WO2012111968A2 - 변위증폭형 제진시스템 및 이의 시공방법 - Google Patents

변위증폭형 제진시스템 및 이의 시공방법 Download PDF

Info

Publication number
WO2012111968A2
WO2012111968A2 PCT/KR2012/001121 KR2012001121W WO2012111968A2 WO 2012111968 A2 WO2012111968 A2 WO 2012111968A2 KR 2012001121 W KR2012001121 W KR 2012001121W WO 2012111968 A2 WO2012111968 A2 WO 2012111968A2
Authority
WO
WIPO (PCT)
Prior art keywords
damping means
rod
inner frame
support
outer frame
Prior art date
Application number
PCT/KR2012/001121
Other languages
English (en)
French (fr)
Other versions
WO2012111968A3 (ko
Inventor
최재혁
Original Assignee
조선대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 조선대학교 산학협력단 filed Critical 조선대학교 산학협력단
Priority to JP2013553374A priority Critical patent/JP5763788B2/ja
Publication of WO2012111968A2 publication Critical patent/WO2012111968A2/ko
Publication of WO2012111968A3 publication Critical patent/WO2012111968A3/ko

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • E04H9/0237Structural braces with damping devices
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/027Preventive constructional measures against earthquake damage in existing buildings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems

Definitions

  • the present invention relates to a displacement amplification vibration suppression system and a construction method thereof, and more particularly, to absorb the seismic force acting on the structure to increase the horizontal resistance capacity of the structure itself, especially generated by the earthquake response
  • the present invention relates to a displacement amplification vibration suppression system and a construction method thereof, which are configured to amplify displacements to increase vibration damping efficiency of a damping unit.
  • vibration suppression device capable of controlling vibration characteristics according to an input seismic wave and a passive vibration suppression device controlled only by its own damping characteristics.
  • Passive damping devices include tuning mass / fluid dampers, oil dampers, viscoelastic dampers, friction dampers, hysteresis dampers, etc., which are installed on the top floor of a building, and are mainly reinforced by braces or parts of walls between buildings.
  • the damping device Since the damping device exhibits damping performance in proportion to the area of the load-displacement hysteresis curve, it is generally installed in a region where the displacement is largely large (diagonal direction of the frame structure) regardless of the type of damper. The greater the displacement of the vibration damping device, the greater the absorption capacity of energy generated by the seismic force, so it is very important to amplify the displacement of the damper.
  • the present invention has been made to solve the above problems, displacement amplification vibration suppression system and construction thereof that can maximize the damping performance of the damper installed to attenuate the seismic force by amplifying the amount of deformation occurring in the structure due to the earthquake
  • the purpose is to provide a method.
  • Displacement amplification type vibration suppression system for achieving the above object is a damping means for reducing the external force is installed on the structure, the external frame is installed on the outer frame acting on the structure and the outer frame, the damping means An inner frame fixed to one side of the installed outer frame, and rotatably installed on the inner frame such that a rotation center is positioned at a position spaced apart from the damping means on the inner frame by one side and the other side of the damping means.
  • a displacement amplifier including a rotation rod connected to the other side of the outer frame and the damping means, wherein the rotation rod has a distance to the damping means based on a rotation center connected to the inner frame. It is characterized by being formed relatively longer than the distance to the other side of .
  • the outer frame includes first and second support rods extending side by side at positions spaced apart from each other by a predetermined distance, and third and fourth support rods extending side by side to connect both ends of the first and second support rods.
  • the damping means is supported by the second support rod, and the inner frame has two extension rods having one end fixed to the second support rod extending upwardly and extending in parallel with each other, and interconnecting the extension rods.
  • a connecting rod extending side by side with the second supporting rod and rotatably coupled to the rotating rod, wherein the two separation rods are spaced apart from the third and fourth supporting rods, respectively. It is preferable to make it 1/50 or less of the length of a 4th support rod.
  • Each of the damping means includes first and second supports supported by the rotation rod and the second support rod, two additional plates fixed to the second support and extending to cover both sides of the first support, And a fastening part including a friction plate mounted between the support body and the back plate, a tension bolt penetrating the first support body, the friction plate and the back plate, and a nut fastened to an end of the tension bolt.
  • a fastening part including a friction plate mounted between the support body and the back plate, a tension bolt penetrating the first support body, the friction plate and the back plate, and a nut fastened to an end of the tension bolt.
  • the first support includes a first end plate supported by the pivot rod and a sliding plate extending from a center of the lower surface of the first end plate in a direction orthogonal to the first end plate, wherein the second support is A second end plate facing the first end plate and supported by the second support rod, and an extension part extending from the center of the second end plate toward the end of the sliding plate in a direction orthogonal to the second end plate;
  • the extension portion is provided with coupling projections protruding in both sides, the adding plate is formed with coupling holes so that the coupling projection is fitted, the fastening portion is the tension bolt due to the reduction of the thickness of the friction plate
  • Displacement-amplification type vibration suppression system of the present invention is installed in the structure and extending side by side to connect both ends of the first and second support rods extending side by side at a predetermined distance from each other, the first and second support rods
  • An outer frame including third and fourth supporting rods, a displacement amplifier for amplifying a displacement generated by an external force in the outer frame, and damping means for damping a deformation force generated in the outer frame
  • the displacement amplifier includes a first amplifier for amplifying the displacement of the first support rod, and a second amplifier for amplifying the displacement of the second support rod, wherein the first amplifier is connected to the second support rod.
  • a first inner frame having a lower end fixed to the first inner frame and rotatably coupled to a center of rotation of the first inner frame, and one end of which is rotatably installed on the first supporting rod
  • the other end includes a first rotating rod connected to one side of the damping means
  • the second amplifying unit is a second inner frame and the upper end is fixed to the first support rod
  • the rotation center is located on the second inner frame
  • a second rotating rod rotatably coupled to the second inner frame, one end of which is rotatably installed on the second supporting rod, and the other end of which is connected to the other side of the damping means, wherein the first and second rotating rods May be formed such that an extension length extending to the damping means is relatively longer than an extension length extending to the first and second supporting rods based on a rotation center point connected to the first and second inner planes, respectively.
  • the displacement amplification vibration suppression system is installed in the built structure and the damping means for reducing the external force acting on the structure, the inner frame is fixed to one side of the structure in which the damping means is installed, and the damping means on the inner frame and Displacement amplification part rotatably installed in the inner frame so that the center of rotation is located at a predetermined distance spaced apart and a rotation rod connected to the other side and the damping means of one side and the other side of the structure is not installed the damping means
  • the rotation rod may have a distance to the damping means relatively longer than a distance to the other side of the structure based on the rotation center connected to the inner frame.
  • the construction method of the displacement-amplification vibration suppression system includes an external frame installation step of installing an external frame on a structure, an internal frame installation step of installing an internal frame on the external frame, and a damping means on one side of the external frame.
  • Damping means installation step of fixing one side, and one end of the rotating rod rotatably installed on the inner frame so that the center of rotation on the inner frame is connected to the other side of the damping means, and the other end of the rotating rod
  • a rotation rod installation step connecting to the other side opposite to one side of the outer frame in which the damping means is installed, wherein the rotation rod has an extension length extending to the damping means on the basis of the rotation center connected to the inner frame. Extension length beam to the connection point connected to the other side of the outer frame based on the rotation center point It is formed relatively long in.
  • the displacement amplification vibration suppression system and its construction method according to the present invention have the advantage that the construction is simple and the damping performance is maximized by efficiently absorbing the seismic force in the damper by amplifying the displacement occurring in the structure efficiently.
  • FIG. 1 is a front view showing a first embodiment of a displacement amplification vibration suppression system according to the present invention
  • FIG. 2 is a perspective view of the displacement amplification vibration suppression system of FIG.
  • FIG 3 is a partial excerpt perspective view showing a connecting portion of the rotating rod and the damping means of Figure 1,
  • FIG. 4 is a schematic view schematically showing the displacement amplification vibration suppression system of FIG.
  • FIG. 5 is a view showing a state in which the displacement amplification vibration suppression system is operating through the schematic diagram of FIG.
  • FIG. 6 is a perspective view showing an embodiment of a friction damper applied to the displacement amplification vibration suppression system of FIG.
  • FIG. 7 is an exploded perspective view of the friction damper of FIG. 6, FIG.
  • FIG. 8 is a front view illustrating an operating state of the friction damper of FIG. 6;
  • FIG. 9 is a front view showing a second embodiment of a displacement amplification vibration suppression system to which an oil damper is applied;
  • FIG. 10 is a front view showing a third embodiment of a displacement amplification vibration suppression system
  • FIG. 11 is a perspective view showing a fourth embodiment of a displacement amplification vibration suppression system
  • FIG. 12 is a front view showing an operating state of the displacement amplification vibration suppression system of FIG.
  • FIG. 13 is a front view showing a fifth embodiment of a displacement amplification vibration suppression system without the outer frame;
  • FIG. 14 is a perspective view showing an embodiment in which the outer frame is attached to the outside of the front of the structure.
  • FIG. 1 to 5 illustrate a preferred embodiment of the displacement amplification vibration suppression system 100 according to the present invention.
  • the displacement amplification vibration suppression system 100 of the present embodiment is the outer frame 110 is installed on the structure 10, the damping means 120 is installed on the outer frame 110, and the outer frame ( And a displacement amplifier 130 connecting the external frame 110 and the damping means 120 to amplify the displacement generated in the 110 to drive the damping means 120.
  • the outer frame 110 has four support rods supported by the structure 10. Each of the supporting rods are hinged to each other so that the ends thereof are rotatable, so that when the external force is applied to the structure 10 by an earthquake or strong wind, deformation can be made in response to the force acting on the structure 10.
  • two support rods formed on the upper and lower surfaces of the four support rod structures 10 may be formed at both ends of the first and second support rods 111 and 112 and the first and second support rods 111 and 112, respectively.
  • the interconnecting rods are referred to as third and fourth support rods 113 and 114, respectively.
  • the outer frame 110 is shown to be installed inside the structure 10, as shown in Figure 14, the outer frame 110 may be attached to protrude to the front of the structure (10). have. If the displacement amplification vibration suppression system 100 of the present invention can be connected to the structure 10 to attenuate the seismic force applied to the structure 10, the coupling position with the structure 10 is not limited to this embodiment and variously Can be set.
  • the displacement amplifier 130 has an inner frame 131 fixed to the outer frame 110 and one side of the inner frame 131 is rotatably hinged, one end is rotated to the outer frame 110 It is provided with the rotation rod 134 fixed as possible.
  • the inner frame 131 is supported by any one of four support rods, and connects two extension rods 132 extending toward the support rods at opposite positions, and connecting the upper ends of the extension rods 132.
  • the rod 133 is extended, and the extension rod 132 extends in parallel with the third and fourth support rods 113 and 114, and the connection rod 133 extends in parallel with the first support rod 111.
  • the extension rod 132 is fixed to the second support rod 112, both ends of the connection rod 133 is also fixed to the extension rod 132.
  • the two extension rods 132 extend side by side with the third and fourth support rods 113 and 114 in a state spaced apart from the third and fourth support rods 113 and 114 by a predetermined distance. It is preferable that the separation distance l 2 spaced apart from the third and fourth supporting rods 113 and 114 is 1/50 or less of the total length l 1 of the third and fourth supporting rods 113 and 114.
  • the object extending to a predetermined length is regarded as the point where the deformation is out of the range of the elastic deformation is 1/50 of the total length. Therefore, when the deformation occurs in the structure 10, and the deformation amount is greater than 1/50 of the length of the third and fourth support rods 113 and 114, that is, the vertical support of the structure 10, the structure 10 is not recoverable.
  • Plastic deformation may be regarded as occurring, in which case the extension rod 132 of the inner frame 131 supports the third and fourth support rods 113 and 114 so as not to be tilted anymore, thereby causing the collapse of the structure 10. To prevent.
  • the rotating rod 134 is hinged on one side of the connecting rod 133 of the inner frame 131 and the upper and lower ends of the first supporting rod 111 and the damping means 120 of the outer frame 110, respectively. Is connected to.
  • Rotating rod 134 is to be rotated around the point connected to the connecting rod 133, the outer frame 110 is deformed by an external factor such as earthquake or strong wind to move a predetermined distance The upper end of the rotation rod 134 is moved to one side together with the first support rod 111, the rotation rod 134 is made to rotate around the rotation center point (C) coupled with the connecting rod 133.
  • the upper and lower ends of the rotation rod 134 may be rotatable to the first support rod 111 and the damping means 120, respectively. It is connected.
  • the lower end of the rotation rod 134 is connected to the damping means 120 so as to be slidable in the left and right directions, so that the rod fastening member 135 installed at the upper end of the damping means 120.
  • the rotation rod 134 is rotatably coupled to the rod fastening member 135, unlike the damping means 120 so as to directly connect the upper end of the damping means 120 with the rotation rod 134 May be formed.
  • the rotation rod 134 has a distance l 3 from the rotation center point C connected to the connecting rod 133 to the first support rod 111 at the rotation center point C. It is formed relatively short compared to the distance l 4 to the damping means 120.
  • the amount of deformation applied to the structure 10 by external force is amplified by the distance difference between l 3 and l 4 based on the pivot center of the rotation rod 134 to drive the damping means 120.
  • the actual displacement of the first support rod 111 deformed to the external force is ⁇ 1.
  • the distance that the lower end of the rotation rod 134 connected to the friction damper moves by the rotation of the rotation rod 134 is ⁇ 2
  • the distance ratio of ⁇ 1 and ⁇ 2 is determined by the distance ratio of l 3 and l 4 .
  • the damping means 120 is a shear friction damper is applied.
  • the damping means 120 includes a first and second support bodies 210 and 220, and an additional plate 230 connecting the first and second supports 210 and 220, and the first and second support members 210 and 220.
  • the friction plate 240 is installed between the support 210 and the back plate 230, and a fastening portion 250 for coupling them together.
  • the first support 210 has a first end plate 211 fixed to the rod fastening member 135 connecting the end of the rotation rod 134, and a sliding plate extending downward from the first end plate 211 ( 214).
  • a plurality of fastening holes 112 penetrating the upper and lower surfaces are formed in the first end plate 211, and fastening is performed through the fastening members 260.
  • the sliding plate 214 extends downward from the lower surface of the first end plate 211 by a predetermined length.
  • the sliding plate 214 is formed to have a 'T' shape when viewed from the side.
  • two long holes 215 penetrating the front and rear surfaces are formed to be spaced apart from each other by a predetermined interval in the horizontal direction.
  • the long hole 215 is formed to be curved so as to correspond to the curvature of the rotation rod 134 is rotated about the center of rotation (C).
  • the second support 220 includes a second end plate 221 fixed to the second support rod 112 and an extension 223 extending upward from the top surface of the second end plate 221.
  • a plurality of fastening holes 222 are formed in the second end plate 221 so that the fastening members 260 may be mounted, and the extension part 223 may have a second end plate 221 to be inverse 'T' shaped. It extends upward from the center of the upper surface of.
  • first and second supports 210 and 220 are supported by a rod fastening member 135 or a second support rod 112 between which the first and second end plates 211 and 221 are connected to the rotation rod 134, respectively.
  • the sliding plate 214 and the extension portion 223 extend in a direction facing each other.
  • coupling protrusions 224 protrude from the front and rear surfaces of the extension part 223, respectively.
  • the first and second supports 210 and 220 are interconnected by an additional plate 230 to be described later, and the first support 210 is disposed between the lower end of the sliding plate 214 and the upper end of the extension part 223 where contact is made.
  • the teflon sheet 225 having a small coefficient of friction is coated to smoothly drive the sliding.
  • the adder plate 230 is fixed to the second supporter 220 and to fix the first supporter 210 to the second supporter 220 through the fastening part 250.
  • the additional plate 230 has coupling holes 232 corresponding to the shape of the coupling protrusion 224 so that the coupling protrusions 224 may be fitted therein.
  • the first bolting hole 231 is formed on the coupling holes 232 to allow the tension bolt 252 of the fastening part 250 to pass therethrough.
  • the coupling protrusion 224 is illustrated as being formed in a cylindrical shape having a predetermined diameter in this embodiment, the extension plate 223 extends along the pillar shape or the longitudinal direction if the extension plate 223 can be connected. It may be formed in the shape of an elliptic cylinder having an elliptical cross section.
  • the friction plate 240 is to attenuate an external force applied to the structure 10 by providing a frictional force when the first support 210 is slid in the horizontal direction with respect to the second support 220 by an external force.
  • the friction plate 240 is mounted to be positioned between the front and rear surfaces of the sliding plate 214 and the backing plates 230, and second bolting holes 241 corresponding to the first bolting holes 231 are formed.
  • the fastening part 250 is fixed between the sliding plate 214 and the backing plate 230.
  • vibration energy applied from the outside may be dissipated as thermal energy by contacting the sliding plate 214 to generate frictional heat.
  • it is preferably formed of a material having a smaller hardness than the sliding plate 214.
  • the friction plate 240 is made of a material having a relatively low hardness compared to the sliding plate 214, and the friction plate 240 and the sliding plate 214 is in continuous friction contact, the friction plate 240 is abrasion proceeds to increase the thickness Increasingly, the sliding plate 214 can be used relatively long without deformation.
  • the replaceable friction plate 240 has a material which can be relatively easily worn, the vibration damping force of the damping means 120 can be maintained at an appropriate level through the exchange of the friction plate 240.
  • both the sliding plate 214 and the friction plate 240 has a contact surface formed in the form of a smooth surface, but the sliding plate 214 and the friction plate 240 may be mutually coupled so that the friction area can be expanded. It may be formed to have.
  • the fastening part 250 is for fastening the sliding plate 214, the friction plate 240, and the backing plate 230, and includes a tension bolt 252, a nut 252, and a washer member 253.
  • first and second bolting holes 231 and 241 are formed in the back plate 230 and the friction plate 240, respectively, and a long hole 215 is formed in the sliding plate 214.
  • the tension plate 230 and the friction plate 240, the sliding plate 214, the other friction plate 240 and the extension plate 230 are inserted through the tension plate in order, and then the tension.
  • the washer member 253 is inserted into the other side of the bolt 252 and fastened with the nut 252.
  • the damping means 120 has a different magnitude of vibration depending on the magnitude of the frictional force between the friction plate 240 and the sliding plate 214. That is, in the case of a strong earthquake, since the magnitude of the vibration is large, the friction plate 240 and the sliding plate 214 must be fastened so that the frictional strength is large, and thus the damping effect of the vibration can be obtained. For a relatively small vibration, the frictional force must be small so that vibration energy can be attenuated while slip occurs between the friction plate 240 and the sliding plate 214.
  • the appropriate frictional strength is set, and the tension bolt 252 is tightened with a torque wrench to set the friction between the friction plate 240 and the sliding plate 214. It is desirable to have a bearing force present.
  • the washer member 253 is a plate spring washer was applied, if the slip continuously occurs between the friction plate 240 and the sliding plate 214 due to vibration eventually the friction plate 240 is worn, the thickness of the friction plate 240 As a result, as the fastening force of the tension bolt 252 is lowered, the frictional force between the friction plate 240 and the sliding plate 214 may not be maintained at an initially set value.
  • Reference numeral 253 is preferably a dish spring washer.
  • an oil damper may be applied as shown in FIG. 8 in addition to the friction damper.
  • the connection part of the rotation rod 134 and the damper may be appropriately connected to the oil damper. Connect by changing the design.
  • damping means 120 such as steel dampers and viscoelastic dampers, may be applied in addition to the friction dampers and oil dampers shown in the drawings.
  • FIG. 10 shows a third embodiment of a displacement amplification vibration suppression system 100.
  • the inner frame 131 fixed to the inside of the outer frame 110 is the same, but the separation distance between the third and fourth support rods 113 and 114 is short, so in the center of the connecting rod 133 One rotating rod 134 is provided, and the friction damper connected with the one rotating rod 134 is capable of damping the external force.
  • 11 and 12 show a fourth embodiment of the displacement amplification vibration suppression system 100.
  • the displacement amplification vibration suppression system 100 may be installed when the separation distance between the first and second support rods 111 and 112 is long, respectively, in the upper and lower portions of the damping means 120.
  • Rotating rod 134 is provided so that the double amplification can be made.
  • the displacement amplification vibration suppression system 100 of the present embodiment has first and second amplifiers 150 for amplifying the deformation during deformation of the outer frame 110.
  • the first amplification unit 140 is rotatably installed so that the first inner frame 141 fixed to the second support rod 112 and the rotation center point C are positioned on the first inner frame 141.
  • the first support rod 111 is rotatably connected to the lower end is composed of a first rotation rod 142 rotatably connected to the upper end of the damping means (120).
  • the second amplifying unit 150 is rotatably installed so that the rotation center point C is located on the second inner frame 151 and the second inner frame 151 fixed to the first supporting rod 111.
  • the lower end is rotatably connected to the second support rod 112 and the upper end is formed of the second rotation rod 152 rotatably connected to the lower end of the damping means 120.
  • the first and second amplifiers 150 are connected to the upper and lower portions of the damping means 120 with respect to the damping means 120, respectively, to amplify the deformation occurring in the outer frame 110, and face only the installation position.
  • the basic driving principle is the same, the amplification principle by the inner frame 131 and the rotation rod 134 of the first embodiment is also identical.
  • the displacement amplification vibration suppression system 100 has a damping means 120 and an outer frame 110 based on the rotational center point C at which the rotation rod 134 is connected to the inner frame 131.
  • the displacement generated in the outer frame 110 is amplified and transmitted to the damping means 120 in response to the distance ratio to the connection points respectively connected to the) so that the damping force by the damping means 120 can be increased.
  • the outer frame 110 is provided separately to facilitate the installation of the inner frame 131, the displacement amplifier 130, and the damping means 120, but is alternatively illustrated in FIG. 13. As shown, the displacement amplifier 130 and the damping means 120 may be directly installed in the structure 10 without the external frame 110.
  • the construction method of the displacement-amplification type vibration suppression system 100 of the present invention includes an external frame 110 installation step, an internal frame 131 installation step, a rotation rod 134 installation step, and a damping means 120 installation step.
  • the outer frame 110 is the first to fourth rods They are interconnected to form a rectangular frame.
  • the installation step of the inner frame 131 is a step of installing the inner frame 131 fixed to the outer frame 110, and fixed to the second support rod 112 to which the damping means 120 of the outer frame 110 is fixed. And install an extension rod 132 extending in parallel with the third and fourth support rods 113 and 114 extending in the vertical direction, and fixing and installing a connection rod 133 connecting the upper end of the extension rod 132. Install the inner frame 131.
  • the rotating rod 134 installation step is a step of connecting one side of the rotating rod 134 to the inner frame 131 so as to be rotatable, and connecting the upper end of the rotating rod 134 to the first support rod 111.
  • the damping means 120 is fixed to the second support rod 112 on which the inner frame 131 is fixed, and the driving part is connected to the lower end of the rotation rod 134 to rotate. Sliding is performed in the damping means 120 by the displacement amplified by the rod 134 to allow attenuation.
  • the displacement amplification vibration suppression system of the present invention can be applied to the construction and reinforcement construction of building structures and has high industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Environmental & Geological Engineering (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)
  • Vibration Dampers (AREA)

Abstract

본 발명은 구조물에 설치되어 구조물에 작용하는 지진력을 흡수하여 구조물 자체의 수평저항능력을 증가시키되, 특히 지진응답에 의해 구조물에 발생하는 변위를 증폭시켜 댐핑유닛의 제진효율을 증가시킬 수 있게 형성된 변위증폭형 제진시스템 및 이의 시공방법에 관한 것이다. 본 발명에 따른 변위증폭형 제진시스템은 구조물에 설치되는 외부프레임과, 상기 외부프레임에 설치되는 댐핑수단과, 상기 외부프레임의 일측에 고정되는 내부프레임과, 상기 내부프레임에 회전 가능하게 설치되고 일측과 타측이 상기 외부프레임의 타측과 상기 댐핑수단에 각각 연결되는 회동로드를 포함하는 변위증폭부를 구비한다.

Description

변위증폭형 제진시스템 및 이의 시공방법
본 발명은 변위증폭형 제진시스템 및 이의 시공방법에 관한 것으로서, 더욱 상세하게는 구조물에 설치되어 구조물에 작용하는 지진력을 흡수하여 구조물 자체의 수평저항능력을 증가시키되, 특히 지진응답에 의해 구조물에 발생하는 변위를 증폭시켜 댐핑유닛의 제진효율을 증가시킬 수 있게 형성된 변위증폭형 제진시스템 및 이의 시공방법에 관한 것이다.
일반적으로 다주택, 빌딩, 건물, 아파트 등과 같은 기존 건축 구조물은 지진으로부터 건축 구조물을 안전하게 보호하기 위한 내진 설계(耐震設計)가 필수적이다. 특히, 지진 발생시에 건축 구조물의 붕괴로 인한 인명 피해 및 재산 피해는 막대하므로, 지진하중에 저항하기 위해 기둥과 슬래브 등을 보강할 필요성이 제기되고 있다.
내진보강을 위한 기존공법은, 지진 발생시 대상 구조물에 발생되는 지진력에 대하여 구조물 자체의 저항능력을 증가시키는 방법으로 단면증설, 가새보강, 전단벽 신설 등이 전통적으로 사용되고 있다.
최근에는 구조물에 전달되는 지진력 자체를 감소시키는 제진 장치가 개발되고 있다. 제진 장치의 종류는 크게 입력 지진파에 맞게 진동특성을 제어할 수 있는 능동형 제진 장치와 자체의 감쇠 특성만으로 제어하는 수동형 제진 장치로 구분된다.
수동형 제진 장치는 건축물의 최상층에 설치되는 동조질량/유체감쇠기, 오일 댐퍼, 점탄성 댐퍼, 마찰 댐퍼, 이력 댐퍼 등이 있으며, 건물의 층간에 주로 가새 또는 벽의 일부로 보강되고 있다.
상기와 같은 제진 장치는 하중-변위 이력곡선의 면적에 비례하여 감쇠성능을 발휘하므로, 댐퍼의 종류에 관계없이 주로 가장 변위가 크게 발생되는 영역(골조구조의 대각선 방향)에 설치하는 것이 일반적이다. 제진 장치의 변위가 클수록 지진력에 의해 발생하는 에너지의 흡수능력이 커지므로, 댐퍼의 변위를 증폭시키는 것은 매우 중요하다.
그런데 일반적으로 지진이 발생하여 구조물에 변형이 생기더라도 실제적으로 구조물에 발생하는 변형량이 극히 작아 제진을 위해 설치한 댐퍼의 성능이 제대로 발휘되기 어려운 문제점이 있었다.
본 발명은 상기 문제점을 해결하기 위해 창출된 것으로서, 지진 발생으로 인해 구조물에 발생하는 변형량을 증폭하여 이 지진력을 감쇠시키기 위해 설치되는 댐퍼의 제진성능을 극대화할 수 있는 변위증폭형 제진시스템 및 이의 시공방법을 제공하는데 그 목적이 있다.
상기 목적을 달성하기 위한 본 발명에 따른 변위증폭형 제진시스템은 구조물에 설치되는 외부프레임과, 상기 외부프레임에 설치되어 상기 구조물 및 외부프레임에 작용하는 외력을 감소시키기 위한 댐핑수단과, 상기 댐핑수단이 설치된 외부프레임의 일측에 고정되는 내부프레임과, 상기 내부프레임 상에서 상기 댐핑수단과 소정거리 이격된 위치에 회전중심이 위치하도록 상기 내부프레임에 회전 가능하게 설치되고 일측과 타측이 상기 댐핑수단이 설치되지 않은 외부프레임의 타측과 상기 댐핑수단에 각각 연결되는 회동로드를 포함하는 변위증폭부를 구비하며, 상기 회동로드는 상기 내부프레임에 연결되는 회전중심을 기준으로 상기 댐핑수단까지의 거리가 상기 외부프레임의 타측까지의 거리보다 상대적으로 길게 형성되어 있는 것이 특징이다.
상기 외부프레임은 상호 소정거리 이격된 위치에서 나란하게 연장되는 제1, 제2 지지로드와, 상기 제1, 제2 지지로드의 양단을 연결하도록 나란하게 연장되는 제3, 제4 지지로드를 포함하고, 상기 댐핑수단은 상기 제2 지지로드에 지지되며, 상기 내부프레임은 상기 제2 지지로드에 일단이 고정되어 상방으로 연장되되 상호 나란하게 연장되는 두 개의 연장로드와, 상기 연장로드를 상호 연결하도록 상기 제2 지지로드와 나란하게 연장되고 상기 회동로드가 회전 가능하게 결합되는 연결로드를 구비하며, 상기 두 개의 연장로드가 각각 상기 제3, 제4 지지로드로부터 이격되는 이격거리는 각각 상기 제3, 제4 지지로드 길이의 1/50 이하가 되게 하는 것이 바람직하다.
상기 댐핑수단은 각각 상기 회동로드와 제2 지지로드에 지지되는 제1, 제2 지지체와, 상기 제2 지지체에 고정되며 상기 제1 지지체의 양측면을 감싸도록 연장되는 두 개의 덧댐판과, 상기 제1 지지체와 덧댐판의 사이에 장착되는 마찰판과, 상기 제1 지지체와 마찰판 및 덧댐판을 관통하는 텐션볼트와, 상기 텐션볼트의 단부에 체결되는 너트를 포함하는 체결부를 구비하되, 상기 제1 지지체는 수평방향을 따라 연장되는 장공이 마련되어 있고, 상기 텐션볼트가 상기 장공을 통과해 연장됨으로써 상기 제1 지지체가 상기 마찰판에 대하여 수평방향으로 슬라이딩 이동 가능하도록 형성되는 것이 바람직하다.
상기 제1 지지체는 상기 회동로드에 지지되는 제1 엔드플레이트와, 상기 제1 엔드플레이트의 하면 중앙으로부터 상기 제1 엔드플레이트와 직교하는 방향으로 연장되어 있는 슬라이딩판을 포함하며, 상기 제2 지지체는 상기 제1 엔드플레이트와 마주보며 상기 제2 지지로드에 지지되는 제2 엔드플레이트와, 상기 제2 엔드플레이트의 중앙으로부터 제2 엔드플레이트와 직교하는 방향으로 상기 슬라이딩판의 단부를 향해 연장되는 연장부를 포함하고, 상기 연장부에는 양측방으로 돌출되는 결합돌기가 마련되어 있으며, 상기 덧댐판은 상기 결합돌기가 끼워질 수 있도록 결합홀들이 형성되어 있고, 상기 체결부는 상기 마찰판의 두께 감소로 인한 상기 텐션볼트의 체결력 저하를 방지하도록 설치되는 접시스프링와셔를 더 구비하는 것이 바람직하다.
본 발명의 변위증폭형 제진시스템은 구조물에 설치되며 상호 소정거리 이격된 위치에서 나란하게 연장되는 제1, 제2 지지로드와, 상기 제1, 제2 지지로드의 양단을 연결하도록 나란하게 연장되는 제3, 제4 지지로드를 포함하는 외부프레임과, 상기 외부프레임에 외력에 의해 발생하는 변위를 증폭시키기 위한 변위증폭부와, 상기 외부프레임에 발생하는 변형력을 감쇠시키기 위한 댐핑수단을 구비하며, 상기 변위증폭부는 상기 제1 지지로드의 변위를 증폭하기 위한 제1 증폭부와, 상기 제2 지지로드의 변위를 증폭하기 위한 제2 증폭부를 구비하되, 상기 제1 증폭부는 상기 제2 지지로드에 하단이 고정되어 있는 제1 내부프레임과, 상기 제1 내부프레임에 회전중심이 위치하도록 회전 가능하게 결합되고 일단이 상기 제1 지지로드에 회동 가능하게 설치되며 타단이 상기 댐핑수단의 일측에 연결된 제1 회동로드를 포함하고, 상기 제2 증폭부는 상기 제1 지지로드에 상단이 고정되어 있는 제2 내부프레임과, 상기 제2 내부프레임 상에 회전중심이 위치하도록 상기 제2 내부프레임에 회전 가능하게 결합되고 일단이 상기 제2 지지로드에 회동 가능하게 설치되고 타단이 상기 댐핑수단의 타측에 연결된 제2 회동로드를 포함하며, 상기 제1, 제2 회동로드는 각각 상기 제1, 제2 내부프레인과 연결되는 회전중심점을 기준으로 상기 제1, 제2 지지로드까지 연장된 연장길이보다 상기 댐핑수단까지 연장된 연장길이가 상대적으로 더 길도록 형성될 수도 있다.
또한 변위증폭형 제진시스템은 건축된 구조물에 설치되어 상기 구조물에 작용하는 외력을 감소시키기 위한 댐핑수단과, 상기 댐핑수단이 설치된 구조물의 일측에 고정되는 내부프레임과, 상기 내부프레임 상에서 상기 댐핑수단과 소정거리 이격된 위치에 회전중심이 위치하도록 상기 내부프레임에 회전 가능하게 설치되고 일측과 타측이 상기 댐핑수단이 설치되지 않은 구조물의 타측과 상기 댐핑수단에 각각 연결되는 회동로드를 포함하는 변위증폭부를 구비하며, 상기 회동로드는 상기 내부프레임에 연결되는 회전중심을 기준으로 상기 댐핑수단까지의 거리가 상기 구조물의 타측까지의 거리보다 상대적으로 길게 형성될 수 있다.
본 발명에 따른 변위증폭형 제진시스템의 시공방법은 구조물에 외부프레임을 설치하는 외부프레임 설치단계와, 상기 외부프레임에 내부프레임을 설치하는 내부프레임 설치단계와, 상기 외부프레임의 일측에 댐핑수단의 일측을 고정 설치하는 댐핑수단 설치단계와, 상기 내부프레임 상에 회전중심이 위치하도록 상기 내부프레임에 회전 가능하게 설치되는 회동로드의 일단을 상기 댐핑수단의 타측에 연결하고, 상기 회동로드의 타단을 상기 댐핑수단이 설치되는 외부프레임의 일측과 대향되는 타측에 연결하는 회동로드 설치단계를 포함하되, 상기 회동로드는 상기 내부프레임과 연결되는 회전중심점을 기준으로 상기 댐핑수단까지 연장되는 연장길이가 상기 회전중심점을 기준으로 상기 외부프레임의 타측과 연결되는 연결지점까지의 연장길이보다 상대적으로 길게 형성된 것이다.
본 발명에 따른 변위증폭형 제진시스템 및 이의 시공방법은 시공이 간단하며, 효율적으로 구조물에 발생하는 변위를 증폭함으로써 댐퍼에서 효율적으로 지진력을 흡수하게 함으로써 제진성능이 극대화되는 이점이 있다.
도 1은 본 발명에 따른 변위증폭형 제진시스템의 제1 실시예를 도시한 정면도,
도 2는 도 1의 변위증폭형 제진시스템의 사시도,
도 3은 도 1의 회동로드와 댐핑수단의 연결부를 도시한 부분발췌 사시도,
도 4는 도 1의 변위증폭형 제진시스템을 개략적으로 표시한 개략도,
도 5는 도 4의 개략도를 통해 변위증폭형 제진시스템이 작동하는 상태를 도시한 도면,
도 6은 도 1의 변위증폭형 제진시스템에 적용되는 마찰댐퍼의 일 실시예를 도시한 사시도,
도 7은 도 6의 마찰댐퍼의 분리사시도,
도 8은 도 6의 마찰댐퍼의 작동상태를 도시한 정면도,
도 9는 오일댐퍼가 적용된 변위증폭형 제진시스템의 제2 실시예를 도시한 정면도,
도 10은 변위증폭형 제진시스템의 제3 실시예를 도시한 정면도,
도 11은 변위증폭형 제진시스템의 제4 실시예를 도시한 사시도,
도 12는 도 11의 변위증폭형 제진시스템의 작동상태를 도시한 정면도,
도 13은 외부프레임이 생략된 변위증폭형 제진시스템의 제5 실시예를 도시한 정면도,
도 14는 외부프레임이 구조물의 전면 외측에 부착된 실시예를 도시한 사시도이다.
이하, 첨부된 도면을 참조하여 본 발명에 따른 변위증폭형 제진시스템을 더욱 상세하게 설명한다.
도 1 내지 도 5에는 본 발명에 따른 변위증폭형 제진시스템(100)의 바람직한 일 실시예가 도시되어 있다.
도면을 참조하면, 본 실시예의 변위증폭형 제진시스템(100)은 구조물(10)에 설치되는 외부프레임(110)과, 상기 외부프레임(110)에 설치되는 댐핑수단(120)과, 외부프레임(110)에 발생되는 변위를 증폭시켜 댐핑수단(120)을 구동시키도록 상기 외부프레임(110)과 댐핑수단(120)을 연결하는 변위증폭부(130)를 구비한다.
상기 외부프레임(110)은 구조물(10)에 지지된 네 개의 지지로드들을 구비한다. 각각의 지지로드들은 단부가 상호 회동 가능하게 힌지결합되어 있어서, 구조물(10)에 지진 또는 강한 바람에 의해 외력이 작용하면 구조물(10)에 작용하는 힘에 대응하여 변형이 이루어질 수 있게 되어 있다.
이하에서는 네 개의 지지로드들 구조물(10)의 상하면에 이격되게 형성되어 있는 두 개의 지지로드를 각각 제1, 제2 지지로드(111,112), 제1, 제2 지지로드(111,112)의 양 단부를 상호 연결하는 로드들을 각각 제3, 제4 지지로드(113,114)라 칭한다.
그리고 본 실시예에서는 외부프레임(110)이 구조물(10)의 내측에 설치되는 것으로 도시되었으나, 도 14에 도시되어 있는 것처럼 상기 외부프레임(110)은 구조물(10)의 전면에 돌출되게 부착될 수도 있다. 본 발명의 변위증폭형 제진시스템(100)은 구조물(10)과 연결되어 구조물(10)에 인가되는 지진력을 감쇠시킬 수 있다면 구조물(10)과의 결합위치가 본 실시예에 한정되지 않고 다양하게 설정될 수 있다.
상기 변위증폭부(130)는 외부프레임(110)에 고정 설치되는 내부프레임(131)과, 내부프레임(131)에 일측이 회동 가능하게 힌지결합되어 있고, 일단이 상기 외부프레임(110)에 회동 가능하게 고정되어 있는 회동로드(134)를 구비한다.
상기 내부프레임(131)은 네 개의 지지로드들 중 어느 하나에 지지되어 있으며, 대향되는 위치의 지지로드를 향해 연장된 두 개의 연장로드(132)와, 연장로드(132)의 상단을 연결하는 연결로드(133)를 포함하는데, 상기 연장로드(132)는 제3, 제4 지지로드(113,114)와 나란하게 연장되어 있으며, 연결로드(133)는 제1 지지로드(111)와 나란한 방향으로 연장되어 연장로드(132)들을 상호 연결한다.
상기 연장로드(132)는 제2 지지로드(112)에 고정되어 있으며, 연결로드(133)도 연장로드(132)에 양단이 고정되어 있다. 상기 두 개의 연장로드(132)는 제3, 제4 지지로드(113,114)와 소정간격 이격된 상태로 제3, 제4 지지로드(113,114)와 나란하게 연장되어 있는데, 연장로드(132)가 제3, 제4 지지로드(113,114)와 이격된 이격거리(l2)는 제3, 제4 지지로드(113,114)의 전체 길이(l1)의 1/50 이하가 되는 것이 바람직하다.
통상적으로 소정길이로 연장되어 있는 물체가 변형이 발생할 때 탄성변형의 범위를 벗어나게 되는 위치가 전체 길이의 1/50이 되는 지점으로 본다. 따라서 구조물(10)에 변형이 발생하게 되어 그 변형량이 제3, 제4 지지로드(113,114) 즉, 구조물(10)의 상하방향 지지체의 길이의 1/50 이상이 되면 구조물(10)에는 회복 불가능한 소성변형이 발생하는 것으로 간주할 수 있으며, 이 경우 상기 내부프레임(131)의 연장로드(132)가 제3, 제4 지지로드(113,114)가 더 이상 기울어지지 못하도록 지탱하여 구조물(10)의 붕괴를 막는다.
상기 회동로드(134)는 일측이 내부프레임(131)의 연결로드(133) 상에 힌지결합 되어있고 상단과 하단이 각각 외부프레임(110)의 제1 지지로드(111)와 댐핑수단(120)에 연결되어 있다.
회동로드(134)는 연결로드(133)와 연결되는 지점을 중심으로 회전이 이루어질 수 있게 되어 있는데, 상기 외부프레임(110)이 지진이나 강항 바람과 같은 외부요인에 의해 변형이 이루어져 소정거리 움직이게 되면 회동로드(134)의 상단이 제1 지지로드(111)와 함께 일측으로 이동하게 되고, 회동로드(134)는 연결로드(133)와 결합되는 회전중심점(C)을 중심으로 회전이 이루어진다.
회동로드(134)가 회전중심점(C)을 중심으로 회전이 이루어질 수 있어야 하므로 회동로드(134)의 상단과 하단도 각각 제1 지지로드(111)와 댐핑수단(120)에 각각 회전이 가능하게 연결되어 있다.
도 3에 도시된 것처럼 회동로드(134)의 하단은 댐핑수단(120)이 좌우 방향으로 슬라이딩 가능하도록 회동될 수 있게 연결되어야 하므로 상기 댐핑수단(120)의 상단에 설치되는 로드체결부재(135)를 별도로 구비하고, 이 로드체결부재(135)에 회동로드(134)가 회전 가능하게 결합되는데, 이와는 달리 댐핑수단(120)의 상단을 회동로드(134)와 직접 연결할 수 있도록 댐핑수단(120)을 형성할 수도 있다.
회동로드(134)는 도 4 및 도 5에 도시되어 있는 것처럼 연결로드(133)와 연결되는 회전중심점(C)을 중심으로 제1 지지로드(111)까지의 거리 l3가 회전중심점(C)에서 댐핑수단(120)까지의 거리 l4에 비해 상대적으로 짧게 형성되어 있다.
이렇게 회동로드(134)의 회동중심점을 기준으로한 l3와 l4 사이의 거리차에 의해 지진력이나 풍력과 같은 외력에 의해 구조물(10)에 가해지는 변형량이 증폭되어 댐핑수단(120)을 구동시키게 된다. 즉, 도 5에 도시되어 있는 것처럼 외력에 의해 제1 지지로드(111)가 일측으로 이동하여 회동로드(134)가 회동되었을 때 제1 지지로드(111)가 외력에 변형된 실제 변위를 δ1이라고 하면, 회동로드(134)의 회동에 의해 마찰댐퍼와 연결된 회동로드(134)의 하단이 이동한 거리는 δ2가 되며, δ1과 δ2의 거리비는 l3와 l4의 거리비에 대응한다.
이를 수식으로 표현하면 l3 : l4 = δ1 : δ2 이며, δ2 = δ1 ×(l4/l3)가 된다. 따라서 댐핑수단(120)에 작용하는 변위는 실제 변위보다 l4 / l3 만큼 증폭되며 증폭된 변위에 대하여 댐핑수단(120)이 구동하게 되므로 감쇠효율이 증가하게 된다.
상기 댐핑수단(120)은 전단형 마찰댐퍼가 적용되었다.
도 6 내지 도 8을 참조하면, 본 실시예의 댐핑수단(120)은 제1, 제2 지지체(210,220)와, 제1, 제2 지지체(210,220)를 연결하는 덧댐판(230)과, 제1 지지체(210)와 덧댐판(230)의 사이에 설치되는 마찰판(240)과, 이들을 상호 결합시키기 위한 체결부(250)를 구비한다.
제1 지지체(210)는 회동로드(134)의 단부를 연결하는 로드체결부재(135)에 고정되는 제1 엔드플레이트(211)와, 제1 엔드플레이트(211)로부터 하방으로 연장되는 슬라이딩판(214)을 갖는다.
제1 엔드플레이트(211)에는 상하면을 관통하는 복수개의 체결홀(112)들이 형성되어 있으며, 체결부재(260)들을 통해 체결이 이루어지게 된다.
슬라이딩판(214)은 제1 엔드플레이트(211)의 하면으로부터 하방으로 소정길이 연장되어 있는데, 측방에서 봤을 때, 'T'자 형이 되도록 형성되어 있다. 슬라이딩판(214)에는 전후면을 관통하는 두 개의 장공(215)이 수평방향 상에서 상호 소정간격 이격되게 형성되어 있다. 상기 장공(215)은 회동로드(134)가 회전중심점(C)을 중심으로 회전하는 곡률에 대응하도록 만곡지게 형성되어 있다.
제2 지지체(220)는 제2 지지로드(112)에 고정된 제2 엔드플레이트(221)와, 제2 엔드플레이트(221)의 상면으로부터 상방으로 연장되는 연장부(223)를 포함하는데, 제2 엔드플레이트(221)에도 체결부재(260)들이 장착될 수 있도록 다수개의 체결홀(222)들이 형성되어 있으며, 연장부(223)는 역'T'자 형이 되도록 제2 엔드플레이트(221)의 상면 중앙으로부터 상방으로 연장된다.
따라서 제1, 제2 지지체(210,220)는 제1, 제2 엔드플레이트(211,221)가 각각 회동로드(134)와 연결되는 로드체결부재(135) 또는 제2 지지로드(112)에 지지되고 그 사이에 상호 마주보는 방향을 향해 슬라이딩판(214)과 연장부(223)가 연장되어 있는 형태를 취하게 된다. 또한 상기 연장부(223)의 전면과 후면에는 각각 결합돌기(224)들이 돌출되어 있다.
제1, 제2 지지체(210,220)는 후술하는 덧댐판(230)에 의해 상호 연결이 이루어지며, 접촉이 이루어지는 슬라이딩판(214)의 하단과 연장부(223)의 상단 사이에는 제1 지지체(210)의 슬라이딩 구동이 원활하게 이루어질 수 있도록 마찰계수가 작은 테프론 재질의 시트(225)가 코팅되어 있다.
상기 덧댐판(230)은 제2 지지체(220)에 고정되고 체결부(250)를 통해 제2 지지체(220)에 제1 지지체(210)를 고정시키기 위한 것이다.
덧댐판(230)은 하부에 상기 결합돌기(224)들이 끼워질 수 있도록 결합돌기(224)의 형상에 대응하는 결합홀(232)들이 형성되어 있다.
그리고 결합홀(232)들의 상부에는 체결부(250)의 텐션볼트(252)가 관통할 수 있도록 제1 볼팅홀(231)이 형성되어 있다.
본 실시예에서는 상기 결합돌기(224)가 소정의 직경을 갖는 원통형으로 형성된 것으로 도시되었으나, 연장부(223)에 덧댐판(230)이 연결되도록 할 수 있다면 이 외에도 각기둥 형태 또는 길이방향을 따라 연장된 타원형의 단면을 갖는 타원기둥 형태로 형성될 수도 있다.
상기 마찰판(240)은 외력에 의해 제1 지지체(210)가 제2 지지체(220)에 대하여 수평방향으로 슬라이딩 될 때 마찰력을 제공하여 구조물(10)에 인가되는 외력을 감쇠시키기 위한 것이다.
마찰판(240)은 슬라이딩판(214)의 전면 및 후면과 덧댐판(230)들의 사이에 위치하도록 장착되는데, 상기 제1 볼팅홀(231)에 대응하는 제2 볼팅홀(241)들이 형성되어 있어서, 체결부(250)에 의해 슬라이딩판(214)과 덧댐판(230) 사이에 고정된다.
마찰판(240)은 슬라이딩판(214)이 진동 발생시 이 외력을 감쇠시킬 수 있도록 수평방향으로 이동할 때, 슬라이딩판(214)과 접촉하여 마찰열을 발생시킴으로써 외부에서 인가되는 진동에너지가 열에너지로 소산될 수 있도록 하기 위한 것인데, 슬라이딩판(214)에 비해 상대적으로 경도가 작은 재질로 형성되는 것이 바람직하다.
마찰판(240)이 슬라이딩판(214)에 비해 상대적으로 낮은 경도의 재질로 제작됨으로써 마찰판(240)과 슬라이딩판(214)의 지속적인 마찰접촉이 이루어질 때, 마찰판(240)은 마모가 진행되어 두께가 점점 감소하게 되고, 슬라이딩판(214)은 상대적으로 변형이 발생하지 않고 오래 사용할 수 있다.
이렇게 교체가 가능한 마찰판(240)이 상대적으로 용이하게 마모될 수 있는 재질을 갖게 되므로, 마찰판(240)의 교환을 통해 댐핑수단(120)의 진동 감쇠력을 적정수준으로 유지시킬 수 있다.
본 실시예에서는 상기 슬라이딩판(214)과 마찰판(240) 모두 접촉면이 평활면 형태로 형성되어 있으나, 마찰면적이 확장될 수 있도록 슬라이딩판(214)과 마찰판(240)이 상호 결합될 수 있는 요철을 갖도록 형성될 수도 있다.
상기 체결부(250)는 슬라이딩판(214)과 마찰판(240) 및 덧댐판(230)을 체결하기 위한 것으로, 텐션볼트(252)와, 너트(252) 및 와셔부재(253)를 포함한다.
상술한 것처럼 덧댐판(230)과 마찰판(240)에는 각각 제1, 제2 볼팅홀(231,241)이 형성되어 있고, 슬라이딩판(214)에는 장공(215)이 형성되어 있다.
텐션볼트(252)에 와셔부재(253)를 끼운 후 일측 덧댐판(230)과 마찰판(240), 슬라이딩판(214), 타측 마찰판(240)과 덧댐판(230)을 차례로 관통하도록 끼운 다음 텐션볼트(252)의 타측에 다시 와셔부재(253)를 끼우고 너트(252)로 체결한다.
댐핑수단(120)는 마찰판(240)과 슬라이딩판(214) 사이의 마찰내력의 크기에 따라 대응하는 진동의 크기가 달라진다. 즉, 강진의 경우에는 진동의 크기가 크므로 마찰내력이 크도록 마찰판(240)과 슬라이딩판(214)이 체결되어 있어야 진동의 감쇠효과를 거둘 수 있으며, 반대로 외부 바람이나 작은 규모의 지진과 같이 상대적으로 작은 진동에 대하여는 마찰내력의 크기가 작아야 마찰판(240)과 슬라이딩판(214) 사이에서 슬립이 발생하면서 진동에너지를 감쇠시킬 수 있다.
따라서 건축구조물(10)의 목적이나 설치 위치 등 제반 요건을 고려하여 적절한 마찰내력을 설정하고, 토크렌치로 텐션볼트(252)를 조여 마찰판(240)과 슬라이딩판(214) 사이에 설정된 크기의 마찰내력이 존재하게 하는 것이 바람직하다.
상기 와셔부재(253)는 접시스프링와셔가 적용되었는데, 진동에 의해 마찰판(240)과 슬라이딩판(214) 사이에 지속적으로 슬립이 발생하게 되면 결국 마찰판(240)이 마모되면서 마찰판(240)의 두께가 감소하게 되며, 이에 따라 텐션볼트(252)의 체결력이 저하되면서 마찰판(240)과 슬라이딩판(214) 사이의 마찰내력이 초기에 설정된 값을 유지하지 못하게 될 수 있다.
마찰내력이 작아지면 댐핑수단(120)의 기능성이 떨어지게 되므로 와셔부재(253)를 통해 마찰판(240)이 마모되더라도 마찰판(240)과 슬라이딩판(214) 사이의 마찰내력이 유지될 수 있도록 와셔부재(253)는 접시스프링와셔가 적용되는 것이 바람직하다.
외력에 대한 감쇠를 위한 댐핑수단(120)으로서 마찰댐퍼 외에도 도 8에 도시된 것처럼 오일댐퍼가 적용될 수도 있는데, 이 경우 오일댐퍼와의 연결을 위해 회동로드(134)와 댐퍼의 연결부의 형상을 적절히 설계변경하여 연결한다.
그리고 도시되지는 않았으나, 도면에 도시된 마찰댐퍼와 오일댐퍼 외에도 강재댐퍼, 점탄성댐퍼 등 다양한 종류의 댐핑수단(120)이 적용될 수 있다.
도 10에는 변위증폭형 제진시스템(100)의 제3 실시예가 도시되어 있다.
본 실시예는 제3, 제4 지지로드(113,114) 사이의 이격거리가 짧은 경우로서 하나의 마찰댐퍼에 의해 외력의 감쇠가 이루어질 수 있도록 되어 있다.
본 실시예도 외부프레임(110)의 내측에 고정된 내부프레임(131)이 설치되는 것은 동일하며 다만 제3, 제4 지지로드(113,114) 사이의 이격 거리가 짧으므로 연결로드(133)의 중앙에 하나의 회동로드(134)가 설치되고, 이 하나의 회동로드(134)와 연결되는 마찰댐퍼가 외력을 감쇠시킬 수 있도록 되어 있다.
물론 본 실시예와는 달리 제3, 제4 지지로드(113,114) 사이의 이격거리가 멀리 떨어져 있는 경우에는 3개 이상의 회동로드(134)를 연결로드(133)의 길이방향을 따라 이격되게 설치하고, 각각의 회동로드(134)의 단부에 연결되도록 댐핑수단(120)을 설치할 수도 있다.
도 11 및 도 12는 변위증폭형 제진시스템(100)의 제4 실시예이다.
본 실시예의 변위증폭형 제진시스템(100)은 제1, 제2 지지로드(111,112) 사이의 이격거리가 긴 경우에 설치될 수 있는 실시예로서 댐핑수단(120)을 중심으로 상부와 하부에 각각 회동로드(134)가 설치됨으로써 2중 증폭이 이루어질 수 있도록 형성되어 있다.
즉, 본 실시예의 변위증폭형 제진시스템(100)은 외부프레임(110)의 변형시 이러한 변형을 증폭시키기 위한 제1, 제2 증폭부(150)를 갖는다.
제1 증폭부(140)는 제2 지지로드(112)에 고정되어 있는 제1 내부프레임(141)과, 제1 내부프레임(141)에 회전중심점(C)이 위치하도록 회동 가능하게 설치되고 상단이 제1 지지로드(111)에 회전 가능하게 연결되고 하단이 댐핑수단(120)의 상단에 회동 가능하게 연결된 제1 회동로드(142)로 이루어진다.
제2 증폭부(150)는 상기 제1 지지로드(111)에 고정되어 있는 제2 내부프레임(151)과, 제2 내부프레임(151)에 회전중심점(C)이 위치하도록 회동 가능하게 설치되고 하단이 제2 지지로드(112)에 회전 가능하게 연결되며 상단이 댐핑수단(120)의 하단에 회동 가능하게 연결된 제2 회동로드(152)로 이루어진다.
제1, 제2 증폭부(150)는 댐핑수단(120)을 중심으로 댐핑수단(120)의 상부와 하부에 각각 연결되어 외부프레임(110)에 발생하는 변형을 증폭시키는 것이며, 설치위치만 대향되어 있을 뿐 기본적인 구동원리는 상호 동일하며 제1 실시예의 내부프레임(131)과 회동로드(134)에 의한 증폭원리와도 일치한다.
이상에서 설명한 바와 같이 본 발명에 따른 변위증폭형 제진시스템(100)은 회동로드(134)가 내부프레임(131)과 연결되는 회전중심점(C)을 기준으로 댐핑수단(120)과 외부프레임(110)에 각각 연결되는 연결지점까지의 거리비에 대응하여 외부프레임(110)에 발생하는 변위가 증폭되어 댐핑수단(120)에 전달됨으로써 댐핑수단(120)에 의한 감쇠력이 증가될 수 있도록 한다.
상기 실시예들에서는 내부프레임(131)과 변위증폭부(130) 및 댐핑수단(120)의 설치를 용이하게 하기 위해 외부프레임(110)을 별도로 구비하도록 되어 있으나, 이와는 달리 도 13에 도시되어 있는 것처럼 외부프레임(110)이 없이 변위증폭부(130)와 댐핑수단(120)이 구조물(10)에 직접 설치될 수도 있다.
이하에서는 본 발명에 따른 변위증폭형 제진시스템(100)의 제1 실시예를 기준으로 이의 시공방법에 대해 설명한다.
본 발명의 변위증폭형 제진시스템(100)의 시공방법은 외부프레임(110) 설치단계, 내부프레임(131) 설치단계, 회동로드(134) 설치단계 및 댐핑수단(120) 설치단계를 구비한다.
외부프레임(110) 설치단계에서는 구조물(10)과 일체로 변형될 수 있게 구조물(10)의 형태와 대응하는 외부프레임(110)을 형성하는데, 외부프레임(110)은 제1 내지 제4 로드들이 상호 연결되어 사각의 프레임을 형성하게 된다.
내부프레임(131) 설치단계는 외부프레임(110)에 고정된 내부프레임(131)을 설치하는 단계로서, 외부프레임(110) 중 댐핑수단(120)이 고정되는 제2 지지로드(112)에 고정되어 수직방향으로 연장되는 제3, 제4 지지로드(113,114)와 나란하게 연장되는 연장로드(132)를 설치하고, 이 연장로드(132)의 상단을 연결하는 연결로드(133)를 고정설치하여 내부프레임(131)을 설치한다.
회동로드(134) 설치단계는 상기 내부프레임(131)에 회동로드(134)의 일측을 회동 가능하게 연결하고, 회동로드(134)의 상단을 제1 지지로드(111)에 연결하는 단계이다.
상기 댐핑수단(120) 설치단계는 댐핑수단(120)을 내부프레임(131)이 고정된 제2 지지로드(112)에 고정하고, 구동되는 구동부를 상기 회동로드(134)의 하단과 연결하여 회동로드(134)에 의해 증폭된 변위만큼 댐핑수단(120)에서 슬라이딩이 이루어지면서 감쇠가 이루어지도록 한다.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 사람이라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 등록 청구 범위의 기술적 사상에 의해 정해져야 할 것이다.
본 발명의 변위증폭형 제진시스템은 건축구조물의 시공 및 보강공사에 적용될 수 있으며 산업상 이용가능성이 높다.

Claims (9)

  1. 구조물에 설치되는 외부프레임과;
    상기 외부프레임에 설치되어 상기 구조물 및 외부프레임에 작용하는 외력을 감소시키기 위한 댐핑수단과;
    상기 댐핑수단이 설치된 외부프레임의 일측에 고정되는 내부프레임과, 상기 내부프레임 상에서 상기 댐핑수단과 소정거리 이격된 위치에 회전중심이 위치하도록 상기 내부프레임에 회전 가능하게 설치되고 일측과 타측이 상기 댐핑수단이 설치되지 않은 외부프레임의 타측과 상기 댐핑수단에 각각 연결되는 회동로드를 포함하는 변위증폭부;를 구비하며,
    상기 회동로드는 상기 내부프레임에 연결되는 회전중심을 기준으로 상기 댐핑수단까지의 거리가 상기 외부프레임의 타측까지의 거리보다 상대적으로 길게 형성되어 있는 것을 특징으로 하는 변위증폭형 제진시스템.
  2. 제 1항에 있어서,
    상기 외부프레임은 상호 소정거리 이격된 위치에서 나란하게 연장되는 제1, 제2 지지로드와, 상기 제1, 제2 지지로드의 양단을 연결하도록 나란하게 연장되는 제3, 제4 지지로드를 포함하고,
    상기 댐핑수단은 상기 제2 지지로드에 지지되며,
    상기 내부프레임은 상기 제2 지지로드에 일단이 고정되어 상방으로 연장되되 상호 나란하게 연장되는 두 개의 연장로드와, 상기 연장로드를 상호 연결하도록 상기 제2 지지로드와 나란하게 연장되고 상기 회동로드가 회전 가능하게 결합되는 연결로드를 구비하는 것을 특징으로 하는 변위증폭형 제진시스템.
  3. 제 2항에 있어서,
    상기 두 개의 연장로드가 각각 상기 제3, 제4 지지로드로부터 이격되는 이격거리는 각각 상기 제3, 제4 지지로드 길이의 1/50 이하가 되게 하는 것을 특징으로 하는 변위증폭형 제진시스템.
  4. 제 2항에 있어서,
    상기 댐핑수단은 각각 상기 회동로드와 제2 지지로드에 지지되는 제1, 제2 지지체와,
    상기 제2 지지체에 고정되며 상기 제1 지지체의 양측면을 감싸도록 연장되는 두 개의 덧댐판과,
    상기 제1 지지체와 덧댐판의 사이에 장착되는 마찰판과,
    상기 제1 지지체와 마찰판 및 덧댐판을 관통하는 텐션볼트와, 상기 텐션볼트의 단부에 체결되는 너트를 포함하는 체결부를 구비하되,
    상기 제1 지지체는 상기 내부프레임에 형성되는 회전중심을 중심으로 회전하는 상기 회동로드의 곡률에 대응하게 연장되는 장공이 마련되어 있고, 상기 텐션볼트가 상기 장공을 통과해 연장됨으로써 상기 제1 지지체가 상기 마찰판에 대하여 수평방향으로 슬라이딩 이동 가능하도록 형성된 것을 특징으로 하는 변위증폭형 제진시스템.
  5. 제 4항에 있어서,
    상기 제1 지지체는 상기 회동로드에 지지되는 제1 엔드플레이트와, 상기 제1 엔드플레이트의 하면 중앙으로부터 상기 제1 엔드플레이트와 직교하는 방향으로 연장되어 있는 슬라이딩판을 포함하며,
    상기 제2 지지체는 상기 제1 엔드플레이트와 마주보며 상기 제2 지지로드에 지지되는 제2 엔드플레이트와, 상기 제2 엔드플레이트의 중앙으로부터 제2 엔드플레이트와 직교하는 방향으로 상기 슬라이딩판의 단부를 향해 연장되는 연장부를 포함하고,
    상기 연장부에는 양측방으로 돌출되는 결합돌기가 마련되어 있으며, 상기 덧댐판은 상기 결합돌기가 끼워질 수 있도록 결합홀들이 형성되어 있는 것을 특징으로 하는 변위증폭형 제진시스템.
  6. 제 4항에 있어서,
    상기 체결부는 상기 마찰판의 두께 감소로 인한 상기 텐션볼트의 체결력 저하를 방지하도록 설치되는 접시스프링와셔를 더 구비하는 것을 특징으로 하는 변위증폭형 제진시스템.
  7. 구조물에 설치되며 상호 소정거리 이격된 위치에서 나란하게 연장되는 제1, 제2 지지로드와, 상기 제1, 제2 지지로드의 양단을 연결하도록 나란하게 연장되는 제3, 제4 지지로드를 포함하는 외부프레임과;
    상기 외부프레임에 외력에 의해 발생하는 변위를 증폭시키기 위한 변위증폭부와;
    상기 외부프레임에 발생하는 변형력을 감쇠시키기 위한 댐핑수단;을 구비하며,
    상기 변위증폭부는 상기 제1 지지로드의 변위를 증폭하기 위한 제1 증폭부와, 상기 제2 지지로드의 변위를 증폭하기 위한 제2 증폭부를 구비하되,
    상기 제1 증폭부는 상기 제2 지지로드에 하단이 고정되어 있는 제1 내부프레임과, 상기 제1 내부프레임에 회전중심이 위치하도록 회전 가능하게 결합되고 일단이 상기 제1 지지로드에 회동 가능하게 설치되며 타단이 상기 댐핑수단의 일측에 연결된 제1 회동로드를 포함하고,
    상기 제2 증폭부는 상기 제1 지지로드에 상단이 고정되어 있는 제2 내부프레임과, 상기 제2 내부프레임 상에 회전중심이 위치하도록 상기 제2 내부프레임에 회전 가능하게 결합되고 일단이 상기 제2 지지로드에 회동 가능하게 설치되고 타단이 상기 댐핑수단의 타측에 연결된 제2 회동로드를 포함하며,
    상기 제1, 제2 회동로드는 각각 상기 제1, 제2 내부프레인과 연결되는 회전중심점을 기준으로 상기 제1, 제2 지지로드까지 연장된 연장길이보다 상기 댐핑수단까지 연장된 연장길이가 상대적으로 더 길게 형성된 것을 특징으로 하는 변위증폭형 제진시스템.
  8. 건축된 구조물에 설치되어 상기 구조물에 작용하는 외력을 감소시키기 위한 댐핑수단과;
    상기 댐핑수단이 설치된 구조물의 일측에 고정되는 내부프레임과, 상기 내부프레임 상에서 상기 댐핑수단과 소정거리 이격된 위치에 회전중심이 위치하도록 상기 내부프레임에 회전 가능하게 설치되고 일측과 타측이 상기 댐핑수단이 설치되지 않은 구조물의 타측과 상기 댐핑수단에 각각 연결되는 회동로드를 포함하는 변위증폭부;를 구비하며,
    상기 회동로드는 상기 내부프레임에 연결되는 회전중심을 기준으로 상기 댐핑수단까지의 거리가 상기 구조물의 타측까지의 거리보다 상대적으로 길게 형성되어 있는 것을 특징으로 하는 변위증폭형 제진시스템.
  9. 구조물에 외부프레임을 설치하는 외부프레임 설치단계와;
    상기 외부프레임에 내부프레임을 설치하는 내부프레임 설치단계와;
    상기 외부프레임의 일측에 댐핑수단의 일측을 고정 설치하는 댐핑수단 설치단계와;
    상기 내부프레임 상에 회전중심이 위치하도록 상기 내부프레임에 회전 가능하게 설치되는 회동로드의 일단을 상기 댐핑수단의 타측에 연결하고, 상기 회동로드의 타단을 상기 댐핑수단이 설치되는 외부프레임의 일측과 대향되는 타측에 연결하는 회동로드 설치단계;를 포함하되,
    상기 회동로드는 상기 내부프레임과 연결되는 회전중심점을 기준으로 상기 댐핑수단까지 연장되는 연장길이가 상기 회전중심점을 기준으로 상기 외부프레임의 타측과 연결되는 연결지점까지의 연장길이보다 상대적으로 길게 형성된 것을 특징으로 하는 변위증폭형 제진시스템의 시공방법.
PCT/KR2012/001121 2011-02-15 2012-02-15 변위증폭형 제진시스템 및 이의 시공방법 WO2012111968A2 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013553374A JP5763788B2 (ja) 2011-02-15 2012-02-15 変位増幅型制震システム及びその施工方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0013338 2011-02-15
KR1020110013338A KR101181987B1 (ko) 2011-02-15 2011-02-15 변위증폭형 제진시스템 및 이의 시공방법

Publications (2)

Publication Number Publication Date
WO2012111968A2 true WO2012111968A2 (ko) 2012-08-23
WO2012111968A3 WO2012111968A3 (ko) 2012-12-20

Family

ID=46673042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/001121 WO2012111968A2 (ko) 2011-02-15 2012-02-15 변위증폭형 제진시스템 및 이의 시공방법

Country Status (3)

Country Link
JP (1) JP5763788B2 (ko)
KR (1) KR101181987B1 (ko)
WO (1) WO2012111968A2 (ko)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103015555A (zh) * 2012-12-20 2013-04-03 上海大学 一种带双出杆型速度和位移放大装置的粘滞阻尼器
CN103485437A (zh) * 2013-09-29 2014-01-01 东南大学 粘滞阻尼器的旋转式放大出力装置
CN103486211A (zh) * 2013-10-11 2014-01-01 杨宝军 一种动力外力机
CN105160055A (zh) * 2015-07-07 2015-12-16 重庆大学 一种全新的基于位移的框架结构的抗震设计方法
CN107916815A (zh) * 2017-12-18 2018-04-17 安徽工程大学 机械传动式摩擦耗能减震器
CN111519785A (zh) * 2019-10-16 2020-08-11 南京林业大学 一种旋转放大式黏滞阻尼墙
CN114412259A (zh) * 2021-10-11 2022-04-29 北京建筑大学 一种分级消能自复位装配式墩柱
CN114922290A (zh) * 2022-06-10 2022-08-19 湖南省富生钢结构有限公司 一种复杂节点和带复杂节点钢柱

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101291009B1 (ko) * 2013-01-08 2013-08-07 경북대학교 산학협력단 가새 실험용 지그기구
CL2013003806A1 (es) * 2013-12-31 2014-08-18 Univ Pontificia Catolica Chile Sistema combinado de amplificación de deformaciones y disipación de energía dispuesto dentro de un plano resistente de la estructura principal de una construcción, que comprende; un mecanismo de amplificación de deformaciones compuesto por tres barras articuladas y dos cables tensores, y al menos un dispositivo disipador de energía.
KR101460625B1 (ko) * 2014-04-18 2014-11-12 공주대학교 산학협력단 외부부착형 제진장치
CN104314197B (zh) * 2014-11-03 2016-09-28 河南城建学院 一种位移放大型双出杆粘滞阻尼墙
CN105696722B (zh) * 2016-01-29 2018-09-18 上海堃熠工程减震科技有限公司 一种位移放大的金属剪切型消能器
KR101939178B1 (ko) * 2018-05-24 2019-04-11 서정희 조적조 칸막이 벽체의 내진보강장치
KR102334833B1 (ko) * 2020-11-13 2021-12-03 경기대학교 산학협력단 제진장치

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3530301B2 (ja) * 1996-03-22 2004-05-24 三菱重工業株式会社 てこ式摩擦抵抗力可変装置
JP4097769B2 (ja) * 1998-03-23 2008-06-11 大和ハウス工業株式会社 振動減衰構造
JPH11350777A (ja) 1998-06-05 1999-12-21 Kajima Corp 既存建築物の制震補強構造
JP3456417B2 (ja) 1998-06-29 2003-10-14 鹿島建設株式会社 既存建築物の制震補強構造
JP3634674B2 (ja) * 1999-04-06 2005-03-30 株式会社神戸製鋼所 制振装置
JP2004052835A (ja) * 2002-07-17 2004-02-19 Ohbayashi Corp ダンパー及びこのダンパーを備えた構造物
JP4635700B2 (ja) 2005-04-26 2011-02-23 東海ゴム工業株式会社 建物の制震構造
JP2009052620A (ja) * 2007-08-24 2009-03-12 Daiwa House Ind Co Ltd 制震機構部の構造

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103015555A (zh) * 2012-12-20 2013-04-03 上海大学 一种带双出杆型速度和位移放大装置的粘滞阻尼器
CN103015555B (zh) * 2012-12-20 2015-05-06 上海大学 一种带双出杆型速度和位移放大装置的粘滞阻尼器
CN103485437A (zh) * 2013-09-29 2014-01-01 东南大学 粘滞阻尼器的旋转式放大出力装置
CN103485437B (zh) * 2013-09-29 2015-10-28 东南大学 粘滞阻尼器的旋转式放大出力装置
CN103486211A (zh) * 2013-10-11 2014-01-01 杨宝军 一种动力外力机
CN105160055A (zh) * 2015-07-07 2015-12-16 重庆大学 一种全新的基于位移的框架结构的抗震设计方法
CN107916815A (zh) * 2017-12-18 2018-04-17 安徽工程大学 机械传动式摩擦耗能减震器
CN107916815B (zh) * 2017-12-18 2023-04-07 安徽工程大学 机械传动式摩擦耗能减震器
CN111519785A (zh) * 2019-10-16 2020-08-11 南京林业大学 一种旋转放大式黏滞阻尼墙
CN114412259A (zh) * 2021-10-11 2022-04-29 北京建筑大学 一种分级消能自复位装配式墩柱
CN114412259B (zh) * 2021-10-11 2023-06-09 北京建筑大学 一种分级消能自复位装配式墩柱
CN114922290A (zh) * 2022-06-10 2022-08-19 湖南省富生钢结构有限公司 一种复杂节点和带复杂节点钢柱

Also Published As

Publication number Publication date
WO2012111968A3 (ko) 2012-12-20
KR101181987B1 (ko) 2012-09-11
JP5763788B2 (ja) 2015-08-12
JP2014510204A (ja) 2014-04-24
KR20120093644A (ko) 2012-08-23

Similar Documents

Publication Publication Date Title
WO2012111968A2 (ko) 변위증폭형 제진시스템 및 이의 시공방법
EP2302144B1 (en) Frictional damper for damping movement of structures
CA2634641A1 (en) Fork configuration dampers and method of using same
KR101297416B1 (ko) 외부 부착형 제진 댐퍼 시스템 및 이의 시공방법
CN108179824B (zh) 一种用于房屋梁柱节点的阻尼器
JP7739493B2 (ja) 変位抑制機構付きの吊り下げ式免震装置
CN207919799U (zh) 一种节点阻尼器
KR101105370B1 (ko) 앵글형 편심 회전판을 이용한 변위 증폭형 제진 시스템
WO2017146318A1 (ko) 횡하중 흡수형 건축용 패널 조립체 및 이를 이용한 마감판의 시공방법
CN114279667B (zh) 用于墙板节点的拟静力抗震试验装置和试验方法
JP2009068210A (ja) 建物の制振構造
KR20190043795A (ko) 건축물의 내진 보강을 위한 제진장치
KR102295898B1 (ko) 건물의 지진하중 및 풍하중 저감을 위한 다중 지렛대형 변위증폭 제진시스템
KR101070261B1 (ko) 변위 증폭형 제진 시스템
JP2001152695A (ja) 三階建て住宅
KR101070259B1 (ko) 변위 증폭형 제진 시스템
CN108678488A (zh) 一种墙片型转动摩擦阻尼器
CN210600463U (zh) 一种建筑用抗震支架
JP2003253800A (ja) 床振動を低減する構造
KR101070260B1 (ko) 변위 증폭형 제진 시스템
JPS61215825A (ja) 免震支持装置
JP7351732B2 (ja) 建物の制振機構
KR101105371B1 (ko) 복수개의 앵글형 편심 회전판을 구비한 변위 증폭형 제진 시스템
JPH0640493U (ja) 振動低減装置
JPH11190144A (ja) 建築物の設備用空間

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12747798

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2013553374

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12747798

Country of ref document: EP

Kind code of ref document: A2