WO2017135356A1 - フーリエ変換型分光装置を用いたスペクトル測定方法 - Google Patents

フーリエ変換型分光装置を用いたスペクトル測定方法 Download PDF

Info

Publication number
WO2017135356A1
WO2017135356A1 PCT/JP2017/003726 JP2017003726W WO2017135356A1 WO 2017135356 A1 WO2017135356 A1 WO 2017135356A1 JP 2017003726 W JP2017003726 W JP 2017003726W WO 2017135356 A1 WO2017135356 A1 WO 2017135356A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
movable mirror
spectrum
laser
sampling
Prior art date
Application number
PCT/JP2017/003726
Other languages
English (en)
French (fr)
Inventor
哲志 角南
隆志 島村
範雄 脇本
小勝負 純
Original Assignee
日本分光株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本分光株式会社 filed Critical 日本分光株式会社
Priority to US16/075,346 priority Critical patent/US10317283B2/en
Priority to EP17747507.6A priority patent/EP3413021B1/en
Priority to JP2017565621A priority patent/JP6457122B2/ja
Publication of WO2017135356A1 publication Critical patent/WO2017135356A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/45Interferometric spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/45Interferometric spectrometry
    • G01J3/453Interferometric spectrometry by correlation of the amplitudes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0297Constructional arrangements for removing other types of optical noise or for performing calibration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N2021/3595Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using FTIR

Definitions

  • the present invention relates to a method for measuring a spectrum when a Fourier transform type spectroscopic device includes a general-purpose laser as a position reference laser for a movable mirror.
  • the Fourier transform type spectroscope uses an interferometer to detect non-dispersive interference light of the measurement light, and performs Fourier transform on the computer to obtain spectral data of the measurement light.
  • each wave number component of the measurement light based on the intensity signal of the interference wave consisting of the total wave number component of the measurement light is calculated by Fourier transform.
  • Fourier transform spectroscopy is suitable for high-speed measurement, and has become mainstream in infrared spectrophotometers, and is widely used as a Fourier transform infrared spectrophotometer (FTIR) (see Patent Document 1).
  • FTIR Fourier transform infrared spectrophotometer
  • An interferometer used in this spectroscopic apparatus is generally a Michelson interferometer, and includes a semi-transparent mirror and two reflecting mirrors (a fixed mirror and a movable mirror).
  • the movable mirror makes the optical path difference of the interferometer variable, and there is a one-to-one relationship between the position of the movable mirror and the optical path difference.
  • the interferometer generates an interference wave of measurement light according to the optical path difference. By detecting the intensity of this interference wave, an interferogram (interference curve) having an optical path difference on the horizontal axis and an intensity signal on the vertical axis is obtained.
  • the computer calculates spectral data by Fourier transforming the interferogram data.
  • the timing for detecting the interference wave is generally determined by referring to the position of the movable mirror with laser light.
  • a position reference laser When the position reference laser irradiates the movable mirror with laser light, the interferometer forms a laser interference wave based on the reflected light.
  • the laser detector detects the interference wave of the measurement light at the timing when the intensity signal of the laser interference wave becomes zero. That is, the detection timing depends on the wavelength ⁇ of the position reference laser.
  • a technique for improving S / N by a ⁇ AD converter AD-converting an interferogram signal is disclosed.
  • This ⁇ AD converter simultaneously AD converts the interferogram signal from the infrared detector and the laser interference wave signal from the laser detector using a basic clock asynchronous with the moving speed of the movable mirror.
  • the computer acquires an interferogram signal synchronized with the movement of the movable mirror by interpolating the AD-converted interferogram signal so that the angle change of the laser interference signal is constant.
  • a Fourier transform type spectroscopic device identifies sample components by comparing spectrum data stored in a database or the like with a measured spectrum.
  • a large amount of accumulated spectral data is measured by a spectroscopic device using a He-Ne laser (also referred to as a standard laser) for reference of the position of the movable mirror.
  • the spectroscopic device of Patent Document 1 also includes a He-Ne laser as a position reference laser.
  • the measured spectral data does not match the spectral data measured by the spectroscopic device using the conventional He-Ne laser. If the wavelengths of the position reference lasers of the two Fourier transform spectrometers are different, the spectral data obtained by each spectrometer is not sufficiently identical, so it is common to compare the spectral data. do not do. Therefore, it has been difficult to use a lot of stored spectrum data.
  • the present invention has been made in view of the above circumstances, and a first object is to enable comparison with the spectrum data accumulated in the past even when the wavelength of the position reference laser of the movable mirror is different. It is to provide a spectrum measurement method.
  • the second object is to establish a method for validating the wavelength of the position reference laser in preparation for the case where the wavelength of the position reference laser of the movable mirror changes with time (or when the wavelength changes due to environmental dependence). .
  • a method according to the present invention is a method of acquiring an interferogram of measurement light using an interferometer and measuring a spectrum of a sample by Fourier transform, Obtaining the interferogram comprises: A movable mirror moving step of moving the movable mirror constituting the interferometer at a constant speed; Using a general-purpose laser of wavelength ⁇ 1 as the position reference laser of the movable mirror, the intensity signal (I1) of the interference light of the measuring light at each position (D1, D2,%) Of the movable mirror based on the wavelength ⁇ 1 , I2, ...) oversampling; An intensity signal (I1 ′, D1 ′, D2 ′,...) That will be obtained when the interference wave of the measurement light is sampled at each position (D1 ′, D2 ′,.
  • Interpolating I2 ′ involves Using a computer based on the oversampled intensity signals (I1, I2,%), Interferograms consisting of intensity signals (I1 ′, I2 ′,%) Of interference waves of measurement light at each position (D1 ′, D2 ′,%) Of the movable mirror with the wavelength ⁇ 0 as a reference. It is characterized by doing.
  • each position of the movable mirror with reference to the wavelength is a position at regular intervals from the position of the movable mirror where the optical path difference of the interferometer becomes zero.
  • the constant interval is a length N times (or 1 / N) the wavelength ⁇ 1.
  • N is an integer excluding zero.
  • oversampling means that when the movable mirror has the same moving range, the number of samplings at the position with the wavelength ⁇ 1 as a reference is larger than the number of samplings at the position with the wavelength ⁇ 0 as a reference.
  • each intensity signal oversampled at the sampling position closest to the position of the movable mirror (for example, D2 ′) with reference to the wavelength ⁇ 0 and the sampling position closest to the second position (for example, D5 and D6) (for example, it is preferable to include calculating the intensity signal (for example, I2 ′) of the interference wave at the position of the movable mirror with the wavelength ⁇ 0 as a reference based on I5 and I6).
  • the interpolation step of the present invention data at unsampled positions different from the sampling positions of a plurality of oversampled data is calculated. That is, the data at the position of the movable mirror based on the reference laser (for example, He—Ne laser) is calculated by interpolation from the oversampling data based on the general-purpose laser (for example, semiconductor laser) in the vicinity thereof.
  • the interferogram at the same mirror position as the mirror position when the interferometer samples the signal intensity of the interferogram using the reference laser as the position reference laser of the movable mirror is calculated.
  • the spectrum obtained by Fourier transforming the interferogram calculated by the method of the present invention is almost the same as the spectrum measured by the spectroscopic device provided with the reference laser as the position reference laser of the movable mirror. Become.
  • the inventors have described a method for validating the wavelength ⁇ 1 of the general-purpose laser in preparation for the case where the wavelength ⁇ 1 of the general-purpose laser changes minutely to the wavelength ⁇ 1 ′ due to a change with time (or a change due to environment dependency).
  • the inventors pay attention to the fact that the measurement spectrum data of the standard sample has a certain relationship between the data measured by the conventional method using a reference laser and the data measured by the method of the present invention using a general-purpose laser. did.
  • the oscillation wavelength ⁇ 1 of the general-purpose laser changes to the wavelength ⁇ 1 ', it is considered that there is a certain relationship.
  • the computer calculates each spectrum before and after the change on the assumption that the oscillation wavelength of the general-purpose laser has not changed, and recognizes such a change in peak position when the two spectra are compared.
  • the ratio can be regarded as a wavelength ratio ( ⁇ 1 ′ / ⁇ 1) of a general-purpose laser.
  • the computer obtains the wavelength ratio ( ⁇ 1 ′ / ⁇ 1) from the change in the peak position of the measurement spectrum, recalculates the wavelength ⁇ 1 of the general-purpose laser, and calculates the recalculated value of the wavelength ⁇ 1. We decided to use it in the interpolation step of the invention.
  • the method of the present invention further includes a validation step of validating the wavelength ⁇ 1 of the general-purpose laser, and the validation step includes: Measuring a spectrum of a standard sample with an interferometer having a standard laser of wavelength ⁇ 0 as the position reference laser; Measuring the spectrum of a standard sample with an interferometer having a general purpose laser of wavelength ⁇ 1 as the position reference laser; Comparing two spectrum results, reading a change ratio of each peak position for a plurality of peaks, and calculating a wavelength ⁇ 1 of the general-purpose laser based on an average value of the change ratios.
  • the spectroscopic device uses a general-purpose laser as appropriate.
  • the fluctuation of the oscillation wavelength of the general-purpose laser can be confirmed by measuring the spectrum of the standard sample and confirming the change of the peak position.
  • the spectroscopic device may execute the wavelength validation method described above.
  • the method of the present invention includes a step of storing a peak position of a spectrum of a standard sample measured by an interferometer having a general-purpose laser having a wavelength ⁇ 1, in a storage unit; Comparing the peak position of the spectrum of the stored standard sample with the peak position of the spectrum of the standard sample measured thereafter, and The validation step is preferably performed when the peak positions of the two spectra are changing.
  • the method according to the present invention is a method of obtaining an interferogram of measurement light using an interferometer and measuring a spectrum of a sample by Fourier transform,
  • Obtaining the interferogram comprises: A movable mirror moving step of moving the movable mirror constituting the interferometer at a constant speed; A general-purpose laser having a wavelength ⁇ 1 is used as the position reference laser for the movable mirror, and the measurement light at each position (D1 ′, D2 ′,...) Of the movable mirror with a wavelength ⁇ 0 different from the wavelength ⁇ 1 as a reference.
  • the sampling positions (D1 ′, D2 ′,...) With respect to the wavelength ⁇ 0 are preferably used.
  • a length obtained by multiplying each position based on the wavelength ⁇ 1 by the moving speed of the movable mirror and a delay time determined for each position of the movable mirror is obtained. It is preferable to use each position of the movable mirror as the sampling position (D1 ′, D2 ′,%) With the wavelength ⁇ 0 as a reference.
  • the method includes a step of detecting a moving speed of the movable mirror at each time point when each position (D1, D2,%) With respect to the wavelength ⁇ 1 is reached, and using the detected moving speed, the wavelength ⁇ 0. It is preferable to calculate each sampling position (D1 ′, D2 ′,%) With reference to.
  • the Fourier transform spectroscope has a general-purpose laser having a wavelength ⁇ 1 as a position reference laser for a moving mirror
  • the spectrum obtained by this spectroscope was measured by a conventional spectroscope having a reference laser. It is the same as or almost the same as the spectrum. Therefore, even if the accumulated spectrum data such as the database is a spectrum measured by the reference laser having the wavelength ⁇ 0, it is possible to continue the comparison between the spectrum by the general-purpose laser having the wavelength ⁇ 1 and the existing spectrum data. Can be used effectively.
  • the spectroscopic device or the user It is easy for the spectroscopic device or the user to judge the fluctuation of the oscillation wavelength of the general-purpose laser, and the wavelength can be validated. Even if the spectroscopic device performs such an interferogram acquisition method and wavelength calibration method, the S / N ratio is maintained at the same level as that of conventional measurement data. In addition, the wavelength of the general-purpose laser can be easily brought close to an ideal value (true value) by wavelength validation.
  • the spectroscopic device has a semiconductor laser as a general-purpose laser, power consumption is reduced and costs are reduced as compared with a spectroscopic device having a conventional He—Ne laser.
  • FIG. 1 is a schematic configuration diagram of a Fourier transform spectrometer according to an embodiment of the present invention.
  • FIG. 2 is a diagram for explaining a spectrum measuring method according to the first embodiment.
  • FIG. 3 is a flowchart illustrating a laser wavelength validation method in the spectrum measurement method.
  • FIG. 4 is a diagram for explaining a sampling command signal generation method in the spectrum measurement method according to the second embodiment. It is a figure for demonstrating the conventional Fourier-transform type
  • FIG. 5A is a graph which shows the intensity signal of the interference wave of a He-Ne laser.
  • FIG. 5B is a graph showing an intensity signal of an infrared interference wave sampled based on the laser intensity signal of FIG. 5A.
  • FIG. 5C is a graph showing intensity signals of interference waves composed of infrared light having a plurality of different wave numbers ⁇ 1 to ⁇ 3.
  • FIG. 5D is a graph showing the calculated spectrum data.
  • FIG. 1 shows a schematic configuration of a Fourier transform infrared spectrophotometer (FTIR) 100.
  • the spectroscopic device 100 includes an infrared light source 10, an interferometer 12 that forms an infrared interference wave, and an infrared detector 14 that outputs an intensity signal of the interference wave obtained by irradiating the sample with the infrared interference wave.
  • interferogram data acquisition means 16 for processing the detected intensity signal to acquire interferogram data
  • Fourier transform means 18 for Fourier transforming the interferogram data to calculate measurement spectrum data.
  • the interferogram acquisition means 16 and the Fourier transform means 18 are constituted by a microcomputer built in the spectroscopic device, a personal computer separate from the spectroscopic device, or the like.
  • the interferometer 12 includes a light beam splitting unit 20 that splits infrared light, a fixed mirror 22 that reflects the split light, and a movable mirror 24, and generates two infrared beams with different optical path lengths.
  • the movable mirror 24 is provided so as to be movable in both directions of approaching and moving away from the light beam splitting unit 20.
  • the movable mirror moving means 28 is, for example, a voice coil motor.
  • the infrared interference wave irradiates the sample in the sample holder 26 provided between the light beam splitting unit 20 and the infrared detector 14.
  • the infrared detector 14 receives an infrared interference wave from the sample and outputs its intensity signal.
  • the interferometer 12 further includes a semiconductor laser 30 for position reference and a laser detector 32 for detecting laser interference waves in order to obtain position information of the movable mirror 24 by laser light.
  • the interferometer 12 also serves as a laser interferometer, and laser light (monochromatic light) from the semiconductor laser 30 is guided to the same optical path as infrared light.
  • the interferometer 12 also generates a laser interference wave as the movable mirror 24 moves, and the laser detector 32 outputs an intensity signal of the laser interference wave.
  • the spectroscopic device 100 may include a dedicated laser interferometer that is provided separately from the interferometer 12.
  • the FTIR of FIG. 1 further includes a position detection means 34 for outputting position information of the movable mirror 24 based on the intensity signal of the laser interference wave, and speed control of the movable mirror 24 based on the position information, in particular its constant speed control. And a memory 38 for storing a set value ⁇ 1 of the wavelength of the semiconductor laser 30.
  • the position detection unit 34 obtains position information of the movable mirror 24 by counting the intensity change of the laser interference wave accompanying the movement of the movable mirror 24.
  • the position information is sent to the movable mirror control means 36 and the interferogram acquisition means 16.
  • the interferogram acquisition means 16 acquires an interferogram (interference curve) based on the intensity signal of the infrared interference wave and the position information of the movable mirror 24.
  • the sample holder 26 is preferably provided so as to be exchanged for the standard sample holder 26a.
  • an optical path switching unit is provided so that the optical path for guiding the infrared interference wave from the interferometer 12 to the sample holder 26 can be switched to the optical path for guiding the infrared interference wave from the interferometer 12 to the standard sample holder 26a.
  • the memory 38 is preferably provided so as to store the standard spectrum data of the standard sample measured by the spectroscopic device 100.
  • the memory 38 may be provided so as to store standard spectral data measured by a conventional spectroscopic device having a He—Ne laser.
  • FIG. 5A shows the intensity signal of the interference wave of the He—Ne laser.
  • the horizontal axis represents the position of the movable mirror, that is, the optical path difference D.
  • a sampling command signal is generated at each position (D1, D2,%) Of the movable mirror for each wavelength ⁇ 0.
  • FIG. 5B shows the interferogram, that is, the intensity signal (I1, I2,%) Of the infrared interference wave sampled at each of the above positions.
  • Fourier transform spectroscopy is a technique for calculating spectrum data (curve of ⁇ 0) as shown in FIG. 5D by Fourier transforming interferogram data.
  • the concept of Fourier transform will be schematically described with reference to FIG. 5C.
  • An interference wave composed of infrared light having a wave number ⁇ 1 is represented by an intensity curve of ⁇ 1 in FIG. 5C.
  • infrared interference waves having different wave numbers ⁇ 2, ⁇ 3,... are represented by intensity curves of ⁇ 2, ⁇ 3,.
  • the interferogram of FIG. 5B is considered to be an overlay of the intensity curves of FIG. 5C, assuming that it is an intensity signal of an interference wave composed of infrared light in the wave number range of ⁇ 1 to ⁇ N.
  • the amplitude of the intensity curve ⁇ 1 at the optical path difference D2 is a value A obtained by multiplying the intensity A D2, ⁇ 1 of the interference wave at the optical path difference D2 by the absorbance B ⁇ 1 of the infrared light having the wave number ⁇ 1. It is represented by D2, ⁇ 1 ⁇ B ⁇ 1 .
  • interferogram I2 in the light path difference D2 is, A D2, ⁇ 1 ⁇ B ⁇ 1 + A D2, ⁇ 2 ⁇ B ⁇ 2 + A D2, the formula of ⁇ 3 ⁇ B ⁇ 3 + ⁇ .
  • the interferogram (I1, I2, I3,%) Becomes the following simultaneous equations.
  • the Fourier transform is a technique for obtaining the solutions B v1 , B v2 ,... Of the simultaneous equations of the equation (1).
  • it is difficult to obtain the true value of a spectrum, and only an approximate solution that is relatively close to the true value can be obtained.
  • the approximate solution becomes, for example, a curve of ⁇ 1 indicated by a broken line in FIG. 5D.
  • the data processing program of the present embodiment solves the above problems, and even when the wavelength of the position reference laser is changed, the spectral data can be compared while ensuring the same spectral data.
  • the data processing program causes the computer constituting the interferogram acquisition means 16 and the Fourier transform means 18 to execute the following steps S1 to S4 in order to obtain spectral data of the sample.
  • the interferogram acquisition means 16 obtains the detection timing of the intensity signal of the infrared interference wave based on the position information from the position detection means 34.
  • the detection timing is set at each position of the movable mirror 24 with the wavelength ⁇ 1 of the semiconductor laser 30 as a reference.
  • the positions (D1, D2,%) At regular intervals from the position of the movable mirror 24 where the optical path difference D of the interferometer 12 becomes zero are set as sampling positions.
  • This fixed interval may be a length N times (or 1 / N) the wavelength ⁇ 1.
  • N is an integer excluding zero.
  • step S2 the interferogram acquisition means 16 oversamples the intensity signal of the infrared interference wave at the above detection timing.
  • FIG. 2 shows the intensity signals (I1, I2,%) Of infrared interference waves detected each time the movable mirror travels an eighth distance ( ⁇ 1 / 8) of the wavelength ⁇ 1. These are indicated by black circles on the curve of step S2 in FIG.
  • step S3 the interferogram acquisition means 16 samples the infrared interference wave at each position (D1 ′, D2 ′,%) Of the movable mirror 24 based on the wavelength ⁇ 0 of the He—Ne laser.
  • the intensity signals (I1 ′, I2 ′,%) That will be obtained are interpolated using the oversampling values (I1, I2,%) Actually detected in step S2.
  • the interferogram acquisition means 16 is movable based on the wavelength ⁇ 0 from the mirror position information from the position detection means 34, the value of the wavelength ⁇ 0 (632.8 nm), and the value of the wavelength ⁇ 1 (680 nm).
  • Each position (D1 ′, D2 ′,...) Of the mirror 24 is calculated.
  • the interferogram acquisition means 16 determines the sampling position closest to each position (D1 ′, D2 ′,%) And the sampling position closest to the second position as the oversampling position in step S2. Extracted from (D1, D2,%), And based on the intensity signals at these sampling positions, intensity signals (I1 ′, I2 ′,%) Taking these positional relationships into account are calculated.
  • the intensity signal I2 'in FIG. 2 is an interpolation value based on the oversampling values I5 and I6, and the intensity signal I3' is an interpolation value based on the oversampling values I10 and I11.
  • the interferogram data including the intensity signals (I1 ′, I2 ′,%) Of the infrared interference waves at the respective positions (D1 ′, D2 ′,%) With the wavelength ⁇ 0 as a reference is obtained. can get. These are indicated by circles on the curve of step S3 in FIG.
  • the optical path difference D is zero, as in the actual sampling positions (D1, D2,). It is set as a position at regular intervals from the position. This fixed interval is N times (or 1 / N) the wavelength ⁇ 0.
  • the pitch of the position (D1 ′, D2 ′,...) With respect to the wavelength ⁇ 0 is the position of the oversampling position (D1, D2,). It is preferable to be larger than the pitch. This is because the interpolated value in step S3 is calculated based on the oversampling value at the sampling position closer to each position with the wavelength ⁇ 0 as a reference.
  • the oversampling detection interval may be set to an interval such that the interferogram does not change abruptly during the detection interval.
  • the sampling frequency is preferably higher than the frequency of increase / decrease of the interferogram.
  • step S4 the Fourier transform means 18 performs Fourier transform on the interferogram data calculated in step S3 to calculate the spectrum data of the sample.
  • the computer may use the set value of the wavelength ⁇ 1 stored in the memory 38 without using a constant value (680 nm) as the wavelength ⁇ 1. That is, in preparation for the case where the wavelength ⁇ 1 of the semiconductor laser 30 fluctuates, the computer may use the setting value of the memory 38 updated to the value of the wavelength 1 after validation by executing the procedure for validating the wavelength ⁇ 1.
  • the computer executes the above data processing program, the interferogram at the same mirror position as that obtained when the interferogram is acquired using the He-Ne laser as the position reference laser is calculated.
  • the spectrum data measured with the spectrometer equipped with the semiconductor laser is almost the same as the spectrum measured with the spectrometer equipped with the He-Ne laser, and the spectrum comparison using a lot of accumulated standard spectrum data. Is possible.
  • ⁇ About the validation program> a program for validating the wavelength ⁇ 1 of the semiconductor laser 30 for the case where the wavelength ⁇ 1 of the semiconductor laser 30 changes with time (or changes due to environmental dependence) will be described.
  • This program refers to standard spectral data measured on a standard sample with a conventional spectroscopic device equipped with a He—Ne laser with a wavelength ⁇ 0.
  • the spectroscopic device of this embodiment may measure the standard spectral data of such a wavelength ⁇ 0 each time.
  • the spectroscopic device may store the standard spectral data of the wavelength ⁇ 0 stored in advance in the memory 38 as necessary. It is good to read.
  • the validation program causes the computer constituting the interferogram acquisition means 16 and the Fourier transform means 18 to execute spectrum measurement on the standard sample. That is, the standard sample holder 26a is set in the sample chamber (procedure S10), and the spectroscopic device performs spectrum measurement using the semiconductor laser 30 having the wavelength ⁇ 1 according to the above-described procedures S1 to S4 (procedure S11).
  • the Fourier transform means 18 stores the measurement spectrum data with the wavelength ⁇ 1 in the memory 38 (step S12).
  • the memory 38 also stores information such as the peak position of the spectrum.
  • step S13 the Fourier transform means 18 compares the spectral data of the standard sample with the wavelength ⁇ 1 measured in step S11 with the standard spectral data with the wavelength ⁇ 0 in the memory 38.
  • the computer reads the change ratio of each peak position for a plurality of peaks in the spectrum, and obtains the average value of the change ratios. For example, when the wavelength ⁇ 1 of the semiconductor laser is slightly changed to the wavelength ⁇ 1 ′, the change ratio of the peak position is represented by “ ⁇ 1 ′ / ⁇ 1”.
  • step S ⁇ b> 14 the computer recalculates the wavelength ⁇ ⁇ b> 1 of the semiconductor laser 30 based on the average value of the change ratio and overwrites and saves the value of the wavelength ⁇ ⁇ b> 1 in the memory 38.
  • the above procedure completes the validation of the laser wavelength ⁇ 1.
  • the sample holder 26 of the measurement sample is set (step S15), and the interferogram acquisition unit 16 acquires the interferogram based on the validated wavelength ⁇ 1, so that the spectroscopic device can change the wavelength ⁇ 1.
  • Spectral data that is not affected can be obtained (step S16).
  • step S12 a method of using the information on the peak position of the spectrum data of the standard sample with the wavelength ⁇ 1 stored in the memory 38 in step S12 will be described.
  • a standard sample is set (step S17), and the spectrum measurement of the standard sample with the wavelength ⁇ 1 is performed in the same manner as the spectrum measurement procedure S11 (step S18).
  • the peak position of the measured spectrum by the wavelength ⁇ 1 is compared with the peak position of the spectrum by the past wavelength ⁇ 1 stored in the memory 38. If there is a change in the peak position, it is determined that the wavelength ⁇ 1 of the semiconductor laser 30 has changed. (Procedure S19).
  • the above-described validation of the wavelength ⁇ 1 (steps S13 and S14) is executed.
  • the spectrum measurement method of this embodiment includes a procedure for interpolating the interferogram. This process may generate a value (false information) different from the true value of the interferogram, and theoretically, the S / N is deteriorated. However, the S / N level (eg, 200,000: 1) of these false information is very small compared to the S / N ratio level (eg, 50,000: 1) required for the measuring apparatus. The influence on the measurement result is very small.
  • the data processing program of this embodiment does not execute oversampling in order to realize high-speed processing.
  • the configuration of the spectroscopic device is common to the above-described embodiment.
  • the data processing program of this embodiment causes the computer constituting the interferogram acquisition unit 16 and the Fourier transform unit 18 to execute the following steps S21 to S24 in order to obtain spectral data of a sample.
  • step S21 the interferogram acquisition unit 16 first obtains position information (D1, D2,%) Of the movable mirror 24 based on the general-purpose laser having the wavelength ⁇ 1 from the position detection unit 34. get.
  • each sampling position (D1 ′, D2) of the movable mirror 24 that would be obtained when the interferogram acquisition means 16 uses the position information of the movable mirror 24 and the wavelength ⁇ 0 of the reference laser is used as a reference. ', ...) is calculated.
  • the interferogram acquisition unit 16 determines a delay time (t1, t2) determined from the timing at which the movable mirror 24 reaches each position (D1, D2,%) With the wavelength ⁇ 1 as a reference. ,... Are regarded as the sampling positions (D1 ′, D2 ′,...) Of the movable mirror 24 with the wavelength ⁇ 0 as a reference, and a sampling command signal is issued at that timing (step S23). ).
  • the position information (D1, D2,%) Based on the general-purpose laser having the wavelength ⁇ 1 is, for example, positions at regular intervals from the position of the movable mirror 24 where the optical path difference D of the interferometer 12 becomes zero.
  • This fixed interval may be a length N times (or 1 / N) the wavelength ⁇ 1.
  • the length (d1, d2,%) Obtained by multiplying the moving speed of the movable mirror 24 and the delay time (t1, t2,%) Is set to each position (D1, D2,...
  • the positions (D1 + d1, D2 + d2,%) Obtained in addition to ()) are the sampling positions (D1 ′, D2 ′,%) Of the movable mirror with reference to the wavelength ⁇ 0.
  • the moving speed of the movable mirror is fixed to a constant value (V0), so the delay time (t1, t2,%) From the length (d1, d2,). Can be calculated.
  • FIG. 4 illustrates a case where the interval between the position information (D1, D2,%) Is one half of the wavelength ⁇ 1.
  • step S22 the delay time (t1, t2,%) Is calculated based on the value of the calculated length (d1, d2,%) And the moving speed (V0).
  • step S23 the analyzer samples the intensity signal of the infrared interference wave at a timing at which the movable mirror 24 can be regarded as having reached the sampling position (D1 ', D2', ). In this way, from the intensity signal (I1 ′, I2 ′,%) Of the infrared interference wave at each sampling position (D1 ′, D2 ′,%) With reference to the wavelength ⁇ 0 of the He—Ne laser. Interferogram data is obtained.
  • step S24 the Fourier transform means 18 performs Fourier transform on the acquired interferogram data to calculate the spectrum data of the sample.
  • the data processing program of the present embodiment has the movable mirror 24 at each position (D1, D2,%) With the wavelength ⁇ 1 as a reference. It is preferable to include a step of calculating the moving speed V of the movable mirror 24 at the time of reaching. Since the method of the present embodiment includes the time measurement of the delay time, the sampling position is shifted if the constant speed of the movable mirror 24 cannot be ensured for some reason. In such a case, the position detection unit 34 may measure the interval between past zero cross points by the semiconductor laser, and the computer may calculate the speed of the movable mirror 24 and correct the next sampling position at that speed.
  • the interferogram at the same mirror position as that obtained when the interferogram is acquired using the He-Ne laser as the position reference laser is calculated.
  • the spectrum data measured with the spectrometer equipped with the semiconductor laser is almost the same as the spectrum measured with the spectrometer equipped with the He-Ne laser, and the spectrum comparison using a lot of accumulated standard spectrum data. Is possible.
  • interferogram data at a timing relatively close to the detection timing of the He—Ne laser is acquired without oversampling. As a result, the calculation load can be reduced, and reproducible data can be acquired.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

干渉計を用いて取得された赤外干渉波のインターフェログラムをフーリエ変換することによるスペクトル測定方法であって、半導体レーザーの波長λ1を基準とする可動鏡の各位置(D1,D2,・・・)での赤外干渉波の強度信号をオーバーサンプリングするステップと、He-Neレーザーの波長λ0を基準とする可動鏡の各位置(D1',D2',・・・)で赤外干渉波をサンプリングした場合に得られるであろう強度信号(I1',I2',・・・)を、前記オーバーサンプリングによって取得した強度信号(I1,I2,・・・)を用いて内挿するステップと、を含み、内挿された強度信号に基づくインターフェログラムからスペクトルを算出することによって、波長λ0を用いて測定された既存のスペクトルデータなどを有効に利用することができるスペクトル測定方法。

Description

フーリエ変換型分光装置を用いたスペクトル測定方法 関連出願
 本出願は、2016年2月4日付け出願の日本国特許出願2016-20084号の優先権を主張しており、ここに折り込まれるものである。
 本発明は、フーリエ変換型分光装置が可動鏡の位置参照用レーザーとして汎用レーザーを備えている場合におけるスペクトルの測定方法に関する。
 フーリエ変換型分光装置は、干渉計を使用して、非分散で測定光の干渉波を検出し、これをコンピュータでフーリエ変換して測定光のスペクトルデータを取得する。測定光の干渉波の形成により、測定光の全波数成分からなる干渉波の強度信号に基づいた測定光の各波数成分がフーリエ変換によって算出される。フーリエ変換分光法は高速測定に向き、赤外分光光度計では主流になっており、フーリエ変換型赤外分光光度計(FTIR)として広く用いられている(特許文献1参照)。
 この分光装置で用いる干渉計は、マイケルソン型干渉計が一般的であり、半透鏡と2枚の反射鏡(固定鏡および可動鏡)からなる。可動鏡は干渉計の光路差を可変にするもので、可動鏡の位置と光路差とは一対一の関係になる。干渉計はその光路差に応じた測定光の干渉波を発生させる。この干渉波の強度を検出することにより、横軸に光路差、縦軸に強度信号を持ったインターフェログラム(干渉曲線)が得られる。コンピュータは、インターフェログラムデータをフーリエ変換してスペクトルデータを算出する。
 干渉波を検出するタイミングは、一般的に可動鏡の位置をレーザー光で参照することにより決められる。ここでは位置参照用レーザーと呼ぶ。位置参照用レーザーがレーザー光を可動鏡に当てると、干渉計がその反射光に基づくレーザー干渉波を形成する。通常、レーザー干渉波の強度信号がゼロになるタイミングで、レーザー検出器が測定光の干渉波を検出する。つまり、検出タイミングは、位置参照用レーザーの波長λに依存する。
 一方、特許文献1のFTIRでは、ΔΣ型ADコンバーターがインターフェログラム信号をAD変換することによって、S/Nを改善する技術が開示されている。このΔΣ型ADコンバーターは、可動鏡の移動速度と非同期の基本クロックを用いて、赤外検出器からのインターフェログラム信号とレーザー検出器からのレーザー干渉波信号とを同時にAD変換する。そして、コンピュータは、レーザー干渉信号の角度変化が一定になるように、AD変換されたインターフェログラム信号を内挿することによって、可動鏡の移動に同期したインターフェログラム信号を取得する。
特開2006-125971号公報
 一般に、フーリエ変換型分光装置は、データベースなどに蓄積されたスペクトルデータと測定スペクトルとを比較して、試料成分を同定する。現在、多く蓄積されているスペクトルデータは、可動鏡の位置参照用としてHe‐Neレーザー(基準レーザーとも呼ぶ。)を用いた分光装置で測定されたものである。特許文献1の分光装置もHe‐Neレーザーを位置参照用レーザーとして具備している。
 一方、波長分解能の点でHe‐Neレーザーには劣るものの、安価であって消費電力が低いなどの理由で、He‐Neレーザーに代えて半導体レーザー(汎用レーザーとも呼ぶ。)を利用した分光装置が増えてきている。
 しかしながら、可動鏡の位置参照用として半導体レーザーを有する分光装置がスペクトル測定を実行する場合、以下の課題があった。
(1)位置参照用レーザーの波長が異なるため、測定スペクトルデータが、従来のHe‐Neレーザーを用いた分光装置で測定されたスペクトルデータに一致しない。2つのフーリエ変換型分光装置のそれぞれの位置参照用レーザーの波長が異なる場合、それぞれの分光装置で得られるスペクトルデータの同一性が十分に担保されないため、それぞれのスペクトルデータを比較するということが通用しない。従って、蓄積された多くのスペクトルデータの利用が困難になっていた。
(2)半導体レーザーの波長が経時変化した場合(または、環境依存性によって変化する場合)に備えて、該半導体レーザーの波長のバリデーション方法を確立させる必要があった。
 本発明は前記事情に鑑みなされたものであり、第1の目的は、可動鏡の位置参照用レーザーの波長が異なる場合であっても、従来から蓄積されたスペクトルデータとの比較を可能にするスペクトル測定方法を提供することである。第2の目的は、可動鏡の位置参照用レーザーの波長が経時変化した場合(または、環境依存性によって変化する場合)に備えて、位置参照用レーザーの波長のバリデーション方法を確立させることである。
 前記目的を達成するため、本発明に係る方法は、干渉計を用いて測定光のインターフェログラムを取得し、フーリエ変換によって試料のスペクトルを測定する方法であって、
 前記インターフェログラムを取得するステップは、
  前記干渉計を構成する可動鏡を一定速度で移動させる可動鏡移動ステップと、
  前記可動鏡の位置参照用レーザーとして波長λ1の汎用レーザーを使って、波長λ1を基準とする可動鏡の各位置(D1,D2,・・・)での測定光の干渉波の強度信号(I1,I2,・・・)をオーバーサンプリングするサンプリング・ステップと、
  波長λ1とは異なる波長λ0を基準とする可動鏡の各位置(D1’,D2’,・・・)で前記測定光の干渉波をサンプリングした場合に得られるであろう強度信号(I1’,I2’,・・・)を、前記オーバーサンプリングした強度信号(I1,I2,・・・)に基づいてコンピュータを用いて内挿する内挿ステップと、を含み、
 波長λ0を基準とする可動鏡の各位置(D1’,D2’,・・・)での測定光の干渉波の強度信号(I1’,I2’,・・・)からなるインターフェログラムを取得することを特徴とする。
 ここで、「波長を基準とする可動鏡の各位置」とは、干渉計の光路差がゼロになる可動鏡の位置から一定間隔毎の位置である。一定間隔とは、波長λ1のN倍(またはN分の1)の長さである。なお、Nは零を除く整数である。また、「オーバーサンプリング」とは、可動鏡の移動範囲が同じである場合に、波長λ1を基準とする位置でのサンプリング数が、波長λ0を基準とする位置でのサンプリング数よりも多いことを表す。
 前記内挿ステップは、波長λ0を基準とする可動鏡の位置(例えば、D2’)に一番近いサンプリング位置と2番目に近いサンプリング位置(例えばD5とD6)とにおいてオーバーサンプリングした各強度信号(例えばI5とI6)に基づいて、該波長λ0を基準とする可動鏡の位置における干渉波の強度信号(例えばI2’)を前記コンピュータによって算出することを含むことが好ましい。
 本発明の内挿ステップは、オーバーサンプリングした複数データの各サンプリング位置とは異なる未サンプリング位置でのデータを算出する。つまり、基準レーザー(例えば、He-Neレーザー)に基づく可動鏡の位置でのデータは、その付近にある汎用レーザー(例えば、半導体レーザー)に基づくオーバーサンプリングデータから補間して算出される。これにより、干渉計が基準レーザーを可動鏡の位置参照用レーザーとして用いてインターフェログラムの信号強度をサンプリングする場合の鏡位置と同じ鏡位置におけるインターフェログラムが算出される。この結果、本発明の方法によって算出されたインターフェログラムをフーリエ変換することにより得られるスペクトルは、基準レーザーを可動鏡の位置参照用レーザーとして備えた分光装置にて測定されるスペクトルとほぼ同一になる。
 さらに、発明者らは、汎用レーザーの波長λ1が、経時変化(または環境依存性による変化)によって、波長λ1’まで微小変化した場合に備えて、汎用レーザーの波長λ1をバリデーションする方法を以下のようにして確立させた。発明者らは、標準試料の測定スペクトルデータについて、基準レーザーを用いた従来方法で測定したデータと汎用レーザーを用いた本発明の方法で測定したデータとが、一定の関係性を有することに着目した。汎用レーザーの発振波長λ1が波長λ1’に変化する場合にも、同様に、一定の関係性があると考えた。すなわち、変化前の波長λ1によって測定された標準試料スペクトル中の或る波数を基準にした全てのピークの位置(波数)に対して、変化後の波長λ1’によって測定される標準試料のスペクトル中の或る波数を基準にした全てのピークの位置(波数)が、同一の比率で変化する。コンピュータが、汎用レーザーの発振波長が変化していないことを前提にして、変化前後の各スペクトルを算出し、2つのスペクトルを比較した場合に、このようなピークの位置の変化を認識する。その比率は、汎用レーザーの波長比(λ1’/λ1)と見なせる。そこで、本発明の方法では、コンピュータが測定スペクトルのピーク位置の変化から波長比(λ1’/λ1)を得て、汎用レーザーの波長λ1を再計算し、再計算された波長λ1の値を本発明の内挿ステップにおいて用いることにした。
 すなわち、本発明の方法は、さらに、前記汎用レーザーの波長λ1をバリデーションするバリデーション・ステップを含み、このバリデーション・ステップは、
 前記位置参照用レーザーとして波長λ0の基準レーザーを有する干渉計によって、標準試料のスペクトルを測定するステップと、
 前記位置参照用レーザーとして波長λ1の汎用レーザーを有する干渉計によって、標準試料のスペクトルを測定するステップと、
 2つのスペクトル結果を比較し、複数のピークについて、各ピーク位置の変化比率を読み取り、前記変化比率の平均値に基づいて汎用レーザーの波長λ1を算出するステップと、を備えることを特徴とする。
 さらに、発明者らは、標準レーザー若しくは汎用レーザーを用いて測定された標準試料の測定スペクトルデータのピーク位置を分光装置に記憶させておけば、以後、分光装置が、適宜、汎用レーザーを用いて標準試料のスペクトルを測定してピーク位置の変化を確認することによって、汎用レーザーの発振波長の変動の有無を確認できることに着目した。発振波長の変動が確認された場合は、分光装置が前述の波長のバリデーション方法を実行すればよい。
 すなわち、本発明の方法は、波長λ1の汎用レーザーを有する干渉計によって測定した標準試料のスペクトルのピーク位置を記憶手段に保存するステップと、
 前記保存された標準試料のスペクトルのピーク位置とその後測定した標準試料のスペクトルのピーク位置とを比較するステップと、を備え、
 2つのスペクトルのピーク位置が変化している場合に、前記バリデーション・ステップを実行することが好ましい。
 また、本発明に係る方法は、干渉計を用いて測定光のインターフェログラムを取得し、フーリエ変換によって試料のスペクトルを測定する方法であって、
 前記インターフェログラムを取得するステップは、
 前記干渉計を構成する可動鏡を一定速度で移動させる可動鏡移動ステップと、
 前記可動鏡の位置参照用レーザーとして波長λ1の汎用レーザーを使って、波長λ1とは異なる波長λ0を基準とする可動鏡の各位置(D1’,D2’,・・・)での測定光の干渉波の強度信号(I1’,I2’,・・・)をサンプリングするサンプリング・ステップと、を含み、
 波長λ0を基準とする各サンプリング位置(D1’,D2’,・・・)での測定光の干渉波の強度信号(I1’,I2’,・・・)からなるインターフェログラムを取得することを特徴とする。
 ここで、前記サンプリング・ステップでは、前記波長λ1を基準とする各位置に可動鏡が達したタイミングから前記可動鏡の位置ごとにそれぞれ定められた遅延時間が経過したタイミングにおける可動鏡の各位置を、前記波長λ0を基準とする前記各サンプリング位置(D1’,D2’,・・・)として用いることが好ましい。
 また、前記サンプリング・ステップでは、前記波長λ1を基準とする各位置に、前記可動鏡の移動速度と前記可動鏡の位置ごとにそれぞれ定められた遅延時間とを掛け合せた長さを、加えて得られる前記可動鏡の各位置を、前記波長λ0を基準とする前記各サンプリング位置(D1’,D2’,・・・)として用いることが好ましい。
 さらに、前記波長λ1を基準とする各位置(D1,D2,・・・)に達した時点ごとに前記可動鏡の移動速度を検出するステップを含み、検出した前記移動速度を用いて前記波長λ0を基準とする前記各サンプリング位置(D1’,D2’,・・・)を算出することが好ましい。
 以上の構成からなる本発明の方法によれば、
(1)フーリエ変換型分光装置が移動鏡の位置参照用レーザーとして波長λ1の汎用レーザーを有していても、この分光装置で得られるスペクトルが、基準レーザーを有する従来の分光装置で測定されたスペクトルと同一、もしくは、ほぼ同一になる。従って、データベースなど蓄積されたスペクトルデータが波長λ0の基準レーザーによって測定されたスペクトルであったとしても、波長λ1の汎用レーザーによるスペクトルと既存のスペクトルデータとの比較を引き続き行うことができるので、既存のデータベースなどを有効に利用することができる。
(2)分光装置もしくは使用者が汎用レーザーの発振波長の変動を判断しやすく、その波長のバリデーションを実施できる。分光装置がこのようなインターフェログラムの取得方法、および、波長の校正方法を実施しても、S/N比については、従来の測定データと同レベルに維持される。また、波長のバリデーションによって、汎用レーザーの発振波長を理想の値(真値)に容易に近づけることができる。
(3)分光装置が異なる分光装置間で波長の異なる汎用レーザーを有する場合、または、分光装置の汎用レーザーが波長の異なる汎用レーザーに交換された場合であっても、測定データの同一性を確保することができる。
(4)分光装置が汎用レーザーとして半導体レーザーを有しているので、従来のHe‐Neレーザーを有する分光装置と比較して、消費電力が低減し、コストが削減される。
図1は、本発明の実施形態に係るフーリエ変換型分光装置の概略構成図である。 図2は、第一実施形態に係るスペクトル測定方法を説明する図である。 図3は、前記スペクトル測定方法においてレーザー波長のバリデーション方法を説明するフローである。 図4は、第二実施形態に係るスペクトル測定方法においてサンプリング指令信号の生成方法を説明するための図である。 従来のフーリエ変換型分光法を模式的に説明するための図であり、図5Aは、He‐Neレーザーの干渉波の強度信号を示すグラフである。 図5Bは、図5Aのレーザー強度信号に基づいてサンプリングされた赤外干渉波の強度信号を示すグラフである。 図5Cは、異なる複数の波数ν1~ν3の赤外光からなる干渉波の強度信号を示すグラフである。 図5Dは、算出されたスペクトルデータを示すグラフである。
12   干渉計
14   赤外検出器
16   インターフェログラム取得手段
18   フーリエ変換手段
24   可動鏡
30   汎用レーザー
32   レーザー検出器
34   位置検出手段
38   メモリー
100  フーリエ変換型分光光度計
 以下、図面に基づき本発明の好適な実施形態について説明する。
第一実施形態
 図1に、フーリエ変換型赤外分光光度計(FTIR)100の概略構成を示す。本分光装置100は、赤外光源10と、赤外干渉波を形成する干渉計12と、赤外干渉波を試料に照射して得られた干渉波の強度信号を出力する赤外検出器14と、検出された強度信号を処理してインターフェログラムデータを取得するインターフェログラムデータ取得手段16、そのインターフェログラムデータをフーリエ変換して測定スペクトルデータを算出するフーリエ変換手段18と、を備える。通常、インターフェログラム取得手段16およびフーリエ変換手段18は、分光装置に内蔵されたマイクロコンピュータや、分光装置とは別体のパーソナルコンピュータなどで構成される。
 干渉計12は、赤外光を分割する光束分割部20、分割光をそれぞれ反射する固定鏡22、および可動鏡24を有し、異なる光路長の2光束を合成して赤外干渉波を発生させる。可動鏡24は、光束分割部20に近づく方向と遠ざかる方向の両方向に移動可能に設けられている。可動鏡の移動手段28は、例えばボイスコイルモータである。可動鏡24の移動に伴って、2光束の光路差が変わるため、赤外干渉波は変調する。赤外干渉波は、光束分割部20と赤外検出器14の間に設けられた試料ホルダー26内の試料を照射する。赤外検出器14は、試料からの赤外干渉波を受光し、その強度信号を出力する。
 干渉計12は、さらに、レーザー光による可動鏡24の位置情報を得るために、位置参照用の半導体レーザー30と、レーザー干渉波を検出するレーザー検出器32とを有する。本実施形態では干渉計12がレーザー干渉計を兼ねており、半導体レーザー30からのレーザー光(単色光)は、赤外光と同じ光路に導かれる。干渉計12は、可動鏡24の移動に伴ってレーザー干渉波も生成し、レーザー検出器32が、そのレーザー干渉波の強度信号を出力する。なお、分光装置100が干渉計12とは別体として設けられた専用のレーザー干渉計を備えていてもよい。
 図1のFTIRは、さらに、レーザー干渉波の強度信号に基づいて可動鏡24の位置情報を出力する位置検出手段34と、その位置情報に基づいて可動鏡24の速度制御、特にその等速制御を実行する可動鏡制御手段36と、半導体レーザー30の波長の設定値λ1を保存するメモリー38とを備える。位置検出手段34は、可動鏡24の移動に伴ったレーザー干渉波の強度変化をカウントすることにより、可動鏡24の位置情報を得る。その位置情報は、可動鏡制御手段36およびインターフェログラム取得手段16に送られる。インターフェログラム取得手段16は、赤外干渉波の強度信号および可動鏡24の位置情報に基づくインターフェログラム(干渉曲線)を取得する。
 試料ホルダー26は適宜、標準試料ホルダー26aに交換されるように設けられていると良い。または、干渉計12からの赤外干渉波を試料ホルダー26に導く光路が、干渉計12からの赤外干渉波を標準試料ホルダー26aに導く光路に切り換えられるように、光路切換部が設けられていても良い。そして、メモリー38は、分光装置100が測定した標準試料の標準スペクトルデータを保存するように設けられていると良い。また、メモリー38は、He‐Neレーザーを有する従来型の分光装置によって測定された標準スペクトルデータを保存するように設けられていると良い。
<従来のスペクトル測定方法について>
 ここで、従来のスペクトル測定方法について図5A~図5Dを用いて説明する。図5Aは、He‐Neレーザーの干渉波の強度信号を示す。横軸は可動鏡の位置、つまり光路差Dである。検出されたレーザー干渉波の交流成分に基づいて、その波長λ0ごとの可動鏡の各位置(D1,D2,・・・)で、サンプリングの指令信号が発生される。図5Bはインターフェログラム、つまり上記の各位置でサンプリングした赤外干渉波の強度信号(I1,I2,・・・)を示す。
 フーリエ変換分光法は、インターフェログラムデータをフーリエ変換して、図5Dのようなスペクトルデータ(λ0の曲線)を算出する手法である。ここでは、図5Cを用いてフーリエ変換の概念を模式的に説明する。
 波数ν1の赤外光からなる干渉波は、図5Cのν1の強度曲線で表される。同様に、異なる複数の波数ν2,ν3,・・・の赤外干渉波は、図5Cのν2,ν3,・・・の強度曲線で表される。図5Bのインターフェログラムは、それが波数ν1~νNの範囲の赤外光からなる干渉波の強度信号である、と考えれば、図5Cの各強度曲線を重ね合せたものと見なされる。ここで、単純化すると、光路差D2での強度曲線ν1の振幅は、その光路差D2での干渉波の強度AD2,ν1に、波数ν1の赤外光の吸光度Bν1を掛け合せた値AD2,ν1・Bν1で表される。また、同じ光路差D2での強度曲線ν2の振幅は、干渉波の強度AD2,ν2に、波数ν2の赤外光の吸光度Bν2を掛け合せた値AD2,ν2・Bν2で表される。すると、光路差D2でのインターフェログラムI2は、AD2,ν1・Bν1+AD2,ν2・Bν2+AD2,ν3・Bν3+・・・の式で表される。インターフェログラム(I1,I2,I3,・・・)は、次の連立方程式になる。
I1=AD1,ν1ν1+AD1,ν2ν2+AD1,ν3ν3+・・・
I2=AD2,ν1ν1+AD2,ν2ν2+AD2,ν3ν3+・・・ (1)
I3=AD3,ν1ν1+AD3,ν2ν2+AD3,ν3ν3+・・・
 フーリエ変換は、言わば、式(1)の連立方程式の解Bν1,Bν2,・・・を求める手法である。一般的に、フーリエ変換分光法では、スペクトルの真値を求めることは困難であり、真値に比較的近い近似解が得られるに過ぎない。従って、光路差Dの基準となる位置参照用レーザーが置き換えられた場合、具体例でいうと、He-Neレーザー(λ0=632.8nm)が半導体レーザー(λ1=680nm)に置き換えられた場合、波長λ0ではなく波長λ1を基準とする可動鏡24の各位置が赤外干渉波のサンプリング位置となるので、フーリエ変換が上記の式(1)とは異なる連立方程式を解くことになってしまう。その近似解は、例えば図5Dの破線で示すλ1の曲線になってしまう。
 このように、同じ試料であっても位置参照用レーザーの波長が変更されたならば、それぞれのスペクトルデータの同一性は十分に担保されず、スペクトルデータ同士を比較する手法が使えなかった。
 本実施形態のデータ処理プログラムは、上記の課題を解決し、位置参照用レーザーの波長が変更されたとしても、スペクトルデータの同一性を担保して、スペクトルデータの比較が可能になった。
<データ処理プログラムについて>
 データ処理プログラムは、試料のスペクトルデータを得るため、インターフェログラム取得手段16およびフーリエ変換手段18を構成するコンピュータに以下の手順S1~S4を実行させる。
 まず、手順S1(図2参照)で、インターフェログラム取得手段16は、位置検出手段34からの位置情報に基づいて、赤外干渉波の強度信号の検出タイミングを得る。検出タイミングは、半導体レーザー30の波長λ1を基準とする可動鏡24の各位置とする。例えば、干渉計12の光路差Dが零になる可動鏡24の位置から一定間隔毎の位置(D1,D2,・・・)をサンプリング位置とする。この一定間隔は、波長λ1のN倍(またはN分の一)の長さであればよい。Nは零を除く整数とする。
 次に、手順S2で、インターフェログラム取得手段16は、上記の検出タイミングで赤外干渉波の強度信号をオーバーサンプリングする。図2に、波長λ1の8分の一の距離(λ1/8)を可動鏡が進むごとに検出した赤外干渉波の強度信号(I1,I2,・・・)を示す。これらを黒丸印で図2の手順S2の曲線上に示す。
 手順S3で、インターフェログラム取得手段16は、He-Neレーザーの波長λ0を基準とする可動鏡24の各位置(D1’,D2’,・・・)で赤外干渉波をサンプリングした場合に得られるであろう強度信号(I1’,I2’,・・・)を、手順S2で実際に検出したオーバーサンプリング値(I1,I2,・・・)を用いて内挿する。ここで、インターフェログラム取得手段16は、位置検出手段34からの鏡位置情報と、波長λ0の値(632.8nm)と、波長λ1の値(680nm)とから、波長λ0を基準とする可動鏡24の各位置(D1’,D2’,・・・)を算出する。そして、内挿する処理では、インターフェログラム取得手段16が、各位置(D1’,D2’,・・・)に一番近いサンプリング位置と二番目に近いサンプリング位置を手順S2でのオーバーサンプリング位置(D1,D2,・・・)から抽出し、これらのサンプリング位置での各強度信号に基づいて、これらの位置関係を加味した強度信号(I1’,I2’,・・・)を算出する。例えば、図2中の強度信号I2’は、オーバーサンプリング値I5,I6に基づく内挿値であり、強度信号I3’は、オーバーサンプリング値I10,I11に基づく内挿値である。このようにして波長λ0を基準とする各位置(D1’,D2’,・・・)での赤外干渉波の強度信号(I1’,I2’,・・・)からなるインターフェログラムデータが得られる。これらを丸印で図2の手順S3の曲線上に示す。
 ここで、波長λ0を基準とする各位置(D1’,D2’,・・・)については、実際にサンプリングする各位置(D1,D2,・・・)と同様に、光路差Dが零になる位置から一定間隔毎の位置とする。この一定間隔は、波長λ0のN倍(またはN分の一)の長さとする。ただし、手順S3でのダウンサンプリングの実行のために、波長λ0を基準とする位置(D1’,D2’,・・・)のピッチが、オーバーサンプリングする位置(D1,D2,・・・)のピッチよりも大きくなる方が好ましい。手順S3の内挿値が、波長λ0を基準とする各位置により接近したサンプリング位置のオーバーサンプリング値に基づいて算出されるからである。
 オーバーサンプリングの検出間隔は、その検出間隔においてインターフェログラムが急激に変化しないような間隔に設定されているとよい。例えば、サンプリング周波数は、インターフェログラムの増減の周波数よりも高い方がよい。
 最後に手順S4で、フーリエ変換手段18は、手順S3で算出したインターフェログラムデータをフーリエ変換して試料のスペクトルデータを算出する。
 なお、手順S3の内挿処理において、コンピュータは波長λ1として一定の値(680nm)を用いないで、メモリー38に保存された波長λ1の設定値を用いると良い。つまり、半導体レーザー30の波長λ1が変動した場合に備えて、波長λ1をバリデーションする手順の実行によって、バリデーション後の波長1の値に更新されたメモリー38の設定値をコンピュータが用いるとよい。
 コンピュータが以上のデータ処理プログラムを実行すれば、He-Neレーザーを位置参照用レーザーとして用いてインターフェログラムを取得した場合と同じ鏡位置でのインターフェログラムを算出する。その結果、半導体レーザーを備えた分光装置で測定したスペクトルデータが、He-Neレーザーを備えた分光装置で測定されるスペクトルとほぼ同一になり、蓄積された多くの標準スペクトルデータを利用したスペクトル比較が可能になる。
<バリデーションのプログラムについて>
 さらに、半導体レーザー30の波長λ1が経時変化(または環境依存性による変化)によって変化する場合のための、半導体レーザー30の波長λ1をバリデーションするプログラムについて説明する。このプログラムは、波長λ0のHe-Neレーザーを備えた従来型の分光装置で標準試料を対象に測定した標準スペクトルデータを参照する。本実施形態の分光装置がこのような波長λ0の標準スペクトルデータをその都度測定するようにしてもよいが、予めメモリー38に保存されている波長λ0の標準スペクトルデータを必要に応じて分光装置が読み出すようにするとよい。
 図3のフローに示すように、バリデーションのプログラムは、インターフェログラム取得手段16およびフーリエ変換手段18を構成するコンピュータに、標準試料に対するスペクトル測定を実行させる。つまり、試料室に標準試料ホルダー26aを設定して(手順S10)、上記の手順S1~S4に従って、分光装置が波長λ1の半導体レーザー30を用いたスペクトル測定を実行する(手順S11)。フーリエ変換手段18は、波長λ1による測定スペクトルデータをメモリー38に保存する(手順S12)。メモリー38にはスペクトルのピーク位置等の情報も記憶される。
 次に、手順S13で、フーリエ変換手段18は、手順S11で測定された波長λ1による標準試料のスペクトルデータと、メモリー38内の波長λ0による標準スペクトルデータとを比較する。コンピュータは、スペクトル中の複数のピークについて、各ピーク位置の変化比率を読み取り、変化比率の平均値を得る。例えば、半導体レーザーの波長λ1が波長λ1’に微小変化している場合、ピーク位置の変化比率は「λ1’/λ1」で表される。手順S14では、コンピュータが、変化比率の平均値に基づいて半導体レーザー30の波長λ1を再計算し、この波長λ1の値をメモリー38に上書き保存する。
 以上の手順でレーザー波長λ1のバリデーションが完了する。以後のスペクトル測定では、測定試料の試料ホルダー26が設定され(手順S15)、インターフェログラム取得手段16がバリデーションされた波長λ1に基づくインターフェログラムを取得するので、分光装置が波長λ1の変動の影響を受けないスペクトルデータを得ることができる(手順S16)。
 ここで、手順S12でメモリー38に保存した波長λ1による標準試料のスペクトルデータのピーク位置の情報を利用する方法を説明する。手順S15,16の測定試料のスペクトル測定に先立って、まず、標準試料を設定して(手順S17)、スペクトル測手順S11と同様に波長λ1による標準試料のスペクトル測定を実行する(手順S18)。この波長λ1による測定スペクトルのピーク位置とメモリー38に保存された過去の波長λ1によるスペクトルのピーク位置とを比較して、ピーク位置の変化があれば、半導体レーザー30の波長λ1が変動したと判断する(手順S19)。波長λ1の変動が確認された場合は、前述の波長λ1のバリデーション(手順S13、S14)を実行する。
 なお、本実施形態のスペクトル測定方法はインターフェログラムを内挿処理する手順を含む。この処理によってインターフェログラムの真値とは異なる値(偽情報)が生じる可能性があり、理論上はS/Nが悪くなる。しかし、測定装置に求められているS/N比のレベル(例えば、5万:1)に対して、これらの偽情報のS/Nのレベル(例えば、20万:1)は非常に小さいため、測定結果に与える影響は非常に小さくて済む。
第二実施形態
 上記の実施形態はオーバーサンプリングの実行プログラムを含むが、本実施形態のデータ処理プログラムは高速処理を実現するためにオーバーサンプリングを実行しない。分光装置の構成については上記の実施形態と共通する。
<データ処理プログラムについて>
 本実施形態のデータ処理プログラムは、試料のスペクトルデータを得るため、インターフェログラム取得手段16およびフーリエ変換手段18を構成するコンピュータに以下の手順S21~S24を実行させる。
 まず、手順S21(図4参照)で、インターフェログラム取得手段16は、まず、位置検出手段34からの波長λ1の汎用レーザーに基づく可動鏡24の位置情報(D1,D2,・・・)を取得する。
 手順S22では、インターフェログラム取得手段16が、可動鏡24の位置情報を使って、基準レーザーの波長λ0を基準とした場合に得られるであろう可動鏡24の各サンプリング位置(D1’,D2’,・・・)を算出する。具体的には、インターフェログラム取得手段16は、波長λ1を基準とする各位置(D1,D2,・・・)に可動鏡24が達したタイミングから、それぞれ定められた遅延時間(t1,t2,・・・)が経過したタイミングを、波長λ0を基準とする可動鏡24の各サンプリング位置(D1’,D2’,・・・)として捉えて、そのタイミングでサンプリング指令信号を発する(手順S23)。
 なお、波長λ1の汎用レーザーに基づく位置情報(D1,D2,・・・)は、例えば、干渉計12の光路差Dが零になる可動鏡24の位置から一定間隔毎の位置である。この一定間隔は、波長λ1のN倍(またはN分の一)の長さであればよい。
 可動鏡24の移動速度と遅延時間(t1,t2,・・・)とを掛け合せた長さ(d1,d2,・・・)を、波長λ1を基準とする各位置(D1,D2,・・・)に加えて得られる位置(D1+d1,D2+d2,・・・)が、波長λ0を基準とする可動鏡の各サンプリング位置(D1’,D2’,・・・)になる。
 可動鏡24が等速制御されていれば、可動鏡の移動速度が一定値(V0)に定まるため、長さ(d1,d2,・・・)から遅延時間(t1,t2,・・・)を算出できる。
 図4には、位置情報(D1,D2,・・・)の間隔が波長λ1の2分の一である場合を例示する。λ0=623.8nm、λ1=680nmである場合の長さ(d1,d2,・・・)は以下の式によって表される。
 d1=λ1/2-(λ1-λ0)/2
   =340nm-23.6nm=316.4nm
 d2=d1-23.6nm=292.8nm
 d3=d2-23.6nm=269.2nm
 例えば、可動鏡24が位置D3に達したら(手順S21)、コンピュータが、そのタイミングから遅延時間t3(=d3/V0)だけ経過したタイミング(手順S22)で、位置D3’のサンプリング指令を発する(手順S23)。
 ただし、長さがd≦(λ1-λ0)/2、すなわち、d≦23.6になった場合は、次の遅延時間tが負の値になるため、コンピュータは、そのdの値によるサンプリング位置を算出するとともに、そのdにλ0/2(=316.4nm)を加えた値を新たなdとして用いて、新たなdの値による別のサンプリング位置も算出する。図4に示すように、d14=9.6nmとなった場合、コンピュータは、D14’のサンプリング位置をD14+d14の計算から求めるとともに、d15の値を用いてD15’のサンプリング位置も計算する。コンピュータは、d15をd15=9.6+316.4=326nmの式から求めて、D15’のサンプリング位置を、位置D14を基準としてD15’=D14+d15の式によって算出する。
 手順S22では、算出された長さ(d1,d2,・・・)の値と移動速度(V0)に基づいて遅延時間(t1,t2,・・・)が算出される。そして、手順S23では、可動鏡24がサンプリング位置(D1’,D2’,・・・)に達したとみなせるタイミングで、分析装置が赤外干渉波の強度信号をサンプリングする。このようにしてHe-Neレーザーの波長λ0を基準とする各サンプリング位置(D1’,D2’,・・・)での赤外干渉波の強度信号(I1’,I2’,・・・)からなるインターフェログラムデータが得られる。
 なお、位置情報(D1,D2,・・・)の間隔が波長λ1の4分の一である場合は、同様の計算によって長さ(d1,d2,・・・)が得られる。
 d1=λ1/4-(λ1-λ0)/4
   =170nm-11.8nm=158.2nm
 d2=d1-11.8nm=146.4nm
 d3=d2-11.8nm=134.6nm
 最後に手順S24で、フーリエ変換手段18は、取得したインターフェログラムデータをフーリエ変換して試料のスペクトルデータを算出する。
 ここでは、可動鏡24の移動速度を一定とみなす場合を説明したが、本実施形態のデータ処理プログラムは、波長λ1を基準とする各位置(D1,D2,・・・)に可動鏡24が達した時点での可動鏡24の移動速度Vを算出するステップを含んでいるとよい。本実施形態の方法は、遅延時間の計時を含むため、何らかの理由で、可動鏡24の定速性を確保できない場合には、サンプリング位置がずれてしまう。そのような場合は、位置検出手段34が半導体レーザーによる過去のゼロクロス点の間隔を計測して、コンピュータが可動鏡24の速度を算出し、その速度で次のサンプリング位置を補正するとよい。
 以上のデータ処理プログラムを使用すれば、He-Neレーザーを位置参照用レーザーとして用いてインターフェログラムを取得した場合と同じ鏡位置でのインターフェログラムが算出される。その結果、半導体レーザーを備えた分光装置で測定したスペクトルデータが、He-Neレーザーを備えた分光装置で測定されるスペクトルとほぼ同一になり、蓄積された多くの標準スペクトルデータを利用したスペクトル比較が可能になる。
 オーバーサンプリングを実行する場合、例えば1秒間に100データ以上のインターフェログラムデータを全てフーリエ変換するというデータ処理は、計算機等の計算資源を大量に使うことになって実用的ではない。本実施形態の方法によれば、オーバーサンプリングなしで、比較的He-Neレーザーの検出タイミングに近いタイミングでのインターフェログラムデータが取得される。その結果、計算負荷を軽くすることができ、かつ、再現性のあるデータの取得が可能になった。
 なお、第二実施形態のスペクトル測定においても、前述の実施形態の波長λ1のバリデーションを適用することができる。

Claims (8)

  1.  干渉計を用いて測定光のインターフェログラムを取得し、フーリエ変換によって試料のスペクトルを測定する方法であって、
     前記インターフェログラムを取得するステップは、
      前記干渉計を構成する可動鏡を一定速度で移動させる可動鏡移動ステップと、
      前記可動鏡の位置参照用レーザーとして波長λ1の汎用レーザーを使って、波長λ1を基準とする可動鏡の各位置(D1,D2,・・・)での測定光の干渉波の強度信号(I1,I2,・・・)をオーバーサンプリングするサンプリング・ステップと、
      波長λ1とは異なる波長λ0を基準とする可動鏡の各位置(D1’,D2’,・・・)で前記測定光の干渉波をサンプリングした場合に得られるであろう強度信号(I1’,I2’,・・・)を、前記オーバーサンプリングした強度信号(I1,I2,・・・)に基づいてコンピュータを用いて内挿する内挿ステップと、を含み、
     波長λ0を基準とする可動鏡の各位置(D1’,D2’,・・・)での測定光の干渉波の強度信号(I1’,I2’,・・・)からなるインターフェログラムを取得することを特徴とするスペクトル測定方法。
  2.  請求項1記載の方法において、前記内挿ステップは、波長λ0を基準とする可動鏡の位置(D1’,D2’,・・・)のいずれか1点に一番近いサンプリング位置と2番目に近いサンプリング位置とにおいてオーバーサンプリングした各強度信号に基づいて、該波長λ0を基準とする可動鏡の位置における干渉波の強度信号(I1’,I2’,・・・)を前記コンピュータによって算出することを含むことを特徴とするスペクトル測定方法。
  3.  請求項1または2記載の方法は、さらに、前記汎用レーザーの波長λ1をバリデーションするバリデーション・ステップを含み、
     前記バリデーション・ステップは、
      前記位置参照用レーザーとして波長λ0の基準レーザーを有する干渉計によって、標準試料のスペクトルを測定するステップと、
      前記位置参照用レーザーとして波長λ1の汎用レーザーを有する干渉計によって、標準試料のスペクトルを測定するステップと、
      2つのスペクトル結果を比較し、複数のピークについて、各ピーク位置の変化比率を読み取り、前記変化比率の平均値に基づいて汎用レーザーの波長λ1を算出するステップと、を備えることを特徴とするスペクトル測定方法。
  4.  請求項3記載の方法において、
     波長λ1の汎用レーザーを有する干渉計によって測定した標準試料のスペクトルのピーク位置を記憶手段に保存するステップと、
     前記保存された標準試料のスペクトルのピーク位置とその後測定した標準試料のスペクトルのピーク位置とを比較するステップと、を備え、
     2つのスペクトルのピーク位置が変化している場合に、前記バリデーション・ステップを実行することを特徴とするスペクトル測定方法。
  5.  干渉計を用いて測定光のインターフェログラムを取得し、フーリエ変換によって試料のスペクトルを測定する方法であって、
     前記インターフェログラムを取得するステップは、
      前記干渉計を構成する可動鏡を一定速度で移動させる可動鏡移動ステップと、
      前記可動鏡の位置参照用レーザーとして波長λ1の汎用レーザーを使って、波長λ1とは異なる波長λ0を基準とする可動鏡の各位置(D1’,D2’,・・・)での測定光の干渉波の強度信号(I1’,I2’,・・・)をサンプリングするサンプリング・ステップとを含み、
     波長λ0を基準とする各サンプリング位置(D1’,D2’,・・・)での測定光の干渉波の強度信号(I1’,I2’,・・・)からなるインターフェログラムを取得することを特徴とするスペクトル測定方法。
  6.  請求項5記載の方法において、前記サンプリング・ステップでは、
     前記波長λ1を基準とする各位置に可動鏡が達したタイミングから前記可動鏡の位置ごとにそれぞれ定められた遅延時間が経過したタイミングにおける可動鏡の各位置を、前記波長λ0を基準とする前記各サンプリング位置(D1’,D2’,・・・)として用いることを特徴とするスペクトル測定方法。
  7.  請求項5記載の方法において、前記サンプリング・ステップでは、
     前記波長λ1を基準とする各位置に、前記可動鏡の移動速度と前記可動鏡の位置ごとにそれぞれ定められた遅延時間とを掛け合せた長さを、加えて得られる前記可動鏡の各位置を、前記波長λ0を基準とする前記各サンプリング位置(D1’,D2’,・・・)として用いることを特徴とするスペクトル測定方法。
  8.  請求項7記載の方法において、さらに、前記波長λ1を基準とする各位置(D1,D2,・・・)に達した時点ごとに前記可動鏡の移動速度を検出するステップを含み、検出した前記移動速度を用いて前記波長λ0を基準とする前記各サンプリング位置(D1’,D2’,・・・)を算出することを特徴とするスペクトル測定方法。
PCT/JP2017/003726 2016-02-04 2017-02-02 フーリエ変換型分光装置を用いたスペクトル測定方法 WO2017135356A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/075,346 US10317283B2 (en) 2016-02-04 2017-02-02 Spectrum measurement method using fourier transform type spectroscopic device
EP17747507.6A EP3413021B1 (en) 2016-02-04 2017-02-02 Spectrum measurement method using fourier-transform-type spectrometer
JP2017565621A JP6457122B2 (ja) 2016-02-04 2017-02-02 フーリエ変換型分光装置を用いたスペクトル測定方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-020084 2016-02-04
JP2016020084 2016-02-04

Publications (1)

Publication Number Publication Date
WO2017135356A1 true WO2017135356A1 (ja) 2017-08-10

Family

ID=59500058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003726 WO2017135356A1 (ja) 2016-02-04 2017-02-02 フーリエ変換型分光装置を用いたスペクトル測定方法

Country Status (4)

Country Link
US (1) US10317283B2 (ja)
EP (1) EP3413021B1 (ja)
JP (1) JP6457122B2 (ja)
WO (1) WO2017135356A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019120681A (ja) * 2017-12-29 2019-07-22 パロ アルト リサーチ センター インコーポレイテッド 均一または不均一にサンプリングされたインターフェログラムを変換してスペクトルデータを生成する方法および装置
JP2019194550A (ja) * 2018-05-02 2019-11-07 株式会社島津製作所 フーリエ変換型分光光度計
CN113544491A (zh) * 2019-03-15 2021-10-22 布鲁克光学有限公司 用于求取校正量函数的方法和用于生成频率校正的高光谱图像的方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110243473B (zh) * 2019-04-01 2021-04-13 上海卫星工程研究所 干涉式高光谱仪器的光谱局部插值方法
JP6778451B1 (ja) 2020-01-10 2020-11-04 日本分光株式会社 異物分析方法、異物分析プログラムおよび異物分析装置
CN113063495B (zh) * 2021-02-25 2022-08-12 上海卫星工程研究所 傅里叶变换光谱仪的干涉图亚采样级对齐方法及系统
DE102021206973A1 (de) * 2021-07-02 2023-01-05 Bruker Optics Gmbh & Co. Kg FT-Spektrometer-Anordnung mit Zusatzdetektor zur Kalibrierung der Frequenzachse und zugehöriges Messverfahren
CN115389445B (zh) * 2022-10-27 2023-03-28 杭州泽天春来科技有限公司 傅里叶红外干涉仪的控制方法、系统及可读存储介质

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0227226A (ja) * 1988-07-18 1990-01-30 Fuji Electric Co Ltd フーリエ変換分光器のデータ処理方式
JPH063192A (ja) * 1992-06-22 1994-01-11 Hokuyo Automatic Co フーリエ分光装置における短波長領域測定のためのサンプリング用光路差の決定方法
JPH063189A (ja) * 1992-06-22 1994-01-11 Hokuyo Automatic Co フーリエ変換型分光器のサンプリング光路差変動補正方法
JPH1090065A (ja) * 1996-09-11 1998-04-10 Kurabo Ind Ltd フーリエ変換分光器のデータ処理方法及びデータ処理装置
JP2003227754A (ja) * 2002-02-04 2003-08-15 Jasco Corp 赤外画像装置における多素子検出器からのデータ取得方法
US20050073690A1 (en) * 2003-10-03 2005-04-07 Abbink Russell E. Optical spectroscopy incorporating a vertical cavity surface emitting laser (VCSEL)
JP2006125971A (ja) 2004-10-28 2006-05-18 Jasco Corp フーリエ変換分光光度計
US20060262316A1 (en) * 2005-05-20 2006-11-23 Baney Douglas M System and method for interferometric laser photoacoustic spectroscopy
JP2009103686A (ja) * 2007-10-25 2009-05-14 Mitsubishi Electric Research Laboratories Inc 干渉分光法用の装置、干渉分光法を使用した方法、干渉測定装置
WO2012056813A1 (ja) * 2010-10-28 2012-05-03 コニカミノルタホールディングス株式会社 干渉計およびフーリエ変換分光分析装置
JP2013250127A (ja) * 2012-05-31 2013-12-12 Konica Minolta Inc フーリエ変換型分光計用タイミング生成装置および該生成方法ならびにフーリエ変換型分光計および該分光方法
WO2014199888A1 (ja) * 2013-06-13 2014-12-18 コニカミノルタ株式会社 フーリエ変換型分光計および該分光方法ならびにフーリエ変換型分光計用タイミング生成装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69631530T2 (de) * 1996-10-09 2004-07-08 Perkin-Elmer Ltd., Beaconsfield Interferogrammdigitalisierung für die Fouriertransformationsspektroskopie
US20060238768A1 (en) * 2005-04-26 2006-10-26 Mks Instruments, Inc. Fourier transform infrared spectrometer
WO2007047690A1 (en) * 2005-10-14 2007-04-26 The General Hospital Corporation Spectral- and frequency- encoded fluorescence imaging
WO2009140492A2 (en) * 2008-05-16 2009-11-19 University Of Washington Transmission quantification of open path ftir spectra with temperature compensation
WO2013056726A1 (en) * 2011-10-17 2013-04-25 Foss Analytical A/S Method of compensating frequency drift in an interferometer
US9804086B2 (en) * 2014-11-13 2017-10-31 Emcee Electronics, Inc. Biodiesel detector
JP6441759B2 (ja) * 2015-07-24 2018-12-19 株式会社堀場製作所 分光分析器に用いられる光検出器の出力補正方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0227226A (ja) * 1988-07-18 1990-01-30 Fuji Electric Co Ltd フーリエ変換分光器のデータ処理方式
JPH063192A (ja) * 1992-06-22 1994-01-11 Hokuyo Automatic Co フーリエ分光装置における短波長領域測定のためのサンプリング用光路差の決定方法
JPH063189A (ja) * 1992-06-22 1994-01-11 Hokuyo Automatic Co フーリエ変換型分光器のサンプリング光路差変動補正方法
JPH1090065A (ja) * 1996-09-11 1998-04-10 Kurabo Ind Ltd フーリエ変換分光器のデータ処理方法及びデータ処理装置
JP2003227754A (ja) * 2002-02-04 2003-08-15 Jasco Corp 赤外画像装置における多素子検出器からのデータ取得方法
US20050073690A1 (en) * 2003-10-03 2005-04-07 Abbink Russell E. Optical spectroscopy incorporating a vertical cavity surface emitting laser (VCSEL)
JP2006125971A (ja) 2004-10-28 2006-05-18 Jasco Corp フーリエ変換分光光度計
US20060262316A1 (en) * 2005-05-20 2006-11-23 Baney Douglas M System and method for interferometric laser photoacoustic spectroscopy
JP2009103686A (ja) * 2007-10-25 2009-05-14 Mitsubishi Electric Research Laboratories Inc 干渉分光法用の装置、干渉分光法を使用した方法、干渉測定装置
WO2012056813A1 (ja) * 2010-10-28 2012-05-03 コニカミノルタホールディングス株式会社 干渉計およびフーリエ変換分光分析装置
JP2013250127A (ja) * 2012-05-31 2013-12-12 Konica Minolta Inc フーリエ変換型分光計用タイミング生成装置および該生成方法ならびにフーリエ変換型分光計および該分光方法
WO2014199888A1 (ja) * 2013-06-13 2014-12-18 コニカミノルタ株式会社 フーリエ変換型分光計および該分光方法ならびにフーリエ変換型分光計用タイミング生成装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3413021A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019120681A (ja) * 2017-12-29 2019-07-22 パロ アルト リサーチ センター インコーポレイテッド 均一または不均一にサンプリングされたインターフェログラムを変換してスペクトルデータを生成する方法および装置
JP7082564B2 (ja) 2017-12-29 2022-06-08 パロ アルト リサーチ センター インコーポレイテッド 均一または不均一にサンプリングされたインターフェログラムを変換してスペクトルデータを生成する方法および装置
JP2019194550A (ja) * 2018-05-02 2019-11-07 株式会社島津製作所 フーリエ変換型分光光度計
JP7006494B2 (ja) 2018-05-02 2022-01-24 株式会社島津製作所 フーリエ変換型分光光度計
CN113544491A (zh) * 2019-03-15 2021-10-22 布鲁克光学有限公司 用于求取校正量函数的方法和用于生成频率校正的高光谱图像的方法
CN113544491B (zh) * 2019-03-15 2022-11-29 布鲁克光学有限公司 用于生成样本的频率校正的高光谱图像的方法
US11994430B2 (en) 2019-03-15 2024-05-28 Bruker Optics Gmbh & Co. Kg Method for determining a correction value function and method for generating a frequency-corrected hyperspectral image

Also Published As

Publication number Publication date
US20190041268A1 (en) 2019-02-07
EP3413021A4 (en) 2019-09-18
JP6457122B2 (ja) 2019-01-23
EP3413021A1 (en) 2018-12-12
EP3413021B1 (en) 2022-09-21
JPWO2017135356A1 (ja) 2018-05-31
US10317283B2 (en) 2019-06-11

Similar Documents

Publication Publication Date Title
JP6457122B2 (ja) フーリエ変換型分光装置を用いたスペクトル測定方法
TWI465682B (zh) Film thickness measuring device and measuring method
CN109211406B (zh) 傅立叶变换红外分光光度计
Hashimoto et al. Phase-controlled Fourier-transform spectroscopy
Lee et al. Fourier-transform spectroscopy using an Er-doped fiber femtosecond laser by sweeping the pulse repetition rate
US8593637B2 (en) Spectrometric instrument
RU2569052C1 (ru) Способ компенсации дрейфа частоты в интерферометре
RU2571185C2 (ru) Способ компенсации дрейфа амплитуды в спектрометре и спектрометр, осуществляющий указанный способ
CN103822717A (zh) 一种宽波段干涉光谱分辨率增强方法及光谱仪
Kenda et al. Development, characterization and application of compact spectrometers based on MEMS with in-plane capacitive drives
CN107407601B (zh) 用于补偿由光谱仪系统产生的干涉图的时间周期扰动的光谱仪系统和方法
WO2020009150A1 (ja) 高速スキャンフーリエ変換分光装置及び分光方法
JPH1090065A (ja) フーリエ変換分光器のデータ処理方法及びデータ処理装置
CN116642850A (zh) 傅里叶变换红外分光光度计
WO2014199888A1 (ja) フーリエ変換型分光計および該分光方法ならびにフーリエ変換型分光計用タイミング生成装置
US11231271B2 (en) Interferometer system and application thereof
JP7014701B2 (ja) 光学分析装置、並びに光学分析装置に用いられる機械学習装置及びその方法
JPH0227202A (ja) 光干渉測定装置
JP2006300661A (ja) 干渉計,フーリエ分光装置
Clavero et al. Robust, precise, high-resolution Fourier transform Raman spectrometer
JP2006300664A (ja) フーリエ分光装置,測定タイミング検出方法
JP2006125971A (ja) フーリエ変換分光光度計
CN114993941B (zh) 一种免标定抗振动的吸收光谱测量方法与系统
Hoppe et al. Innovative ECDL design based on a resonant MEMS scanner for ultra-fast tuning in the MIR range
Helg et al. A novel high-resolution interference spectrometer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17747507

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017565621

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017747507

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017747507

Country of ref document: EP

Effective date: 20180904