WO2017141771A1 - 無線通信デバイス及びその製造方法、並びに、樹脂成型体 - Google Patents

無線通信デバイス及びその製造方法、並びに、樹脂成型体 Download PDF

Info

Publication number
WO2017141771A1
WO2017141771A1 PCT/JP2017/004419 JP2017004419W WO2017141771A1 WO 2017141771 A1 WO2017141771 A1 WO 2017141771A1 JP 2017004419 W JP2017004419 W JP 2017004419W WO 2017141771 A1 WO2017141771 A1 WO 2017141771A1
Authority
WO
WIPO (PCT)
Prior art keywords
main surface
conductor
printed wiring
element body
wiring board
Prior art date
Application number
PCT/JP2017/004419
Other languages
English (en)
French (fr)
Inventor
加藤 登
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2017516534A priority Critical patent/JP6160796B1/ja
Publication of WO2017141771A1 publication Critical patent/WO2017141771A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P11/00Apparatus or processes specially adapted for manufacturing waveguides or resonators, lines, or other devices of the waveguide type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6661High-frequency adaptations for passive devices
    • H01L2223/6677High-frequency adaptations for passive devices for antenna, e.g. antenna included within housing of semiconductor device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/81001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector involving a temporary auxiliary member not forming part of the bonding apparatus
    • H01L2224/81005Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector involving a temporary auxiliary member not forming part of the bonding apparatus being a temporary or sacrificial substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15192Resurf arrangement of the internal vias
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate

Definitions

  • the present invention relates to a wireless communication device having an RFIC element and a coil antenna provided in an element body, a manufacturing method thereof, and a resin molded body in which the wireless communication device is embedded.
  • a wireless communication device in which an RFIC element is mounted inside a helical coil antenna is known (for example, see Patent Document 1).
  • a coil antenna having a size substantially equal to the element body size can be formed, and thus there is a feature that a communication distance is large in spite of a small device.
  • the coil antenna is configured using a multilayer substrate formed by laminating a plurality of resin layers and a plurality of electrodes as the coil antenna.
  • formation of an interlayer pattern pattern in the layer thickness direction
  • An object of the present invention is to provide a method of manufacturing a wireless communication device capable of forming an interlayer pattern having a small diameter and a large aspect ratio constituting a coil antenna with high accuracy and high reliability.
  • a method of manufacturing a wireless communication device includes a printed wiring board on which an RFIC element is mounted, an element body in which the printed wiring board is embedded, and an RFIC element that is connected to and wound around the element body.
  • a method of manufacturing a wireless communication device having a coil antenna Preparing two printed wiring boards each having an RFIC element mounted on one main surface and an interlayer conductor extending from the one main surface to the other main surface and connected to the RFIC element; Separating the two printed wiring boards from each other, and placing each printed wiring board in two adjacent individual regions; and The two printed wiring boards have a first main surface and a second main surface facing each other, and the two printed wiring boards are exposed to the second main surface of the interlayer conductors of the printed wiring boards.
  • Burying process Forming a plurality of columnar through conductors extending from the first main surface of the element body to the second main surface across the boundary between the two individual regions; A first conductor pattern connecting one end of the plurality of columnar through conductors is formed on the first main surface of the element body, and the other end of the plurality of columnar through conductors is formed on the second main surface.
  • the plurality of columnar through conductors, the first and second conductor patterns, and the element body are divided for each piece region, and the divided RFIC element is divided for each piece region.
  • Forming a wireless communication device including a conductor antenna, a divided columnar through conductor, and a coil antenna connected to the RFIC element, the divided second conductor pattern; including.
  • Another method for manufacturing a wireless communication device includes a printed wiring board on which an RFIC element is mounted, an element in which the printed wiring board is embedded, and an RFIC element connected to the element.
  • a coiled antenna, and a method for manufacturing a wireless communication device comprising: Preparing two printed wiring boards each having an RFIC element mounted on one main surface and an interlayer conductor extending from the one main surface to the other main surface and connected to the RFIC element; Separating the two printed wiring boards from each other, and placing each printed wiring board in two adjacent individual regions; and The two printed wiring boards have a first main surface and a second main surface facing each other, and the two printed wiring boards are connected so that the interlayer conductors of the printed wiring boards are connected to the input / output terminals of the second main surface.
  • a first conductor pattern that connects one end of the plurality of columnar through conductors is formed on the first main surface of the element body, and the other end of the plurality of columnar through conductors and a front end are formed on the second main surface.
  • the plurality of columnar through conductors, the first and second conductor patterns, and the element body are divided for each piece region, and the divided RFIC element is divided for each piece region.
  • Forming a wireless communication device including one conductor pattern, the divided columnar through conductor, and the divided second conductor pattern, and a coil antenna connected to the RFIC element; including.
  • a wireless communication device includes an RFIC element mounted on one main surface, and a printed wiring board including an interlayer conductor extending from the one main surface to the other main surface and connected to the RFIC element;
  • the printed wiring board has a first main surface and a second main surface facing each other in a larger area than the one main surface and the other main surface, and the interlayer conductor of the printed wiring board is the first main surface of the element body.
  • An element body in which the printed wiring board is embedded so as to have an exposed portion on two main surfaces;
  • a first through conductor having a cut surface extending from the first main surface to the second main surface along an end surface in contact with the first main surface and the second main surface of the element body.
  • a second through conductor A first conductor pattern provided on the first main surface of the element body and connecting one end of the first through conductor and one end of the second through conductor; A second conductor pattern provided on the second main surface of the element body and connecting the other end of the first through conductor, the other end of the second through conductor, and the exposed portion of the interlayer conductor of the printed wiring board.
  • Another wireless communication device includes an RFIC element mounted on one main surface, and a printed wiring board including an interlayer conductor extending from the one main surface to the other main surface and connected to the RFIC element; ,
  • the printed wiring board has a first main surface and a second main surface facing each other in a larger area than the one main surface and the other main surface, and the interlayer conductor of the printed wiring board is the first main surface of the element body.
  • a second through conductor A first conductor pattern provided on the first main surface of the element body and connecting one end of the first through conductor and one end of the second through conductor; A second conductor pattern provided on the second main surface of the element body, connecting the other end of the first through conductor, the other end of the second through conductor, and the input / output terminal; With Configuring a coil antenna including the first conductor pattern, the second conductor pattern, the first through conductor, and the second through conductor; The RFIC element is connected to the second conductor pattern via the interlayer conductor of the printed wiring board.
  • the resin molding according to the present invention is a resin molding in which a wireless communication device is embedded, and the wireless communication device is An RFIC element mounted on one main surface, and a printed wiring board including an interlayer conductor extending from the one main surface to the other main surface and connected to the RFIC element;
  • the printed wiring board has a first main surface and a second main surface facing each other having a larger area than the one main surface and the other main surface, and the first conductor of the printed wiring board is the first main surface of the element body.
  • Another resin molded body according to the present invention is a resin molded body in which a wireless communication device is embedded, and the wireless communication device includes: An RFIC element mounted on one main surface, and a printed wiring board including an interlayer conductor extending from the one main surface to the other main surface and connected to the RFIC element;
  • the printed wiring board has a first main surface and a second main surface facing each other in a larger area than the one main surface and the other main surface, and the interlayer conductor of the printed wiring board is the first main surface of the element body.
  • a first through conductor having a cut surface extending from the first main surface to the second main surface along an end surface in contact with the first main surface and the second main surface of the element body.
  • a second through conductor A first conductor pattern provided on the first main surface of the element body and connecting one end of the first through conductor and one end of the second through conductor; A second conductor pattern provided on the second main surface of the element body, connecting the other end of the first through conductor, the other end of the second through conductor, and the input / output terminal; With Configuring a coil antenna including the first conductor pattern, the second conductor pattern, the first through conductor, and the second through conductor; The RFIC element is connected to the second conductor pattern via the interlayer conductor of the printed wiring board.
  • wireless communication device which can form an interlayer pattern with a small diameter and a large aspect ratio which comprise a coil antenna with high precision and high reliability, and a resin molding are provided. can do.
  • FIG. 1 is a schematic perspective view showing an internal configuration of a wireless communication device according to Embodiment 1.
  • FIG. FIG. 2 is a bottom view of the wireless communication device of FIG. 1.
  • FIG. 2 is an equivalent circuit diagram of the wireless communication device of FIG. 1.
  • 3 is a schematic cross-sectional view showing one step in the method for manufacturing a wireless communication device according to Embodiment 1.
  • FIG. 5 is a schematic cross-sectional view showing a step following FIG. 4 in the method for manufacturing the wireless communication device according to the first embodiment.
  • FIG. 6 is a schematic cross-sectional view showing a step following FIG. 5 in the method for manufacturing the wireless communication device according to the first embodiment.
  • FIG. 7 is a schematic cross-sectional view showing one step following FIG.
  • FIG. 8 is a schematic cross-sectional view showing a step subsequent to FIG. 7 in the method for manufacturing the wireless communication device according to the first embodiment.
  • FIG. 9 is a schematic cross-sectional view showing a step following FIG. 8 in the method for manufacturing the wireless communication device according to the first embodiment.
  • FIG. 10 is a schematic perspective view showing an internal configuration in one step of the method for manufacturing the wireless communication device of FIG. 9.
  • FIG. 10 is a schematic cross-sectional view showing a step subsequent to FIG. 9 in the method for manufacturing the wireless communication device according to the first embodiment.
  • FIG. 12 is a schematic cross-sectional view showing a step following FIG. 11 in the method for manufacturing the wireless communication device according to the first embodiment.
  • FIG. 13 is a schematic perspective view showing an internal configuration in one step of the method for manufacturing the wireless communication device of FIG. 12. It is a schematic perspective view which shows the internal structure of each radio
  • wireless communication device of FIG. 6 is a schematic perspective view illustrating a configuration of an article with a wireless communication device according to Embodiment 2.
  • FIG. 10 is a schematic cross-sectional view showing one step in a method for manufacturing a wireless communication device according to Embodiment 3.
  • FIG. 17 is a schematic perspective view showing a plurality of individual regions provided on the pedestal of FIG. 16 and a continuous printed wiring board disposed thereon.
  • FIG. 17 is a schematic cross-sectional view showing a step following FIG.
  • FIG. 19 is a schematic cross-sectional view showing one step following FIG. 18 in the method for manufacturing the wireless communication device according to the third embodiment.
  • FIG. 20 is a schematic cross-sectional view showing a step subsequent to FIG. 19 in the method for manufacturing the wireless communication device according to the third embodiment.
  • FIG. 21 is a schematic cross-sectional view showing a step following FIG. 20 in the method for manufacturing the wireless communication device according to the third embodiment.
  • FIG. 22 is a schematic cross-sectional view showing a step subsequent to FIG. 21 in the method for manufacturing the wireless communication device according to the third embodiment.
  • FIG. 23 is a schematic perspective view showing an internal configuration in one step of the method for manufacturing the wireless communication device of FIG. 22.
  • FIG. 23 is a schematic cross-sectional view showing a step subsequent to FIG. 22 in the method for manufacturing the wireless communication device according to the third embodiment.
  • FIG. 25 is a schematic cross-sectional view showing a step following FIG. 24 in the method for manufacturing the wireless communication device according to the third embodiment.
  • FIG. 26 is a schematic perspective view illustrating an internal configuration in one step of the method for manufacturing the wireless communication device of FIG. 25.
  • FIG. 26 is a schematic perspective view showing an internal configuration of each wireless communication device obtained after division following one step of the method for manufacturing the wireless communication device of FIG. 25.
  • a method of manufacturing a wireless communication device includes a printed wiring board on which an RFIC element is mounted, an element body in which the printed wiring board is embedded, and an RFIC element connected to the element body.
  • a coiled antenna, and a method for manufacturing a wireless communication device comprising: Preparing two printed wiring boards each having an RFIC element mounted on one main surface and an interlayer conductor extending from the one main surface to the other main surface and connected to the RFIC element; Separating the two printed wiring boards from each other, and placing each printed wiring board in two adjacent individual regions; and The two printed wiring boards have a first main surface and a second main surface facing each other, and the two printed wiring boards are exposed to the second main surface of the interlayer conductors of the printed wiring boards.
  • Burying process Forming a plurality of columnar through conductors extending from the first main surface of the element body to the second main surface across the boundary between the two individual regions; A first conductor pattern connecting one end of the plurality of columnar through conductors is formed on the first main surface of the element body, and the other end of the plurality of columnar through conductors is formed on the second main surface. Forming a second conductor pattern for connecting the exposed portion of the interlayer conductor of each printed wiring board; The plurality of columnar through conductors, the first and second conductor patterns, and the element body are divided for each piece region, and the divided RFIC element is divided for each piece region. Forming a wireless communication device including one conductor pattern, the divided columnar through conductor, and the divided second conductor pattern, and a coil antenna connected to the RFIC element; including.
  • a method for manufacturing a wireless communication device comprising: a printed wiring board on which an RFIC element is mounted; an element body in which the printed wiring board is embedded; and the RFIC element.
  • a coiled antenna, and a method for manufacturing a wireless communication device comprising: Preparing two printed wiring boards each having an RFIC element mounted on one main surface and an interlayer conductor extending from the one main surface to the other main surface and connected to the RFIC element; Separating the two printed wiring boards from each other, and placing each printed wiring board in two adjacent individual regions; and The two printed wiring boards have a first main surface and a second main surface facing each other, and the two printed wiring boards are connected so that the interlayer conductors of the printed wiring boards are connected to the input / output terminals of the second main surface.
  • a first conductor pattern that connects one end of the plurality of columnar through conductors is formed on the first main surface of the element body, and the other end of the plurality of columnar through conductors and a front end are formed on the second main surface.
  • the plurality of columnar through conductors, the first and second conductor patterns, and the element body are divided for each piece region, and the divided RFIC element is divided for each piece region.
  • Forming a wireless communication device including one conductor pattern, the divided columnar through conductor, and the divided second conductor pattern, and a coil antenna connected to the RFIC element; including.
  • the printed wiring boards may be arranged in a matrix in the step of arranging the printed wiring boards.
  • a method for manufacturing a wireless communication device according to any one of the first to third aspects, in the step of embedding the two printed wiring boards in the base body, It may be provided.
  • a method for manufacturing a wireless communication device according to any one of the first to fourth aspects, wherein the first main surface of the element body and the first step are divided in the step of dividing each piece region.
  • the element body may be divided so that the length between the two principal surfaces is longer than the length of the boundary between the two individual regions.
  • a method for manufacturing a wireless communication device is the method according to any one of the first to fifth aspects, wherein the step of forming the plurality of columnar through conductors includes: Forming a plurality of through-holes from the first main surface of the element body to the second main surface across the boundary between the two individual regions; Forming a plurality of columnar through conductors in the plurality of through holes; May be included.
  • the wireless communication device in the method of manufacturing a wireless communication device according to a seventh aspect, in the sixth aspect, in the step of forming a plurality of columnar through conductors in the plurality of through holes, is electrically conductive in the through holes formed in the element body.
  • the columnar through conductor may be formed by filling a conductive material.
  • a method for manufacturing a wireless communication device is the method according to any one of the first to fifth aspects, wherein the step of forming the plurality of columnar through conductors includes: Providing a plurality of metal pins extending from the first main surface to the second main surface of the element body across the boundary between the two individual regions; Burying a metal pin in the element body and forming a columnar through conductor made of the metal pin; and May be included.
  • a wireless communication device includes an RFIC element mounted on one main surface, and a printed wiring board including an interlayer conductor extending from the one main surface to the other main surface and connected to the RFIC element; ,
  • the printed wiring board has a first main surface and a second main surface facing each other having a larger area than the one main surface and the other main surface, and the interlayer conductor of the printed wiring board is directed to the second main surface.
  • An element body in which the printed wiring board is embedded so as to have an exposed portion of A first through conductor having a cut surface extending from the first main surface to the second main surface along an end surface in contact with the first main surface and the second main surface of the element body.
  • a second through conductor A first conductor pattern provided on the first main surface of the element body and connecting one end of the first through conductor and one end of the second through conductor; A second conductor pattern provided on the second main surface of the element body and connecting the other end of the first through conductor, the other end of the second through conductor, and the exposed portion of the interlayer conductor of the printed wiring board.
  • a wireless communication device includes an RFIC element mounted on one main surface, and a printed wiring board including an interlayer conductor extending from the one main surface to the other main surface and connected to the RFIC element; ,
  • the printed wiring board has a first main surface and a second main surface facing each other in a larger area than the one main surface and the other main surface, and the interlayer conductor of the printed wiring board is formed of the second main surface.
  • a second through conductor A first conductor pattern provided on the first main surface of the element body and connecting one end of the first through conductor and one end of the second through conductor; A second conductor pattern provided on the second main surface of the element body, connecting the other end of the first through conductor, the other end of the second through conductor, and the input / output terminal; With Configuring a coil antenna including the first conductor pattern, the second conductor pattern, the first through conductor, and the second through conductor; The RFIC element is connected to the second conductor pattern via the interlayer conductor of the printed wiring board.
  • the end surface of the element body is provided with a recess, and the recess penetrates from the first main surface to the second main surface.
  • the first through conductor and the second through conductor may be arranged.
  • a resin molded body is a resin molded body in which a wireless communication device is embedded, and the wireless communication device includes: An RFIC element mounted on one main surface, and a printed wiring board including an interlayer conductor extending from the one main surface to the other main surface and connected to the RFIC element;
  • the printed wiring board has a first main surface and a second main surface facing each other having a larger area than the one main surface and the other main surface, and the interlayer conductor of the printed wiring board is directed to the second main surface.
  • a second through conductor A first conductor pattern provided on the first main surface of the element body and connecting one end of the first through conductor and one end of the second through conductor;
  • a second conductor pattern provided on the second main surface of the element body and connecting the other end of the first through conductor, the other end of the second through conductor, and the exposed portion of the interlayer conductor of the printed wiring board.
  • a resin molded body is a resin molded body in which a wireless communication device is embedded, and the wireless communication device includes: An RFIC element mounted on one main surface, and a printed wiring board including an interlayer conductor extending from the one main surface to the other main surface and connected to the RFIC element;
  • the printed wiring board has a first main surface and a second main surface facing each other in a larger area than the one main surface and the other main surface, and the interlayer conductor of the printed wiring board is formed of the second main surface.
  • An element body in which the printed wiring board connected to the input / output terminal is embedded A first through conductor having a cut surface extending from the first main surface to the second main surface along an end surface in contact with the first main surface and the second main surface of the element body.
  • a second through conductor A first conductor pattern provided on the first main surface of the element body and connecting one end of the first through conductor and one end of the second through conductor;
  • a second conductor pattern provided on the second main surface of the element body, connecting the other end of the first through conductor, the other end of the second through conductor, and the input / output terminal;
  • FIG. 1 is a schematic perspective view showing the internal configuration of the wireless communication device 20 according to the first embodiment.
  • FIG. 2 is a bottom view of the wireless communication device 20 of FIG.
  • FIG. 3 is an equivalent circuit diagram of the wireless communication device 20 of FIG.
  • an orthogonal coordinate system xyz coordinate system
  • the element body 11 is shown in a transparent manner so that the internal configuration can be easily understood.
  • the wireless communication device 20 is configured as an HF band RFID tag, and includes a printed wiring board 3 having an RFIC element 1, an element body 11 in which the printed wiring board 3 is embedded, and a first main body 11 facing each other.
  • First and second through conductors 14 and 15 having cut surfaces along end surfaces extending from the surface 21a to the second main surface 21b, and first and second main surfaces 21a and 21b of the element body 11 are provided.
  • the first through conductor 14, the second through conductor 15, the first conductor pattern, and the second conductor pattern constitute the coil antenna 22.
  • the RFIC element 1 is connected to the second conductor pattern 17 via the interlayer conductor 4 of the printed wiring board 3.
  • the wireless communication device 20 includes a LC antenna 1 and a coil antenna 22 and capacitors 2a and 2b, and constitutes an LC resonance circuit having a predetermined resonance frequency. ing.
  • One of the capacitors 2a and 2b may be for coarse adjustment and the other may be for fine adjustment. Note that the number of capacitors 2a and 2b is not limited to two, and may be one.
  • the first and second through conductors 14 and 15 are formed in the through hole 12 provided in the element body 11. Therefore, even the first and second through conductors 14 and 15 having a small diameter and a large aspect ratio can be formed with high accuracy and high reliability. Further, since the second conductor pattern 17 simultaneously planarly polishes the element body 11 and the printed wiring board 3 to cue each columnar through conductor 10 and cue the interlayer conductor 4, each columnar through conductor 10 In addition, it is easy to ensure connection reliability between the interlayer conductor 4 and the second conductor pattern 17. Further, since the RFIC element 1 is embedded in the element body 11 in advance, the coil antenna is not damaged during the heat treatment for mounting the RFIC element 1.
  • the reliability as the wireless communication device 20 can be secured. Further, since the RFIC element 1 which is a semiconductor integrated circuit element is surrounded by the printed wiring board 3 and the element body 11, it is possible to ensure high reliability against heat when the device is embedded in a resin molded body.
  • the RFIC element 1 is built in the element body 11, and a coil antenna is wound around the element body 11.
  • the first and second through conductors 14 and 15 constituting the coil antenna are formed by dividing the original columnar through conductor 10. Therefore, the first and second through conductors 14 and 15 are provided along the end surfaces 22 a and 22 b of the element body 11. Therefore, the coil diameter of the coil antenna can be made substantially the same as the opening of the element body 11, and a wireless communication device using the element body size to the maximum can be configured. Therefore, the communication distance can be increased despite the small size.
  • the element body (resin block) 11 is made of a magnetic material, an open magnetic circuit type coil antenna that is not affected by the shield at the end face can be formed.
  • the first and second through conductors 14 and 15 that are interlayer patterns (patterns in the thickness direction) penetrating the element body 11 have a common columnar shape extending over the boundary between two adjacent individual regions.
  • the through conductor 10 is divided. That is, the interlayer pattern uses a columnar metal common to the two individual regions, and is a single elongated through metal. For this reason, it is not necessary to consider stacking misalignment in the multilayer film, and the risk of short circuit between patterns is small, so that an interlayer pattern (first and second through conductors 14 and 15) having a narrow gap and a large aspect ratio is formed. it can.
  • the first and second through conductors 14 and 15 have cut surfaces along the end surfaces 22 a and 22 b of the element body 11.
  • the printed wiring board 3 has an RFIC element 1 mounted on one main surface thereof, and an interlayer conductor 4 extending from one main surface to the other main surface and connected to the RFIC element 1. Further, capacitors 2a and 2b may be included in order to configure a resonance circuit with the coil antenna. A mounting land and a routing pattern are formed on one main surface of the printed wiring board 3, but there are no mounting land and a routing pattern on the other main surface.
  • the printed wiring board 3 has an interlayer conductor (through-hole conductor) 4 inside. The interlayer conductor 4 may be provided on the side surface of the printed wiring board 3.
  • the printed wiring board 3 has the other main surface facing the second main surface, and the interlayer conductor 4 of the printed wiring board 3 has an exposed portion of the element body 11 on the second main surface. It is buried in.
  • the printed wiring board 3 may be embedded in the base body 11 so that the other main surface of the printed wiring board 3 is included in the second main surface 21 b of the base body 11.
  • “the other main surface of the printed wiring board 3 is included in the second main surface 21 b of the element body 11” means that the second main surface 21 b of the element body 11 is more than the other main surface of the printed wiring board 3. It means big. Further, the other main surface of the printed wiring board 3 may be flush with the second main surface 21b of the element body 11 (same plane).
  • the printed wiring board 3 is preferably a resin substrate having a small thermal conductivity typified by FR4.
  • the printed wiring board 3 is not limited to the case where the other main surface faces the second main surface of the element body 11.
  • the other main surface of the printed wiring board 3 may face the second main surface of the element body 11.
  • the printed wiring board 3 may be embedded in the element body 11 such that the interlayer conductor 4 is connected to the input / output terminals of the second main surface of the element body 11.
  • the connection between the interlayer conductor 4 and the input / output terminal on the second main surface of the element body 11 may be performed by a metal columnar body such as a metal pin, for example.
  • the element body 11 has a first main surface 21a and a second main surface 21b facing each other.
  • the element body 11 may be rectangular, for example.
  • the first main surface 21 a and the second main surface 21 b correspond to two xy planes of the element body 11 that are parallel to each other.
  • the element body 11 has end faces 22a and 22b that are cut surfaces when divided into individual regions.
  • the end faces 22a and 22b correspond to side faces formed by two yz planes parallel to each other.
  • First and second through conductors 14 and 15 obtained by dividing a through conductor 10 described later are disposed on the end faces 22a and 22b.
  • the element body 11 has a printed wiring board 3 embedded therein.
  • the element body 11 on one main surface of the printed wiring board 3 has a first main surface 21 a and a second main surface 21 b that are larger in area than the one main surface and the other main surface of the printed wiring board 3.
  • the second main surface 21 b of the element body 11 includes the other main surface of the printed wiring board 3.
  • the element body 11 may be formed by curing a thermosetting resin, for example.
  • the element body 11 is preferably a resin block having a small thermal conductivity typified by an epoxy resin.
  • the element body 11 may include a magnetic core at a portion inside the coil antenna.
  • the element body 11 is composed of a compact magnetic body made of a composite magnetic body in which a magnetic body is dispersed in a binder, particularly a metal composite material in which a magnetic metal powder is dispersed in the binder. It may be. Alternatively, it may be a compacted body that does not include a binder (resin) and is formed so that the magnetic body is in contact with the surface through an oxide film. In this case, the oxide films between the magnetic bodies may be connected to each other.
  • the oxide film crystals may be continuously connected.
  • An example of the magnetic metal powder is Fe-based magnetic metal powder.
  • the binder is, for example, an epoxy resin.
  • the magnetic material is not limited to Fe-based magnetic metal powder.
  • ferrite powder may be used as the magnetic material.
  • the coil antenna is provided on the first and second through conductors 14 and 15 penetrating the first and second main surfaces 21 a and 21 b of the element body 11 and the first and second main surfaces 21 a and 21 b of the element body 11.
  • the first and second conductor patterns 16 and 17 are configured. Specifically, the coil antenna extends along the z-axis direction, the first through conductors 14 extending along the z-axis direction, the first conductor pattern 16 extending along the x-axis direction, and the z-axis direction.
  • the second through conductor 15 and the first conductor pattern 16 extending along the x-axis direction are connected in a helical manner.
  • the winding axis of the coil antenna is the y axis. Below, each member which comprises a coil antenna is demonstrated.
  • the first through conductor 14 and the second through conductor 15 are made of a conductive material that penetrates from the first main surface 21 a to the second main surface 21 b along the end surface of the element body 11.
  • the first through conductor 14 penetrates along the end surface 22a of the element body 11 from one end of the first main surface 21a to one end of the second main surface 21b along the z-axis direction.
  • the second through conductor 15 penetrates the other end of the second main surface 21b from the other end of the first main surface 21a along the end surface 22b of the element body 11 along the z-axis direction.
  • first through conductor 14 and the second through conductor 15 are formed by dividing one columnar through conductor 10, respectively, the cut surfaces are exposed at the end faces 22a and 22b.
  • first through conductor 14 and the second through conductor 15 may have a recess from the end surfaces 22 a and 22 b to the inside of the element body 11.
  • metals such as copper, silver, gold
  • the first through conductor 14 and the second through conductor 15 are, for example, columnar through conductors formed by filling the conductive paste 8 in the holes 12 from the first main surface 21a to the second main surface 21b of the element body 11. It may be formed by dividing 10.
  • a columnar through conductor may be formed by providing a conductive material inside the hole 12 by plating and divided.
  • metal pins may be arranged between the printed wiring boards 3 in advance before forming the element body.
  • a metal pin may be embedded in the element body 11 to form a columnar through conductor 10 made of a metal pin, and the metal pin may be divided into the first and second through conductors 14 and 15.
  • the first through conductor 14 and the second through conductor 15 have a length in the z-axis direction from the first main surface 21a of the element body 11 to the second main surface 21b.
  • the lengths of the first through conductor 14 and the second through conductor 15 are set to be longer than the length of the element body 11 in the y-axis direction (the length of the break line 9 and the length of the boundary between the individual regions). Accordingly, it is possible to select a through conductor in a longer direction among three directions perpendicular to each other that penetrate the element body 11. In this way, the conductive material is provided inside the hole 12, or the first and second through conductors 14 and 15 are formed by the metal pins, so that the diameter is smaller than that in the case of connecting a plurality of interlayer conductors of the multilayer film. Interlayer patterns (through conductors) with a large aspect ratio can be formed with high accuracy and high reliability.
  • the first conductor pattern 16 is provided on the first main surface 21a of the element body 11, and connects one end of the first through conductor 14 and one end of the second through conductor 15 along the x-axis direction. Specifically, one end of the pair of first through conductors 14 and one end of the second through conductor 15 are connected. In this case, the first conductor pattern 16 is formed so as to constitute a helical coil antenna.
  • the second conductor pattern 17 is provided on the second main surface 21 b of the element body 11, the other end of the first through conductor 14, the other end of the second through conductor 15, and the exposed portion of the interlayer conductor 4 of the printed wiring board 3. Are connected along the x-axis direction. Specifically, similarly to the first conductor pattern 16, the other end of the pair of first through conductors 14 is connected to the other end of the second through conductor 15. Further, the other end of one first through conductor 14 and one of the exposed portions of the interlayer conductor 4 of the printed wiring board 3 are connected along the x-axis direction, and the other end of one second through conductor 15 is connected to the printed circuit board. The other exposed portion of the interlayer conductor 4 of the wiring board 3 is connected along the x-axis direction. In this case, the second conductor pattern 17 is formed so as to constitute a helical coil antenna.
  • the second conductor pattern has the first through-hole.
  • the other end of the conductor 14, the other end of the second through conductor 15, and the input / output terminal are connected.
  • the wireless communication device 20 is manufactured.
  • This manufacturing method generally includes the following steps.
  • (A) Two printed wiring boards 3 each having an RFIC element 1 mounted on one main surface and an interlayer conductor 4 extending from one main surface to the other main surface and connected to the RFIC element 1 are prepared. Note that the number of the printed wiring boards 3 may be three or more instead of two.
  • the two printed wiring boards 3 are separated from each other, and the respective printed wiring boards 3 are arranged in two adjacent individual regions (FIG.
  • a plurality of printed wiring boards 3 may be arranged in a line shape or a matrix shape.
  • C Two printed wiring boards having a first main surface 21a and a second main surface 21b facing each other, and the interlayer conductor 4 of each printed wiring board 3 having an exposed portion to the second main surface 21b. 3 is embedded in the element body 11 (FIG. 5).
  • the interlayer conductor 4 of the printed wiring board 3 is embedded in the element body 11 without being exposed to the second main surface 21b of the element body 11, and the interlayer conductor 4 is embedded in the second main surface 21b of the element body 11.
  • the input / output terminals may be connected.
  • connection between the interlayer conductor 4 and the input / output terminal of the second main surface of the element body 11 may be performed by a metal columnar body such as a metal pin, for example.
  • D A plurality of columnar through conductors 10 extending from the first main surface 21a to the second main surface 21b of the element body 11 are formed across the boundary between two individual regions (FIGS. 6 and 7).
  • E The first conductor pattern 16 that connects one ends of the plurality of columnar through conductors 10 is formed on the first main surface 21 a of the element body 11.
  • a second conductor pattern 17 that connects the other end of the plurality of columnar through conductors 10 and the exposed portion of the interlayer conductor 4 of each printed wiring board 3 is formed on the second main surface 21b (FIGS. 8, 9, and 9). FIG. 10, FIG. 11).
  • the interlayer conductor 4 of the printed wiring board 3 and the input / output terminal of the second main surface of the element body 11 are connected by the metal columnar body as described above, the other end of the first through conductor 14 and A second conductor pattern that connects the other end of the second through conductor 15 and the input / output terminal is formed.
  • the plurality of columnar through conductors 10, the first and second conductor patterns 16 and 17, and the element body 11 are divided for each individual region.
  • the RFIC element 1, the divided first conductor pattern 16, the divided columnar through conductor 10, and the divided second conductor pattern 17 are connected to the RFIC element 1 for each divided individual area.
  • a wireless communication device 20 is formed.
  • a plurality of printed wiring boards (PCBs) 3 each having an RFIC element 1 and capacitors 2a and 2b mounted on one main surface are prepared (FIG. 4).
  • a mounting land and a routing pattern are formed on one main surface of each printed wiring board 3, but no mounting land and a routing pattern are formed on the other main surface.
  • the printed wiring board 3 has an interlayer conductor (through-hole conductor) 4 inside.
  • the interlayer conductor 4 may be provided on the side surface of the printed wiring board 3.
  • two printed wiring boards 3 are prepared, but two or more printed wiring boards 3 may be prepared.
  • the two printed wiring boards 3 are fixed to two spaced apart locations (individual regions) of the base 6 (FIG. 4).
  • An adhesive layer is formed on the base 6.
  • the base 6 can be a resin substrate.
  • the printed wiring board 3 is fixed so that the other main surface of the printed wiring board 3 facing the one main surface on which the RFIC element 1 or the like is mounted is opposed to the base.
  • a plurality of printed wiring boards 3 may be arranged in a line shape or a matrix shape.
  • the extending direction of the uniaxial assembly board is adjusted to the direction along the winding axis of each coil antenna.
  • the element body 11 is formed so as to embed two printed wiring boards 3 (FIG. 5).
  • the element body 11 can be formed, for example, by applying and curing a thermosetting resin.
  • the base body 11 may be formed by covering a resin sheet in a semi-cured state (B stage state) and then curing.
  • the element body 11 may be formed by in-mold molding.
  • the element body 11 may be a resin block.
  • the element body 11 including a magnetic core may be formed on the printed wiring board 3.
  • a composite magnetic body in which magnetic powder is dispersed in a binder particularly, an element body (compact compact) made of a metal composite material in which magnetic metal powder is dispersed in the binder is formed. Also good.
  • base_body 11 which consists of a compacting body which each magnetic body contacts through the oxide film of the surface of a magnetic body, without using a binder (resin).
  • An example of the magnetic metal powder is Fe-based magnetic metal powder.
  • the binder is, for example, an epoxy resin.
  • the magnetic material is not limited to Fe-based magnetic metal powder.
  • ferrite powder may be used as the magnetic material.
  • a plurality of holes are opened at predetermined positions of the element body 11 (FIG. 6). Specifically, a hole 12 extending from the first main surface 21a to the second main surface 21b is formed at a location across the boundary between the two individual regions (corresponding to the break line 9). The hole 12 is formed so as to penetrate the element body 11 and reach the pedestal 6.
  • the drilling process can be performed by, for example, laser processing. Alternatively, drilling or punching may be performed.
  • the hole may penetrate the pedestal 6. In the case of laser processing, the hole 12 to be formed is easily tapered, but it is not always necessary to be tapered. Further, the hole 12 may penetrate the base 6.
  • the holes 12 are arranged substantially linearly along the break line 9 (FIGS. 12 and 13) at the time of subsequent division.
  • the hole 12 is formed so as to straddle the break line 9.
  • the cross-sectional shape of the hole 12 is, for example, a rectangular shape.
  • the inside of the hole 12 is filled with a conductive paste 8 containing a metal powder mainly composed of silver or copper (FIG. 7).
  • the conductive paste 8 may be applied not only to the inner surface of the hole 12 but also to the upper surface of the element body 11.
  • the conductive paste 8 is cured (metalized) by heat treatment to form the columnar through conductors 10.
  • a columnar through conductor may be formed by plating.
  • a hole 12 (through hole) penetrating the pedestal 6 may be formed, and the columnar through conductor may be formed by plating the entire surface of the element body and the through hole. Specifically, first, electroless plating is performed on the entire surface, and then electrolytic plating is performed on the entire surface by immersing it in a plating bath. By performing electroless plating first, it is possible to perform plating over the entire body 11 and the hole 12. Moreover, the plating film thickness can be increased by performing electrolytic plating thereafter.
  • the plated film inside the through hole 12 may be filled over the entire inside of the through hole 12 (filled via type plating), and a plated film along the inner peripheral surface of the through hole 12 may be formed. (Through hole type plating).
  • the plating film when the plating film is formed on the entire surface, it is used for forming a first conductor pattern 16 and a second conductor pattern 17 described later without removing the entire plating film formed on the upper and lower surfaces of the element body 11.
  • the columnar through conductor may be constituted by a metal pin. In this case, before forming the element body, the metal pin is set up at the boundary between the two individual regions in advance, and then the element body is formed so as to embed the metal pin to form the columnar through conductor. Also good.
  • the upper and lower surfaces of the element body 11 are polished to a predetermined polishing position (7a, 7b) (FIG. 8).
  • the surface polishing may be performed by buffing or scribing, for example.
  • the lower surface (pedestal side) is polished after removing the pedestal 6.
  • the pedestal 6 may be polished.
  • the printed wiring board 3 is also polished at the same time. Thereby, cueing of the interlayer conductor 4 is performed. Note that the upper surface of the element body 11 need not be polished if the upper surface of the element body 11 is flat.
  • the lower surface of the element body 11 and the lower surface of the printed wiring board 3 are flat and the interlayer conductor 4 is exposed on the lower surface of the printed wiring board 3, it is not necessary to polish the lower surface of the element body 11.
  • the columnar through conductor 10 is exposed to the upper surface 7a and the lower surface 7b (FIGS. 9 and 10).
  • the upper and lower surfaces can be flattened, and the columnar through conductors 10 can be cueed.
  • the first conductor pattern 16 that connects one ends of the plurality of columnar through conductors 10 is formed on the upper surface 7a.
  • the second conductor pattern 17 that connects the other ends of the plurality of columnar through conductors 10 and the other end of the columnar through conductors 10 to the exposed portion of the interlayer conductor 4 of each printed wiring board 3 is formed on the lower surface 7b.
  • the first conductor pattern 16 and the second conductor pattern 17 may be formed by plating, exposure and development. Or you may form by a printing pattern. Furthermore, you may form combining a printing pattern and plating. Alternatively, the first conductive pattern 16 and the second conductive pattern 17 may be formed by attaching metal foils to the upper surface 7a and the lower surface 7b, respectively, and etching.
  • each wireless communication device 20 having the RFIC element 1 and the coil antenna around which the element body 11 is wound is obtained for each divided element body 11.
  • the coil antenna is constituted by a divided first conductor pattern 16, first and second through conductors 14 and 15 made of divided columnar through conductors, and a divided second conductor pattern 17.
  • the coil antenna is connected to the RFIC element 1.
  • a protective layer (resin layer) may be provided on the entire surface.
  • the wireless communication device 20 can be obtained through the above steps. According to this method for manufacturing a wireless communication device, an interlayer pattern having a small diameter and a large aspect ratio that constitutes a coil antenna can be formed with high accuracy and high reliability.
  • FIG. 15 is a schematic perspective view showing the configuration of the article 30 with a wireless communication device according to the second embodiment.
  • This article 30 with a wireless communication device is a toy such as a miniature car by resin molding.
  • This article 30 with a wireless communication device corresponds to a “resin molded product” in which the wireless communication device 20 is embedded.
  • the wireless communication device 20 is substantially the same as the wireless communication device 20 according to the first embodiment.
  • This article 30 with a wireless communication device can be formed, for example, by injection molding a molding resin such as an epoxy resin in a state where the wireless communication device 20 is fixed in a mold for the resin molded product.
  • This article 30 with a wireless communication device embeds a wireless communication device 20 having a coil antenna having a stable connection.
  • the RFIC element 1 is disposed between the printed wiring board and the element body. Therefore, the occurrence of damage to the wireless communication device 20 can be suppressed even when exposed to high temperatures during resin molding.
  • the method for manufacturing a wireless communication device according to the third embodiment includes a plurality of pedestals 6 and a plurality of printed wiring boards 3 arranged on the base 6. It is different in that a piece area is provided. That is, a feature is that a plurality of individual areas are arranged on one printed wiring board 3 instead of providing individual printed wiring boards for each individual area.
  • a method for manufacturing a wireless communication device according to Embodiment 3 will be described with reference to FIGS.
  • the wireless communication device 20 is manufactured.
  • This manufacturing method generally includes the following steps.
  • the printed wiring board 3 provided with two or more individual regions is disposed on the pedestal 6 (FIGS. 16 and 17).
  • the printed wiring board 3 has an element body 11 such that the printed wiring board 3 has a first main surface and a second main surface facing each other, and the interlayer conductor 4 of each printed wiring board 3 has an exposed portion to the second main surface.
  • the interlayer conductor 4 of the printed wiring board 3 is embedded in the element body 11 without being exposed to the second main surface of the element body 11, and the interlayer conductor 4 is inserted into the second main surface of the element body 11. You may comprise so that it may connect with an output terminal. In this case, the connection between the interlayer conductor 4 and the input / output terminal of the second main surface of the element body 11 may be performed by a metal columnar body such as a metal pin, for example.
  • a plurality of columnar through conductors 10 extending from the first main surface to the second main surface of the element body 11 are formed across the boundary between two individual regions (FIGS. 19 and 20).
  • a first conductor pattern 16 that connects one ends of the plurality of columnar through conductors 10 is formed on the first main surface of the element body 11.
  • a second conductor pattern 17 that connects the other end of the plurality of columnar through conductors 10 and the exposed portion of the interlayer conductor 4 of each printed wiring board 3 is formed on the second main surface (FIGS. 21, 22, and FIG. 23, FIG. 24).
  • a printed wiring board (PCB) 3 is prepared by mounting the RFIC element 1 and the capacitors 2a and 2b for each individual region on one main surface (FIGS. 16 and 17).
  • In-plane conductors 5 such as mounting lands and routing patterns are formed on one main surface of the printed wiring board 3, but there are no mounting lands and routing patterns on the other main surface.
  • the printed wiring board 3 has an interlayer conductor (through-hole conductor) 4 inside.
  • the interlayer conductor 4 may be provided on the side surface of the printed wiring board 3. In FIG. 16, two individual areas are provided on the printed wiring board 3, but two or more individual areas may be provided.
  • the printed wiring board 3 is fixed to the base 6 (FIGS.
  • the base 6 can be a resin substrate.
  • the printed wiring board 3 is fixed to the base 6, the printed wiring board 3 is fixed so that the other main surface of the printed wiring board 3 facing the one main surface on which the RFIC element 1 or the like is mounted is opposed to the base.
  • the extending direction of the uniaxial assembly board is a direction along the winding axis of each coil antenna. It may be arranged to match.
  • the element body 11 is formed so as to embed the printed wiring board 3 (FIG. 18).
  • the element body 11 can be formed, for example, by applying and curing a thermosetting resin.
  • the base body 11 may be formed by covering a resin sheet in a semi-cured state (B stage state) and then curing.
  • the element body 11 may be formed by in-mold molding.
  • the element body 11 may be a resin block.
  • the element body 11 including a magnetic core may be formed on the printed wiring board 3.
  • a composite magnetic body in which magnetic powder is dispersed in a binder particularly, an element body (compact compact) made of a metal composite material in which magnetic metal powder is dispersed in the binder is formed. Also good.
  • base_body 11 which consists of a compacting body which each magnetic body contacts through the oxide film of the surface of a magnetic body, without using a binder (resin).
  • An example of the magnetic metal powder is Fe-based magnetic metal powder.
  • the binder is, for example, an epoxy resin.
  • the magnetic material is not limited to Fe-based magnetic metal powder.
  • ferrite powder may be used as the magnetic material.
  • a plurality of holes are opened at predetermined positions of the element body 11 (FIG. 19). Specifically, a hole 12 extending from the element body 11 side to the pedestal 6 side is opened at a location across the boundary between the two individual regions (corresponding to the break line 9).
  • the hole 12 is formed so as to penetrate the element body 11 and the printed wiring board 3 and reach the base 6.
  • the drilling process can be performed by, for example, laser processing. Alternatively, drilling or punching may be performed.
  • the hole may penetrate the pedestal 6. In the case of laser processing, the hole 12 to be formed is easily tapered, but it is not always necessary to be tapered. Further, the hole 12 may penetrate the base 6.
  • the holes 12 are arranged substantially linearly along the break line 9 (FIGS. 25 and 26) at the time of subsequent division.
  • the hole 12 is formed so as to straddle the break line 9.
  • the cross-sectional shape of the hole 12 is, for example, a rectangular shape.
  • the cross section rectangular By making the cross section rectangular, when the columnar through conductor 10 formed by filling the hole 12 with a conductive material is divided along the break line 9, the break line 9 is displaced from the center of the columnar through conductor 10. Even if it occurs, the cross-section does not change substantially. Since the holes 12 are formed in the outer portion of the printed wiring board 3, that is, the holes reaching the printed wiring board 3 are not formed. Therefore, the printed wiring board 3 accompanying the drilling process, and further mounting of the RFIC element or the like There is substantially no damage to the component, and a hole with a small taper amount and a large aspect ratio can be easily formed.
  • the inside of the hole 12 is filled with a conductive paste 8 containing a metal powder mainly composed of silver or copper (FIG. 20).
  • the conductive paste 8 may protrude not only from the inner surface of the hole 12 but also from the upper surface of the element body 11.
  • the conductive paste 8 is cured (metalized) by heat treatment to form the columnar through conductors 10.
  • a columnar through conductor may be formed by plating.
  • a hole 12 (through hole) penetrating the pedestal 6 may be formed, and the columnar through conductor may be formed by plating the entire surface of the element body and the through hole.
  • electroless plating is performed on the entire surface, and then electrolytic plating is performed on the entire surface by immersing it in a plating bath.
  • electroless plating it is possible to perform plating over the entire body 11 and the hole 12.
  • the plating film thickness can be increased by performing electrolytic plating thereafter.
  • the plated film inside the through hole 12 may be filled over the entire inside of the through hole 12 (filled via type plating), and a plated film along the inner peripheral surface of the through hole 12 may be formed. (Through hole type plating).
  • the plating film when the plating film is formed on the entire surface, it is used for forming a first conductor pattern 16 and a second conductor pattern 17 described later without removing the entire plating film formed on the upper and lower surfaces of the element body 11.
  • the columnar through conductor may be constituted by a metal pin. In this case, before forming the element body, the metal pin is set up at the boundary between the two individual regions in advance, and then the element body is formed so as to embed the metal pin. It may be a through conductor.
  • the upper and lower surfaces of the element body 11 are polished to a predetermined polishing position (7a, 7b) (FIG. 21).
  • the surface polishing may be performed by buffing or scribing, for example.
  • the lower surface (pedestal side) is polished after removing the pedestal 6.
  • the pedestal 6 may be polished.
  • the printed wiring board 3 is also polished at the same time. Thereby, cueing of the interlayer conductor 4 is performed. Note that the upper surface of the element body 11 need not be polished if the upper surface of the element body 11 is flat.
  • the columnar through conductor 10 is exposed to the upper surface 7a and the lower surface 7b (FIGS. 22 and 23). As a result, the upper and lower surfaces 7a and 7b can be flattened, and the columnar through conductor 10 can be cueed.
  • the first conductor pattern 16 that connects one ends of the plurality of columnar through conductors 10 is formed on the upper surface 7a. Furthermore, the second conductor pattern 17 that connects the other ends of the plurality of columnar through conductors 10 and the other end of the columnar through conductors 10 to the exposed portion of the interlayer conductor 4 of each printed wiring board 3 is formed on the lower surface 7b. (FIG. 24).
  • the first conductor pattern 16 and the second conductor pattern 17 may be formed by plating, exposure and development. Or you may form by a printing pattern. Furthermore, you may form combining a printing pattern and plating.
  • a metal layer may be provided on each of the upper surface 7a and the lower surface 7b, and the first conductor pattern 16 and the second conductor pattern 17 may be formed by etching.
  • the break line 9 corresponds to the boundary between the two individual regions, and extends along the direction (in the X direction and the Y direction) perpendicular to the straight line connecting the printed wiring boards 3.
  • each wireless communication device 20 a having the RFIC element 1 and a coil antenna around which the element body 11 is wound is obtained for each divided element body 11.
  • the coil antenna includes a divided first conductor pattern 16, divided columnar through conductors (first and second through conductors) 10 a, and a divided second conductor pattern 17.
  • the coil antenna is connected to the RFIC element 1.
  • a protective layer may be provided on the entire surface.
  • the wireless communication device 20a can be obtained through the above steps. According to this method for manufacturing a wireless communication device, an interlayer pattern having a small diameter and a large aspect ratio that constitutes a coil antenna can be formed with high accuracy and high reliability.
  • the example of the toy by resin molding was shown in this embodiment, it is not limited to this.
  • a container or tableware in which a wireless communication device is embedded by resin molding may be used. It is particularly suitable for articles that are exposed to high temperatures for disinfection and the like.
  • the first and second through conductors having a small diameter and a large aspect ratio can be formed with high accuracy and high reliability as the interlayer pattern constituting the coil antenna. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Support Of Aerials (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Transceivers (AREA)

Abstract

無線通信デバイスの製造方法は、RFIC素子を搭載したプリント配線板と、プリント配線板を埋設した素体と、RFIC素子に接続されており、素体の周囲に巻回されたコイルアンテナと、を有する無線通信デバイスの製造方法であって、一方主面に搭載されたRFIC素子、および、一方主面から他方主面に延び、RFIC素子に接続された層間導体をそれぞれ備えた2つのプリント配線板を用意する工程と、2つのプリント配線板を互いに離間させて、隣接する2つの個片領域に各プリント配線板をそれぞれ配置する工程と、互いに対向する第1主面及び第2主面を有し、各プリント配線板の層間導体の第2主面への露出部を含むように、2つのプリント配線板を素体に埋設する工程と、2つの個片領域の境界にわたって、素体の第1主面から第2主面に至る導電性材料からなる複数の柱状貫通導体を形成する工程と、素体の第1主面に、複数の柱状貫通導体の一方端を接続する第1導体パターンを形成すると共に、第2主面に、複数の柱状貫通導体の他方端と各プリント配線板の層間導体の露出部とを接続する第2導体パターンを形成する工程と、複数の柱状貫通導体と第1及び第2導体パターンと素体とを、各個片領域ごとに分割して、分割した各個片領域ごとに、RFIC素子と、分割した第1導体パターンと、分割した柱状貫通導体と、分割した第2導体パターンと、を含み、RFIC素子に接続されたコイルアンテナと、を含む無線通信デバイスを形成する工程と、を含む。

Description

無線通信デバイス及びその製造方法、並びに、樹脂成型体
 本発明は、素体内に設けられたRFIC素子とコイルアンテナとを有する無線通信デバイス及びその製造方法、並びに、該無線通信デバイスを埋設した樹脂成型体に関する。
 従来、ヘリカル状コイルアンテナの内部にRFIC素子を搭載した無線通信デバイスが知られている(例えば、特許文献1参照。)。この無線通信デバイスによれば、素体サイズとほぼ同等サイズのコイルアンテナを形成することができるため、小型デバイスであるにもかかわらず、通信距離が大きいという特徴がある。
特許第4535210号公報
 しかし、上記手法では、コイルアンテナとして複数の樹脂層と複数の電極とを積層してなる多層基板を用いてコイルアンテナを構成している。コイルアンテナを構成するパターンのうち、層間パターン(層厚み方向のパターン)の形成は難易度が高い。そのため、複数の絶縁層に設けられた複数のビア導体を層の厚み方向に連結する場合、絶縁層の積みズレを考慮する必要があり、ビア導体同士の間隔やビア導体の径を大きくせざるを得なかった。その結果、小径でアスペクト比の大きな層間パターンによってコイルアンテナを形成することが難しいという課題があった。
 本発明の目的は、コイルアンテナを構成する小径でアスペクト比の大きな層間パターンを高精度かつ高信頼性のもとに形成できる無線通信デバイスの製造方法を提供することである。
 本発明に係る無線通信デバイスの製造方法は、RFIC素子を搭載したプリント配線板と、前記プリント配線板を埋設した素体と、前記RFIC素子に接続されており、前記素体の周囲に巻回されたコイルアンテナと、を有する無線通信デバイスの製造方法であって、
 一方主面に搭載されたRFIC素子、および、前記一方主面から他方主面に延び、前記RFIC素子に接続された層間導体をそれぞれ備えた2つのプリント配線板を用意する工程と、
 前記2つのプリント配線板を互いに離間させて、隣接する2つの個片領域に各プリント配線板をそれぞれ配置する工程と、
 互いに対向する第1主面及び第2主面を有し、前記各プリント配線板の前記層間導体の前記第2主面への露出部を有するように、前記2つのプリント配線板を素体に埋設する工程と、
 前記2つの個片領域の境界にわたって前記素体の前記第1主面から前記第2主面に至る複数の柱状貫通導体を形成する工程と、
 前記素体の前記第1主面に、前記複数の柱状貫通導体の一方端を接続する第1導体パターンを形成すると共に、前記第2主面に、前記複数の柱状貫通導体の他方端と前記各プリント配線板の前記層間導体の前記露出部とを接続する第2導体パターンを形成する工程と、
 前記複数の柱状貫通導体と前記第1及び第2導体パターンと前記素体とを、前記各個片領域ごとに分割して、分割した前記各個片領域ごとに、前記RFIC素子と、分割した前記第1導体パターンと、分割した前記柱状貫通導体と、分割した前記第2導体パターンと、を含む、前記RFIC素子に接続されたコイルアンテナと、を含む無線通信デバイスを形成する工程と、
を含む。
 本発明に係る他の無線通信デバイスの製造方法は、RFIC素子を搭載したプリント配線板と、前記プリント配線板を埋設した素体と、前記RFIC素子に接続されており、前記素体の周囲に巻回されたコイルアンテナと、を有する無線通信デバイスの製造方法であって、
 一方主面に搭載されたRFIC素子、および、前記一方主面から他方主面に延び、前記RFIC素子に接続された層間導体をそれぞれ備えた2つのプリント配線板を用意する工程と、
 前記2つのプリント配線板を互いに離間させて、隣接する2つの個片領域に各プリント配線板をそれぞれ配置する工程と、
 互いに対向する第1主面及び第2主面を有し、前記各プリント配線板の前記層間導体が前記第2主面の入出力端子と接続するように、前記2つのプリント配線板を素体に埋設する工程と、
 前記2つの個片領域の境界にわたって前記素体の前記第1主面から前記第2主面に至る複数の柱状貫通導体を形成する工程と、
 前記素体の前記第1主面に、前記複数の柱状貫通導体の一方端を接続する第1導体パターンを形成すると共に、前記第2主面に、前記複数の柱状貫通導体の他方端と前記入出力端子とを接続する第2導体パターンを形成する工程と、
 前記複数の柱状貫通導体と前記第1及び第2導体パターンと前記素体とを、前記各個片領域ごとに分割して、分割した前記各個片領域ごとに、前記RFIC素子と、分割した前記第1導体パターンと、分割した前記柱状貫通導体と、分割した前記第2導体パターンと、を含み、前記RFIC素子に接続されたコイルアンテナと、を含む無線通信デバイスを形成する工程と、
を含む。
 本発明に係る無線通信デバイスは、一方主面に搭載されたRFIC素子、および、前記一方主面から他方主面に延び、前記RFIC素子に接続された層間導体を備えたプリント配線板と、
 前記プリント配線板の前記一方主面および前記他方主面よりも大きな面積の互いに対向する第1主面及び第2主面を有し、前記プリント配線板の前記層間導体が前記素体の前記第2主面への露出部を有するように、前記プリント配線板を埋設した素体と、
 前記素体の前記第1主面と前記第2主面とに接する端面に沿って前記第1主面から前記第2主面まで貫通し、前記端面に沿った切断面を有する第1貫通導体及び第2貫通導体と、
 前記素体の第1主面に設けられ、前記第1貫通導体の一方端と前記第2貫通導体の一方端とを接続する第1導体パターンと、
 前記素体の第2主面に設けられ、前記第1貫通導体の他方端と前記第2貫通導体の他方端と前記プリント配線板の前記層間導体の前記露出部とを接続する第2導体パターンと、
を備え、
 前記第1導体パターンと、前記第2導体パターンと、前記第1貫通導体と、前記第2貫通導体と、を含むコイルアンテナを構成し、
 前記RFIC素子は、前記プリント配線板の前記層間導体を介して、前記第2導体パターンに接続されている。
 本発明に係る他の無線通信デバイスは、一方主面に搭載されたRFIC素子、および、前記一方主面から他方主面に延び、前記RFIC素子に接続された層間導体を備えたプリント配線板と、
 前記プリント配線板の前記一方主面および前記他方主面よりも大きな面積の互いに対向する第1主面及び第2主面を有し、前記プリント配線板の前記層間導体が前記素体の前記第2主面の入出力端子と接続している前記プリント配線板を埋設した素体と、
 前記素体の前記第1主面と前記第2主面とに接する端面に沿って前記第1主面から前記第2主面まで貫通し、前記端面に沿った切断面を有する第1貫通導体及び第2貫通導体と、
 前記素体の第1主面に設けられ、前記第1貫通導体の一方端と前記第2貫通導体の一方端とを接続する第1導体パターンと、
 前記素体の第2主面に設けられ、前記第1貫通導体の他方端と前記第2貫通導体の他方端と前記入出力端子とを接続する第2導体パターンと、
を備え、
 前記第1導体パターンと、前記第2導体パターンと、前記第1貫通導体と、前記第2貫通導体と、を含むコイルアンテナを構成し、
 前記RFIC素子は、前記プリント配線板の前記層間導体を介して、前記第2導体パターンに接続されている。
 本発明に係る樹脂成型体は、無線通信デバイスを埋め込んだ樹脂成型体であって、前記無線通信デバイスは、
 一方主面に搭載されたRFIC素子、および、前記一方主面から他方主面に延び、前記RFIC素子に接続された層間導体を備えたプリント配線板と、
 前記プリント配線板の前記一方主面および前記他方主面よりも大きな面積の互いに対向する第1主面及び第2主面を有し、前記プリント配線板の前記創刊導体が前記素体の前記第2主面への露出部を有するように、前記プリント配線板を埋設した素体と、
 前記素体の前記第1主面と前記第2主面とに接する端面に沿って前記第1主面から前記第2主面まで貫通し、前記端面に沿った切断面を有する第1貫通導体及び第2貫通導体と、
 前記素体の第1主面に設けられ、前記第1貫通導体の一方端と前記第2貫通導体の一方端とを接続する第1導体パターンと、
 前記素体の第2主面に設けられ、前記第1貫通導体の他方端と前記第2貫通導体の他方端と前記プリント配線板の前記層間導体の前記露出部とを接続する第2導体パターンと、
を備え、
 前記第1導体パターンと、前記第2導体パターンと、前記第1貫通導体と、前記第2貫通導体と、を含むコイルアンテナを構成し、
 前記RFIC素子は、前記プリント配線板の前記層間導体を介して、前記第2導体パターンに接続されている。
 本発明に係る他の樹脂成型体は、無線通信デバイスを埋め込んだ樹脂成型体であって、前記無線通信デバイスは、
 一方主面に搭載されたRFIC素子、および、前記一方主面から他方主面に延び、前記RFIC素子に接続された層間導体を備えたプリント配線板と、
 前記プリント配線板の前記一方主面および前記他方主面よりも大きな面積の互いに対向する第1主面及び第2主面を有し、前記プリント配線板の前記層間導体が前記素体の前記第2主面の入出力端子と接続している前記プリント配線板を埋設した素体と、
 前記素体の前記第1主面と前記第2主面とに接する端面に沿って前記第1主面から前記第2主面まで貫通し、前記端面に沿った切断面を有する第1貫通導体及び第2貫通導体と、
 前記素体の第1主面に設けられ、前記第1貫通導体の一方端と前記第2貫通導体の一方端とを接続する第1導体パターンと、
 前記素体の第2主面に設けられ、前記第1貫通導体の他方端と前記第2貫通導体の他方端と前記入出力端子とを接続する第2導体パターンと、
を備え、
 前記第1導体パターンと、前記第2導体パターンと、前記第1貫通導体と、前記第2貫通導体と、を含むコイルアンテナを構成し、
 前記RFIC素子は、前記プリント配線板の前記層間導体を介して、前記第2導体パターンに接続されている。
 本発明によれば、コイルアンテナを構成する小径でアスペクト比の大きな層間パターンを高精度かつ高信頼性のもとに形成できる無線通信デバイスの製造方法及び無線通信デバイス、並びに、樹脂成型体を提供することができる。
実施の形態1に係る無線通信デバイスの内部構成を示す概略斜視図である。 図1の無線通信デバイスの底面図である。 図1の無線通信デバイスの等価回路図である。 実施の形態1に係る無線通信デバイスの製造方法における一工程を示す概略断面図である。 実施の形態1に係る無線通信デバイスの製造方法における、図4に続く一工程を示す概略断面図である。 実施の形態1に係る無線通信デバイスの製造方法における、図5に続く一工程を示す概略断面図である。 実施の形態1に係る無線通信デバイスの製造方法における、図6に続く一工程を示す概略断面図である。 実施の形態1に係る無線通信デバイスの製造方法における、図7に続く一工程を示す概略断面図である。 実施の形態1に係る無線通信デバイスの製造方法における、図8に続く一工程を示す概略断面図である。 図9の無線通信デバイスの製造方法の一工程における内部構成を示す概略斜視図である。 実施の形態1に係る無線通信デバイスの製造方法における、図9に続く一工程を示す概略断面図である。 実施の形態1に係る無線通信デバイスの製造方法における、図11に続く一工程を示す概略断面図である。 図12の無線通信デバイスの製造方法の一工程における内部構成を示す概略斜視図である。 図13の無線通信デバイスの製造方法の一工程に続く分割後に得られる各無線通信デバイスの内部構成を示す概略斜視図である。 実施の形態2に係る無線通信デバイス付き物品の構成を示す概略斜視図である。 実施の形態3に係る無線通信デバイスの製造方法における一工程を示す概略断面図である。 図16の台座とその上に配置された連続するプリント配線板の上に設けられた複数の個片領域を示す概略斜視図である。 実施の形態3に係る無線通信デバイスの製造方法における、図16に続く一工程を示す概略断面図である。 実施の形態3に係る無線通信デバイスの製造方法における、図18に続く一工程を示す概略断面図である。 実施の形態3に係る無線通信デバイスの製造方法における、図19に続く一工程を示す概略断面図である。 実施の形態3に係る無線通信デバイスの製造方法における、図20に続く一工程を示す概略断面図である。 実施の形態3に係る無線通信デバイスの製造方法における、図21に続く一工程を示す概略断面図である。 図22の無線通信デバイスの製造方法の一工程における内部構成を示す概略斜視図である。 実施の形態3に係る無線通信デバイスの製造方法における、図22に続く一工程を示す概略断面図である。 実施の形態3に係る無線通信デバイスの製造方法における、図24に続く一工程を示す概略断面図である。 図25の無線通信デバイスの製造方法の一工程における内部構成を示す概略斜視図である。 図25の無線通信デバイスの製造方法の一工程に続く分割後に得られる各無線通信デバイスの内部構成を示す概略斜視図である。
 第1の態様に係る無線通信デバイスの製造方法は、RFIC素子を搭載したプリント配線板と、前記プリント配線板を埋設した素体と、前記RFIC素子に接続されており、前記素体の周囲に巻回されたコイルアンテナと、を有する無線通信デバイスの製造方法であって、
 一方主面に搭載されたRFIC素子、および、前記一方主面から他方主面に延び、前記RFIC素子に接続された層間導体をそれぞれ備えた2つのプリント配線板を用意する工程と、
 前記2つのプリント配線板を互いに離間させて、隣接する2つの個片領域に各プリント配線板をそれぞれ配置する工程と、
 互いに対向する第1主面及び第2主面を有し、前記各プリント配線板の前記層間導体の前記第2主面への露出部を有するように、前記2つのプリント配線板を素体に埋設する工程と、
 前記2つの個片領域の境界にわたって前記素体の前記第1主面から前記第2主面に至る複数の柱状貫通導体を形成する工程と、
 前記素体の前記第1主面に、前記複数の柱状貫通導体の一方端を接続する第1導体パターンを形成すると共に、前記第2主面に、前記複数の柱状貫通導体の他方端と前記各プリント配線板の前記層間導体の前記露出部とを接続する第2導体パターンを形成する工程と、
 前記複数の柱状貫通導体と前記第1及び第2導体パターンと前記素体とを、前記各個片領域ごとに分割して、分割した前記各個片領域ごとに、前記RFIC素子と、分割した前記第1導体パターンと、分割した前記柱状貫通導体と、分割した前記第2導体パターンと、を含み、前記RFIC素子に接続されたコイルアンテナと、を含む無線通信デバイスを形成する工程と、
を含む。
 第2の態様に係る無線通信デバイスの製造方法は、RFIC素子を搭載したプリント配線板と、前記プリント配線板を埋設した素体と、前記RFIC素子に接続されており、前記素体の周囲に巻回されたコイルアンテナと、を有する無線通信デバイスの製造方法であって、
 一方主面に搭載されたRFIC素子、および、前記一方主面から他方主面に延び、前記RFIC素子に接続された層間導体をそれぞれ備えた2つのプリント配線板を用意する工程と、
 前記2つのプリント配線板を互いに離間させて、隣接する2つの個片領域に各プリント配線板をそれぞれ配置する工程と、
 互いに対向する第1主面及び第2主面を有し、前記各プリント配線板の前記層間導体が前記第2主面の入出力端子と接続するように、前記2つのプリント配線板を素体に埋設する工程と、
 前記2つの個片領域の境界にわたって前記素体の前記第1主面から前記第2主面に至る複数の柱状貫通導体を形成する工程と、
 前記素体の前記第1主面に、前記複数の柱状貫通導体の一方端を接続する第1導体パターンを形成すると共に、前記第2主面に、前記複数の柱状貫通導体の他方端と前記入出力端子とを接続する第2導体パターンを形成する工程と、
 前記複数の柱状貫通導体と前記第1及び第2導体パターンと前記素体とを、前記各個片領域ごとに分割して、分割した前記各個片領域ごとに、前記RFIC素子と、分割した前記第1導体パターンと、分割した前記柱状貫通導体と、分割した前記第2導体パターンと、を含み、前記RFIC素子に接続されたコイルアンテナと、を含む無線通信デバイスを形成する工程と、
を含む。
 第3の態様に係る無線通信デバイスの製造方法は、上記第1又は第2の態様において、前記各プリント配線板を配置する工程において、前記各プリント配線板をマトリックス状に配列してもよい。
 第4の態様に係る無線通信デバイスの製造方法は、上記第1から第3のいずれかの態様において、前記2つのプリント配線板を素体に埋設する工程において、磁性体粒子を含む素体を設けてもよい。
 第5の態様に係る無線通信デバイスの製造方法は、上記第1から第4のいずれかの態様において、前記各個片領域ごとに分割する工程において、前記素体の前記第1主面と前記第2主面との間の長さが、前記2つの個片領域の境界の長さより長くなるように前記素体を分割してもよい。
 第6の態様に係る無線通信デバイスの製造方法は、上記第1から第5のいずれかの態様において、前記複数の柱状貫通導体を形成する工程は、
  前記2つの個片領域の境界にわたって前記素体の前記第1主面から前記第2主面に至る複数の貫通孔を形成する工程と、
  前記複数の貫通孔に複数の柱状貫通導体を形成する工程と、
を含んでもよい。
 第7の態様に係る無線通信デバイスの製造方法は、上記第6の態様において、前記複数の貫通孔に複数の柱状貫通導体を形成する工程において、前記素体に形成された貫通孔内に導電性材料を充填して、前記柱状貫通導体を形成してもよい。
 第8の態様に係る無線通信デバイスの製造方法は、上記第1から第5のいずれかの態様において、前記複数の柱状貫通導体を形成する工程は、
  前記2つの個片領域の境界にわたって前記素体の前記第1主面から前記第2主面に至る複数の金属ピンを設ける工程と、
  前記素体に金属ピンを埋設して、前記金属ピンからなる柱状貫通導体を形成する工程と、
を含んでもよい。
 第9の態様に係る無線通信デバイスは、一方主面に搭載されたRFIC素子、および、前記一方主面から他方主面に延び、前記RFIC素子に接続された層間導体を備えたプリント配線板と、
 前記プリント配線板の前記一方主面および前記他方主面よりも大きな面積の互いに対向する第1主面及び第2主面を有し、前記プリント配線板の前記層間導体が前記第2主面への露出部を有するように、前記プリント配線板を埋設した素体と、
 前記素体の前記第1主面と前記第2主面とに接する端面に沿って前記第1主面から前記第2主面まで貫通し、前記端面に沿った切断面を有する第1貫通導体及び第2貫通導体と、
 前記素体の第1主面に設けられ、前記第1貫通導体の一方端と前記第2貫通導体の一方端とを接続する第1導体パターンと、
 前記素体の第2主面に設けられ、前記第1貫通導体の他方端と前記第2貫通導体の他方端と前記プリント配線板の前記層間導体の前記露出部とを接続する第2導体パターンと、
を備え、
 前記第1導体パターンと、前記第2導体パターンと、前記第1貫通導体と、前記第2貫通導体と、を含むコイルアンテナを構成し、
 前記RFIC素子は、前記プリント配線板の前記層間導体を介して、前記第2導体パターンに接続されている。
 第10の態様に係る無線通信デバイスは、一方主面に搭載されたRFIC素子、および、前記一方主面から他方主面に延び、前記RFIC素子に接続された層間導体を備えたプリント配線板と、
 前記プリント配線板の前記一方主面および前記他方主面よりも大きな面積の互いに対向する第1主面及び第2主面を有し、前記プリント配線板の前記層間導体が前記第2主面の入出力端子と接続している前記プリント配線板を埋設した素体と、
 前記素体の前記第1主面と前記第2主面とに接する端面に沿って前記第1主面から前記第2主面まで貫通し、前記端面に沿った切断面を有する第1貫通導体及び第2貫通導体と、
 前記素体の第1主面に設けられ、前記第1貫通導体の一方端と前記第2貫通導体の一方端とを接続する第1導体パターンと、
 前記素体の第2主面に設けられ、前記第1貫通導体の他方端と前記第2貫通導体の他方端と前記入出力端子とを接続する第2導体パターンと、
を備え、
 前記第1導体パターンと、前記第2導体パターンと、前記第1貫通導体と、前記第2貫通導体と、を含むコイルアンテナを構成し、
 前記RFIC素子は、前記プリント配線板の前記層間導体を介して、前記第2導体パターンに接続されている。
 第11の態様に係る無線通信デバイスは、上記第9又は第10の態様において、前記素体の前記端面は、凹部が設けられ、前記凹部に前記第1主面から前記第2主面に貫通する前記第1貫通導体及び第2貫通導体が配置されていてもよい。
 第12の態様に係る樹脂成型体は、無線通信デバイスを埋め込んだ樹脂成型体であって、前記無線通信デバイスは、
 一方主面に搭載されたRFIC素子、および、前記一方主面から他方主面に延び、前記RFIC素子に接続された層間導体を備えたプリント配線板と、
 前記プリント配線板の前記一方主面および前記他方主面よりも大きな面積の互いに対向する第1主面及び第2主面を有し、前記プリント配線板の前記層間導体が前記第2主面への露出部を有するように、前記プリント配線板を埋設した素体と、
 前記素体の前記第1主面と前記第2主面とに接する端面に沿って前記第1主面から前記第2主面まで貫通し、前記端面に沿った切断面を有する第1貫通導体及び第2貫通導体と、
 前記素体の第1主面に設けられ、前記第1貫通導体の一方端と前記第2貫通導体の一方端とを接続する第1導体パターンと、
 前記素体の第2主面に設けられ、前記第1貫通導体の他方端と前記第2貫通導体の他方端と前記プリント配線板の前記層間導体の前記露出部とを接続する第2導体パターンと、
を備え、
 前記第1導体パターンと、前記第2導体パターンと、前記第1貫通導体と、前記第2貫通導体と、を含むコイルアンテナを構成し、
 前記RFIC素子は、前記プリント配線板の前記層間導体を介して、前記第2導体パターンに接続されている。
 第13の態様に係る樹脂成型体は、無線通信デバイスを埋め込んだ樹脂成型体であって、前記無線通信デバイスは、
 一方主面に搭載されたRFIC素子、および、前記一方主面から他方主面に延び、前記RFIC素子に接続された層間導体を備えたプリント配線板と、
 前記プリント配線板の前記一方主面および前記他方主面よりも大きな面積の互いに対向する第1主面及び第2主面を有し、前記プリント配線板の前記層間導体が前記第2主面の入出力端子と接続している前記プリント配線板を埋設した素体と、
 前記素体の前記第1主面と前記第2主面とに接する端面に沿って前記第1主面から前記第2主面まで貫通し、前記端面に沿った切断面を有する第1貫通導体及び第2貫通導体と、
 前記素体の第1主面に設けられ、前記第1貫通導体の一方端と前記第2貫通導体の一方端とを接続する第1導体パターンと、
 前記素体の第2主面に設けられ、前記第1貫通導体の他方端と前記第2貫通導体の他方端と前記入出力端子とを接続する第2導体パターンと、
を備え、
 前記第1導体パターンと、前記第2導体パターンと、前記第1貫通導体と、前記第2貫通導体と、を含むコイルアンテナを構成し、
 前記RFIC素子は、前記プリント配線板の前記層間導体を介して、前記第2導体パターンに接続されている。
 以下、実施の形態に係る無線通信デバイス及びその製造方法、並びに、該無線通信デバイスを埋設した樹脂成型体について、添付図面を参照しながら説明する。なお、図面において実質的に同一の部材については同一の符号を付している。
(実施の形態1)
 図1は、実施の形態1に係る無線通信デバイス20の内部構成を示す概略斜視図である。図2は、図1の無線通信デバイス20の底面図である。図3は、図1の無線通信デバイス20の等価回路図である。なお、図1では、実施の形態の理解を容易にするために直交座標系(x-y-z座標系)を示しているが、これは発明を限定するものではない。また、図1では、内部構成が理解しやすいように素体11を透過させて示している。
 この無線通信デバイス20は、HF帯RFIDタグとして構成されており、RFIC素子1を有するプリント配線板3と、プリント配線板3を埋設した素体11と、素体11の互いに対向する第1主面21aから第2主面21bにわたる端面に沿った切断面を有する第1及び第2貫通導体14、15と、素体11の第1及び第2主面21a、21bに設けられた第1及び第2導体パターン16、17と、を備える。第1貫通導体14と、第2貫通導体15と、第1導体パターンと、第2導体パターンと、によってコイルアンテナ22を構成している。RFIC素子1は、プリント配線板3の層間導体4を介して、第2導体パターン17に接続されている。また、図3の等価回路図に示すように、この無線通信デバイス20は、RFIC素子1にコイルアンテナ22と、キャパシタ2a、2bとが接続され、所定の共振周波数を有するLC共振回路を構成している。キャパシタ2a、2bは、一方が粗調整用、他方が微調整用であってもよい。なお、キャパシタ2a、2bは2個でなくともよく、1個でもよい。
 この無線通信デバイス20では、特に、素体11に設けた貫通孔12内に第1及び第2貫通導体14、15を形成している。そこで、たとえ小径でアスペクト比の大きな第1及び第2貫通導体14、15であっても、高精度かつ高信頼性に形成できる。
 また、第2導体パターン17は、素体11とプリント配線板3とを同時に平面研磨し、各柱状貫通導体10の頭出しおよび層間導体4の頭出しを行っているので、各柱状貫通導体10および層間導体4と第2導体パターン17との接続信頼性を確保しやすい。
 さらに、RFIC素子1は、あらかじめ素体11に埋め込んであるので、RFIC素子1を実装するための熱処理時にコイルアンテナがダメージを受けることはない。これによって無線通信デバイス20としての信頼性を確保できる。また、半導体集積回路素子であるRFIC素子1は、プリント配線板3と素体11とによって囲まれているため、このデバイスを樹脂成型体に埋め込む際の熱に対する高い信頼性を確保できる。
 また、この無線通信デバイス20によれば、素体11内にRFIC素子1を内蔵し、素体11の周囲にコイルアンテナが巻回されている。この場合、コイルアンテナを構成する第1及び第2貫通導体14、15は、元の柱状貫通導体10を分割して形成している。そのため、第1及び第2貫通導体14、15は、素体11の端面22a、22bに沿って設けられている。そのため、コイルアンテナのコイル径は素体11の開口と実質的に同程度とすることができ、素体サイズを最大限利用した無線通信デバイスを構成できる。そこで、小型であるにもかかわらず、通信距離を大きくできる。特に、素体(樹脂ブロック)11が磁性材料入りであっても、端面でのシールドの影響を受けることのない開磁路型のコイルアンテナを形成できる。
 コイルアンテナを構成するパターンのうち、素体11を貫く層間パターン(厚み方向のパターン)である第1及び第2貫通導体14、15は、隣り合った2つの個片領域の境界にわたる共通の柱状貫通導体10を分割したものである。つまり、層間パターンは、2つの個片領域で共通の柱状金属を利用しており、しかも、一本の細長い貫通金属である。このため、多層膜での積みズレを考慮する必要はなく、パターン間でのショートのリスクも小さいので、狭ギャップでアスペクト比の大きな層間パターン(第1及び第2貫通導体14、15)を形成できる。なお、この場合、第1及び第2貫通導体14、15は、素体11の端面22a、22bに沿った切断面を有する。
 以下に、この無線通信デバイス20を構成する構成部材について説明する。
 <プリント配線板>
 プリント配線板3は、その一方主面に搭載されたRFIC素子1と、一方主面から他方主面に延び、RFIC素子1に接続された層間導体4とを有する。また、コイルアンテナとの共振回路を構成するためにキャパシタ2a、2bを含んでもよい。プリント配線板3の一方主面には実装用ランドや引き回しパターンが形成されているが、他方主面には実装用ランドや引き回しパターンはない。なお、プリント配線板3の内部には層間導体(スルーホール導体)4を有している。層間導体4は、プリント配線板3の側面に設けられていてもよい。
 また、プリント配線板3は、他方主面が第2主面に面しており、プリント配線板3の層間導体4が素体11の第2主面への露出部を有するように素体11に埋設されている。
 なお、プリント配線板3の他方主面は、素体11の第2主面21bに含まれるようにプリント配線板3は素体11に埋設されていてもよい。ここで、「プリント配線板3の他方主面は、素体11の第2主面21bに含まれる」とは、プリント配線板3の他方主面より素体11の第2主面21bのほうが大きいことを意味する。また、プリント配線板3の他方主面は、素体11の第2主面21bと面一(同一平面)であってもよい。このプリント配線板3はFR4に代表される熱伝導性の小さな樹脂基板であることが好ましい。
 また、プリント配線板3は、他方主面が素体11の第2主面に面している場合に限られない。例えば、プリント配線板3は、他方主面が素体11の第2主面に対向していてもよい。この場合、プリント配線板3は、層間導体4が素体11の第2主面の入出力端子と接続するように、素体11に埋設されていてもよい。なお、層間導体4と素体11の第2主面の入出力端子との接続は、例えば、金属ピン等の金属柱状体によって行ってもよい。
 <素体>
 素体11は、互いに対向する第1主面21a及び第2主面21bを有する。素体11は、例えば、矩形状であってもよい。図1では、第1主面21a及び第2主面21bは、素体11の互いに平行な2枚のxy平面に相当する。
 また、素体11は、個片領域ごとに分割した際の切断面からなる端面22a、22bを有する。端面22a、22bは、互いに平行な2枚のyz平面からなる側面に対応する。端面22a、22bには、後述する貫通導体10を分割して得られる第1及び第2貫通導体14、15が配置されている。そこで、端面22a、22bには、凹部が設けられており、凹部には第1及び第2貫通導体14、15が配置されている。
 また、素体11は、プリント配線板3を埋設している。特に、プリント配線板3の一方主面の素体11は、プリント配線板3の一方主面および他方主面よりも大きな面積の第1主面21aおよび第2主面21bを有している。また、素体11の第2主面21bは、プリント配線板3の他方主面を含む。
 素体11は、例えば、熱硬化性樹脂を硬化して形成してもよい。素体11は、エポキシ樹脂に代表される熱伝導性の小さな樹脂ブロックであることが好ましい。また、素体11は、コイルアンテナの内側となる部分に磁性体コアを含んでもよい。さらに、素体11は、磁性体がバインダ中に分散している複合磁性体、特に、磁性体のうち磁性金属粉がバインダ中に分散しているメタルコンポジット材からなる圧粉成形体によって構成されていてもよい。あるいは、バインダ(樹脂)を含まず、磁性体が、その表面の酸化膜を介して接触するように成形された圧粉成形体であってもよい。この場合、磁性体間の酸化膜が互いにつながっていてもよい。さらに酸化膜の結晶が連続的につながっていてもよい。磁性金属粉としては、例えば、Fe系磁性金属粉である。バインダは、例えばエポキシ樹脂である。なお、磁性体として、Fe系磁性金属粉に限定するものではない。例えば、磁性体としてフェライト粉末を用いてもよい。
 <コイルアンテナ>
 コイルアンテナは、素体11の第1及び第2主面21a、21bを貫通する第1及び第2貫通導体14、15と、素体11の第1及び第2主面21a、21bに設けられた第1及び第2導体パターン16,17とによって構成されている。具体的には、コイルアンテナは、z軸方向に沿って延在する第1貫通導体14と、x軸方向に沿って延在する第1導体パターン16と、z軸方向に沿って延在する第2貫通導体15と、x軸方向に沿って延在する第1導体パターン16と、がヘリカル状に接続されて構成されている。なお、コイルアンテナの巻回軸は、y軸である。以下に、コイルアンテナを構成する各部材について説明する。
  <第1貫通導体及び第2貫通導体>
 第1貫通導体14及び第2貫通導体15は、素体11の端面に沿って第1主面21aから第2主面21bまで貫通する導電性材料からなる。この第1貫通導体14は、素体11の端面22aに沿って第1主面21aの一端から第2主面21bの一端をz軸方向に沿って貫通する。第2貫通導体15は、素体11の端面22bに沿って第1主面21aの他端から第2主面21bの他端をz軸方向に沿って貫通する。第1貫通導体14及び第2貫通導体15は、それぞれ一つの柱状貫通導体10を分割して形成されているので、端面22a、22bに切断面を露出している。また、第1貫通導体14及び第2貫通導体15は、端面22a、22bから素体11の内部への凹部を有してもよい。
 導電性材料としては、銅、銀、金、アルミニウム錫等の金属、又は、その合金、又は、これらのペースト材料であってもよい。
 第1貫通導体14及び第2貫通導体15は、例えば、素体11の第1主面21aから第2主面21bに至る孔12に、導電性ペースト8を充填して形成された柱状貫通導体10を分割することによって形成してもよい。あるいは、めっきによって孔12の内部に導電性材料を設けることによって柱状貫通導体を形成し、分割してもよい。さらに、孔12を設けることに代えて、素体を形成する前にあらかじめプリント配線板3の間に金属ピンを配列してもよい。この場合、その後に素体11に金属ピンを埋設することによって金属ピンからなる柱状貫通導体10とし、この金属ピンを分割して第1及び第2貫通導体14、15としてもよい。
 なお、第1貫通導体14及び第2貫通導体15は、素体11の第1主面21aから第2主面21bに至るz軸方向の長さを有する。第1貫通導体14及び第2貫通導体15の長さは、素体11のy軸方向の長さ(ブレイクライン9の長さ、個片領域の境界の長さ)より長くなるようにする。これによって、素体11を貫く互いに直交する3つの方向のうちでより長い方向の貫通導体を選択できる。
 このように孔12の内部に導電性材料を設ける、あるいは、金属ピンによって第1及び第2貫通導体14、15を形成しているので、多層膜の層間導体を複数接続する場合よりも小径でアスペクト比の大きな層間パターン(貫通導体)を高精度かつ高信頼性のもとに形成できる
  <第1導体パターン>
 第1導体パターン16は、素体11の第1主面21aに設けられ、第1貫通導体14の一方端と第2貫通導体15の一方端とをx軸方向に沿って接続している。具体的には、一対の第1貫通導体14の一方端と第2貫通導体15の一方端とを接続する。この場合、ヘリカル状のコイルアンテナを構成するように第1導体パターン16を形成する。
  <第2導体パターン>
 第2導体パターン17は、素体11の第2主面21bに設けられ、第1貫通導体14の他方端と第2貫通導体15の他方端とプリント配線板3の層間導体4の露出部とをx軸方向に沿って接続している。具体的には、第1導体パターン16と同様に、一対の第1貫通導体14の他方端と第2貫通導体15の他方端とを接続する。さらに、一つの第1貫通導体14の他方端とプリント配線板3の層間導体4の露出部の一方とをx軸方向に沿って接続すると共に、一つの第2貫通導体15の他方端とプリント配線板3の層間導体4の露出部の他方とをx軸方向に沿って接続する。この場合、ヘリカル状のコイルアンテナを構成するように第2導体パターン17を形成する。
 なお、上記のようにプリント配線板3の層間導体4と素体11の第2主面の入出力端子とを金属柱状体によって接続している場合には、第2導体パターンは、第1貫通導体14の他方端と第2貫通導体15の他方端と入出力端子とを接続する。
<無線通信デバイスの製造方法>
 この無線通信デバイスの製造方法では、RFIC素子1を搭載したプリント配線板3と、プリント配線板3を埋設した素体11と、RFIC素子1に接続されており、素体11の周囲に巻回されたコイルアンテナと、を有する無線通信デバイス20を製造する。この製造方法は、およそ以下の工程を含む。
(a)一方主面に搭載されたRFIC素子1、および、一方主面から他方主面に延び、RFIC素子1に接続された層間導体4をそれぞれ備えた2つのプリント配線板3を用意する。なお、プリント配線板3は、2つでなく、3つ以上であってもよい。
(b)2つのプリント配線板3を互いに離間させて、隣接する2つの個片領域に各プリント配線板3をそれぞれ配置する(図4)。また、複数のプリント配線板3をライン状又はマトリクス状に配置してもよい。
(c)互いに対向する第1主面21a及び第2主面21bを有し、各プリント配線板3の層間導体4が第2主面21bへの露出部を有するように、2つのプリント配線板3を素体11に埋設する(図5)。
 なお、プリント配線板3の層間導体4を素体11の第2主面21bへの露出部とすることなく、素体11内に埋設し、層間導体4を素体11の第2主面21bの入出力端子と接続するように構成してもよい。この場合、層間導体4と素体11の第2主面の入出力端子との接続は、例えば、金属ピン等の金属柱状体によって行ってもよい。
(d)2つの個片領域の境界にわたって素体11の第1主面21aから第2主面21bに至る複数の柱状貫通導体10を形成する(図6、図7)。
(e)素体11の第1主面21aに、複数の柱状貫通導体10の一方端を接続する第1導体パターン16を形成する。さらに、第2主面21bに、複数の柱状貫通導体10の他方端と各プリント配線板3の層間導体4の露出部とを接続する第2導体パターン17を形成する(図8、図9、図10、図11)。
 なお、上記のようにプリント配線板3の層間導体4と素体11の第2主面の入出力端子とを金属柱状体によって接続している場合には、第1貫通導体14の他方端と第2貫通導体15の他方端と入出力端子とを接続する第2導体パターンを形成する。
(f)複数の柱状貫通導体10と第1及び第2導体パターン16、17と素体11とを、各個片領域ごとに分割する。これによって、分割した各個片領域ごとに、RFIC素子1と、分割した第1導体パターン16と、分割した柱状貫通導体10と、分割した第2導体パターン17と、を含み、RFIC素子1に接続されたコイルアンテナと、を含む無線通信デバイス20を形成する。
 さらに、この無線通信デバイスの製造方法の詳細について、図4乃至図14を用いて説明する。
(1)一方主面にRFIC素子1及びキャパシタ2a、2bを実装してなるプリント配線板(PCB)3を複数用意する(図4)。各プリント配線板3の一方主面には実装用ランドや引き回しパターンが形成されているが、他方主面には実装用ランドや引き回しパターンはない。なお、プリント配線板3の内部には層間導体(スルーホール導体)4を有している。層間導体4は、プリント配線板3の側面に設けられていてもよい。なお、図4では2つのプリント配線板3を用意しているが、2つ以上を用意してもよい。
(2)この2つのプリント配線板3を台座6の離間した2箇所(個片領域)にそれぞれ固定する(図4)。台座6には接着層が形成してある。なお、台座6は、樹脂基板を用いることができる。プリント配線板3を台座6に固定する際にはプリント配線板3のRFIC素子1等が実装された一方主面と対向する他方主面を台座に対向させるようにして固定する。なお、複数のプリント配線板3をライン状又はマトリクス状に配置してもよい。また、複数のプリント配線板が共通の基板上にライン状に設けられた一軸集合基板を用いる場合には、一軸集合基板の延在方向を各コイルアンテナの巻回軸に沿った方向に合わせるように配置すればよい。
(3)2つのプリント配線板3を埋設するように素体11を形成する(図5)。素体11としては、例えば、熱硬化性樹脂を塗布、硬化することによって形成できる。なお、半硬化状態(Bステージ状態)の樹脂シートを被せて、その後、硬化して素体11を形成してもよい。インモールド成型によって素体11を形成してもよい。素体11は、樹脂ブロックであってもよい。また、プリント配線板3の上部に磁性体コアを含む素体11を形成してもよい。さらに、バインダ中に磁性体粉末を分散させた複合磁性体、特に、磁性体のうち磁性金属粉がバインダ中に分散しているメタルコンポジット材からなる素体(圧粉成形体)を形成してもよい。あるいは、バインダ(樹脂)を用いないで、磁性体の表面の酸化膜を介して各磁性体が接触する圧粉成形体からなる素体11を形成してもよい。磁性金属粉としては、例えば、Fe系磁性金属粉である。バインダは、例えばエポキシ樹脂である。なお、磁性体として、Fe系磁性金属粉に限定するものではない。例えば、磁性体としてフェライト粉末を用いてもよい。
(4)素体11の所定位置に複数の孔をあける(図6)。具体的には、2つの個片領域の境界(ブレイクライン9に対応する。)にわたる箇所に第1主面21aから第2主面21bに至る孔12をあける。孔12は、素体11を貫通し、台座6にまで至るように形成する。孔あけ加工は、例えば、レーザ加工によって行うことができる。あるいは、ドリル加工、パンチング加工によって行ってもよい。孔は台座6を貫通してもよい。なお、レーザ加工の場合、形成される孔12にはテーパが付きやすいが、必ずしもテーパが付かなくてもよい。また、孔12は台座6を貫通してもよい。孔12は、後の分割時のブレイクライン9(図12、図13)に沿ってほぼ直線状に配列させておく。
 なお、孔12は、ブレイクライン9を跨ぐように形成する。また、孔12の断面形状は、例えば矩形状である。断面を矩形状とすることによって、孔12に導電性材料を充填して形成した柱状貫通導体10をブレイクライン9に沿って分割した際に、ブレイクライン9が柱状貫通導体10の中心からズレを生じた場合にも断面が実質的に変化しない。この孔12は、プリント配線板3の外側部分に形成するので、つまりプリント配線板3に至る孔を形成するわけではないので、孔あけ加工にともなうプリント配線板3、さらにはRFIC素子等の実装部品の受けるダメージは実質的に無く、テーパ量が小さく、アスペクト比の大きな孔を容易に形成することができる。
(5)孔12の内部に、銀や銅を主成分とする金属粉末を含有する導電性ペースト8を充填する(図7)。このとき、孔12の内面だけでなく素体11の上面にも導電性ペースト8がきても構わない。その後、熱処理して導電性ペースト8を硬化(金属化)させて、柱状貫通導体10を形成する。
 なお、孔12の内部への導電性ペースト8を充填することに代えて、めっきによって柱状貫通導体を形成してもよい。この場合には、台座6を貫通する孔12(貫通孔)を形成し、素体及び貫通孔の全面にめっきを行って柱状貫通導体を形成してもよい。具体的には、まず、全面に無電解めっきをしてから、その後、これをめっき浴に浸漬することによって全面に電解めっきを行う。最初に無電解メッキを行うことによって素体11及び孔12の全体にわたってめっきを行うことができる。また、その後に電解めっきを行うことでめっき膜厚を厚くできる。貫通孔12の内部のめっき膜は、貫通孔12の内部の全部にわたって充填されていてもよい(フィルドビア型めっき)し、貫通孔12の内周面に沿っためっき膜が形成されていてもよい(スルーホール型めっき)。また、全面にめっき膜を形成した場合、素体11の上下面に形成された全面のめっき膜を除去せずに、後述の第1導体パターン16及び第2導体パターン17の形成に利用してもよい。
 また、金属ピンによって柱状貫通導体を構成してもよい。この場合には、素体を形成する前にあらかじめ金属ピンを2つの個片領域の境界に立てておき、その後、金属ピンを埋設するように素体を形成して柱状貫通導体を形成してもよい。
(6)素体11の上下面を所定の研磨位置(7a、7b)まで表面研磨する(図8)。表面研磨は、例えば、バフやスクライビングによって行ってもよい。下面(台座側)は、台座6を取り外してから研磨する。あるいは台座6ごと研磨してもよい。下面研磨では、プリント配線板3も同時に研磨する。これにより層間導体4の頭出しが行われる。なお、素体11の上面は、素体11の上面が平坦であれば研磨する必要は無い。同様に、素体11の下側は、素体11およびプリント配線板3の下面が平坦であって、層間導体4がプリント配線板3の下面に露出されていれば、研磨する必要は無い。
 研磨後、柱状貫通導体10は、上面7a及び下面7bに露出した状態になる(図9、図10)。これによって上下面を平坦化できると共に、柱状貫通導体10の頭出しができる。
(7)上面7aに複数の柱状貫通導体10の一方端同士を接続する第1導体パターン16を形成する。さらに、下面7bに、複数の柱状貫通導体10の他方端同士、ならびに柱状貫通導体10の他方端と各プリント配線板3の層間導体4の露出部とを接続する第2導体パターン17を形成する(図11)。第1導体パターン16及び第2導体パターン17は、めっき及び露光・現像によって形成してもよい。あるいは、印刷パターンによって形成してもよい。さらに、印刷パターンとめっきとを組み合わせて形成してもよい。また、上面7a及び下面7bにそれぞれ金属箔を貼り付け、エッチングによって第1導体パターン16及び第2導体パターン17を形成してもよい。
(8)最後に、2つの個片領域の境界に対応するブレイクライン9に沿って各プリント配線板3の間の複数の柱状貫通導体10と第1及び第2導体パターン16、17と素体11とを分割する(図12、図13、図14)。ブレイクライン9は、2つの個片領域の境界に対応しており、各プリント配線板3を結ぶ直線に垂直な方向(X方向及びY方向に)に沿って延在する。これによって、分割した素体11ごとに、RFIC素子1と、素体11を巻回するコイルアンテナとを有する各無線通信デバイス20が得られる。コイルアンテナは、分割した第1導体パターン16と、分割した柱状貫通導体からなる第1及び第2貫通導体14、15と、分割した第2導体パターン17と、によって構成される。また、コイルアンテナは、RFIC素子1に接続されている。
 なお、全面に保護層(樹脂層)を設けてもよい。
 以上の工程によって、無線通信デバイス20を得ることができる。この無線通信デバイスの製造方法によれば、コイルアンテナを構成する小径でアスペクト比の大きな層間パターンを高精度かつ高信頼性のもとに形成できる。
(実施の形態2)
 図15は、実施の形態2に係る無線通信デバイス付き物品30の構成を示す概略斜視図である。この無線通信デバイス付き物品30は、樹脂成型によるミニチュアカー等の玩具である。この無線通信デバイス付き物品30は、無線通信デバイス20が埋設された「樹脂成型品」に該当する。
 なお、この無線通信デバイス20は、実施の形態1に係る無線通信デバイス20と実質的に同じである。
 この無線通信デバイス付き物品30は、例えば、上記樹脂成型品用の金型内に無線通信デバイス20が固定された状態でエポキシ樹脂等の成型用樹脂を射出成型することによって形成できる。
 この無線通信デバイス付き物品30は、安定した接続を有するコイルアンテナを備える無線通信デバイス20を埋設している。また、RFIC素子1はプリント配線板と素体との間に配置されている。そこで、樹脂成型時における高温に曝されても無線通信デバイス20の損傷の発生を抑制できる。
(実施の形態3)
<無線通信デバイスの製造方法>
 実施の形態3に係る無線通信デバイスの製造方法は、実施の形態1に係る無線通信デバイスの製造方法と対比すると、台座6とその上に配置された連続するプリント配線板3の上に複数の個片領域を設けている点で相違する。つまり、個片領域ごとに個別のプリント配線板を設けるのではなく、一枚のプリント配線板3の上に複数の個片領域を配置していることを特徴としている。実施の形態3に係る無線通信デバイスの製造方法について、図16から図27を用いて説明する。
 この無線通信デバイスの製造方法では、RFIC素子1を搭載したプリント配線板3と、プリント配線板3を埋設した素体11と、RFIC素子1に接続されており、素体11の周囲に巻回されたコイルアンテナと、を有する無線通信デバイス20を製造する。この製造方法は、およそ以下の工程を含む。
(a)連続するプリント配線板3の上に、隣接する2つの個片領域において、RFIC素子1、および、一方主面から他方主面に延び、RFIC素子1に接続された層間導体4をそれぞれ設ける。また、プリント配線板3には、複数の個片領域をライン状又はマトリクス状に配置してもよい。
(b)台座6の上に、2以上の個片領域が設けられた上記プリント配線板3を配置する(図16、図17)。
(c)互いに対向する第1主面及び第2主面を有し、各プリント配線板3の層間導体4が第2主面への露出部を有するように、プリント配線板3を素体11に埋設する(図18)。
 なお、プリント配線板3の層間導体4を素体11の第2主面への露出部とすることなく、素体11内に埋設し、層間導体4を素体11の第2主面の入出力端子と接続するように構成してもよい。この場合、層間導体4と素体11の第2主面の入出力端子との接続は、例えば、金属ピン等の金属柱状体によって行ってもよい。
(d)2つの個片領域の境界にわたって素体11の第1主面から第2主面に至る複数の柱状貫通導体10を形成する(図19、図20)。
(e)素体11の第1主面に、複数の柱状貫通導体10の一方端を接続する第1導体パターン16を形成する。さらに、第2主面に、複数の柱状貫通導体10の他方端と各プリント配線板3の層間導体4の露出部とを接続する第2導体パターン17を形成する(図21、図22、図23、図24)。
 なお、上記のようにプリント配線板3の層間導体4と素体11の第2主面の入出力端子とを金属柱状体によって接続している場合には、第1貫通導体14の他方端と第2貫通導体15の他方端と入出力端子とを接続する第2導体パターンを形成する。
(f)複数の柱状貫通導体10と第1及び第2導体パターン16、17と素体11とを、各個片領域ごとに分割する。これによって、分割した各個片領域ごとに、RFIC素子1と、分割した第1導体パターン16と、分割した柱状貫通導体10と、分割した第2導体パターン17と、を含み、RFIC素子1に接続されたコイルアンテナと、を含む無線通信デバイス20を形成する。
 さらに、この無線通信デバイスの製造方法の詳細について、図16乃至図27を用いて説明する。
(1)一方主面に個片領域ごとにRFIC素子1及びキャパシタ2a、2bを実装してなるプリント配線板(PCB)3を用意する(図16、図17)。プリント配線板3の一方主面には実装用ランドや引き回しパターン等の面内導体5が形成されているが、他方主面には実装用ランドや引き回しパターンはない。なお、プリント配線板3の内部には層間導体(スルーホール導体)4を有している。層間導体4は、プリント配線板3の側面に設けられていてもよい。なお、図16ではプリント配線板3上に2つの個片領域を設けているが、2つ以上の個片領域を設けてもよい。
(2)このプリント配線板3を台座6に固定する(図16、図17)。台座6には接着層が形成してある。なお、台座6は、樹脂基板を用いることができる。プリント配線板3を台座6に固定する際にはプリント配線板3のRFIC素子1等が実装された一方主面と対向する他方主面を台座に対向させるようにして固定する。なお、図17に示すようにプリント配線板3には複数の個片領域をライン状又はマトリクス状に配置してもよい。また、複数の個片領域が共通のプリント配線板3上にライン状に設けられた一軸集合基板を用いる場合には、一軸集合基板の延在方向を各コイルアンテナの巻回軸に沿った方向に合わせるように配置すればよい。
(3)プリント配線板3を埋設するように素体11を形成する(図18)。素体11としては、例えば、熱硬化性樹脂を塗布、硬化することによって形成できる。なお、半硬化状態(Bステージ状態)の樹脂シートを被せて、その後、硬化して素体11を形成してもよい。インモールド成型によって素体11を形成してもよい。素体11は、樹脂ブロックであってもよい。また、プリント配線板3の上部に磁性体コアを含む素体11を形成してもよい。さらに、バインダ中に磁性体粉末を分散させた複合磁性体、特に、磁性体のうち磁性金属粉がバインダ中に分散しているメタルコンポジット材からなる素体(圧粉成形体)を形成してもよい。あるいは、バインダ(樹脂)を用いないで、磁性体の表面の酸化膜を介して各磁性体が接触する圧粉成形体からなる素体11を形成してもよい。磁性金属粉としては、例えば、Fe系磁性金属粉である。バインダは、例えばエポキシ樹脂である。なお、磁性体として、Fe系磁性金属粉に限定するものではない。例えば、磁性体としてフェライト粉末を用いてもよい。
(4)素体11の所定位置に複数の孔をあける(図19)。具体的には、2つの個片領域の境界(ブレイクライン9に対応する。)にわたる箇所に素体11側から台座6側に至る孔12をあける。孔12は、素体11及びプリント配線板3を貫通し、台座6にまで至るように形成する。孔あけ加工は、例えば、レーザ加工によって行うことができる。あるいは、ドリル加工、パンチング加工によって行ってもよい。孔は台座6を貫通してもよい。なお、レーザ加工の場合、形成される孔12にはテーパが付きやすいが、必ずしもテーパが付かなくてもよい。また、孔12は台座6を貫通してもよい。孔12は、後の分割時のブレイクライン9(図25、図26)に沿ってほぼ直線状に配列させておく。
 なお、孔12は、ブレイクライン9を跨ぐように形成する。また、孔12の断面形状は、例えば矩形状である。断面を矩形状とすることによって、孔12に導電性材料を充填して形成した柱状貫通導体10をブレイクライン9に沿って分割した際に、ブレイクライン9が柱状貫通導体10の中心からズレを生じた場合にも断面が実質的に変化しない。この孔12は、プリント配線板3の外側部分に形成するので、つまりプリント配線板3に至る孔を形成するわけではないので、孔あけ加工にともなうプリント配線板3、さらにはRFIC素子等の実装部品の受けるダメージは実質的に無く、テーパ量が小さく、アスペクト比の大きな孔を容易に形成することができる。
(5)孔12の内部に、銀や銅を主成分とする金属粉末を含有する導電性ペースト8を充填する(図20)。このとき、孔12の内面だけでなく素体11の上面にも導電性ペースト8がはみ出してきても構わない。その後、熱処理して導電性ペースト8を硬化(金属化)させて、柱状貫通導体10を形成する。
 なお、孔12の内部への導電性ペースト8を充填することに代えて、めっきによって柱状貫通導体を形成してもよい。この場合には、台座6を貫通する孔12(貫通孔)を形成し、素体及び貫通孔の全面にめっきを行って柱状貫通導体を形成してもよい。具体的には、まず、全面に無電解めっきをしてから、その後、これをめっき浴に浸漬することによって全面に電解めっきを行う。最初に無電解メッキを行うことによって素体11及び孔12の全体にわたってめっきを行うことができる。また、その後に電解めっきを行うことでめっき膜厚を厚くできる。貫通孔12の内部のめっき膜は、貫通孔12の内部の全部にわたって充填されていてもよい(フィルドビア型めっき)し、貫通孔12の内周面に沿っためっき膜が形成されていてもよい(スルーホール型めっき)。また、全面にめっき膜を形成した場合、素体11の上下面に形成された全面のめっき膜を除去せずに、後述の第1導体パターン16及び第2導体パターン17の形成に利用してもよい。
 また、金属ピンによって柱状貫通導体を構成してもよい。この場合には、素体を形成する前にあらかじめ金属ピンを2つの個片領域の境界に立てておき、その後、金属ピンを埋設するように素体を形成することで、金属ピンからなる柱状貫通導体としてもよい。
(6)素体11の上下面を所定の研磨位置(7a、7b)まで表面研磨する(図21)。表面研磨は、例えば、バフやスクライビングによって行ってもよい。下面(台座側)は、台座6を取り外してから研磨する。あるいは台座6ごと研磨してもよい。下面研磨では、プリント配線板3も同時に研磨する。これにより層間導体4の頭出しが行われる。なお、素体11の上面は、素体11の上面が平坦であれば研磨する必要は無い。同様に、素体11の下側は、素体11およびプリント配線板3の下面が平坦であって、層間導体4がプリント配線板3の下面に露出されていれば、研磨する必要は無い。
 研磨後、柱状貫通導体10は、上面7a及び下面7bに露出した状態になる(図22、図23)。これによって上下面7a、7bを平坦化できると共に、柱状貫通導体10の頭出しができる。
(7)上面7aに複数の柱状貫通導体10の一方端同士を接続する第1導体パターン16を形成する。さらに、下面7bに、複数の柱状貫通導体10の他方端同士、ならびに柱状貫通導体10の他方端と各プリント配線板3の層間導体4の露出部とを接続する第2導体パターン17を形成する(図24)。第1導体パターン16及び第2導体パターン17は、めっき及び露光・現像によって形成してもよい。あるいは、印刷パターンによって形成してもよい。さらに、印刷パターンとめっきとを組み合わせて形成してもよい。また、上面7a及び下面7bにそれぞれ金属層を設け、エッチングによって第1導体パターン16及び第2導体パターン17を形成してもよい。
(8)最後に、2つの個片領域の境界に対応するブレイクライン9に沿って各個片領域の間の複数の柱状貫通導体10と第1及び第2導体パターン16、17と素体11とを分割する(図25、図26、図27)。ブレイクライン9は、2つの個片領域の境界に対応しており、プリント配線板3を結ぶ直線に垂直な方向(X方向及びY方向に)に沿って延在する。これによって、分割した素体11ごとに、RFIC素子1と、素体11を巻回するコイルアンテナとを有する各無線通信デバイス20aが得られる。コイルアンテナは、分割した第1導体パターン16と、分割した柱状貫通導体(第1及び第2貫通導体)10aと、分割した第2導体パターン17と、によって構成される。また、コイルアンテナは、RFIC素子1に接続されている。
 なお、全面に保護層(樹脂層)を設けてもよい。
 以上の工程によって、無線通信デバイス20aを得ることができる。この無線通信デバイスの製造方法によれば、コイルアンテナを構成する小径でアスペクト比の大きな層間パターンを高精度かつ高信頼性のもとに形成できる。
 なお、この実施の形態では樹脂成型による玩具の例を示したが、これに限定されるものではない。例えば、樹脂成型により無線通信デバイスを埋設した容器あるいは食器等であってもよい。特に消毒等のために高温下にさらされる物品に好適である。
 なお、本開示においては、前述した様々な実施の形態及び/又は実施例のうちの任意の実施の形態及び/又は実施例を適宜組み合わせることを含むものであり、それぞれの実施の形態及び/又は実施例が有する効果を奏することができる。
 本発明に係る無線通信デバイス及びその製造方法によれば、コイルアンテナを構成する層間パターンとして、小径でアスペクト比の大きな第1及び第2貫通導体を高精度かつ高信頼性のもとに形成できる。
1 RFIC素子
2 キャパシタ
3 プリント配線板
4 層間導体
5 面内導体(BGA)
6 台座
7a、7b 研磨面
8 導電性材料
9 ブレイクライン(切断面)
10 柱状貫通導体
10a 分割された柱状貫通導体
11 素体(樹脂ブロック)
12 孔(貫通孔)
14 第1貫通導体
15 第2貫通導体
16 第1導体パターン
17 第2導体パターン
20、20a 無線通信デバイス
22 コイルアンテナ
30 無線通信デバイス付き物品

Claims (13)

  1.  RFIC素子を搭載したプリント配線板と、前記プリント配線板を埋設した素体と、前記RFIC素子に接続されており、前記素体の周囲に巻回されたコイルアンテナと、を有する無線通信デバイスの製造方法であって、
     一方主面に搭載されたRFIC素子、および、前記一方主面から他方主面に延び、前記RFIC素子に接続された層間導体をそれぞれ備えた2つのプリント配線板を用意する工程と、
     前記2つのプリント配線板を互いに離間させて、隣接する2つの個片領域に各プリント配線板をそれぞれ配置する工程と、
     互いに対向する第1主面及び第2主面を有し、前記各プリント配線板の前記層間導体の前記第2主面への露出部を有するように、前記2つのプリント配線板を素体に埋設する工程と、
     前記2つの個片領域の境界にわたって前記素体の前記第1主面から前記第2主面に至る複数の柱状貫通導体を形成する工程と、
     前記素体の前記第1主面に、前記複数の柱状貫通導体の一方端を接続する第1導体パターンを形成すると共に、前記第2主面に、前記複数の柱状貫通導体の他方端と前記各プリント配線板の前記層間導体の前記露出部とを接続する第2導体パターンを形成する工程と、
     前記複数の柱状貫通導体と前記第1及び第2導体パターンと前記素体とを、前記各個片領域ごとに分割して、分割した前記各個片領域ごとに、前記RFIC素子と、分割した前記第1導体パターンと、分割した前記柱状貫通導体と、分割した前記第2導体パターンと、を含み、前記RFIC素子に接続されたコイルアンテナと、を含む無線通信デバイスを形成する工程と、
    を含む、無線通信デバイスの製造方法。
  2.  RFIC素子を搭載したプリント配線板と、前記プリント配線板を埋設した素体と、前記RFIC素子に接続されており、前記素体の周囲に巻回されたコイルアンテナと、を有する無線通信デバイスの製造方法であって、
     一方主面に搭載されたRFIC素子、および、前記一方主面から他方主面に延び、前記RFIC素子に接続された層間導体をそれぞれ備えた2つのプリント配線板を用意する工程と、
     前記2つのプリント配線板を互いに離間させて、隣接する2つの個片領域に各プリント配線板をそれぞれ配置する工程と、
     互いに対向する第1主面及び第2主面を有し、前記各プリント配線板の前記層間導体が前記第2主面の入出力端子と接続するように、前記2つのプリント配線板を素体に埋設する工程と、
     前記2つの個片領域の境界にわたって前記素体の前記第1主面から前記第2主面に至る複数の柱状貫通導体を形成する工程と、
     前記素体の前記第1主面に、前記複数の柱状貫通導体の一方端を接続する第1導体パターンを形成すると共に、前記第2主面に、前記複数の柱状貫通導体の他方端と前記入出力端子とを接続する第2導体パターンを形成する工程と、
     前記複数の柱状貫通導体と前記第1及び第2導体パターンと前記素体とを、前記各個片領域ごとに分割して、分割した前記各個片領域ごとに、前記RFIC素子と、分割した前記第1導体パターンと、分割した前記柱状貫通導体と、分割した前記第2導体パターンと、を含み、前記RFIC素子に接続されたコイルアンテナと、を含む無線通信デバイスを形成する工程と、
    を含む、無線通信デバイスの製造方法。
  3.  前記各プリント配線板を配置する工程において、前記各プリント配線板をマトリックス状に配列する、請求項1又は2に記載の無線通信デバイスの製造方法。
  4.  前記2つのプリント配線板を素体に埋設する工程において、磁性体粒子を含む素体を設ける、請求項1から3のいずれか一項に記載の無線通信デバイスの製造方法。
  5.  前記各個片領域ごとに素体を分割する工程において、前記素体の前記第1主面と前記第2主面との間の長さが、前記2つの個片領域の境界の長さより長くなるように前記素体を分割する、請求項1から4のいずれか一項に記載の無線通信デバイスの製造方法。
  6.  前記複数の柱状貫通導体を形成する工程は、
      前記2つの個片領域の境界にわたって前記素体の前記第1主面から前記第2主面に至る複数の貫通孔を形成する工程と、
      前記複数の貫通孔に複数の柱状貫通導体を形成する工程と、
    を含む、請求項1から5のいずれか一項に記載の無線通信デバイスの製造方法。
  7.  前記複数の貫通孔に複数の柱状貫通導体を形成する工程において、前記素体に形成された貫通孔内に導電性材料を充填して、前記柱状貫通導体を形成する、請求項6に記載の無線通信デバイスの製造方法。
  8.  前記複数の柱状貫通導体を形成する工程は、
      前記2つの個片領域の境界にわたって、前記素体の前記第1主面から前記第2主面に至る複数の金属ピンを設ける工程と、
      前記素体に金属ピンを埋設して、前記金属ピンからなる柱状貫通導体を形成する工程と、
    を含む、請求項1から5のいずれか一項に記載の無線通信デバイスの製造方法。
  9.  一方主面に搭載されたRFIC素子、および、前記一方主面から他方主面に延び、前記RFIC素子に接続された層間導体を備えたプリント配線板と、
     前記プリント配線板の前記一方主面および前記他方主面よりも大きな面積の互いに対向する第1主面及び第2主面を有し、前記プリント配線板の前記層間導体が前記第2主面への露出部を有するように、前記プリント配線板を埋設した素体と、
     前記素体の前記第1主面と前記第2主面とに接する端面に沿って前記第1主面から前記第2主面まで貫通し、前記端面に沿った切断面を有する第1貫通導体及び第2貫通導体と、
     前記素体の第1主面に設けられ、前記第1貫通導体の一方端と前記第2貫通導体の一方端とを接続する第1導体パターンと、
     前記素体の第2主面に設けられ、前記第1貫通導体の他方端と前記第2貫通導体の他方端と前記プリント配線板の前記層間導体の前記露出部とを接続する第2導体パターンと、
    を備え、
     前記第1導体パターンと、前記第2導体パターンと、前記第1貫通導体と、前記第2貫通導体と、を含むコイルアンテナを構成し、
     前記RFIC素子は、前記プリント配線板の前記層間導体を介して、前記第2導体パターンに接続されている、無線通信デバイス。
  10.  一方主面に搭載されたRFIC素子、および、前記一方主面から他方主面に延び、前記RFIC素子に接続された層間導体を備えたプリント配線板と、
     前記プリント配線板の前記一方主面および前記他方主面よりも大きな面積の互いに対向する第1主面及び第2主面を有し、前記プリント配線板の前記層間導体が前記第2主面の入出力端子と接続している前記プリント配線板を埋設した素体と、
     前記素体の前記第1主面と前記第2主面とに接する端面に沿って前記第1主面から前記第2主面まで貫通し、前記端面に沿った切断面を有する第1貫通導体及び第2貫通導体と、
     前記素体の第1主面に設けられ、前記第1貫通導体の一方端と前記第2貫通導体の一方端とを接続する第1導体パターンと、
     前記素体の第2主面に設けられ、前記第1貫通導体の他方端と前記第2貫通導体の他方端と前記入出力端子とを接続する第2導体パターンと、
    を備え、
     前記第1導体パターンと、前記第2導体パターンと、前記第1貫通導体と、前記第2貫通導体と、を含むコイルアンテナを構成し、
     前記RFIC素子は、前記プリント配線板の前記層間導体を介して、前記第2導体パターンに接続されている、無線通信デバイス。
  11.  前記素体の前記端面は、凹部が設けられ、前記凹部に前記第1主面から前記第2主面に貫通する前記第1貫通導体及び第2貫通導体が配置されている、請求項9又は10に記載の無線通信デバイス。
  12.  無線通信デバイスを埋め込んだ樹脂成型体であって、前記無線通信デバイスは、
     一方主面に搭載されたRFIC素子、および、前記一方主面から他方主面に延び、前記RFIC素子に接続された層間導体を備えたプリント配線板と、
     前記プリント配線板の前記一方主面および前記他方主面よりも大きな面積の互いに対向する第1主面及び第2主面を有し、前記プリント配線板の前記層間導体が前記第2主面への露出部を有するように、前記プリント配線板を埋設した素体と、
     前記素体の前記第1主面と前記第2主面とに接する端面に沿って前記第1主面から前記第2主面まで貫通し、前記端面に沿った切断面を有する第1貫通導体及び第2貫通導体と、
     前記素体の第1主面に設けられ、前記第1貫通導体の一方端と前記第2貫通導体の一方端とを接続する第1導体パターンと、
     前記素体の第2主面に設けられ、前記第1貫通導体の他方端と前記第2貫通導体の他方端と前記プリント配線板の前記層間導体の前記露出部とを接続する第2導体パターンと、
    を備え、
     前記第1導体パターンと、前記第2導体パターンと、前記第1貫通導体と、前記第2貫通導体と、を含むコイルアンテナを構成し、
     前記RFIC素子は、前記プリント配線板の前記層間導体を介して、前記第2導体パターンに接続されている、樹脂成型体。
  13.  無線通信デバイスを埋め込んだ樹脂成型体であって、前記無線通信デバイスは、
     一方主面に搭載されたRFIC素子、および、前記一方主面から他方主面に延び、前記RFIC素子に接続された層間導体を備えたプリント配線板と、
     前記プリント配線板の前記一方主面および前記他方主面よりも大きな面積の互いに対向する第1主面及び第2主面を有し、前記プリント配線板の前記層間導体が前記第2主面の入出力端子と接続している前記プリント配線板を埋設した素体と、
     前記素体の前記第1主面と前記第2主面とに接する端面に沿って前記第1主面から前記第2主面まで貫通し、前記端面に沿った切断面を有する第1貫通導体及び第2貫通導体と、
     前記素体の第1主面に設けられ、前記第1貫通導体の一方端と前記第2貫通導体の一方端とを接続する第1導体パターンと、
     前記素体の第2主面に設けられ、前記第1貫通導体の他方端と前記第2貫通導体の他方端と前記入出力端子とを接続する第2導体パターンと、
    を備え、
     前記第1導体パターンと、前記第2導体パターンと、前記第1貫通導体と、前記第2貫通導体と、を含むコイルアンテナを構成し、
     前記RFIC素子は、前記プリント配線板の前記層間導体を介して、前記第2導体パターンに接続されている、樹脂成型体。
PCT/JP2017/004419 2016-02-19 2017-02-07 無線通信デバイス及びその製造方法、並びに、樹脂成型体 WO2017141771A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017516534A JP6160796B1 (ja) 2016-02-19 2017-02-07 無線通信デバイス及びその製造方法、並びに、樹脂成型体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016030126 2016-02-19
JP2016-030126 2016-02-19

Publications (1)

Publication Number Publication Date
WO2017141771A1 true WO2017141771A1 (ja) 2017-08-24

Family

ID=59626086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004419 WO2017141771A1 (ja) 2016-02-19 2017-02-07 無線通信デバイス及びその製造方法、並びに、樹脂成型体

Country Status (1)

Country Link
WO (1) WO2017141771A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001005940A (ja) * 1999-06-18 2001-01-12 Shinko Electric Ind Co Ltd 半導体装置と半導体装置の製造方法
JP2006227788A (ja) * 2005-02-16 2006-08-31 Toppan Forms Co Ltd 非接触型データ受送信体
WO2008133018A1 (ja) * 2007-04-13 2008-11-06 Murata Manufacturing Co., Ltd. 磁界結合型アンテナ、磁界結合型アンテナモジュールおよび磁界結合型アンテナ装置、ならびにこれらの製造方法
JP2009099752A (ja) * 2007-10-17 2009-05-07 Kyushu Institute Of Technology 半導体パッケージ及びその製造方法
WO2009145218A1 (ja) * 2008-05-28 2009-12-03 株式会社村田製作所 無線icデバイス用部品および無線icデバイス
JP2013222264A (ja) * 2012-04-13 2013-10-28 Yoshikawa Rf Semicon Co Ltd 薄型アンテナコイル
JP5930137B1 (ja) * 2014-12-19 2016-06-08 株式会社村田製作所 無線icデバイス、樹脂成型体およびその製造方法
JP5958679B1 (ja) * 2014-08-27 2016-08-02 株式会社村田製作所 無線icデバイス、樹脂成型体およびコイルアンテナの製造方法
JP6008069B1 (ja) * 2015-03-06 2016-10-19 株式会社村田製作所 無線icデバイス、それを備えた樹脂成型体、それを備えた通信端末装置、及びその製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001005940A (ja) * 1999-06-18 2001-01-12 Shinko Electric Ind Co Ltd 半導体装置と半導体装置の製造方法
JP2006227788A (ja) * 2005-02-16 2006-08-31 Toppan Forms Co Ltd 非接触型データ受送信体
WO2008133018A1 (ja) * 2007-04-13 2008-11-06 Murata Manufacturing Co., Ltd. 磁界結合型アンテナ、磁界結合型アンテナモジュールおよび磁界結合型アンテナ装置、ならびにこれらの製造方法
JP2009099752A (ja) * 2007-10-17 2009-05-07 Kyushu Institute Of Technology 半導体パッケージ及びその製造方法
WO2009145218A1 (ja) * 2008-05-28 2009-12-03 株式会社村田製作所 無線icデバイス用部品および無線icデバイス
JP2013222264A (ja) * 2012-04-13 2013-10-28 Yoshikawa Rf Semicon Co Ltd 薄型アンテナコイル
JP5958679B1 (ja) * 2014-08-27 2016-08-02 株式会社村田製作所 無線icデバイス、樹脂成型体およびコイルアンテナの製造方法
JP5930137B1 (ja) * 2014-12-19 2016-06-08 株式会社村田製作所 無線icデバイス、樹脂成型体およびその製造方法
JP6008069B1 (ja) * 2015-03-06 2016-10-19 株式会社村田製作所 無線icデバイス、それを備えた樹脂成型体、それを備えた通信端末装置、及びその製造方法

Similar Documents

Publication Publication Date Title
JP4816647B2 (ja) 回路モジュールの製造方法および回路モジュール
KR101616625B1 (ko) 반도체 패키지 및 그 제조방법
KR101373540B1 (ko) 기판 내장용 전자 부품 및 부품 내장형 기판
JP4453702B2 (ja) 複合型電子部品及びその製造方法
CN108738233B (zh) 印刷布线基板和开关稳压器
US20150213946A1 (en) Printed wiring board
KR102186148B1 (ko) 임베디드 기판 및 임베디드 기판의 제조 방법
KR102080663B1 (ko) 전자소자 내장형 인쇄회로기판 및 그 제조방법
KR20160140184A (ko) 패키지 기판 및 그 제조 방법
US10237978B2 (en) Component built-in multilayer substrate fabricating method
WO2011102134A1 (ja) 部品内蔵基板
KR20140051692A (ko) 전자부품들이 구비된 기판구조 및 전자부품들이 구비된 기판구조의 제조방법
CN108811323B (zh) 印刷电路板及其制造方法
JP6187728B1 (ja) 無線通信デバイス、及びその製造方法
US9661759B2 (en) Printed circuit board and method of manufacturing the same
KR20160004157A (ko) 칩 내장형 기판 및 이의 제조 방법
WO2006011508A1 (ja) 複合型電子部品及びその製造方法
JP6648830B2 (ja) コイルモジュール
JP2015204428A (ja) プリント配線板及びプリント配線板の製造方法
JP6160796B1 (ja) 無線通信デバイス及びその製造方法、並びに、樹脂成型体
WO2017141597A1 (ja) 無線通信デバイス及びその製造方法、並びに、樹脂成型体
WO2017141771A1 (ja) 無線通信デバイス及びその製造方法、並びに、樹脂成型体
JP6135837B1 (ja) 無線通信デバイス及びその製造方法、並びに、樹脂成型体
US11145586B2 (en) Interposer and electronic device
US20210074474A1 (en) Method for manufacturing electronic-component

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017516534

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17753029

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17753029

Country of ref document: EP

Kind code of ref document: A1