WO2017135257A1 - 電子部品の実装装置と実装方法、およびパッケージ部品の製造方法 - Google Patents

電子部品の実装装置と実装方法、およびパッケージ部品の製造方法 Download PDF

Info

Publication number
WO2017135257A1
WO2017135257A1 PCT/JP2017/003439 JP2017003439W WO2017135257A1 WO 2017135257 A1 WO2017135257 A1 WO 2017135257A1 JP 2017003439 W JP2017003439 W JP 2017003439W WO 2017135257 A1 WO2017135257 A1 WO 2017135257A1
Authority
WO
WIPO (PCT)
Prior art keywords
mounting
support substrate
stage
semiconductor chip
electronic component
Prior art date
Application number
PCT/JP2017/003439
Other languages
English (en)
French (fr)
Inventor
正規 橋本
琢也 井田
Original Assignee
芝浦メカトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 芝浦メカトロニクス株式会社 filed Critical 芝浦メカトロニクス株式会社
Priority to KR1020187016144A priority Critical patent/KR102080214B1/ko
Priority to KR1020197024243A priority patent/KR102196105B1/ko
Priority to JP2017565564A priority patent/JP6692376B2/ja
Publication of WO2017135257A1 publication Critical patent/WO2017135257A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67144Apparatus for mounting on conductive members, e.g. leadframes or conductors on insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67259Position monitoring, e.g. misposition detection or presence detection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/67712Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations the substrate being handled substantially vertically
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/67721Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations the substrates to be conveyed not being semiconductor wafers or large planar substrates, e.g. chips, lead frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components
    • H05K13/0404Pick-and-place heads or apparatus, e.g. with jaws
    • H05K13/0413Pick-and-place heads or apparatus, e.g. with jaws with orientation of the component while holding it; Drive mechanisms for gripping tools, e.g. lifting, lowering or turning of gripping tools

Definitions

  • Embodiments described herein relate generally to an electronic component mounting apparatus and method, and a package component manufacturing method.
  • WLP wafer level package
  • WLP a fan-in wafer level package in which a rewiring layer including an I / O terminal of a semiconductor package is formed on a semiconductor chip so as not to protrude an area on a surface on which an electrode pad of the semiconductor chip is formed.
  • FI-WLP Fan in-WLP
  • FO-WLP fan-out wafer level package
  • FO-WLP fan out-WLP
  • MCP multi-chip package
  • multiple types of electronic components such as semiconductor chips such as RAM, flash memory, and CPU, diodes, and capacitors are mounted in one package. Because of the attention.
  • the MCP is one in which a plurality of types of electronic components are mounted in one package.
  • a shift in the mounting position of each electronic component mounted in the same package affects the electrical characteristics of the package, and thus high positional accuracy is required for mounting each electronic component.
  • the alignment mark for position recognition is provided in each mounting region on the interposer substrate. Mounting with high positioning accuracy is realized by applying a method of positioning and mounting in the mounting area (hereinafter referred to as a local recognition method).
  • a plurality of semiconductor chips are mounted on a support substrate in a matrix with a gap, and then the gaps between the semiconductor chips are sealed with resin to integrate the semiconductor chips.
  • a pseudo wafer shaped like a wafer formed by a semiconductor manufacturing process is formed.
  • a rewiring layer for providing I / O terminals is formed on the pseudo wafer.
  • the support substrate is peeled off and removed.
  • an MCP is manufactured by FO-WLP, there is no image-recognizable pattern that can be used for position recognition for each mounting region on which a semiconductor chip is mounted on the support substrate. It is impractical to apply a local recognition method as it has been done for.
  • the entire position of the support substrate is recognized by recognizing the alignment mark indicating the outer position of the support substrate and the position of the entire substrate, and each mounting on the support substrate is relied on the overall position of the support substrate.
  • a method of mounting a semiconductor chip in the region (hereinafter referred to as a global recognition method) is applied. Further, when the semiconductor chip having the standard electrode pad diameter (20 ⁇ m) and the formation pitch (35 ⁇ m) is considered, the displacement of the mounting position of the semiconductor chip in the MCP is formed by the terminal of the semiconductor chip and the redistribution layer. In order to secure a contact area with a terminal to be connected and avoid contact with an adjacent terminal, it is desired to suppress the contact area to ⁇ 5 ⁇ m or less.
  • a mounting device for mounting a semiconductor chip on a substrate having an alignment mark for each mounting region has been set for the global recognition method and used as it is in the FO-WLP manufacturing process.
  • a mounting error exceeding ⁇ 5 ⁇ m occurs, and it has been impossible to mount the semiconductor chip with high accuracy on the support substrate in which the alignment mark is not provided for each mounting region.
  • a mounting apparatus used in the manufacturing process of FO-WLP is required to shorten the mounting time of the semiconductor chip. That is, the process of forming the redistribution layer on the pseudo wafer is normally performed collectively on one pseudo wafer, whereas the process of mounting the semiconductor chip on the support substrate is performed one semiconductor chip at a time. . Considering these processing times, the semiconductor chip mounting process requires more time than the rewiring layer forming process, and therefore it is required to shorten the semiconductor chip mounting time. If only the mounting time is shortened, it is conceivable to apply a mounting apparatus having a plurality of mounting heads. However, simply applying a plurality of mounting heads further reduces the mounting accuracy of the semiconductor chip due to the influence of movement errors that occur for each mounting head. As described above, the mounting apparatus used in the FO-WLP manufacturing process is required to achieve both improvement in mounting accuracy of electronic components such as semiconductor chips and reduction in mounting time.
  • the problem to be solved by the present invention is to provide an electronic component such as a semiconductor chip in each mounting area with high accuracy and efficiency even in a support substrate in which a pattern such as a position detection mark is not formed for each mounting area. It is an object of the present invention to provide an electronic component mounting apparatus and mounting method that can be mounted well, and a package component manufacturing method to which such a mounting method is applied.
  • the electronic component mounting apparatus includes a stage on which a support substrate having a plurality of mounting regions on which electronic components are mounted, and the plurality of mounting regions are sequentially positioned at a fixed mounting position.
  • a stage unit including a stage moving mechanism for moving the stage; first and second mounting heads each holding the electronic component and mounting the electronic component on the mounting region; and the first holding the electronic component.
  • a mounting unit that includes a mounting head moving mechanism that alternately moves the first and second mounting heads to the mounting position; and a first recognition unit that recognizes the overall position of the support substrate placed on the stage; A second recognition unit for recognizing the position of the electronic component held by the first or second mounting head, and a movement position error of the stage by the stage movement mechanism.
  • the position data of the support substrate recognized by the first recognition unit Based on the storage unit that stores correction data to be corrected, the position data of the support substrate recognized by the first recognition unit, the position data of the electronic component recognized by the second recognition unit, and the correction data. And a control unit for controlling movement of the stage and the first and second mounting heads.
  • An electronic component mounting method acquires a moving position error of a stage on which a support substrate having a plurality of mounting regions on which electronic components are mounted is acquired, and correction data for correcting the moving position error is stored in a storage unit And storing the support substrate on the stage, recognizing the entire position of the support substrate placed on the stage, and the position recognition step of the support substrate.
  • the package component manufacturing method includes a step of mounting an electronic component in each of the plurality of mounting regions on a support substrate having a plurality of mounting regions, and the electronic components mounted in the plurality of mounting regions in a lump. Forming a pseudo wafer by sealing and forming a package component by forming a rewiring layer on the electronic component of the pseudo wafer.
  • the electronic component mounting step in the package component manufacturing method of the embodiment includes a step of acquiring a movement position error of a stage on which the support substrate is placed, and storing correction data for correcting the movement position error in a storage unit. And a step of recognizing the entire position of the support substrate placed on the stage and a position of the support substrate obtained by the position recognition step of the support substrate.
  • FIG. 1 It is a top view which shows the mounting apparatus of embodiment. It is a front view which shows the mounting apparatus of embodiment. It is a right view which shows the mounting apparatus of embodiment. It is a top view which shows a part of mounting apparatus of embodiment by a dashed-two dotted line, Comprising: It is a figure for demonstrating the carrying in / out state of a support substrate. It is a front view which omits and shows a part of mounting device of an embodiment, and is a figure for explaining a position recognition state of electronic parts. It is a block diagram which shows the mounting apparatus of embodiment. It is a top view which shows the wafer ring which supplies a semiconductor chip to the mounting apparatus of embodiment. FIG.
  • FIG. 7B is a cross-sectional view of the wafer ring along line XX in FIG. 7A. It is a figure which shows the preparation process of the calibration process of the board
  • the drawings are schematic, and the relationship between the thickness and the planar dimensions, the ratio of the thickness of each part, and the like may differ from the actual ones.
  • the term indicating the up and down direction in the description indicates the relative direction when the mounting surface of the electronic component of the support substrate described later is up unless otherwise specified, and the term indicating the left and right direction is particularly When there is no description, the direction based on the front view of FIG. 2 is shown.
  • FIG. 1 is a plan view showing a configuration of an electronic component mounting apparatus according to an embodiment
  • FIG. 2 is a front view of the mounting apparatus shown in FIG. 1
  • FIG. 3 is a right side view of the mounting apparatus shown in FIG. 1 and 2, among the transfer units 40A and 40B arranged on the left and right of the mounting apparatus 1 and the mounting units 50A and 50B arranged on the left and right, two transfer units 40A and 50A on the left side are provided. It is indicated by a dotted line, and the transfer part 40B and the mounting part 50B on the right side are indicated by solid lines.
  • FIG. 4 is a plan view similar to FIG.
  • FIG. 5 is a diagram for explaining the state of the recognition camera, omitting illustration of the left transfer portion 40A and the mounting portion 50A in the same front view as FIG.
  • FIG. 6 is a block diagram illustrating a configuration of the mounting apparatus according to the embodiment.
  • 7A and 7B are views showing wafer ring for supplying a semiconductor chip as an electronic component.
  • the left-right direction with respect to the mounting apparatus 1 is the X direction
  • the front-rear direction is the Y direction
  • the up-down direction is the Z direction.
  • the mounting apparatus 1 shown in FIGS. 1 to 6 includes a component supply unit 10 that supplies electronic components such as a semiconductor chip t, a stage unit 20 that includes a stage 21 on which a support substrate W is placed, and a stage 21.
  • the substrate transport unit 30 that carries in and out the support substrate W, the pair of transfer units 40 that takes out the semiconductor chips t from the component supply unit 10, and the semiconductor chip t that is taken out by the pair of transfer units 40 are received on the stage 21.
  • a pair of mounting parts 50 to be mounted on the support substrate W placed thereon and a control part 60 for controlling the operation of each part are provided.
  • the component supply unit 10 detachably holds a wafer ring 11 (FIGS. 7A and 7B) for holding a resin sheet S to which a semiconductor wafer T separated for each semiconductor chip t is attached, and a wafer ring 11.
  • the wafer ring holder 12 that can be moved in the XY direction by an XY moving mechanism (not shown), the first camera 13 that images the semiconductor chip t stuck on the wafer ring 11, and the semiconductor chip t by the transfer unit 40.
  • a push-up mechanism (not shown) for pushing up the semiconductor chip t to be taken out from below the wafer ring 11.
  • the push-up mechanism is fixedly provided at the take-out position of the semiconductor chip t by the transfer unit 40.
  • Each semiconductor chip t on the wafer ring 11 is sequentially positioned at the take-out position by the wafer ring holder 12.
  • the first camera 13 is disposed immediately above the take-out position, and is used for capturing an image of the semiconductor chip t positioned at the take-out position and recognizing the chip position.
  • the component supply unit 10 further includes a wafer ring 11 exchange device (not shown).
  • the exchange device includes a storage portion (a plurality of groove portions for storing the wafer ring 11 in the vertical direction, also referred to as a magazine) provided on the front side of the mounting device 1 and a wafer ring transport portion.
  • the exchange device supplies an unused wafer ring 11 on the wafer ring holder 12, stores the wafer ring 11 in which the semiconductor chip t has been removed in the storage unit, and supplies a new wafer ring 11 to the wafer ring holder 12. To do.
  • the electronic component mounted on the support substrate W is not limited to one type of semiconductor chip t, and may be a plurality of types of semiconductor chips, or a semiconductor chip and a diode or a capacitor.
  • the mounting apparatus 1 according to the embodiment is preferably used when an MCP is manufactured by mounting a plurality of types of electronic components including a semiconductor chip, a diode, a capacitor, and the like on a support substrate W.
  • Examples of the configuration of the MCP include those provided with a plurality of types of semiconductor chips, those provided with one type of semiconductor chip and diodes, capacitors, and the like, and those provided with a plurality of types of semiconductor chips and diodes, capacitors, and the like.
  • the component supply unit 10 is not limited to the chip supply mechanism using the wafer ring 11 to which the separated semiconductor wafer T is attached.
  • a chip supply mechanism using a tape feeder or a tray can be applied to the component supply unit 10.
  • the tape feeder supplies one semiconductor chip t accommodated in each pocket of a carrier tape (also referred to as an embossed carrier tape) in which concave (embossed) pockets are continuously formed on a tape-shaped resin sheet.
  • the carrier tape is stored in a state where a pocket containing the semiconductor chip t is covered with a cover tape from above and wound around a reel.
  • the carrier tape is fed out from the reel, and the pockets are sequentially positioned at the take-out positions of the semiconductor chips t while peeling the cover tape.
  • the semiconductor chip t When such a tape feeder is used, the semiconductor chip t may be alternately picked up by the left and right transfer units 40A and 40B from one tape feeder, or two tape feeders are arranged in parallel and left The semiconductor chip t may be picked up from the left tape feeder by the transfer unit 40A, and the semiconductor chip t may be picked up from the right tape feeder by the right transfer unit 40B. Further, a plurality of types of tape feeders accommodating different types of semiconductor chips t can be provided, and a plurality of types of semiconductor chips t can be selectively supplied. Such a configuration is effective when a plurality of types of semiconductor chips t are mounted on one support substrate W.
  • both the supply of the semiconductor chip t by the wafer ring 11 and the supply of the semiconductor chip t by the tape feeder may be provided.
  • the tape feeder for the left transfer unit 40A is arranged on the left side of the wafer ring holder 12, and the tape feeder for the right transfer unit 40B is arranged on the right side.
  • An XY moving device is provided in each of the transfer units 40A and 40B, and the transfer units 40A and 40B are transferred to a take-out position for taking out the semiconductor chip t from the wafer ring 11 and a take-out position for taking out the semiconductor chip from the tape feeder.
  • the nozzle 44 may be configured to be movable.
  • the stage unit 20 includes a stage 21 on which a support substrate W having a plurality of mounting areas is placed, and an XY movement mechanism (not shown) that moves the stage 21 in the XY directions.
  • the XY moving mechanism moves the stage 21 so that each mounting region of the support substrate W placed on the stage 21 is sequentially positioned at a fixed mounting position described in detail later.
  • the stage 21 is configured so that the mounted support substrate W can be sucked and held by a suction suction mechanism (not shown).
  • a second camera 22 for imaging the support substrate W is disposed above the stage 21, a second camera 22 for imaging the support substrate W is disposed.
  • the second camera 22, for example, captures a global mark provided on the support substrate W, recognizes the entire position of the support substrate W, and functions as a first recognition unit.
  • the overall position of the support substrate W may be recognized by imaging the outer shape of the support substrate W with the second camera 22.
  • the support substrate W placed on the stage 21 is a substrate used for forming a pseudo wafer applied at the time of manufacturing FO-WLP, and is made of a glass substrate, a silicon substrate, a metal substrate such as stainless steel, or the like.
  • the pseudo wafer is a state in which electronic parts such as a plurality of separated semiconductor chips are arranged in a plane and are molded into a single plate by resin sealing between the electronic parts. Therefore, the shape of the support substrate W used for forming the pseudo wafer is not limited to a circle, and may be a quadrangle, other polygons, an ellipse, or the like, and the shape is not particularly limited. Absent.
  • the support substrate W is preferably a substrate used when manufacturing an MCP by the FO-WLP process as described above, that is, a substrate on which a plurality of electronic components such as semiconductor chips and capacitors are mounted in each mounting region.
  • the support substrate W has a plurality of mounting areas on which electronic components such as the semiconductor chip t are mounted. However, the plurality of mounting areas are virtually set on the support substrate W, and no marks, patterns, or the like indicating the mounting areas are formed.
  • the support substrate W may include a global recognition alignment mark indicating the position of the entire substrate, but does not include a local recognition alignment mark indicating the position of each mounting region.
  • the global recognition method is a method of mounting electronic components on a plurality of mounting regions on a substrate by detecting the position of the substrate once when mounting electronic components on a plurality of mounting regions of a support substrate. Say that.
  • the local recognition method refers to a method of detecting the position of the mounting region of the electronic component every time the electronic component is mounted when the electronic component is mounted on each of the plurality of mounting regions on the support substrate.
  • the substrate transport unit 30 includes a carry-in conveyor 31, a carry-out conveyor 32, a first delivery unit 33 that delivers the support substrate W between the carry-in conveyor 31 and the stage 21, and the stage 21 and the carry-out conveyor 32.
  • a second delivery part 34 that delivers the support substrate W, and a guide part that is provided from the placement position of the carry-in conveyor 31 to the placement position of the carry-out conveyor 32 and movably supports the first and second delivery parts 33 and 34. 35.
  • the first and second transfer portions 33 and 34 are configured to be individually movable along the guide portion 35 by timing belts (both not shown) driven by a rotary motor.
  • the driving of the transfer units 33 and 34 is not limited to the timing belt, and may be performed by another driving device such as a linear motor.
  • the 1st and 2nd delivery parts 33 and 34 have the same structure, The horizontal part provided in the movable parts 33a and 34a which move along the guide part 35, and the movable parts 33a and 34a so that a vertical movement was possible. Arms 33b and 34b, and four suction nozzles 33c and 34c provided so as to suck and hold the support substrate W from above on the horizontal arms 33b and 34b are provided. The suction nozzles 33c and 34c are fixed to the horizontal arms 33b and 34b so that a blank portion where the semiconductor chip t on the outer edge portion of the support substrate W is not mounted can be sucked.
  • the pair of transfer units 40 are arranged in a state where the two transfer units 40A and 40B are horizontally reversed, and the two transfer units 40A and 40B have the same configuration except that they are horizontally reversed. Have.
  • the configuration of the right transfer unit 40B will be described with reference to FIGS. 1, 2, and 3.
  • the transfer unit 40B includes an elevating device 41, an arm body 42 supported by the elevating device 41 so as to be movable up and down, a reversing mechanism 43 provided at a tip portion of the arm body 42, and an adsorption provided in the reversing mechanism 43.
  • the lifting device 41 includes a rotation motor 45 and moves the arm body 42 up and down via a ball screw mechanism (not shown).
  • the reversing mechanism 43 is fixed to the side surface on the front side of the apparatus at the front end portion of the arm body 42, and a rotation driving portion 46 provided with a rotation shaft extending in the Y direction passing through the arm body 42, and a rotation shaft of the rotation driving portion 46 And a reversing arm 47 connected to each other.
  • the reversing arm 47 is reversed 180 degrees along a trajectory that draws an arc on the upper side between a horizontal state in which the tip end portion is directed leftward of the apparatus and a horizontal state in which the distal end portion is directed rightward.
  • the suction nozzle 44 is attached to the reversing arm 47 so that the suction surface for vacuum-sucking the semiconductor chip t faces downward in a state where the reversing arm 47 is in a horizontal state facing leftward.
  • the left transfer part 40A also has the same configuration except that the arrangement of each part is reversed left and right.
  • the left and right transfer units 40A and 40B are positioned so that the suction surface of the suction nozzle 44 is directly above (the take-out position) of the push-up mechanism with the reversing arm 47 rotated so that the suction surface of the suction nozzle 44 faces downward. Are arranged in a positional relationship. For this reason, if the suction nozzles 44 of both transfer parts 40A and 40B are reversed so that they are simultaneously positioned at the take-out position, the suction nozzles 44 (reverse arms 47) collide with each other. Therefore, the suction nozzle 44 is controlled so that the state where the suction surface is inverted upward is set as a standby state, and is alternately moved to the take-out position from this standby state.
  • the pair of mounting parts 50 are arranged in a state where two mounting parts 50A and 50B having the same configuration are reversed left and right, like the pair of transfer parts 40.
  • the configuration of the right mounting part 50B will be described with reference to FIGS. 1, 2, and 3.
  • the mounting portion 50B includes a support frame 51 having a gate shape in a side view, an X-direction moving block 52 supported on the support frame 51 so as to be movable along the X direction, and a left side surface of the X-direction moving block 52.
  • a Y-direction moving device 53 provided; a movable body provided on the Y-direction moving device 53 so as to be movable in the Y direction; and a mounting head 55 provided on the movable body so as to be movable in the vertical direction.
  • a mounting tool 56 having a holding surface for the semiconductor chip t on the lower surface is provided.
  • the mounting tool 56 can be exchanged according to the type (particularly size) of the semiconductor chip t.
  • the mounting unit 50B may include an autochanger for the mounting tool 56.
  • a metal material such as aluminum is used for the frame material of the mounting portion 50.
  • a metal material such as aluminum is used for the frame material of the mounting portion 50.
  • the moving position of the mounting head 55 may be shifted due to thermal expansion of aluminum or the like due to heat generated by the drive unit.
  • the main body of the X-direction moving block 52 and the Y-direction moving device 53 is preferably made of a composite material of aluminum and ceramics.
  • the composite material of aluminum and ceramic include a composite material of aluminum and silicon carbide (SiC). According to such a composite material, for example, the thermal expansion coefficient can be reduced to about 60% as compared with aluminum.
  • the thermal expansion amount of the frame material accompanying the operation of the apparatus may be measured in advance, and this thermal expansion amount may be added to the correction data of the mounting head 55.
  • the correction data by thermal expansion of the frame material of the mounting unit 50 is acquired as follows, for example. First, a target (not shown) for checking the position of the mounting tool 56 is provided in the vicinity of the mounting tool 56 of the mounting head 55, and the position of the target positioned at the receiving position of the semiconductor chip t is a third camera to be described later. Recognize at 57. Next, the mounting head 55 is moved to the mounting position, and the position of the target at this time is recognized by the second camera 22.
  • Such target position recognition is performed again after the mounting head 55 is moved from the receiving position to the mounting position a predetermined number of times.
  • the displacement amount of the mounting head 55 due to the thermal expansion of the frame material accompanying the operation of the apparatus is acquired.
  • the correction data based on the positional deviation amount of the mounting head 55 is taken into account when correcting the position of the mounting head 55 described later.
  • the X-direction moving block 52 is mounted on the support frame 51 via an X-direction guide member 52a, and can be moved in the X direction by a ball screw mechanism (not shown) driven by a motor.
  • the Y-direction moving device 53 includes a Y-direction guide member 53a that supports the movable body 54 so as to be movable in the Y direction, and a ball screw mechanism (not shown) driven by a motor, and moves the movable body 54 in the Y-axis direction. It can be moved.
  • the mounting portion 50B includes a moving device that moves the mounting head 55 in the vertical direction (Z direction).
  • linear motion guides and cross roller guides are known as vertical movement devices (movement guide means), and any of these may be used.
  • the cross roller guide is used as the vertical guide means, the reproducibility of the horizontal position when it is repeatedly lowered to the same height position is higher than when the LM guide is used.
  • the mounting head 55 includes a correction mechanism (not shown) for the rotational direction ( ⁇ direction).
  • the left mounting part 50A has the same configuration except that the arrangement of each part is reversed left and right.
  • the mounting unit 50B receives the semiconductor chip t taken out from the component supply unit 10 by the transfer unit 40B from the suction nozzle 44, and mounts the received semiconductor chip t on the support substrate W placed on the stage 21.
  • the semiconductor chip t taken out from the component supply unit 10 by the transfer unit 40A is received from the suction nozzle 44, and the received semiconductor chip t is placed on the support substrate W placed on the stage 21.
  • the mounting position where the mounting tool 56 mounts the semiconductor chip t on the support substrate W on the stage 21 is set to a fixed position. For this reason, the stage 21 is controlled to move so that each mounting area on the support substrate W is sequentially positioned at the mounting position.
  • the fixed position is, for example, the center of the movable range of the stage 21 in the XY directions.
  • the above-described second camera 22 is disposed immediately above the mounting position, for example.
  • FIG. 1 shows a state in which the stage 21 is positioned at a loading / unloading position where the substrate transport unit 30 loads / unloads the support substrate W, so that the stage 21 moves from the center of the movable range to the rear side of the apparatus. It exists in a slightly shifted position.
  • the mounting position is not only the position where the mounting tool 56 of the right mounting part 50B mounts the semiconductor chip t on the support substrate W, but also the same for both the left mounting part 50A and the right mounting part 50B. It is a fixed position. That is, the position where the semiconductor chip t is mounted on the support substrate W by the left mounting portion 50A is the same as the position where the semiconductor chip t is mounted on the support substrate W by the right mounting portion 50B.
  • the semiconductor chips t are alternately mounted by the pair of mounting portions 50A and 50B at the mounting position.
  • the mounting tools 56 of the left and right mounting units 50A and 50B are respectively suction nozzles of the transfer units 40A and 40B. It moves from a position (receiving position) for receiving the semiconductor chip t from 44 to a certain mounting position.
  • a third camera 57 that images the semiconductor chip t attracted and held by the mounting tool 56 from below is arranged below below.
  • the third camera 57 is disposed at a height below the moving path of the mounting tool 56 and above the wafer ring holder 12.
  • the third camera 57 is installed on each of the moving path of the mounting tool 56 in the left mounting part 50A and the moving path of the mounting tool 56 in the right mounting part 50B.
  • the third camera 57 functions as a second recognition unit.
  • the mounting apparatus 1 includes a control unit 60 as shown in FIG.
  • the control unit 60 controls the operations of the component supply unit 10, the stage unit 20, the substrate transport unit 30, the transfer unit 40, and the mounting unit 50 based on the information stored in the storage unit 61, and includes the semiconductor chip t. Electronic components are sequentially mounted on each mounting region of the support substrate W.
  • the storage unit 61 also stores data for correcting the movement position error of the stage 21 obtained in the later-described process of acquiring the movement position error of the stage 21, and the movement of the stage 21 is controlled based on the correction data.
  • the calibration substrate 71 is a substrate in which, for example, dot marks 72 for position recognition are provided in a matrix at preset intervals.
  • the dot marks 72 on the calibration substrate 71 are provided at intervals of 3 mm, for example, within a range of 300 mm length ⁇ 300 mm width.
  • the dot mark 72 is formed of a metal thin film or the like, and can be formed using a film formation technique such as etching or sputtering.
  • the diameter of the dot mark is, for example, 0.2 mm.
  • Such a calibration substrate 71 is accurately set on the stage 21.
  • the method for setting the calibration board 71 is not particularly limited, but for example, the calibration board 71 is implemented by the following method.
  • the calibration substrate 71 has the same size as the support substrate W, and the range in which the dot marks are provided is the same size as the range including all mounting regions on the support substrate W.
  • the calibration board 71 as described above is set on the stage 21 manually by the operator.
  • the calibration substrate 71 is set by placing the calibration substrate 71 on the stage 21 and then performing parallel adjustment of the calibration substrate 71 (adjustment for aligning the alignment direction of the dot marks 72 in the XY direction).
  • the parallel adjustment is performed using the second camera 22 used for imaging the global mark on the support substrate W.
  • the dot mark 72 positioned at the left front corner of the calibration substrate 71 is in the imaging field 22 a of the second camera 22.
  • the position of the stage 21 is adjusted so as to be the center.
  • the stage 21 is moved toward the left in the X direction at a low speed (a speed at which the dot mark 72 slowly flows in the visual field 22a of the camera 22).
  • the operator monitors the captured image of the second camera 22 on the monitor, and the stage is moved when the position of the dot mark 72 imaged by the second camera 22 is shifted upward or downward with respect to the imaging visual field 22a.
  • 21 is stopped, and the inclination of the calibration board 71 is manually adjusted in a direction to eliminate the deviation.
  • the imaging field 22a of FIG. 8 shows an example of a state in which the position of the dot mark 72 appearing in the imaging field 22a gradually shifts downward as the stage 21 moves.
  • the position of the stage 21 is adjusted so that the dot mark 72 located at the left front corner is at the center of the visual field 22a of the second camera 22, and the stage 21 is moved at low speed X. Move to the left in the direction.
  • the operator monitors whether or not the position of the dot mark 72 is shifted on the monitor.
  • the position is shifted, the movement of the stage 21 is stopped and the inclination of the calibration substrate 71 is adjusted. Such an operation is repeated until the dot mark 72 positioned at the right front corner of the calibration board 71 is displayed on the monitor screen without being disengaged.
  • the setting of the calibration substrate 71 is completed.
  • the operator moves the stage 21 by operating the touch panel and a joystick.
  • the dot mark 72 on the calibration substrate 71 is imaged by using a dot mark 72 positioned at the center of the calibration substrate 71 as a dot mark (first dot mark) 72 a that is first imaged. The process is performed from the mark 72a to the last dot mark 72n while sequentially moving outward along a spiral trajectory.
  • the operator moves the calibration substrate 71 by operating the stage 21 while looking at the monitor so that the first dot mark 72a is at the center of the visual field of the camera 22.
  • the center dot mark 72 a is provided with an identification mark adjacent to the dot mark 72 a so that it can be distinguished from the other dot marks 72.
  • the dot mark 72a is indicated by a circular cross instead of the adjacent mark.
  • the first dot mark 72a is first imaged.
  • the captured image of the first dot mark 72 a is processed using a known image recognition technique, and the positional deviation of the dot mark 72 with respect to the center of the visual field of the camera 22 is detected.
  • the detected positional deviation is stored in the storage unit 61 as information paired with the movement position (XY coordinate) of the stage 21.
  • the stage 21 moves to position the next (second) dot mark 72 within the field of view of the camera in accordance with the capturing order.
  • the stage 21 is moved 3 mm to the right in the X direction.
  • the movement of the stage 21 is performed based on the reading value of the linear encoder provided in the XY movement mechanism of the stage 21.
  • the scale of the linear encoder it is preferable to use a glass scale having a small thermal expansion coefficient as a countermeasure against heat.
  • a heater may be provided on the stage 21 to heat the support substrate.
  • the support substrate W changes (increases) before and after being placed on the stage 21, the support substrate W is thermally expanded correspondingly.
  • the support substrate W is thermally expanded, even if the stage 21 and the mounting head 55 are moved with high accuracy, the mounting position is shifted by an amount corresponding to the extension of the support substrate W.
  • the thermal expansion amount of the support substrate W generated by the heating of the heater is grasped by measuring in advance, and when the semiconductor chip t is mounted on the support substrate W, a coefficient (percentage) corresponding to the grasped thermal expansion amount in advance. ) Is preferably multiplied by the correction data to control the movement of the stage 21.
  • the support substrate W as a whole does not always thermally expand due to factors such as the shape and arrangement of the heater and the structure of the stage 21, so the distribution of thermal expansion may also be grasped together.
  • the region on the support substrate W is divided into a plurality of grid-like regions such as 10 rows ⁇ 10 columns, and the thermal expansion amount (displacement due to thermal expansion at each measurement point) is measured for each divided region. Then, the coefficient to be multiplied by the correction data of the stage 21 may be switched for each region.
  • the amount of thermal expansion of the support substrate W is measured every predetermined elapsed time from when the support substrate W is placed on the stage 21 until the thermal expansion of the support substrate W is saturated with respect to the temperature of the stage 21.
  • the coefficient corresponding to the thermal expansion amount for each predetermined elapsed time may be obtained.
  • a coefficient corresponding to the thermal expansion amount may be obtained for each region obtained by dividing the support substrate W into a plurality of regions.
  • the control unit 60 refers to the position information (XY coordinates) of the first mounting area stored in the storage unit 61 and the above-described correction data, and sets a correction value necessary for positioning the first mounting area at the mounting position. Select. The amount of movement of the stage 21 when the first mounting area is positioned at the mounting position is corrected by the selected correction value.
  • the stage 21 has a heater, it is preferable to multiply the correction data of the stage 21 by the coefficient based on the thermal expansion amount of the support substrate W described above.
  • FIG. 10 shows an example in which the mounting area (xi, yi) MA is moved to the mounting position P.
  • the mounting area MA is moved to the mounting position P as it is, if a positional deviation ( ⁇ ni, ⁇ mi) occurs based on the machining accuracy or the like, the positional deviation amount ( ⁇ ni, ⁇ mi) is obtained from the correction data, and the stage 21 The stage 21 is moved by adding correction values ( ⁇ ni, ⁇ mi) to cancel the positional deviation to the movement amount.
  • each mounting area on the support substrate W is sequentially positioned at the mounting position P.
  • the correction data is acquired at intervals of 3 mm, so the mounting area does not always coincide with the position where the correction data is acquired. Therefore, when the mounting area is between the positions where the positional deviation of the dot mark 72 is acquired, two adjacent positional deviation data are linearly interpolated, and the positional deviation data corresponding to the mounting area is approximately calculated. And used as a correction value.
  • the stage 21 moving position error (correction data) acquisition step described above may be basically performed when the mounting apparatus 1 is operated, and the movement of the stage 21 may be controlled based on the measurement result.
  • the stage 21 and the mounting head 55 may incorporate a heater or the like for assisting the mounting of the semiconductor chip t, and the temperature of each part of the device may rise and the mechanical accuracy may decrease due to thermal expansion.
  • the mechanical accuracy of each part of the apparatus may also decrease due to heat generated by a motor or the like that moves the mounting head 55.
  • the movement position error (correction data) acquisition process may be periodically performed, not only once during the operation of the apparatus. Thereby, the positioning accuracy of the semiconductor chip t and the like can be further improved.
  • Support substrate W setting step (2-1: supply of support substrate W)
  • the support substrate W carried on the carry-in conveyor 31 is sucked and held by the first delivery unit 33 and placed on the stage 21 positioned at the carry-in / out position.
  • the first delivery part 33 that delivered the support substrate W to the stage 21 moves to the position of the carry-in conveyor 31 and stands by.
  • the second delivery unit 34 stands by at the position of the carry-out conveyor 32.
  • Step (2) may be performed in parallel with step (1) or may be performed individually.
  • the support substrate W is carried into the carry-in conveyor 31 from a loader (not shown).
  • the loader is provided with a magazine that can accommodate the support substrate W with a gap in the vertical direction so that the support substrate W can be moved up and down.
  • the support substrate is positioned at the same height as the transport level of the carry-in conveyor 31. W is fed onto the carry-in conveyor 31 by pushing it out with a pusher or pulling it out with a chuck.
  • An unloader having the same configuration as the loader is disposed on the carry-out conveyor 32 side, and the support substrate W (the support substrate W on which the semiconductor chip t is mounted) is sequentially stored in the magazine from the carry-out conveyor 32.
  • the global mark of the support substrate W placed on the stage 21 is detected, and the position of the support substrate W is recognized.
  • the global marks A, B, and C provided at three corners of the four corners of the support substrate W are sequentially moved under the second camera 22 and imaged.
  • the support substrate W is moved on the stage 21.
  • the positions of the three global marks A, B, and C are detected based on each captured image captured by the second camera 22, and the support substrate W is detected based on the detected positions of the three global marks A, B, and C.
  • the positional deviation in the XY direction and the positional deviation in the ⁇ direction are obtained.
  • the displacement of the support substrate W can be obtained by various known methods, and the method is not particularly limited. An example of a method for detecting misalignment will be described below.
  • the solid line indicates the support substrate W actually placed on the stage 21
  • the two-dot chain line indicates the support substrate W in a state of being placed on the stage 21 without misalignment.
  • the support substrate W indicated by a two-dot chain line is in an ideal position state, and at this time, the center of the support substrate W coincides with the center position O (x0, y0) of the stage 21.
  • the positions of the three marks A, B, and C provided on the support substrate W are detected using a known image recognition technique, and the inclination ⁇ 1 of the line segment AB connecting the marks A and B with respect to the X direction and the marks B,
  • the support substrate W is virtually rotated so as to eliminate the inclination ⁇ with the center position O of the stage 21 as the rotation center. This state is indicated by a dotted line in FIG.
  • the amount of movement ( ⁇ x1, ⁇ y1) of the midpoint M1 (x1, y1) of the marks A, C located at the diagonal at this time is obtained. Then, a value ( ⁇ x1 + ⁇ x2, ⁇ y1 + ⁇ y2) obtained by adding the obtained movement amount ( ⁇ x1, ⁇ y1) and the difference ( ⁇ x2, ⁇ y2) between the moved midpoint M2 (x2, y2) and the coordinate O is XY of the support substrate W. Obtained as the displacement in the direction.
  • the stage 21 is adjusted so that the mounting area where the semiconductor chip t is first mounted on the support substrate W is positioned at the mounting position while correcting the positional deviation. Move. At this time, the movement of the stage 21 for positioning each mounting region at the mounting position is corrected by the data for correcting the displacement of the support substrate W and the correction data based on the movement position error of the stage 21 described above.
  • the inclination of the support substrate W is adjusted by adjusting the inclination of the semiconductor chip t to be mounted by the ⁇ adjustment mechanism provided in the mounting head 55. It is corrected.
  • the first camera 13 images the two alignment marks of the semiconductor chip t. Imaging of the two alignment marks can be performed once as long as the two alignment marks can be simultaneously captured in the imaging field of view of the first camera 13, or may be performed in two steps.
  • the position of the semiconductor chip t is detected based on the positions of the two alignment marks obtained from the captured image.
  • the wafer ring holder 12 is moved so as to correct the position.
  • the transfer step (3) of the semiconductor chip t may be performed in parallel with the setting step (2) of the support substrate W or may be performed individually.
  • the detection of the displacement of the semiconductor chip t positioned at the take-out position is not particularly limited, and is performed according to various known methods.
  • the position of each alignment mark is detected from a captured image of two alignment marks provided at diagonal positions on the semiconductor chip t using a known image recognition technique.
  • the inclination of the line segment connecting the two marks is obtained from the determined mark position, and the inclination is compared with the inclination of the line segment connecting the marks in the semiconductor chip t with no positional deviation stored in the storage unit 61 in advance. Then, the difference is detected as an inclination shift of the semiconductor chip t.
  • the difference between the actual midpoint position between the alignment marks and the midpoint position between the alignment marks of the semiconductor chip t stored in the storage unit 61 without misalignment is the misalignment of the semiconductor chip t in the XY direction. Asking.
  • the reversing mechanism 43 of one (for example, the left side) transfer unit 40A is driven to reversely move the suction nozzle 44 in the standby state to the take-out position.
  • the lifting device 41 is driven to lower the suction nozzle 44 together with the arm body 42 so that the suction surface of the suction nozzle 44 comes into contact with the upper surface (electrode formation surface) of the semiconductor chip t.
  • the suction nozzle 44 holds the semiconductor chip t by suction.
  • the timing at which the suction force is applied to the suction nozzle 44 may be set to an appropriate timing before, at the same time as or after the contact of the suction nozzle 44 with the semiconductor chip t.
  • the suction nozzle 44 When the suction nozzle 44 sucks and holds the semiconductor chip t, the suction nozzle 44 is raised to the original height. At this time, a push-up mechanism (not shown) is operated in accordance with the raising of the suction nozzle 44 to assist the peeling of the semiconductor chip t from the resin sheet S.
  • the reversing arm 47 When the suction nozzle 44 that sucks and holds the semiconductor chip t rises to the original height, the reversing arm 47 is reversed to return the suction nozzle 44 to the standby state. In this state, the semiconductor chip t stands by with its lower surface (surface opposite to the electrode formation surface) facing upward.
  • One (left side) mounting tool 56 is moved to a position immediately above the suction nozzle 44 that is in a standby state while holding the semiconductor chip t, that is, a receiving position.
  • the lifting / lowering device 41 is driven to raise the arm body 42, and the semiconductor chip t held by the suction nozzle 44 is transferred to the holding surface of the mounting tool 56.
  • the suction nozzle 44 is lowered to its original height and enters a standby state.
  • the timing at which the suction suction force is applied to the mounting tool 56 is before or simultaneously with the contact of the semiconductor chip t with the mounting tool 56 (however, the suction nozzle 44 is lowered). Even before starting), it may be set at an appropriate timing.
  • the suction suction force of the suction nozzle 44 is released after the semiconductor chip t is transferred to the mounting tool and before the suction nozzle 44 starts to descend.
  • Bonding of the semiconductor chip t to the support substrate W is performed by using the adhesive force of a die attach film (DAF) that is previously attached to the surface of the support substrate W or the lower surface of the semiconductor chip t.
  • the bonding of the semiconductor chip t may be performed by providing a heater on the stage 21 and pressing the semiconductor chip t against the heated support substrate W.
  • the heater may be built in the mounting tool 56.
  • step (3) pitch feeding of the semiconductor chip t on the wafer ring 11 held by the wafer ring holder 12 (operation for positioning the semiconductor chip to be extracted next at the extraction position); Detection of the position of the semiconductor chip t (the same operation as (3-1) in step (3)), and removal of the semiconductor chip t by the suction nozzle 44 of the other (right side) transfer section 40B (in step (3) ( 3-2) and the receipt of the semiconductor chip t by the mounting tool 56 of the other (right) mounting unit 50B (the same operation as (3-3) in step (3)).
  • the mounting tool 56 of the other mounting unit 50B that has received the semiconductor chip t at the receiving position moves to the mounting position.
  • the stage 21 starts pitch movement to position the next mounting area at the mounting position.
  • the mounting tool 56 of the mounting unit 50B positioned at the mounting position performs the same operation as the mounting unit 50A (the same operation as (4-1) and (4-2) in the step (4)), so that the semiconductor The chip t is pressed and mounted on a predetermined mounting area of the support substrate W.
  • the mounting tool 56 moves toward the receiving position.
  • the above-described receiving operation and mounting operation of the semiconductor chip t by the mounting tool 56 of the mounting unit 50A and the receiving operation and mounting operation of the semiconductor chip t by the mounting tool 56 of the mounting unit 50B are eliminated by the semiconductor chip t of the wafer ring 11. Repeat alternately. That is, the suction nozzles 44 of the left and right transfer units 40A and 40B alternately take out the semiconductor chip t, and the mounting tools 56 of the left and right mounting units 50A and 50B alternately receive and mount the semiconductor chip t. . In this manner, the semiconductor chips t are alternately mounted by the two mounting portions 50A and 50B until the semiconductor chip t of the wafer ring 11 is eliminated.
  • the components The wafer ring 11 on which the second semiconductor chip t2 is mounted is set in the supply unit 10, and the support substrate W on which the first semiconductor chip t1 is mounted is set in the loader of the substrate transport unit 30. Then, by performing the same operation as described above, the second semiconductor chip t2 is sequentially mounted on each mounting region MA on which the first semiconductor chip t1 is mounted.
  • the wafer in which the third semiconductor chip t3 is mounted in the component supply unit 10 is obtained.
  • the ring 11 is set, and the support substrate W on which the semiconductor chips t1 and t2 are mounted is set on the loader of the substrate transport unit 30, and the third semiconductor chip t3 is mounted by the same operation. In this manner, a plurality of semiconductor chips t1 to t3 are mounted on each mounting area MA of the support substrate W.
  • the second semiconductor chip t2 is mounted on the second semiconductor chip t2. It is not limited to the mounting method to be switched. For example, after mounting the first semiconductor chip t1 on one support substrate W, it may be switched to the second semiconductor chip t2. The same applies to the third semiconductor chip t3.
  • the third semiconductor chip t3 is switched to the third semiconductor chip t3. That is, a plurality of types of semiconductor chips t may be mounted on a support substrate W basis. In this case, since the support substrate W is not removed from the stage 21 until all types of semiconductor chips t have been mounted on one support substrate W, the mounting accuracy of a plurality of types of semiconductor chips t can be further improved. it can.
  • the support substrate W on which the first type of semiconductor chip t1 has been mounted is temporarily unloaded from the stage 21, and the second type of semiconductor chip is mounted.
  • t2 is mounted, it is placed on the stage 21 again. Therefore, when the first type semiconductor chip t1 is mounted and when the second type semiconductor chip t2 is mounted, the position of the support substrate W on the stage 21 is shifted, that is, the placement position is shifted. Even if it happens to be the same position on the stage 21, it will usually be off.
  • the position of the support substrate W is recognized by global recognition, there is a possibility that the recognition position of the support substrate W may be shifted due to a recognition error or the like.
  • the semiconductor chip t mounted on each of the plurality of mounting regions of the support substrate W is not limited to one type. It is also possible to divide one support substrate W into a plurality of regions and mount different types of semiconductor chips t for each region.
  • the A type semiconductor chip ta may be mounted on the first region half of the support substrate, and the B type semiconductor chip tb may be mounted on the remaining half of the second region. From the first region where the A type semiconductor chip ta is mounted, the A type semiconductor package is manufactured. From the region where the B type semiconductor chip tb is mounted, a B type semiconductor package is manufactured.
  • the A-type semiconductor chip ta and the B-type semiconductor chip tb have different circuit patterns for the rewiring layer formed in the subsequent process, so that the exposure pattern for rewiring is also different. For this reason, it may be more difficult to correct the mounting errors of the semiconductor chips ta and tb in the exposure process.
  • the mounting apparatus and the mounting method of the embodiment are applied, it is possible to mount between the A type semiconductor chip ta and the B type semiconductor chip tb with high relative positional accuracy. Accordingly, the exposure process for the area where the A type semiconductor chip ta is mounted and the exposure process for the area where the B type semiconductor chip tb is mounted can be performed in a lump, and the production efficiency can be improved. .
  • the sizes of the A type semiconductor chip ta and the B type semiconductor chip tb are different.
  • the mounting pitch of the A type and the mounting pitch of the B type may be different.
  • a plurality of types of semiconductor chips ta, tb can be obtained by switching the feed amount of the stage 21 between mounting the A type semiconductor chip ta and mounting the B type semiconductor chip tb. Can be satisfactorily mounted on a plurality of regions of the support substrate W.
  • a combination of C-type and D-type semiconductor chips constituting the first multichip package is mounted in the first region of the support substrate W, and the second multichip package is formed in the second region.
  • one type of semiconductor chip t may be mounted on a plurality of support substrates W, or a plurality of types of semiconductor chips may be mounted on a support substrate W basis.
  • the recognition of the global mark on the support substrate W may be performed once at the beginning.
  • the support substrate is re-recognized. It is possible to avoid recognizing the global mark of W.
  • the support substrate W is heated by providing a heater or the like on the stage 21, the correction of the stage 21 is performed in the first region where the semiconductor chip t is mounted first and the second region where the semiconductor chip t is mounted later. Data may be switched. By doing so, even when the amount of thermal expansion of the portion corresponding to the second region in the support substrate W is expanded while the A type semiconductor chip ta is mounted in the first region, it is possible to cope with it.
  • the mounting accuracy of the semiconductor chip t (tb) can be maintained with high accuracy.
  • a chip feeder mechanism using a tape feeder is used as the component supply unit 10 and a plurality of tape feeders corresponding to a plurality of types are provided. It is good to.
  • the support substrate W on which the mounting of the above-described one kind of semiconductor chip t, or plural kinds of semiconductor chips t1, t2, t3 or the semiconductor chips ta, tb, etc. is sent to the following process, and thereby the semiconductor package
  • the package parts are produced. That is, the support substrate W on which the semiconductor chip has been mounted is sequentially sent to the sealing step and the rewiring layer forming step.
  • the sealing step resin is filled in the gaps between the semiconductor chips mounted on the support substrate W, thereby forming a pseudo wafer.
  • the pseudo wafer is sent to the rewiring layer forming process.
  • a circuit forming process in the semiconductor wafer manufacturing process that is, a photosensitive material coating process, a photosensitive material exposure and development process, an etching process, an ion implantation process, a resist stripping process, etc.
  • the rewiring layer is formed on the semiconductor wafer of the pseudo wafer by these steps.
  • the pseudo wafer on which the redistribution layer is formed is sent to a dicing process, where the pseudo wafer is separated into individual pieces to manufacture a package component such as a semiconductor package.
  • the mounting process S1 for mounting the electronic component in each of the plurality of mounting regions of the support substrate W and the mounting in the plurality of mounting regions are performed.
  • the rewiring layer forming step S3 includes a photosensitive material coating step S31, a photosensitive material exposure and development step S32, an etching step S33, an ion implantation step S34, a resist stripping step S35, and the like.
  • the electronic component mounting process in the package component manufacturing method of the embodiment is performed based on the electronic component mounting method of the embodiment.
  • the electronic component mounted in each mounting region of the support substrate W may be one semiconductor chip t as described above, or a plurality of types of semiconductor chips or the same type. A plurality of semiconductor chips may be used.
  • the type and number of electronic components are not particularly limited.
  • the movement of the mounting tool 56 of the two mounting parts 50A and 50B is a constant path from the receiving position of the semiconductor chip t to the mounting position, and the mounting of the two mounting parts 50A and 50B is performed.
  • the mounting position by the tool 56 is a fixed position.
  • each mounting area of the support substrate W is sequentially positioned at the mounting position by the XY moving mechanism of the stage unit 20.
  • the movement of the stage 21 by the XY movement mechanism of the stage unit 20 is corrected using correction data based on the movement position error of the stage 21 acquired in advance.
  • the mounting error of the semiconductor chip t based on the movement error of the two mounting parts 50A and 50B and the movement position error of the stage 21 can be reduced as much as possible.
  • the mounting time of the semiconductor chip t (tact time required for mounting one semiconductor chip t as the mounting apparatus 1) and the mounting accuracy of the semiconductor chip t are reduced by using the two mounting portions 50A and 50B. It is possible to achieve both improvement.
  • the mounting tools 56 of the two mounting parts 50A and 50B only move along a fixed path from the receiving position of the semiconductor chip t to the mounting position, respectively, even if a movement error occurs, one adjustment ( Calibration) can correct the positioning to the mounting position. Furthermore, since the two mounting portions 50A and 50B perform the mounting operation at the same mounting position, the mounting accuracy can be improved and the movement position of the mounting head can be adjusted as compared with the case of mounting at the individual mounting positions. (Calibration) can be performed in a short time.
  • the stage 21 can be accurately moved at a preset pitch, thereby increasing the positioning accuracy of each mounting region of the support substrate W to the mounting position. be able to. For this reason, mounting accuracy of ⁇ 5 ⁇ m or less and tact time of 0.6 seconds or less can be achieved simultaneously.
  • electronic components including the semiconductor chip t are accurately mounted on the support substrate W on which no position detection mark is provided for each mounting region so that the mutual interval is a predetermined interval.
  • an electronic component including the semiconductor chip t can be mounted on the support substrate W with high productivity.
  • the tact time required for mounting the semiconductor chip t can be reduced, and mounting accuracy is improved by mounting at a common fixed position and correcting the movement error of the stage 21. An effect and an effect of preventing a decrease in productivity can be obtained.
  • the movement error varies depending on the location, the movement error needs to be measured separately at two locations. For example, it takes about 3 hours to measure the movement error at one location.
  • the measurement time can be approximately the same as in the case of one location.
  • the cost increases because two cameras are required.
  • the mounting head is moved to each mounting area without moving the stage 21 of the support substrate W, and correction data is created on the mounting head side, the correction data is created on the substrate stage side. Compared to this, enormous correction data is required, and the time required for calibration becomes longer. That is, unlike the substrate stage, the mounting head requires a vertical movement mechanism for mounting a semiconductor chip on the substrate. For this reason, when creating correction data, it is necessary to consider not only the movement error due to the undulation of the XY movement device of the mounting head, but also the positional deviation in the XY direction due to the vertical movement of the mounting head.
  • the movable body that supports the mounting head swings to the right and to the left.
  • the horizontal position of the tip of the mounting head at a position lowered to the height at which the semiconductor chip t is mounted on the support substrate W on the stage 21 is greatly different. For this reason, not only the meandering when the mounting head moves in the X direction or the Y direction, but also the oscillation of the movable body that supports the mounting head contributes to the mounting position deviation.
  • the mounting head side has a large mounting tool.
  • a movement error (for example, 5 ⁇ m or more) may occur.
  • the height position varies depending on the location on the support substrate when the semiconductor chip is mounted on the support substrate. Become. If the movable body of the mounting head is tilted and the direction of vertical movement of the mounting head is tilted with respect to the vertical direction, the mounting position will shift in the horizontal direction due to the difference in the height of the mounting surface (substrate surface). . Taking this into account, the measurement of correction data becomes more complicated, and more time is required to create correction data. Further, the correction accuracy itself may be reduced.
  • the mounting positions by the two mounting portions 50A and 50B are set to the same fixed position, and the stage 21 on which the support substrate W is placed is moved so that each mounting area is sequentially positioned at the mounting position. It can be seen that the mounting apparatus 1 having a configuration for correcting the movement error of the stage 21 using correction data is effective in achieving both high mounting accuracy and shortened tact time and high productivity.
  • the mounting apparatus 1 mounts a plurality of types of semiconductor chips t1, t2, t3, etc. in one mounting area MA, or one or a plurality of types of semiconductor chips t and a diode, This is effective when mounting a capacitor or the like.
  • a plurality of types of electronic components are mounted in one mounting region, there is a possibility that a relative positional shift of the plurality of electronic components in one mounting region (package) may occur.
  • a technique of correcting a mounting error applicable to a single chip package in which one semiconductor chip is incorporated in a region (package) at the time of exposure cannot be applied. For this reason, it is necessary to improve the positional accuracy itself when mounting a plurality of electronic components.
  • the mounting apparatus 1 of the embodiment can increase the mounting accuracy of each electronic component including the semiconductor chip t, even when mounting a plurality of electronic components in one mounting region, It becomes possible to relatively improve the positional accuracy of a plurality of electronic components in one mounting area.
  • a fourth camera 23 shown in FIG. 4 is used to detect a relative positional shift between the two mounting tools 56.
  • the fourth camera 23 is attached upward to the front side end of the stage 21.
  • the fourth camera 23 images the mounting tool 56 positioned at the mounting position from below.
  • the fourth camera 23 is moved directly below the mounting position by moving the stage 21.
  • the fourth camera 23 functions as a third recognition unit.
  • the detection of the displacement of the movement positions of the two mounting tools 56 is performed with the semiconductor chip t held by the mounting tool 56.
  • the detection of misalignment may be performed using a dummy semiconductor chip manufactured for calibration.
  • the positional deviation of the mounting tool 56 may be detected using a mark formed on the suction hole of the mounting tool 56 or the holding surface of the mounting tool 56 without using a semiconductor chip.
  • the semiconductor chip t is held by the mounting tool 56 by the operation of the above-described step (3), the operation of the step (4-1) of the step (4) is performed to detect the positional deviation of the semiconductor chip t, and the detected position
  • the mounting tool 56 is positioned at the mounting position by correcting the deviation (4-2).
  • the semiconductor chip t held by the mounting tool 56 positioned at the mounting position is imaged by the fourth camera 23.
  • the control unit 60 detects the position of the semiconductor chip t based on the captured image of the fourth camera 23, compares the position data with a normal position stored in the storage unit 61 in advance, and compares the position of the semiconductor chip t. Detects the position shift. If there is no displacement in the mounting tool 56, the semiconductor chip t is positioned without displacement in the mounting position. When a positional deviation has occurred, the positional deviation becomes a movement positional deviation of the mounting head 55.
  • the imaging of the semiconductor chip t positioned at the mounting position described above and the detection of displacement are performed on the mounting tools 56 of the left and right mounting portions 50A and 50B, respectively.
  • the movement position deviations of the two mounting tools 56 are compared, and if there is a difference, the movement position of the mounting tool 56 of the other mounting unit 50B is obtained with reference to the mounting tool 56 of one mounting unit 50A. Correct as much as possible to eliminate the difference. By doing in this way, generation
  • the positional deviation correction of the mounting tool 56 is not limited to aligning the movement position of the mounting tool 56 of the other mounting part 50B with the movement position of the mounting tool 56 of the one mounting part 50A.
  • the left and right mounting tools 56 may be corrected so that the movement position is aligned with a predetermined reference mounting position. In this way, the alignment accuracy can be increased. This is because, when the movement position of the other mounting tool 56 is aligned with the movement position of the one mounting tool 56, the movement position itself of the one mounting tool 56 serving as a reference includes a certain amount of variation. Even if it appears to have moved to the same position, a deviation of 1 ⁇ m or 2 ⁇ m occurs due to a mechanical error or the like.
  • the setting timing (set) is set after the mounting operation is started.
  • the presence or absence of displacement of the mounting head 55 may be detected every time or the set number of times of mounting).
  • the mounting accuracy of the semiconductor chip t can be further improved.
  • a heater for assisting mounting (bonding) of the semiconductor chip t is used, a movement position error may occur in the mounting head 55 due to thermal expansion (thermal deformation) due to heating of the heater. Also for such a point, it is effective to perform the step of detecting the positional deviation by imaging the semiconductor chip t held by the mounting tool 56 with the fourth camera 23 at each preset timing. .
  • each mounting area of the support substrate W and the mounting tools 56 of the left and right mounting portions 50A and 50B are positioned at a fixed mounting position as a fixed mounting position.
  • This fixed mounting position may be the same position that does not always change in the mounting apparatus 1, or may be a position where setting can be changed according to conditions such as the size of the support substrate W. Any position may be used as long as the position is maintained from the start of mounting the electronic component to be mounted to the completion of mounting.
  • a certain mounting position is a position where the setting can be changed, correction data for correcting the movement error of the stage 21 is acquired for each setting position, and when the setting of the mounting position is changed, the movement error of the stage 21 is obtained. It is preferable to switch the correction data used for the correction to the correction data corresponding to the mounting position whose setting has been changed.
  • the correction data for correcting the movement error of the stage 21 may be acquired over the entire movable range of the stage 21, and the stage 21 moves when positioning each mounting region on the support substrate W at the mounting position. It is only necessary to acquire within the range. Further, the correction data for correcting the movement error of the stage 21 may be an actual measurement value itself of the movement position error of the stage 21 or may be obtained by processing an actual measurement value such as a correction value for canceling the movement position error. In short, what is necessary is just data for correcting the movement error of the stage 21.
  • the electrode formation surface (upper surface) of the semiconductor chip t faces downward, that is, in a state facing the upper surface of the support substrate W.
  • the apparatus and the mounting method are not limited to this.
  • the manufacturing method of the package component of the embodiment is also the same.
  • the electrode formation surface of the semiconductor chip t faces upward, that is, the upper surface of the support substrate W is placed on the lower surface of the semiconductor chip t (the surface opposite to the electrode formation surface). )
  • the mounting apparatus according to the embodiment can be a combined apparatus for face-up bonding and face-down bonding.
  • a delivery stage for temporarily placing the semiconductor chip t is provided between the transfer unit 40 and the mounting unit 50. This is because the semiconductor chip t is supported on the wafer ring 11 with the electrode formation surface facing upward.
  • the transfer nozzle 44 of the transfer unit 40 that sucks and holds the semiconductor chip t must deliver the semiconductor chip t to the mounting unit 50 with the electrode formation surface facing upward. Since the electrode forming surface of the semiconductor chip t is not attracted and held, the semiconductor chip t cannot be directly delivered to the mounting tool 56 of the mounting unit 50.
  • an XY movement mechanism that allows the transfer nozzle 44 to move in the XY directions is provided instead of making the reversing mechanism 43 of the transfer unit 40 unnecessary, and the transfer nozzle 44 is taken out. And can be moved between delivery stages.
  • a delivery stage is provided for each of the left and right transfer units 40A and 40B.
  • the transfer nozzle 44 When performing face-up bonding, after the semiconductor chip t is taken out by the transfer nozzle 44, the transfer nozzle 44 is placed on the delivery stage by the XY movement mechanism without reversing the transfer nozzle 44 by the reversing mechanism 43. Move. The semiconductor chip t is placed on the delivery stage by the moved transfer nozzle 44. Thereafter, the mounting tool 56 of the mounting unit 50 is moved onto the delivery stage, and the semiconductor chip t on the delivery stage is sucked and held.
  • the mounting tool 56 of the mounting unit 50 attracts the upper surface (electrode formation surface) of the semiconductor chip t, and the semiconductor chip t
  • the lower surface (the surface opposite to the electrode formation surface) is mounted on the upper surface of the support substrate W.
  • the specific mounting process of the semiconductor chip t is the same as that in the above-described embodiment.
  • Example 1 Using the mounting apparatus 1 of the above-described embodiment, the semiconductor chip was actually mounted on the support substrate under the following conditions.
  • FIG. 13 shows a state where the semiconductor chip t is mounted on the support substrate W.
  • the target mounting accuracy was within ⁇ 5 ⁇ m, and the target tact time was within 0.6 seconds.
  • the odd-numbered semiconductor chips t are the left mounting parts 50A and the even-numbered semiconductor chips t are the right mounting parts 50B in the order of the numbers given to the semiconductor chips t starting from the upper left.
  • the elapsed time from taking out the first semiconductor chip t from the component supply unit 10 to completing the mounting of the last (25th) semiconductor chip t was 14.5 seconds.
  • the mounting position shift of the 25 semiconductor chips t mounted on the support substrate W was measured using the inspection apparatus.
  • Table 1 the mounting area number corresponds to the number of the semiconductor chip t in FIG.
  • a circle in the column of used mounting head indicates a mounting head used for mounting.
  • the mounting area number “1” indicates that mounting is performed using the left mounting head 55.
  • the column of misalignment indicates the misalignment amount in the X direction and Y direction of the semiconductor chip t in each mounting region.
  • the unit is micrometer [ ⁇ m].
  • the time required for mounting means the left mounting unit that receives the first semiconductor chip t from the suction nozzle 44 of the left transfer unit 40A that picks up the first semiconductor chip t from the component supply unit 10.
  • the mounting tool 56 of the left mounting unit 50A mounts the last (25th) semiconductor chip t on the support substrate W from the time when the mounting tool 56 of 50A moves immediately above the mounting position and starts to descend, It is the time to the point when it finishes rising to its original height. By dividing this time by the number (25) of semiconductor chips mounted in the meantime, the tact time can be obtained.
  • Example 1 The semiconductor chip t was mounted on the support substrate W under the same conditions as in Example 1 except that the movement correction data of the stage on which the support substrate W is placed is not used.
  • the mounting position shift of 25 semiconductor chips t mounted on the support substrate W was measured using an inspection apparatus. The results are shown in Table 2.
  • the maximum value of the positional deviation in the X direction of the semiconductor chip t is 19.5 ⁇ m at the position of the mounting area number 21, and the minimum value is ⁇ 24.4 ⁇ m at the position of the mounting area number 10. It was. Further, the maximum value of the positional deviation in the Y direction was 11.8 ⁇ m at the position of the mounting area number 3, and the minimum value was ⁇ 11.7 ⁇ m at the position of the mounting area number 16. Therefore, it was confirmed that the mounting accuracy of the semiconductor chip t cannot satisfy the target within ⁇ 5 ⁇ m.
  • the tact time required for mounting one semiconductor chip t is 0.58 seconds, which is the same as in the first embodiment.
  • Example 2 Using the mounting apparatus 1 of the above-described embodiment, the semiconductor chip was actually mounted on the support substrate under the following conditions.
  • the target mounting accuracy was within ⁇ 5 ⁇ m.
  • the odd-numbered semiconductor chip t is the left-side mounting portion 50A and the even-numbered semiconductor chip t is the right-side mounting portion 50B in the order of the number of the semiconductor chips t, starting from the upper left mounting region. And we implemented it alternately. In this manner, 48 semiconductor chips t were extracted from 400 semiconductor chips t mounted on the support substrate W, and their mounting position deviations were measured using an inspection apparatus. The results are shown in Table 3 as in Example 1.
  • Example 3 Using the mounting apparatus 1 of the above-described embodiment, the semiconductor chip was actually mounted on the support substrate under the following conditions.
  • the target mounting accuracy was within ⁇ 5 ⁇ m.
  • the odd-numbered semiconductor chip t is the left-side mounting portion 50A and the even-numbered semiconductor chip t is the right-side mounting portion 50B in the order of the number of the semiconductor chips t, starting from the upper left mounting region. And we implemented it alternately. In this manner, 48 semiconductor chips t were extracted from 2040 semiconductor chips t mounted on the support substrate W, and their mounting position deviations were measured using an inspection apparatus. The results are shown in Table 4 as in Example 1.
  • Example 4 Using the mounting apparatus 1 of the embodiment described above, the first semiconductor chip and the second semiconductor chip were actually mounted on each mounting region of the support substrate under the following conditions.
  • the target mounting accuracy was within ⁇ 5 ⁇ m.
  • the odd-numbered semiconductor chip t is the left-side mounting portion 50A in the order of the number of the first semiconductor chip (chip A) t starting from the upper left mounting area, and the even-numbered semiconductor chip. t was mounted alternately by the right mounting part 50B.
  • the odd-numbered semiconductor chips t are alternately mounted by the left mounting portion 50A, and the even-numbered semiconductor chips t are alternately mounted by the right mounting portion 50B. I did it.
  • a total of 50 (first semiconductor chip: 25, second semiconductor chip: 25) mounting position deviations mounted on the support substrate W were measured using the inspection apparatus.
  • the position shift of the first and second semiconductor chips (chips A and B) and the relative position of the first and second semiconductor chips (chips A and B) were measured. The results are shown in Table 5.
  • the support substrate W is not provided with a position detection mark for each mounting area, and has been described as being removed in the process of manufacturing a package component.
  • the present invention is not limited to this. Absent.
  • the mounting apparatus and the mounting method of the embodiment for example, there is a position detection mark for each mounting region, and it naturally depends on the position detection mark even for a substrate used as a part of a package component. Needless to say, it is possible to mount a semiconductor chip (electronic component) accurately and efficiently.
  • SYMBOLS 1 DESCRIPTION OF SYMBOLS 1 ... Mounting apparatus, 10 ... Component supply part, 11 ... Wafer ring, 12 ... Wafer ring holder, 13 ... 1st camera, 20 ... Stage part, 21 ... Stage, 22 ... 2nd camera, 23 ... 4th Camera, 30 ... Substrate transport unit, 40, 40A, 40B ... Transfer unit, 43 ... Reversing mechanism, 44 ... Suction nozzle, 47 ... Reversing arm, 50, 50A, 50B ... Mounting unit, 51 ... Support frame, 52 ... X Direction moving block, 53 ... Y direction moving device, 55 ... Mounting head, 56 ... Mounting tool, 60 ... Control unit, 61 ... Storage unit, W ... Support substrate, t ... Semiconductor chip.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Supply And Installment Of Electrical Components (AREA)
  • Wire Bonding (AREA)
  • Die Bonding (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

実施形態の実装装置1は、支持基板Wの複数の実装領域が一定の実装位置に順に位置付けられるように、支持基板Wが載置されたステージ21を移動させるステージ部20と、それぞれ電子部品を保持して実装領域に実装する第1および第2の実装ヘッドを実装位置に個別に移動させる実装部50と、ステージ21上の支持基板Wの全体位置を認識する第1の認識部22と、第1または第2の実装ヘッドに保持された電子部品の位置を認識する第2の認識部とを具備し、ステージ21と第1および第2の実装ヘッドの移動は、移動機構によるステージ21の移動位置誤差の補正データと支持基板Wの位置データと電子部品の位置データとに基づいて制御される。

Description

電子部品の実装装置と実装方法、およびパッケージ部品の製造方法
 本発明の実施形態は、電子部品の実装装置と実装方法、およびパッケージ部品の製造方法に関する。
 従来から、CSP(Chip Size Package)やBGA(Ball Grid Array)等のように、インターポーザ基板(中継用基板)を用いて行われる半導体パッケージの製造プロセスが知られている。これとは別に、インターポーザ基板を用いずに、半導体チップ毎に分割することなくウエーハ状態のままでパッケージ化を行うウエーハレベルパッケージ(Wafer Level Package:WLP)と呼ばれる製造プロセスが知られている。WLPは、インターポーザ基板を使用しない分、半導体パッケージの薄型化や製造コストが低減できるというような利点を有する。
 WLPでは、半導体チップの電極パッドが形成されている面上の領域をはみ出さないように、半導体チップ上に半導体パッケージのI/O端子を含む再配線層を形成する、ファンイン・ウエーハレベルパッケージ(fan in-WLP:FI-WLP)が知られている。また近年においては、半導体チップの領域をはみ出して半導体パッケージのI/O端子を含む再配線層を形成するファンアウト・ウェハレベルパッケージ(fan out-WLP:FO-WLP))も提案されている。FO-WLPは、1つのパッケージ内にRAM、フラッシュメモリ、CPU等の半導体チップやダイオード、コンデンサ等の複数種類の電子部品を搭載したマルチチップパッケージ(Multi Chip Package:MCP)にも適用可能であるために注目されている。
 ここで、MCPとは上述したように、1つのパッケージ内に複数種類の電子部品を搭載したものである。このようなMCPにおいては、同一パッケージに搭載する電子部品個々の実装位置のずれが、そのパッケージの電気的特性に相互に影響を及ぼすため、それぞれの電子部品の実装に高い位置精度が要求されている。前述したインターポーザ基板を用いて行なわれる半導体パッケージの製造プロセスでは、インターポーザ基板上の各実装領域に位置認識用のアライメントマークが設けられているので、実装領域毎にアライメントマークを認識して電子部品を実装領域に位置決めし、実装する方式(以下、ローカル認識方式と呼ぶ)を適用することで、高い位置精度での実装を実現している。
 FO-WLPの製造プロセスでは、まず支持基板上に複数の半導体チップを間隔をあけた状態で行列状に実装し、その後半導体チップ間の隙間を樹脂で封止して複数の半導体チップを一体化することで、あたかも半導体製造プロセスで形成されるウエーハのように成形された擬似ウエーハを形成する。この擬似ウエーハ上に、I/O端子を設けるための再配線層を形成する。複数の半導体チップを樹脂封止して一体化した後は、支持基板は剥がされて除去される。しかしながら、FO-WLPでMCPを製造しようとした場合、支持基板上には半導体チップを実装する実装領域毎に位置認識に用いることができるような画像認識可能なパターンが存在しないため、インターポーザ基板に対して行っていたようなローカル認識方式を適用することは実用的ではない。
 ローカル認識が行えない場合、支持基板の外形位置や基板全体の位置を示すアライメントマークを認識することで支持基板の全体位置を認識し、この支持基板の全体位置を頼りに支持基板上の各実装領域に半導体チップを実装する方式(以下、グローバル認識方式と呼ぶ)を適用することになる。また、MCPでの半導体チップの実装位置のずれは、例えば標準的な電極パッドの径(20μm)と形成ピッチ(35μm)を有する半導体チップを考えた場合、半導体チップの端子と再配線層により形成される端子との接触面積の確保や隣接する端子との接触を回避する上で、±5μm以下に抑えることが望まれる。
 しかしながら、インターポーザ基板等の実装領域毎にアライメントマークを有する基板に半導体チップを実装するための実装装置を、グローバル認識方式の設定を施し、FO-WLPの製造プロセスにそのまま用いてみたところ、実装精度に±5μmを超える実装誤差が生じてしまい、実装領域毎にアライメントマークが設けられていない支持基板に精度よく半導体チップを実装することはできなかった。このため、グローバル認識方式を適用したFO-WLPの製造プロセスにおいて、±5μm以下の位置精度で半導体チップを実装できる実装装置は存在していない。
 実装精度を向上させるだけであれは、FO-WLPの製造プロセスに用いる支持基板に、各実装領域に対応させてアライメントマークを予め設けておき、ローカル認識方式を適用することが考えられる。しかしながら、FO-WLPの支持基板は、擬似ウエーハを形成した後、擬似ウエーハから剥がされて除去されるものであり、製品としては用いられない。このような支持基板のために、マークを形成する設備および工程を設けることは、設備費用、設備の設置スペース、工程数等の増加を招くだけでなく、実装工程においても半導体チップを実装する毎にローカルマークを認識する動作が必要となり、1つの半導体チップの実装工程時間も増加する。このような点から、ローカル認識方式の適用は半導体パッケージの製造コストを増加させ、WLPの利点を損なうことになる。
 また、半導体チップの実装誤差に対応するため、半導体チップの実装誤差を考慮して再配線層の形成を行う技術が提案されている。この技術は、擬似ウエーハに再配線層の回路パターンを露光する際、露光に先立って擬似ウエーハ上の各半導体チップの実装誤差(理想位置からの位置ずれ)を予め個別に測定しておき、露光用のレーザ光を半導体チップ毎に走査するときに、描画データに含まれる各回路パターンの位置情報を露光対象の半導体チップの実装誤差に基づいて補正するものである。この技術は1つの半導体パッケージに1つの半導体チップを組み込むシングルチップパッケージには適用可能である。しかしながら、MCPの場合、回路パターンの描画データはパッケージ単位で作成されるため、同一パッケージ内での半導体チップ間の相対的な位置ずれが生じた場合には、描画する回路パターンの位置情報を補正するだけでは対応できない。
 さらに、FO-WLPの製造プロセスに用いられる実装装置には、半導体チップの実装時間を短縮することが求められる。すなわち、疑似ウエーハ上の再配線層の形成工程は、通常1枚の疑似ウエーハに対して一括して行われるのに対し、支持基板に対する半導体チップの実装工程は、半導体チップ1個ずつ実施される。これらの処理時間を考慮すると、再配線層の形成工程に比べて半導体チップの実装工程の方が時間を要することになるため、半導体チップの実装時間を短縮することが求められる。実装時間を短縮するだけであれば、複数の実装ヘッドを有する実装装置を適用することが考えられる。しかしながら、単に複数の実装ヘッドを適用しただけでは、実装ヘッド毎に生じる移動誤差の影響によって、半導体チップの実装精度がさらに低下してしまう。このように、FO-WLPの製造プロセスに用いられる実装装置には、半導体チップ等の電子部品の実装精度の向上と実装時間の短縮とを両立させることが求められている。
特開2008-041976号公報 特開2009-259917号公報 国際公開第2007/072714号 特開2013-058520号公報
 本発明が解決しようとする課題は、実装領域毎に位置検出用のマーク等のパターンが形成されていない支持基板であっても、各実装領域に半導体チップ等の電子部品を精度よく、かつ効率よく実装することを可能にした電子部品の実装装置と実装方法、およびそのような実装方法を適用したパッケージ部品の製造方法を提供することにある。
 実施形態の電子部品の実装装置は、電子部品が実装される複数の実装領域を有する支持基板が載置されるステージと、前記複数の実装領域が一定の実装位置に順に位置付けられるように、前記ステージを移動させるステージ移動機構とを備えるステージ部と、それぞれ前記電子部品を保持して前記支持基板の前記実装領域に実装する第1および第2の実装ヘッドと、前記電子部品を保持した前記第1および第2の実装ヘッドを前記実装位置に交互に移動させる実装ヘッド移動機構とを備える実装部と、前記ステージ上に載置された前記支持基板の全体位置を認識する第1の認識部と、前記第1または第2の実装ヘッドに保持された前記電子部品の位置を認識する第2の認識部と、前記ステージ移動機構による前記ステージの移動位置誤差を補正する補正データを記憶する記憶部と、前記第1の認識部により認識した前記支持基板の位置データと前記第2の認識部により認識した前記電子部品の位置データと前記補正データとに基づいて、前記ステージと前記第1および第2の実装ヘッドの移動を制御する制御部とを具備する。
 実施形態の電子部品の実装方法は、電子部品が実装される複数の実装領域を有する支持基板が載置されるステージの移動位置誤差を取得し、前記移動位置誤差を補正する補正データを記憶部に記憶させる工程と、前記ステージ上に前記支持基板を載置すると共に、前記ステージ上に載置された前記支持基板の全体位置を認識する工程と、前記支持基板の位置認識工程により得た前記支持基板の位置データと前記補正データとに基づいて前記ステージの移動を補正しつつ、前記複数の実装領域が一定の実装位置に順に位置付けられるように、前記ステージを移動させる工程と、第1および第2の実装ヘッドで前記電子部品を交互に受け取り、前記第1または第2の実装ヘッドに保持された前記電子部品の位置を認識すると共に、認識した前記電子部品の位置データに基づいて前記第1および第2の実装ヘッドの移動を補正しつつ、前記第1および第2の実装ヘッドを前記実装位置に交互に移動させ、前記第1および第2の実装ヘッドにより前記電子部品を、前記実装位置に順に位置づけられた前記実装領域に交互に実装する工程とを具備する。
 実施形態のパッケージ部品の製造方法は、複数の実装領域を有する支持基板における前記複数の実装領域のそれぞれに電子部品を実装する工程と、前記複数の実装領域に実装された前記電子部品を一括して封止することにより疑似ウエーハを形成する工程と、前記疑似ウエーハの前記電子部品上に再配線層を形成することによりパッケージ部品を製造する工程とを具備する。実施形態のパッケージ部品の製造方法における前記電子部品の実装工程は、前記支持基板が載置されるステージの移動位置誤差を取得し、前記移動位置誤差を補正する補正データを記憶部に記憶させる工程と、前記ステージ上に前記支持基板を載置すると共に、前記ステージ上に載置された前記支持基板の全体位置を認識する工程と、前記支持基板の位置認識工程により得た前記支持基板の位置データと前記補正データとに基づいて前記ステージの移動を補正しつつ、前記複数の実装領域が一定の実装位置に順に位置付けられるように、前記ステージを移動させる工程と、第1および第2の実装ヘッドで前記電子部品を交互に受け取り、前記第1または第2の実装ヘッドに保持された前記電子部品の位置を認識すると共に、認識した前記電子部品の位置データに基づいて前記第1および第2の実装ヘッドの移動を補正しつつ、前記第1および第2の実装ヘッドを前記実装位置に交互に移動させ、前記第1および第2の実装ヘッドにより前記電子部品を、前記実装位置に順に位置づけられた前記実装領域に交互に実装する工程とを具備する。
実施形態の実装装置を示す平面図である。 実施形態の実装装置を示す正面図である。 実施形態の実装装置を示す右側面図である。 実施形態の実装装置の一部を二点鎖線で示す平面図であって、支持基板の搬入・搬出状態を説明するための図である。 実施形態の実装装置の一部を省略して示す正面図であって、電子部品の位置認識状態を説明するための図である。 実施形態の実装装置を示すブロック図である。 実施形態の実装装置に半導体チップを供給するウエーハリングを示す平面図である。 図7AのX-X線に沿ったウエーハリングの断面図である。 実施形態の実装装置における基板ステージのキャリブレーション工程の準備工程を示す図である。 実施形態の実装装置における基板ステージのキャリブレーション工程を示す図である。 実施形態の実装装置における基板ステージの移動位置誤差の補正方法を説明するための図である。 実施形態の実装装置における支持基板の位置ずれの補正方法を説明するための図である。 実施形態の実装装置を用いて1つの実装領域に実装される電子部品の一例を示す平面図である。 実施例1および比較例1の実装装置を用いて半導体チップを実装した支持基板を示す平面図である。 実施形態のパッケージ部品の製造工程を示すフロー図である。
 以下、実施形態の電子部品の実装装置と実装方法について、図面を参照して説明する。図面は模式的なものであり、厚さと平面寸法との関係、各部の厚さの比率等は現実のものとは異なる場合がある。説明中における上下の方向を示す用語は、特に明記が無い場合には後述する支持基板の電子部品の実装面を上とした場合の相対的な方向を示し、左右の方向を示す用語は、特に明記が無い場合には図2の正面図を基準とした方向を示す。
[実装装置の構成]
 図1は実施形態による電子部品の実装装置の構成を示す平面図、図2は図1に示す実装装置の正面図、図3は図1に示す実装装置の右側面図である。図1および図2において、実装装置1の左右に配置された移載部40A、40Bと、同じく左右に配置された実装部50A、50Bのうち、左側の移載部40Aと実装部50Aを二点鎖線で示し、右側の移載部40Bと実装部50Bを実線で示している。図4は図1と同様な平面図において、左右の実装部50A、50Bを二点鎖線で示し、支持基板Wの搬入・搬出状態を説明するための図である。図5は図2と同様な正面図において、左側の移載部40Aと実装部50Aの図示を省略し、認識カメラの状態を説明するための図である。図6は実施形態による実装装置の構成を示すブロック図である。図7Aおよび図7Bは電子部品としての半導体チップを供給するウエーハリングを示す図である。これらの図において、実装装置1に対して左右方向をX方向、前後方向をY方向、上下方向をZ方向とする。
 図1ないし図6に示す実装装置1は、半導体チップt等の電子部品を供給する部品供給部10と、支持基板Wが載置されるステージ21を備えるステージ部20と、ステージ21に対して支持基板Wを搬入および搬出する基板搬送部30と、部品供給部10から半導体チップtを取り出す一対の移載部40と、一対の移載部40が取り出した半導体チップtを受け取ってステージ21に載置された支持基板Wに実装する一対の実装部50と、各部の動作を制御する制御部60とを具備している。
 部品供給部10は、半導体チップt毎に個片化された半導体ウエーハTが貼着された樹脂シートSを保持するウエーハリング11(図7A,7B)と、ウエーハリング11を着脱自在に保持し、不図示のXY移動機構によりXY方向に移動可能なウエーハリングホルダ12と、ウエーハリング11上に貼着された半導体チップtを撮像する第1のカメラ13と、移載部40によって半導体チップtを取り出すときに、取り出される半導体チップtをウエーハリング11の下側から突き上げる突き上げ機構(不図示)とを備えている。
 突き上げ機構は、移載部40による半導体チップtの取り出しポジションに固定的に設けられている。ウエーハリング11上の各半導体チップtは、ウエーハリングホルダ12により取り出しポジションに順次位置付けられるようになっている。第1のカメラ13は、取り出しポジションの真上に配置されており、取り出しポジションに位置付けられた半導体チップtを撮像してチップ位置を認識するためのものである。
 部品供給部10は、さらに不図示のウエーハリング11の交換装置を備えている。交換装置は、実装装置1の前面側に設けられた収納部(ウエーハリング11を収容する溝部を上下方向に複数備えたもの、マガジンとも言う。)と、ウエーハリング搬送部とを備えている。交換装置は、ウエーハリングホルダ12上に未使用のウエーハリング11を供給し、半導体チップtの取り出しが完了したウエーハリング11を収納部に収納し、新たなウエーハリング11をウエーハリングホルダ12に供給する。
 支持基板Wに実装される電子部品は、1種類の半導体チップtに限られるものではなく、複数種類の半導体チップ、さらには半導体チップとダイオードやコンデンサ等であってもよい。実施形態の実装装置1は、半導体チップ、ダイオード、コンデンサ等を含む複数種類の電子部品を支持基板W上に実装してMCPを製造する際に好適に用いられる。MCPの構成例としては、複数種類の半導体チップを備えるもの、1種類の半導体チップとダイオードやコンデンサ等とを備えるもの、さらに複数種類の半導体チップとダイオードやコンデンサ等とを備えるものが挙げられる。
 部品供給部10は、個片化された半導体ウエーハTが貼着されたウエーハリング11を用いたチップ供給機構に限定されるものではない。部品供給部10には、例えばテープフィーダやトレイを用いたチップ供給機構を適用することも可能である。テープフィーダとは、テープ状の樹脂シートに凹状(エンボス状)のポケットを連続して形成したキャリアテープ(エンボスキャリアテープとも呼ばれる。)の各ポケットに収容された半導体チップtを1つずつ供給するものである。キャリアテープは、半導体チップtを収容したポケットが上からカバーテープにより蓋をされ、リールに巻かれた状態で収納されている。このリールからキャリアテープを繰り出し、カバーテープを剥離しながら、各ポケットを半導体チップtの取り出しポジションに順次位置付けるように構成される。
 このようなテープフィーダを用いる場合、1つのテープフィーダから左右の移載部40A、40Bで交互に半導体チップtをピックアップするようにしてもよいし、2つのテープフィーダを並列に配置して左の移載部40Aで左側のテープフィーダから半導体チップtをピックアップし、右の移載部40Bで右側のテープフィーダから半導体チップtをピックアップするようにしてもよい。さらに、品種の異なる半導体チップtを収容したテープフィーダを複数種類装備できるように構成し、複数種類の半導体チップtを選択的に供給できるように構成することも可能である。このような構成は、1つの支持基板Wに複数種類の半導体チップtを実装する場合に有効である。
 また、ウエーハリング11による半導体チップtの供給と、テープフィーダによる半導体チップtの供給とを両方設けるようにしてもよい。具体的には、ウエーハリングホルダ12の左側に左の移載部40A用のテープフィーダを配置し、右側に右の移載部40B用のテープフィーダを配置する。各移載部40A、40BにXY移動装置を設けて、ウエーハリング11上から半導体チップtを取り出す取り出しポジションと、テープフィーダから半導体チップを取り出す取り出しポジションとに、移載部40A、40Bの移載ノズル44を移動可能に構成するとよい。
 ステージ部20は、複数の実装領域を有する支持基板Wが載置されるステージ21と、ステージ21をXY方向に移動させる不図示のXY移動機構とを備える。XY移動機構は、ステージ21上に載置された支持基板Wの各実装領域が後に詳述する一定の実装ポジションに順に位置づけられるように、ステージ21を移動させる。ステージ21は、不図示の吸引吸着機構によって、載置された支持基板Wを吸着保持することが可能なように構成されている。ステージ21の上方には、支持基板Wを撮像するための第2のカメラ22が配置されている。第2のカメラ22は、例えば支持基板Wに設けられたグローバルマークを撮像し、支持基板Wの全体位置を認識するものであり、第1の認識部として機能するものである。支持基板Wの全体位置は、第2のカメラ22で支持基板Wの外形を撮像して認識するようにしてもよい。
 ステージ21上に載置される支持基板Wは、例えばFO-WLPの製造時に適用される疑似ウエーハの形成に用いられる基板であって、ガラス基板、シリコン基板、ステンレス等の金属基板等からなる。擬似ウエーハとは、個片化された複数の半導体チップ等の電子部品を平面的に配置したものを、電子部品間を樹脂封止して1枚の板状に成形した状態のものである。従って、擬似ウエーハの形成に用いられる支持基板Wの形状は、円形に限られるものではなく、四角形やそれ以外の多角形、楕円形等であってもよく、その形状は特に限定されるものではない。支持基板Wは、上述したようにFO-WLPプロセスでMCPを製造する際に用いられる基板、すなわち各実装領域に複数の半導体チップやコンデンサ等の電子部品が実装される基板であることが好ましい。
 支持基板Wは、半導体チップt等の電子部品が実装される複数の実装領域を有している。ただし、複数の実装領域は支持基板W上に仮想的に設定されているものであり、各実装領域を示すマークやパターン等は形成されていない。支持基板Wは、基板全体の位置を示すグローバル認識用のアライメントマークを備えていてもよいが、個々の実装領域の位置を示すローカル認識用のアライメントマークは備えていない。グローバル認識方式とは、支持基板の複数の実装領域に電子部品をそれぞれ実装するときに、1回の基板の位置検出でその基板上の複数の実装領域に対して電子部品の実装を行う方式のことを言う。ローカル認識方式とは、支持基板上の複数の実装領域に電子部品をそれぞれ実装するときに、電子部品を実装するごとに電子部品の実装領域の位置検出を行う方式のことを言う。
 基板搬送部30は、搬入コンベア31と、搬出コンベア32と、搬入コンベア31とステージ21との間で支持基板Wを受け渡す第1の受け渡し部33と、ステージ21と搬出コンベア32との間で支持基板Wを受け渡す第2の受け渡し部34と、搬入コンベア31の配置位置から搬出コンベア32の配置位置にかけて設けられ、第1および第2の受け渡し部33、34を移動可能に支持するガイド部35とを備えている。第1および第2の受け渡し部33、34は、それぞれ回転モータで駆動されるタイミングベルト(いずれも不図示)によりガイド部35に沿って個別に移動可能なように構成されている。ただし、受け渡し部33、34の駆動は、タイミングベルトに限られるものではなく、リニアモータ等の他の駆動装置により実施してもよい。
 第1および第2の受け渡し部33、34は、同一構成を有しており、ガイド部35に沿って移動する可動部33a、34aと、可動部33a、34aに上下動可能に設けられた水平アーム33b、34bと、水平アーム33b、34bに支持基板Wを上側から吸引吸着して保持するように設けられた4個の吸着ノズル33c、34cとを備えている。吸着ノズル33c、34cは、支持基板Wの外縁部分の半導体チップtが実装されることの無い余白部分を吸着できるように、水平アーム33b、34bに固定されている。
 一対の移載部40は、2つの移載部40A、40Bを左右反転した状態で配置したものであり、2つの移載部40A、40Bは左右反転していることを除いて、同一構成を有している。図1、図2、および図3を参照して右側の移載部40Bの構成を説明する。移載部40Bは、昇降装置41と、昇降装置41に上下動可能に支持されたアーム体42と、アーム体42の先端部に設けられた反転機構43と、反転機構43に設けられた吸着ノズル(移載ノズル)44とを備えている。昇降装置41は回転モータ45を備え、不図示のボールねじ機構を介してアーム体42を上下に移動させる。
 反転機構43は、アーム体42の先端部で装置前側の側面に固定され、Y方向に延びる回転軸がアーム体42を貫通して設けられた回転駆動部46と、回転駆動部46の回転軸に連結された反転アーム47とを備える。反転アーム47は、その先端部が装置左方向を向く水平状態と、右方向を向く水平状態との間で、上側に円弧を描く軌跡で180度反転する。吸着ノズル44は、反転アーム47が左方向を向く水平状態とされた状態で、半導体チップtを真空吸着する吸着面が下を向くように反転アーム47に取り付けられる。左側の移載部40Aも、各部の配置が左右反転している以外は同じ構成を有している。
 左右の移載部40A、40Bは、吸着ノズル44の吸着面が下を向くように反転アーム47を回転させた状態で、吸着ノズル44の吸着面が突き上げ機構の真上(取り出しポジション)に位置する位置関係で配置されている。このため、両移載部40A、40Bの吸着ノズル44が同時に取り出しポジションに位置するように反転されると、吸着ノズル44同士(反転アーム47同士)がぶつかってしまう。そこで、吸着ノズル44は、吸着面が上向きに反転された状態を待機状態とし、この待機状態から交互に取り出しポジションに移動するように制御される。
 一対の実装部50は、一対の移載部40と同様に、同一構成を有する2つの実装部50A、50Bを左右反転した状態で配置したものである。図1、図2、および図3を参照して右側の実装部50Bの構成を説明する。実装部50Bは、側面視で門型をなす支持フレーム51と、支持フレーム51上にX方向に沿って移動可能に支持されたX方向移動ブロック52と、X方向移動ブロック52の左側の側面に設けられたY方向移動装置53と、Y方向移動装置53にY方向に移動可能に設けられた可動体54と、可動体54に上下方向に移動可能に設けられた実装ヘッド55とを備えている。実装ヘッド55の下端には、下面に半導体チップtの保持面を備えた実装ツール56が設けられている。実装ツール56は、半導体チップtの品種(特に大きさ)に合わせて交換可能とされている。実装部50Bは、実装ツール56のオートチェンジャを備えていてもよい。
 実装部50のフレーム材料には、一般的にアルミニウム等の金属材料が用いられる。ただし、駆動部の発熱によるアルミニウム等の熱膨張によって、実装ヘッド55の移動位置にずれが生じるおそれがある。このような熱膨張による位置ずれを出来るだけ少なくするために、アルミニウム等の金属材料とセラミックスとの複合材料を使用することが好ましい。具体的には、X方向移動ブロック52とY方向移動装置53の本体をアルミニウムとセラミックスとの複合材料等で構成することが好ましい。アルミニウムとセラミックスとの複合材料としては、例えばアルミニウムと炭化ケイ素(SiC)との複合材料が挙げられる。このような複合材料によれば、例えばアルミニウムに比べて熱膨張係数を6割程度に低減することができる。
 さらに、装置の稼働に伴うフレーム材料の熱膨張量を予め測定しておき、この熱膨張量を実装ヘッド55の補正データに加味するようにしてもよい。実装部50のフレーム材料の熱膨張による補正データは、例えば以下のようにして取得する。まず、実装ヘッド55の実装ツール56の近傍に、実装ツール56の位置を確認するターゲット(不図示)を設けておき、半導体チップtの受け取りポジションに位置するターゲットの位置を後述する第3のカメラ57で認識する。次いで、実装ヘッド55を実装ポジションまで移動させ、このときのターゲットの位置を第2のカメラ22で認識する。このようなターゲットの位置認識を、実装ヘッド55を受け取りポジションから実装ポジションに所定回数移動させた後に再度実施する。このような操作によって、装置の稼働に伴うフレーム材料の熱膨張による実装ヘッド55の位置ずれ量を取得する。実装ヘッド55の位置ずれ量に基づく補正データは、後述する実装ヘッド55の位置補正時に加味される。
 X方向移動ブロック52は、X方向ガイド部材52aを介して支持フレーム51上に取り付けられており、モータにより駆動されるボールねじ機構(不図示)によってX方向に移動可能とされている。Y方向移動装置53は、可動体54をY方向に移動自在に支持するY方向ガイド部材53aと、モータにより駆動されるボールねじ機構(不図示)とを備え、可動体54をY軸方向に移動可能としている。図示していないが、実装部50Bは実装ヘッド55を上下方向(Z方向)に移動させる移動装置を備えている。上下方向の移動装置(移動の案内手段)としては、例えばリニアモーションガイド(LMガイド)やクロスローラガイド等が知られており、これらのいずれを使用してもよい。これらのうち、クロスローラガイドを上下方向の案内手段として用いた場合、LMガイドを用いた場合に比べて、繰り返し同じ高さ位置まで下降させたときの水平方向の位置の再現性が高い、つまり水平方向の位置ずれが生じにくいという特徴がある。また、実装ヘッド55は不図示の回転方向(θ方向)の補正機構を備えている。左側の実装部50Aも、各部の配置が左右反転している以外は同じ構成を有している。
 実装部50Bは、移載部40Bによって部品供給部10から取り出された半導体チップtを吸着ノズル44から受け取り、受け取った半導体チップtをステージ21上に載置された支持基板W上に実装する。実装部50Aも同様であり、移載部40Aによって部品供給部10から取り出された半導体チップtを吸着ノズル44から受け取り、受け取った半導体チップtをステージ21上に載置された支持基板W上に実装する。実装ツール56がステージ21上の支持基板Wに半導体チップtを実装する位置である実装ポジションは、定位置に設定される。このため、ステージ21は、支持基板W上の各実装領域を順次実装ポジションに位置付けるように移動制御される。ここで、定位置は、例えばステージ21のXY方向への移動可能範囲のセンターとされる。前述した第2のカメラ22は、例えば実装ポジションの真上に配置されている。なお、図1はステージ21が基板搬送部30により支持基板Wの搬入/搬出が行われる搬入/搬出ポジションに位置した状態を示しているため、ステージ21は移動可能範囲のセンターから装置後方側に少しずれた位置に存在している。
 実装ポジションは、右側の実装部50Bの実装ツール56が半導体チップtを支持基板W上に実装する位置を定位置としているだけでなく、左側の実装部50Aと右側の実装部50Bにおいても同一の定位置とされている。すなわち、左側の実装部50Aにより半導体チップtを支持基板W上に実装する位置は、右側の実装部50Bにより半導体チップtを支持基板W上に実装する位置と同一であり、このような同一の実装ポジションで一対の実装部50A、50Bにより交互に半導体チップtの実装が行われる。
 支持基板Wの各実装領域は、ステージ部20のXY移動機構により順に一定の実装ポジションに位置付けられるため、左右の実装部50A、50Bの実装ツール56は、それぞれ移載部40A、40Bの吸着ノズル44から半導体チップtを受け取る位置(受け取りポジション)から一定の実装ポジションまで移動する。これら実装ツール56の移動経路の下方には、実装ツール56に吸着保持された半導体チップtを下側から撮像する第3のカメラ57がそれぞれ配置されている。第3のカメラ57は、実装ツール56の移動経路よりも下側で、ウエーハリングホルダ12よりも上側の高さに配置される。第3のカメラ57は、左側の実装部50Aにおける実装ツール56の移動経路と右側の実装部50Bにおける実装ツール56の移動経路のそれぞれに設置されている。第3のカメラ57は、第2の認識部として機能するものである。
 実施形態の実装装置1は、図6に示すように、制御部60を備えている。制御部60は、記憶部61に記憶された情報に基づいて、部品供給部10、ステージ部20、基板搬送部30、移載部40、実装部50の動作を制御し、半導体チップtを含む電子部品を支持基板Wの各実装領域に順に実装する。記憶部61には、後述するステージ21の移動位置誤差の取得工程により得られたステージ21の移動位置誤差を補正するデータも記憶されており、この補正データに基づいてステージ21の移動が制御される。
[実装装置の動作(電子部品の実装)]
 次に、実装装置1を用いた半導体チップt等の電子部品の実装工程について説明する。支持基板Wの各実装領域に半導体チップt等の電子部品を実装するにあたって、グローバル認識方式のみを適用する場合、実装領域の位置認識は行われないため、各実装領域に対する半導体チップtの位置決め精度は、支持基板Wのグローバルマーク等の認識精度とステージ21のXY移動機構の機械加工精度等に頼ることになる。しかしながら、ステージ21の移動をガイドするガイドレール等を、所望の長さにわたって±5μm以下の精度で仕上げることは、金属加工上実質的に不可能である。ましてや、所望の長さを有するガイドレールを金属フレーム等に±5μm以下の直線性とうねりで組み付けることは尚更不可能である。そこで、ステージ21の移動位置誤差を測定し、ステージ21の移動を補正するデータを取得(キャリブレーション)する。
{ステージ21の移動位置誤差(補正データ)の取得工程(キャリブレーション工程)}
 ステージ21の移動位置誤差を補正するデータは、図8に示すような校正基板71を使用して取得する。校正基板71は、例えばガラス製の基板に位置認識用のドットマーク72が予め設定された間隔で行列状に設けられたものである。校正基板71のドットマーク72は、例えば縦300mm×横300mmの範囲内に3mm間隔で設けられている。ドットマーク72は、金属薄膜等で形成されており、エッチングやスパッタリング等の成膜技術を用いて形成することができる。ドットマークの直径は、例えば0.2mmである。このような校正基板71をステージ21上に正確にセットする。校正基板71のセット方法は特に限定されないが、例えば以下に示すような方法により実施される。ここで、校正基板71は支持基板Wと同じ大きさを有し、ドットマークが設けられた範囲は支持基板W上の全ての実装領域を含む範囲と同じ大きさとされている。
(校正基板71のセット)
 上述したような校正基板71を作業者の手作業によってステージ21上にセットする。校正基板71のセットは、校正基板71をステージ21上に載置した後、校正基板71の平行調整(ドットマーク72の並び方向をXY方向に合わせる調整)を行うことでなされる。平行調整は、支持基板Wのグローバルマークの撮像に用いる第2のカメラ22を利用して行う。まず、ステージ21上に載置された校正基板71上において、例えば図8に示すように、校正基板71の左手前の角部に位置するドットマーク72が第2のカメラ22の撮像視野22aの中心となるようにステージ21の位置を調整する。
 この状態からステージ21を低速(カメラ22の視野22a内をドットマーク72がゆっくりと流れていくくらいの速度)でX方向左側に向けて移動させる。このとき、作業者は第2のカメラ22の撮像画像をモニタで監視し、第2のカメラ22で撮像されるドットマーク72の位置が撮像視野22aに対して上側または下側にずれてきたらステージ21の移動を停止させ、ずれをなくす方向に校正基板71の傾きを手動で調整する。図8の撮像視野22aは、ステージ21の移動に伴って撮像視野22a内に現れるドットマーク72の位置が徐々に下側にずれる状態の例を示している。
 校正基板71の傾きを調整したら、また左手前の角部に位置するドットマーク72が第2のカメラ22の視野22aの中心となるようにステージ21の位置を調整し、ステージ21を低速でX方向左側に向けて移動させる。作業者は、同様にモニタでドットマーク72の位置がずれていくか否かを監視する。そして、位置がずれてきたらステージ21の移動を停止させ、校正基板71の傾きを調整する。このような動作を、校正基板71の右手前の角部に位置するドットマーク72まで外れることなくモニタ画面に映し出されるまで繰り返し行う。左手前角部のドットマーク72から右手前角部のドットマーク72まで、カメラ22の視野22a内にドットマーク72を取り込めるように調整できれば、校正基板71のセットが完了する。作業者によるステージ21の移動は、タッチパネルとジョイスティックの操作等により行う。
(ステージ21の移動位置誤差(補正データ)の取得)
 次に、上記したような方法でステージ21上にセットされた校正基板71のドットマーク72の位置を順次検出することによって、移動位置誤差およびそれに基づく補正データを取得する。校正基板71上のドットマーク72の撮像は、例えば図9に示すように、校正基板71の中央に位置するドットマーク72を最初に撮像するドットマーク(1番目のドットマーク)72aとし、そのドットマーク72aから渦巻き状の軌跡で外側に向かって順に移動させながら、最後のドットマーク72nまで行う。
 まず、1番目のドットマーク72aがカメラ22の視野の中心となるように、作業者がモニタを見ながらステージ21を操作して校正基板71を移動させる。中央のドットマーク72aは、他のドットマーク72と見分けられるように、ドットマーク72aに隣接して識別用のマークが設けられている。図9では隣接マークを示す代わりに、ドットマーク72aを丸十字で示している。1番目のドットマーク72aをカメラ22の視野中心となるように位置付けたら、ドットマーク72の検出動作が開始される。ここから先は、制御部60による自動制御で行なわれる。検出動作は、作業者がタッチパネルに表示される検出動作の開始ボタンを押す(タッチする)ことで開始される。
 ドットマーク72の検出動作が開始されると、まず1番目のドットマーク72aが撮像される。撮像された1番目のドットマーク72aの画像は、公知の画像認識技術を用いて処理され、カメラ22の視野中心に対するドットマーク72の位置ずれが検出される。検出された位置ずれは、ステージ21の移動位置(XY座標)と対になる情報として記憶部61に記憶される。中央のドットマーク72aの位置検出が完了したら、取り込み順序にしたがって次(2番目)のドットマーク72をカメラの視野内に位置付けるべくステージ21が移動する。図9の例では、2番目のドットマーク72は、1番目のドットマーク72aの左隣に位置しているので、ステージ21をX方向右側へ3mm移動させる。
 ステージ21の移動は、ステージ21のXY移動機構に設けられたリニアエンコーダの読み取り値に基づいて行われる。リニアエンコーダのスケールには、熱対策として熱膨張係数が小さいガラス製スケールを用いることが好ましい。ステージ21の移動が完了したら、1番目のドットマーク72aと同様にして、2番目のドットマーク72の位置ずれが検出され、このときのステージ21のXY座標と対となる情報として記憶部61に記憶される。ドットマーク72の撮像は、ステージ21を停止させた後、ステージ21の停止時に発生する振動が収まるだけの時間を待った後に行われる。このような動作を校正基板71上の全てのドットマーク72に対して行い、それぞれの位置に対応するドットマーク72の移動位置ずれデータを取得し、補正データとして記憶部61に記憶する。
(支持基板Wの熱膨張に伴う補正データの取得)
 半導体チップtの接合に用いられるダイアタッチフィルムの接合性を向上させるために、ステージ21上にヒータを設けて支持基板を加熱することがある。このような場合、ステージ21に載せる前と後とで支持基板Wの温度が変わる(上がる)ため、支持基板Wがその分だけ熱膨張する。支持基板Wが熱膨張すると、ステージ21と実装ヘッド55を精度よく移動させたとしても、支持基板Wが延びた分だけ実装位置がずれてしまう。
 そこで、ヒータの加熱によって生じる支持基板Wの熱膨張量を予め測定する等して把握しておき、支持基板Wに半導体チップtを実装するときには、予め把握した熱膨張量に応じた係数(パーセンテージ)を補正データに乗じてステージ21の移動を制御することが好ましい。このとき、ヒータの形状や配置、ステージ21の構造等の要因で、支持基板W全体が均一に熱膨張するとは限らないので、熱膨張の分布も合わせて把握するようにしてもよい。例えば、支持基板W上の領域を10行×10列等の格子状の複数の領域に分割し、分割した領域毎に熱膨張量(各測定点の熱膨張による変位)を測定する。そして、領域毎にステージ21の補正データに乗ずる係数を切換えるようにしてもよい。
 また、支持基板Wがステージ21上に載置されてから支持基板Wの熱膨張がステージ21の温度に対して飽和するまで間の所定の経過時間毎に支持基板Wの熱膨張量を計測し、所定の経過時間毎の熱膨張量に応じた係数を求めておくようにしてもよい。このとき、支持基板W上を複数の領域に分割した領域毎に、熱膨張量に応じた係数を求めるようにしてもよい。そして、半導体チップtの実装を行うときには、支持基板Wがステージ21上に載置されてからの経過時間毎に、その経過時間に応じた係数に切換え、その係数を補正データに乗じてステージ21を移動させるようにする。このようにすることによって、ステージ21の温度に対して支持基板Wの熱膨張が飽和状態になることを待たずして、当該支持基板Wに対して半導体チップtの実装を開始することができ、半導体チップtの実装を効率よく実施することができる。
(ステージ21の移動位置の補正)
 ステージ21を移動させるときには、ステージ21の移動位置誤差の取得工程で求めた補正データを参照して、ステージ21の移動位置を補正する。まず、支持基板W上において最初に半導体チップtが実装される実装領域を実装ポジションに位置付けるためにステージ21を移動させる。このとき、制御部60は記憶部61に記憶された最初の実装領域の位置情報(XY座標)と上述した補正データを参照し、最初の実装領域を実装ポジションに位置付けるときに必要な補正値を選定する。最初の実装領域を実装ポジションに位置付けるときのステージ21の移動量を、選定した補正値分だけ補正する。ステージ21がヒータを有する場合には、上記した支持基板Wの熱膨張量に基づく係数を、ステージ21の補正データに乗ずるようにすることが好ましい。
 図10に実装領域(xi,yi)MAを実装ポジションPに移動させる例を示す。実装領域MAをそのまま実装ポジションPに移動させると、機械加工精度等に基づいて位置ずれ(Δni,Δmi)が生じる場合には、位置ずれ量(Δni,Δmi)を補正データから求め、ステージ21の移動量に位置ずれを打ち消す補正値(-Δni,-Δmi)を加えてステージ21を移動させる。このようにして、支持基板W上の各実装領域を実装ポジションPに順次位置付ける。上記した例では補正データを3mm間隔で取得しているため、実装領域が補正データを取得した位置と丁度一致するとは限らない。そこで、実装領域がドットマーク72の位置ずれを取得した位置の間にあるときには、隣接する2つの位置ずれのデータを線形補間して、その実装領域に該当する位置ずれのデータを近似的に算出して補正値として用いる。
 上述したステージ21の移動位置誤差(補正データ)の取得工程は、基本的には実装装置1を稼働させるときに実施し、その測定結果に基づいてステージ21の移動を制御すればよい。ただし、ステージ21や実装ヘッド55には、半導体チップtの実装を補助するヒータ等が組み込まれる場合があり、装置各部の温度が上昇して熱膨張により機械精度が低下するおそれがある。また、実装装置1による半導体チップtの実装工程の進行に伴って、実装ヘッド55を移動させるモータ等の発熱によっても、装置各部の機械精度が低下するおそれがある。このような温度上昇による移動誤差を考慮する場合、装置稼働時の1回のみに限らず、移動位置誤差(補正データ)の取得工程を定期的に実施してもよい。これによって、半導体チップt等の位置決め精度をさらに向上させることができる。
{電子部品の実装工程}
 上記したステージ21の移動位置誤差(補正データ)を取得し、補正データを記憶部61に記憶させた後、半導体チップt等の電子部品の支持基板Wへの実装工程を実施する。
(1)ウエーハリング11の搬入工程
 まず、不図示の収納部からウエーハリングホルダ12に未使用のウエーハリング11を搬入し、ウエーハリング11をウエーハリングホルダ12上に固定する。
(2)支持基板Wのセット工程
(2-1:支持基板Wの供給)
 搬入コンベア31上に搬入された支持基板Wを第1の受け渡し部33で吸着保持し、搬入/搬出ポジションに位置付けられたステージ21上に載置する。支持基板Wをステージ21に受け渡した第1の受け渡し部33は、搬入コンベア31の位置へ移動して待機する。この動作中において、第2の受け渡し部34は搬出コンベア32の位置で待機している。工程(2)は、工程(1)と並行して行ってもよいし、個別に行ってもよい。
 搬入コンベア31には、不図示のローダから支持基板Wが搬入される。ローダは、ウエーハリング供給部と同様に、支持基板Wを上下方向に隙間を開けて収容できるマガジンを昇降可能に設けたもので、搬入コンベア31の搬送レベルと同じ高さに位置付けられた支持基板Wをプッシャで押し出す、またはチャックで引き出す等によって、搬入コンベア31上に供給する。搬出コンベア32側には、ローダと同様の構成を有するアンローダが配置されており、搬出コンベア32から支持基板W(半導体チップtが実装された支持基板W)をマガジンに順次収容する。
(2-2:グローバルマークの検出)
 ステージ21上に載置された支持基板Wのグローバルマークを検出し、支持基板Wの位置を認識する。例えば図11に示すように、支持基板Wの4隅のうち、3つの角部に設けられたグローバルマークA、B、Cを、順次第2のカメラ22の下に移動させて撮像する。支持基板Wの移動は、ステージ21で行う。第2のカメラ22で撮像された各撮像画像に基づいて3つのグローバルマークA、B、Cの位置を検出し、検出した3つのグローバルマークA、B、Cの位置に基づいて支持基板WのXY方向の位置ずれとθ方向の位置ずれを求める。支持基板Wの位置ずれは、各種公知の方法により求めることができ、その方法は特に限定されない。以下に位置ずれの検出方法の一例を記す。
 図11において、実線はステージ21上に実際に置かれた支持基板Wを示し、二点鎖線はステージ21上に位置ずれなく置かれた状態の支持基板Wを示す。二点鎖線で記載された支持基板Wが理想の位置状態であり、このとき支持基板Wの中心はステージ21の中心位置O(x0,y0)と一致する。
 まず、支持基板Wに設けられた3つのマークA、B、Cの位置を公知の画像認識技術を用いて検出し、マークA、Bを結ぶ線分ABのX方向に対する傾きθ1とマークB、Cを結ぶ線分BCのY方向に対する傾きθ2との平均値から支持基板Wの傾きθ(=(θ1+θ2)/2)を求める。次いで、ステージ21の中心位置Oを回転中心として傾きθを無くすように支持基板Wを仮想的に回転させる。この状態を図11に点線で示す。このときの対角に位置するマークA、Cの中点M1(x1,y1)の移動量(Δx1,Δy1)を求める。そして、求めた移動量(Δx1,Δy1)と移動後の中点M2(x2,y2)と座標Oとの差(Δx2,Δy2)とを合わせた値(Δx1+Δx2,Δy1+Δy2)を支持基板WのXY方向の位置ずれとして求める。
 ステージ21上における支持基板Wの位置ずれが算出されたなら、この位置ずれを補正しつつ、支持基板W上の最初に半導体チップtが実装される実装領域を実装ポジションに位置付けるようにステージ21を移動させる。この際、各実装領域を実装ポジションに位置付けるためのステージ21の移動は、支持基板Wの位置ずれを補正するデータと、上述したステージ21の移動位置誤差に基づく補正データとにより補正される。本実施形態のように、ステージ21の移動機構がθテーブルを持たない場合には、支持基板Wの傾きは実装ヘッド55が備えるθ調整機構により、実装する半導体チップtの傾きを調整することで補正される。
(3)半導体チップtの移載工程
(3-1:半導体チップtの位置検出)
 ウエーハリングホルダ12にウエーハリング11が固定されると、ウエーハリング11上で最初に取り出される半導体チップtが取り出しポジションに位置付けられる。ウエーハリング11上の半導体チップtを取り出す順序は、記憶部61に予め記憶されているので、この順序にしたがって制御部60がウエーハリングホルダ12の移動を制御する。従って、最初の半導体チップtが取り出された後は、記憶部61に記憶されている順序に基づいてウエーハリングホルダ12のピッチ移動が行われる。一般的には、図7Aに矢印で示すように、1行毎に移動方向を切り替える軌跡で移動される。
 半導体チップtが取り出しポジションに位置付けられると、この半導体チップtの2つのアライメントマークを第1のカメラ13で撮像する。2つのアライメントマークの撮像は、2つのアライメントマークを第1のカメラ13の撮像視野内に同時に取り込めるのであれば1回で行うことが可能であり、また2回に分けて行ってもよい。この撮像画像から求めた2つのアライメントマークの位置に基づいて半導体チップtの位置を検出する。半導体チップtの位置が取り出しポジションに対してずれている場合、その位置を補正するようにウエーハリングホルダ12を移動させる。半導体チップtの移載工程(3)は、支持基板Wのセット工程(2)と並行して行ってもよいし、個別に行ってもよい。
 取り出しポジションに位置付けられた半導体チップtの位置ずれの検出は、特に限定されるものではなく、各種公知の方法にしたがって実施される。例えば、半導体チップt上の対角位置に設けられた2つのアライメントマークの撮像画像から、公知の画像認識技術を用いて各アライメントマークの位置を検出する。求めたマークの位置から2つのマークを結ぶ線分の傾きを求め、その傾きと予め記憶部61に記憶しておいた位置ずれのない半導体チップtにおけるマーク間を結ぶ線分の傾きとを比較し、その差を半導体チップtの傾きずれとして検出する。また、実際のアライメントマーク間の中点の位置と記憶部61に記憶されている位置ずれの無い半導体チップtのアライメントマーク間の中点の位置との差を半導体チップtのXY方向の位置ずれとして求める。
(3-2:半導体チップtの取り出し)
 一方(例えば左側)の移載部40Aの反転機構43を駆動させて、待機状態の吸着ノズル44を取り出しポジションに反転移動させる。次いで、昇降装置41を駆動させてアーム体42と共に吸着ノズル44を下降させ、吸着ノズル44の吸着面を半導体チップtの上面(電極形成面)に当接させる。吸着ノズル44が半導体チップtに当接したら、吸着ノズル44に半導体チップtを吸着保持させる。吸着ノズル44に吸着力を作用させるタイミングは、吸着ノズル44が半導体チップtに当接する前でも、当接と同時でも、当接した後でも、適宜のタイミングに設定すればよい。
 吸着ノズル44が半導体チップtを吸着保持したら、吸着ノズル44を元の高さまで上昇させる。このとき、吸着ノズル44の上昇に合わせて不図示の突き上げ機構を動作させ、樹脂シートSからの半導体チップtの剥離を補助する。半導体チップtを吸引保持した吸着ノズル44が元の高さまで上昇したら、反転アーム47を反転させて吸着ノズル44を待機状態に戻す。この状態において、半導体チップtは下面(電極形成面と反対側の面)が上を向いた状態で待機する。
(3-3:半導体チップtの受け渡し)
 半導体チップtを保持して待機状態にある吸着ノズル44の直上の位置、つまり受け取りポジションに一方(左側)の実装ツール56を移動させる。実装ツール56が受け取りポジションに位置付けられたならば、昇降装置41を駆動させてアーム体42を上昇させ、吸着ノズル44に保持された半導体チップtを実装ツール56の保持面に受け渡す。吸着ノズル44は、半導体チップtを実装ツール56に受け渡した後、元の高さまで下降されて待機状態となる。この受け渡しの際に、実装ツール56に吸引吸着力を作用させるタイミングは、半導体チップtが実装ツール56に当接する前でも、当接と同時でも、当接した後(ただし、吸着ノズル44が下降を開始する前)でも、適宜のタイミングに設定すればよい。吸着ノズル44の吸引吸着力は、半導体チップtを実装ツールに受け渡した後で吸着ノズル44が下降を開始するまでの間に解除される。
(4)半導体チップtの実装工程
(4-1:半導体チップtの移動および位置検出)
 半導体チップtを受け取った実装ツール56は、実装ポジションに向けて記憶部61に予め設定された移動軌跡で移動する。半導体チップtは、電極形成面(チップ上面)が下を向いた状態で実装ツール56に保持されている。半導体チップtを保持した実装ツール56を実装ポジションへ移動させる途中で、第3のカメラ57上を通過させる。このとき、第3のカメラ57上で実装ツール56の移動を一旦停止させ、半導体チップtの2つのアライメントマークを第3のカメラ57で撮像する。この撮像画像から各アライメントマークの位置を検出し、検出した位置に基づいて実装ツール57に対する半導体チップtの位置ずれを求める。撮像が完了したら、実装ツール56の移動を再開する。
(4-2:半導体チップtの実装)
 実装ツール56に保持された半導体チップtが撮像された後、実装ツール56を実装ポジションに移動させ、実装ポジションに位置付けられた支持基板W上の実装領域に対して半導体チップtを実装する。このとき、第3のカメラ57による半導体チップtの位置検出の結果、実装ツール56に対して半導体チップtが位置ずれを生じていた場合には、検出した位置ずれを補正するように実装ツール56の移動を補正して、実装ツール56を実装ポジションに位置付ける。また、工程(2-2)において支持基板Wの傾きθが検出された場合には、この傾きθも実装ツール56で補正する。この後、実装ツール56を下降させて半導体チップtを支持基板Wの所定の実装領域に加圧して実装する。
 支持基板Wに対する半導体チップtの接合は、支持基板Wの表面、または半導体チップtの下面に予め貼付されているダイアタッチフィルム(Die Attach Film:DAF)の粘着力を利用して行う。半導体チップtの接合は、ステージ21にヒータを設けておき、加熱された支持基板Wに対して半導体チップtを加圧して実施してもよい。ヒータは実装ツール56に内蔵させてもよい。半導体チップtを予め設定された時間だけ加圧したら、半導体チップtの吸着を解除して、実装ツール56を元の高さまで上昇させる。実装が完了した実装ツール56は、受け取りポジションへ向けて移動する。
 上述した半導体チップtの実装工程の動作と並行して、ウエーハリングホルダ12に保持されたウエーハリング11上の半導体チップtのピッチ送り(次に取り出される半導体チップを取り出しポジションに位置付ける動作)と、半導体チップtの位置検出(工程(3)における(3-1)と同様の動作)と、他方(右側)の移載部40Bの吸着ノズル44による半導体チップtの取り出し(工程(3)における(3-2)と同様の動作)と、さらに他方(右側)の実装部50Bの実装ツール56による半導体チップtの受け取り(工程(3)における(3-3)と同様の動作)とを実行する。
 実装が完了した実装部50Aの実装ツール56を受け取りポジションに向けて移動させるのと同時並行して、受け取りポジションで半導体チップtを受け取った他方の実装部50Bの実装ツール56の実装ポジションへの移動を開始する。ステージ21は、次の実装領域を実装ポジションに位置付けるべくピッチ移動を開始する。実装ポジションに位置付けられた実装部50Bの実装ツール56は、実装部50Aと同様な動作(工程(4)における(4-1)および(4-2)と同様の動作)を行うことによって、半導体チップtを支持基板Wの所定の実装領域に加圧して実装する。実装が完了した実装ツール56は、受け取りポジションへ向けて移動する。
 上述した実装部50Aの実装ツール56による半導体チップtの受け取り動作および実装動作と、実装部50Bの実装ツール56による半導体チップtの受け取り動作および実装動作とを、ウエーハリング11の半導体チップtが無くなるまで交互に繰り返し行う。すなわち、左右の移載部40A、40Bの吸着ノズル44は、半導体チップtの取り出しを交互に行い、左右の実装部50A、50Bの実装ツール56は、半導体チップtの受け取りと実装を交互に行う。このようにして、ウエーハリング11の半導体チップtが無くなるまで、2つの実装部50A、50Bで半導体チップtの実装が交互に行われる。
 なお、後述の図12に示すように、1つの実装領域MAに複数の半導体チップt1~t3を実装する場合には、上述したように1つ目の半導体チップt1の実装が完了した後、部品供給部10に2つ目の半導体チップt2が搭載されたウエーハリング11をセットし、基板搬送部30のローダには1つ目の半導体チップt1が実装された支持基板Wをセットする。そして、上述した動作と同様の動作を実行することによって、1つ目の半導体チップt1が実装された各実装領域MAに対して2つ目の半導体チップt2の実装を順次行なう。このようにして、2つ目の半導体チップt2が、半導体チップt1の実装された全ての実装領域MAに実装されたならば、部品供給部10に3つ目の半導体チップt3が搭載されたウエーハリング11をセットし、また基板搬送部30のローダに半導体チップt1、t2が実装された支持基板Wをセットし、同様の動作によって3つ目の半導体チップt3の実装を行なう。このようにして、支持基板Wの各実装領域MAに複数の半導体チップt1~t3を実装する。
 1つの実装領域MAに複数の半導体チップt1~t3を実装する場合、上記したように1つ目の半導体チップt1を全ての支持基板Wに実装し終えた後に、2つ目の半導体チップt2に切換える実装方法に限られるものではない。例えば、1枚の支持基板Wに対して1つ目の半導体チップt1を実装し終えたら、2つ目の半導体チップt2に切換えるようにしてもよい。3つ目の半導体チップt3も同様であり、1枚の支持基板Wに対して2つ目の半導体チップt2を実装し終えたら、3つ目の半導体チップt3に切換えるようにする。すなわち、支持基板W単位で複数品種の半導体チップtの実装を行うようにしてもよい。この場合、1つの支持基板Wに対して全ての品種の半導体チップtを実装し終えるまで支持基板Wをステージ21上から取り外さないため、複数品種の半導体チップtの実装精度をさらに向上させることができる。
 上記した各品種の半導体チップ1を全ての支持基板Wに実装する方法において、1品種目の半導体チップt1を実装し終えた支持基板Wはステージ21上から一旦搬出され、2品種目の半導体チップt2を実装するときにステージ21上に再び載置される。このため、1品種目の半導体チップt1を実装するときと、2品種目の半導体チップt2を実装するときとでは、ステージ21上での支持基板Wの位置にずれ、すなわち置き位置ずれが生じる。ステージ21上でたまたま同じ位置になることはあっても、大抵はずれることになる。グローバル認識で支持基板Wの位置を認識しているとはいえ、認識誤差等の要因で支持基板Wの認識位置にずれが生じる可能性がある。従って、その分だけ1品種目と2品種目との相対位置精度が低下することが考えられる。これに対し、1品種目の半導体チップt1と2品種目の半導体チップt2とを、ステージ21から支持基板Wを外すことなく続けて実装した場合、認識誤差による位置ずれを防止することができる。従って、1品種目と2品種目との相対位置精度を向上させることができる。
 支持基板Wの複数の実装領域のそれぞれに実装する半導体チップtは、1品種に限られるものではない。1つの支持基板Wを複数の領域に区分けして、領域毎に異なる品種の半導体チップtを実装することも可能である。例えば、支持基板の半分の第1の領域にA品種の半導体チップtaを実装し、残りの半分の第2の領域にB品種の半導体チップtbを実装するようにしてもよい。A品種の半導体チップtaが実装された第1の領域からは、A品種の半導体パッケージが製造される。B品種の半導体チップtbが実装された領域からは、B品種の半導体パッケージが製造される。
 この場合、A品種の半導体チップtaとB品種の半導体チップtbとでは、後工程において形成される再配線層の回路パターンが異なるため、再配線形成用の露光パターンも異なることになる。このため、半導体チップta、tbの実装誤差を露光工程で補正することは益々難しくなることが考えられる。実施形態の実装装置および実装方法を適用した場合、A品種の半導体チップtaとB品種の半導体チップtbとの間でも、高い相対位置精度で実装することが可能である。従って、A品種の半導体チップtaが実装された領域に対する露光処理とB品種の半導体チップtbが実装された領域に対する露光処理とを一括して行うことも可能となり、生産効率を向上させることができる。
 第1の領域にA品種の半導体チップtaを実装し、第2の領域にB品種の半導体チップtbを実装するに際して、A品種の半導体チップtaとB品種の半導体チップtbとのサイズが異なる場合など、A品種の実装ピッチとB品種の実装ピッチとが異なることもある。このような場合には、A品種の半導体チップtaを実装するときと、B品種の半導体チップtbを実装するときとで、ステージ21の送り量を切換えることによって、複数品種の半導体チップta、tbを支持基板Wの複数の領域に良好に実装することができる。同様に、支持基板Wの第1の領域に第1のマルチチップパッケージを構成するC品種とD品種の半導体チップの組み合わせを実装し、第2の領域に第2のマルチチップパッケージを構成するE品種とF品種の半導体チップの組み合わせを実装するようにしてもよい。これらいずれの実装においても、1品種の半導体チップtずつ複数の支持基板Wに実装を行うようにしてもよいし、支持基板W単位で複数品種の半導体チップを実装するようにしてもよい。これらの具体的な実装工程は、前述した通りである。
 なお、このような場合においても、支持基板Wのグローバルマークの認識は最初に1回行えばよく、半導体チップtを実装する領域が第1の領域から第2の領域に移るときに改めて支持基板Wのグローバルマークを認識せずに済ませることができる。また、ステージ21にヒータを設ける等して支持基板Wを加熱する場合には、半導体チップtが先に実装される第1の領域と後に実装される第2の領域とで、ステージ21の補正データを切換えるようにしてもよい。このようにすることによって、第1の領域にA品種の半導体チップtaを実装している間に、支持基板Wにおける第2の領域に対応する部分の熱膨張量が拡大したときでも、それに対応することが可能となるので、半導体チップt(tb)の実装精度を高精度に維持することができる。上述したような支持基板W単位で複数品種の半導体チップtの実装を行う場合には、部品供給部10としてテープフィーダによるチップ供給機構を用い、複数品種に対応した複数のテープフィーダを装備するようにするとよい。
 上述した1品種の半導体チップt、もしくは複数品種の半導体チップt1、t2、t3または半導体チップta、tb等の実装が終了した支持基板Wは、以下に示す後工程に送られ、それにより半導体パッケージのようなパッケージ部品が作製される。すなわち、半導体チップの実装が終了した支持基板Wは、封止工程および再配線層の形成工程に順に送られる。封止工程においては、支持基板W上に実装された半導体チップ間の隙間に樹脂が充填され、これにより疑似ウエーハが形成される。疑似ウエーハは、再配線層の形成工程に送られる。再配線層の形成工程においては、半導体ウエーハの製造プロセスにおける回路の形成工程、すなわちレジスト材料等の感光材の塗布工程、感光材の露光および現像工程、エッチング工程、イオン注入工程、レジストの剥離工程等が実施され、これらの工程により疑似ウエーハの半導体チップ上に再配線層が形成される。再配線層が形成された疑似ウエーハは、ダイシング工程に送られ、そこで疑似ウエーハを個片化することによって、半導体パッケージのようなパッケージ部品が製造される。
 このように、実施形態のパッケージ部品の製造方法は、図14に示すように、支持基板Wの複数の実装領域のそれぞれに電子部品を実装する実装工程S1と、複数の実装領域に実装された電子部品を一括して封止することにより疑似ウエーハを形成する封止工程S2と、疑似ウエーハの電子部品上に再配線層を形成する再配線工程S3と、疑似ウエーハをダイシングしてパッケージ部品を製造するダイシング工程S4とを具備する。再配線層の形成工程S3は、上記したように感光材の塗布工程S31、感光材の露光および現像工程S32、エッチング工程S33、イオン注入工程S34、レジストの剥離工程S35等を備える。実施形態のパッケージ部品の製造方法における電子部品の実装工程は、実施形態の電子部品の実装方法に基づいて実施される。実施形態のパッケージ部品の製造方法において、支持基板Wの各実装領域に実装される電子部品は、上述したように1つの半導体チップtであってもよいし、また複数種の半導体チップや同じ品種の複数の半導体チップであってもよい。電子部品の品種や数は、特に限定されるものではない。
 実施形態の実装装置1においては、2つの実装部50A、50Bの実装ツール56の移動を、半導体チップtの受け取りポジションから実装ポジションまでの一定経路としていると共に、2つの実装部50A、50Bの実装ツール56による実装ポジションを一定の位置としている。さらに、支持基板Wの各実装領域は、ステージ部20のXY移動機構により実装ポジションに順に位置付けられる。この際、ステージ部20のXY移動機構によるステージ21の移動は、予め取得しておいたステージ21の移動位置誤差に基づく補正データを用いて補正される。従って、2つの実装部50A、50Bの移動誤差とステージ21の移動位置誤差に基づく半導体チップtの実装誤差を極力低減させることができる。このようにして、2つの実装部50A、50Bを用いることによる半導体チップtの実装時間(実装装置1としての1個の半導体チップtの実装に要するタクトタイム)の低減と半導体チップtの実装精度の向上とを両立させることができる。
 すなわち、2つの実装部50A、50Bの実装ツール56は、それぞれ半導体チップtの受け取りポジションから実装ポジションまでの一定経路を移動するだけであるため、たとえ移動誤差が生じたとしても1度の調整(キャリブレーション)で実装ポジションへの位置付けを修正することができる。さらに、2つの実装部50A、50Bが同一の実装ポジションで実装動作を行うため、個別の実装ポジションで実装する場合に比べて、実装精度を向上させることができると共に、実装ヘッドの移動位置の調整(キャリブレーション)を短時間で行うことができる。
 しかも、ステージ21の移動位置誤差を補正データを用いて補正するので、予め設定されたピッチで精度良く移動させることができ、これにより支持基板Wの各実装領域の実装ポジションへの位置付け精度を高めることができる。このため、±5μm以下の実装精度と0.6秒以下のタクトタイムとを同時に達成することができる。その結果、実装領域毎に位置検出用のマークが設けられていない支持基板Wに対して、半導体チップtを含む電子部品を相互の間隔が予め設定された間隔となるように精度よく実装することができ、しかも支持基板W上に半導体チップtを含む電子部品を生産性よく実装することができる。すなわち、2つの実装部50A、50Bによる交互実装によって、半導体チップtの実装に要するタクトタイムの短縮が図れると共に、共通の一定位置での実装とステージ21の移動誤差の補正により、実装精度の向上効果と生産性の低下防止効果とが得られる。
 例えば、2つの実装ヘッドが別々の一定位置で半導体チップを実装する場合を考える。この場合、2つの実装ヘッドのそれぞれの一定位置への移動位置の調整(キャリブレーション)を行う必要がある。通常、このような調整はそれぞれの一定位置に配置したカメラを用いて行う。このカメラ間の座標を合わせるときに誤差が生じると、その誤差が2つの実装ヘッド間の実装誤差として表れる。
 また、2つの実装ヘッドが別々の一定位置で半導体チップを実装する場合、支持基板上における半導体チップを実装する位置が2箇所になる。移動誤差は場所によって異なるので、移動誤差は2箇所で別々に測定する必要がある。1箇所での移動誤差の測定には、例えば3時間程度を要する。具体的には、300mm×300mmの支持基板について、行列状に3mm間隔で設定した測定点について移動誤差を測定する場合、基板上の測定点の数は、縦方向:300mm/3mm=100点、横方向:300mm/3mm=100点、100点×100点で10000点となる。1点の測定につき2秒要するとしたら、10000点×2秒=20000秒=約5時間33分となる。なお、1点の測定につき2秒要するとしたのは、ステージを停止させたときに発生する振動が収まるのに1秒強程度の待ち時間を見込んだためである。このため、2つの実装ヘッドが別々の一定位置で半導体チップを実装する場合には、実施形態の実装装置1に比べて、約5時間30分だけ余計に段取り時間がかかる。この時間分の生産量が減少する。
 なお、2つのカメラを用いて同時並行的に2箇所で測定を行えば、測定時間は1箇所の場合とおおよそ同等にできる。しかし、2つのカメラの座標系を合わせるためのキャリブレーションを行う必要があり、そのときに誤差が生じるおそれがある。これは位置精度を低下させる要因となる。また、カメラが2つ必要なのでコストも増加する。
 さらに、支持基板Wのステージ21を移動させず、実装ヘッドを各実装領域に移動させる構成とし、実装ヘッド側で補正データを作成することを考えると、基板ステージ側で補正データを作成する場合に比べて膨大な補正データが必要となり、キャリブレーションに要する時間が長大化する。すなわち、実装ヘッドは基板ステージとは異なり、基板上に半導体チップを実装する関係上、上下動機構が必須となる。そのため、補正データを作成するに当たっては、実装ヘッドのXY移動装置のうねりによる移動誤差の他、実装ヘッドの上下動に起因するXY方向の位置ずれをも考慮する必要がある。
 具体的には、実装ヘッドを支持するフレーム(例えばY軸移動装置)が左右方向において同じ位置にあったとしても、実装ヘッドを支持する可動体が右側に揺動している場合と左側に揺動している場合とでは、ステージ21上の支持基板Wに半導体チップtを実装する高さまで下降した位置での実装ヘッドの先端の水平方向位置が大きく異なってしまう。このため、実装ヘッドのX方向移動時またはY方向移動時の蛇行だけでなく、実装ヘッドを支持する可動体の揺動も実装位置ずれの要因に加わることになる。従って、ステージ21側においては、大きな移動誤差が生じずに済んでいた、上述した校正基板71のドットマーク72のピッチである3mm未満の移動であっても、実装ヘッド側においては実装ツールに大きな移動誤差(例えば、5μm以上)が生じるおそれがある。
 そこで、実装ヘッド側で補正データを作成するに当たっては、3mmよりも短い間隔、例えば1mmピッチ等の短い間隔毎に移動位置ずれを測定する必要があると考えられる。仮に、300mm×300mmの移動範囲に対して1mmピッチで移動位置ずれを測定したとすると、300点×300点で、90000点での測定が必要となり、3mmピッチで測定する場合(3mmピッチでは10000点)に比べて測定箇所が9倍となる。よって、測定時間も9倍となり、5時間33分×9=49時間30分かかることとなる。これでは実用的でない。
 しかも、可動体の揺動に加えて、基板ステージ側に上下方向のうねりがあった場合には、半導体チップを支持基板に実装するときに、高さ位置が支持基板上の場所によって異なることになる。実装ヘッドの可動体が傾斜して、実装ヘッドの上下動の方向が垂直方向に対して傾いていると、実装面(基板表面)の高さの違いで実装位置が水平方向にずれることになる。このようなことも考慮すると、補正データの測定がより複雑化し、さらに補正データの作成に多くの時間を要する。また、補正精度自体が低下するおそれがある。
 以上の点から、2つの実装部50A、50Bによる実装ポジションを同じ一定位置とし、かつ支持基板Wが載置されたステージ21を移動させて各実装領域を順次実装ポジションに位置付けるようにすると共に、ステージ21の移動誤差を補正データを用いて補正する構成を備える実装装置1は、実装精度の向上とタクトタイムの短縮とを両立させ、かつ高い生産性を得る上で有効であることが分かる。
 実施形態の実装装置1は、図12に示すように、1つの実装領域MAに複数種類の半導体チップt1、t2、t3等を実装する場合、あるいは1種類または複数種類の半導体チップtとダイオードやコンデンサ等とを実装する場合に有効である。前述したように、1つの実装領域に複数種類の電子部品を実装する場合、1つの実装領域(パッケージ)内での複数の電子部品の相対的な位置ずれが生じるおそれがあるため、1つの実装領域(パッケージ)に1つの半導体チップを組み込むシングルチップパッケージに適用可能な実装誤差を露光時に修正するという技術を適用することができない。このため、複数の電子部品の実装時の位置精度自体を高める必要がある。このような点に対して、実施形態の実装装置1は半導体チップtを含む電子部品個々の実装精度を高めることができるため、1つの実装領域内に複数の電子部品を実装する場合においても、1つの実装領域内における複数の電子部品の相対的に位置精度を高めることが可能になる。
{一対の実装部50による位置ずれ補正}
 2つの実装部50A、50Bを用いる場合、それら実装部50A、50Bの実装ツール56間に相対的な位置ずれが生じるおそれがある。このような点に対しては、実装ポジションの下方にカメラを配置し、実装ポジションに位置付けられた実装ツール56の位置をそれぞれ検出し、それら実装ツール56の相対位置のずれを検出して補正することが有効である。2つの実装ツール56間の相対的な位置ずれの検出には、図4に示す第4のカメラ23が用いられる。第4のカメラ23は、ステージ21の手前側端部に上向きに取り付けられている。第4のカメラ23は、実装ポジションに位置付けられた実装ツール56を下から撮像する。第4のカメラ23による撮像時には、ステージ21の移動により第4のカメラ23を実装ポジションの直下に移動させる。第4のカメラ23は、第3の認識部として機能するものである。
 2つの実装ツール56の移動位置ずれの検出は、実装ツール56に半導体チップtを保持させた状態で行う。なお、位置ずれの検出は、校正用に作製したダミーの半導体チップを用いて行ってもよい。さらに、半導体チップを用いずに、実装ツール56の吸着孔や実装ツール56の保持面に形成したマークを用いて、実装ツール56の位置ずれを検出してもよい。まず、前述の工程(3)の動作により実装ツール56に半導体チップtを保持させ、工程(4)の(4-1)の動作を行って半導体チップtの位置ずれを検出し、検出した位置ずれを補正して実装ツール56を実装ポジションに位置付ける(4-2)。実装ポジションに位置付けられた実装ツール56に保持された半導体チップtを第4のカメラ23で撮像する。制御部60は、第4のカメラ23の撮像画像に基づいて半導体チップtの位置を検出し、この位置データと予め記憶部61に記憶させておいた正規の位置とを比較し、半導体チップtの位置ずれを検出する。実装ツール56に移動位置ずれがなければ、半導体チップtは実装ポジションに位置ずれなく位置付けられる。位置ずれが生じていた場合、その位置ずれが実装ヘッド55の移動位置ずれとなる。
 上記した実装ポジションに位置付けられた半導体チップtの撮像および位置ずれの検出を、左右の実装部50A、50Bの実装ツール56に対してそれぞれ行う。双方の実装ツール56の移動位置ずれを比較し、差が生じている場合には、一方の実装部50Aの実装ツール56を基準とし、他方の実装部50Bの実装ツール56の移動位置を、求めた差分をなくす分だけ補正する。このようにすることで、2つの実装部50A、50Bを用いたことによる実装誤差の発生を解消することができる。
 実装ツール56の位置ずれ補正は、上記した一方の実装部50Aの実装ツール56の移動位置に他方の実装部50Bの実装ツール56の移動位置を合わせ込むことに限らない。例えば、左右の実装ツール56とも、予め決めておいた基準の実装位置に対して移動位置を合わせ込むように補正してもよい。このようにした方が位置合わせ精度を高めることができる。なぜなら、一方の実装ツール56の移動位置に他方の実装ツール56の移動位置を合わせる場合、基準となる一方の実装ツール56の移動位置自体に一定量のバラツキを含むことになる。同じ位置に移動しているように見えても、機械的な誤差等により、1μmとか2μmとかのずれが生じる。このようなバラツキを含む位置に対して他方の実装ツールを位置合わせする場合、一方の実装ツール56の移動位置のバラツキ以上の精度で他方の実装ツール56の移動位置を合わせることは困難になる。実装位置に対する、他方の実装ツール56の位置決め精度は、一方の実装ツール56よりも悪くなる。これに対し、両方の実装ツール56の移動位置を基準の実装位置に対して位置合わせする場合、基準の実装位置自体に位置のバラツキが含まれることはないので、両方の実装ツール56を実装位置に対して同じ程度の精度で位置合わせすることができる。
 実装ヘッド55(実装ツール56)の移動位置ずれの検出は、例えばモータの発熱等により実装ヘッド55の姿勢変形が生じるおそれがある場合には、実装動作が開始された後に設定タイミング(設定された時間または設定された実装回数)毎に実装ヘッド55の移動位置ずれの有無を検出するようにしてもよい。これによって、半導体チップtの実装精度をさらに向上させることができる。前述したように、半導体チップtの実装(接合)を補助するヒータを用いる場合、ヒータの加熱による熱膨張(熱変形)によって、実装ヘッド55に移動位置誤差が生じることがある。このような点に対しても、実装ツール56に保持された半導体チップtを第4のカメラ23で撮像して位置ずれを検出する工程を、予め設定したタイミング毎に実施することは有効である。
 上記した実施形態においては、一定の実装位置としての一定の実装ポジションに支持基板Wの各実装領域、および左右の実装部50A、50Bの実装ツール56を位置付けるものとして説明した。この一定の実装位置とは、実装装置1において常に変わらない同じ位置であってもよいし、例えば支持基板Wの大きさ等の条件に応じて設定変更が可能な位置であってもよく、少なくとも実装対象となる電子部品の実装開始から実装完了までの間、一定に保たれた位置であればよい。なお、一定の実装位置を設定変更が可能な位置とする場合、設定位置毎にステージ21の移動誤差を補正する補正データを取得しておき、実装位置を設定変更したときには、ステージ21の移動誤差の補正に用いる補正データを設定変更した実装位置に対応する補正データに切り替えるようにするとよい。
 また、ステージ21の移動誤差を補正する補正データは、ステージ21の移動可能な範囲の全域で取得してもよく、少なくとも支持基板W上の各実装領域を実装位置に位置付けるときにステージ21が移動する範囲内で取得するようにすればよい。さらに、ステージ21の移動誤差を補正する補正データは、ステージ21の移動位置誤差の実測値そのものを用いてもよいし、移動位置誤差を打ち消す補正値等、実測値を加工したものであってもよく、要はステージ21の移動誤差を補正するためのデータであればよい。
 上述した実施形態においては、半導体チップtの電極形成面(上面)が下を向く状態、つまり支持基板Wの上面に対向する状態で実装するフェイスダウンボンディングの例を説明したが、実施形態の実装装置および実装方法はこれに限られるものではない。実施形態のパッケージ部品の製造方法も同様である。実施形態の実装装置および実装方法とパッケージ部品の製造方法は、半導体チップtの電極形成面が上を向く状態、つまり支持基板Wの上面に半導体チップtの下面(電極形成面と反対側の面)を実装するフェイスアップボンディングにも適用可能である。さらに、実施形態の実装装置は、フェイスアップボンディングとフェイスダウンボンディングの兼用装置とすることもできる。
 フェイスアップボンディングに適用する場合には、移載部40と実装部50との間に、半導体チップtを一旦載置するための受渡し用ステージを設ける。なぜなら、ウエーハリング11上で半導体チップtは電極形成面が上を向いた状態で支持されている。半導体チップtを吸着保持した移載部40の移載ノズル44は、電極形成面が上を向いた状態のままで実装部50に半導体チップtを受け渡さなければならないが、移載ノズル44は半導体チップtの電極形成面を吸着保持してしいるので、実装部50の実装ツール56に半導体チップtを直接受け渡すことができない。
 フェイスアップボンディングに適用する場合には、移載部40の反転機構43を不要とする代わりに、移載ノズル44をXY方向に移動可能とするXY移動機構を設け、移載ノズル44を取り出しポジションと受渡し用ステージとの間で移動可能とする。受渡し用ステージは、左右の移載部40A、40Bに対応してそれぞれ設ける。フェイスアップボンディングとフェイスダウンボンディングの兼用装置に適用する場合、移載部40の反転機構43はそのままで、受渡し用ステージと移載ノズル44をXY方向に移動可能とするXY移動機構を設けた構成とする。フェイスダウンボンディングを行う場合には、受渡し用ステージを用いずに、実施形態と同様の動作で半導体チップtを実装する。
 フェイスアップボンディングを行う場合には、移載ノズル44で半導体チップtを取り出した後、反転機構43で移載ノズル44を反転させることなく、XY移動機構により移載ノズル44を受渡し用ステージ上に移動させる。移動させた移載ノズル44によって、半導体チップtを受渡し用ステージ上に載置する。この後、受渡し用ステージ上に実装部50の実装ツール56を移動させ、受渡し用ステージ上の半導体チップtを吸着保持させる。半導体チップtは電極形成面を上にした状態で受渡し用ステージ上に載置されるため、実装部50の実装ツール56は半導体チップtの上面(電極形成面)を吸着し、半導体チップtの下面(電極形成面と反対側の面)を支持基板Wの上面に実装する。半導体チップtの具体的な実装工程は、上述した実施形態と同様である。
 次に、本発明の実施例とその評価結果について述べる。
(実施例1)
 上述した実施形態の実装装置1を用いて、以下の条件で支持基板上に半導体チップの実装を実際に行なった。図13に支持基板W上に半導体チップtを実装した状態を示す。なお、目標実装精度は±5μm以内、目標タクトタイムは0.6秒以内とした。
<実装条件>
・半導体チップtのサイズ:4mm×4mm
・実装ピッチ(縦×横):36mm×36mm
・実装数(縦×横):5個×5個(計25個)
 図13に示すように、左上を開始点として、半導体チップtに付した番号の順に、奇数番目の半導体チップtは左側の実装部50Aで、偶数番目の半導体チップtは右側の実装部50Bで、交互に実装を行なった。部品供給部10から1個目の半導体チップtを取り出してから最後(25個目)の半導体チップtの実装が完了するまでの経過時間は、14.5秒であった。このようにして、支持基板Wに実装した25個の半導体チップtの実装位置ずれを、検査装置を用いて測定した。その結果を表1に示す。表1において、実装領域番号は、図13の半導体チップtの番号に対応する。使用実装ヘッドの欄の○印は、実装に用いられた実装ヘッドを示す。例えば、実装領域番号“1”では、左側の実装ヘッド55を用いて実装を行なったことを示している。位置ずれの欄は、各実装領域における半導体チップtのX方向およびY方向への位置ずれ量を示している。なお、単位はマイクロメートル[μm]である。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、半導体チップtのX方向における位置ずれの最大値は、実装領域番号15の位置における3.0μmであり、最小値は実装領域番号10の位置における-1.8μmであった。また、Y方向における位置ずれの最大値は、実装領域番号7の位置における2.0μmであり、最小値は実装領域番号19の位置における-0.8μmであった。25個の半導体チップtの実装精度は、いずれも目標の±5μm以内であることが確認された。実装に要した時間は14.5秒であったので、1つの半導体チップtの実装に要する時間は14.5秒/25個=0.58秒であった。よって、タクトタイムは0.58秒であり、目標の0.6秒以内を達成することができた。なお、実装に要した時間とは、部品供給部10から1つ目の半導体チップtをピックアップした左側の移載部40Aの吸着ノズル44から1つ目の半導体チップtを受け取った左側の実装部50Aの実装ツール56が実装ポジションの直上に移動し、下降を開始した時点から、最後(25個目)の半導体チップtを左側の実装部50Aの実装ツール56が支持基板W上に実装し、元の高さまで上昇し終えた時点までの時間のことである。この時間を、この間に実装した半導体チップの数(25個)で割ることで、タクトタイムを求めることができる。
(比較例1)
 支持基板Wを載置するステージの移動補正データを用いないこと以外は、実施例1と同一条件で半導体チップtを支持基板W上に実装した。支持基板Wに実装した25個の半導体チップtの実装位置ずれを、検査装置を用いて測定した。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、半導体チップtのX方向における位置ずれの最大値は、実装領域番号21の位置における19.5μmであり、最小値は実装領域番号10の位置における-24.4μmであった。また、Y方向における位置ずれの最大値は、実装領域番号3の位置における11.8μmであり、最小値は実装領域番号16の位置における-11.7μmであった。よって、半導体チップtの実装精度は、目標の±5μm以内を満足できないことが確認された。なお、1つの半導体チップtの実装に要するタクトタイムは0.58秒であり、実施例1と同一である。
(実施例2)
 上述した実施形態の実装装置1を用いて、以下の条件で支持基板上に半導体チップの実装を実際に行なった。なお、目標実装精度は±5μm以内とした。
<実装条件>
・半導体チップtのサイズ:4mm×4mm
・実装数(縦×横):20個×20個(計400個)
・実装ピッチ(縦、横):6mm
 実施例1と同様に、左上の実装領域を開始点として、半導体チップtの番号の順に、奇数番目の半導体チップtは左側の実装部50Aで、偶数番目の半導体チップtは右側の実装部50Bで、交互に実装を行なった。このようにして、支持基板Wに実装した400個の半導体チップtから48個の半導体チップtを抜き出し、それらの実装位置ずれを検査装置を用いて測定した。その結果を実施例1と同様に表3に示す。
Figure JPOXMLDOC01-appb-T000003
(実施例3)
 上述した実施形態の実装装置1を用いて、以下の条件で支持基板上に半導体チップの実装を実際に行なった。なお、目標実装精度は±5μm以内とした。
<実装条件>
・半導体チップtのサイズ:1mm×1mm
・実装数(縦×横):40個×51個(計2040個)
・実装ピッチ(縦、横):3mm
 実施例1と同様に、左上の実装領域を開始点として、半導体チップtの番号の順に、奇数番目の半導体チップtは左側の実装部50Aで、偶数番目の半導体チップtは右側の実装部50Bで、交互に実装を行なった。このようにして、支持基板Wに実装した2040個の半導体チップtから48個の半導体チップtを抜き出し、それらの実装位置ずれを検査装置を用いて測定した。その結果を実施例1と同様に表4に示す。
Figure JPOXMLDOC01-appb-T000004
(実施例4)
 上述した実施形態の実装装置1を用いて、以下の条件で支持基板の各実装領域上に第1の半導体チップと第2の半導体チップの実装を実際に行なった。なお、目標実装精度は±5μm以内とした。
<実装条件>
・第1の半導体チップtのサイズ:4mm×4mm
・第2の半導体チップtのサイズ:1mm×1mm
・第1の半導体チップtの実装数(縦×横):5個×5個(計25個)
・第2の半導体チップtの実装数(縦×横):5個×5個(計25個)
・第1の半導体チップの実装ピッチ(縦、横):36mm
・第1の半導体チップと第2の半導体チップとの間隔:0.5mm
 実施例1と同様に、左上の実装領域を開始点として、第1の半導体チップ(チップA)tの番号の順に、奇数番目の半導体チップtは左側の実装部50Aで、偶数番目の半導体チップtは右側の実装部50Bで、交互に実装を行なった。次に、第2の半導体チップ(チップB)tの番号の順に、奇数番目の半導体チップtは左側の実装部50Aで、偶数番目の半導体チップtは右側の実装部50Bで、交互に実装を行なった。このようにして、支持基板Wに実装した合計50個(第1の半導体チップ:25個、第2の半導体チップ:25個)の実装位置ずれを検査装置を用いて測定した。実装位置ずれは、第1および第2の半導体チップ(チップA、B)のそれぞれ位置ずれと第1および第2の半導体チップ(チップA、B)の相対位置を測定した。それらの結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 上述した実施形態において、支持基板Wは実装領域毎に位置検出用のマークが設けられておらず、パッケージ部品の製造工程の過程で除去されるものとして説明したが、これに限定されるものではない。実施形態の実装装置および実装方法によれば、例えば実装領域毎に位置検出用のマークがあり、パッケージ部品の一部として用いられるような基板に対しても、当然ながら位置検出用のマークに頼ることなく、精度よくかつ効率よく半導体チップ(電子部品)を実装することが可能であることは言うまでもない。
 なお、本発明のいくつかの実施形態を説明したが、これらの実施形態は例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施し得るものであり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
 1…実装装置、10…部品供給部、11…ウエーハリング、12…ウエーハリングホルダ、13…第1のカメラ、20…ステージ部、21…ステージ、22…第2のカメラ、23…第4のカメラ、30…基板搬送部、40,40A,40B…移載部、43…反転機構、44…吸着ノズル、47…反転アーム、50,50A,50B…実装部、51…支持フレーム、52…X方向移動ブロック、53…Y方向移動装置、55…実装ヘッド、56…実装ツール、60…制御部、61…記憶部、W…支持基板、t…半導体チップ。

Claims (11)

  1.  電子部品が実装される複数の実装領域を有する支持基板が載置されるステージと、前記複数の実装領域が一定の実装位置に順に位置付けられるように、前記ステージを移動させるステージ移動機構とを備えるステージ部と、
     それぞれ前記電子部品を保持して前記支持基板の前記実装領域に実装する第1および第2の実装ヘッドと、前記電子部品を保持した前記第1および第2の実装ヘッドを前記実装位置に交互に移動させる実装ヘッド移動機構とを備える実装部と、
     前記ステージ上に載置された前記支持基板の全体位置を認識する第1の認識部と、
     前記第1または第2の実装ヘッドに保持された前記電子部品の位置を認識する第2の認識部と、
     前記ステージ移動機構による前記ステージの移動位置誤差を補正する補正データを記憶する記憶部と、
     前記第1の認識部により認識した前記支持基板の位置データと前記第2の認識部により認識した前記電子部品の位置データと前記補正データとに基づいて、前記ステージと前記第1および第2の実装ヘッドの移動を制御する制御部と
     を具備する電子部品の実装装置。
  2.  前記実装部は、前記支持基板の1つの前記実装領域に複数の前記電子部品を実装する、請求項1に記載の実装装置。
  3.  さらに、前記実装位置に位置付けられた前記第1および第2の実装ヘッドの位置を個別に認識する第3の認識部を具備し、
     前記制御部は、前記第3の認識部により認識した前記第1および第2の実装ヘッドの位置データに基づいて、前記第1の実装ヘッドと前記第2の実装ヘッドとの位置ずれを補正する、請求項1または請求項2に記載の実装装置。
  4.  前記制御部は、予め設定されたタイミングに基づいて、前記第3の認識部による前記第1および第2の実装ヘッドの位置データの認識を実行する、請求項3に記載の実装装置。
  5.  さらに、前記電子部品を供給する部品供給部と、
     それぞれ前記部品供給部から前記電子部品を受け取り、前記第1または第2の実装ヘッドに前記電子部品を受け渡す第1および第2の移載ノズルを備える移載部とを具備し、
     前記第1および第2の実装ヘッドは、前記第1および第2の移載ノズルによる前記電子部品の受け渡し位置から前記実装位置まで一定の経路で移動される、請求項1ないし請求項4のいずれか1項に記載の実装装置。
  6.  前記第2の認識部は、前記第1および第2の実装ヘッドの移動経路に配置された一対のカメラを備える、請求項5に記載の実装装置。
  7.  電子部品が実装される複数の実装領域を有する支持基板が載置されるステージの移動位置誤差を取得し、前記移動位置誤差を補正する補正データを記憶部に記憶させる工程と、
     前記ステージ上に前記支持基板を載置すると共に、前記ステージ上に載置された前記支持基板の全体位置を認識する工程と、
     前記支持基板の位置認識工程により得た前記支持基板の位置データと前記補正データとに基づいて前記ステージの移動を補正しつつ、前記複数の実装領域が一定の実装位置に順に位置付けられるように、前記ステージを移動させる工程と、
     第1および第2の実装ヘッドで前記電子部品を交互に受け取り、前記第1または第2の実装ヘッドに保持された前記電子部品の位置を認識すると共に、認識した前記電子部品の位置データに基づいて前記第1および第2の実装ヘッドの移動を補正しつつ、前記第1および第2の実装ヘッドを前記実装位置に交互に移動させ、前記第1および第2の実装ヘッドにより前記電子部品を、前記実装位置に順に位置づけられた前記実装領域に交互に実装する工程と
     を具備する電子部品の実装方法。
  8.  前記実装工程は、前記支持基板の1つの前記実装領域に複数の前記電子部品を実装する工程を備える、請求項7に記載の実装方法。
  9.  さらに、前記実装位置に位置付けられた前記第1および第2の実装ヘッドの位置を個別に認識し、認識した前記第1および第2の実装ヘッドの位置データに基づいて、前記第1の実装ヘッドと前記第2の実装ヘッドとの位置ずれを補正する工程を具備する、請求項7または請求項8に記載の実装方法。
  10.  複数の実装領域を有する支持基板における前記複数の実装領域のそれぞれに電子部品を実装する工程と、前記複数の実装領域に実装された前記電子部品を一括して封止することにより疑似ウエーハを形成する工程と、前記疑似ウエーハの前記電子部品上に再配線層を形成することによりパッケージ部品を製造する工程とを具備するパッケージ部品の製造方法であって、
     前記電子部品の実装工程は、
     前記支持基板が載置されるステージの移動位置誤差を取得し、前記移動位置誤差を補正する補正データを記憶部に記憶させる工程と、
     前記ステージ上に前記支持基板を載置すると共に、前記ステージ上に載置された前記支持基板の全体位置を認識する工程と、
     前記支持基板の位置認識工程により得た前記支持基板の位置データと前記補正データとに基づいて前記ステージの移動を補正しつつ、前記複数の実装領域が一定の実装位置に順に位置付けられるように、前記ステージを移動させる工程と、
     第1および第2の実装ヘッドで前記電子部品を交互に受け取り、前記第1または第2の実装ヘッドに保持された前記電子部品の位置を認識すると共に、認識した前記電子部品の位置データに基づいて前記第1および第2の実装ヘッドの移動を補正しつつ、前記第1および第2の実装ヘッドを前記実装位置に交互に移動させ、前記第1および第2の実装ヘッドにより前記電子部品を、前記実装位置に順に位置づけられた前記実装領域に交互に実装する工程と
     を具備する、パッケージ部品の製造方法。
  11.  前記電子部品の実装工程は、前記支持基板の1つの前記実装領域に複数の前記電子部品を実装する工程を備える、請求項10に記載のパッケージ部品の製造方法。
PCT/JP2017/003439 2016-02-01 2017-01-31 電子部品の実装装置と実装方法、およびパッケージ部品の製造方法 WO2017135257A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020187016144A KR102080214B1 (ko) 2016-02-01 2017-01-31 전자 부품의 실장 장치와 실장 방법, 및 패키지 부품의 제조 방법
KR1020197024243A KR102196105B1 (ko) 2016-02-01 2017-01-31 전자 부품의 실장 장치와 실장 방법, 및 패키지 부품의 제조 방법
JP2017565564A JP6692376B2 (ja) 2016-02-01 2017-01-31 電子部品の実装装置と実装方法、およびパッケージ部品の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016017025 2016-02-01
JP2016-017025 2016-02-01

Publications (1)

Publication Number Publication Date
WO2017135257A1 true WO2017135257A1 (ja) 2017-08-10

Family

ID=59500212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003439 WO2017135257A1 (ja) 2016-02-01 2017-01-31 電子部品の実装装置と実装方法、およびパッケージ部品の製造方法

Country Status (4)

Country Link
JP (3) JP6692376B2 (ja)
KR (2) KR102080214B1 (ja)
TW (2) TWI708295B (ja)
WO (1) WO2017135257A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019121721A (ja) * 2018-01-10 2019-07-22 芝浦メカトロニクス株式会社 電子部品の実装装置および実装方法
JP2020017637A (ja) * 2018-07-25 2020-01-30 芝浦メカトロニクス株式会社 実装装置、及び実装装置に用いられる校正基板
JP2020102550A (ja) * 2018-12-21 2020-07-02 キヤノン株式会社 搬送装置、基板処理装置、および物品製造方法
TWI752603B (zh) * 2019-08-29 2022-01-11 日商芝浦機械電子裝置股份有限公司 電子零件的安裝裝置
CN114039569A (zh) * 2021-11-09 2022-02-11 深圳市聚强晶体有限公司 一种用于谐振器的封装结构及封装方法
TWI795727B (zh) * 2020-03-16 2023-03-11 日商捷進科技有限公司 晶片接合裝置及半導體裝置的製造方法
US11723154B1 (en) * 2020-02-17 2023-08-08 Nicholas J. Chiolino Multiwire plate-enclosed ball-isolated single-substrate silicon-carbide-die package

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7350696B2 (ja) * 2019-08-29 2023-09-26 芝浦メカトロニクス株式会社 電子部品の実装装置
KR20230108336A (ko) * 2021-02-10 2023-07-18 야마하하쓰도키 가부시키가이샤 가공 장치
KR102292225B1 (ko) * 2021-03-31 2021-08-23 주식회사 톱텍 다이 본딩헤드 구조

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09186489A (ja) * 1995-12-29 1997-07-15 Nagoya Denki Kogyo Kk プリント基板における作業位置座標算出方法およびその装置
WO2007072714A1 (ja) * 2005-12-22 2007-06-28 Shibaura Mechatronics Corporation 電子部品の実装装置及び実装方法
JP2008166410A (ja) * 2006-12-27 2008-07-17 Toray Eng Co Ltd 位置決め較正方法及びそれを適用した実装装置
JP2013222740A (ja) * 2012-04-13 2013-10-28 Panasonic Corp 外観検査装置および外観検査方法
JP2015130408A (ja) * 2014-01-08 2015-07-16 パナソニックIpマネジメント株式会社 部品実装装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6348728B1 (en) * 2000-01-28 2002-02-19 Fujitsu Limited Semiconductor device having a plurality of semiconductor elements interconnected by a redistribution layer
JP4381568B2 (ja) * 2000-06-19 2009-12-09 ヤマハ発動機株式会社 部品実装システムにおける基板認識方法及び同装置
JP4665863B2 (ja) 2006-08-08 2011-04-06 パナソニック株式会社 電子部品実装方法
CH698334B1 (de) * 2007-10-09 2011-07-29 Esec Ag Verfahren für die Entnahme und Montage von auf einem Wafertisch bereitgestellten Halbleiterchips auf einem Substrat.
JP5030843B2 (ja) 2008-04-14 2012-09-19 芝浦メカトロニクス株式会社 電子部品の実装装置及び実装方法
WO2012050178A1 (ja) * 2010-10-14 2012-04-19 シャープ株式会社 液晶表示装置
JP2013058520A (ja) 2011-09-07 2013-03-28 Dainippon Screen Mfg Co Ltd 描画装置、データ補正装置、再配線層の形成方法、および、データ補正方法
JP6227224B2 (ja) 2012-03-30 2017-11-08 ヤマハ発動機株式会社 電子部品装着ラインの管理装置及び電子部品装着装置
JP2015185546A (ja) 2014-03-20 2015-10-22 パナソニックIpマネジメント株式会社 電子部品実装システムおよび電子部品実装方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09186489A (ja) * 1995-12-29 1997-07-15 Nagoya Denki Kogyo Kk プリント基板における作業位置座標算出方法およびその装置
WO2007072714A1 (ja) * 2005-12-22 2007-06-28 Shibaura Mechatronics Corporation 電子部品の実装装置及び実装方法
JP2008166410A (ja) * 2006-12-27 2008-07-17 Toray Eng Co Ltd 位置決め較正方法及びそれを適用した実装装置
JP2013222740A (ja) * 2012-04-13 2013-10-28 Panasonic Corp 外観検査装置および外観検査方法
JP2015130408A (ja) * 2014-01-08 2015-07-16 パナソニックIpマネジメント株式会社 部品実装装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019121721A (ja) * 2018-01-10 2019-07-22 芝浦メカトロニクス株式会社 電子部品の実装装置および実装方法
JP7178782B2 (ja) 2018-01-10 2022-11-28 芝浦メカトロニクス株式会社 電子部品の実装装置および実装方法
JP2020017637A (ja) * 2018-07-25 2020-01-30 芝浦メカトロニクス株式会社 実装装置、及び実装装置に用いられる校正基板
JP7112274B2 (ja) 2018-07-25 2022-08-03 芝浦メカトロニクス株式会社 実装装置、及び実装装置に用いられる校正基板
JP2020102550A (ja) * 2018-12-21 2020-07-02 キヤノン株式会社 搬送装置、基板処理装置、および物品製造方法
JP7202176B2 (ja) 2018-12-21 2023-01-11 キヤノン株式会社 搬送装置、基板処理装置、および物品製造方法
TWI752603B (zh) * 2019-08-29 2022-01-11 日商芝浦機械電子裝置股份有限公司 電子零件的安裝裝置
US11723154B1 (en) * 2020-02-17 2023-08-08 Nicholas J. Chiolino Multiwire plate-enclosed ball-isolated single-substrate silicon-carbide-die package
TWI795727B (zh) * 2020-03-16 2023-03-11 日商捷進科技有限公司 晶片接合裝置及半導體裝置的製造方法
CN114039569A (zh) * 2021-11-09 2022-02-11 深圳市聚强晶体有限公司 一种用于谐振器的封装结构及封装方法

Also Published As

Publication number Publication date
KR102080214B1 (ko) 2020-02-24
JP6928134B2 (ja) 2021-09-01
KR20180081772A (ko) 2018-07-17
JP7108739B2 (ja) 2022-07-28
JP6692376B2 (ja) 2020-05-13
TW201740476A (zh) 2017-11-16
JP2021114630A (ja) 2021-08-05
JPWO2017135257A1 (ja) 2018-11-29
KR102196105B1 (ko) 2020-12-30
TW201921536A (zh) 2019-06-01
TWI673803B (zh) 2019-10-01
TWI708295B (zh) 2020-10-21
KR20190099355A (ko) 2019-08-26
JP2020102637A (ja) 2020-07-02

Similar Documents

Publication Publication Date Title
JP7108739B2 (ja) 電子部品の実装装置と実装方法、およびパッケージ部品の製造方法
JP6781677B2 (ja) 電子部品の実装装置と実装方法、およびパッケージ部品の製造方法
JP6717630B2 (ja) 電子部品の実装装置
EP2059112B1 (en) Electronic component taking out apparatus, surface mounting apparatus and method for taking out electronic component
KR102186384B1 (ko) 다이 본딩 장치 및 반도체 장치의 제조 방법
JP4855347B2 (ja) 部品移載装置
CN112331582B (zh) 芯片贴装装置以及半导体器件的制造方法
JP7178782B2 (ja) 電子部品の実装装置および実装方法
TWI752603B (zh) 電子零件的安裝裝置
JP7350696B2 (ja) 電子部品の実装装置
JP7451342B2 (ja) 基板作業装置
JP7410826B2 (ja) ピンの位置ずれ測定装置およびダイ供給装置
JP6942829B2 (ja) 電子部品の実装装置
JP7112274B2 (ja) 実装装置、及び実装装置に用いられる校正基板
JP2023143741A (ja) 電子部品の実装装置及び実装方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17747413

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187016144

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187016144

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2017565564

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17747413

Country of ref document: EP

Kind code of ref document: A1