の表面における測定基準長さを100μmとしたときの区画内での最大高さが、不織布の無荷重時の高さ(厚み)に対し30%以上である区画の比率は85%であり、不織布の透水45度傾斜流長値は16mm、4回目耐久透水指数は99%であり、濡れ戻り指数は0.12gであった。結果を以下の表1に示す。
[実施例2]
 実施例1と同様の方法で、平均繊維径17.9μm、目付10g/m、捲縮数15個/インチの偏芯鞘芯型複合長繊維不織布を得た。次いで、得られた複合長繊維不織布に実施例1と同様の透水剤水溶液を同様の塗工条件で塗布した。
 得られた不織布の表面における測定基準長さを100μmとしたときの区画内での最大高さが、不織布の無荷重時の高さ(厚み)に対し30%以上である区画の比率は87%であり、不織布の透水45度傾斜流長値は14mmであり、4回目耐久透水指数は99%であり、濡れ戻り指数は0.50gであった。結果を以下の表1に示す。
[実施例3]
 第1成分の吐出量が0.54g/分・hоle、第2成分の吐出量が0.26g/分・hоleで全吐出量が0.80g/分・hоleであり、第1成分と第2成分の比が約2/1とする以外は実施例1と同様の方法で、平均繊維径が17.9μmの偏芯鞘芯型複合長繊維ウェブを調製した。
 得られた偏芯鞘芯型複合長繊維ウェブを熱風温度145℃、熱風風速1.0m/sの熱風により、繊維同士を接着し、目付18g/m、捲縮数10個/インチの複合長繊維不織布を得た。
 次いで、得られた複合長繊維不織布に、実施例1と同様の透水剤水溶液を同様の塗工条件で塗布した。
 得られた不織布の表面における測定基準長さを100μmとしたときの区画内での最大高さが、不織布の無荷重時の高さ(厚み)に対し30%以上である区画の比率は74%であり、不織布の透水45度傾斜流長値は16mmであり、4回目耐久透水指数は99%であり、濡れ戻り指数は0.12gであった。結果を以下の表1に示す。
[実施例4]
 実施例3と同様の方法で、平均繊維径17.9μm、目付18g/m、捲縮数10個/インチの複合長繊維不織布を得た。
 得られた複合長繊維不織布に、グラビア塗工方式で透水剤の1wt%水溶液を、液温20℃、液濃度2.3mPa・sに調整し、塗布量が30wt%となるように、斜線柄120メッシュ、セル容積22cm/mのグラビアロールを用いて塗布し、次いで、120℃のシリンダードライヤーに通して乾燥させ巻き取った。
 得られた不織布の表面における測定基準長さを100μmとしたときの区画内での最大高さが、不織布の無荷重時の高さ(厚み)に対し30%以上である区画の比率は70%であり、不織布の透水45度傾斜流長値は17mmであり、4回目耐久透水指数は97%であり、濡れ戻り指数は0.22gであった。結果を以下の表1に示す。
[実施例5]
 第1成分を実施例1と同様のポリプロピレン樹脂、第2成分をMIが16.8g/10分(JIS‐K7210に準じ、温度190℃、荷重2.16kgで測定)の直鎖状低密度ポリエチレン(LLDPE)樹脂とし、第1成分の吐出量が0.54g/分・hоle、第2成分の吐出量が0.26g/分・hоleで全吐出量が0.8g/分・hоleであり、第1成分と第2成分の比が約2/1となる繊維をスパンボンド法により紡糸温度220℃で押出し、このフィラメント群をエアジェットによる高速気流牽引装置を使用して移動捕集面に向けて押出し、平均繊維径20.5μmの偏芯鞘芯型長繊維ウェブを調製した。
 得られた偏芯鞘芯型長繊維ウェブを熱風温度150℃、熱風風速0.3m/sの熱風により繊維同士を接着し、目付18g/m、捲縮数40個/インチの複合長繊維不織布を得た。
 次いで、得られた複合長繊維不織布に、実施例1と同様の透水剤水溶液を同様の塗工条件で塗布した。
 得られた不織布の表面における測定基準長さを100μmとしたときの区画内での最大高さが、不織布の無荷重時の高さ(厚み)に対し30%以上である区画の比率は92%であり、不織布の透水45度傾斜流長値は15mmであり、4回目耐久透水指数は99%であり、濡れ戻り指数は0.35gであった。結果を以下の表1に示す。
[実施例6]
 実施例5と同様の方法で、平均繊維径20.5μm、目付18g/m、捲縮数40個/インチの偏芯鞘芯型複合長繊維不織布を得た。次いで、得られた複合長繊維不織布に、透水剤水溶液の濃度を5wt%とした以外は実施例1と同様の透水剤水溶液を、同様の塗工条件で塗布した。
 得られた不織布の表面における測定基準長さを100μmとしたときの区画内での最大高さが、不織布の無荷重時の高さ(厚み)に対し30%以上である区画の比率は92%であり、不織布の透水45度傾斜流長値は13mmであり、4回目耐久透水指数は99%であり、濡れ戻り指数は0.47gであった。結果を以下の表1に示す。
[実施例7]
 実施例1と同様の方法で、平均繊維径17.9μmの偏芯鞘芯型複合長繊維ウェブを調整した。
 次いで、得られた偏芯鞘芯型複合長繊維不織ウェブを100℃のフラットロールとエンボスロール(パターン仕様:直径1.00mm円形、千鳥配列、横ピッチ4.4mm、縦ピッチ4.4mm、圧着面積率7.9%)の間に通して繊維同士を仮接着し、次いで、熱風温度142℃、熱風風速0.7m/sの熱風により繊維同士を接着し、目付18g/m、捲縮数17個/インチの複合長繊維不織布を得た。
 次いで、得られた複合長繊維不織布に、実施例1と同様の透水剤水溶液を同様の塗工条件で塗布した。
 得られた不織布の表面における測定基準長さを100μmとしたときの区画内での最大高さが、不織布の無荷重時の高さ(厚み)に対し30%以上である区画の比率は72%であり、不織布の透水45度傾斜流長値は18mmであり、4回目耐久透水指数は95%であり、濡れ戻り指数は0.18gであった。結果を以下の表1に示す。
[実施例8]
 実施例7と同様の方法で、平均繊維径17.9μm、目付8g/m、捲縮数17個/インチの偏芯鞘芯型複合長繊維不織布を得た。次いで、得られた複合長繊維不織布に、実施例1と同様の透水剤水溶液を同様の塗工条件で塗布した。
 得られた不織布の表面における測定基準長さを100μmとしたときの区画内での最大高さが、不織布の無荷重時の高さ(厚み)に対し30%以上である区画の比率は74%であり、不織布の透水45度傾斜流長値は16mmであり、4回目耐久透水指数は97%であり、濡れ戻り指数は0.42gであった。結果を以下の表1に示す。
[実施例9]
 実施例1と同様の成分を用いて、第1成分の吐出量が0.40g/分・hоle、第2成分の吐出量が0.40g/分・hоleで全吐出量が0.8g/分・hоleであり、第1成分と第2成分の比が1/1となる繊維をスパンボンド法により紡糸温度220℃で押出した。このフィラメント群をエアジェットによる高速気流牽引装置を使用して紡速3200m/minで移動捕集面に向けて押出し、平均繊維径17.9μmのサイドバイサイド型複合長繊維ウェブを調製した。
 次いで、得られたサイドバイサイド型複合長繊維ウェブを実施例7と同様にして繊維同士を接着させ、目付18g/m、捲縮数23個/インチの複合長繊維不織布を得た。次いで得られた複合長繊維不織布に、実施例1と同様の透水剤水溶液を同様の塗工条件で塗布した。
 得られた不織布の表面における測定基準長さを100μmとしたときの区間内での最大高さが、不織布の無荷重状態の高さ(厚み)に対し30%以上である区画の比率は76%であり、不織布の透水45度傾斜流長値は15mmであり、4回目耐久透水指数は99%であり、濡れ戻り指数は0.15gであった。結果を以下の表1に示す。
[実施例10]
 第1成分を溶液粘度ηsp/c0.75のポリエチレンテレフタレート(PET)とし、第2成分を実施例1と同様の高密度ポリエチレン(HDPE)とし、第1成分の吐出量が0.54g/分・hоle、第2成分の吐出量が0.26g/分・hоleで、全吐出量が0.80g/分・hоleであり、第1成分と第2成分の比が約2/1となる繊維をスパンボンド法により紡糸温度295℃で押出し、このフィラメント群をエアジェットによる高速気流牽引装置を使用して移動捕集面に向けて押出し、平均繊維径18.7μmの偏芯鞘芯型複合長繊維ウェブを調製した。
 得られた偏芯鞘芯型複合長繊維ウェブを実施例1と同様に繊維同士を接着し、目付18g/m、捲縮数20個/インチの複合長繊維不織布を得た。
 次いで、得られた複合長繊維不織布に実施例1と同様の透水剤水溶液を同様の塗工条件で塗布した。
 得られた不織布の表面における測定基準長さを100μmとしたときの区画内での最大高さが、不織布の無荷重時の高さ(厚み)に対し30%以上である区画の比率は87%であり、不織布の透水45度傾斜流長値は15mmであり、4回目耐久透水指数は99%であり、濡れ戻り指数は0.15gであった。結果を以下の表1に示す。
[実施例11]
 実施例1と同様の成分を用いて、第1成分の吐出量が0.24g/分・hоle、第2成分の吐出量が0.56g/分・hоleで全吐出量が0.8g/分・hоleであり、第1成分と第2成分の比が3/7とする以外は、実施例1と同様の方法で、平均繊維径17.9μmの偏芯鞘芯型複合長繊維ウェブを調製した。
 得られた偏芯鞘芯型複合長繊維ウェブを実施例1と同様に繊維同士を接着し、目付18g/m、捲縮数17個/インチの複合長繊維不織布を得た。次いで、得られた複合長繊維不織布に、実施例4と同様の透水剤水溶液を同様の塗工条件で塗布した。
 得られた不織布の表面における測定基準長さを100μmとしたときの区間内での最大高さが、不織布の無荷重状態の高さ(厚み)に対し30%以上である区画の比率は70%であり、不織布の透水45度傾斜流長値は18mmであり、4回目耐久透水指数は95%であり、濡れ戻り指数は0.18gであった。結果を以下の表1に示す。
[実施例12]
 実施例1と同様の成分を用いて、第1成分の吐出量が0.16g/分・hоle、第2成分の吐出量が0.64g/分・hоleで全吐出量が0.8g/分・hоleであり、第1成分と第2成分の比が1:4とする以外は、実施例1と同様の方法で、平均繊維径18.7μmの偏芯鞘芯型複合長繊維ウェブを調製した。
 得られた偏芯鞘芯型複合長繊維ウェブを実施例1と同様に繊維同士を接着し、目付18g/m、捲縮数5個/インチの複合長繊維不織布を得た。次いで、得られた複合長繊維不織布に実施例1と同様の透水剤水溶液を同様の塗工条件で塗布した。
 得られた不織布の表面における測定基準長さを100μmとしたときの区間内での最大高さが、不織布の無荷重状態の高さ(厚み)に対し30%以上である区画の比率は52%であり、不織布の透水45度傾斜流長値は22mmであり、4回目耐久透水指数は85%であり、濡れ戻り指数は0.45gであった。結果を以下の表1に示す。
[実施例13]
 実施例1と同様の成分を用いて、第1成分の吐出量が0.40g/分・hоle、第2成分の吐出量が0.40g/分・hоleで全吐出量が0.8g/分・hоleであり、第1成分と第2成分の比が1:1となる繊維をスパンボンド法により紡糸温度220℃で押出した。押出したフィラメントは、移動捕集面の吸引力を利用して牽引ゾーン内で延伸させた後、ディフューザーを通し移動捕集面に堆積させて、平均繊維径20.5μmのサイドバイサイド型複合長繊維ウェブを調製した。
 次いで、得られたサイドバイサイド型複合長繊維ウェブを実施例1と同様にして繊維同士を接着させ、目付18g/m、捲縮数25個/インチの複合長繊維不織布を得た。次いで得られた複合長繊維不織布に実施例1と同様の透水剤水溶液を同様の塗工条件で塗布した。
 得られた不織布の表面における測定基準長さを100μmとしたときの区間内での最大高さが、不織布の無荷重状態の高さ(厚み)に対し30%以上である区画の比率は90%であり、不織布の透水45度傾斜流長値は14mmであり、4回目耐久透水指数は99%であり、濡れ戻り指数は0.17gであった。結果を以下の表1に示す。
[実施例14]
 実施例13と同様の方法で、平均繊維径20.5μm、目付30g/m、捲縮数25個/インチの偏芯鞘芯型複合長繊維不織布を得た。次いで、得られた複合長繊維不織布に実施例1と同様の透水剤水溶液を同様の塗工条件で塗布した。
 得られた不織布の表面における測定基準長さを100μmとしたときの区画内での最大高さが、不織布の無荷重時の高さ(厚み)に対し30%以上である区画の比率は89%であり、不織布の透水45度傾斜流長値は14mmであり、4回目耐久透水指数は99%であり、濡れ戻り指数は0.12gであった。結果を以下の表1に示す。
[実施例15]
 MFRが38g/10分のポリプロピレン(PP)を、ハ型異型ノズルを配置した紡糸口金を用いて紡糸温度240℃、吐出量が0.80g/分・hоleで押出し、このフィラメント群をエアジェットによる高速気流牽引装置を使用して、移動捕集面に向けて押出し、平均繊維径18.7μmの長繊維ウェブを得た。
 次いで、得られた長繊維ウェブを温度135℃、圧力60kg/cmに設定したフラットロールとエンボスロール(パターン仕様:直径0.425mm円形、千鳥配列、横ピッチ2.1mm、縦ピッチ1.1mm、圧着面積率6.3%)の間に通して繊維同士を部分的に接着し、目付25g/m、捲縮数28個/インチの長繊維不織布を得た。
 次いで得られた長繊維不織布に実施例4と同様の透水剤水溶液を同様の塗工条件で塗布した。
 得られた不織布の表面における測定基準長さを100μmとしたときの区画内での最大高さが、不織布の無荷重時の高さ(厚み)に対し30%以上である区画の比率は55%であり、不織布の透水45度傾斜流長値は23mmであり、4回目耐久透水指数は89%であり、濡れ戻り指数は0.12gであった。結果を以下の表1に示す。
Figure JPOXMLDOC01-appb-T000001
[比較例1]
 MFRが55g/10分(JIS-K7210に準じ、温度230℃、荷重2.16kgで測定)のポリプロピレン(PP)樹脂を単成分にてスパンボンド法により紡糸温度220℃で押出し、このフィラメント群をエアジェットによる高速気流牽引装置を使用して、移動捕集面に向けて押し出し、平均繊維径17.9μmの長繊維ウェブを調製した。
 次いで、得られたウェブを、141℃のフラットロールとエンボスロール(パターン仕様:直径0.425mm円形、千鳥配列、横ピッチ2.1mm、縦ピッチ1.1mm、圧着面積率6.3%)の間に通して繊維同士を接着し、目付18g/mの繊維が捲縮していない長繊維不織布を得た。
 次いで、得られた長繊維不織布に実施例4と同様の透水剤水溶液を同様の塗工条件で塗布した。
 得られた不織布の表面における測定基準長さを100μmとしたときの区画内での最大高さが、不織布の無荷重時の高さ(厚み)に対し30%以上である区画の比率は40%であり、不織布の透水45度傾斜流長値は28mmであり、4回目耐久透水指数は74%であり、濡れ戻り指数は0.56gであった。結果を以下の表2に示す。
[比較例2]
 比較例1で得た長繊維不織布を、1辺0.9mm、線幅0.1mmの連続ハニカム形状柄(亀甲凹柄)(押付面積率:12.5%、柄ピッチ;タテ2.8mm、ヨコ3.2mm、深さ0.7mm)のエンボスロール(80℃)と表面硬度60度(JIS‐A硬度)のゴムロールとの間に通し、2kg/cmの圧力で柄を押しつけた。亀甲周辺が押し付けられ高密度域を持ち、中央が盛り上がった柔軟な長繊維不織布を得た。
 次いで得られた長繊維不織布に実施例4と同様の透水剤水溶液を同様の塗工条件で塗布した。
 得られた不織布の表面における測定基準長さを100μmとしたときの区画内での最大高さが、不織布の無荷重時の高さ(厚み)に対し30%以上である区画の比率は42%であり、不織布の透水45度傾斜流長値は27mmであり、4回目耐久透水指数は80%であり、濡れ戻り指数は0.68gであった。結果を以下の表2に示す。
[比較例3]
 実施例1と同様の成分を用いて、第1成分の吐出量が0.72g/分・hоle、第2成分の吐出量が0.08g/分・hоleで全吐出量が0.8g/分・hоleであり、第1成分と第2成分の比が9/1となる繊維をスパンボンド法により紡糸温度220℃で押出し、このフィラメント群をエアジェットによる高速気流牽引装置を使用して、移動捕集面に向けて押出し、平均繊維径16.7μmの偏芯鞘芯型複合長繊維ウェブを調製した。
 次いで、得られた偏芯鞘芯型複合長繊維ウェブを熱風温度142℃、熱風風速0.7m/sの熱風により繊維同士を接着し、目付18g/m、捲縮数0個/インチの複合長繊維不織布を得た。
 次いで、得られた複合長繊維不織布に実施例4と同様の透水剤水溶液を同様の塗工条件で塗布した。
 得られた不織布の表面における測定基準長さを100μmとしたときの区画内での最大高さが、不織布の無荷重時の高さ(厚み)に対し30%以上である区画の比率は48%であり、不織布の透水45度傾斜流長値は28mmであり、4回目耐久透水指数は64%であり、濡れ戻り指数は0.52gであった。結果を以下の表2に示す。
[比較例4]
 実施例1と同様の成分を用いて、第1成分の吐出量が0.54g/分・hоle、第2成分の吐出量が0.26g/分・hоleで全吐出量が0.8g/分・hоleであり、第1成分と第2成分の比が2/1となる繊維をスパンボンド法により紡糸温度220℃で押出し、このフィラメント群をエアジェットによる高速気流牽引装置を使用して、移動捕集面に向けて押出し、平均繊維径16.7μmの鞘芯型複合長繊維ウェブを調製した。
 次いで、得られたウェブは比較例3と同様の方法及び条件で、繊維同士を接着した後、透水剤水溶液を塗布し、目付18g/m、捲縮数0個/インチの複合長繊維不織布を得た。
 得られた不織布の表面における測定基準長さを100μmとしたときの区画内での最大高さが、不織布の無荷重時の高さ(厚み)に対し30%以上である区画の比率は46%であり、不織布の透水45度傾斜流長値は26mmであり、4回目耐久透水指数は73%であり、濡れ戻り指数は0.60gであった。結果を以下の表2に示す。
Figure JPOXMLDOC01-appb-T000002
 本発明の親水性嵩高不織布は優れた透水性を有するため、衛生材料の製造に好適に使用することができる。衛生材料については使い捨ておむつ、生理用ナプキン又は失禁パットの表面のトップシートに好適に使用することができる。また、本発明の親水性嵩高不織布は、前記用途に限らず、例えば、マスク、カイロ、テープ基布、貼布薬基布、救急絆基布、包装材、ワイプ製品、医療用ガウン、包帯、衣料、スキンケア用シートなどにも使用することができる。

Claims (8)

  1.  熱可塑性繊維からなる親水性嵩高不織布であって、該不織布表面における測定基準長さを100μmとしたときのX方向Y方向により規定する単位区画内での最大高さが、該不織布のZ方向無荷重時の高さ(厚み)に対し30%以上である区画の比率が、該不織布表面積20mm×20mmに相当する区画数40000当たり50%以上である不織布表面構造を有し、該不織布の透水45度傾斜流長値が25mm以下であり、かつ、4回目耐久透水指数が85%以上であることを特徴とする前記親水性嵩高不織布。
  2.  前記親水性嵩高不織布のX線CTでの厚み方向の配向指数が0.43以下である、請求項1に記載の親水性嵩高不織布。
  3.  前記親水性嵩高不織布の圧縮仕事量が0.20gf・cm/cm以上1.00gf・cm/cm以下である、請求項1又は2に記載の親水性嵩高不織布。
  4.  前記親水性嵩高不織布を構成する繊維の捲縮数が5~45個/2.54cm(インチ)である、請求項1~3のいずれか1項に記載の親水性嵩高不織布。
  5.  前記熱可塑性繊維がサイドバイサイド型又は偏芯鞘芯型の複合繊維である、請求項1~4のいずれか1項に記載の親水性嵩高不織布。
  6.  前記熱可塑性繊維がポリオレフィン系繊維である、請求項1~5のいずれか1項に記載の親水性嵩高不織布。
  7.  前記熱可塑性繊維が長繊維である、請求項1~6のいずれか1項に記載の親水性嵩高不織布。
  8.  請求項1~7のいずれか1項に記載の親水性嵩高不織布を用いてなる衛生材料。
PCT/JP2017/006196 2016-02-22 2017-02-20 親水性嵩高不織布 WO2017145999A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
MYPI2018702640A MY186401A (en) 2016-02-22 2017-02-20 Hydrophilic bulky nonwoven fabric
JP2018501677A JP6600069B2 (ja) 2016-02-22 2017-02-20 親水性嵩高不織布
CN201780011405.7A CN108699744B (zh) 2016-02-22 2017-02-20 亲水性蓬松无纺布

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016031353 2016-02-22
JP2016-031353 2016-02-22

Publications (1)

Publication Number Publication Date
WO2017145999A1 true WO2017145999A1 (ja) 2017-08-31

Family

ID=59686648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006196 WO2017145999A1 (ja) 2016-02-22 2017-02-20 親水性嵩高不織布

Country Status (5)

Country Link
JP (2) JP6600069B2 (ja)
CN (1) CN108699744B (ja)
MY (1) MY186401A (ja)
TW (1) TWI649471B (ja)
WO (1) WO2017145999A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210122825A (ko) 2019-03-08 2021-10-12 미쓰이 가가쿠 가부시키가이샤 부직포 적층체, 복합 적층체, 및 피복 시트
WO2021215492A1 (ja) * 2020-04-22 2021-10-28 花王株式会社 衛生用不織布並びにこれを備える衛生品及び吸収性物品、並びに衛生用不織布の製造方法
WO2022239838A1 (ja) * 2021-05-12 2022-11-17 旭化成株式会社 衛生材料用不織布、sapシート用基材、及びsapシート
JP7544617B2 (ja) 2021-01-26 2024-09-03 花王株式会社 吸収性物品用シートの製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021200145A1 (ja) * 2020-03-31 2021-10-07 ユニチカ株式会社 衛生材料の表面材及びその製造方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01201503A (ja) * 1988-02-01 1989-08-14 Asahi Chem Ind Co Ltd 改良された使い捨て衛生材料
JPH09302586A (ja) * 1996-05-15 1997-11-25 Asahi Chem Ind Co Ltd 衛生材料用ポリオレフィン系不織布
JPH108367A (ja) * 1996-06-24 1998-01-13 Teijin Ltd 親水性長繊維不織布及びその製造方法
JPH11286863A (ja) * 1998-04-06 1999-10-19 Mitsui Chem Inc 立体賦形不織布
JP2002065743A (ja) * 2000-09-04 2002-03-05 Uni Charm Corp 連続フィラメントおよび吸収シートを用いた吸収性物品
JP2004156163A (ja) * 2002-11-05 2004-06-03 Asahi Kasei Fibers Corp 親水性ポリオレフィン不織布
JP2004316061A (ja) * 2003-04-14 2004-11-11 Nordson Corp 高ロフトのスパンボンド不織ウェブの形成方法とその方法により形成された製品
JP2008038277A (ja) * 2006-08-04 2008-02-21 Asahi Kasei Fibers Corp 衛生材料用ポリオレフィン系長繊維不織布
WO2008108238A1 (ja) * 2007-03-02 2008-09-12 Mitsui Chemicals, Inc. 不織布積層体
US20120237718A1 (en) * 2011-03-15 2012-09-20 Paul Thomas Weisman Structured Fibrous Web

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5972505A (en) * 1989-04-04 1999-10-26 Eastman Chemical Company Fibers capable of spontaneously transporting fluids
JP3008822B2 (ja) * 1995-06-27 2000-02-14 信越化学工業株式会社 (ポリ)スタノシロキサン及びその製造方法
CN100436667C (zh) * 2003-08-28 2008-11-26 大和纺织株式会社 潜在卷曲性复合纤维及其制造方法、和纤维集合物、以及无纺布
JP5833666B2 (ja) * 2011-11-02 2015-12-16 旭化成せんい株式会社 透水不織布
JP5881442B2 (ja) * 2012-01-31 2016-03-09 ダイワボウホールディングス株式会社 親水性合成繊維、繊維集合物、皮膚接触用製品および親水性繊維処理剤

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01201503A (ja) * 1988-02-01 1989-08-14 Asahi Chem Ind Co Ltd 改良された使い捨て衛生材料
JPH09302586A (ja) * 1996-05-15 1997-11-25 Asahi Chem Ind Co Ltd 衛生材料用ポリオレフィン系不織布
JPH108367A (ja) * 1996-06-24 1998-01-13 Teijin Ltd 親水性長繊維不織布及びその製造方法
JPH11286863A (ja) * 1998-04-06 1999-10-19 Mitsui Chem Inc 立体賦形不織布
JP2002065743A (ja) * 2000-09-04 2002-03-05 Uni Charm Corp 連続フィラメントおよび吸収シートを用いた吸収性物品
JP2004156163A (ja) * 2002-11-05 2004-06-03 Asahi Kasei Fibers Corp 親水性ポリオレフィン不織布
JP2004316061A (ja) * 2003-04-14 2004-11-11 Nordson Corp 高ロフトのスパンボンド不織ウェブの形成方法とその方法により形成された製品
JP2008038277A (ja) * 2006-08-04 2008-02-21 Asahi Kasei Fibers Corp 衛生材料用ポリオレフィン系長繊維不織布
WO2008108238A1 (ja) * 2007-03-02 2008-09-12 Mitsui Chemicals, Inc. 不織布積層体
US20120237718A1 (en) * 2011-03-15 2012-09-20 Paul Thomas Weisman Structured Fibrous Web

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210122825A (ko) 2019-03-08 2021-10-12 미쓰이 가가쿠 가부시키가이샤 부직포 적층체, 복합 적층체, 및 피복 시트
US12012679B2 (en) 2019-03-08 2024-06-18 Mitsui Chemicals Asahi Life Materials Co., Ltd. Nonwoven fabric layered body, composite layered body, and cover sheet
WO2021215492A1 (ja) * 2020-04-22 2021-10-28 花王株式会社 衛生用不織布並びにこれを備える衛生品及び吸収性物品、並びに衛生用不織布の製造方法
CN115427621A (zh) * 2020-04-22 2022-12-02 花王株式会社 卫生用无纺布及具备其的卫生用品及吸收性物品、以及卫生用无纺布的制造方法
JP7544617B2 (ja) 2021-01-26 2024-09-03 花王株式会社 吸収性物品用シートの製造方法
WO2022239838A1 (ja) * 2021-05-12 2022-11-17 旭化成株式会社 衛生材料用不織布、sapシート用基材、及びsapシート

Also Published As

Publication number Publication date
JP6600069B2 (ja) 2019-10-30
CN108699744B (zh) 2021-03-12
CN108699744A (zh) 2018-10-23
MY186401A (en) 2021-07-22
JPWO2017145999A1 (ja) 2018-09-06
TWI649471B (zh) 2019-02-01
JP2020007697A (ja) 2020-01-16
TW201732107A (zh) 2017-09-16
JP6778308B2 (ja) 2020-10-28

Similar Documents

Publication Publication Date Title
JP6778308B2 (ja) 親水性嵩高不織布
JP6865063B2 (ja) バリア性に優れた嵩高性複合長繊維不織布
JP6714982B2 (ja) 嵩高性複合長繊維不織布
CN101790604B (zh) 无纺织物及其制造方法
JP6012802B2 (ja) 透水不織布
CN112292105B (zh) 具有成型的、柔软的和纹理化的非织造织物的吸收制品
KR20090023339A (ko) 부직포
MX2011012795A (es) Trama fibrosa estructurada.
EP2273960A1 (en) Material web for use in an absorbent article
JP2021525596A (ja) 吸収性物品向けの流体分配材料
JP6542974B2 (ja) 肌触り感に優れた長繊維不織布
WO2009062998A1 (en) Perforated and treated material
JP7124972B2 (ja) 積層不織布および衛生材料
JP7226659B1 (ja) スパンボンド不織布および衛生材料
WO2023042540A1 (ja) スパンボンド不織布および衛生材料
JP2019157306A (ja) 嵩高柔軟不織布
WO2021172476A1 (ja) 不織布、これを備える不織布製品及び吸収性物品、並びに該不織布製品の製造方法
WO2022239838A1 (ja) 衛生材料用不織布、sapシート用基材、及びsapシート
JP2019183305A (ja) 嵩高柔軟不織布

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018501677

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17756437

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17756437

Country of ref document: EP

Kind code of ref document: A1