WO2014069972A1 - 가변 마찰댐퍼 - Google Patents

가변 마찰댐퍼 Download PDF

Info

Publication number
WO2014069972A1
WO2014069972A1 PCT/KR2013/009968 KR2013009968W WO2014069972A1 WO 2014069972 A1 WO2014069972 A1 WO 2014069972A1 KR 2013009968 W KR2013009968 W KR 2013009968W WO 2014069972 A1 WO2014069972 A1 WO 2014069972A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
support
friction
connecting plate
friction damper
Prior art date
Application number
PCT/KR2013/009968
Other languages
English (en)
French (fr)
Inventor
최재혁
Original Assignee
조선대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020120124444A external-priority patent/KR101393694B1/ko
Priority claimed from KR1020120124446A external-priority patent/KR101393696B1/ko
Application filed by 조선대학교 산학협력단 filed Critical 조선대학교 산학협력단
Priority to JP2015540612A priority Critical patent/JP5945077B2/ja
Publication of WO2014069972A1 publication Critical patent/WO2014069972A1/ko

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • E04H9/0237Structural braces with damping devices

Definitions

  • the present invention relates to a variable friction damper, and more particularly, to a variable friction damper is installed in the building structure to attenuate the vibration applied to the building structure by external factors such as earthquakes.
  • the building structure is subject to torsion or similar horizontal movement when the member is subjected to external forces in the horizontal direction. Torsion, especially in building structures or towers, can cause serious impacts or even collapse of the structure.
  • Dampers play an important role in protecting building structures, such as houses or similar building structures, which are present in numerous variants.
  • Dampers generally dampen movement by frictional forces between two moving parts attached between structural members of a building or by fluids flowing and pressurizing between two chambers through a restricted tube.
  • dampers actively change the damping effect corresponding to external conditions, and other dampers include passive dampers with constant damping characteristics.
  • the present invention has been made to solve the above problems, it is possible to provide a variable friction damper capable of vibration attenuation for biaxial behavior in the left and right and up and down directions or triaxial behavior in the left and right and up and down and front and rear directions, and easy to install and maintain.
  • the purpose is.
  • Variable friction damper of the present invention for achieving the above object is a first end plate supported on the building structure or the damping rod, and the left and right extending from the first end plate and the building structure or damping rod behaves by external force
  • a first support including a first sliding plate having a first slot extending in a direction;
  • a second end plate supported by a building structure or a damping rod to be positioned below the first support, and a second slot extending from the second end plate toward the first support and extending up and down;
  • a second support including a sliding plate; First and second fixing holes corresponding to the first and second slots, respectively, formed at upper and lower ends thereof, and a connecting plate coupled to front and rear surfaces of the first and second supports; And a friction plate inserted between the first sliding plate and the second sliding plate to generate frictional heat when the first sliding plate or the second sliding plate behaves by an external force; And a fastening part connecting the first and second supports, the friction plate, and the connecting plate to each other.
  • the connecting plate is characterized in that the shot blast (shot blast) treatment on the surface in order to increase the friction with the friction plate.
  • the fastening part includes a fastening bolt penetrating the first fixing hole or the second fixing hole of the connecting plate and the through hole of the friction plate, the first slot or the second slot of the first and second supports, and an end of the fastening bolt. It is provided with a nut, characterized in that the frictional strength of the first support side and the second support side is formed differently by setting the fastening force connected to the first support and the second support and the connecting plate differently.
  • the fastening part further includes a washer member installed between the connecting plate and the head of the fastening bolt and between the connecting plate and the nut, wherein the washer member is connected to the connecting plate even though the friction plate is reduced in thickness by friction. It characterized in that the plate spring washer to maintain the adhesion state between the friction plate between the first support or the second support.
  • the friction plate may be formed of a metal having a lower hardness than the first and second supports and the connecting plate.
  • the connecting plate is coupled to front and rear surfaces of the first support and the second support, and the first support and the second support are coupled to each other in a forward and backward direction intersecting with respect to the left and right directions in which they slide. And an upper plate and a lower plate, wherein the first fixing hole is formed in the upper plate, and the second fixing hole is formed in the lower plate.
  • the upper plate has a first coupling groove which is drawn toward the other side from one side at the lower end is formed, the second coupling inserted into one side from the other side to be superimposed with the first coupling groove on the lower plate A groove is formed, and a guide protrusion protruding to extend in the front-rear direction is formed at a lower portion of the upper plate on which the first coupling groove is formed, and the guide protrusion penetrates on the upper portion of the lower plate on which the second coupling groove is formed. It is characterized in that the guide hole is formed to be.
  • variable friction damper is capable of three-axis behavior including a biaxial behavior in a horizontal direction extending along the x axis and a vertical direction extending along the y axis, or a front and rear direction extending along the z axis, thereby effectively applying external force applied to the structure. Can be attenuated.
  • the present invention is easy to maintain and repair the device.
  • FIG. 1 is a front view illustrating an example in which a biaxial behavior proof variable friction damper according to a first embodiment of the present invention is installed;
  • FIG. 2 to 5 are front views showing other examples in which the biaxial behavior proof variable friction damper applied to FIG. 1 is installed;
  • FIG. 6 is a perspective view of a biaxial behavior bearing variable friction damper applied to FIG. 1;
  • FIG. 7 is an exploded perspective view of the biaxial behavior bearing variable friction damper of FIG. 6;
  • FIG. 8 is a front view showing a state when no external force is applied to the biaxial behavior bearing variable friction damper of FIG. 6;
  • 9 and 10 are front views each showing a state when an external force is applied to the biaxial behavior bearing variable friction damper of FIG. 6;
  • FIG. 11 is a front view showing a biaxial behavior proof variable friction damper according to a second embodiment of the present invention.
  • FIG. 12 is a front view showing a biaxial behavior proof variable friction damper according to a third embodiment of the present invention.
  • FIG. 13 is a front view illustrating a biaxial behavior proof variable friction damper according to a fourth embodiment of the present invention.
  • FIG. 14 is a front view illustrating an example in which a triaxial behavior proof variable friction damper according to a fifth embodiment of the present invention is installed;
  • 15 to 18 are front views showing other examples in which the triaxial behavior proof variable friction damper applied to FIG. 14 is installed;
  • FIG. 19 is a perspective view illustrating a triaxial behavior bearing variable friction damper applied to FIG. 14;
  • FIG. 20 is an exploded perspective view of the triaxial behavior bearing variable friction damper of FIG. 19;
  • 21 is a side view showing the triaxial behavior bearing variable friction damper of FIG.
  • FIG. 22 is an exploded perspective view illustrating a connecting plate applied to the triaxial behavior bearing variable friction damper of FIG. 19;
  • FIG. 23 is a cross-sectional view showing a connecting plate applied to the triaxial behavior bearing variable friction damper of FIG.
  • FIG. 24 is a front view showing a state when no external force is applied to the triaxial behavior-bearing variable friction damper of FIG. 19;
  • 25 and 26 are front views respectively showing a state when an external force is applied to the triaxial behavior proof variable friction damper of FIG. 19;
  • FIG. 27 is a front view showing a triaxial behavior resistance variable friction damper according to a fifth embodiment of the present invention.
  • FIG. 28 is a front view showing a triaxial behavior variable friction damper according to a sixth embodiment of the present invention.
  • 29 is a front view illustrating a triaxial behavior-bearing variable friction damper according to a seventh embodiment of the present invention.
  • variable friction damper according to a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.
  • variable friction damper of the present invention is divided into a variable friction damper having a biaxial behavior and a triaxial behavior according to the behavior method.
  • the biaxial behavior proof variable friction damper is described in the embodiment of FIGS. 1 to 13, and the triaxial behavior proof variable friction damper is described in FIGS. 14 to 29.
  • FIG. 1 shows an example in which the biaxial behavior bearing variable friction damper 6 according to the first embodiment of the present invention is installed in the building structure 1.
  • the building structure (1) is provided with a steel frame (2), the biaxial behavior strength variable friction damper (6) of the present invention is mounted in the lower center of the steel frame (2).
  • the biaxial behavior bearing variable friction damper 6 is connected to damping rods 3 respectively coupled to upper ends of the steel frame 2.
  • the biaxial motion strength variable friction damper 6 connected to the steel frame 2 and the damping rod 3 slides in a horizontal direction to prevent vibration. Attenuate The vibration energy is attenuated by the vibration energy applied to the building structure 1 by the heat of friction from the biaxial behavior bearing variable friction damper 6.
  • FIG. 2 shows another example in which the biaxial behavior bearing variable friction damper 6 is installed in the building structure 1.
  • Four damping rods 3 are respectively supported at four corners of the steel frame 2 as shown.
  • the upper and lower portions of the biaxial behavior bearing variable friction damper 6 may be formed to be supported.
  • the biaxial behavior proof variable friction damper 6 of the present invention can be installed in various forms.
  • the biaxial behavior-resistant variable friction damper 6 behaves in both the horizontal (x-axis) and vertical (y-axis) biaxial directions while converting external forces into frictional heat, such as an earthquake applied to the building structure (1). Minimize damage from external forces.
  • the biaxial behavior bearing variable friction damper 6 includes a first plate 10 and a second support 20, and a connecting plate 30 connecting the first support 10 and the second support 20 to each other. And a friction plate 40 provided between the connecting plate 30 and the first and second support bodies 10 and 20, and a fastening portion 50 for mutually engaging them.
  • the first support 10 has a first end plate 11 fixed to the rod fastening member 4 connecting the ends of the damping rod 3 and a lower portion from the first end plate 11. It has a first sliding plate 12 extending to.
  • the first end plate 11 is formed with a plurality of fastening holes 7 penetrating the upper and lower surfaces, and are fixed to the rod fastening member 4 through fixing bolts.
  • the first sliding plate 12 extends downward from the lower surface of the first end plate 11 by a predetermined length, and when viewed from the side, the first sliding plate 12 has a 'T' shape.
  • the first sliding plate 12 is formed with a first slot 13 penetrating the front and rear surfaces, and the first slot 13 extends a predetermined length along the left and right directions, and is spaced apart from each other by a predetermined distance along the left and right directions. Two are formed.
  • the second support 20 is fixed to the steel frame 2, and upwardly from the second end plate 21 and the second end plate 21 fixed to the steel frame 2. And a second sliding plate 22 extending toward the first support 10.
  • a plurality of fastening holes 7 penetrating the upper and lower surfaces are also formed in the second end plate 21 to fix the steel frame 2 through fixing bolts.
  • the second support 20 is a beam of the rod fastening member 4 or the building structure 1 connected to the damping rod 3 in addition to the steel frame 2 according to the installation position of the biaxial behavior bearing variable friction damper 6. It can also be installed directly on.
  • Two second slots 23 extending vertically and spaced apart from each other along the left and right directions are formed in the second sliding plate 22.
  • the first and second supports 10 and 20 are interconnected through the connecting plate 30 and the fastening part 50 which will be described later.
  • the upper and lower portions of the steel frame 2 or the building structure 1, or the damping rods 3 and the biaxial behavior, respectively which extend from the upper and lower portions of the building structure 1 and the steel frame 2, respectively.
  • Friction damper 6 is connected. Therefore, when deformation occurs in the transverse direction or the up and down direction due to an external force such as an earthquake, the biaxial behavior withstand force variable friction damper 6 is installed in this deformation direction.
  • the connecting plate 30 connects the first support 10 and the second support 20 to each other.
  • the connecting plate 30 has a plate shape extending upward and downward, and includes a first slot 13 and a second slot (top and bottom, respectively).
  • the first fixing hole 31 and the second fixing hole 32 corresponding to 23 are formed.
  • the connecting plate 30 is connected to the first sliding plate 12 and the second sliding plate 22 with a friction plate 40 to be described later.
  • the connecting plate 30 is rotated, friction with the friction plate 40 generates friction heat to reduce the external force. It is preferable to increase the friction between the friction plate 40 and the connection plate 30 by performing a shot blast treatment on the connection plate 30 to increase the friction damping effect.
  • the friction plate 40 When the friction plate 40 behaves in a direction in which the first and second supports 10 and 20 are spaced apart from each other by an external force, the friction plate 40 converts the external force into frictional heat.
  • the friction plate 40 is coupled to be fitted between the first and second sliding plates 12 and 22 and the connecting plate 30.
  • One side of the friction plate 40 is in close contact with the first sliding plate 12 or the second sliding plate 22, and the other side is in close contact with the connecting plate 30.
  • the through plate 41 is formed in the friction plate 40 so that the fastening bolt 51 of the fastening portion 50 to be described later can be inserted.
  • the friction plate 40 generates friction with the first and second sliding members and the connecting plate 30 so as to attenuate external force.
  • the friction plate 40 is made of a material having a lower hardness than the first and second sliding plates 12 and 22 and the connecting plate 30, the friction plate 40 is continuously frictionally contacted with the sliding plate 40. 40, the wear progresses and the thickness gradually decreases. Therefore, since the first and second sliding plates 12 and 22 and the connecting plate 30 can maintain a circular shape for a long time, only the friction plate 40 can be replaced with consumables to increase the service life.
  • the fastening part 50 includes a fastening bolt 51, a nut 53, and a washer member 52 to fasten the first and second sliding plates 12 and 22, the friction plate 40, and the connecting plate 30 to each other. It includes.
  • Fastening bolt 51 is preferably applied to the tension bolt.
  • the fastening bolt 51 is formed of the first and second fixing holes 31 and 32 of the connecting plate 30, the through hole 41 of the friction plate 40, and the first and second sliding plates 12 and 22. First and second slots 13 and 23 are penetrated, and then the nuts 53 are coupled to the ends to fix the first and second supports 10 and 20, the friction plate 40, and the connecting plate 30 to each other.
  • the washer member 52 is fastened between one side of the connecting plate 30 and the head of the fastening bolt 51 and between the other side of the connecting plate 30 and the nut 53.
  • the washer member 52 may be applied to a dish spring washer. Although the thickness of the friction plate 40 is slightly reduced by friction, the friction plate 40 is in close contact with the first and second sliding plates 12 and 22 and the connecting plate 30 by the elastic force of the washer member 52. I can keep it.
  • the biaxial behavior proof variable friction damper 6 of the present invention can adjust the magnitude of the frictional force by adjusting the fastening force of the fastening bolt 51 and the nut 53 of the fastening portion 50.
  • the frictional force required may vary depending on the size, shape, location, etc. of the building, and the friction plate 40 and the first and second sliding plates 12 and 22 are tightened by tightening the fastening bolt 51 to the set torque through a torque wrench.
  • the coupling force between the connecting plate 30 can be adjusted so that the frictional force of a predetermined size is present.
  • the upper and lower frictional resistances of the friction damper may be set differently by varying the torque of the tension bolt penetrating the first support 10 and the tension bolt penetrating the second support 20.
  • the biaxial behavior proof variable friction damper 10 of the present invention configured as described above has an upper fastening bolt 51 positioned in the middle of the first slot 12 when no external force is applied, as shown in FIG.
  • the fastening bolt 51 is also located in the middle of the second slot 23, where the external force is applied, as shown in FIG. 9, the first support 10 is first sliding, the first support 10 Since the frictional force of the friction plate 40 installed in the lower is relatively smaller, only the first friction plate 40 is first made sliding, the friction heat is generated.
  • the first support 10 is further moved to one side as shown in FIG. 10, the second support body
  • the fastening bolt 51 installed in the 20 moves upward along the second slot 23 and attenuates the external force while generating frictional heat in the lower friction plate 40.
  • the biaxial behavior bearing variable friction damper 10 of the first embodiment of the present invention two pairs of connecting plates 30 are coupled to the first and second supports 10 and 20 together with the friction plate 40.
  • the biaxial behavior-varying variable friction damper according to the second embodiment of the present invention may be formed in a form in which a pair of connecting plates 30 are coupled, as shown in FIG. 12.
  • the biaxial behavior bearing variable friction damper according to the third embodiment may be formed in a form in which three pairs of connecting plates 30 are coupled.
  • the left and right lengths of the first and second supports 10 and 20 may be sufficiently extended to form a form in which four or more pairs of connecting plates 30 are connected.
  • the amount of frictional strength can be varied through the number of installation of the connecting plate 30 and the friction plate.
  • first slots 12 and two second slots 23 are formed in the first and second supports 10 and 20, respectively, and the connecting plate 30 is formed according to the condition of the building structure 1 to be installed. You can also optionally install up to three pairs.
  • the biaxial motion-resistant variable friction damper according to the fourth embodiment of the present invention shown in FIG. 13 three first slots 12 and two second slots 23 are formed, respectively, but two pairs of connecting plates 30 are formed at both sides. ) And then install a pair of connecting plates 30 together with a friction plate as needed in the future to increase the frictional strength, or vice versa by removing the pair may be adjusted to reduce the frictional strength.
  • FIG 14 shows an example in which the triaxial behavior proof variable friction damper 90 according to the fifth embodiment of the present invention is installed in the building structure 1.
  • FIG 15 shows another installation example of the triaxial behavioral variable friction damper 90, which is illustrated by four damping rods 3 respectively supported at four corners of the frame as shown.
  • the upper and lower portions of the 90 may be formed to be supported, respectively.
  • the triaxial behavior bearing variable friction damper 90 and the damping rod 3 may be directly installed in the building structure 1 without a steel frame, as illustrated in FIG. 18.
  • an auxiliary pillar 5 in a vertical direction connecting the upper and lower beams of the building structure 1 may be provided, and a triaxial behavior-bearing variable friction damper 90 may be provided in the middle of the auxiliary pillar 5.
  • the triaxial behavior-bearing variable friction damper 90 of the present invention can be installed in various forms, and frictional heat is applied to the lateral direction or the vertical direction, that is, the axial direction extending along the x-axis and the y-axis.
  • the behavior is also made in the front-back direction, that is, the direction extending along the z-axis can reduce the external force in the three-axis direction.
  • the triaxial behavior bearing variable friction damper 90 includes a first support 100 and a second support 200, and a connecting plate 300 connecting the first support 100 and the second support 200. And a friction plate 400 installed between the connecting plate 300 and the first and second support bodies 100 and 200, and a fastening part 500 for coupling them to each other.
  • the first support 100 has a first end plate 110 and a first sliding plate 120 extending downward from the first end plate 110.
  • a plurality of fastening holes 111 penetrating the upper and lower surfaces are formed in the first end plate 110.
  • the first sliding plate 120 extends a predetermined length downward from the lower surface of the first end plate 110, and when viewed from the side, the first sliding plate 120 has a 'T' shape.
  • the first sliding plate 120 is formed with a first slot 121 penetrating the front and rear surfaces, and the first slot 121 extends a predetermined length along the left and right directions, and is spaced apart from each other by a predetermined distance along the left and right directions. Two are formed.
  • the second support 200 is fixed to the steel frame, the second end plate 210 and the second end plate 210 fixed to the steel frame 2, upward from the second end plate 210 toward the first support 100 And an extended second sliding plate 220.
  • a plurality of fastening holes 111 penetrating the upper and lower surfaces are also formed in the second end plate 210 to be fixed to the steel frame 2 through the fixing bolts.
  • the second support 200 may be installed directly on the rod fastening member connected to the damping rod, or the beam of the building structure, in addition to the steel frame, depending on the installation position of the triaxial behavior bearing variable friction damper 90.
  • Two second slots 222 extending upward and downward and spaced apart from each other along the left and right directions are formed in the second sliding plate 220.
  • the first and second supports 100 and 200 are interconnected through the connecting plate 300 and the fastening part 500 which will be described later, and as described above, the upper and lower portions of the steel frame or the building structure, or the building structure and When the deformation occurs in the transverse direction or the up and down direction by an external force such as an earthquake by being connected to the damping rod extending from the upper and lower portions of the steel frame, it is installed to behave according to this deformation.
  • the connecting plate 300 is to interconnect the first support 100 and the second support 200 as described above, respectively corresponding to the first slot 121 and the second slot 222 on the top and bottom, respectively.
  • the first fixing hole 311 and the second fixing hole 321 are formed.
  • the connecting plate 300 includes an upper plate 310 on which the first fixing hole 311 is formed, and a lower plate 320 coupled to the lower portion of the upper plate 310.
  • the upper plate 310 has the first fixing hole 311 is formed so as to pass through the front and rear surface, the first coupling groove 312 is introduced into the other side from one side to the other.
  • two guide protrusions 313 protruding to one side are formed in the first coupling groove 312, and the guide protrusions 313 protrude along the front and back direction, that is, the z-axis direction.
  • the lower plate 320 has the second fixing hole 321 formed to penetrate the front and rear surfaces, and a second coupling groove 322 drawn into one side is formed on the other side of the upper plate.
  • a guide hole 323 penetrating the front and rear surfaces and corresponding to the guide protrusion 313 is formed at the point where the second coupling groove 322 is formed.
  • the upper plate 310 and the lower plate 320 are coupled so that the first coupling groove 312 and the second coupling groove 322 overlap each other.
  • the guide protrusion 313 is a guide hole ( 323).
  • the two plates divided by the connecting plate are coupled to each other, and the guide protrusions 313 and the guide holes 323 formed on the respective plates allow the predetermined lengths to be individually moved in the z-axis direction. The damping effect on the external force acting in the direction can be expected.
  • the connecting plate 300 formed by combining the upper plate 310 and the lower plate 320 is connected to the first sliding plate 120 and the second sliding plate 220 with a friction plate 400 to be described later.
  • the connecting plate 300 rotates, and friction with the friction plate 400 causes frictional heat to attenuate external force.
  • shot blast shot blast
  • the friction plate 400 When the friction plate 400 behaves in a direction in which the first and second supports 100 and 200 are spaced apart from each other by an external force, the friction plate 400 converts the external force into frictional heat.
  • the friction plate 400 is coupled to be fitted between the first and second sliding plates 120 and 220 and the connecting plate 300, and one side of the friction plate 400 is connected to the first sliding plate 120 or the second sliding plate 220. Is in close contact with the connecting plate 300. And the through-hole 410 is formed in the friction plate 400 so that the fastening bolt 510 of the fastening portion 500 to be described later can be inserted.
  • the friction plate 400 is frictional with the first and second sliding plates 120 and 220 and the connecting plate 300 so as to attenuate an external force, so that the friction plate 400 dissipates heat, and thus, the first and second sliding plates 120 and 220.
  • the friction plate 400 is worn and the thickness Since the first and second sliding plates 120 and 220 and the connecting plate 300 can maintain a circular shape for a long time, only the friction plate 400 can be replaced with consumables to increase the service life.
  • the fastening part 500 includes a fastening bolt 510, a nut 530, and a washer member 520 to fasten the first and second sliding plates 120 and 220, the friction plate 400, and the connecting plate 300 to each other. do.
  • fastening part 500 is the same as the first embodiment of the present invention described above, a detailed description thereof will be omitted.
  • the fastening bolt 510 of the upper side is disposed in the middle of the first slot 121.
  • the lower fastening bolt 510 is also located in the middle of the second slot 222, where the external force is applied, as shown in FIG. 25, the first support 100 is first sliding, the first Since the frictional force of the friction plate 400 installed on the support 100 is relatively smaller, the frictional heat is generated as the sliding is first performed only in the first friction plate 400.
  • the first support 100 is further moved to one side, and the second sliding is performed.
  • the fastening bolts 510 installed on the plate 220 are moved upward along the second slots 221 to attenuate external force while friction heat is generated in the lower friction plate 400.
  • the triaxial behavior proof variable friction damper 90 of the present embodiment is a form in which two pairs of connecting plates 300 are coupled to the first and second supports 100 and 200 together with the friction plates 400, as shown in FIG. 27.
  • the pair of connecting plates 300 may be formed to be coupled, or as shown in FIG. 28, three pairs of connecting plates 300 may be coupled to each other, and the first and second supports 100 and 200 may be formed.
  • the left and right lengths of) may be sufficiently formed to have four or more pairs of connecting plates 300 connected thereto.
  • the magnitude of the frictional strength can be adjusted through the number of installation of the connecting plate 300 and the friction plate 400.
  • three first slots 121 and two second slots 222 are formed in the first and second supports 100 and 200, respectively, and connected according to the conditions of the building structure 1 to be installed.
  • Plate 300 may be selectively installed from one pair to three pairs.
  • three first slots 121 and two second slots 222 are formed, respectively, but only two pairs of connecting plates 300 are installed at both sides.
  • the 300 may be further installed together with the friction plate 400 to increase the frictional strength, or, on the contrary, may be adjusted to reduce the frictional strength by removing the pair.
  • Variable friction damper according to the present invention can effectively attenuate the external force applied to the building structure.

Abstract

본 발명은 가변 마찰댐퍼에 관한 것으로서, 더욱 상세하게는 건축구조물에 설치되어 지진과 같은 외부요인에 의해 건축구조물에 인가되는 진동을 감쇄시키는 가변 마찰댐퍼에 관한 것이다. 본 발명의 가변 마찰댐퍼는 x축을 따라 연장되는 좌우 방향과 y축을 따라 연장되는 상하방향의 이축 거동, 또는 z축을 따라 연장되는 전후방향을 포함하는 삼축 거동이 가능하여 구조물에 인가되는 외력을 효과적으로 감쇄시킬 수 있다.

Description

가변 마찰댐퍼
본 발명은 가변 마찰댐퍼에 관한 것으로서, 더욱 상세하게는 건축구조물에 설치되어 지진과 같은 외부요인에 의해 건축구조물에 인가되는 진동을 감쇄시키는 가변 마찰댐퍼에 관한 것이다.
건축구조물은 부재가 수평방향의 외력을 받는 경우에, 비틀림 또는 유사한 수평 이동이 일어난다. 특히 건축구조물 또는 타워에서 발생되는 비틀림은 구조물의 상태에 심각한 충격 또는 심지어 붕괴를 초래할 수도 있다.
댐퍼는 건축구조물, 예를 들어 가옥 또는 유사한 건물 구조물을 보호하는 중요한 역할을 수행하며, 상기 댐퍼는 수많은 변형 형태로 존재한다.
댐퍼는 일반적으로 건물의 구조물 부재들 사이에 부착된 두 개의 이동 부분들 사이의 마찰력에 의해서나 혹은 제한된 튜브를 통해 두 개의 챔버들 사이에 유동하여 가압하는 유체에 의해서 움직임을 감쇠시킨다.
일부 댐퍼들은 외부 상태에 대응하는 감쇠 효과를 능동적으로 변화시키는 것이고, 기타 다른 댐퍼들로는 일정한 감쇠 특성을 가진 수동 댐퍼(passive damper)들이 있다.
그러나 상기한 일반적인 댐퍼들은 제조 비용이 많이 들고 심지어 건물의 구조물부재 내로 조립하는 데도 더 많은 비용이 든다. 더욱이 마찰력의 제공을 위해 장착되는 마찰판이 마모되면 진동 감쇄 기능이 떨어지기 때문에 댐퍼구조물 전체를 교체해야 하므로 교체에 따른 유지비용이 증가하는 문제점이 있었다.
마찰력을 이용해 진동을 감쇄시키는 마찰댐퍼의 선행기술로 다음과 같은 선행특허들이 있다.
대한민국 공개특허 제10-2004-0012813호: 구조물의 움직임 감쇠용 마찰 댐퍼
대한민국 공개특허 제10-2011-0018284호: 내진보강용 회전식 마찰댐퍼 및 이를 이용한 내진보강장치
본 발명은 상기 문제점을 해결하기 위해 창출된 것으로서, 좌우 및 상하 방향의 이축 거동 또는 좌우 및 상하, 전후 방향의 삼축 거동에 대한 진동감쇄가 가능하며 장착과 유지보수가 용이한 가변 마찰댐퍼를 제공하는데 그 목적이 있다.
상기 목적을 달성하기 위한 본 발명의 가변 마찰댐퍼는 건축구조물 또는 댐핑로드에 지지되는 제1 엔드플레이트와, 상기 제1 엔드플레이트로부터 하방으로 연장되고 외력에 의해 상기 건축구조물 또는 댐핑로드가 거동하는 좌우방향을 따라 연장되는 제1 슬롯이 형성되어 있는 제1 슬라이딩판을 포함하는 제1 지지체와; 상기 제1 지지체의 하부에 위치하도록 건축구조물 또는 댐핑로드에 지지되는 제2 엔드플레이트와, 상기 제2 엔드플레이트로부터 상기 제1 지지체를 향해 연장되고 상하로 연장된 제2 슬롯이 형성되어 있는 제2 슬라이딩판을 포함하는 제2 지지체와; 상단과 하단에 각각 상기 제1 슬롯과 제2 슬롯에 대응하는 제1 고정홀과 제2 고정홀이 형성되어 있고 상기 제1 지지체와 제2 지지체의 전후면에 결합되는 연결판과;상기 연결판과 상기 제1 슬라이딩판 및 제2 슬라이딩판 사이에 삽입 설치되어 상기 제1 슬라이딩판 또는 제2 슬라이딩판이 외력에 의해 거동할 때 마찰열이 발생하는 마찰판과; 상기 제1, 제2 지지체와 상기 마찰판 및 상기 연결판을 상호 연결하는 체결부;를 구비하는 것을 특징으로 한다.
상기 연결판은 상기 마찰판과의 마찰력을 높이기 위해 표면에 숏 블라스트(shot blast)처리가 된 것을 특징으로 한다.
상기 체결부는 상기 연결판의 제1 고정홀 또는 제2 고정홀과 상기 마찰판의 관통홀, 상기 제1, 제2 지지체의 제1 슬롯 또는 제2 슬롯을 관통하는 체결볼트와, 상기 체결볼트의 단부에 설치되는 너트를 구비하고, 상기 제1 지지체와 제2 지지체가 상기 연결판과 연결되는 체결력을 상호 다르게 설정하여 제1 지지체측과 제2 지지체측의 마찰내력이 서로 다르게 형성되는 것을 특징으로 한다.
상기 체결부는 상기 연결판과 상기 체결볼트의 헤드부 사이 및 상기 연결판과 너트의 사이에 설치되는 와셔부재를 더 구비하되, 상기 와셔부재는 상기 마찰판이 마찰에 의해 두께가 감소해도 상기 연결판과 제1 지지체 또는 제2 지지체 사이에서 마찰판의 밀착상태를 유지할 수 있도록 접시 스프링와셔로 된 것을 특징으로 한다.
상기 마찰판은 상기 제1, 제2 지지체 및 상기 연결판에 비해 상대적으로 경도가 낮은 금속으로 형성된 것을 특징으로 한다.
상기 연결판은 상기 제1 지지체와 상기 제2 지지체의 전후면에 결합되는 것으로, 상기 제1 지지체와 상기 제2 지지체가 상호 슬라이딩되는 좌우방향에 대하여 교차하는 전후방향을 따라 상호 진퇴 가능하게 결합되는 상부플레이트와 하부플레이트를 포함하되, 상기 상부플레이트에는 상기 제1 고정홀이 형성되어 있고, 상기 하부플레이트에는 상기 제2 고정홀이 형성된 것을 특징으로 한다.
상기 상부플레이트는 하단에 일측면으로부터 타측을 향해 인입되어 있는 제1 결합홈이 형성되어 있으며, 상기 하부플레이트에는 상단에 상기 제1 결합홈과 포개질 수 있도록 타측면으로부터 일측으로 인입된 제2 결합홈이 형성되어 있고, 상기 제1 결합홈이 형성된 상부플레이트의 하부에는 전후방향을 따라 연장되도록 돌출된 가이드돌기가 형성되어 있으며, 상기 제2 결합홈이 형성된 하부플레이트의 상부에는 상기 가이드돌기가 관통할 수 있도록 가이드홀이 형성되어 있는 것을 특징으로 한다.
본 발명에 따른 가변 마찰댐퍼는 x축을 따라 연장되는 좌우 방향과 y축을 따라 연장되는 상하방향의 이축 거동, 또는 z축을 따라 연장되는 전후방향을 포함하는 삼축 거동이 가능하여 구조물에 인가되는 외력을 효과적으로 감쇄시킬 수 있다.
또한, 본 발명은 장치의 유지 및 보수가 용이하다.
도 1은 본 발명의 제 1실시 예에 따른 이축 거동 내력 가변 마찰댐퍼를 설치한 일 예를 도시한 정면도이고,
도 2 내지 도 5는 도 1에 적용된 이축 거동 내력 가변 마찰댐퍼를 설치한 다른 예들을 도시한 정면도이고,
도 6은 도 1에 적용된 이축 거동 내력 가변 마찰댐퍼를 도시한 사시도,
도 7은 도 6의 이축 거동 내력 가변 마찰댐퍼의 분리사시도,
도 8은 도 6의 이축 거동 내력 가변 마찰댐퍼에 외력이 인가되지 않았을 때의 상태를 도시한 정면도,
도 9 및 도 10은 도 6의 이축 거동 내력 가변 마찰댐퍼에 외력이 인가되었을 때의 상태를 각각 도시한 정면도,
도 11은 본 발명의 제 2실시 예에 따른 이축 거동 내력 가변 마찰댐퍼를 도시한 정면도,
도 12는 본 발명의 제 3실시 예에 따른 이축 거동 내력 가변 마찰댐퍼를 도시한 정면도,
도 13은 본 발명의 제 4실시 예에 따른 이축 거동 내력 가변 마찰댐퍼를 도시한 정면도,
도 14 본 발명의 제 5실시 예에 따른 삼축 거동 내력 가변 마찰댐퍼를 설치한 일 예를 도시한 정면도이고,
도 15 내지 도 18은 도 14에 적용된 삼축 거동 내력 가변 마찰댐퍼를 설치한 다른 예들을 도시한 정면도이고,
도 19는 도 14에 적용된 삼축 거동 내력 가변 마찰댐퍼를 도시한 사시도,
도 20은 도 19의 삼축 거동 내력 가변 마찰댐퍼의 분리사시도,
도 21은 도 19의 삼축 거동 내력 가변 마찰댐퍼를 도시한 측면도,
도 22는 도 19의 삼축 거동 내력 가변 마찰댐퍼에 적용된 연결판을 도시한 분리사시도,
도 23은 도 19의 삼축 거동 내력 가변 마찰댐퍼에 적용된 연결판을 도시한 단면도,
도 24는 도 19의 삼축 거동 내력 가변 마찰댐퍼에 외력이 인가되지 않았을 때의 상태를 도시한 정면도,
도 25 및 도 26은 도 19의 삼축 거동 내력 가변 마찰댐퍼에 외력이 인가되었을 때의 상태를 각각 도시한 정면도,
도 27은 본 발명의 제 5실시 예에 따른 삼축 거동 내력 가변 마찰댐퍼를 도시한 정면도,
도 28은 본 발명의 제 6실시 예에 따른 삼축 거동 내력 가변 마찰댐퍼를 도시한 정면도,
도 29는 본 발명의 제 7실시 예에 따른 삼축 거동 내력 가변 마찰댐퍼를 도시한 정면도이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시 예에 따른 가변 마찰댐퍼에 대하여 구체적으로 설명한다.
본 발명의 가변 마찰댐퍼는 거동 방식에 따라 이축 거동과 삼축 거동의 가변 마찰댐퍼로 구분된다. 이축 거동 내력 가변 마찰댐퍼는 도 1 내지 도 13의 실시 예에 기술하고, 삼축 거동 내력 가변 마찰댐퍼는 도 14 내지 도 29에 기술한다.
먼저, 도 1에 본 발명의 제 1실시 예에 따른 이축 거동 내력 가변 마찰댐퍼(6)가 건축구조물(1)에 설치된 일 예를 도시한다.
통상적으로 건축구조물(1)에는 철골프레임(2)이 설치되어 있으며, 철골프레임(2)의 하부 중앙에 본 발명의 이축 거동 내력 가변 마찰댐퍼(6)가 장착된다. 그리고 이축 거동 내력 가변 마찰댐퍼(6)는 철골프레임(2)의 상부 양단에 각각 결합되는 댐핑로드(3)들과 연결된다.
지진 또는 강풍과 같은 외력에 의해 건축구조물(1)에 진동이 인가되면, 철골프레임(2) 및 댐핑로드(3)에 연결되는 이축 거동 내력 가변 마찰댐퍼(6)가 수평방향으로 슬라이딩 하면서 진동을 감쇄시킨다. 이는 건축구조물(1)에 인가되는 진동에너지가 이축 거동 내력 가변 마찰댐퍼(6)에서 마찰열로 발산됨으로써 진동을 감쇄되는 것이다.
도 2에는 이축 거동 내력 가변 마찰댐퍼(6)가 건축구조물(1)에 설치된 다른 예가 도시되어 있는데, 도시된 것처럼 철골프레임(2)의 네 귀퉁이에 각각 지지되어 있는 네 개의 댐핑로드(3)들에 의해 이축 거동 내력 가변 마찰댐퍼(6)의 상부와 하부가 각각 지지되는 형태로 형성될 수 있다.
이 외에도 도 3 및 도 4에 도시되어 있는 것처럼 철골프레임 없이 건축구조물(1)에 이축 거동 내력 가변 마찰댐퍼(6)와 댐핑로드(3)들이 직접 설치되는 것도 가능하다. 또한, 도 5에 도시되어 있는 것처럼 건축구조물(1)의 상하부 보를 각각 연결하는 수직방향의 보조기둥(5)을 설치하고, 이 보조기둥(5)의 중간에 이축 거동 내력 가변 마찰댐퍼(6)를 설치할 수도 있다.
이렇게 본 발명의 이축 거동 내력 가변 마찰댐퍼(6)는 다양한 형태로 설치가 가능하다. 이축 거동 내력 가변 마찰댐퍼(6)는 수평방향(x축 방향)이나 수직방향(y축 방향)의 이축 방향에 대하여 모두 거동하면서 외력을 마찰열로 변환시켜 건축구조물(1)에 가해지는 지진과 같은 외력의 피해를 최소화한다.
도 6 및 도 7에는 본 발명의 제 1실시 예에 따른 이축 거동 내력 가변 마찰댐퍼(6)가 더욱 상세하게 도시되어 있다.
본 발명에 따른 이축 거동 내력 가변 마찰댐퍼(6)는 제1 지지체(10) 및 제2 지지체(20)와, 제1 지지체(10)와 제2 지지체(20)를 연결하는 연결판(30)과, 연결판(30)과 제1 및 제2 지지체(10,20)의 사이에 설치되는 마찰판(40)과, 이들을 상호 결합시키기 위한 체결부(50)를 구비한다.
제1 지지체(10)는 도 1에 나타난 바와 같이 댐핑로드(3)의 단부를 연결하는 로드체결부재(4)에 고정되는 제1 엔드플레이트(11)와, 제1 엔드플레이트(11)로부터 하방으로 연장되는 제1 슬라이딩판(12)을 갖는다.
제1 엔드플레이트(11)에는 상면과 하면을 관통하는 복수개의 체결홀(7)들이 형성되어 있으며, 고정볼트들을 통해 로드체결부재(4)에 고정된다.
제1 슬라이딩판(12)은 제1 엔드플레이트(11)의 하면으로부터 하방으로 소정길이 연장되어 있는데, 측면에서 봤을 때, 'T'자 형상이 된다. 제1 슬라이딩판(12)에는 전후면을 관통하는 제1 슬롯(13)이 형성되어 있는데, 제1 슬롯(13)은 좌우방향을 따라 소정길이 연장되어 있고, 좌우방향을 따라 상호 소정간격 이격되도록 두 개가 형성되어 있다.
제2 지지체(20)는 도 1에 나타난 바와 같이 철골프레임(2)에 고정되는 것으로, 철골프레임(2)에 고정된 제2 엔드플레이트(21)와, 제2 엔드플레이트(21)로부터 상방으로 제1 지지체(10)를 향해 연장된 제2 슬라이딩판(22)을 포함한다. 제2 엔드플레이트(21)에도 상하면을 관통하는 다수의 체결홀(7)들이 형성되어 있어서 고정볼트를 통해 철골프레임(2)에 고정이 이루어진다. 제2 지지체(20)는 이축 거동 내력 가변 마찰댐퍼(6)의 설치 위치에 따라 철골프레임(2) 외에도 댐핑로드(3)와 연결되는 로드체결부재(4), 또는 건축구조물(1)의 보에 직접 설치될 수도 있다.
제2 슬라이딩판(22)에는 상하로 연장되어 있고, 좌우방향을 따라 상호 이격되어 있는 두 개의 제2 슬롯(23)이 형성되어 있다.
상기 제1, 제2 지지체(10,20)는 후술하는 연결판(30)과 체결부(50)를 통해서 상호 연결이 이루어진다. 상술한 것처럼 각각 철골프레임(2)이나 건축구조물(1)의 상부와 하부, 또는 건축구조물(1)과 철골프레임(2)의 상부와 하부로부터 각각 연장되는 댐핑로드(3)와 이축 거동 내력 가변 마찰댐퍼(6)가 연결된다. 따라서 지진과 같은 외력에 의해 횡방향 또는 상하방향으로 변형이 발생할 때, 이러한 변형방향에 따라 이축 거동 내력 가변 마찰댐퍼(6)의 거동이 이루어질 수 있도록 설치된다.
상기 연결판(30)은 제1 지지체(10)와 제2 지지체(20)를 상호 연결하는 것으로서, 상하로 연장되는 판재형태이며, 상부와 하부에 각각 제1 슬롯(13)과 제2 슬롯(23)에 대응하는 제1 고정홀(31)과 제2 고정홀(32)이 형성된다.
연결판(30)은 후술하는 마찰판(40)을 사이에 두고 제1 슬라이딩판(12) 및 제2 슬라이딩판(22)과 연결된다. 제1 지지체(10)와 제2 지지체(20)가 상호 이격되는 방향으로 거동하면 연결판(30)이 회전하게 되고, 마찰판(40)과 마찰되어 마찰열이 발생하면서 외력을 감쇄시킨다. 마찰 감쇄효과를 높일 수 있도록 연결판(30)에 숏블라스트(shot blast)처리를 하여 마찰판(40)과 연결판(30)의 마찰력을 높이는 것이 바람직하다.
마찰판(40)은 외력에 의해 제1, 제2 지지체(10,20)가 상호 이격되는 방향으로 거동할 때, 외력을 마찰열로 전환하기 위한 것이다.
마찰판(40)은 제1, 제2 슬라이딩판(12,22)과 연결판(30) 사이에 끼워지도록 결합된다. 마찰판(40)의 일측면은 제1 슬라이딩판(12) 또는 제2 슬라이딩판(22)에, 타측면은 연결판(30)에 밀착된다. 그리고 마찰판(40)에는 후술하는 체결부(50)의 체결볼트(51)가 삽입될 수 있도록 관통홀(41)이 형성되어 있다.
상술한 것처럼 마찰판(40)은 외력을 감쇄시킬 수 있도록 제1, 제2 슬라이딩부재 및 연결판(30)과 마찰이 이루어져 열을 발산시킨다. 마찰판(40)을 제1, 제2 슬라이딩판(12,22) 및 연결판(30)에 비해 상대적으로 낮은 경도의 재질로 제작하면, 마찰판(40)과 슬라이딩판의 지속적인 마찰접촉이 이루어질 때 마찰판(40)은 마모가 진행되어 두께가 점점 감소한다. 따라서 제1, 제2 슬라이딩판(12,22)과 연결판(30)은 원형을 오랫동안 유지할 수 있으므로 마찰판(40)만 소모품과 같이 교환하여 사용수명을 증가시킬 수 있다.
상기 체결부(50)는 제1, 제2 슬라이딩판(12,22)과 마찰판(40) 및 연결판(30)을 상호 체결하도록 체결볼트(51)와 너트(53) 및 와셔부재(52)를 포함한다.
체결볼트(51)는 텐션볼트가 적용되는 것이 바람직하다. 체결볼트(51)는 연결판(30)의 제1, 제2 고정홀(31,32), 마찰판(40)의 관통홀(41) 및 제1, 제2 슬라이딩판(12,22)의 제1, 제2 슬롯(13,23)을 관통시킨 다음 단부에 너트(53)를 결합하여 제1, 제2 지지체(10,20)와 마찰판(40) 및 연결판(30)을 상호 고정시킨다.
상기 와셔부재(52)는 일측 연결판(30)과 체결볼트(51)의 헤드 사이 및 타측 연결판(30)과 너트(53) 사이에 체결된다. 와셔부재(52)는 접시스프링와셔가 적용될 수 있다. 마찰판(40)이 마찰에 의해 두께가 다소 감소하더라도 와셔부재(52)의 탄성력에 의해 마찰판(40)이 제1, 제2 슬라이딩판(12,22)과 연결판(30)에 밀착된 상태를 유지할 수 있다.
아울러 본 발명의 이축 거동 내력 가변 마찰댐퍼(6)는 체결부(50)의 체결볼트(51)와 너트(53)의 체결력을 조절하여 마찰내력의 크기를 조절할 수 있다.
즉, 건축물의 크기나 형태, 위치 등에 따라 요구되는 마찰내력이 다를 수 있는데, 토크렌치를 통해 체결볼트(51)를 설정된 토크로 조여 마찰판(40)과 제1, 제2 슬라이딩판(12,22) 및 연결판(30) 사이의 결합력을 설정 크기의 마찰내력이 존재하도록 조절할 수 있다. 필요에 따라서는 제1 지지체(10)를 관통하는 텐션볼트와 제2 지지체(20)를 관통하는 텐션볼트의 토크를 달리하여 마찰댐퍼의 상부와 하부측 마찰내력을 상호 다르게 설정할 수도 있다.
제1 지지체(10)측과 제2 지지체(20) 측에 걸리는 마찰내력의 크기를 상호 달리하면 약한 진동 또는 외력에 대해서는 제1 지지체(10)측에 설치되는 마찰판(40)에서 먼저 마찰이 일어나 외력을 감쇄시키다가 외력의 크기가 커져 제2 지지체(20)측의 마찰내력보다 커지면 제2 지지체(20)측의 마찰판(40)도 회전 및 상하운동을 통해 거동하면서 마찰열이 발생하게 된다.
이렇게 구성된 본 발명의 이축 거동 내력 가변 마찰댐퍼(10)는 도 8에 도시되어 있는 것처럼 외력이 작용하지 않을 때에는 상부측의 체결볼트(51)가 제1 슬롯(12)의 중간에 위치하고, 하부측의 체결볼트(51)도 제2 슬롯(23)의 중간에 위치한 상태로 있는데, 여기서 외력이 작용하면, 도 9에 도시된 것처럼 먼저 제1 지지체(10)가 슬라이딩 되고, 제1 지지체(10)에 설치된 마찰판(40)의 마찰내력이 상대적으로 더 작기 때문에 제1 마찰판(40)에서만 먼저 슬라이딩이 이루어지면서 마찰열이 발생하게 된다.
만약 외력의 힘이 커 제2 지지체(20)에 결합된 마찰판(40)에 대한 마찰내력보다 크면, 도 10에 도시된 것처럼 제1 지지체(10)는 일측으로 더 이동이 이루어지고, 제 2지지체(20)에 설치된 체결볼트(51)는 제2 슬롯(23)을 따라 상방으로 진행하면서 하부측 마찰판(40)에서도 마찰열이 발생하면서 외력을 감쇄시키게 된다.
본 발명의 제 1 실시예의 이축 거동 내력 가변 마찰댐퍼(10)는 제1, 제2 지지체(10,20)에 두 쌍의 연결판(30)이 마찰판(40)과 함께 결합되는 형태이지만 도 11에 도시되어 있는 것처럼 본 발명의 제 2실시 예에 따른 이축 거동 내력 가변 마찰댐퍼는 한 쌍의 연결판(30)이 결합되는 형태로 형성될 수도 있고, 도 12에 도시되어 있는 것처럼 본 발명의 제 3실시 예에 따른 이축 거동 내력 가변 마찰댐퍼는세 쌍의 연결판(30)이 결합되는 형태로 형성될 수도 있다. 또한, 제1, 제2 지지체(10,20)의 좌우 길이를 충분히 늘려 네 쌍 이상의 연결판(30)이 연결되는 형태로 형성될 수도 있다. 이렇게 연결판(30) 및 마찰판의 설치 개수를 통해 마찰내력의 크기를 달리할 수 있다.
제1, 제2 지지체(10,20)에 제1 슬롯(12)과 제2 슬롯(23)을 각각 세 개씩 형성해 두고, 설치되는 건축구조물(1)의 조건에 따라 연결판(30)을 한 쌍에서 세 쌍까지 선택적으로 설치할 수도 있다. 도 13에 도시된 본 발명의 제 4실시 예에 따른 이축 거동 내력 가변 마찰댐퍼는 제1 슬롯(12)과 제2 슬롯(23)은 각각 세 개씩 형성해 두었으나 양측에 두 쌍의 연결판(30)만 설치해 두었다가 추후 필요에 따라 한 쌍의 연결판(30)을 마찰판과 함께 더 설치하여 마찰내력을 증가시킬 수도 있고, 반대로 한 쌍을 제거하여 마찰내력을 감소시키도록 조절할 수도 있다.
이하, 도 14 내지 도 29에 기술된 삼축 거동 내력 가변 마찰댐퍼에 대하여 설명한다.
도 14에 본 발명의 제 5실시 예에 따른 삼축 거동 내력 가변 마찰댐퍼(90)가 건축구조물(1)에 설치된 일 예를 도시하고 있다.
도 15에는 삼축 거동 내력 가변 마찰댐퍼(90)의 다른 설치 실시예가 도시되어 있는데, 도시된 것처럼 프레임의 네 귀퉁이에 각각 지지되어 있는 네 개의 댐핑로드(3)들에 의해 삼축 거동 내력 가변 마찰댐퍼(90)의 상부와 하부가 각각 지지되는 형태로 형성될 수 있다.
이 외에도 도 16 및 도 17에 도시되어 있는 것처럼 철골프레임 없이 건축구조물(1)에 삼축 거동 내력 가변 마찰댐퍼(90)와 댐핑로드(3)들이 직접 설치되는 것도 가능하며, 도 18에 도시되어 있는 것처럼 건축구조물(1)의 상하부 보를 각각 연결하는 수직방향의 보조기둥(5)을 설치하고, 이 보조기둥(5)의 중간에 삼축 거동 내력 가변 마찰댐퍼(90)를 설치할 수도 있다.
이렇게 본 발명의 삼축 거동 내력 가변 마찰댐퍼(90)는 다양한 형태로 설치가 가능하며, 좌우방향이나 수직방향에 대하여, 즉, x축과 y축을 따라 연장되는 이 축 방향에 대하여 거동하면서 외력을 마찰열로 변환시켜 건축구조물(1)에 가해지는 지진과 같은 외력의 피해를 최소화한다. 아울러 후술하는 연결판의 구조에 의해 전후방향 즉 z축을 따라 연장되는 방향에 대해서도 거동이 이루어져 삼축 방향에 대한 외력을 감쇄시킬 수 있다.
도 19 내지 도 26에는 본 발명의 제 5실시 예에 따른 삼축 거동 내력 가변 마찰댐퍼(90)가 더욱 상세하게 도시되어 있다.
본 발명에 따른 삼축 거동 내력 가변 마찰댐퍼(90)는 제1 지지체(100) 및 제2 지지체(200)와, 제1 지지체(100)와 제2 지지체(200)를 연결하는 연결판(300)과, 연결판(300)과 제1, 제2 지지체(100,200)의 사이에 설치되는 마찰판(400)과, 이들을 상호 결합시키기 위한 체결부(500)를 구비한다.
제1 지지체(100)는 제1 엔드플레이트(110)와, 제1 엔드플레이트(110)로부터 하방으로 연장되는 제1 슬라이딩판(120)을 갖는다.
상기 제1 엔드플레이트(110)에는 상면과 하면을 관통하는 복수개의 체결홀(111)들이 형성된다.
제1 슬라이딩판(120)은 제1 엔드플레이트(110)의 하면으로부터 하방으로 소정길이 연장되어 있는데, 측면에서 봤을 때, 'T'자 형상이 된다. 제1 슬라이딩판(120)에는 전후면을 관통하는 제1 슬롯(121)이 형성되어 있는데, 제1 슬롯(121)은 좌우방향을 따라 소정길이 연장되어 있고, 좌우방향을 따라 상호 소정간격 이격되도록 두 개가 형성되어 있다.
상기 제2 지지체(200)는 철골프레임에 고정되는 것으로, 철골프레임(2)에 고정된 제2 엔드플레이트(210)와, 제2 엔드플레이트(210)로부터 상방으로 제1 지지체(100)를 향해 연장된 제2 슬라이딩판(220)을 포함한다. 제2 엔드플레이트(210)에도 상하면을 관통하는 다수의 체결홀(111)들이 형성되어 있어서 고정볼트를 통해 철골프레임(2)에 고정이 이루어진다. 제2 지지체(200)는 삼축 거동 내력 가변 마찰댐퍼(90)의 설치 위치에 따라 철골프레임 외에도 댐핑로드와 연결되는 로드체결부재, 또는 건축구조물의 보에 직접 설치될 수도 있다.
제2 슬라이딩판(220)에는 상하로 연장되어 있고, 좌우방향을 따라 상호 이격되어 있는 두 개의 제2 슬롯(222)이 형성되어 있다.
상기 제1, 제2 지지체(100,200)는 후술하는 연결판(300)과 체결부(500)를 통해서 상호 연결이 이루어지며, 상술한 것처럼 각각 철골프레임이나 건축구조물의 상부와 하부, 또는 건축구조물과 철골프레임의 상부와 하부로부터 각각 연장되는 댐핑로드와 연결됨으로써 지진과 같은 외력에 의해 횡방향 또는 상하방향으로 변형이 발생할 때, 이러한 변형에 따라 거동이 이루어질 수 있도록 설치된다.
상기 연결판(300)은 상술한 것처럼 제1 지지체(100)와 제2 지지체(200)를 상호 연결하는 것으로서, 상부와 하부에 각각 제1 슬롯(121)과 제2 슬롯(222)에 대응하는 제1 고정홀(311)과 제2 고정홀(321)이 형성되어 있다.
더욱 상세하게 설명하면 연결판(300)은 제1 고정홀(311)이 형성되어 있는 상부플레이트(310)와, 상부플레이트(310)의 하부에 결합되는 하부플레이트(320)를 포함한다.
상부플레이트(310)는 전후면을 관통하도록 상기 제1 고정홀(311)이 형성되어 있으며, 하부에 일측면으로부터 타측으로 인입된 제1 결합홈(312)이 형성되어 있다. 그리고 제1 결합홈(312)에는 일측으로 돌출된 두 개의 가이드돌기(313)가 형성되어 있는데, 상기 가이드돌기(313)는 전후방향 즉, z축 방향을 따라 돌출된다.
하부플레이트(320)는 전후면을 관통하도록 상기 제2 고정홀(321)이 형성되어 있고, 상부 타측면에 일측으로 인입된 제2 결합홈(322)이 형성되어 있다. 그리고 제2 결합홈(322)이 형성되어 있는 지점에 전후면을 관통하며 상기 가이드돌기(313)에 대응하는 가이드홀(323)이 형성되어 있다.
상부플레이(310)트와 하부플레이트(320)는 상기 제1 결합홈(312)과 제2 결합홈(322)이 상호 포개어지도록 결합이 이루어지며 이 때, 상기 가이드돌기(313)가 가이드홀(323)에 삽입된다. 이렇게 연결판이 분할된 두 개의 플레이트가 상호 결합되어 이루어지는데, 각각의 플레이트에 형성된 가이드돌기(313)와 가이드홀(323)에 의해서 상호 z축 방향에 대하여 소정길이 개별적으로 거동이 가능하게 되어 z축 방향으로 작용하는 외력에 대한 감쇄효과를 기대할 수 있다.
상부플레이트(310)와 하부플레이트(320)가 결합되어 형성되는 연결판(300)은 후술하는 마찰판(400)을 사이에 두고 상기 제1 슬라이딩판(120) 및 제2 슬라이딩판(220)과 연결되며, 제1 지지체(100)와 제2 지지체(200)가 상호 이격되는 방향으로 거동하면 상기 연결판(300)이 회전하게 되고, 상기 마찰판(400)과 마찰되어 마찰열이 발생하면서 외력을 감쇄시키게 되는데, 이러한 마찰 감쇄효과를 높일 수 있도록 연결판(300)에 숏블라스트(shot blast)처리를 하여 마찰판(400)과 연결판(300) 사이의 마찰력을 높이는 것이 바람직하다.
마찰판(400)은 외력에 의해 제1, 제2 지지체(100,200)가 상호 이격되는 방향으로 거동할 때, 외력을 마찰열로 전환하기 위한 것이다.
마찰판(400)은 제1, 제2 슬라이딩판(120,220)과 연결판(300)의 사이에 끼워지도록 결합되며 일측면은 제1 슬라이딩판(120) 또는 제2 슬라이딩판(220)에, 타측면은 연결판(300)에 밀착된다. 그리고 마찰판(400)에는 후술하는 체결부(500)의 체결볼트(510)가 삽입될 수 있도록 관통홀(410)이 형성되어 있다.
상술한 것처럼 마찰판(400)은 외력을 감쇄시킬 수 있도록 제1, 제2 슬라이딩판(120,220) 및 연결판(300)과 마찰이 이루어져 열을 발산하는 것이므로, 제1, 제2 슬라이딩판(120,220) 및 연결판(300)에 비해 상대적으로 낮은 경도의 재질로 제작하면, 마찰판(400)과 제1, 제2 슬라이딩판(120,220)의 지속적인 마찰접촉이 이루어질 때 마찰판(400)은 마모가 진행되어 두께가 점점 감소하게 되고, 상대적으로 제1, 제2 슬라이딩판(120,220)과 연결판(300)은 원형을 오랫동안 유지할 수 있으므로 마찰판(400)만 소모품과 같이 교환하여 사용수명을 증가시킬 수 있다.
상기 체결부(500)는 제1, 제2 슬라이딩판(120,220)과 마찰판(400) 및 연결판(300)을 상호 체결하도록 체결볼트(510)와 너트(530) 및 와셔부재(520)를 포함한다.
체결부(500)는 상술한 본 발명의 제 1실시예와 동일하므로 구체적인 설명을 생략한다.
본 발명의 제 5실시 예에 따른 삼축 거동 내력 가변 마찰댐퍼(90)는 도 24에 도시되어 있는 것처럼 외력이 작용하지 않을 때에는 상부측의 체결볼트(510)가 제1 슬롯(121)의 중간에 위치하고, 하부측의 체결볼트(510)도 제2 슬롯(222)의 중간에 위치한 상태로 있는데, 여기서 외력이 작용하면, 도 25에 도시된 것처럼 먼저 제1 지지체(100)가 슬라이딩 되고, 제1 지지체(100)에 설치된 마찰판(400)의 마찰내력이 상대적으로 더 작기 때문에 제1 마찰판(400)에서만 먼저 슬라이딩이 이루어지면서 마찰열이 발생하게 된다.
만약 외력의 힘이 커 제2 지지체(200)에 결합된 마찰판(400)에 대한 마찰내력보다 크면, 도 26에 도시된 것처럼 제1 지지체(100)는 일측으로 더 이동이 이루어지고, 제2 슬라이딩판(220)에 설치된 체결볼트(510)는 제2 슬롯(221)을 따라 상방으로 진행하면서 하부측 마찰판(400)에서도 마찰열이 발생하면서 외력을 감쇄시키게 된다.
본 실시예의 삼축 거동 내력 가변 마찰댐퍼(90)는 제1, 제2 지지체(100,200)에 두 쌍의 연결판(300)이 마찰판(400)과 함께 결합되는 형태이지만 도 27에 도시되어 있는 것처럼 한 쌍의 연결판(300)이 결합되는 형태로 형성될 수도 있고, 도 28에 도시되어 있는 것처럼 세 쌍의 연결판(300)이 결합되는 형태로 형성될 수도 있으며, 제1, 제2 지지체(100,200)의 좌우 길이를 충분히 늘려 네 쌍 이상의 연결판(300)이 연결되는 형태로 형성될 수도 있다. 이렇게 연결판(300) 및 마찰판(400)의 설치 개수를 통해 마찰내력의 크기를 조절할 수 있다.
아울러 도 29에 도시되어 있는 것처럼 제1, 제2 지지체(100,200)에 제1 슬롯(121)과 제2 슬롯(222)을 각각 세 개씩 형성해 두고, 설치되는 건축구조물(1)의 조건에 따라 연결판(300)을 한 쌍에서 세 쌍까지 선택적으로 설치할 수도 있다. 도 15에 도시된 실시예의 경우 제1 슬롯(121)과 제2 슬롯(222)은 각각 세 개씩 형성해 두었으나 양측에 두 쌍의 연결판(300)만 설치해 두었다가 추후 필요에 따라 한 쌍의 연결판(300)을 마찰판(400)과 함께 더 설치하여 마찰내력을 증가시킬 수도 있고, 반대로 한 쌍을 제거하여 마찰내력을 감소시키도록 조절할 수도 있다.
이상, 본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 사람이라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 등록 청구 범위의 기술적 사상에 의해 정해져야 할 것이다.
본 발명에 따른 가변 마찰댐퍼는 건축 구조물에 가해지는 외력을 효과적으로 감쇄시킬 수 있다.

Claims (7)

  1. 건축구조물 또는 댐핑로드에 지지되는 제1 엔드플레이트와, 상기 제1 엔드플레이트로부터 하방으로 연장되고 외력에 의해 상기 건축구조물 또는 댐핑로드가 거동하는 좌우방향을 따라 연장되는 제1 슬롯이 형성되어 있는 제1 슬라이딩판을 포함하는 제1 지지체와;
    상기 제1 지지체의 하부에 위치하도록 건축구조물 또는 댐핑로드에 지지되는 제2 엔드플레이트와, 상기 제2 엔드플레이트로부터 상기 제1 지지체를 향해 연장되고 상하로 연장된 제2 슬롯이 형성되어 있는 제2 슬라이딩판을 포함하는 제2 지지체와;
    상단과 하단에 각각 상기 제1 슬롯과 제2 슬롯에 대응하는 제1 고정홀과 제2 고정홀이 형성되어 있고 상기 제1 지지체와 제2 지지체의 전후면에 결합되는 연결판과;
    상기 연결판과 상기 제1 슬라이딩판 및 제2 슬라이딩판 사이에 삽입 설치되어 상기 제1 슬라이딩판 또는 제2 슬라이딩판이 외력에 의해 거동할 때 마찰열이 발생하는 마찰판과;
    상기 제1, 제2 지지체와 상기 마찰판 및 상기 연결판을 상호 연결하는 체결부;를 구비하는 것을 특징으로 하는 가변 마찰댐퍼.
  2. 제 1항에 있어서,
    상기 연결판은 상기 마찰판과의 마찰력을 높이기 위해 표면에 숏 블라스트(shot blast)처리가 된 것을 특징으로 하는 가변 마찰댐퍼.
  3. 제 1항에 있어서,
    상기 체결부는 상기 연결판의 제1 고정홀 또는 제2 고정홀과 상기 마찰판의 관통홀, 상기 제1, 제2 지지체의 제1 슬롯 또는 제2 슬롯을 관통하는 체결볼트와, 상기 체결볼트의 단부에 설치되는 너트를 구비하고,
    상기 제1 지지체와 제2 지지체가 상기 연결판과 연결되는 체결력을 상호 다르게 설정하여 제1 지지체측과 제2 지지체측의 마찰내력이 서로 다르게 형성되는 것을 특징으로 하는 가변 마찰댐퍼.
  4. 제 3항에 있어서,
    상기 체결부는 상기 연결판과 상기 체결볼트의 헤드부 사이 및 상기 연결판과 너트의 사이에 설치되는 와셔부재를 더 구비하되,
    상기 와셔부재는 상기 마찰판이 마찰에 의해 두께가 감소해도 상기 연결판과 제1 지지체 또는 제2 지지체 사이에서 마찰판의 밀착상태를 유지할 수 있도록 접시 스프링와셔로 된 것을 특징으로 하는 가변 마찰댐퍼.
  5. 제 1항에 있어서,
    상기 마찰판은 상기 제1, 제2 지지체 및 상기 연결판에 비해 상대적으로 경도가 낮은 금속으로 형성된 것을 특징으로 하는 가변 마찰댐퍼.
  6. 제 1항에 있어서,
    상기 연결판은 상기 제1 지지체와 상기 제2 지지체의 전후면에 결합되는 것으로, 상기 제1 지지체와 상기 제2 지지체가 상호 슬라이딩되는 좌우방향에 대하여 교차하는 전후방향을 따라 상호 진퇴 가능하게 결합되는 상부플레이트와 하부플레이트를 포함하되, 상기 상부플레이트에는 상기 제1 고정홀이 형성되어 있고, 상기 하부플레이트에는 상기 제2 고정홀이 형성된 것을 특징으로 하는 가변 마찰댐퍼.
  7. 제 6항에 있어서,
    상기 상부플레이트는 하단에 일측면으로부터 타측을 향해 인입되어 있는 제1 결합홈이 형성되어 있으며, 상기 하부플레이트에는 상단에 상기 제1 결합홈과 포개질 수 있도록 타측면으로부터 일측으로 인입된 제2 결합홈이 형성되어 있고,
    상기 제1 결합홈이 형성된 상부플레이트의 하부에는 전후방향을 따라 연장되도록 돌출된 가이드돌기가 형성되어 있으며, 상기 제2 결합홈이 형성된 하부플레이트의 상부에는 상기 가이드돌기가 관통할 수 있도록 가이드홀이 형성되어 있는 것을 특징으로 하는 가변 마찰댐퍼.
PCT/KR2013/009968 2012-11-05 2013-11-05 가변 마찰댐퍼 WO2014069972A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015540612A JP5945077B2 (ja) 2012-11-05 2013-11-05 可変摩擦ダンパ

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020120124444A KR101393694B1 (ko) 2012-11-05 2012-11-05 이축 거동 내력 가변 마찰댐퍼
KR1020120124446A KR101393696B1 (ko) 2012-11-05 2012-11-05 삼축 거동 내력 가변 마찰댐퍼
KR10-2012-0124446 2012-11-05
KR10-2012-0124444 2012-11-05

Publications (1)

Publication Number Publication Date
WO2014069972A1 true WO2014069972A1 (ko) 2014-05-08

Family

ID=50627770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/009968 WO2014069972A1 (ko) 2012-11-05 2013-11-05 가변 마찰댐퍼

Country Status (2)

Country Link
JP (1) JP5945077B2 (ko)
WO (1) WO2014069972A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106920324A (zh) * 2017-03-09 2017-07-04 深圳怡化电脑股份有限公司 传动装置、钞门结构及自动存取款机
CN107989180A (zh) * 2017-11-15 2018-05-04 华侨大学 一种偏心支撑框架
CN108343695A (zh) * 2018-02-05 2018-07-31 杭州富阳新远新能源有限公司 一种基于摩擦力阻尼器的汽车减震器
CN111945920A (zh) * 2020-08-20 2020-11-17 海南大学 一种分级屈服阻尼器
CN111945921A (zh) * 2020-08-20 2020-11-17 海南大学 一种分级耗能阻尼器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7239269B2 (ja) 2018-01-18 2023-03-14 三菱電機株式会社 はんだ付け治具およびはんだ付け装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5946866A (en) * 1995-07-21 1999-09-07 Minnesota Mining And Manufacturing Company Modular damper
JP2007186976A (ja) * 2005-12-16 2007-07-26 Hideaki Sasano 粘弾性ダンパー
JP2011157788A (ja) * 2010-02-03 2011-08-18 Three M Innovative Properties Co 粘弾性ダンパー装置及びこれを用いた軸組材の交差構造
KR101078399B1 (ko) * 2010-02-12 2011-10-31 조선대학교산학협력단 내력가변형 마찰댐퍼

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002235454A (ja) * 2001-02-07 2002-08-23 Toyo Tire & Rubber Co Ltd 制振ダンパー装置
JP5165442B2 (ja) * 2008-04-01 2013-03-21 大和ハウス工業株式会社 制震装置
WO2011099816A2 (ko) * 2010-02-12 2011-08-18 조선대학교 산학협력단 고성능 전단형 마찰댐퍼

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5946866A (en) * 1995-07-21 1999-09-07 Minnesota Mining And Manufacturing Company Modular damper
JP2007186976A (ja) * 2005-12-16 2007-07-26 Hideaki Sasano 粘弾性ダンパー
JP2011157788A (ja) * 2010-02-03 2011-08-18 Three M Innovative Properties Co 粘弾性ダンパー装置及びこれを用いた軸組材の交差構造
KR101078399B1 (ko) * 2010-02-12 2011-10-31 조선대학교산학협력단 내력가변형 마찰댐퍼

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106920324A (zh) * 2017-03-09 2017-07-04 深圳怡化电脑股份有限公司 传动装置、钞门结构及自动存取款机
CN107989180A (zh) * 2017-11-15 2018-05-04 华侨大学 一种偏心支撑框架
CN107989180B (zh) * 2017-11-15 2023-11-21 华侨大学 一种偏心支撑框架
CN108343695A (zh) * 2018-02-05 2018-07-31 杭州富阳新远新能源有限公司 一种基于摩擦力阻尼器的汽车减震器
CN111945920A (zh) * 2020-08-20 2020-11-17 海南大学 一种分级屈服阻尼器
CN111945921A (zh) * 2020-08-20 2020-11-17 海南大学 一种分级耗能阻尼器
CN111945920B (zh) * 2020-08-20 2022-03-29 海南大学 一种分级屈服阻尼器
CN111945921B (zh) * 2020-08-20 2022-07-26 海南大学 一种分级耗能阻尼器

Also Published As

Publication number Publication date
JP5945077B2 (ja) 2016-07-05
JP2016500777A (ja) 2016-01-14

Similar Documents

Publication Publication Date Title
WO2014069972A1 (ko) 가변 마찰댐퍼
WO2011099816A2 (ko) 고성능 전단형 마찰댐퍼
WO2012111968A2 (ko) 변위증폭형 제진시스템 및 이의 시공방법
WO2017135506A1 (ko) 변위제어용 엘라스토머 댐퍼
US8438795B2 (en) Multi-directional torsional hysteretic damper (MTHD)
WO2013137576A1 (ko) 스티어링 기어의 랙 바 지지 장치
WO2016082166A1 (zh) 减震装置及采用该减震装置的车载云台
WO2019164177A1 (ko) 면진 이중마루
WO2015122568A1 (ko) 고하중 진동완충기
WO2015125996A1 (en) Seismic isolator utilizing wedge
KR101171062B1 (ko) 전단형 마찰댐퍼
WO2017104951A1 (en) Friction damper with v-groove
MXPA04002014A (es) Soporte de absorcion amortiguado y sincronizado.
WO2018016706A1 (ko) 내진 몰드 변압기
WO2020111459A1 (ko) 스마트 하이브리드 댐퍼
KR20110093430A (ko) 내력가변형 마찰댐퍼
KR102444015B1 (ko) 방진 전기 안전제어반
KR20090129848A (ko) 부유궤도의 방진장치
KR100770433B1 (ko) 사장케이블 제진을 위한 감쇠장치
WO2017090824A1 (ko) 에너지 소산형 엘라스토머 마찰 댐퍼
JP4754406B2 (ja) 防振壁掛装置
KR101393694B1 (ko) 이축 거동 내력 가변 마찰댐퍼
KR20180032818A (ko) 소방용 배관의 내진 클램핑장치
WO2019054597A1 (ko) 열변위 보상이 가능한 배관 진동제어 스마트 댐퍼
KR102008820B1 (ko) 파이프 지지 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13851820

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015540612

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13851820

Country of ref document: EP

Kind code of ref document: A1