CN113544491A - 用于求取校正量函数的方法和用于生成频率校正的高光谱图像的方法 - Google Patents

用于求取校正量函数的方法和用于生成频率校正的高光谱图像的方法 Download PDF

Info

Publication number
CN113544491A
CN113544491A CN202080019570.9A CN202080019570A CN113544491A CN 113544491 A CN113544491 A CN 113544491A CN 202080019570 A CN202080019570 A CN 202080019570A CN 113544491 A CN113544491 A CN 113544491A
Authority
CN
China
Prior art keywords
spectrum
correction
reference sample
detector
correction amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202080019570.9A
Other languages
English (en)
Other versions
CN113544491B (zh
Inventor
R·哈里格
S·吕特约翰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bruker Optics GmbH and Co KG
Original Assignee
Bruker Optik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bruker Optik GmbH filed Critical Bruker Optik GmbH
Publication of CN113544491A publication Critical patent/CN113544491A/zh
Application granted granted Critical
Publication of CN113544491B publication Critical patent/CN113544491B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/45Interferometric spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0208Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using focussing or collimating elements, e.g. lenses or mirrors; performing aberration correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/021Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using plane or convex mirrors, parallel phase plates, or particular reflectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0243Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows having a through-hole enabling the optical element to fulfil an additional optical function, e.g. a mirror or grating having a throughhole for a light collecting or light injecting optical fiber
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/45Interferometric spectrometry
    • G01J3/453Interferometric spectrometry by correlation of the amplitudes
    • G01J2003/4534Interferometer on illuminating side
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J2005/0077Imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/80Calibration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N2021/1765Method using an image detector and processing of image signal
    • G01N2021/177Detector of the video camera type
    • G01N2021/1772Array detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N2021/3595Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using FTIR

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Engineering & Computer Science (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

本发明涉及一种用于求取用于校正具有IR探测器的FTIR测量装置的校正量函数kF(x,y)的方法,所述IR探测器包括多个传感器元件,所述多个传感器元件分别位于一个位置(x,y)处,所述方法包括下述步骤:e)用IR探测器的传感器元件记录参考样本的干涉图IFGRxy;f)通过对至少四个传感器元件的参考样本的干涉图进行傅立叶变换来计算参考样本的光谱Rxy;g)通过将每个在步骤b)中计算的参考样本的光谱Rxy与参考样本的比较数据集进行比较来计算校正量kxy;h)使用在步骤c)中计算的校正量kxy确定校正量函数kF(x,y)。借助根据本发明的方法可独立于传感器元件的位置有效地校正在具有扩展的探测器的FTIR光谱仪中出现的频移。

Description

用于求取校正量函数的方法和用于生成频率校正的高光谱图 像的方法
技术领域
本发明涉及一种用于求取用于校正具有IR探测器的FTIR测量装置的校正量函数的方法。所述FTIR测量装置还包括IR源、干涉仪和样本位置,其中,IR源的光穿过干涉仪并且在离开干涉仪之后被偏转到位于成像光学系统的焦点中的样本位置。样本位置被成像到探测器上。
本发明还涉及一种用于借助具有IR探测器的FTIR测量装置生成样本的频率校正的高光谱图像的方法。
背景技术
从[3]中已知一种用于求取用于校正FTIR光谱仪的校正量的方法。
使用成像FTIR显微镜可空间分辨地对微观样本进行光谱测量,同时在样本的不同位置处记录红外光谱。生成样本的高光谱图像。为此,IR光(红外光)穿过干涉仪,在干涉仪中通过一个或多个反射镜的运动而使干涉仪臂的长度彼此改变并且由此根据红外光的波长调制红外光。调制频率在此取决于波长,可为每个波长唯一地分配一个调制频率。如此调制的红外光被引导到待检查样本上并且从样本而出的光被聚焦到红外探测器上。
红外探测器记录待测量信号I(Δx)作为两个干涉仪臂之间的路程差Δx的函数,从而生成干涉图,从中可通过傅里叶变换计算红外光谱。干涉仪反射镜彼此间的相对位置Δx的确定通常以如下方式进行:附加于红外光也通过干涉仪发送激光器的光,并且产生的激光信号由单独的激光探测器记录。通过交流耦合的激光干涉图ILAS的交零,可通过激光波长λLAS非常精确地确定反射镜彼此间的相对位置[1、3]。
如果红外探测器包括多个设置成一行或一个阵列的敏感元件(传感器元件),则可空间分辨地同时检查样本的多个区域。探测器的每个传感器元件可记录一个干涉图,然后从中可计算红外光谱。
显微镜光学器件的特征可在于有效焦距feff。这种有效焦距和平面探测器的扩展确保红外探测器的不同传感器元件(像素)记录来自干涉仪的不同角度的光。
已知:不平行于光轴穿过干涉仪的射线在两个干涉仪臂之间经历的路程差小于平行于光轴延伸的射线[1]、[2]。因此,与平行于光轴穿过干涉仪的射线的干涉图相比,不平行于光轴穿过干涉仪的射线的干涉图被拉伸并且波长因此经历较低的调制频率并且所产生的光谱作为频率的函数因此被压缩。吸收带因此似乎偏移到较小的波数(频率)。
由于探测器的每个传感器元件(像素)记录具有不同角度的辐射,因此根据传感器元件在探测器上的位置,光谱被不同程度地压缩并且吸收带具有不同程度的偏移。
即使在具有单元件探测器的FTIR光谱仪中,吸收带也可发生偏移,例如如果调整使得主要是以小角度穿过干涉仪或朝参考激光轴线倾斜的辐射到达探测器的话。从[3]可知,通过下述方式校正由此产生的偏移,即简单地将激光波数νLAS的值改变适当的量以校正光谱中的频率轴。激光波数(或激光波长)决定了傅立叶变换之后为光谱创建的频率栅格。
为了在具有平面探测器的FTIR光谱仪中将带位置至少大致偏移到正确的范围内,已知使用对所有传感器元件相同的恒定压缩系数。该方法相应于刚刚描述的根据[3]的用于单元件探测器的方法并且因此仅对一个像素进行良好的校正。但不能由此对所有传感器元件进行精确的校正。
发明内容
本发明的任务在于提出一种用于求取校正量函数的方法,借助该校正量函数可独立于进行检测的传感器元件的位置有效地校正在具有扩展的探测器的FTIR光谱仪中出现的频移;并且本发明的任务在于提出一种用于生成频率校正的高光谱图像的方法。
根据本发明,所述任务通过根据权利要求1所述的用于求取校正量函数的方法和根据权利要求10所述的用于生成频率校正的高光谱图像的方法来解决。
在根据本发明的方法中,使用具有多个传感器元件的IR探测器,所述多个传感器元件分别位于一个位置(x,y)处。
根据本发明的用于求取校正量函数的方法包括下述步骤:
a)用IR探测器的传感器元件记录参考样本的干涉图IFGRxy
b)通过对至少四个传感器元件的参考样本的干涉图IFGRxy进行傅立叶变换来计算参考样本的光谱Rxy
c)通过将每个在步骤b)中计算的参考样本的光谱Rxy与参考样本的比较数据集进行比较来计算校正量kxy
d)使用在步骤c)中计算的校正量kxy确定校正量函数kF(x,y)。
因此,根据本发明,单独评估各个传感器元件的光谱并且与比较数据集(例如文献中用表格列出的吸收峰的带位置)相关地计算校正。校正量函数kF(x,y)包括计算出的校正量kxy的整体。由此可考虑每个像素的情况(尤其是位置)并且对每个像素实现最佳校正。
在根据本发明的用于求取校正量函数的方法的第一种变型方案中,所述比较数据集包括参考样本的选定的吸收峰P的目标位置vL。步骤c)中对校正量kxy的计算通过与参考样本的光谱Rxy中的吸收峰P的实际位置vxy的比较来进行。例如通过寻找绝对最大值、通过具有重心的统计学、评估或高斯峰的拟合来确定吸收峰在光谱中的位置。
在该第一种变型方案中,所述校正量kxy可通过将目标位置vL与实际位置vxy相减或相除来求取,在此适用
kxy=vxy-vL或kxy=vxy/vL
在根据本发明的用于求取校正量函数的方法的第二种变型方案中,所述比较数据集包括具有参考样本的多个吸收峰的模拟光谱Ssim。步骤c)中对校正量kxy的计算通过将在步骤b)中计算的参考样本的光谱Rxy与模拟光谱Ssim进行比较来进行。在该变型方案中,可同时将多个特征吸收带纳入评估。
在该第二种变型方案中,所述校正量kxy优选通过最大化在模拟光谱Ssim(v)和偏移了kxy的光谱Rxy(v-kxy)之间的或在模拟光谱Ssim(v)和通过变化kxy以1/kxy拉伸或压缩的光谱Rxy(v/kxy)之间的相关性来求取。测量的光谱在频率轴上迭代地拉伸,直到与模拟光谱的相关性最大。
为了最小化校正量函数中的噪声,有利的是,使用分析模型来建立用于计算校正量函数kF(x,y)的方程组。
所述校正量函数kF(x,y)例如可如下得出
Figure BDA0003251373830000041
其中cy、cx、feff和kc是用于使校正量函数kF(x,y)适应计算的校正量kxy的参数。
作为其替代方案,所述校正量函数kF(x,y)可如下得出
kF(x,y)=a*(x2+y2)+b*x+c*y+d
其中a、b、c、d是用于使校正量函数kF(x,y)适应计算的校正量kxy的参数。
对于这两个分析模型,优选通过最小化误差函数Σxy(kF(x,y)–kxy)2使根据分析模型的校正量函数kF(x,y)适应在步骤c)中计算的校正量kxy
优选地,分析模型所需的参数通过针对至少四个传感器元件建立具有在步骤c)中求取的校正量kxy的方程并通过借助补偿计算求解所得方程组来求取。因此,由上述分析模型产生的、具有四个未知数的方程组可求解。优选地,针对部分地设置在IR探测器边缘上的且部分地设置在IR探测器中心附近的传感器元件执行步骤c)。尤其是可针对所有传感器元件执行步骤c)。
本发明还涉及一种用于借助具有IR探测器的FTIR测量装置生成样本的频率校正的高光谱图像的方法,所述IR探测器包括多个传感器元件,其中,该方法对于具有IR探测器的位置(x,y)的每个传感器元件包括:
-借助传感器元件记录具有等距扫描栅格axy的干涉图IFGPxy
-对干涉图进行傅里叶变换以求取具有频率轴的光谱Sxy(v)。
根据本发明,用如上所述求取的校正量函数kF(x,y)校正每个传感器元件的光谱Sxy(v)。
特定于传感器元件的校正量的确定特定于设备地进行。因此,对于相同类型的不同FTIR测量装置进行单独的校正量确定。优选地,对于每个FTIR测量装置的特定于传感器元件的校正量的确定每天到每月和/或在对设备做出改变之后进行,尤其是在调整被改变的情况下。
对光谱Sxy(v)进行校正有多种可能性,一方面是关于校正量函数的求取,另一方面是关于在高光谱图像的记录过程内的校正的时间点。
根据本发明的用于生成频率校正的高光谱图像的方法的变型方案I规定,所述校正量函数kF(x,y)通过拉伸或压缩在步骤b)中计算的参考样本的光谱Rxy(使用光谱的选定的区域求取校正量函数)或通过将参考样本的选定的吸收峰P的目标位置vL和实际位置vxy相除(使用选定的吸收峰求取校正量函数)来求取,并且样本的光谱Sxy(v)的每个光谱点(vn,In)被校正为(vn/kF(x,y),In),其中In表示样本的光谱Sxy(v)中的第n个光谱点的强度。
在根据本发明的用于生成频率校正的高光谱图像的方法的变型方案II中,所述校正量函数kF(x,y)通过移动在步骤b)中计算的参考样本的光谱Rxy(使用光谱的选定的区域求取校正量函数)或通过将目标位置vL和实际位置vxy相减(使用选定的吸收峰求取校正量函数)来求取,并且样本的光谱Sxy(v)的每个光谱点(vn,In)被校正为(vn-kF(x,y),In)。
在前两种变型方案中,校正是在傅立叶变换之后进行的,而在下面描述的第三种和第四种变型方案中,校正在傅立叶变换之前或期间进行:
根据本发明的用于生成频率校正的高光谱图像的方法的变型方案III规定,所述校正量函数kF(x,y)通过拉伸或压缩在步骤b)中计算的参考样本的光谱Rxy或通过将选定的吸收峰的目标位置vL和实际位置vxy相除来求取,并且用axy=a0/kF(x,y)的扫描栅格(干涉图中两个扫描点之间的距离)记录干涉图IFGPxy并且随后通过对校正的干涉图的傅立叶变换生成样本的光谱Sxy(v),其中a0在计算频率轴的值时用作扫描栅格的值。因此,可在记录测量数据时通过调整用于记录测量数据的扫描栅格axy或通过将用固定扫描频率记录的干涉图插入到所需的(取决于像素的)支撑点来进行校正。然后将扫描栅格a0特定于传感器元件地放大到值a0/kF(x,y)。但在求取频率轴时,值a0在计算中用于所有传感器元件。
根据本发明的用于生成频率校正的高光谱图像的方法的变型方案IV规定,所述校正量函数kF(x,y)通过拉伸或压缩在步骤b)中计算的参考样本的光谱Rxy或通过将选定的吸收峰的目标位置vL和实际位置νxy相除来求取。用axy=a0的扫描栅格记录干涉图IFGPxy并且随后通过对干涉图的傅立叶变换生成样本的光谱Sxy(ν),其中a0*kF(x,y)在计算频率轴的值时用作扫描栅格axy的值。因此,在记录测量数据之后在计算频率轴的值时通过调整干涉图的扫描栅格的值来进行校正。kxy<1的传感器元件的干涉图在空间域中被拉伸,因此它们用与像素无关的扫描栅格a0以比光轴上的像素的干涉图(kxy=1)更高的频率进行扫描。为了获得相同的光谱分辨率,可能必须记录更多的干涉图点,以保持干涉图的总长度。
仅当校正量函数kF(x,y)通过压缩/拉伸限定时,即当校正量kF(x,y)无量纲时,通过干涉图(变型方案III和IV)的校正才有效。如果校正量kF(x,y)通过差值限定,则利用该校正量kF(x,y)不能求取通过干涉图的校正。
优选地,FTIR测量装置是IR显微镜。为了求取样本区域的高光谱图像,借助干涉仪生成调制的红外辐射,借助显微镜光学器件以调制的辐射照射样本并借助探测器探测由样本反射或透射的调制的辐射。
附图说明
本发明的其它优点由说明书和附图给出。上面提到的且下面进一步说明的特征根据本发明同样可分别本身单独地或以任意组合多个使用。所显示和描述的实施方式不能理解为穷尽性叙述,而是相反地具有用于描述本发明的示例性特征。附图如下:
图1示出用于在反射中FTIR测量的FTIR显微镜的结构。
图2示出从干涉仪以不同角度射出的并照射到IR探测器上的IR射线的走向。
图3示出根据本发明的用于求取校正量函数kF(xy)的方法的基本方法步骤。
图4以空间分辨的方式示出对于探测器的不同传感器元件位置(x,y)测量的参考样本的示例性选定的吸收峰的带位置。
图5以空间分辨的方式示出对于探测器的不同传感器元件位置(x,y)计算的校正量kxy
图6以空间分辨的方式示出校正量函数kF(x,y),其在步骤d)中借助在步骤c)中计算的校正量kxy和分析模型对于探测器的不同传感器元件位置(x,y)求取得到。
图7以空间分辨的方式示出图6的校正量函数kF(x,y)与步骤c)中对于探测器的不同传感器元件位置(x,y)计算的图5的校正量kxy之间的差异。
图8示出图7的校正量函数kF(x,y)随IR探测器的像素数变化的曲线。
图9示出图5的校正量kxy的值随IR探测器像素数变化的曲线。
图10示出图表,在该图表中示出在有校正和无校正时选定的吸收峰随IR探测器的像素数变化的波数精度。
图11示出借助传感器元件测量的参考样本(含有水蒸气和CO2的空气)的光谱。
图12示出图11所示的光谱Rxy(ν)的经过对数化、基线校正和归一化的局部区域(水蒸气的吸收线)。
图13示出水蒸气的模拟吸收光谱Ssim(v)。
图14示出图表,在该图表中图12和图13的光谱Rxy(v)和Ssim(v)被绘制在一起。
图15示出通过校正量kxy修正的图12的光谱Rxy(v/νL)与图13的模拟光谱Ssim(ν)的随校正量kxy变化的相关性。
图16示出模拟光谱Ssim(ν)与以kxy=0.9973099修正的测量光谱的比较。
图17示出根据本发明的用于生成频率校正的高光谱图像的方法的基本方法步骤。
图18示出根据本发明的用于生成频率校正的高光谱图像的方法的变型方案I和II的方法步骤。
图19示出根据本发明的用于生成频率校正的高光谱图像的方法的变型方案III的方法步骤。
图20示出根据本发明的用于生成频率校正的高光谱图像的方法的变型方案IV的方法步骤。
具体实施方式
图1示出在反射布置结构中的FTIR显微镜。IR源1的红外光被反射镜2捕获、准直并偏转到(修正的)迈克尔逊干涉仪3中。此处光击中分束器3a,该分束器透射一部分辐射并允许其到固定反射镜3b,反射另一部分辐射并将其偏转至可运动反射镜3c。在反射镜3b和3c上反射的光随后再次在分束器3a处叠加并离开干涉仪3。由干涉仪3调制的红外光离开干涉仪3并被引导到显微镜光学器件4中。在那里其通过不同的反射镜4a被偏转到分束器或半反射镜4b并从那里被引导到物镜4d(聚光镜)中,其照射位于样本位置5处的微观样本。样本位置5处的样本与调制的红外辐射相互作用并反射一部分辐射。反射的辐射随后被物镜4c捕获并聚焦到红外探测器6上。在到达红外探测器6的途中,辐射经过半反射镜或分束器4b。
FTIR显微镜也可在透射中进行。透射FTIR显微镜(未示出)包括另一个物镜,其用于将来自干涉仪3的光偏转到样本上,而物镜4c用于将从样本透射的光聚焦到红外探测器上。
物镜4c在红外探测器6的传感器上生成样本平面5的图像。如果红外探测器包括多个设置成一行或一个阵列的敏感元件,则可空间分辨地同时检查样本的多个区域。探测器6的每个元件可记录干涉图,然后从其可计算红外光谱。因此,探测器6的每个像素都记录样本的空间分辨的光谱。这种平面探测器6在实践中可具有不同的实施方式。除了在其中小探测器元件设置成行或阵列的探测器外,还使用所谓的焦平面阵列,在其中以类似于CCD相机的方式读取红外敏感的像素。
显微镜光学器件4一方面确保来自干涉仪3的准直辐射照射样本,另一方面确保借助调制的辐射在探测器6的传感器元件上形成样本的图像。
图2示意性示出具有有效焦距feff的显微镜光学器件4,其将来自干涉仪3的准直辐射聚焦到具有传感器元件7的平面探测器6上。在此来自干涉仪3的、准直且平行于光轴延伸的辐射到达中心传感器元件(在光轴上)。相反,距光轴延伸通过的平面探测器6的中心有一定距离的传感器元件(像素)看到如下的来自干涉仪3的准直辐射,其在干涉仪3内以倾斜于光轴的角度α延伸。在此适用的关系是:tanα=d/feff
由于探测器6的每个传感器元件7(像素)记录具有不同角度α的辐射,因此通过不同的传感器元件记录的光谱根据传感器元件7在探测器6上的位置被不同程度地压缩,光谱中的吸收带具有不同程度的偏移。
根据本发明,对于每个传感器元件单独评估参考样本的由不同传感器元件7记录的光谱或由不同传感器元件7记录的部分光谱并且对每个传感器元件7进行单独的校正。为此所需的根据本发明的方法的步骤在图3中示出:首先,借助IR探测器的传感器元件为参考样本(这里:水蒸气)记录干涉图IFGRxy。通过干涉图的傅立叶变换计算光谱Rxy。可以为所有传感器元件、但至少为四个传感器元件计算光谱。通过将在步骤b)中计算的参考样本的光谱Rxy与参考样本的比较数据集进行比较来求取校正量kxy。例如可从专业文献或通过模拟获得比较数据集。计算出的校正量kxy用于确定校正量函数kF(x,y),该校正量函数根据像素位置(x,y)给出校正量kxy的值。当根据本发明将计算的光谱与比较数据集进行比较时,不必使用整个测量光谱;相反,计算的光谱的一部分、如特定的光谱范围或单个吸收峰可用于比较。下面示出两种变型方案,借助它们可求取相应的校正量函数kF(x,y)。
变型方案1:使用选定的吸收峰求取校正量函数
图4示出使用FTIR显微镜测量选定的吸收峰的位置(此处:目标位置在1576.130cm-1处的水蒸气吸收带)的结果,在此使用具有32x32像素的大探测器阵列(FPA)的探测器。针对每个光谱并且因此针对探测器的每个传感器元件评估吸收带的位置。图4示出编码为灰度级的、作为探测器行和探测器列的函数的、该水蒸气带的位置(实际位置)。可以看出,大约在第30行和第7列处选定的带的位置最大。从那里围绕该最大值形成同心环,且带位置的值减小(吸收峰向较小的波数移动)。这与理论是一致的,因为随着像素与光轴的距离增加,角度α增加并且光谱被压缩得越多,在本示例中光轴没有精确位于传感器的中心。
通过将选定的吸收峰的比较值、例如从文献中已知的选定吸收峰的目标位置与从测量光谱求取的相应吸收峰的实际位置进行比较(通过减法或除法),计算用于相应传感器元件的校正量kxy
图5示出这种比较的结果(作为探测器行和探测器列的函数的校正量kxy),其中测量的峰位置除以比较值νL(kxy=vxy/vL)。
在图9中示出作为像素位置/像素数的函数的校正量kxy。可以看出,借助参考样本确定的校正量kxy是有噪声的。这是因为确定水蒸气的带位置的各个光谱也具有一定的噪声。这种噪声会影响带位置的确定精度。缺点在于:校正量kxy中的噪声会转移到所有用这个校正量kxy校正的后续测量中。如果可一同考虑关于频率轴压缩原因的其它知识,则可获得更好的结果。这可通过使用分析模型来完成,如下所述:已经确定,与平行于光轴的辐射相比,以角度α穿过干涉仪的辐射在两个干涉仪臂之间的光学路程差Δ更小:
Δ=2L cosα (1)
由于干涉仪的调制频率降低了系数cosα,测量的选定吸收峰的频率ν‘也与真实频率ν偏离了系数cosα。
ν‘=vcosα (2)
利用下式,探测器6上坐标为x和y的每个传感器元件记录以角度α(x,y)穿过干涉仪的辐射:
tanα(x,y)=sqrt((x-cx)2+(y-cy)2)/feff (3)
在此光轴在坐标(cx,cy)处与探测器6的传感器相交。
结合方程2和3,测量的带位置v‘=vxy因此可描述为探测器6上的传感器元件(像素)的位置的函数。cx和cy在此是光轴与探测器相交的坐标,νc是在该位置上测量的带位置并且feff是显微镜光学器件的有效焦距。
Figure BDA0003251373830000111
校正量如下产生:
Figure BDA0003251373830000112
Figure BDA0003251373830000113
对于小角度适用:arctanx≈x和cosx≈1–x2/2。因此,必须找到尽可能最好地描述测量数据的如下形式的二次函数:
Figure BDA0003251373830000114
对于坐标为(x,y)n和校正量为kn的n个像素中的每一个像素可建立上述形式的方程。所有n个方程然后可用矩阵形式表示:
Figure BDA0003251373830000115
Figure BDA0003251373830000121
这个方程组有n个方程(如32x32)和四个未知数。所以它是过度确定的。最佳优化求解(最小二乘拟合)是:
Figure BDA0003251373830000122
为了求解,因此只需要关于矩阵乘法、转置矩阵的形成和逆矩阵的形成的知识。可例如通过带有行列式的克拉默法则形成逆矩阵,从结果a'、b'、c'、d'中可计算希望的参数cx、cy、kc和a。
Figure BDA0003251373830000123
Figure BDA0003251373830000124
Figure BDA0003251373830000125
Figure BDA0003251373830000126
图6和8示例性示出通过上述模型针对在vL=1576.130cm-1处的参考吸收峰的峰位置P计算的校正量函数kF(x,y)。求解由分析模型产生的方程组得到:
cx=5.12346
cy=31.9599
kc=0.9999918157
a=4.20110015E-8
产生无噪声的校正量函数kF(x,y)。
用分析模型计算的校正量函数kF(x,y)与从测量数据计算的校正量kxy之间的差异在图7中示出
图10示出在没有频率校正和具有所描述的频率校正的情况下在1576.130cm-1处用成像FTIR显微镜测量的波数精度或频率精度的比较。在图10中绘出作为像素数(传感器元件数)的函数的带位置与文献值(1576.130cm-1)的偏差。可以清楚地看到,具有校正的波数精度比没有校正的波数精度好一个数量级。
变型方案2:使用光谱的选定区域求取校正量函数
代替选定的峰值,由各个传感器元件测量的参考样本的光谱的完整光谱或选定的频率范围也可用于计算校正量函数。图11示出含有水蒸气和CO2的空气的参考样本的这种光谱。图12示出图11所示光谱的部分区域,即水蒸气的吸收线。图12所示的光谱经过对数化、基线校正和归一化,在此原则上也可省却归一化。
如图13所示,水蒸气的模拟吸收光谱用作用于求取校正量kxy的比较数据集。图13所示的模拟光谱借助HITRAN(高分辨率透射分子吸收数据库)模拟。在图14中,将两个光谱(测量光谱和模拟光谱的选定的部分区域)绘制在一起用于比较。可以清楚地看到,各光谱彼此偏移。
现在,通过将光谱点(vn,In)的每个频率值vn除以在位置(x,y)处的传感器元件的校正量kxy来迭代地校正测量光谱的频率轴,从而改变光谱点(vn/kxy,In)。
为此,进行校正量kxy的迭代变化并且为每个传感器元件计算用kxy修正的光谱与模拟光谱的相关性。图15示出图14中所示光谱随校正量kxy变化的相应相关性。在所示示例中对于kxy=0.9973099产生最大相关性。
图16示出模拟光谱与用求取的校正值kxy=0.9973099修正的测量光谱的比较。可以看出(与图14相反)模拟光谱的峰与校正的测量光谱的峰重合。
根据本发明,求取的校正量函数用于校正借助FTIR测量装置的IR探测器的不同传感器元件测量的样本光谱,以获得样本的频率校正的高光谱图像(图17)。为了求取高光谱图像,首先对于红外探测器的每个传感器元件借助传感器元件记录具有等距扫描栅格axy的干涉图IFGPxy。通过干涉图IFGPxy的傅立叶变换求取具有频率轴的光谱Sxy(ν)。根据本发明,每个传感器元件的光谱Sxy(ν)用校正量函数kF(x,y)校正。
在此可在计算的光谱中、即在傅立叶变换之后(如图18所示的变型方案I和II)进行校正,或在记录和随后的傅立叶变换期间(如图19所示的变型方案III和如图20所示的变型方案IV)进行校正:
通过用相应的校正量拉伸每个光谱的频率轴,即每个频率或波数乘以相应的系数(变型方案I),可在频率轴中校正每个传感器元件的各个光谱。这首先确保各个传感器元件的光谱中的频率栅格不再相同。但可通过可能的插值使光谱恢复到相同的频率栅格。
在变型方案II中,光谱相对于频率轴偏移相应的校正量kxy
在变型方案III中,在记录干涉图时已经考虑校正量kxy,其方式是,对于预期频率轴压缩的传感器元件,干涉图用栅格axy=a0/kF(x,y)来扫描,该栅格与理论上用位于光轴上的传感器元件进行测量所需的扫描栅格a0相比被拉伸。通过傅立叶变换计算光谱Sxy的强度值In。然后为计算的强度值In确定相关的频率:νn=n/(N*a0)。在此a0用作扫描栅格的值。该操作方式确保所有传感器元件的光谱都经过频率校正并且也具有相同的频率栅格。具有Δν=1/(N*a0)的等距频率栅格扩展到从0到(N/2-1)*Δν范围内的所有光谱。在此N表示每个干涉图中记录的点数[4]。
在变型方案IV中,干涉图是用扫描栅格a0记录的。校正是通过单独计算每个光谱Sxy的频率轴来完成的,因此对每个光谱来说产生从0到(N/2-1)*Δνxy的等距频率栅格且Δνxy=1/(N*a0*kF(x,y))。
在所有变型方案中获得高光谱图像,其中考虑了不同传感器元件相对于FTIR测量装置的光轴的定位的影响。
文献列表
[1]Robert John Bell,
入门级傅里叶变换光谱,
学术出版社,1972
[2]E.V.Lowenstein
傅立叶光谱:简介,阿斯彭傅里叶光谱学国际会议。
1970,p.3,AFCRL-71-0019,5Jan.1971,Spec.Rep.No.114
[3]Peter R.Griffith,James A.de Haseth
傅里叶变换红外光谱法
化学分析第83卷,第32-39页,
[4]Werner Herres和Joern Gronzolz,了解FTIR数据处理附图标记列表
1 IR源
2 反射镜
3 干涉仪
3a 分束器
3b、3c 反射镜
4 显微镜光学器件
4a 反射镜
4b 半反射镜
5 样本位置
6 IR探测器
7 IR探测器的传感器元件
(x,y) IR探测器的传感器元件的位置
kxy 在位置(x,y)处的传感器元件的校正量
kF(x,y) 校正量函数
vxy 光谱中选定的吸收峰P的实际位置
νL 光谱中选定的吸收峰P的目标位置
Rxy 由在位置(x,y)处的传感器元件测量的参考样本的光谱
Ssim 参考样本的模拟光谱
Sxy(v) 由在位置(x,y)处的传感器元件测量的样本的光谱
IFGPxy 由在位置(x,y)处的传感器元件测量的、具有等距扫描栅
格axy的样本的干涉图
axy 用于借助在位置(x,y)处的传感器元件测量样本的干涉图的扫描栅格
a0 基本扫描栅格;优选选择为使得对于轴向平行的射线整个光谱位于从0到vmax的光谱范围内
vmax 可用特定扫描栅格记录的最大频率
Figure BDA0003251373830000161
(vn,In)样本的光谱Sxy(v)内的光谱点
In 样本的光谱Sxy(v)内第n个光谱点的强度(在频率位置vn处)
N 干涉图中记录的点数

Claims (15)

1.用于求取用于校正具有IR探测器(6)的FTIR测量装置的校正量函数kF(x,y)的方法,所述IR探测器(6)包括多个传感器元件(7),所述多个传感器元件分别位于一个位置(x,y)处,其中,所述方法包括下述步骤:
a)用IR探测器(6)的传感器元件(7)记录参考样本的干涉图IFGRxy
b)通过对至少四个传感器元件(7)的参考样本的干涉图进行傅立叶变换来计算参考样本的光谱Rxy
c)通过将每个在步骤b)中计算的参考样本的光谱Rxy与参考样本的比较数据集进行比较来计算校正量kxy
d)使用在步骤c)中计算的校正量kxy确定校正量函数kF(x,y)。
2.根据权利要求1所述的方法,其特征在于,所述比较数据集包括参考样本的选定的吸收峰的目标位置vL,并且在步骤c)中对校正量kxy的计算通过与参考样本的光谱Rxy中的吸收峰P的实际位置vxy的比较来进行。
3.根据权利要求2所述的方法,其特征在于,所述校正量kxy通过将目标位置vL与实际位置vxy相减或相除来求取,在此适用
kxy=vxy-vL或kxy=vxy/vL
4.根据权利要求1所述的方法,其特征在于,所述比较数据集包括具有参考样本的多个吸收峰的模拟光谱Ssim,并且在步骤c)中对校正量kxy的计算通过将步骤b)中计算的参考样本的光谱Rxy与模拟光谱Ssim进行比较来进行。
5.根据权利要求4所述的方法,其特征在于,所述校正量kxy通过最大化在模拟光谱Ssim(v)和偏移了kxy的光谱Rxy(v-kxy)之间的或在模拟光谱Ssim(v)和通过变化kxy以1/kxy拉伸或压缩的光谱Rxy(v/kxy)之间的相关性来求取。
6.根据权利要求1至5中任一项所述的方法,其特征在于,所述校正量函数kF(x,y)如下得出
Figure FDA0003251373820000021
其中cy、cx、feff和kc是用于使校正量函数kF(x,y)适应计算的校正量kxy的参数。
7.根据权利要求1至5中任一项所述的方法,其特征在于,所述校正量函数kF(x,y)如下得出
kF(x,y)=a*(x2+y2)+b*x+c*y+d
其中a、b、c、d是用于使校正量函数kF(x,y)适应计算的校正量kxy的参数。
8.根据权利要求6或7所述的方法,其特征在于,通过最小化误差函数Σxy(kF(x,y)–kxy)2使校正量函数kF(x,y)适应计算的校正量kxy
9.根据权利要求6至7中任一项所述的方法,其特征在于,模型所需的参数通过针对至少四个传感器元件(7)建立具有在步骤c)中求取的校正量kxy的方程并通过借助补偿计算求解由此所得方程组来求取。
10.用于借助具有IR探测器(6)的FTIR测量装置生成样本的频率校正的高光谱图像的方法,所述IR探测器包括多个传感器元件(7),其中,该方法对于具有IR探测器(6)的位置(x,y)的每个传感器元件(7)包括:
-借助传感器元件(7)记录具有等距扫描栅格axy的干涉图IFGPxy
-对干涉图进行傅里叶变换以求取具有频率轴的光谱Sxy(v);
其特征在于,
用根据前述权利要求中任一项求取的校正量函数kF(x,y)校正每个传感器元件(7)的光谱Sxy(v)。
11.根据权利要求10所述的方法,其特征在于,所述校正量函数kF(x,y)通过拉伸或压缩在b)中计算的参考样本的光谱Rxy或通过将参考样本的选定的吸收峰P的目标位置vL和实际位置vxy相除来求取,并且样本的光谱Sxy(v)的每个光谱点(vn,In)被校正为(vn/kF(x,y),In)。
12.根据权利要求10所述的方法,其特征在于,所述校正量函数kF(x,y)通过移动在步骤b)中计算的参考样本的光谱Rxy或通过将目标位置vL和实际位置vxy相减来求取,并且光谱Sxy(v)的每个光谱点(vn,In)被校正为(vn-kF(x,y),In)。
13.根据权利要求10所述的方法,其特征在于,所述校正量函数kF(x,y)通过拉伸或压缩在步骤b)中计算的参考样本的光谱Rxy或通过将目标位置vL和实际位置vxy相除来求取,并且用axy=a0/kF(x,y)的扫描栅格来记录干涉图IFGPxy并且随后通过对校正的干涉图的傅立叶变换来生成样本的光谱,其中a0在计算频率轴的值时用作扫描栅格的值。
14.根据权利要求10所述的方法,其特征在于,所述校正量函数kF(x,y)通过拉伸或压缩在步骤b)中计算的参考样本的光谱Rxy或通过将目标位置vL和实际位置vxy相除来求取,并且用axy=a0的扫描栅格来记录干涉图IFGPxy并且随后通过对干涉图的傅立叶变换来生成样本的光谱,其中a0*kF(x,y)在计算频率轴的值时用作扫描栅格的值。
15.根据前述权利要求中任一项所述的方法,其特征在于,所述FTIR测量装置是IR显微镜。
CN202080019570.9A 2019-03-15 2020-03-04 用于生成样本的频率校正的高光谱图像的方法 Active CN113544491B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102019203562.0A DE102019203562B4 (de) 2019-03-15 2019-03-15 Verfahren zur Ermittlung einer Korrekturgrößenfunktion und Verfahren zur Erzeugung eines frequenzkorrigierten Hyperspektralbildes
DE102019203562.0 2019-03-15
PCT/EP2020/055652 WO2020187567A1 (de) 2019-03-15 2020-03-04 VERFAHREN ZUR ERMITTLUNG EINER KORREKTURGRÖßENFUNKTION UND VERFAHREN ZUR ERZEUGUNG EINES FREQUENZKORRIGIERTEN HYPERSPEKTRALBILDES

Publications (2)

Publication Number Publication Date
CN113544491A true CN113544491A (zh) 2021-10-22
CN113544491B CN113544491B (zh) 2022-11-29

Family

ID=69743248

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080019570.9A Active CN113544491B (zh) 2019-03-15 2020-03-04 用于生成样本的频率校正的高光谱图像的方法

Country Status (4)

Country Link
US (1) US11994430B2 (zh)
CN (1) CN113544491B (zh)
DE (1) DE102019203562B4 (zh)
WO (1) WO2020187567A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019211665B4 (de) 2019-08-02 2024-02-22 Bruker Optics Gmbh & Co. Kg Verfahren zur Ermittlung eines Gesamtspektrums einer Probe und Verfahren zur Aufnahme eines Gesamtspektrums einer Probe mittels eines Fourier-Transform-Spektrometers

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5790250A (en) * 1996-11-04 1998-08-04 Ail Systems, Inc. Apparatus and method for real-time spectral alignment for open-path fourier transform infrared spectrometers
US5933792A (en) * 1995-02-09 1999-08-03 Foss Electric A/S Method of standardizing a spectrometer
CN101084419A (zh) * 2004-12-21 2007-12-05 福斯分析公司 校准光谱仪的方法
CN103323114A (zh) * 2013-05-30 2013-09-25 湖北久之洋红外系统股份有限公司 一种傅里叶变换红外成像光谱仪快速光谱定标校正方法
CN104729712A (zh) * 2015-03-30 2015-06-24 中国资源卫星应用中心 一种星载大气探测傅里叶变换光谱仪数据预处理方法
WO2017135356A1 (ja) * 2016-02-04 2017-08-10 日本分光株式会社 フーリエ変換型分光装置を用いたスペクトル測定方法
CN107290057A (zh) * 2017-07-13 2017-10-24 中北大学 一种弹光调制傅里叶变换光谱的定标方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6260997B1 (en) * 1997-10-28 2001-07-17 Michael Claybourn Method and apparatus for high spatial resolution spectroscopic microscopy
IL149016A0 (en) 2002-04-07 2004-03-28 Green Vision Systems Ltd Green Method and device for real time high speed high resolution spectral imaging
CA2566799C (en) 2004-05-14 2019-02-12 Chemometec A/S A method and a system for the assessment of samples
WO2010064276A1 (ja) * 2008-12-02 2010-06-10 株式会社島津製作所 分光光度計
US9442014B2 (en) * 2011-04-05 2016-09-13 Konica Minolta, Inc. Fourier transform spectrometer and fourier transform spectroscopic method
BR112014009046B1 (pt) * 2011-10-17 2020-10-13 Foss Analytical A/S método para compensar o desvio de frequência de uma fonte de energia de referência, e instrumento de espectrômetro
WO2016124970A1 (en) 2015-02-02 2016-08-11 Foss Analytical A/S A spectrometer system and a method for compensating for time periodic perturbations of an interferogram generated by the spectrometer system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5933792A (en) * 1995-02-09 1999-08-03 Foss Electric A/S Method of standardizing a spectrometer
US5790250A (en) * 1996-11-04 1998-08-04 Ail Systems, Inc. Apparatus and method for real-time spectral alignment for open-path fourier transform infrared spectrometers
CN101084419A (zh) * 2004-12-21 2007-12-05 福斯分析公司 校准光谱仪的方法
CN103323114A (zh) * 2013-05-30 2013-09-25 湖北久之洋红外系统股份有限公司 一种傅里叶变换红外成像光谱仪快速光谱定标校正方法
CN104729712A (zh) * 2015-03-30 2015-06-24 中国资源卫星应用中心 一种星载大气探测傅里叶变换光谱仪数据预处理方法
WO2017135356A1 (ja) * 2016-02-04 2017-08-10 日本分光株式会社 フーリエ変換型分光装置を用いたスペクトル測定方法
CN107290057A (zh) * 2017-07-13 2017-10-24 中北大学 一种弹光调制傅里叶变换光谱的定标方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VINCENT FARLEY 等: "Radiometric Calibration Stability of the FIRST: a Longwave Infrared Hyperspectral Imaging Sensor", 《PROCEEDINGS OF SPIE - THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING》 *

Also Published As

Publication number Publication date
DE102019203562A1 (de) 2020-09-17
US11994430B2 (en) 2024-05-28
CN113544491B (zh) 2022-11-29
WO2020187567A1 (de) 2020-09-24
US20210404879A1 (en) 2021-12-30
DE102019203562B4 (de) 2022-11-03

Similar Documents

Publication Publication Date Title
US6680778B2 (en) Gas leak detector
US20180188110A1 (en) Fabry-perot spectrometer apparatus and methods
US10066990B2 (en) Spatially variable filter systems and methods
US6141100A (en) Imaging ATR spectrometer
US5777736A (en) High etendue imaging fourier transform spectrometer
US7787132B2 (en) Method and arrangement for a rapid and robust chromatic confocal 3D measurement technique
US5627639A (en) Coded aperture imaging spectrometer
US8154731B2 (en) Method and a system for the assessment of samples
US8203715B2 (en) Knowledge based spectrometer
KR20190052158A (ko) 반도체 디바이스 제조 중 분광 측정의 촉진
CN108801972A (zh) 一种基于数字微镜器件的傅里叶光谱仪
US20180238735A1 (en) Spatially variable light source and spatially variable detector systems and methods
JP2022165355A (ja) 撮像装置
US9279724B2 (en) Imaging spectrometer with extended resolution
CN113544491B (zh) 用于生成样本的频率校正的高光谱图像的方法
Zadnik et al. Calibration procedures and measurements for the COMPASS hyperspectral imager
CN111033195B (zh) 光谱仪中的噪声抑制
JP3908960B2 (ja) 赤外画像装置における多素子検出器からのデータ取得方法
Pelletier et al. New developments in planar array infrared spectroscopy
CN113125341B (zh) 基于多光谱成像技术的气体遥测方法和装置
US8259297B1 (en) Scanning focal length metrology
Kendziora et al. Snapshot spectroscopy for stand-off detection of target chemicals using broadband infrared lasers
JP3294918B2 (ja) 画像のスペクトル解析の方法および装置
US11428628B2 (en) Method and apparatus for multi-color discrete frequency infrared spectroscopic imaging
Snel et al. Efficient stray light characterisation: a white light interferometry-based method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant