WO2017145622A1 - 垂直離着陸機 - Google Patents

垂直離着陸機 Download PDF

Info

Publication number
WO2017145622A1
WO2017145622A1 PCT/JP2017/002502 JP2017002502W WO2017145622A1 WO 2017145622 A1 WO2017145622 A1 WO 2017145622A1 JP 2017002502 W JP2017002502 W JP 2017002502W WO 2017145622 A1 WO2017145622 A1 WO 2017145622A1
Authority
WO
WIPO (PCT)
Prior art keywords
vertical take
landing aircraft
ducted
fans
airframe
Prior art date
Application number
PCT/JP2017/002502
Other languages
English (en)
French (fr)
Inventor
正善 恒川
正雄 長谷川
田村 哲也
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Priority to NZ74222317A priority Critical patent/NZ742223A/en
Priority to EP17756064.6A priority patent/EP3366585A4/en
Priority to JP2018501072A priority patent/JP6478080B2/ja
Priority to AU2017224522A priority patent/AU2017224522B2/en
Publication of WO2017145622A1 publication Critical patent/WO2017145622A1/ja
Priority to US16/009,630 priority patent/US20180297697A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C29/00Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
    • B64C29/0008Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded
    • B64C29/0016Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers
    • B64C29/0025Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers the propellers being fixed relative to the fuselage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/08Helicopters with two or more rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/20Rotorcraft characterised by having shrouded rotors, e.g. flying platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/52Tilting of rotor bodily relative to fuselage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C29/00Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • B64U30/26Ducted or shrouded rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/11Propulsion using internal combustion piston engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/13Propulsion using external fans or propellers
    • B64U50/14Propulsion using external fans or propellers ducted or shrouded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/13Propulsion using external fans or propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/19Propulsion using electrically powered motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/30Supply or distribution of electrical power

Definitions

  • the embodiment disclosed herein relates to a vertical take-off and landing aircraft, and more particularly to a vertical take-off and landing aircraft having a plurality of ducted fans.
  • a typical example of a vertical take-off and landing aircraft that can generate lift without running on the ground is a helicopter.
  • the helicopter has a main rotor that is larger than the airframe, and obtains lift and thrust by rotating the main rotor. Further, the counter-torque acting on the airframe due to the rotation of the main rotor is generally canceled out using a tail rotor or the like (see, for example, Patent Document 1).
  • This disclosure has been devised in view of the above-described problems, and an object thereof is to provide a vertical take-off and landing aircraft that can reduce the influence of anti-torque acting on the aircraft with a simple structure.
  • a vertical take-off and landing aircraft including a plurality of ducted fans in the fuselage, wherein each of the ducted fans is inclined in a tangential direction in a rotational direction on a side far from the other ducted fans.
  • a take-off and landing aircraft is provided.
  • An inclination direction of the ducted fan may be perpendicular to a line segment connecting the center of the airframe that is equidistant from the rotation center of the plurality of ducted fans and the rotation center on the plan view of the vertical take-off and landing aircraft.
  • the airframe may include a power source that supplies power to the ducted fan, and an output shaft of the power source may be disposed on the center of the airframe in the plan view of the vertical take-off and landing aircraft. Further, the plurality of ducted fans may be rotated in the same direction by the power source.
  • the ducted fan may be provided with a control wing capable of adjusting the angle of attack at the outlet.
  • the aircraft may include a propulsion device for attitude control.
  • the ducted fan is tilted in the tangential direction with respect to the rotation direction of the rotating shaft, whereby a thrust component force is generated in the tilted direction, and the component force generated in each ducted fan is An offset torque that cancels the counter-torque can be generated. Therefore, it is not necessary to arrange a tail rotor or the like like a helicopter type vertical take-off and landing aircraft, or to control the rotation direction of a plurality of ducted fans like a drone type vertical take-off and landing aircraft. The influence of the acting anti-torque can be reduced.
  • 1 is a plan view of a vertical take-off and landing aircraft according to a first embodiment of the present disclosure.
  • 1 is a front view of a vertical take-off and landing aircraft according to a first embodiment of the present disclosure.
  • 1 is a side view of a vertical take-off and landing aircraft according to a first embodiment of the present disclosure.
  • It is a conceptual diagram which shows generation
  • FIGS. 1A to 5C are views showing the vertical take-off and landing aircraft according to the first embodiment of the present disclosure.
  • FIG. 1A is a plan view
  • FIG. 1B is a front view
  • FIG. 1C is a side view.
  • 2A to 2C are explanatory views showing the operation of the vertical take-off and landing aircraft according to the first embodiment of the present disclosure.
  • FIG. 2A is a conceptual diagram showing the generation of the counter-torque
  • FIG. 2B shows the generation of the thrust component
  • FIG. 2C is a conceptual diagram illustrating the generation of a canceling torque.
  • the vertical take-off and landing aircraft 1 includes a pair of ducted fans 3a and 3b that generate lift and thrust, and a frame 4 that connects the ducted fans 3a and 3b.
  • a power source 5 that supplies power to the ducted fans 3a and 3b
  • a leg 6 that supports the airframe 2 when grounded.
  • the airframe 2 includes ducted fans 3a and 3b, a frame 4, and their accessories (power source 5, legs 6 and the like).
  • the ducted fan 3a is disposed on the right side of the frame 4 in a front view as shown in FIG. 1B, for example.
  • the ducted fan 3b is disposed on the left side of the frame 4 in a front view as shown in FIG. 1B, for example.
  • the ducted fan 3a and the ducted fan 3b are integrally connected by a frame 4 connected to an intermediate portion thereof. Then, one ducted fan 3a (3b) is inclined in the tangential direction of the rotational direction on the side far from the other ducted fan 3b (3a).
  • Ducted fans 3a and 3b include, for example, substantially cylindrical ducts 31a and 31b, fans 32a and 32b that are rotatably disposed in ducts 31a and 31b, and nose cones 33a that are disposed upstream of fans 32a and 32b. , 33b, tail cones 34a, 34b arranged on the downstream side of the fans 32a, 32b, and stators 35a, 35b for connecting the ducts 31a, 31b and the tail cones 34a, 34b.
  • the ducted fans 3a and 3b may be called duct fans.
  • the nose cones 33a and 33b have a function of smoothly guiding the air sucked by the fans 32a and 32b into the ducts 31a and 31b.
  • the stators 35a and 35b have a function of rectifying air guided to the ducts 31a and 31b.
  • a power transmission mechanism for transmitting power from the power source 5 to the fans 32a and 32b may be disposed inside some of the stators 35a and 35b.
  • the tail cones 34a and 34b have a function of smoothly guiding the air discharged from the ducts 31a and 31b.
  • the ducted fans 3a and 3b may have control blades 36a, 36b, 37a and 37b having adjustable angles of attack at the outlets.
  • the control blades 36a, 36b, 37a, 37b are, for example, drive shafts spanned between the ducts 31a, 31b and the tail cones 34a, 34b at the outlets of the ducted fans 3a, 3b (downstream of the fans 32a, 32b). (Not shown).
  • Driving sources for example, electric motors
  • for the control blades 36a, 36b, 37a, and 37b are disposed inside the tail cones 34a and 34b or the ducts 31a and 31b.
  • control wings 36a, 36b, 37a, 37b are arranged in a substantially cross shape, for example, and are rotated in the left-right direction of the machine body 2 and a pair of control wings 36a, 36b rotated in the front-rear direction of the machine body 2. And a pair of control blades 37a and 37b.
  • control blades 36a, 36b, 37a, 37b By rotating the control blades 36a, 36b, 37a, 37b in any direction and adjusting the angle of attack, the direction of thrust generated by the ducted fans 3a, 3b can be adjusted, and the traveling direction of the airframe 2 can be controlled. it can.
  • the control wings 36a, 36b, 37a, 37b may be used not only for adjusting the traveling direction of the airframe 2, but also for controlling the attitude of the airframe 2.
  • the frame 4 is a member that couples a pair of ducted fans 3a and 3b, and is connected to the ducts 31a and 31b.
  • the frame 4 may be made of metal or resin.
  • a power source 5 is disposed on the upper surface of the frame 4.
  • the power source 5 is, for example, an engine driven by fuel. By adopting the engine as the power source 5, the large ducted fans 3a and 3b can be driven for a long time, and the payload (loading amount) can be increased.
  • the power source 5 may be disposed on the lower surface of the frame 4 or may be disposed on the rear portion of the frame 4.
  • the power source 5 is not limited to the engine.
  • a battery for example, a storage battery or a fuel cell that can supply electric power to the electric motor. , Solar cells, etc.
  • a power transmission mechanism for transmitting the power generated by the power source 5 to the fans 32a and 32b is arranged inside the frame 4.
  • the power transmission mechanism includes an output shaft 51 rotated by the power source 5, rotary shafts 52a and 52b arranged at the centers of the fans 32a and 32b, the output shaft 51, and the rotary shaft.
  • Belts 53a and 53b spanned around 52a and 52b. The belts 53a and 53b are inserted into the openings formed in the ducts 31a and 31b and the interiors of the stators 35a and 35b, and are stretched over the output shaft 51 and the rotary shafts 52a and 52b.
  • the power transmission mechanism is not limited to the illustrated belt transmission mechanism, and may be a gear transmission mechanism using a shaft and a bevel gear, a chain transmission mechanism using a chain and a sprocket, or the like.
  • the power transmission mechanism may include a speed reduction mechanism and a speed increase mechanism.
  • the power transmission mechanism may be a power cable that supplies power from the power source 5.
  • leg portion 6 is configured by, for example, a plate material formed in a substantially C shape, and both ends thereof are connected to the frame 4. Since the leg portion 6 forms an annular shape with the frame 4, the leg portion 6 has elasticity, and can reduce an impact at the time of landing.
  • the leg portion 6 is not limited to the illustrated configuration, and may be configured by three or more rod-shaped members, or a long plate material that is grounded at the time of landing and a support member connected to the frame 4. May be.
  • a connector 41 that supports the load C may be disposed on the lower surface of the frame 4.
  • the load C is shown by a one-dot chain line for convenience of explanation.
  • the cargo C is, for example, photographing equipment such as a camera, surveying equipment, rescue supplies, and the like.
  • a control device for controlling the output of the power source 5, the rotational speed of the ducted fans 3a, 3b, the angle of attack of the control blades 36a, 36b, 37a, 37b, etc. is disposed inside the frame 4. May be.
  • Such a control device may be configured to automatically steer the vertical take-off and landing aircraft 1 based on a program input in advance, or may be configured to remotely control the vertical take-off and landing aircraft 1 using a remote controller or the like. May be.
  • the vertical take-off and landing aircraft 1 ′ shown in FIG. 2A has ducted fans 3 a ′ and 3 b ′ whose rotating shafts 52 a ′ and 52 b ′ are oriented in the vertical direction. Power is transmitted to the rotating shafts 52a 'and 52b' via the output shaft 51 'and belts 53a' and 53b '.
  • both fans (not shown) of the ducted fans 3a 'and 3b' are rotated in the same direction (for example, clockwise direction in the figure), the airframe 2 'is counterclockwise as shown in FIG. Torque Tr acts. Therefore, when no countermeasure is taken, the airframe 2 'rotates counterclockwise as shown in the figure, and it is difficult to fly stably.
  • the ducted fans 3a and 3b are fixed to the frame 4 while being inclined in a predetermined direction.
  • the rotation axis 52a of the ducted fan 3a has its center line La inclined forward by an angle ⁇ with respect to the vertical line Lv.
  • the rotation axis 52b of the ducted fan 3b has its center line Lb inclined backward by an angle ⁇ with respect to the vertical line Lv.
  • the angle ⁇ is set in a range in which the airframe 2 does not rotate when the vertical take-off and landing aircraft 1 is in the hovering state.
  • the angle ⁇ is set within a range of 1 to 10 °, for example, and is preferably about 4 to 6 °.
  • the inclination angle ⁇ of the rotation shaft 52a of the ducted fan 3a and the inclination angle ⁇ of the rotation shaft 52b of the ducted fan 3b are set to the same value.
  • ducted fan 3a is inclined forward by angle ⁇ with respect to vertical line Lv
  • ducted fan 3b is inclined backward by angle ⁇ with respect to vertical line Lv.
  • FIG. 2B for convenience of explanation, a side view conceptualizing the configuration of ducted fans 3a and 3b is shown.
  • the portions where the inside of ducted fans 3a, 3b can be seen are painted in dark gray, and the portions where the outside is visible are painted in light gray.
  • the power transmission mechanism may be another mechanism (for example, a gear transmission mechanism, a chain transmission mechanism, or the like) as long as it can transmit power between the rotary shafts 52a and 52b and the output shaft 51.
  • the rotation shaft 52a is inclined in the tangential direction of the rotation direction on the side far from the other ducted fan 3b (that is, the downward direction in the figure).
  • the ducted fan 3b can be said to have the rotating shaft 52b inclined in the tangential direction of the rotational direction on the side far from the other ducted fan 3a (that is, the upward direction in the figure).
  • a point that is equidistant and shortest from the rotation center Of of the pair of ducted fans 3a and 3b is defined as the airframe center Op.
  • the inclination directions of the ducted fans 3a and 3b are set perpendicular to the line segment OpOf connecting the machine body center Op and the rotation center Of.
  • the inclination directions of the ducted fans 3a and 3b are not limited to the direction perpendicular to the line segment OfOf, and can be arbitrarily set within a range in which the component forces Fha and Fhb can be generated.
  • the output shaft 51 is arrange
  • the rotation center Of and the aircraft center Op in this way on the plan view of the vertical take-off and landing aircraft 1, the inclination directions of the ducted fans 3 a and 3 b can be uniformly defined regardless of the configuration of the aircraft 2. Further, by making the output shaft 51 coincide with the fuselage center Op, a power transmission mechanism having substantially the same configuration can be adopted for the pair of ducted fans 3a and 3b, thereby avoiding the complexity of the power transmission mechanism. can do.
  • FIGS. 3A to 3B are plan conceptual views showing a modification of the vertical take-off and landing aircraft according to the first embodiment of the present disclosure.
  • FIG. 3A is a first modification
  • FIG. 3B is a second modification. Show.
  • the first modification shown in FIG. 3A is a vertical take-off and landing aircraft 1 having three ducted fans 3a, 3b, and 3c.
  • 3B is a vertical take-off and landing aircraft 1 having four ducted fans 3a, 3b, 3c, and 3d.
  • the structure of the airframe 2 is conceptualized.
  • the ducted fan 3a is inclined in the tangential direction in the rotational direction on the side far from the other ducted fans 3b, 3c, and the ducted fan 3b is in contact with the other ducted fans 3a, 3c.
  • the ducted fan 3c is inclined in the tangential direction of the rotation direction on the side far from the other ducted fans 3a and 3b.
  • the ducted fan 3a is inclined in the tangential direction in the rotational direction on the side far from the other ducted fans 3b, 3c, 3d, and the ducted fan 3b is in contact with the other ducted fan 3a.
  • 3c, 3d is inclined in the tangential direction of the rotation direction on the side far from the ducted fan 3c
  • the ducted fan 3d is inclined in the tangential direction of the rotation direction on the side far from the other ducted fans 3a, 3b, 3d.
  • 3b, and 3c are inclined in the tangential direction of the rotational direction on the side far from 3c.
  • FIGS. 4A to 5C are views showing a vertical take-off and landing aircraft according to the second embodiment of the present disclosure, in which FIG. 4A is a plan view, FIG. 4B is a front view, and FIG. 4C is a side view.
  • 5A to 5C are views showing a vertical take-off and landing aircraft according to a third embodiment of the present disclosure, in which FIG. 5A is a plan view, FIG. 5B is a front view, and FIG. 5C is a side view.
  • symbol is attached
  • the vertical take-off and landing aircraft 1 includes a rotational motion (rolling) about the X axis (front-rear direction axis) and a rotational motion about the Y axis (left-right direction axis) (
  • a first propulsion device 7 that controls (pitching) and a second propulsion device 8 that controls rotational movement (yawing) around the Z-axis (vertical axis) of the airframe 2 are provided.
  • the first propulsion device 7 and the second propulsion device 8 are propulsion devices for attitude control of the airframe 2, and are constituted by, for example, an electric fan.
  • the first propulsion device 7 and the second propulsion device 8 may be propulsion devices other than the electric fan.
  • the first propulsion device 7 is disposed at positions corresponding to the four corners of the airframe 2, for example. Further, the first propulsion device 7 is arranged so as to be able to generate a vertically downward thrust while the aircraft body 2 is held horizontally. By appropriately adjusting the thrusts of the four first propulsion devices 7, rolling and pitching can be arbitrarily controlled.
  • the second propulsion device 8 is disposed, for example, before and after the center portion of the frame 4. Further, the second propulsion device 8 is arranged so as to be able to generate thrust in the Y direction (left-right direction) with the body 2 held horizontally. The yawing can be arbitrarily controlled by appropriately adjusting the thrusts of the two second propulsion devices 8.
  • the vertical take-off and landing aircraft 1 includes a rotational motion (rolling) about the X axis (front-rear direction axis) and a rotational motion about the Y axis (left-right direction axis) (
  • a third propulsion device 9 is provided for controlling the pitching) and the rotational movement (yawing) around the Z-axis (vertical axis).
  • the third propulsion device 9 is a propulsion device for attitude control of the airframe 2 and is constituted by, for example, an electric fan.
  • the third propulsion device 9 may be a propulsion device other than the electric fan.
  • the third propulsion device 9 is disposed, for example, at positions corresponding to the four corners of the airframe 2. Further, the third propulsion device 9 is disposed so as to be able to generate a thrust in a diagonally downward direction away from the machine body 2 while holding the machine body 2 horizontally. Specifically, the third propulsion device 9 disposed in the ducted fan 3a is disposed in a state in which the upper part of the rotation shaft is inclined toward the rotation center of the ducted fan 3a, and the third propulsion device disposed in the ducted fan 3b. 9 is arranged in a state where the upper part of the rotation shaft is inclined toward the rotation center of the ducted fan 3b.
  • Rolling, pitching and yawing can be arbitrarily controlled by appropriately adjusting the thrusts of the four third propulsion devices 9. Further, according to the third embodiment, the number of posture control electric fans can be reduced as compared with the second embodiment described above, and the weight of the body 2 can be reduced.
  • the vertical take-off and landing aircraft 1 according to the second embodiment and the third embodiment described above does not include control wings at the exit portions of the ducted fans 3a and 3b.
  • the first propulsion device 7 and the second propulsion device 8 adjust the direction of thrust generated by the ducted fans 3a and 3b to control the traveling direction of the airframe 2.
  • the direction of thrust generated by the ducted fans 3a and 3b may be adjusted by the third propulsion device 9 to control the traveling direction of the airframe 2.
  • control wings may be arranged at the outlets of the ducted fans 3a and 3b.
  • the vertical take-off and landing aircraft 1 has been described as an unmanned aerial vehicle, it may be a manned aircraft having a seat arranged on the frame 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Remote Sensing (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Toys (AREA)

Abstract

垂直離着陸機1は、揚力及び推力を発生させる一対のダクテッドファン3a,3bと、ダクテッドファン3a,3bを連結するフレーム4と、ダクテッドファン3a,3bに動力を供給する動力源5と、接地時に機体2を支持する脚部6と、を備え、一方のダクテッドファン3a(3b)は、他方のダクテッドファン3b(3a)から遠い側における回転方向の接線方向に傾斜している。

Description

垂直離着陸機
 ここに開示される実施態様は、垂直離着陸機、特に、複数のダクテッドファンを有する垂直離着陸機に関する。
 現在、地上滑走せずに揚力を発生させることができる垂直離着陸機の代表例は、へリコプタである。ヘリコプタは、機体に比して大きなメインロータを有し、かかるメインロータを回転させることによって揚力及び推力を得ている。また、メインロータの回転により機体に作用する反トルクは、一般に、テールロータ等を用いて打ち消している(例えば、特許文献1参照)。
 また、近年、ドローンと呼ばれる無人の垂直離着陸機の開発が進んでいる。かかる垂直離着陸機は、一般に複数のロータを回転させることによって揚力及び推力を得ている。また、これらのロータの回転により機体に作用する反トルクは、例えば、半数ずつのロータを互いに逆回転させることにより打ち消している(例えば、特許文献2参照)。
特開平6-286696号公報 特開2014-240242号公報
 しかしながら、特許文献1に記載されたようなヘリコプタ型の垂直離着陸機では、メインロータが大きいうえに、テールロータ等を配置するために機体が大型化しがちである。したがって、かかる垂直離着陸機が、建築物、樹木等の障害物が存在している狭い空間において離着陸や姿勢制御を行うと、メインロータ、テールロータ等が障害物と接触してしまう。そのため、上述した垂直離着陸機は、離着陸のために広い空間を必要とする。
 また、特許文献2に記載されたようなドローン型の垂直離着陸機では、複数のロータの回転方向を制御しなければならず、その制御が複雑になってしまう。また、ロータに伝達される動力を反転ギアのような機構を用いて反転させた場合には、構造が複雑になる、機体の重量が増加してしまう等の問題が生じる。
 本開示は上述した問題点に鑑み創案されたものであり、簡便な構造で機体に作用する反トルクの影響を低減することができる、垂直離着陸機を提供することを目的とする。
 本開示によれば、機体に複数のダクテッドファンを含む垂直離着陸機であって、前記ダクテッドファンの各々は、他のダクテッドファンから遠い側における回転方向の接線方向に傾斜している、ことを特徴とする垂直離着陸機が提供される。
 前記ダクテッドファンの傾斜方向は、前記垂直離着陸機の平面図上において前記複数のダクテッドファンの回転中心から等距離かつ最短距離にある機体中心と前記回転中心とを結ぶ線分に対して垂直であってもよい。また、前記機体は、前記ダクテッドファンに動力を供給する動力源を含み、前記垂直離着陸機の平面図上において該動力源の出力軸は前記機体中心上に配置されていてもよい。さらに、前記複数のダクテッドファンは、前記動力源によって同じ方向に回転されてもよい。
 また、前記ダクテッドファンは、迎角を調整可能な制御翼を出口部に備えていてもよい。また、前記機体は、姿勢制御用の推進装置を備えていてもよい。
 上述した本開示の垂直離着陸機によれば、ダクテッドファンを回転軸の回転方向に対して接線方向に傾斜させたことにより、傾斜させた方向に推力の分力が生じ、各ダクテッドファンに生じる分力によって反トルクを打ち消す相殺トルクを発生させることができる。したがって、ヘリコプタ型の垂直離着陸機のようにテールロータ等を配置したり、ドローン型の垂直離着陸機のように複数のダクテッドファンの回転方向を制御したりする必要がないため、簡便な構造で機体に作用する反トルクの影響を低減することができる。
本開示の第一実施形態に係る垂直離着陸機の平面図である。 本開示の第一実施形態に係る垂直離着陸機の正面図である。 本開示の第一実施形態に係る垂直離着陸機の側面図である。 本開示の第一実施形態に係る垂直離着陸機における反トルクの発生を示す概念図である。 本開示の第一実施形態に係る垂直離着陸機における推力の分力の発生を示す概念図である。 本開示の第一実施形態に係る垂直離着陸機における相殺トルクの発生を示す概念図である。 本開示の第一実施形態に係る垂直離着陸機の第一変形例を示す平面概念図である。 本開示の第一実施形態に係る垂直離着陸機の第二変形例を示す平面概念図である。 本開示の第二実施形態に係る垂直離着陸機の平面図である。 本開示の第二実施形態に係る垂直離着陸機の正面図である。 本開示の第二実施形態に係る垂直離着陸機の側面図である。 本開示の第三実施形態に係る垂直離着陸機の平面図である。 本開示の第三実施形態に係る垂直離着陸機の正面図である。 本開示の第三実施形態に係る垂直離着陸機の側面図である。
 以下、本開示の実施形態について図1A~図5Cを用いて説明する。ここで、図1A~図1Cは、本開示の第一実施形態に係る垂直離着陸機を示す図であり、図1Aは平面図、図1Bは正面図、図1Cは側面図、である。図2A~図2Cは、本開示の第一実施形態に係る垂直離着陸機の作用を示す説明図であり、図2Aは反トルクの発生を示す概念図、図2Bは推力の分力の発生を示す概念図、図2Cは相殺トルクの発生を示す概念図、である。
 本開示の第一実施形態に係る垂直離着陸機1は、図1A~図2Cに示したように、揚力及び推力を発生させる一対のダクテッドファン3a,3bと、ダクテッドファン3a,3bを連結するフレーム4と、ダクテッドファン3a,3bに動力を供給する動力源5と、接地時に機体2を支持する脚部6と、を備えている。なお、機体2は、ダクテッドファン3a,3b、フレーム4及びこれらの付属物(動力源5、脚部6等)によって構成される。
 ダクテッドファン3aは、例えば、図1Bに示したように、正面視でフレーム4の右側に配置されている。また、ダクテッドファン3bは、例えば、図1Bに示したように、正面視でフレーム4の左側に配置されている。ダクテッドファン3a及びダクテッドファン3bは、これらの中間部に接続されたフレーム4によって一体に連結されている。そして、一方のダクテッドファン3a(3b)は、他方のダクテッドファン3b(3a)から遠い側における回転方向の接線方向に傾斜している。
 ダクテッドファン3a,3bは、例えば、略円筒形状のダクト31a,31bと、ダクト31a,31b内に回転可能に配置されたファン32a,32bと、ファン32a,32bの上流側に配置されたノーズコーン33a,33bと、ファン32a,32bの下流側に配置されたテールコーン34a,34bと、ダクト31a,31b及びテールコーン34a,34bを連結するステータ35a,35bと、を備えている。なお、ダクテッドファン3a,3bは、ダクトファンと呼ばれることもある。
 ノーズコーン33a,33bは、ファン32a,32bにより吸い込まれる空気をダクト31a,31b内に滑らかに案内する機能を有している。ステータ35a,35bは、ダクト31a,31bに案内された空気を整流する機能を有している。また、一部のステータ35a,35bの内部には、動力源5からファン32a,32bに動力を伝達する動力伝達機構を配置してもよい。テールコーン34a,34bは、ダクト31a,31bから排出される空気を滑らかに案内する機能を有している。
 また、ダクテッドファン3a,3bは、迎角を調整可能な制御翼36a,36b,37a,37bを出口部に有していてもよい。制御翼36a,36b,37a,37bは、例えば、ダクテッドファン3a,3bの出口部(ファン32a,32bの下流側)におけるダクト31a,31bとテールコーン34a,34bとの間に掛け渡された駆動軸(図示せず)に接続されている。制御翼36a,36b,37a,37bの駆動源(例えば、電動モータ)は、テールコーン34a,34b又はダクト31a,31bの内部に配置される。制御翼36a,36b,37a,37bは、例えば、略十字形状に配置されており、機体2の前後方向に回動される一対の制御翼36a,36bと、機体2の左右方向に回動される一対の制御翼37a,37bと、を有している。
 かかる制御翼36a,36b,37a,37bを任意の方向に回動させて迎角を調整することにより、ダクテッドファン3a,3bにより生じる推力の方向を調整し、機体2の進行方向を制御することができる。また、制御翼36a,36b,37a,37bは、機体2の進行方向を調整するためだけでなく、機体2の姿勢を制御するために使用してもよい。
 フレーム4は、一対のダクテッドファン3a,3bを連結する部材であり、ダクト31a,31bに接続されている。フレーム4は、金属製であってもよいし、樹脂製であってもよい。フレーム4の上面には、動力源5が配置される。動力源5は、例えば、燃料で駆動されるエンジンである。動力源5としてエンジンを採用することにより、大型のダクテッドファン3a,3bを長時間にわたり駆動することができ、ペイロード(積載量)を増大させることができる。
 なお、動力源5は、フレーム4の下面に配置してもよいし、フレーム4の後部に配置してもよい。また、動力源5は、エンジンに限定されるものではなく、ファン32a,32bがそれぞれ電動モータを有している場合には、この電動モータに電力を供給可能な電池(例えば、蓄電池、燃料電池、太陽電池等)であってもよい。
 また、フレーム4の内部には、動力源5により生成された動力をファン32a,32bに伝達する動力伝達機構が配置される。動力伝達機構は、例えば、図2Cに示したように、動力源5によって回転される出力軸51と、ファン32a,32bの中心に配置された回転軸52a,52bと、出力軸51及び回転軸52a,52bに掛け渡されたベルト53a,53bと、を有している。ベルト53a,53bは、ダクト31a,31bに形成された開口部及びステータ35a,35bの内部に挿通されて、出力軸51及び回転軸52a,52bに掛け渡される。
 なお、動力伝達機構は、図示したベルト伝動機構に限定されず、シャフト及び傘歯車を用いた歯車伝動機構やチェーン及びスプロケットを用いたチェーン伝動機構等であってもよい。また、動力伝達機構は、減速機構や増速機構を含んでいてもよい。さらに、ファン32a,32bがそれぞれ電動モータを有している場合には、動力伝達機構は、動力源5から電力を供給する電力ケーブルであってもよい。
 また、フレーム4の下面には、着陸時に接地する一対の脚部6が配置される。脚部6は、例えば、略C字形状に形成された板材によって構成され、両端がフレーム4に接続される。かかる脚部6は、フレーム4と共に環状を成すため弾力性を有しており、着陸時の衝撃を緩和することができる。なお、脚部6は、図示した構成に限定されず、三本以上のロッド状部材によって構成してもよいし、着陸時に接地する長尺の板材とフレーム4に接続された支持部材とによって構成してもよい。
 また、フレーム4の下面には、積荷Cを支持するコネクタ41が配置されていてもよい。図1A~図1Cでは、説明の便宜上、積荷Cを一点鎖線で図示している。積荷Cは、例えば、カメラ等の撮影機材、測量機器、救難物資等である。
 また、フレーム4の内部には、動力源5の出力、ダクテッドファン3a,3bの回転数、制御翼36a,36b,37a,37bの迎角等を制御する制御装置(図示せず)が配置されていてもよい。かかる制御装置は、予めインプットされたプログラムに基づいて垂直離着陸機1を自動操縦するように構成されていてもよいし、リモートコントローラ等を用いて垂直離着陸機1を遠隔操縦できるように構成されていてもよい。
 ここで、図2Aに示した垂直離着陸機1′は、回転軸52a′,52b′を鉛直方向に配向したダクテッドファン3a′,3b′を有している。回転軸52a′,52b′には、出力軸51′及びベルト53a′,53b′を介して動力が伝達される。いま、ダクテッドファン3a′,3b′の両方のファン(図示せず)を同じ方向(例えば、図の時計回り方向)に回転させた場合、その反作用として機体2′には図の反時計回りに反トルクTrが作用する。したがって、何の対策も施さない場合には、機体2′は図の反時計回りに回転し、安定飛行することが難しい。
 そこで、本実施形態では、ダクテッドファン3a,3bを所定の方向に傾斜させた状態でフレーム4に固定している。例えば、図2Bに示したように、ダクテッドファン3aの回転軸52aは、その中心線Laが、鉛直線Lvに対して前方に角度θだけ傾斜している。また、ダクテッドファン3bの回転軸52bは、その中心線Lbが、鉛直線Lvに対して後方に角度θだけ傾斜している。角度θは、垂直離着陸機1がホバリング状態にあるとき機体2が回転しない範囲に設定される。具体的には、角度θは、例えば、1~10°の範囲内に設定され、4~6°程度であることが好ましい。なお、ダクテッドファン3aの回転軸52aの傾斜角度θとダクテッドファン3bの回転軸52bの傾斜角度θは同じ値に設定される。
 また、回転軸52a,52bの傾斜に合わせて、ダクテッドファン3a,3bを構成する他の部材(ダクト31a,31b、ファン32a,32b、ノーズコーン33a,33b、テールコーン34a,34b、ステータ35a,35b等)も傾斜される。したがって、ダクテッドファン3aは、鉛直線Lvに対して前方に角度θだけ傾斜され、ダクテッドファン3bは、鉛直線Lvに対して後方に角度θだけ傾斜されていることとなる。なお、図2Bにおいては、説明の便宜上、ダクテッドファン3a,3bの構成を概念化した側面図を示している。
 回転軸52aが前方に傾斜したダクテッドファン3aでは、図の左上方に向かって推力Faが生じるため、前方向きの分力Fhaが生じることとなる。また、回転軸52bが後方に傾斜したダクテッドファン3bでは、図の右上方に向かって推力Fbが生じるため、後方向きの分力Fhbが生じることとなる。
 これらの分力Fha,Fhbを図2Cに示した平面図に図示すれば、ダクテッドファン3aでは図の下向きに分力Fhaが生じ、ダクテッドファン3bでは図の上向きに分力Fhbが生じることとなる。これらの分力Fha,Fhbは、機体2を図の時計回りに回転させる相殺トルクTcを生じさせる。したがって、この相殺トルクTcにより反トルクTrを打ち消すことができる。
 なお、図2Cでは、説明の便宜上、ダクテッドファン3a,3bの内側が見える部分を濃い灰色で塗り潰し、外側が見える部分を薄い灰色で塗り潰している。また、回転軸52a,52bと出力軸51とは、捻れの位置関係にあるものの、動力伝達機構としてベルト53a,53bを採用することにより、容易に動力を伝達することができる。勿論、動力伝達機構は、回転軸52a,52bと出力軸51との間で動力を伝達することができれば、他の機構(例えば、歯車伝動機構、チェーン伝動機構等)であってもよい。
 上述したダクテッドファン3aは、図2Cに示したように、他方のダクテッドファン3bから遠い側における回転方向の接線方向(すなわち、図の下向き方向)に回転軸52aが傾斜しているものといえる。また、ダクテッドファン3bは、他方のダクテッドファン3aから遠い側における回転方向の接線方向(すなわち、図の上向き方向)に回転軸52bが傾斜しているものといえる。
 また、垂直離着陸機1の平面図上において、一対のダクテッドファン3a,3bの回転中心Of(すなわち、回転軸52a,52bの中心)から等距離かつ最短距離にある点を機体中心Opと定義すれば、ダクテッドファン3a,3bの傾斜方向は、機体中心Opと回転中心Ofとを結ぶ線分OpOfに対して垂直に設定される。ただし、ダクテッドファン3a,3bの傾斜方向は、線分OpOfに対して垂直な方向に限定されるものではなく、分力Fha,Fhbを生じ得る範囲内で任意に設定することができる。また、本実施形態において、出力軸51は、例えば、機体中心Op上に配置される。
 垂直離着陸機1の平面図上において回転中心Of及び機体中心Opをこのように定義することにより、ダクテッドファン3a,3bの傾斜方向を機体2の構成によらず一律に規定することができる。また、出力軸51を機体中心Opに一致させることにより、一対のダクテッドファン3a,3bに対して、実質的に同一の構成の動力伝達機構を採用することができ、動力伝達機構の複雑化を回避することができる。
 ここで、図3A~図3Bは、本開示の第一実施形態に係る垂直離着陸機の変形例を示す平面概念図であり、図3Aは第一変形例、図3Bは第二変形例、を示している。図3Aに示した第一変形例は、三つのダクテッドファン3a,3b,3cを有する垂直離着陸機1である。また、図3Bに示した第二変形例は、四つのダクテッドファン3a,3b,3c,3dを有する垂直離着陸機1である。なお、図3A及び図3Bにおいては、機体2の構成を概念化して図示している。
 図3Aに示した第一変形例に係る垂直離着陸機1において、ダクテッドファン3aは、他のダクテッドファン3b,3cから遠い側における回転方向の接線方向に傾斜し、ダクテッドファン3bは、他のダクテッドファン3a,3cから遠い側における回転方向の接線方向に傾斜し、ダクテッドファン3cは、他のダクテッドファン3a,3bから遠い側における回転方向の接線方向に傾斜している。
 ダクテッドファン3a,3b,3cをこのように傾斜させることにより、ダクテッドファン3a,3b,3cを図の時計回りに回転させたときに生じる反トルクを打ち消す方向に相殺トルクを発生させることができる。なお、各ダクテッドファン3a,3b,3cの具体的な構成は、上述した第一実施形態に係るダクテッドファン3a,3bと実質的に同一であるため、ここでは詳細な説明を省略する。
 図3Bに示した第二変形例に係る垂直離着陸機1において、ダクテッドファン3aは、他のダクテッドファン3b,3c,3dから遠い側における回転方向の接線方向に傾斜し、ダクテッドファン3bは、他のダクテッドファン3a,3c,3dから遠い側における回転方向の接線方向に傾斜し、ダクテッドファン3cは、他のダクテッドファン3a,3b,3dから遠い側における回転方向の接線方向に傾斜し、ダクテッドファン3dは、他のダクテッドファン3a,3b,3cから遠い側における回転方向の接線方向に傾斜している。
 ダクテッドファン3a,3b,3c,3dをこのように傾斜させることにより、ダクテッドファン3a,3b,3c,3dを図の時計回りに回転させたときに生じる反トルクを打ち消す方向に相殺トルクを発生させることができる。なお、各ダクテッドファン3a,3b,3c,3dの具体的な構成は、上述した第一実施形態に係るダクテッドファン3a,3bと実質的に同一であるため、ここでは詳細な説明を省略する。
 次に、本開示の他の実施形態に係る垂直離着陸機1について、図4A~図5Cを参照しつつ説明する。ここで、図4A~図4Cは、本開示の第二実施形態に係る垂直離着陸機を示す図であり、図4Aは平面図、図4Bは正面図、図4Cは側面図、である。図5A~図5Cは、本開示の第三実施形態に係る垂直離着陸機を示す図であり、図5Aは平面図、図5Bは正面図、図5Cは側面図、である。なお、上述した第一実施形態に係る垂直離着陸機1と共通する構成部材については、同一の符号を付して重複した説明を省略する。
 図4A~図4Cに示した第二実施形態に係る垂直離着陸機1は、機体2のX軸(前後方向軸)回りの回転運動(ローリング)及びY軸(左右方向軸)回りの回転運動(ピッチング)を制御する第一推進装置7と、機体2のZ軸(上下方向軸)回りの回転運動(ヨーイング)を制御する第二推進装置8と、を備えている。第一推進装置7及び第二推進装置8は、機体2の姿勢制御用の推進装置であり、例えば、電動ファンによって構成される。なお、第一推進装置7及び第二推進装置8は、電動ファン以外の推進器であってもよい。
 第一推進装置7は、例えば、機体2の四隅に相当する位置に配置される。また、第一推進装置7は、機体2を水平に保持した状態で鉛直方向下方向きの推力を発生することができるように配置される。四つの第一推進装置7の推力を適宜調整することによって、ローリング及びピッチングを任意に制御することができる。
 第二推進装置8は、例えば、フレーム4の中央部の前後に配置される。また、第二推進装置8は、機体2を水平に保持した状態でY方向(左右方向)に推力を発生することができるように配置される。二つの第二推進装置8の推力を適宜調整することによって、ヨーイングを任意に制御することができる。
 図5A~図5Cに示した第三実施形態に係る垂直離着陸機1は、機体2のX軸(前後方向軸)回りの回転運動(ローリング)、Y軸(左右方向軸)回りの回転運動(ピッチング)及びZ軸(上下方向軸)回りの回転運動(ヨーイング)を制御する第三推進装置9を備えている。第三推進装置9は、機体2の姿勢制御用の推進装置であり、例えば、電動ファンによって構成される。なお、第三推進装置9は、電動ファン以外の推進器であってもよい。
 第三推進装置9は、例えば、機体2の四隅に相当する位置に配置される。また、第三推進装置9は、機体2を水平に保持した状態で機体2から遠ざかる方向の斜め下方向きの推力を発生することができるように配置される。具体的には、ダクテッドファン3aに配置された第三推進装置9は、回転軸の上方をダクテッドファン3aの回転中心寄りに傾斜させた状態で配置されており、ダクテッドファン3bに配置された第三推進装置9は、回転軸の上方をダクテッドファン3bの回転中心寄りに傾斜させた状態で配置されている。
 四つの第三推進装置9の推力を適宜調整することによって、ローリング、ピッチング及びヨーイングを任意に制御することができる。また、かかる第三実施形態によれば、上述した第二実施形態と比較して姿勢制御用の電動ファンの個数を削減することができ、機体2の軽量化を図ることができる。
 上述した第二実施形態及び第三実施形態に係る垂直離着陸機1は、ダクテッドファン3a,3bの出口部に制御翼を備えていない。第二実施形態に係る垂直離着陸機1では、第一推進装置7及び第二推進装置8によって、ダクテッドファン3a,3bにより生じる推力の方向を調整し、機体2の進行方向を制御するようにしてもよい。また、第三実施形態に係る垂直離着陸機1では、第三推進装置9によって、ダクテッドファン3a,3bにより生じる推力の方向を調整し、機体2の進行方向を制御するようにしてもよい。勿論、第二実施形態及び第三実施形態に係る垂直離着陸機1においても、ダクテッドファン3a,3bの出口部に制御翼を配置してもよい。
 上述した第一実施形態~第三実施形態に係る垂直離着陸機1は、無人機として説明したが、フレーム4に座席を配置した有人機であってもよい。
 本開示は上述した実施形態に限定されず、本開示の趣旨を逸脱しない範囲で種々変更が可能であることは勿論である。
1 垂直離着陸機
2 機体
3a,3b,3c,3d ダクテッドファン
4 フレーム
5 動力源
6 脚部
7 第一推進装置
8 第二推進装置
9 第三推進装置
31a,31b ダクト
32a,32b ファン
33a,33b ノーズコーン
34a,34b テールコーン
35a,35b ステータ
36a,36b,37a,37b制御翼
41 コネクタ
51 出力軸
52a,52b 回転軸
53a,53b ベルト

Claims (6)

  1.  機体に複数のダクテッドファンを含む垂直離着陸機であって、
     前記ダクテッドファンの各々は、他のダクテッドファンから遠い側における回転方向の接線方向に傾斜している、
    ことを特徴とする垂直離着陸機。
  2.  前記ダクテッドファンの傾斜方向は、前記垂直離着陸機の平面図上において前記複数のダクテッドファンの回転中心から等距離かつ最短距離にある機体中心と前記回転中心とを結ぶ線分に対して垂直である、ことを特徴とする請求項1に記載の垂直離着陸機。
  3.  前記機体は、前記ダクテッドファンに動力を供給する動力源を含み、前記垂直離着陸機の平面図上において該動力源の出力軸は前記機体中心上に配置されている、ことを特徴とする請求項2に記載の垂直離着陸機。
  4.  前記複数のダクテッドファンは、前記動力源によって同じ方向に回転される、ことを特徴とする請求項3に記載の垂直離着陸機。
  5.  前記ダクテッドファンは、迎角を調整可能な制御翼を出口部に備えている、ことを特徴とする請求項1に記載の垂直離着陸機。
  6.  前記機体は、姿勢制御用の推進装置を備えている、ことを特徴とする請求項1に記載の垂直離着陸機。
PCT/JP2017/002502 2016-02-26 2017-01-25 垂直離着陸機 WO2017145622A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
NZ74222317A NZ742223A (en) 2016-02-26 2017-01-25 Vertical takeoff and landing aircraft
EP17756064.6A EP3366585A4 (en) 2016-02-26 2017-01-25 VERTICAL STARTING AND LANDING PLANE
JP2018501072A JP6478080B2 (ja) 2016-02-26 2017-01-25 垂直離着陸機
AU2017224522A AU2017224522B2 (en) 2016-02-26 2017-01-25 Vertical takeoff and landing aircraft
US16/009,630 US20180297697A1 (en) 2016-02-26 2018-06-15 Vertical takeoff and landing aircraft

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-035226 2016-02-26
JP2016035226 2016-02-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/009,630 Continuation US20180297697A1 (en) 2016-02-26 2018-06-15 Vertical takeoff and landing aircraft

Publications (1)

Publication Number Publication Date
WO2017145622A1 true WO2017145622A1 (ja) 2017-08-31

Family

ID=59685458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/002502 WO2017145622A1 (ja) 2016-02-26 2017-01-25 垂直離着陸機

Country Status (6)

Country Link
US (1) US20180297697A1 (ja)
EP (1) EP3366585A4 (ja)
JP (1) JP6478080B2 (ja)
AU (1) AU2017224522B2 (ja)
NZ (1) NZ742223A (ja)
WO (1) WO2017145622A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108298074A (zh) * 2018-03-14 2018-07-20 长沙市云智航科技有限公司 用于载人涵道多旋翼飞行车辆的倾转组件
CN109466742A (zh) * 2018-12-03 2019-03-15 北京电子工程总体研究所 一种飞行器机架及其飞行器
WO2021070262A1 (ja) * 2019-10-08 2021-04-15 株式会社A.L.I. Technologies 飛行体
JP2021146982A (ja) * 2020-03-23 2021-09-27 三菱重工業株式会社 ダクテッドファン装置及び航空機
CN114954945A (zh) * 2021-02-26 2022-08-30 盐城辉空科技有限公司 具备具有移动单元的搭载部的飞行体和搭载部
WO2024042894A1 (ja) * 2022-08-24 2024-02-29 株式会社Flight PILOT 飛行移動体

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106043679B (zh) * 2016-07-28 2018-09-07 易瓦特科技股份公司 多轴动力源无人飞行设备
US20180022453A1 (en) * 2016-12-31 2018-01-25 Haoxiang Electric Energy (Kunshan) Co., Ltd. Flying machine and flying unit
WO2019073417A1 (en) * 2017-10-11 2019-04-18 Hangzhou Zero Zero Technology Co., Ltd. AERIAL SYSTEM COMPRISING A FOLDING FRAME ARCHITECTURE
US11591087B2 (en) * 2019-04-07 2023-02-28 Donald Lee Chalker Unmanned aerial vehicle with ducted rotors
CN113978714B (zh) * 2021-07-12 2023-04-07 南京航空航天大学 垂直起降的高速飞行器用的可倾转轮缘涵道推进装置
CN113415411B (zh) * 2021-07-28 2022-03-11 涵涡智航科技(玉溪)有限公司 一种双涵道无人飞行器
TWM621488U (zh) * 2021-08-19 2021-12-21 林瑤章 具有清洗功能的無人飛行裝置
US20230122833A1 (en) * 2021-10-15 2023-04-20 Arizona Board Of Regents On Behalf Of The University Of Arizona Flight duration enhancement for single rotorcraft and multicopters
CN114275156B (zh) * 2021-12-31 2022-10-28 哈尔滨工业大学 一种基于涵道风扇的推力矢量无人飞行器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB935884A (en) * 1961-01-16 1963-09-04 Ford Motor Co Improved flying vehicle
JP2005125976A (ja) * 2003-10-24 2005-05-19 Toyota Motor Corp 垂直離着陸飛翔装置
US20080054121A1 (en) * 2006-05-11 2008-03-06 Urban Aeronautics Ltd. Ducted fan VTOL vehicles
JP2008531375A (ja) * 2005-02-25 2008-08-14 ハネウェル・インターナショナル・インコーポレーテッド 相対型ダクテッドホバリング飛行体
JP2013129301A (ja) * 2011-12-21 2013-07-04 Ihi Aerospace Co Ltd 小型無人機

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6464166B1 (en) * 2001-05-29 2002-10-15 Romeo Yankee Ltd. Ducted fan vehicles particularly useful as VTOL aircraft
US6719244B1 (en) * 2003-02-03 2004-04-13 Gary Robert Gress VTOL aircraft control using opposed tilting of its dual propellers or fans
DE202004010057U1 (de) * 2004-06-26 2004-08-26 Braun, Andrea Elektrohubschrauber mit 4 Hubrotoren
US20060226281A1 (en) * 2004-11-17 2006-10-12 Walton Joh-Paul C Ducted fan vertical take-off and landing vehicle
US7946528B2 (en) * 2005-04-15 2011-05-24 Urban Aeronautics, Ltd. Flight control system especially suited for VTOL vehicles
US8720814B2 (en) * 2005-10-18 2014-05-13 Frick A. Smith Aircraft with freewheeling engine
WO2008054234A1 (en) * 2006-11-02 2008-05-08 Raposo Severino Manuel Oliveir System and process of vector propulsion with independent control of three translation and three rotation axis
GB0904875D0 (en) * 2009-03-20 2009-05-06 Geola Technologies Ltd Electric vtol aircraft
IL199009A (en) * 2009-05-27 2013-11-28 Israel Aerospace Ind Ltd aircraft
CN102363445B (zh) * 2011-06-21 2014-07-30 杨朝习 倾转动力式垂直起降陆空两用飞行器
EP2551193B1 (en) * 2011-07-29 2016-04-13 AGUSTAWESTLAND S.p.A. Convertiplane
US9085355B2 (en) * 2012-12-07 2015-07-21 Delorean Aerospace, Llc Vertical takeoff and landing aircraft
JP6108077B2 (ja) * 2013-01-29 2017-04-05 株式会社Ihi 垂直離着陸機
EP3424820B1 (en) * 2013-06-09 2020-11-18 ETH Zurich Controlled flight of a multicopter experiencing a failure affecting an effector
ITPI20130073A1 (it) * 2013-08-08 2015-02-09 Claudio Bottoni Aeromobile boxwing
IL233902B (en) * 2014-07-31 2020-07-30 Israel Aerospace Ind Ltd egnition system
FR3050385B1 (fr) * 2016-04-26 2018-04-06 Airbus Helicopters Drone comportant au moins trois rotors de sustentation et de propulsion
US10106253B2 (en) * 2016-08-31 2018-10-23 Bell Helicopter Textron Inc. Tilting ducted fan aircraft generating a pitch control moment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB935884A (en) * 1961-01-16 1963-09-04 Ford Motor Co Improved flying vehicle
JP2005125976A (ja) * 2003-10-24 2005-05-19 Toyota Motor Corp 垂直離着陸飛翔装置
JP2008531375A (ja) * 2005-02-25 2008-08-14 ハネウェル・インターナショナル・インコーポレーテッド 相対型ダクテッドホバリング飛行体
US20080054121A1 (en) * 2006-05-11 2008-03-06 Urban Aeronautics Ltd. Ducted fan VTOL vehicles
JP2013129301A (ja) * 2011-12-21 2013-07-04 Ihi Aerospace Co Ltd 小型無人機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3366585A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108298074A (zh) * 2018-03-14 2018-07-20 长沙市云智航科技有限公司 用于载人涵道多旋翼飞行车辆的倾转组件
CN109466742A (zh) * 2018-12-03 2019-03-15 北京电子工程总体研究所 一种飞行器机架及其飞行器
CN109466742B (zh) * 2018-12-03 2023-09-12 北京电子工程总体研究所 一种飞行器机架及其飞行器
WO2021070262A1 (ja) * 2019-10-08 2021-04-15 株式会社A.L.I. Technologies 飛行体
JP2021146982A (ja) * 2020-03-23 2021-09-27 三菱重工業株式会社 ダクテッドファン装置及び航空機
JP7374828B2 (ja) 2020-03-23 2023-11-07 三菱重工業株式会社 ダクテッドファン装置及び航空機
CN114954945A (zh) * 2021-02-26 2022-08-30 盐城辉空科技有限公司 具备具有移动单元的搭载部的飞行体和搭载部
WO2022181360A1 (ja) * 2021-02-26 2022-09-01 株式会社エアロネクスト 移動手段を有する搭載部を備える飛行体及び搭載部
WO2024042894A1 (ja) * 2022-08-24 2024-02-29 株式会社Flight PILOT 飛行移動体

Also Published As

Publication number Publication date
EP3366585A4 (en) 2019-07-31
AU2017224522A1 (en) 2018-05-24
AU2017224522B2 (en) 2019-08-01
JPWO2017145622A1 (ja) 2018-05-17
NZ742223A (en) 2019-09-27
JP6478080B2 (ja) 2019-03-06
EP3366585A1 (en) 2018-08-29
US20180297697A1 (en) 2018-10-18

Similar Documents

Publication Publication Date Title
JP6478080B2 (ja) 垂直離着陸機
KR100812756B1 (ko) 요잉제어가 용이한 쿼드로콥터
US9616994B2 (en) Asymmetric multirotor helicopter
EP3251952B1 (en) Variable directional thrust for helicopter tail anti-torque system
US8464978B2 (en) Counter-rotational inertial control of rotorcraft
US6719244B1 (en) VTOL aircraft control using opposed tilting of its dual propellers or fans
CN107531325B (zh) 无人飞行器
KR101554487B1 (ko) 멀티 로터 비행체
JP2021176757A (ja) 垂直離着陸(vtol)航空機
US20100044499A1 (en) Six rotor helicopter
JP2010254264A (ja) Tilt翼機構による垂直離発着無人航空機
KR102032243B1 (ko) 틸트프롭 비행체
JP2013129301A (ja) 小型無人機
EP3368413B1 (en) Air vehicle and method and apparatus for control thereof
JP2017518217A (ja) 固定ロータ推力ベクタリング
JPWO2018193522A1 (ja) プロペラ式飛行体
WO2017031945A1 (zh) 多轴载人飞行器
WO2023042561A1 (ja) 飛行装置
US20230234728A1 (en) Drone
WO2022009319A1 (ja) 飛行体及び動力装置
KR101876346B1 (ko) 무인 비행체
WO2019157588A1 (en) Transmission system for aircraft structure
KR101903537B1 (ko) 피치조절장치 및 이 피치조절장치가 적용된 무인 비행체
JP6590173B2 (ja) 垂直離着陸機
KR101840762B1 (ko) 이중동력원을 가지는 가변피치형 무인 비행체

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018501072

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017756064

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017224522

Country of ref document: AU

Date of ref document: 20170125

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE