WO2017135506A1 - 변위제어용 엘라스토머 댐퍼 - Google Patents

변위제어용 엘라스토머 댐퍼 Download PDF

Info

Publication number
WO2017135506A1
WO2017135506A1 PCT/KR2016/002752 KR2016002752W WO2017135506A1 WO 2017135506 A1 WO2017135506 A1 WO 2017135506A1 KR 2016002752 W KR2016002752 W KR 2016002752W WO 2017135506 A1 WO2017135506 A1 WO 2017135506A1
Authority
WO
WIPO (PCT)
Prior art keywords
connecting plate
plate
damping unit
ferromagnetic
plates
Prior art date
Application number
PCT/KR2016/002752
Other languages
English (en)
French (fr)
Inventor
허종완
김영찬
Original Assignee
인천대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인천대학교 산학협력단 filed Critical 인천대학교 산학협력단
Publication of WO2017135506A1 publication Critical patent/WO2017135506A1/ko

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • E01D19/04Bearings; Hinges
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • E04H9/0237Structural braces with damping devices
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/92Protection against other undesired influences or dangers
    • E04B1/98Protection against other undesired influences or dangers against vibrations or shocks; against mechanical destruction, e.g. by air-raids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/03Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using magnetic or electromagnetic means

Definitions

  • the present invention relates to an elastomer damper for displacement control, and more particularly, to suppress the fallout of the rubber base support or lead base support, while using the rubber base support or lead base support already installed in the structure as it is,
  • a displacement control elastomer damper configured to reinforce the maintenance aspect and the reuse side of the base bearing.
  • seismic reinforcement technology In the case of earthquakes, seismic reinforcement technology is commonly used to increase the resistance against earthquake loads in structures that do not have the existing seismic design. Early seismic reinforcement technology has the disadvantage of being uneconomical by increasing the stiffness or mass of the structure to absorb the earthquake load directly and resisting damage.
  • the Republic of Korea Utility Model Registration No. 408550 discloses a rubber bearing structure of a base isolation bridge bearing, and the Utility Model Publication No. 408550 has an upper plate on the bottom of the bridge deck to correspond to the lower plate installed on the upper part of the bridge.
  • the upper and lower joining plates are respectively installed at upper and lower ends of the rubber bearings interposed between the upper plate and the lower plate, and the upper and lower joining plates are joined to the bottom of the upper plate and the upper surface of the lower plate and fixed with bolts.
  • the support flange made smaller than the outer diameter of the rubber bearing is protruded by the outer circumference of the inner end of the upper and lower joining plates embedded in the rubber bearing so as to support the upper and lower edges of the rubber bearing in which shear deformation acts due to the generation of horizontal seismic force.
  • the Republic of Korea Utility Model Publication No. 360331 is lead-free seismic support
  • the registered Utility Model Publication No. 360331 is a rubber layer and steel plate alternately laminated between the upper and lower end steel sheet, in a direction perpendicular to the rubber layer and steel sheet
  • Lead-in is provided with an elastic body integrally formed while forming a hollow portion, the lead rod is pressed into the hollow portion of the elastic body and is formed in close contact with the inner circumferential surface of the elastic body defining the hollow portion to be installed between the upper and lower connecting plates
  • the volume Vl of the lead rod to be pressed into the hollow portion is applied by a predetermined intermediate component provided between the upper and lower end portions of the lead and the upper and lower connecting plates.
  • the intermediate parts are press-fitted in the range of 0.70 to 1.01.
  • An object of the present invention while using the rubber base plate or lead base plate already installed in the structure as it is while suppressing the fallout of the rubber base plate or lead base plate, and after the earthquake maintenance and reuse of the base plate It is to provide an elastomer damper for displacement control to be strengthened.
  • the object is, according to the present invention, a first connecting plate; A second connecting plate which is relatively moved in parallel with the first connecting plate when an external force is applied, and respectively provided on opposite sides of the first connecting plate; And a damping unit interposed between the first connecting plate and the second connecting plate, the damping unit absorbing energy during relative movement between the first connecting plate and the second connecting plate, wherein the damping unit is applied when an external force is applied.
  • a plurality of ferromagnetic plates spaced apart from each other in parallel with the first connecting plate and spaced apart from each other between the first connecting plate and the second connecting plate; And a plurality of magnetic bodies connected between the plurality of ferromagnetic plates by selective magnetization to restrain relative movement between the first connecting plate and the second connecting plate. Is achieved.
  • the magnetic body may be formed in a spherical shape, and the magnetic body may be formed to be coated with an elastic film that is elastically deformed by an external force.
  • the damping unit may include: a coil wound between the first connecting plate and the second connecting plate along a circumference of the ferromagnetic plate, and selectively applying a current to magnetize the magnetic body; A moving plate moving together with the first connecting plate when the first connecting plate and the second connecting plate are moved relative to each other; And a coupling member connecting the second connecting plate to the movable plate and absorbing energy by bending deformation during relative movement between the first connecting plate and the second connecting plate.
  • the first connecting plate has stepped portions formed on both sides of the moving plate, and between the stepped portion and the moving plate, a compression spring that absorbs energy by being compressed during relative movement between the first connecting plate and the second connecting plate. It may be made to be interposed each.
  • the rubber base support or lead base support already installed in the structure is used as it is.
  • a displacement damping elastomer damper configured to suppress the fallout of the rubber isolator or lead isolator, and to reinforce the maintenance aspect and reuse of the isolator after the earthquake.
  • FIG. 1 is a view showing an installation state of the elastomer damper for displacement control of the present invention.
  • FIG. 2 is a cross-sectional view of the displacement damper elastomer damper of FIG.
  • FIG. 3 is a view showing a deformation state in the axial direction of the displacement damping elastomer damper of FIG.
  • FIG. 4 is a graph showing a stress-strain hysteresis curve of the displacement damper elastomer damper of FIG. 1.
  • FIG. 5 and 6 are views showing another installation state of the displacement control elastomer damper of FIG.
  • first connecting plate 200 second connecting plate
  • 310 ferromagnetic plate 2: pillar
  • Elastomeric damper for displacement control of the present invention while using the rubber base support or lead base support already installed in the structure as it is, suppresses the fall of the rubber base support or lead base support, and after the earthquake, It is made to strengthen the reuse aspect.
  • FIG. 1 is a view showing an installation state of the displacement control elastomer damper of the present invention
  • FIG. 2 is a cross-sectional view of the displacement control elastomer damper of Figure 1
  • Figure 3 is a view showing a deformation state of the displacement control elastomer damper of Figure 1
  • Fig. 4 is a graph showing a stress-strain hysteresis curve of the displacement control elastomer damper of FIG. 1
  • FIGS. 5 and 6 are views showing another installation state of the displacement control elastomer damper of FIG.
  • the displacement damper elastomer damper 10 of the present invention is installed in addition to the rubber base bearing or lead base bearing already installed in the structure to eliminate the phenomenon of the rubber base plate or lead base plate. It is made to restrain, to strengthen the maintenance side of the structure and the reuse side of the base isolation after the earthquake, and comprises a first connecting plate 100, the second connecting plate 200 and the damping unit 300.
  • the first connecting plate 100 and the second connecting plate 200 are configured to move relative to each other in parallel with each other when the structure 1 is deformed. Are combined in different parts.
  • the direction in which the first connecting plate 100 and the second connecting plate 200 move relative to each other in the X direction and the direction from the first connecting plate 100 toward the second connecting plate 200 for easier understanding. It will be described by defining the Y direction and the direction perpendicular to the X direction and the Y direction, respectively, as the Z direction.
  • the first connecting plate 100 is coupled to the reinforcing connecting rod 1A of the bridge structure 1, and the second connecting plate 200 is illustrated as being connected to the upper end of the base isolation base P.
  • the structure 1 in which the elastomer damper 10 is installed includes all the building structures in which the base isolation support P is installed in addition to the bridge structure 1.
  • the use of the elastomeric damper 10 for displacement control of the present invention is not limited to the structure (1) in which the vibration isolation support (P) is installed, as shown in Figs. 5 and 6, in the column-beam structure (1) It may be installed in the connection structure of the brace 4.
  • elastomeric damper 10 for displacement control of the present invention can be further selected by a person skilled in the art in different structures, such as ramen structure, truss structure and wall structure.
  • the first connecting plate 100 and the second connecting plate 200 are each formed in a long plate shape in the X direction, and the second connecting plate 200 is the first connecting plate 100. It is provided on opposite sides with respect to each other.
  • the elastomer damper 10 of the present invention is mainly used to connect the base isolation base P of the structure 1 with the structure 1, in which case a pair of second connecting plates. 200 is coupled to the second connection member 210 is constrained relative movement of each other.
  • the first connecting plate 100 is coupled to the structure 1 by the first connecting member 120.
  • the damping unit 300 absorbs energy during X-direction relative movement between the first connecting plate 100 and the second connecting plate 200, and the first connecting plate 100. ) And the second connecting plate 200 are interposed therebetween.
  • the damping unit 300 includes a ferromagnetic plate 310, a moving plate 320, a coupling member 330, a magnetic body 340, a coil 350, and an elastic cover 360. It is composed.
  • the ferromagnetic plate 310 is configured to move relatively in the X direction in parallel with the first connecting plate 100 when an external force is applied, and a plurality of ferromagnetic plates 310 are provided between the first connecting plate 100 and the second connecting plate 200, respectively. .
  • the ferromagnetic plates 310 are spaced apart from each other in the Y direction between the first connecting plate 100 and the second connecting plate 200, and a space is formed between the plurality of ferromagnetic plates 310.
  • the ferromagnetic plates 310 adjacent to the second connecting plate 200 of the plurality of ferromagnetic plates 310 are fixed to the second connecting plate 200 by bolts B.
  • the ferromagnetic plate 310 is made of a ferromagnetic substance that is strongly magnetized in the direction of the magnetic field when a strong magnetic field is applied from the outside, such as an iron alloy.
  • the moving plate 320 is configured to move together with the first connecting plate 100 when the first connecting plate 100 and the second connecting plate 200 move relative to each other.
  • the moving plate 320 may be provided as a ferromagnetic material.
  • Steps 110 protruding toward the second connection plate 200 are formed on both sides of the moving plate 320, respectively, and the first connection plate 100 is the stepped part 110.
  • the stepped part 110 may be formed to be in close contact with both ends of the moving plate 320 (see FIG. 3 (a)), or may be formed to be spaced apart from both ends of the moving plate 320 (see FIG. 2). have.
  • the compression spring S is disposed between the stepped part 110 and the end of the moving plate 320. Each may be interposed.
  • the moving plate 320 and the first connecting plate 100 and the second connecting plate 200 may be moved relative to each other in the X direction. 2, the relative moving distance of the connecting plate 200 is reduced by the distance D, the deformation amount and the energy absorption amount of the damping unit 300 is reduced in proportion thereto.
  • the energy absorption amount of the damping unit 300 proportional to the distance D is absorbed in the form of elastic energy while the compression spring (S) is compressed during relative movement between the first connecting plate 100 and the second connecting plate 200, Accordingly, the relative moving distance between the first connecting plate 100 and the second connecting plate 200 increases by D, and the amount of energy absorption of the entire elastomer damper 10 is increased.
  • the coupling member 330 is a configuration that absorbs energy by bending deformation during relative movement between the first connecting plate 100 and the second connecting plate 200, and the second connecting plate 200
  • the moving plate 320 is provided in the form of a bar (bar) connected in the Y direction.
  • One end of the coupling member 330 is coupled to the first connecting plate 100, and the other end is coupled to the moving plate 320.
  • An end of the coupling member 330 may be coupled to the first connecting plate 100 and the moving plate 320 by welding, and then formed after forming a groove in the first connecting plate 100 and the moving plate 320.
  • the ends of the members 330 may be coupled to each other.
  • the distance between the first connecting plate 100 and the moving plate 320 is determined by the length of the coupling member 330.
  • the coupling member 330 is made of a relatively soft material such as lead (Pb), and as shown in Figure 3 (b) and 3 (c), the coupling member 330 is the first connecting plate 100 When the relative movement between the second connecting plate 200 and the both ends of the rotation is constrained in a deformed state to absorb the external force.
  • Pb lead
  • the magnetic body 340 is configured to connect between the plurality of ferromagnetic plates 310 by selective magnetization, and is made of a spherical ferromagnetic material. As shown in FIG. 2, the magnetic bodies 340 are provided in plurality each between the ferromagnetic plates 310.
  • the magnetic body 340 is covered with an elastic coating 341.
  • the elastic coating 341 is made of rubber, silicone or soft synthetic resin that is elastically deformed by external force.
  • the elastic coating 341 prevents slippage between the magnetic bodies 340 to prevent the ferromagnetic plates from the magnetic bodies 340.
  • the binding force between 310 is increased.
  • the plurality of ferromagnetic plates 310 into which the magnetic material 340 is inserted in each space are surrounded by a protective cover.
  • the protective cover is made of elastically deformed material such as rubber to surround the ferromagnetic plate 310.
  • the coil 350 is wound around the outer circumferential surface of the protective cover.
  • the coil 350 is configured to magnetize a plurality of magnetic bodies 340, and the periphery of the ferromagnetic plate 310 between the first connecting plate 100 and the second connecting plate 200. It is provided in the form wound along. Both ends of the coil 350 extend outward through holes formed in the elastic cover 360 to be connected to the controller C.
  • the elastic cover 360 wraps the coil 350 to protect it from the outside, and is made of a material that is elastically deformed. As shown in FIG. 2, the elastic cover 360 may not only surround the coil 350, but also accommodate the ferromagnetic plate 310 and the magnetic body 340 therein. The opened portion of the elastic cover 360 is attached to the moving plate 320.
  • the elastic cover 360 may be provided with a rubber magnet.
  • the controller C is configured to selectively apply current to the coil 350, and is installed at one side of the structure 1.
  • the control unit C includes a seismometer (not shown).
  • the controller C controls the magnitude of the current applied to the coil 350 according to the magnitude of the vibration detected by the seismic sensor.
  • the magnitude of the current applied to the coil 350 from the controller C increases in proportion to the magnitude of the vibration detected by the seismic sensor.
  • each ferromagnetic plate 310 is connected in a chain form.
  • the coil is not shown in detail in FIG. 3, it should be understood that the coil 350 is wound along the circumference of the ferromagnetic plate 310 between the first connecting plate 100 and the second connecting plate 200 as shown in FIG. 2. .
  • a plurality of magnetic bodies 340 connected in a chain form a coupling force proportional to the magnetic field strength
  • the first connecting plate 100 and the second connecting plate 200 is a plurality of magnetic bodies connected in a chain form
  • the relative movement in the X direction is constrained by 340.
  • the magnetization degree of the magnetic body 340 is proportional to the magnitude of the current flowing through the coil 350, adjusting the magnitude of the current changes the coupling force between the magnetic body 340 (and the coupling force between the magnetic body 340 and the ferromagnetic plate 310). Therefore, the force restraining relative movement between the first connecting plate 100 and the second connecting plate 200 may be changed.
  • the controller C applies a current to the coil 350 when the magnitude of the vibration detected by the seismic sensor exceeds a set value.
  • the magnitude of the vibration is from the small value to the first set value, the second set value and the third set value.
  • the controller C does not apply a current to the coil 350 when the vibration is lower than or equal to the first set value. That is, in the vibration below the first set value, the energy absorption due to the bending deformation of the coupling member 330 without restraining the relative rotation between the first connecting plate 100 and the second connecting plate 200 by the magnetic body 340. This damps vibrations.
  • the controller C applies a current of a first magnitude to the coil 350.
  • the first magnitude is an assumed current intensity for easy understanding and is intended to be referred to as the first magnitude, the second magnitude, and the third magnitude, from small magnitude.
  • the control unit C applies a current having a first magnitude to the coil 350
  • the plurality of magnetic bodies 340 are magnetized in proportion to the first magnitude, and the plurality of ferromagnetic plates 310 is provided.
  • the moving plate 320 is connected in a chain form.
  • the plurality of magnetic bodies 340 connected in a chain form a coupling force proportional to the strength of the magnetic field, and the first connecting plate 100 and the second connecting plate 200 are connected by a plurality of magnetic bodies 340 connected in a chain form. Relative movement in the X direction is suppressed.
  • the controller C applies a current of the second magnitude to the coil 350.
  • the plurality of magnetic bodies 340 are magnetized in proportion to the second size, the magnitude of the force that suppresses relative movement between the first connecting plate 100 and the second connecting plate 200 increases as a whole.
  • A1 represents the stress-strain hysteresis curve of the elastomer damper 10 when a first magnitude of current is applied to the coil 350
  • A2 represents an elastomer damper 10 when a second magnitude of current is applied to the coil 350.
  • A3 represents a stress-strain hysteresis curve of the elastomer damper 10 when a third magnitude of current is applied to the coil 350.
  • the first connecting plate 100 is connected to one brace through the first connecting member 120. It is connected to the end of 4), the second connecting plate 200 is connected to the end of the other brace 4 via the second connecting member 210.
  • the controller C increases or decreases the rigidity of the brace 4 by adjusting a current applied to the coil 350 through the wire W.
  • FIG. Unexplained symbol 5 denotes a brace plate.
  • one second connecting plate 200 is formed of the brace 4. It is connected to the end and the other second connecting plate 200 may be coupled to the beam 3 (or the pillar 2). At this time, the first connecting plate 100 is not constrained by the structure 1.
  • the second connecting plate 200 is relative to each other in a different direction based on the first connecting plate 100 by the relative movement of the beam 3 and the brace 4.
  • the pair of damping units 300 are deformed in the same shape and absorb external force.
  • the rubber base support or lead base support already installed in the structure is used as it is.
  • a displacement damping elastomer damper configured to suppress the fallout of the rubber isolator or lead isolator, and to reinforce the maintenance aspect and reuse of the isolator after the earthquake.
  • the displacement damper elastomer damper according to the present invention, by providing a damping unit for changing the stiffness of the external force by the magnetization of the magnetic material between the first connecting plate and the second connecting plate, the rubber base support already installed in the structure or It is possible to use the lead seismic bearing as it is, while suppressing the fallout of rubber seismic bearing or lead seismic bearing, and strengthening the maintenance aspect of the structure and reusing the seismic bearing after the earthquake. Accordingly, it is an invention that is industrially applicable because not only the use of the related technology but also the possibility of marketing or operating the applied device is not only sufficient, but also practically obvious.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Emergency Management (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Acoustics & Sound (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Electromagnetism (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

변위제어용 엘라스토머 댐퍼가 개시된다. 본 발명의 변위제어용 엘라스토머 댐퍼는, 제1 연결판; 외력 인가시 제1 연결판과 평행하게 상대이동하고, 제1 연결판을 기준으로 서로 반대편에 각각 구비되는 제2 연결판; 및 제1 연결판과 제2 연결판 사이에 각각 개재되고, 제1 연결판과 제2 연결판 간 상대이동시 에너지를 흡수하는 댐핑유닛을 포함하고, 댐핑유닛은, 외력 인가시 제1 연결판과 평행하게 상대이동하고, 제1 연결판과 제2 연결판 사이에서 서로 이격되는 복수의 강자성판; 및 제1 연결판과 제2 연결판 간 상대이동을 구속하도록 선택적 자화(magnetization)에 의해 복수의 강자성판 사이를 연결하는 다수의 자성체를 포함하는 것을 특징으로 한다. 본 발명에 의하면, 이미 구조물에 설치된 고무 면진받침이나 납 면진받침을 그대로 사용하면서도 고무 면진받침이나 납 면진받침의 탈락현상을 억제하고, 지진 종료 후 구조물의 유지보수 측면과 면진받침의 재사용 측면을 강화하도록 이루어지는 변위제어용 엘라스토머 댐퍼를 제공할 수 있게 된다.

Description

변위제어용 엘라스토머 댐퍼
본 발명은 변위제어용 엘라스토머 댐퍼에 관한 것으로, 보다 상세하게는, 이미 구조물에 설치된 고무 면진받침이나 납 면진받침을 그대로 사용하면서도 고무 면진받침이나 납 면진받침의 탈락현상을 억제하고, 지진 종료 후 구조물의 유지보수 측면과 면진받침의 재사용 측면을 강화하도록 이루어지는 변위제어용 엘라스토머 댐퍼에 관한 것이다.
현대 기술발전에 의한 고층건물 및 장대교량과 같은 대형구조물이 종전에 비해 일반화됨에 따라 외부에서 발생하는 하중(지진, 태풍)으로부터 구조물의 안전성 확보가 강조되고 있다.
지진의 경우 기존 내진설계가 적용되지 않은 구조물의 지진 하중에 대한 저항성능을 증가시키는 방법으로 보편적으로 내진보강기술을 사용한다. 초창기 내진보강기술은 구조물의 강성이나 질량을 증가시켜 지진하중을 직접 흡수하여 손상에 저항하는 방법으로 부재의 단면적이 지나치게 커지는 등 비경제적이라는 단점이 있다.
이를 개선하기 위하여 미국과 일본 등의 기술 선진국에서는 지진재해 후에 구조물의 붕괴방지, 사용성 확보 및 보수비용 절감을 위하여 지진으로 발생하는 구조물의 변형을 감소시키는 다양한 내진보강기술에 대한 연구가 증가되고 있다.
대표적으로 지진과 같은 입력운동의 일반적인 특성을 고려하여 구조물의 진동을 감소시키기 위해 구조물에 유입되는 진동에너지를 소산시키는 댐퍼와 같은 감쇠장치를 설치하는 경제적이고 효율적인 제진 시스템을 사용하는 방법이 널리 선호되고 있다.
이와 관련하여 대한민국 등록실용신안공보 제408550호에는 면진교량받침의 러버베어링구조가 개시되어 있으며, 등록실용신안공보 제408550호는 교각의 상부에 설치된 로워플레이트에 대응되도록 교량상판의 저면으로 어퍼플레이트가 설치되고, 상기 어퍼플레이트와 로워플레이트 사이에 개재된 러버베어링의 상하단부에 상하부 접합플레이트가 각각 매입되고, 상기 상하부 접합플레이트는 어퍼플레이트의 저면 및 로워플레이트의 상면으로 접합되어 볼트로 고정되는 면진교량받침에 있어서, 수평지진력의 발생으로 전단변형이 작용하는 러버베어링의 상하단부 가장자리를 지지하도록, 상기 러버베어링에 매입되는 상하부 접합플레이트의 내측단부 외주연으로 러버베어링의 외경보다 작게 이루어진 서포트플랜지를 돌출되게 일체로 형성하는 것을 특징으로 한다.
그러나 등록실용신안공보 제408550호에 개시된 면진교량받침의 러버베어링구조는 수직하중에 대한 저항력이 약하고, 특히 수평하중에 대한 떨림과 변위가 크게 발생하여 외부하중에 의한 횡방향 변위가 쉽게 한계상태를 초과하며, 이로 인해 받침탈락현상을 야기하게 되는 문제가 있었다.
한편, 대한민국 등록실용신안공보 제360331호에는 납 면진받침이 개시되어 있으며, 등록실용신안공보 제360331호는 상하 단부강판 사이로 고무 층과 강판이 번갈아 적층되고, 상기 고무 층과 강판에 수직한 방향으로 중공부를 형성하면서 일체로 성형된 탄성체를 구비하며, 상기 탄성체의 중공부에 납봉이 압입되고 상기 중공부를 규정하는 탄성체의 내주면과 주름 모양으로 밀착 성형되어 상, 하부 연결판 사이에 설치되도록 된 납 면진받침으로서, 상기 납의 상하 끝단부와 상기 상, 하부 연결판 사이에 구비된 소정형상의 매개부품에 의하여 상기 중공부에 압입될 납봉의 체적 V l 과 연직하중을 가한 상태에서 상기 중공부의 체적과의 비가 0.70 ∼1.01인 범위에서 압입되어지되, 상기 매개부품은, 상기 납봉과 접촉하는 부분의 단면형상이 중심축에서 반경방향으로 갈수록 두께가 점차 증가하는 형상으로 이루어지며, 그 중심부에 소정크기의 구멍이 관통되어서 형성된 관통홀이 구비된 것을 특징으로 한다.
그러나 등록실용신안공보 제360331호에 개시된 납 면진받침은 지진 종료 후 구조물의 유지보수 측면과 면진받침의 재사용 측면에 단점이 있다.
하지만, 고무 면진받침이나 납 면진받침이 갖는 단점을 해결하기 위해서 이미 구조물에 설치된 고무 면진받침이나 납 면진받침을 값비싼 면진받침으로 교체하는 데에는 비용 및 시간 면에서 실효성이 없으므로, 본 발명의 출원인은 종래 고무 면진받침 또는 납 면진받침은 그대로 사용하면서도 추가설치에 의해 상술한 단점을 해소할 수 있는 기술적 해결방법을 모색하는데에 이르렀다.
본 발명의 목적은, 이미 구조물에 설치된 고무 면진받침이나 납 면진받침을 그대로 사용하면서도 고무 면진받침이나 납 면진받침의 탈락현상을 억제하고, 지진 종료 후 구조물의 유지보수 측면과 면진받침의 재사용 측면을 강화하도록 이루어지는 변위제어용 엘라스토머 댐퍼를 제공하는 것이다.
상기 목적은, 본 발명에 따라, 제1 연결판; 외력 인가시 상기 제1 연결판과 평행하게 상대이동하고, 상기 제1 연결판을 기준으로 서로 반대편에 각각 구비되는 제2 연결판; 및 상기 제1 연결판과 상기 제2 연결판 사이에 각각 개재되고, 상기 제1 연결판과 상기 제2 연결판 간 상대이동시 에너지를 흡수하는 댐핑유닛을 포함하고, 상기 댐핑유닛은, 외력 인가시 상기 제1 연결판과 평행하게 상대이동하고, 상기 제1 연결판과 상기 제2 연결판 사이에서 서로 이격되는 복수의 강자성판; 및 상기 제1 연결판과 상기 제2 연결판 간 상대이동을 구속하도록 선택적 자화(magnetization)에 의해 복수의 상기 강자성판 사이를 연결하는 다수의 자성체를 포함하는 것을 특징으로 하는 변위제어용 엘라스토머 댐퍼에 의하여 달성된다.
상기 자성체는 구형(球形)으로 형성되고, 상기 자성체는 외력에 의해 탄력적으로 변형하는 탄성피막으로 피복되도록 이루어질 수 있다.
상기 댐핑유닛은, 상기 제1 연결판과 상기 제2 연결판 사이에서 상기 강자성판의 둘레를 따라 감기고, 선택적으로 전류가 인가되어 상기 자성체를 자화시키는 코일; 상기 제1 연결판과 상기 제2 연결판 간 상대이동시 상기 제1 연결판과 함께 이동하는 이동판; 및 상기 제2 연결판과 상기 이동판을 연결하고, 상기 제1 연결판과 상기 제2 연결판 간 상대이동시 휨 변형하여 에너지를 흡수하는 결합부재를 더 포함하여 이루어질 수 있다.
상기 제1 연결판에는 상기 이동판의 양쪽에 각각 단턱부가 형성되고, 상기 단턱부와 상기 이동판 사이에는 상기 제1 연결판과 상기 제2 연결판 간 상대이동시 압축되어 에너지를 흡수하는 압축스프링이 각각 개재되도록 이루어질 수 있다.
본 발명에 의하면, 제1 연결판과 제2 연결판 사이에 자성체의 자화에 의해 외력에 대한 강성이 변화하는 댐핑유닛을 구비하여 이루어짐으로써, 이미 구조물에 설치된 고무 면진받침이나 납 면진받침을 그대로 사용하면서도 고무 면진받침이나 납 면진받침의 탈락현상을 억제하고, 지진 종료 후 구조물의 유지보수 측면과 면진받침의 재사용 측면을 강화하도록 이루어지는 변위제어용 엘라스토머 댐퍼를 제공할 수 있게 된다.
도 1은 본 발명의 변위제어용 엘라스토머 댐퍼의 설치상태를 나타내는 도면.
도 2는 도 1의 변위제어용 엘라스토머 댐퍼의 단면도.
도 3은 도 1의 변위제어용 엘라스토머 댐퍼의 교축방향 변형상태를 나타내는 도면.
도 4는 도 1의 변위제어용 엘라스토머 댐퍼의 응력-변형률 이력곡선을 나타내는 그래프.
도 5 및 도 6은 도 1의 변위제어용 엘라스토머 댐퍼의 다른 설치상태를 나타내는 도면.
* 도면의 주요부분에 관한 부호의 설명 *
10 : 엘라스토머 댐퍼
100 : 제1 연결판 200 : 제2 연결판
110 : 단턱부 210 : 제2 연결부재
S : 압축스프링 B : 볼트
120 : 제1 연결부재 C : 제어부
300 : 댐핑유닛 1 : 구조물
310 : 강자성판 2 : 기둥
320 : 이동판 3 : 보
330 : 결합부재 4 : 가새
340 : 자성체 1A : 보강연결대
341 : 탄성피막 P : 면진받침
350 : 코일
360 : 탄성커버
W : 전선
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예들을 상세하게 설명하면 다음과 같다. 다만, 본 발명을 설명함에 있어서, 이미 공지된 기능 혹은 구성에 대한 설명은, 본 발명의 요지를 명료하게 하기 위하여 생략하기로 한다.
본 발명의 변위제어용 엘라스토머 댐퍼는, 이미 구조물에 설치된 고무 면진받침이나 납 면진받침을 그대로 사용하면서도 고무 면진받침이나 납 면진받침의 탈락현상을 억제하고, 지진 종료 후 구조물의 유지보수 측면과 면진받침의 재사용 측면을 강화하도록 이루어진다.
도 1은 본 발명의 변위제어용 엘라스토머 댐퍼의 설치상태를 나타내는 도면, 도 2는 도 1의 변위제어용 엘라스토머 댐퍼의 단면도, 도 3은 도 1의 변위제어용 엘라스토머 댐퍼의 교축방향 변형상태를 나타내는 도면, 도 4는 도 1의 변위제어용 엘라스토머 댐퍼의 응력-변형률 이력곡선을 나타내는 그래프, 도 5 및 도 6은 도 1의 변위제어용 엘라스토머 댐퍼의 다른 설치상태를 나타내는 도면.
도 1 및 도 2에 도시된 바와 같이, 본 발명의 변위제어용 엘라스토머 댐퍼(10)는, 이미 구조물에 설치된 고무 면진받침이나 납 면진받침에 추가로 설치되어 고무 면진받침이나 납 면진받침의 탈락현상을 억제하고, 지진 종료 후 구조물의 유지보수 측면과 면진받침의 재사용 측면을 강화하도록 이루어지며, 제1 연결판(100), 제2 연결판(200) 및 댐핑유닛(300)을 포함하여 구성된다.
도 2 및 도 3에 도시된 바와 같이, 제1 연결판(100)과 제2 연결판(200)은 구조물(1)의 변형시 서로 평행하게 상대이동을 하는 구성으로서, 각각 구조물(1)의 서로 다른 부분에 결합된다.
아래에서는 보다 용이한 이해를 위해 제1 연결판(100)과 제2 연결판(200)이 상대이동하는 방향을 X 방향, 제1 연결판(100)으로부터 제2 연결판(200)을 향하는 방향을 Y 방향, 그리고 X 방향 및 Y 방향과 각각 수직인 방향을 Z 방향으로 정의하여 설명하고자 한다.
도 1에서 제1 연결판(100)은 교량구조물(1)의 보강연결대(1A)에 결합되고, 제2 연결판(200)은 면진받침(P)의 상단부에 연결된 것으로 도시되었으나, 본 발명의 엘라스토머 댐퍼(10)가 설치되는 구조물(1)은 교량구조물(1) 이외에도 면진받침(P)이 설치된 모든 건축구조물을 포함한다.
물론, 본 발명의 변위제어용 엘라스토머 댐퍼(10)의 사용은 면진받침(P)이 설치된 구조물(1)에 한정되지 않으며, 도 5 및 도 6에 도시된 바와 같이, 기둥-보 구조물(1)에서 가새(4)의 연결구조에 설치될 수도 있다.
또한, 본 발명의 변위제어용 엘라스토머 댐퍼(10)의 사용은 라멘 구조, 트러스 구조 및 벽식 구조 등 서로 다른 구조물에서 통상의 기술자에 의해 구조물의 다양한 부분이 더 선정될 수 있음은 물론이다.
도 2에 도시된 바와 같이, 제1 연결판(100) 및 제2 연결판(200)은 각각 X 방향으로 긴 플레이트 형태로 형성되며, 제2 연결판(200)은 제1 연결판(100)을 기준으로 서로 반대편에 각각 구비된다.
도 1에 도시된 바와 같이, 본 발명의 엘라스토머 댐퍼(10)는 구조물(1)의 면진받침(P)을 구조물(1)과 연결하는데에 주로 사용되며, 이와 같은 경우 한 쌍의 제2 연결판(200)은 제2 연결부재(210)에 함께 결합되어 서로의 상대이동이 구속된다. 제1 연결판(100)은 제1 연결부재(120)에 의해 구조물(1)에 결합된다.
도 2 및 도 3에 도시된 바와 같이, 댐핑유닛(300)은 제1 연결판(100)과 제2 연결판(200) 간 X 방향 상대이동시 에너지를 흡수하는 구성으로서, 제1 연결판(100)과 제2 연결판(200) 사이에 각각 개재된다.
도 2에 도시된 바와 같이, 댐핑유닛(300)은 강자성판(310), 이동판(320), 결합부재(330), 자성체(340), 코일(350) 및 탄성커버(360)를 포함하여 구성된다.
강자성판(310)은 외력 인가시 제1 연결판(100)과 평행하게 X 방향으로 상대이동하는 구성으로서, 제1 연결판(100)과 제2 연결판(200) 사이에 각각 복수로 구비된다.
강자성판(310)은 제1 연결판(100)과 제2 연결판(200) 사이에서 Y 방향으로 서로 이격되며, 복수의 강자성판(310) 사이에는 각각 공간이 형성된다. 복수의 강자성판(310) 중 제2 연결판(200)과 인접한 강자성판(310)은 볼트(B)에 의해 제2 연결판(200)에 고정된다.
강자성판(310)은 철합금과 같이 외부에서 강한 자기장을 걸어주었을 때 그 자기장의 방향으로 강하게 자화되는 강자성체(ferromagnetic substance)로 제작된다.
이동판(320)은 제1 연결판(100)과 제2 연결판(200) 간 상대이동시 제1 연결판(100)과 함께 이동하는 구성으로서, 강자성판(310)과 같이 강자성체로 구비된다.
제1 연결판(100)에는 이동판(320)의 양쪽에 제2 연결판(200)을 향해 돌출되는 단턱부(110)가 각각 형성되며, 제1 연결판(100)은 단턱부(110)에 의해 제1 연결판(100)과의 X 방향 상대이동이 구속된다. 단턱부(110)는 이동판(320)의 양단에 밀착되게 형성(도 3(a) 참조)될 수도 있고, 이동판(320)의 양단과 각각 이격된 형태로 형성(도 2 참조)될 수도 있다.
도 2에 도시된 바와 같이, 단턱부(110)와 이동판(320)의 양단이 각각 이격된 형태로 형성된 경우, 단턱부(110)와 이동판(320)의 단부 사이에는 압축스프링(S)이 각각 개재될 수 있다.
단턱부(110)와 이동판(320)의 양단이 각각 거리 D만큼 이격되었다고 가정하면, 제1 연결판(100)과 제2 연결판(200)의 X 방향 상대이동시 이동판(320)과 제2 연결판(200)의 상대이동거리는 거리 D만큼 감소하게 되며, 댐핑유닛(300)의 변형량 및 에너지 흡수량은 이에 비례하여 감소하게 된다.
거리 D에 비례하는 댐핑유닛(300)의 에너지 흡수량 감소분은 제1 연결판(100)과 제2 연결판(200) 간 상대이동시 압축스프링(S)이 압축되면서 탄성에너지의 형태로 흡수하며, 이에 따라 제1 연결판(100)과 제2 연결판(200) 간 상대이동거리가 D만큼 증가하는 동시에 전체 엘라스토머 댐퍼(10)의 에너지 흡수량이 증가하는 이점이 있다.
도 2에 도시된 바와 같이, 결합부재(330)는 제1 연결판(100)과 제2 연결판(200) 간 상대이동시 휨 변형하여 에너지를 흡수하는 구성으로서, 제2 연결판(200)과 이동판(320)을 Y 방향으로 연결한 바(bar) 형태로 구비된다.
결합부재(330)의 일단부는 제1 연결판(100)에 결합되고, 타단부는 이동판(320)에 결합된다. 결합부재(330)의 단부는 제1 연결판(100) 및 이동판(320)과 용접에 의해 결합할 수도 있고, 제1 연결판(100) 및 이동판(320)에 홈을 형성한 후 결합부재(330)의 단부를 각각 삽입하는 형태로 결합할 수도 있다. 제1 연결판(100)과 이동판(320) 간의 거리는 결합부재(330)의 길이에 의해 결정된다.
결합부재(330)는 납(Pb) 등 비교적 연성이 양호한 재질로 제조되며, 도 3(b) 및 도 3(c)에 도시된 바와 같이, 결합부재(330)는 제1 연결판(100)과 제2 연결판(200) 간 상대이동시 양단의 회전이 구속된 상태에서 휨 변형되며 외력을 흡수하게 된다.
자성체(340)는 선택적 자화(magnetization)에 의해 복수의 강자성판(310) 사이를 연결하는 구성으로서, 구형의 강자성체로 이루어진다. 도 2에 도시된 바와 같이, 자성체(340)는 강자성판(310) 사이마다 각각 다수로 구비된다.
도 2에 도시된 바와 같이, 자성체(340)는 탄성피막(341)으로 피복된다. 탄성피막(341)은 외력에 의해 탄력적으로 변형하는 고무, 실리콘 또는 연질의 합성수지 재질로 이루어진다.
도 3(c)에 도시된 바와 같이, 자성체(340)가 자화에 의해 서로 결합력을 형성한 상태에서, 탄성피막(341)은 자성체(340) 간 미끄러짐을 방지하여 자성체(340)에 의한 강자성판(310) 간 구속력이 증가하게 된다.
자세하게 도시되지는 않았으나, 사이 공간마다 자성체(340)가 투입된 복수의 강자성판(310)은 보호커버에 의해 감싸진다. 보호커버는 고무 등 신축적으로 변형되는 재질로 이루어져 강자성판(310)의 둘레를 감싼다. 코일(350)은 보호커버의 외주면에 감기게 된다.
도 2에 도시된 바와 같이, 코일(350)은 다수의 자성체(340)를 자화시키기 위한 구성으로서, 제1 연결판(100)과 제2 연결판(200) 사이에서 강자성판(310)의 둘레를 따라 감긴 형태로 구비된다. 코일(350)의 양단부는 탄성커버(360)에 형성된 구멍을 통해 바깥쪽으로 연장되어 제어부(C)에 연결된다.
탄성커버(360)는 코일(350)을 감싸 외부로부터 보호하는 구성으로서, 신축적으로 변형되는 재질로 이루어진다. 도 2에 도시된 바와 같이, 탄성커버(360)는 코일(350)을 감쌀뿐만 아니라 강자성판(310) 및 자성체(340)를 내부에 수용하는 형태로 이루어질 수 있다. 탄성커버(360)의 개구된 부분은 이동판(320)에 부착된다. 탄성커버(360)는 고무자석으로 구비될 수도 있다.
도 1에 도시된 바와 같이, 제어부(C)는 선택적으로 코일(350)에 전류를 인가하는 구성으로서, 구조물(1)의 일측에 설치된다. 제어부(C)에는 지진센서(seismometer, 미도시)가 내장된다.
제어부(C)는 지진센서에서 검출한 진동의 크기에 따라 코일(350)에 인가되는 전류의 크기를 제어하게 된다. 제어부(C)로부터 코일(350)에 인가되는 전류의 크기는 지진센서에서 검출한 진동의 크기와 비례하여 증가하게 된다.
코일(350)에 전류가 인가되면, 코일(350)의 안쪽에는 Y 방향의 자기장 필드(magnetic field)가 형성되며, 도 3(c)에 도시된 바와 같이 다수의 자성체(340)는 함께 자화되어 각각의 강자성판(310)을 체인형태로 연결한다. 도 3에는 코일이 자세하게 도시되지 않았으나, 코일(350)은 도 2와 같이 제1 연결판(100)과 제2 연결판(200) 사이에서 강자성판(310)의 둘레를 따라 감긴 것으로 이해되어야 한다.
체인형태로 연결된 다수의 자성체(340)는 자계의 세기(Magnetic Field Strength)에 비례하는 결합력을 형성하며, 제1 연결판(100)과 제2 연결판(200)은 체인형태로 연결된 다수의 자성체(340)에 의해 X 방향 상대이동이 구속된다.
자성체(340)의 자화도는 코일(350)을 흐르는 전류의 크기에 비례하므로, 전류의 크기를 조정하면 자성체(340) 간 결합력(그리고 자성체(340)와 강자성판(310) 간 결합력)이 변화되며, 따라서 제1 연결판(100)과 제2 연결판(200) 간 상대이동을 구속하는 힘을 변화시킬 수 있다.
제어부(C)는 지진센서에서 검출한 진동의 크기가 설정된 세팅값을 초과하는 경우, 코일(350)에 전류를 인가시키게 된다. 용이한 이해를 위해 진동의 크기를 작은 값부터 제1 설정값, 제2 설정값 및 제3 설정값으로 가정하기로 한다.
제어부(C)는 제1 설정값 이하의 진동에 대해서는 코일(350)에 전류를 인가시키지 않는다. 즉, 제1 설정값 이하의 진동에서는 자성체(340)에 의한 제1 연결판(100)과 제2 연결판(200) 간 상대회전의 구속 없이 결합부재(330)의 휨 변형에 의한 에너지 흡수에 의해 진동을 감쇠시키게 된다.
한편, 지진센서가 제1 설정값을 초과한 진동을 감지하게 되면, 제어부(C)는 코일(350)에 제1 크기의 전류를 인가하게 된다. 제1 크기는 용이한 이해를 위한 가정된 전류의 세기로서 작은 세기부터 제1 크기, 제2 크기 및 제3 크기로 지칭하고자 한다.
도 5에 도시된 바와 같이, 제어부(C)가 코일(350)에 제1 크기의 전류를 인가하면, 다수의 자성체(340)는 제1 크기와 비례하여 자화되며, 복수의 강자성판(310) 및 이동판(320)을 체인형태로 연결한다.
체인형태로 연결된 다수의 자성체(340)는 자계의 세기에 비례하는 결합력을 형성하며, 제1 연결판(100)과 제2 연결판(200)은 체인형태로 연결된 다수의 자성체(340)에 의해 X 방향 상대이동이 억제된다.
한편, 지진센서가 제2 설정값을 초과한 진동을 감지하게 되면, 제어부(C)는 코일(350)에 제2 크기의 전류를 인가하게 된다. 다수의 자성체(340)가 제2 크기와 비례하여 자화되면, 제1 연결판(100)과 제2 연결판(200) 간 상대이동을 억제하는 힘의 크기는 전체적으로 보다 증가하게 된다.
도 4에는 코일(350)에 인가되는 전류의 세기에 따른 엘라스토머 댐퍼(10)의 응력-변형률 이력곡선을 나타낸다.
A1는 코일(350)에 제1 크기의 전류가 인가되었을 때 엘라스토머 댐퍼(10)의 응력-변형률 이력곡선을 나타내고, A2는 코일(350)에 제2 크기의 전류가 인가되었을 때 엘라스토머 댐퍼(10)의 응력-변형률 이력곡선을 나타내며, A3는 코일(350)에 제3 크기의 전류가 인가되었을 때 엘라스토머 댐퍼(10)의 응력-변형률 이력곡선을 나타낸다.
도 4에 도시된 바와 같이, 자기장의 세기가 강해질수록 엘라스토머 댐퍼(10)의 강성이 커지고 1 사이클 당 감쇠량도 증가하게 된다.
도 5 및 도 6은 본 발명의 에너지 소산형 엘라스토머 댐퍼(10)가 기둥-보 구조물(1)에 설치된 상태를 나타낸다.
도 5에 도시된 바와 같이, 본 발명의 에너지 소산형 엘라스토머 댐퍼(10)가 가새(4)의 중간에 설치된 경우, 제1 연결판(100)은 제1 연결부재(120)를 통해 한쪽 가새(4)의 단부에 연결되고, 제2 연결판(200)은 제2 연결부재(210)를 통해 다른 한쪽 가새(4)의 단부에 연결된다.
제어부(C)는 전선(W)을 통해 코일(350)에 인가되는 전류를 조정함으로써 가새(4)의 강성을 증가시키거나 감소시키게 된다. 미설명된 부호 5는 가새플레이트를 의미한다.
도 6에 도시된 바와 같이, 본 발명의 에너지 소산형 엘라스토머 댐퍼(10)가 가새(4)와 구조물(1)의 연결부분에 설치된 경우, 한쪽 제2 연결판(200)은 가새(4)의 단부에 연결되고 다른 한쪽 제2 연결판(200)은 보(3)(또는 기둥(2))에 결합될 수 있다. 이때 제1 연결판(100)은 구조물(1)에 의해 구속되지 않는다.
지진 등 외력에 의해 구조물(1)이 변형되면, 보(3)와 가새(4)의 상대이동에 의해 제1 연결판(100)을 기준으로 제2 연결판(200)은 서로 다른 방향으로 상대이동하게 되며, 따라서 한 쌍의 댐핑유닛(300)은 서로 동일한 형태로 변형되면서 외력을 흡수하게 된다.
본 발명에 의하면, 제1 연결판과 제2 연결판 사이에 자성체의 자화에 의해 외력에 대한 강성이 변화하는 댐핑유닛을 구비하여 이루어짐으로써, 이미 구조물에 설치된 고무 면진받침이나 납 면진받침을 그대로 사용하면서도 고무 면진받침이나 납 면진받침의 탈락현상을 억제하고, 지진 종료 후 구조물의 유지보수 측면과 면진받침의 재사용 측면을 강화하도록 이루어지는 변위제어용 엘라스토머 댐퍼를 제공할 수 있게 된다.
앞에서, 본 발명의 특정한 실시예가 설명되고 도시되었지만 본 발명은 기재된 실시예에 한정되는 것이 아니고, 본 발명의 사상 및 범위를 벗어나지 않고 다양하게 수정 및 변형할 수 있음은 이 기술의 분야에서 통상의 지식을 가진 자에게 자명한 일이다. 따라서, 그러한 수정예 또는 변형예들은 본 발명의 기술적 사상이나 관점으로부터 개별적으로 이해되어서는 안되며, 변형된 실시예들은 본 발명의 특허청구범위에 속한다 하여야 할 것이다.
본 발명에 따른 변위제어용 엘라스토머 댐퍼에 의하면, 제1 연결판과 제2 연결판 사이에 자성체의 자화에 의해 외력에 대한 강성이 변화하는 댐핑유닛을 구비하여 이루어짐으로써, 이미 구조물에 설치된 고무 면진받침이나 납 면진받침을 그대로 사용하면서도 고무 면진받침이나 납 면진받침의 탈락현상을 억제하고, 지진 종료 후 구조물의 유지보수 측면과 면진받침의 재사용 측면을 강화하도록 이루어지는 점에서, 기존 기술의 한계를 뛰어 넘음에 따라 관련 기술에 대한 이용만이 아닌 적용되는 장치의 시판 또는 영업의 가능성이 충분할 뿐만 아니라 현실적으로 명백하게 실시할 수 있는 정도이므로 산업상 이용가능성이 있는 발명이다.

Claims (4)

  1. 제1 연결판;
    외력 인가시 상기 제1 연결판과 평행하게 상대이동하고, 상기 제1 연결판을 기준으로 서로 반대편에 각각 구비되는 제2 연결판; 및
    상기 제1 연결판과 상기 제2 연결판 사이에 각각 개재되고, 상기 제1 연결판과 상기 제2 연결판 간 상대이동시 에너지를 흡수하는 댐핑유닛을 포함하고,
    상기 댐핑유닛은,
    외력 인가시 상기 제1 연결판과 평행하게 상대이동하고, 상기 제1 연결판과 상기 제2 연결판 사이에서 서로 이격되는 복수의 강자성판; 및
    상기 제1 연결판과 상기 제2 연결판 간 상대이동을 구속하도록 선택적 자화(magnetization)에 의해 복수의 상기 강자성판 사이를 연결하는 다수의 자성체를 포함하는 것을 특징으로 하는 변위제어용 엘라스토머 댐퍼.
  2. 제1항에 있어서,
    상기 자성체는 구형(球形)으로 형성되고,
    상기 자성체는 외력에 의해 탄력적으로 변형하는 탄성피막으로 피복된 것을 특징으로 하는 에너지 소산형 엘라스토머 댐퍼.
  3. 제1항에 있어서,
    상기 댐핑유닛은,
    상기 제1 연결판과 상기 제2 연결판 사이에서 상기 강자성판의 둘레를 따라 감기고, 선택적으로 전류가 인가되어 상기 자성체를 자화시키는 코일;
    상기 제1 연결판과 상기 제2 연결판 간 상대이동시 상기 제1 연결판과 함께 이동하는 이동판; 및
    상기 제2 연결판과 상기 이동판을 연결하고, 상기 제1 연결판과 상기 제2 연결판 간 상대이동시 휨 변형하여 에너지를 흡수하는 결합부재를 더 포함하는 것을 특징으로 하는 에너지 소산형 엘라스토머 댐퍼.
  4. 제3항에 있어서,
    상기 제1 연결판에는 상기 이동판의 양쪽에 각각 단턱부가 형성되고,
    상기 단턱부와 상기 이동판 사이에는 상기 제1 연결판과 상기 제2 연결판 간 상대이동시 압축되어 에너지를 흡수하는 압축스프링이 각각 개재된 것을 특징으로 하는 에너지 소산형 엘라스토머 댐퍼.
PCT/KR2016/002752 2016-02-01 2016-03-18 변위제어용 엘라스토머 댐퍼 WO2017135506A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0012299 2016-02-01
KR1020160012299A KR101737881B1 (ko) 2016-02-01 2016-02-01 변위제어용 엘라스토머 댐퍼

Publications (1)

Publication Number Publication Date
WO2017135506A1 true WO2017135506A1 (ko) 2017-08-10

Family

ID=59049345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/002752 WO2017135506A1 (ko) 2016-02-01 2016-03-18 변위제어용 엘라스토머 댐퍼

Country Status (2)

Country Link
KR (1) KR101737881B1 (ko)
WO (1) WO2017135506A1 (ko)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110042943A (zh) * 2019-05-15 2019-07-23 江苏万宝桥梁构件有限公司 一种大位移建筑隔震橡胶支座的加工工艺
CN110080406A (zh) * 2019-05-07 2019-08-02 江苏万宝桥梁构件有限公司 一种建筑隔震橡胶支座
CN110748023A (zh) * 2019-09-20 2020-02-04 夏璇捷 一种管状叠层橡胶铅柱杆式阻尼器
CN111254818A (zh) * 2020-01-21 2020-06-09 南阳理工学院 一种具有减震支座的桥梁整体加固装置
CN113846887A (zh) * 2021-08-29 2021-12-28 北京工业大学 可半主动调控阻尼性态的方斗型调谐液体阻尼器
CN114718361A (zh) * 2022-04-28 2022-07-08 西安建筑科技大学 一种半主动磁流变弹性体阻尼器

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107542842B (zh) * 2017-10-12 2024-04-02 盛年科技有限公司 一种机电设备用抗震阻尼器
KR101833688B1 (ko) * 2017-10-18 2018-02-28 김홍철 계단 청소장치
KR101833687B1 (ko) * 2017-10-18 2018-02-28 김홍철 와이퍼 부재가 구비되는 건물 외벽면 청소장치
KR101833686B1 (ko) * 2017-10-18 2018-02-28 김홍철 건물 외벽면 청소장치
KR101926446B1 (ko) * 2017-10-31 2019-03-07 이영희 맨홀 보수용 아스콘 제조방법
KR101869206B1 (ko) * 2017-10-31 2018-06-19 정찬욱 교량구조물의 내진 보강장치
KR101853593B1 (ko) 2017-10-31 2018-04-30 전순자 대상물 인쇄방법
KR101853592B1 (ko) 2017-10-31 2018-04-30 전순자 대상물 인쇄장치
KR101926445B1 (ko) * 2017-10-31 2019-03-07 세종아스콘(주) 도로 보수용 아스콘 제조방법
KR101887313B1 (ko) * 2017-10-31 2018-08-09 정찬욱 희생수단을 이용한 교량 내진 보호장치
KR101869207B1 (ko) * 2017-10-31 2018-07-20 정찬욱 교량하부구조물의 내진 보강장치 시공방법
KR101854577B1 (ko) * 2017-11-20 2018-05-03 최건희 건설용 보수재의 혼합 시공시스템을 이용한 보수 보강 공법
KR101928017B1 (ko) * 2018-01-05 2018-12-12 한국과학기술원 면진 장치
CN108708759B (zh) * 2018-05-18 2020-10-30 辽宁大学 一种可重复吸能巷道防冲液压支架及其防冲方法
CN108756008A (zh) * 2018-07-04 2018-11-06 武汉科技大学 一种电磁-碰撞复合阻尼器
CN109722986B (zh) * 2018-12-11 2020-09-01 九江职业技术学院 一种转动摩擦阻尼减震支座装置
CN114295465B (zh) * 2021-11-22 2024-06-07 北京机电工程研究所 模态试验预载施加装置、模态试验系统及预载施加方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004076759A (ja) * 2002-08-09 2004-03-11 Bando Chem Ind Ltd 磁気粘性流体装置
JP2007120205A (ja) * 2005-10-31 2007-05-17 Bridgestone Corp 免震装置
KR20120101864A (ko) * 2011-03-07 2012-09-17 한국생산기술연구원 2중 자기 베어링형 진동 저감장치
JP2012184816A (ja) * 2011-03-07 2012-09-27 Kozo Keikaku Engineering Inc 減衰装置、及び構造物の制振装置
CN104196944A (zh) * 2014-08-27 2014-12-10 武汉科技大学 动力总成半主动颗粒阻尼橡胶悬置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015028365A (ja) * 2013-07-30 2015-02-12 国立大学法人 名古屋工業大学 傾斜して設置可能な粒状体を用いたダンパ装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004076759A (ja) * 2002-08-09 2004-03-11 Bando Chem Ind Ltd 磁気粘性流体装置
JP2007120205A (ja) * 2005-10-31 2007-05-17 Bridgestone Corp 免震装置
KR20120101864A (ko) * 2011-03-07 2012-09-17 한국생산기술연구원 2중 자기 베어링형 진동 저감장치
JP2012184816A (ja) * 2011-03-07 2012-09-27 Kozo Keikaku Engineering Inc 減衰装置、及び構造物の制振装置
CN104196944A (zh) * 2014-08-27 2014-12-10 武汉科技大学 动力总成半主动颗粒阻尼橡胶悬置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110080406A (zh) * 2019-05-07 2019-08-02 江苏万宝桥梁构件有限公司 一种建筑隔震橡胶支座
CN110042943A (zh) * 2019-05-15 2019-07-23 江苏万宝桥梁构件有限公司 一种大位移建筑隔震橡胶支座的加工工艺
CN110748023A (zh) * 2019-09-20 2020-02-04 夏璇捷 一种管状叠层橡胶铅柱杆式阻尼器
CN111254818A (zh) * 2020-01-21 2020-06-09 南阳理工学院 一种具有减震支座的桥梁整体加固装置
CN113846887A (zh) * 2021-08-29 2021-12-28 北京工业大学 可半主动调控阻尼性态的方斗型调谐液体阻尼器
CN114718361A (zh) * 2022-04-28 2022-07-08 西安建筑科技大学 一种半主动磁流变弹性体阻尼器
CN114718361B (zh) * 2022-04-28 2024-05-14 西安建筑科技大学 一种半主动磁流变弹性体阻尼器

Also Published As

Publication number Publication date
KR101737881B1 (ko) 2017-05-19

Similar Documents

Publication Publication Date Title
WO2017135506A1 (ko) 변위제어용 엘라스토머 댐퍼
US11339849B2 (en) Three-dimensional isolator with adaptive stiffness property
KR101176374B1 (ko) 제진형 가새장치 및 이 가새장치를 이용한 브레이싱 공법
WO2012141378A1 (ko) 내진용 댐퍼 및 이를 이용한 내진 시스템
WO2012111968A2 (ko) 변위증폭형 제진시스템 및 이의 시공방법
KR101671717B1 (ko) 방진장치용 3방향 내진 스토퍼
US10100546B2 (en) Support structure
WO2019132154A1 (ko) 내진 보강용 댐퍼
WO2017090824A1 (ko) 에너지 소산형 엘라스토머 마찰 댐퍼
WO2014069972A1 (ko) 가변 마찰댐퍼
KR20100076171A (ko) 압전 mr유체 면진받침
JPH01322061A (ja) 免震装置
JP2000199541A (ja) 振動抑制装置
WO2020171275A1 (ko) 볼과 스프링을 이용하는 면진 장치
JPH08284114A (ja) 橋梁用免震装置
JP2017174856A (ja) 変圧器の転倒防止装置
JP2002070943A (ja) 免震滑り支承装置
JP6895737B2 (ja) 建築用オイルダンパーの取付構造
KR20090033669A (ko) 진동 흡수가 가능한 교량
KR101059944B1 (ko) 랙의 내진장치
EP1293624A2 (en) Seismic shock absorber system and damping device for buildings with framed structure made of reinforced concrete
JPH02285176A (ja) 建造物の免震装置
JP3157352U (ja) 楕円形状板バネ単体、楕円形状多段板バネ装置、上下制振装置、水平1軸制振装置及び上下床免震装置
JPH01247633A (ja) 免震装置用減衰機構
JPH0640493U (ja) 振動低減装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16889484

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16889484

Country of ref document: EP

Kind code of ref document: A1