WO2017135204A1 - 車両のロックアップ制御装置 - Google Patents

車両のロックアップ制御装置 Download PDF

Info

Publication number
WO2017135204A1
WO2017135204A1 PCT/JP2017/003263 JP2017003263W WO2017135204A1 WO 2017135204 A1 WO2017135204 A1 WO 2017135204A1 JP 2017003263 W JP2017003263 W JP 2017003263W WO 2017135204 A1 WO2017135204 A1 WO 2017135204A1
Authority
WO
WIPO (PCT)
Prior art keywords
differential pressure
lock
time
clutch
speed
Prior art date
Application number
PCT/JP2017/003263
Other languages
English (en)
French (fr)
Inventor
隆宏 山田
邦宏 高橋
俊亮 岩本
有司 岡本
俊明 野田
Original Assignee
ジヤトコ株式会社
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジヤトコ株式会社, 日産自動車株式会社 filed Critical ジヤトコ株式会社
Priority to CN201780008375.4A priority Critical patent/CN108603592B/zh
Priority to JP2017565541A priority patent/JP6563042B2/ja
Priority to EP17747360.0A priority patent/EP3412938A4/en
Priority to US16/073,127 priority patent/US10619731B2/en
Priority to KR1020187024006A priority patent/KR102042951B1/ko
Publication of WO2017135204A1 publication Critical patent/WO2017135204A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/14Control of torque converter lock-up clutches
    • F16H61/143Control of torque converter lock-up clutches using electric control means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • B60W10/024Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches including control of torque converters
    • B60W10/026Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches including control of torque converters of lock-up clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/14Control of torque converter lock-up clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/025Clutch slip, i.e. difference between input and output speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed- or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/46Inputs being a function of speed dependent on a comparison between speeds
    • F16H2059/465Detecting slip, e.g. clutch slip ratio
    • F16H2059/467Detecting slip, e.g. clutch slip ratio of torque converter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/14Control of torque converter lock-up clutches
    • F16H61/143Control of torque converter lock-up clutches using electric control means
    • F16H2061/145Control of torque converter lock-up clutches using electric control means for controlling slip, e.g. approaching target slip value

Definitions

  • the present invention relates to a vehicle lock-up control device that performs slip-engagement control of a lock-up clutch during a traveling scene in which a lock-up released state shifts to a lock-up engaged state.
  • a device for estimating a contact timing at which the lockup clutch starts to have a lockup capacity based on a change in engine speed is known. (For example, refer to Patent Document 1).
  • the ramp control for engaging the lockup clutch is started based on the contact timing deviated from the proper timing at which the lockup clutch starts to have the lockup capacity, there is a problem that the vehicle behavior changes due to the front and rear G fluctuation. .
  • both the engine rotation speed and the turbine rotation speed change due to the drive state. For this reason, if only the change in the engine rotation speed is monitored, the contact timing may be erroneously estimated.
  • the present invention has been made paying attention to the above-described problem, and is a vehicle lock-up control device that reduces a change in vehicle behavior due to engagement of a lock-up clutch in a traveling scene in which the lock-up clutch is shifted from a released state to an engaged state.
  • the purpose is to provide.
  • the present invention includes a torque converter disposed between a drive source and a transmission and having a lock-up clutch, and lock-up control means.
  • the lockup control means raises the lockup differential pressure instruction to the initial differential pressure, and then increases the lockup pressure by the ramp differential pressure with a predetermined inclination. Engage the up clutch.
  • the lockup control means determines the ramp start timing for switching the lockup differential pressure instruction from the initial differential pressure to the ramp differential pressure based on the speed ratio that is the ratio of the input / output rotational speed of the torque converter. Decide.
  • the speed ratio of the torque converter shifts from the speed ratio in the released state to the speed ratio at which the lockup clutch starts to have the lockup capacity, the speed ratio is changed by suppressing the increase in the rotational speed of the drive source. Focused on the points that can be seen.
  • 1 is an overall system diagram showing an overall system configuration of an engine vehicle to which a lockup control device of Embodiment 1 is applied. It is a normal shift schedule which shows an example of the normal shift line which determines the target primary rotation speed of a continuously variable transmission. 4 is a D-range LU schedule showing an example of the LU engagement vehicle speed line and the LU release vehicle speed line of the lockup clutch in each of the starting slip control and the normal smooth lockup control. 6 is a flowchart showing a flow of a lock-up control process for fastening a lock-up clutch when shifting from a coast state to a drive state by depressing an accelerator executed in the CVT control unit of the first embodiment.
  • the accelerator opening APO, the engine speed Ne, the turbine speed Nt, the vehicle speed VSP, the engine torque Te (converter transmission torque ⁇ Ne 2 , clutch transmission torque) when the unlocked lock-up clutch is shifted to the engaged state when starting It is a time chart which shows each characteristic of TLU ), speed ratio, and LU differential pressure instruction
  • the accelerator opening APO, the engine speed Ne, the turbine speed Nt, the vehicle speed VSP, the engine torque Te (converter transmission torque ⁇ Ne 2 , clutch transmission when the released lock-up clutch is shifted to the engaged state at the time of reacceleration It is a time chart which shows each characteristic of torque TLU ), speed ratio, and LU differential pressure instruction
  • the accelerator opening APO, the engine speed Ne, the turbine speed Nt, the vehicle speed VSP, the engine torque Te (the converter transmission torque ⁇ Ne 2 , the clutch) 6 is a time chart showing characteristics of transmission torque T LU ), speed ratio, and LU differential pressure indication.
  • Accelerator opening APO, engine speed Ne, turbine speed Nt, vehicle speed VSP, turbine speed change, engine torque Te (converter transmission torque ⁇ Ne 2 , clutch transmission torque T LU )-It is a time chart showing each characteristic of the LU differential pressure instruction. Accelerator opening APO, engine speed Ne, turbine speed Nt, vehicle speed VSP, turbine speed change, engine torque Te (converter transmission torque ⁇ Ne 2 , clutch transmission torque T) It is a time chart which shows each characteristic of LU ) * LU differential pressure instruction
  • Example 1 shown in the drawings.
  • the lockup control device in the first embodiment is applied to an engine vehicle equipped with a torque converter and a continuously variable transmission (CVT).
  • CVT continuously variable transmission
  • the configuration of the engine vehicle lockup control device according to the first embodiment will be described by dividing it into an “overall system configuration” and a “lockup control processing configuration”.
  • FIG. 1 shows an overall system configuration of an engine vehicle to which the lockup control device of the first embodiment is applied
  • FIG. 2 shows a normal shift schedule of a continuously variable transmission
  • FIG. 3 shows a D range LU schedule. The overall system configuration will be described below with reference to FIGS.
  • the vehicle drive system includes an engine 1, an engine output shaft 2, a lock-up clutch 3, a torque converter 4, a transmission input shaft 5, a continuously variable transmission 6, and a drive shaft 7. And drive wheels 8.
  • the lock-up clutch 3 is built in the torque converter 4 and connects the engine 1 and the continuously variable transmission 6 via the torque converter 4 when the clutch is released, and directly connects the engine output shaft 2 and the transmission input shaft 5 when the clutch is engaged. To do.
  • a lockup differential pressure instruction (hereinafter referred to as “LU differential pressure instruction”) is output from the CVT control unit 12 to be described later, the lockup clutch 3 is adjusted based on the line pressure that is the original pressure. Fastening / slip fastening / release is controlled by the lock-up hydraulic pressure.
  • the line pressure is generated by regulating the discharge oil from an oil pump (not shown) that is rotationally driven by the engine 1 using a line pressure solenoid valve.
  • the torque converter 4 includes a pump impeller 41, a turbine runner 42 disposed opposite to the pump impeller 41, and a stator 43 disposed between the pump impeller 41 and the turbine runner 42.
  • the torque converter 4 is a fluid coupling that transmits torque by circulating hydraulic oil filled therein through the blades of the pump impeller 41, the turbine runner 42, and the stator 43.
  • the pump impeller 41 is connected to the engine output shaft 2 via a converter cover 44 whose inner surface is a fastening surface of the lockup clutch 3.
  • the turbine runner 42 is connected to the transmission input shaft 5.
  • the stator 43 is provided on a stationary member (transmission case or the like) via a one-way clutch 45.
  • the continuously variable transmission 6 is a belt-type continuously variable transmission that continuously changes the gear ratio by changing the belt contact diameter to the primary pulley and the secondary pulley. To the drive wheel 8 via
  • the vehicle control system includes an engine control unit 11 (ECU), a CVT control unit 12 (CVTCU), and a CAN communication line 13 as shown in FIG.
  • an accelerator opening sensor 17, a secondary rotation speed sensor 18, a primary rotation speed sensor 19, a CVT oil temperature sensor 20, a brake switch 21, a front / rear G sensor 22, and the like are provided.
  • the engine control unit 11 when the engine control unit 11 receives a torque down signal for requesting the start of engine torque down control from the CVT control unit 12 via the CAN communication line 13, the engine control unit 11 obtains a torque down value based on the accelerator opening APO. The fuel injection amount to the engine 1 is decreased.
  • the torque down signal received from the CVT control unit 12 via the CAN communication line 13 is stopped during the engine torque down control, the fuel injection control returns to the normal fuel injection control according to the driver request.
  • the CVT control unit 12 performs shift control for controlling the transmission ratio of the continuously variable transmission 6, line pressure control, lockup control for controlling engagement / slip engagement / release of the lockup clutch 3, and the like.
  • the gear ratio is changed steplessly by feedback control that matches the primary rotational speed Npri of the continuously variable transmission 6 with the target primary rotational speed Npri * calculated by the normal shift line.
  • Normal shift control to be controlled is performed.
  • the “normal shift line” is the accelerator opening that determines the target primary speed Npri * based on the operating point (VSP, APO) based on the vehicle speed VSP and the accelerator opening APO.
  • VSP, APO operating point
  • the operating point (VSP, APO) When coasting from driving, as shown by the arrow B in FIG. 2, the operating point (VSP, APO) is lowered to the coast shift line by the accelerator release operation, and then the driving point (VSP along the coast shift line). , APO) moves and a downshift is performed to reduce the vehicle speed VSP. If re-acceleration is intended by depressing the accelerator during this coast deceleration, the operating point (VSP, APO) moves in the direction to increase the accelerator opening APO as shown by arrow B in FIG. When the APO is reached, an upshift is performed to increase the vehicle speed VSP.
  • the slip lock-up control of the lock-up clutch 3 includes “start slip control” executed at the start and “normal smooth LU control” executed at re-acceleration other than the start.
  • start slip control is set to a vehicle speed higher than the LU start vehicle speed line (OFF ⁇ ON) set in the low vehicle speed range immediately after the start and the LU start vehicle speed line.
  • the slip engagement / release control is performed in accordance with the LU release vehicle speed line (ON ⁇ OFF).
  • “normal smooth LU control” is lower than the LU start vehicle speed line (OFF ⁇ ON) set to a higher vehicle speed range than the start slip control and the LU start vehicle speed line.
  • the slip engagement / release control is performed according to the LU release vehicle speed line (ON ⁇ OFF) set to the vehicle speed. That is, when the operating point (VSP, APO) in the lockup OFF region crosses the LU start vehicle speed line, slip engagement control of the lockup clutch 3 is started based on the output of the clutch engagement instruction, and enters the lockup ON region. . On the other hand, when the operating point (VSP, APO) in the lock-up ON region crosses the LU release vehicle speed line, the release control of the lock-up clutch 3 is started based on the output of the clutch release instruction and enters the lock-up OFF region.
  • FIG. 4 shows the flow of the lock-up control process for slip-engaging the lock-up clutch when shifting from the coast state executed in the CVT control unit 12 of the first embodiment to the drive state by depressing the accelerator.
  • FIG. 4 representing the lockup control processing configuration will be described. This process is started when both the lock-up OFF condition for releasing the lock-up clutch 3 and the accelerator OFF condition for releasing the accelerator are satisfied.
  • the description “LU” is an abbreviation for “lock-up”.
  • step S1 it is determined whether or not an accelerator depression operation has been performed with the intention of starting or reacceleration. If YES (accelerator off ⁇ on), the process proceeds to step S2. If NO (accelerator off ⁇ other than on), the process proceeds to the end.
  • the accelerator depression operation has been performed, for example, when the accelerator opening APO from the accelerator opening sensor 17 is higher than the 0/8 opening from the 0/8 opening (accelerator release state). Judgment by having shifted to every degree. Further, when the accelerator switch is used, the determination is made by switching the switch signal from OFF (accelerator release state) to ON (accelerator depression state).
  • step S2 following the determination that the accelerator is off ⁇ on in step S1, it is determined whether or not the vehicle is starting based on the vehicle speed VSP when the accelerator depression operation is performed. If YES (during start), the process proceeds to step S3. If NO (during reacceleration), the process proceeds to step S7. That is, if the vehicle speed VSP when the accelerator depression operation is performed is VSP ⁇ stop determination value, it is determined that the vehicle is starting. On the other hand, if the vehicle speed VSP when the accelerator depression operation is performed is VSP> stop determination value, it is determined that reacceleration is being performed.
  • step S3 following the determination that the vehicle is at the start in step S2 or the operation point (VSP, APO) in step S3 is not in the LU area at the start, the operation point (VSP at that time) , APO) is present in the LU area at the start. If YES (in the LU area), the process proceeds to step S4. If NO (outside the LU area), the determination in step S3 is repeated.
  • whether or not the operating point (VSP, APO) is in the LU area at the start is determined using the LU start vehicle speed line in the “start slip control” of the D range LU schedule shown in FIG. .
  • the “initial differential pressure at start-up” takes into account the zero-point differential pressure based on the learning value of the meet point at which the lockup capacity begins to be taken into account, and the torque converter 4 considers the initial differential pressure from the converter state
  • the added differential pressure ⁇ is taken as the value.
  • “0-point differential pressure” refers to the differential pressure immediately before starting to have the LU capacity obtained based on the meet point learned value, and is obtained by subtracting the offset amount from the meet point learned value.
  • “Initial differential pressure” refers to the differential pressure that allows the lockup clutch 3 to move in the engagement direction (clutch gripping direction) to have LU capacity.
  • the speed ratio of the torque converter 4 and the initial differential pressure characteristic shown in FIG. It is calculated using. Incidentally, in the speed ratio region where the speed ratio is higher than 0.6, as shown in FIG. 7, the return force of the lockup clutch 3 is stronger, so if the differential pressure ⁇ is not increased, the lockup clutch 3 is held. do not go.
  • the “initial differential pressure at the time of starting” is set by (0-point differential pressure + differential pressure ⁇ ) so that the initial gripping of the lockup clutch 3 is possible.
  • the “differential pressure ⁇ ” may be calculated by adding a value that takes into account the learning error of “zero point differential pressure” to the initial differential pressure.
  • step S5 following the initial differential pressure calculation at the start in step S4 or the determination that T ⁇ T1 in step S6, an LU differential pressure instruction based on the initial differential pressure at the start calculated in step S4 is issued. Output, and go to step S6.
  • the output of the LU differential pressure instruction maintains the initial differential pressure at the start until the waiting time condition by the timer in step S6 is satisfied.
  • step S6 following the LU differential pressure instruction output by the initial differential pressure in step S5, whether the timer value T calculated from the output of the LU differential pressure instruction by the initial differential pressure has passed the first timer value T1 Judge whether or not. If YES (T ⁇ T1), the process proceeds to step S11. If NO (T ⁇ T1), the process returns to step S5.
  • the “first timer value T1” is a response delay time required for the LU actual differential pressure to rise to the differential pressure at which the lock-up clutch 3 can initially move after the LU differential pressure instruction based on the initial differential pressure is output. Set to. This “first timer value T1” is acquired based on a large number of experimental results relating to the response delay time.
  • the “first timer value T1” may be given as a fixed value, or may be given as a variable value depending on, for example, the CVT oil temperature or the accelerator depression speed.
  • step S7 following the determination that the reacceleration is in step S2 or the operation point (VSP, APO) in step S7 is not in the LU region during the reacceleration, the operation point at that time It is determined whether (VSP, APO) exists in the LU area at the time of reacceleration. If YES (in the LU area), the process proceeds to step S8. If NO (outside the LU area), the determination in step S7 is repeated.
  • whether or not the operating point (VSP, APO) exists in the LU area at the time of reacceleration is determined using the LU start vehicle speed line in the “normal smooth LU control” of the D range LU schedule shown in FIG. Is done.
  • VSP, APO when the operating point (VSP, APO) is equal to or lower than the vehicle speed VSP that crosses the LU start vehicle speed line, it is determined that the vehicle is outside the LU region until the vehicle speed VSP crosses the LU start vehicle speed line. However, when the driving point (VSP, APO) becomes the vehicle speed VSP that crosses the LU starting vehicle speed line, or because the lockup prohibition at the coast is activated, the driving point (VSP, APO) has already been determined. Is present in the lockup ON area, it is determined that “in the LU area”.
  • the “initial differential pressure at the time of re-acceleration” is zero-point differential pressure based on the learned value of the meet point at which the lock-up capacity starts to be increased, and the torque converter 4 increases the engine rotation from the converter state.
  • “0-point differential pressure” refers to the differential pressure immediately before starting to have the LU capacity obtained based on the meet point learned value, and is obtained by subtracting the offset amount from the meet point learned value.
  • “Differential pressure ⁇ aimed at preventing engine rotation from rising” refers to a differential pressure (> initial differential pressure) that secures the clutch transmission torque T LU required to suppress engine rotation rising. That is, the “initial differential pressure at the time of reacceleration” is set by (0-point differential pressure + differential pressure ⁇ ) so that the engine rotation blow-up can be suppressed by the clutch transmission torque T LU of the lockup clutch 3. .
  • step S9 following the initial differential pressure calculation at the time of reacceleration in step S8 or the determination that [speed ratio -C] ⁇ predetermined value in step S10, the initial value at the time of reacceleration calculated in step S8.
  • An LU differential pressure instruction based on the differential pressure is output, and the process proceeds to step S10.
  • the output of the LU differential pressure instruction maintains the initial differential pressure during re-acceleration until the speed ratio condition of step S10 is satisfied.
  • step S10 following the LU differential pressure instruction output based on the initial differential pressure in step S9, it is determined whether or not [speed ratio -C] is equal to or greater than a predetermined value. If YES ([speed ratio ⁇ C] ⁇ predetermined value), the process proceeds to step S11. If NO ([speed ratio ⁇ C] ⁇ predetermined value), the process returns to step S9.
  • the turbine speed Nt is acquired from the turbine speed sensor 15, and the engine speed Ne is acquired from the engine speed sensor 14.
  • the “predetermined value” is set to a small value close to zero. That is, [speed ratio ⁇ C] represents the speed of change of the speed ratio e toward the decrease side, and [speed ratio ⁇ C] ⁇ predetermined value represents that the change of the speed ratio e toward the decrease side stopped.
  • [speed ratio ⁇ C] ⁇ predetermined value means that the speed ratio e of the torque converter 4 decreases as shown in the speed ratio change characteristic at the time of reacceleration from unlock up (unLU) in FIG. This indicates that a speed ratio inflection point has been detected that shifts to a rising state.
  • step S11 following the determination that T ⁇ T1 in step S6 or [speed ratio ⁇ C] ⁇ predetermined value in step S10, a differential pressure instruction based on a constant initial differential pressure is used. It switches to the differential pressure instruction
  • the determination that T ⁇ T1 in step S6 indicates that the lamp start condition is satisfied at the start of switching the LU differential pressure instruction from the initial differential pressure to the lamp differential pressure.
  • [speed ratio ⁇ C] ⁇ predetermined value in step S10 indicates that the lamp start condition is satisfied during re-acceleration when the LU differential pressure instruction is switched from the initial differential pressure to the ramp differential pressure.
  • step S12 following the start of the differential pressure increase by the ramp control in step S11 or the determination that the clutch slip amount> predetermined value in step S15, the turbine rotational speed at which the turbine rotational speed Nt changes to the increasing side. It is determined whether or not the amount of change exceeds a determination threshold value. If YES (turbine rotational speed variation> determination threshold), the process proceeds to step S13. If NO (turbine rotational speed variation ⁇ determination threshold), the process proceeds to step S14.
  • the “turbine rotational speed change amount” is calculated by an expression of [current target turbine rotational speed Nt (n) ⁇ previous target turbine rotational speed Nt (n ⁇ 1)].
  • the “judgment threshold” is the amount of change in turbine speed in the region where the engine speed Ne starts to converge to the turbine speed Nt due to the increase in LU capacity in the interval from when the LU capacity starts to the LU engagement. Is set. Specifically, the clutch transmission torque characteristics and converter intersection of the transmission torque characteristic of Fig. 13, i.e., the turbine speed change amount of the experimental values clutch transmission torque T LU to share the engine torque Te reaches the converter transmission torque TauNe 2 Thus, for example, it is set for each accelerator opening APO.
  • step S13 following the determination in step S12 that the turbine rotational speed change amount> the determination threshold value, the differential pressure increase by the first rising gradient ⁇ 1 of the ramp differential pressure is continued, and the process proceeds to step S15.
  • the “increase gradient in the differential pressure increase” is a parameter that determines how to reduce the engine speed during slip engagement of the lockup clutch 3, and the “first increase gradient ⁇ 1” is an engine rotation drop, a feeling of lagging, Based on the requirements of the fastening shock, the tilt angle is set larger as the accelerator opening APO is higher.
  • step S14 following the determination that the turbine rotational speed change amount ⁇ the determination threshold value in step S12, the difference due to the second upward gradient ⁇ 2 ( ⁇ 1) obtained by reducing the differential pressure increase amount due to the first upward gradient ⁇ 1. Switch to pressure increase and go to step S15.
  • the “second ascending gradient ⁇ 2” is set to have a larger inclination angle as the accelerator opening APO is higher while maintaining the relationship of being lower than the first ascending gradient ⁇ 1. That is, in step S13 and step S14, the first rising gradient ⁇ 1 and the second rising gradient ⁇ 2 are set for each accelerator opening, and the first rising gradient ⁇ 1 and the second rising gradient determined by the accelerator opening APO at that time are set. ⁇ 2 is used.
  • step S15 following the continuation of the differential pressure increase in step S13 or the reduction of the differential pressure increase amount in step S14, it is determined whether or not the clutch slip amount of the lockup clutch 3 has become a predetermined value or less. If YES (clutch slip amount ⁇ predetermined value), the process proceeds to step S16. If NO (clutch slip amount> predetermined value), the process returns to step S12.
  • the “clutch slip amount” is calculated using an equation of (engine speed Ne ⁇ turbine speed Nt).
  • the “predetermined value” is a determination threshold value for determining that the slip rotation speed has been lost, and is set to a value of about 10 rpm, for example.
  • step S16 following the determination that clutch slip amount ⁇ predetermined value in step S15, the lockup clutch 3 is engaged by control to maximize the LU capacity, and the process proceeds to the end.
  • feed-forward control FF control
  • FF control feed-forward control
  • the actions in the first embodiment are the “lockup control processing action”, “lockup control action at start”, “lockup control action at reacceleration”, “ramp control action at start”, “lockup control” This will be described separately in “Characteristic Actions”.
  • step S3 it is determined whether or not the driving point (VSP, APO) at that time exists in the LU area at the time of start. While it is determined that the operating point is outside the LU area, the determination in step S3 is repeated.
  • step S7 it is determined whether or not the operating point (VSP, APO) at that time is in the LU region at the time of reacceleration. If the operating point (VSP, APO) is in the LU region, the process proceeds to step S8. If the operating point (VSP, APO) is outside the region, the determination in step S7 is repeated while it is determined that the operating point is outside the region.
  • step S7 When the operating point (VSP, APO) crosses the LU start vehicle speed line in the LU area or the “normal smooth LU control” at the time of re-acceleration in step S7, the process starts from step S7.
  • step S9 an LU differential pressure instruction based on the initial differential pressure at the time of reacceleration calculated in step S8 is output, and the output of the LU differential pressure instruction satisfies the speed ratio condition in step S10 ([speed ratio ⁇ C] ⁇ predetermined) Value), the initial differential pressure during re-acceleration is maintained. Thereafter, when the speed ratio condition in step S10 is satisfied, common ramp control is started at the time of start and reacceleration.
  • step S6 When starting, if the waiting time condition by the timer in step S6 is satisfied, the process proceeds from step S6 to step S11.
  • step S10 switching from a differential pressure instruction based on a constant initial differential pressure to a differential pressure instruction having a rising gradient is started, and when differential pressure increase is started by ramp control, the process proceeds to step S12.
  • step S12 it is determined whether or not the turbine rotational speed change amount at which the turbine rotational speed Nt changes to the rising side exceeds a determination threshold value. Then, while it is determined that the turbine rotational speed change amount> the determination threshold value, the process proceeds from step S12 to step S13.
  • step S13 the differential pressure increase by the first rising gradient ⁇ 1 of the ramp differential pressure is continued.
  • the process proceeds to step S15.
  • step S14 the second increase gradient ⁇ 2 ( ⁇ 1) is obtained by reducing the pressure increase amount due to the first increase gradient ⁇ 1.
  • the operation is switched to the differential pressure increase, and the process proceeds to step S15.
  • step S15 while it is determined that the clutch slip amount> predetermined value, the flow that proceeds from step S12 to step S13 to step S15 or the flow that proceeds from step S12 to step S14 to step S15 is repeated. Thereafter, when it is determined in step S15 that clutch slip amount ⁇ predetermined value, the process proceeds from step S15 to step S16 ⁇ end, and in step S16, the lockup clutch 3 is engaged by the control for maximizing the LU capacity.
  • the lockup differential pressure instruction is raised to the initial differential pressure due to the lower limit pressure, and immediately thereafter, the ramp differential pressure due to the third rising gradient ⁇ 3.
  • the lockup control for boosting is started. From time t2, the actual differential pressure (the dashed line characteristic of the LU differential pressure instruction) having a hydraulic response delay with respect to the lockup differential pressure instruction gradually increases, and becomes a hydraulic pressure that starts to have LU capacity at time t3. Therefore, between time t2 and time t3 when there is no LU capacity, there is no engagement load of the lockup clutch, and the engine speed Ne rises to a higher speed range than time t2.
  • the initial differential pressure is set to a low lower limit pressure
  • the time from t2 to time t3 when the oil pressure starts to have LU capacity is reached.
  • the engine speed Ne is allowed to rise.
  • the engine speed Ne rises.
  • the rising gradient in the ramp control is the third rising gradient ⁇ 3 so that the oil pressure starts to have the LU capacity as early as possible from time t2
  • the decreasing gradient of the engine speed Ne toward the turbine speed Nt is set. Increases and a fastening shock occurs in the region of time t5.
  • the first embodiment is the one that shifts to lamp control by ⁇ 1 ( ⁇ 3) and performs LU fastening.
  • the lockup control action at the time of start in Embodiment 1 will be described with reference to the time chart shown in FIG.
  • the lockup clutch 3 is engaged.
  • Example 1 the constant initial differential pressure is set higher than that in the comparative example. Therefore, when the lockup control is started at time t2, the LU capacity is obtained at time t3 immediately after that. The starting oil pressure is reached, and the subsequent increase in the engine speed Ne is suppressed. As a result, as shown in the engine speed characteristic surrounded by the arrow E in FIG. 9, the engine speed Ne is prevented from rising. Note that the hatched portion of the engine speed characteristic in FIG. 9 is a surcharge suppression effect of the engine speed Ne with respect to the comparative example.
  • the rising gradient in the ramp control is the first rising gradient ⁇ 1 in which the ramp differential pressure increases at a gentler gradient than the third rising gradient ⁇ 3, the decreasing gradient of the engine rotation speed Ne toward the turbine rotation speed Nt is It becomes smaller and the fastening shock at time t5 is suppressed.
  • the initial differential pressure is set higher than that of the comparative example, it is possible to suppress an increase in the time until the lock-up clutch 3 is completely engaged even if the ramp gradient of the ramp differential pressure is small.
  • the initial differential pressure is set to a low lower limit pressure, even when the lockup control is started at time t2, from time t2 to time t4 when the oil pressure starts to have LU capacity.
  • the engine speed Ne is allowed to rise.
  • the engine speed Ne rises.
  • the rising gradient in the ramp control is the third rising gradient ⁇ 3 so that the oil pressure starts to have the LU capacity as early as possible from time t2, the decreasing gradient of the engine speed Ne toward the turbine speed Nt is set. Increases and a fastening shock occurs in the region of time t5.
  • the first embodiment is the one that shifts to the ramp control by the first rising gradient ⁇ 1 ( ⁇ 3) and performs the LU fastening.
  • the lockup control action at the time of reacceleration in Embodiment 1 will be described with reference to the time chart shown in FIG.
  • the lockup control is started to maintain the initial differential pressure that is raised and started. From time t1, the actual differential pressure (the dashed line characteristic of the LU differential pressure instruction) having a hydraulic response delay with respect to the lockup differential pressure instruction rises, and becomes a hydraulic pressure that starts to have LU capacity at time t2.
  • the constant initial differential pressure is set higher than that in the comparative example. Therefore, when the lockup control is started at time t1, the LU capacity is obtained at time t2 immediately after that. The starting oil pressure is reached, and the subsequent increase in the engine speed Ne is suppressed. As a result, as shown in the engine speed characteristic surrounded by the arrow G in FIG. 11, the engine speed Ne is prevented from rising.
  • the hatched portion of the engine speed characteristic in FIG. 11 is a surcharge suppression effect for the engine speed Ne with respect to the comparative example.
  • the rising gradient in the ramp control is the first rising gradient ⁇ 12 in which the ramp differential pressure increases at a gentler gradient than the third rising gradient ⁇ 3, the decreasing gradient of the engine rotation speed Ne toward the turbine rotation speed Nt is reduced. It becomes smaller and the fastening shock is suppressed.
  • the initial differential pressure is set higher than that in the comparative example, it takes a long time until the lock-up clutch 3 is fully engaged even if the ramp gradient of the ramp differential pressure is small. Can be suppressed.
  • the actual differential pressure of the lockup clutch 3 becomes a differential pressure that can be initially actuated, and the first rising gradient ⁇ 1 ( The pressure is increased by the ramp differential pressure of> ⁇ 2).
  • the rising gradient in the ramp control from time t4 is the first rising gradient ⁇ 1 regardless of the amount of change in the turbine speed Nt.
  • the amount of change in the turbine speed Nt is small, that is, when the LU capacity of the lockup clutch 3 is increased in a state where the increase amount of the engine turbine speed Nt is smaller than the increase amount of the engine speed Ne, the turbine A decreasing gradient (rotational drop) of the engine speed Ne toward the speed Nt increases, and a fastening shock occurs in the fastening region surrounded by the arrow H in FIG.
  • the actual differential pressure of the lockup clutch 3 becomes a differential pressure that can be actuated initially, and is increased by the ramp differential pressure from time t4.
  • the turbine rotational speed change amount exceeds the determination threshold value, so the first rising gradient ⁇ 1 is set.
  • the ascending gradient is switched from the first ascending gradient ⁇ 1 to the second ascending gradient ⁇ 2 ( ⁇ 1). The rising gradient ⁇ 2 is maintained.
  • the rising gradient in the ramp control is set to the first rising gradient ⁇ 1 while the turbine rotational speed change amount exceeds the determination threshold, but the turbine rotational speed change amount is determined. If it is below the threshold value, the second ascending gradient ⁇ 2 ( ⁇ 1) is set.
  • the second ascending gradient ⁇ 2 ( ⁇ 1) is set.
  • the speed ratio change in which the speed ratio e of the torque converter 4 shifts from a decreasing state to an increasing state at the time of reacceleration by the accelerator depressing operation from the accelerator depressing coast releasing the lock-up clutch 3 is released.
  • the LU differential pressure instruction is switched from the initial differential pressure to the ramp differential pressure. That is, as shown in FIGS. 7 and 11, at the time of reacceleration, the speed ratio e decreases from a value of 1 or more while the lockup clutch 3 is in the released state.
  • the initial differential pressure when the LU differential pressure instruction is raised to the initial differential pressure, the initial differential pressure is kept constant until the speed ratio inflection point is detected. That is, by keeping the initial differential pressure constant before the LU differential pressure instruction is increased by the ramp differential pressure, the difference between the LU differential pressure instruction and the LU actual differential pressure is avoided during the output of the initial differential pressure, In the subsequent increase in the ramp differential pressure, sudden engagement when the lockup clutch 3 is engaged is prevented. Therefore, the change in vehicle behavior due to engagement of the lockup clutch 3 is reduced by keeping the initial differential pressure constant at the time of re-acceleration due to accelerator depression from coast deceleration.
  • Example 1 the initial pressure difference, zero point difference pressure based on meet point learned value begin to have LU capacity, corresponding to the clutch transmission torque T LU suppress upward blow engine rotation from the converter state of the torque converter 4 differential pressure
  • be the value added. That is, in the section where a constant initial differential pressure is output, not only the grip-up clutch 3 starts to be gripped but also the clutch transmission torque TLU is intended to be generated, so that the engine speed-up suppression action is started at an early stage. The Then, the clutch transmission torque TLU is increased, and the process proceeds to the next ramp control for decreasing the engine speed Ne. Therefore, in the engine-equipped vehicle, the dead time from the start of LU control to the start of suppression of engine rotation rise is shortened, and the engine rotation increase is orderly suppressed.
  • the LU differential pressure instruction is immediately raised to the initial differential pressure.
  • a predetermined time for example, 1 second
  • the LU differential pressure instruction is immediately raised to the initial differential pressure, and the LU control start waiting time is omitted. Therefore, at the time of reacceleration, on the condition that the operating point (VSP, APO) is in the LU region, the waiting time from the time of the accelerator depression operation to the start of LU control is omitted, and the engine rotation surging is suppressed with good response.
  • the lockup control means (CVT control unit 12, FIG. 4) sets the ramp start condition for switching the lockup differential pressure instruction (LU differential pressure instruction) from the initial differential pressure to the ramp differential pressure in the input / output rotational speed of the torque converter 4. It is determined based on the speed ratio e which is the ratio. For this reason, in a traveling scene in which the lockup clutch 3 is shifted from the released state to the engaged state, changes in vehicle behavior due to the engagement of the lockup clutch 3 can be reduced.
  • the lockup control means (CVT control unit 12, FIG. 4) is configured so that the speed ratio e of the torque converter 4 is determined when reacceleration is performed by the accelerator depressing operation after releasing the accelerator releasing coastline releasing the lockup clutch 3.
  • the lockup differential pressure instruction (LU differential pressure instruction) is switched from the initial differential pressure to the ramp differential pressure.
  • the lock-up control means (CVT control unit 12, FIG. 4) converts the initial differential pressure from the converter state of the torque converter 4 to the zero-point differential pressure based on the meet point learning value at which the lock-up capacity (LU capacity) starts to be obtained. and adding a differential pressure ⁇ corresponding to the clutch transmission torque T LU suppress rotation racing value. For this reason, in addition to the effects (1) to (3), in an engine-equipped vehicle, the dead time from the start of lock-up control to the start of suppression of engine speed increase is shortened, and engine speed increase is controlled in an orderly manner. be able to.
  • the lock-up control means (CVT control unit 12, FIG. 4) is configured so that the operating point (VSP, APO) at the time of accelerator depressing operation is in the lock-up area (LU area) ) Immediately raises the lock-up differential pressure instruction (LU differential pressure instruction) to the initial differential pressure. For this reason, in addition to the effect of (4), the waiting time from the time the accelerator is depressed to the start of lockup control on condition that the operating point (VSP, APO) is in the lockup region (LU region) at the time of reacceleration Is omitted, and the engine speed-up can be suppressed with good response.
  • the vehicle lockup control device has been described based on the first embodiment. However, the specific configuration is not limited to the first embodiment, and the invention according to each claim of the claims. Design changes and additions are permitted without departing from the gist of the present invention.
  • the speed ratio inflection point at the time of reacceleration in which the speed ratio e of the torque converter 4 shifts from a decreasing state to an increasing state is shown.
  • the speed ratio gradient change point at the start is detected when it is detected that the rising slope of the speed ratio of the torque converter shifts to the lower side when the LU capacity is started. It may be a detection example.
  • Example 1 when the LU differential pressure instruction is raised to the initial differential pressure, the initial differential pressure is kept constant until the ramp start timing is detected. However, the LU differential pressure instruction may be changed until the ramp start timing is detected.
  • the clutch transmission torque T LU that suppresses the engine rotational blow-up from the converter state of the torque converter 4 is set to the zero-point differential pressure based on the meet point learning value at which the LU capacity is started.
  • An example in which the corresponding differential pressure ⁇ is added is shown.
  • the initial differential pressure at the time of re-acceleration for example, as in the case of starting, the difference considering the initial differential pressure from the converter state of the torque converter to the zero-point differential pressure based on the meet point learning value at which the LU capacity starts to be held
  • An example in which the pressure ⁇ is added may be used.
  • the LU differential pressure instruction is immediately raised to the initial differential pressure.
  • An example is shown.
  • the operating point (VSP, APO) at the time of depressing the accelerator exists in the LU region, wait until the ramp start timing based on the speed ratio is detected, and then issue the LU differential pressure instruction to the initial differential pressure It may be an example of starting up.
  • Example 1 shows an example in which the lockup control device of the present invention is applied to an engine vehicle equipped with a torque converter and a continuously variable transmission.
  • the lock-up clutch control device of the present invention can be applied to a hybrid vehicle in which an engine and a motor are mounted on a drive source, and is also applied to an electric vehicle in which a motor is mounted on a drive source. can do.
  • the present invention can be applied to a vehicle equipped with a continuously variable transmission with a sub-transmission or a stepped automatic transmission as a transmission.
  • the present invention can be applied to any vehicle provided with a torque converter having a lock-up clutch between the drive source and the transmission.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Control Of Fluid Gearings (AREA)

Abstract

本発明は、エンジン(1)と無段変速機(6)の間に配置され、ロックアップクラッチ(3)を有するトルクコンバータ(4)と、CVTコントロールユニット(12)と、を備える車両(エンジン車)のロックアップ制御装置に関する。CVTコントロールユニット(12)は、ロックアップクラッチ(3)が解放状態のときにLU 締結条件が成立すると、LU 差圧指示を初期差圧まで立ち上げた後、所定の傾きによるランプ差圧により昇圧させてロックアップクラッチ(3)を締結する。また、CVTコントロールユニット(12)は、LU 差圧指示を初期差圧からランプ差圧に切り替えるランプ開始条件を、トルクコンバータ(3)の入出力回転速度の比である速度比(e)に基づいて決める。

Description

車両のロックアップ制御装置
 本発明は、ロックアップ解放状態からロックアップ締結状態に移行する走行シーンのとき、ロックアップクラッチのスリップ締結制御を行う車両のロックアップ制御装置に関する。
 エンジンと変速機との間にロックアップクラッチを有するトルクコンバータを備えた車両において、ロックアップクラッチがロックアップ容量を持ち始める接触タイミングを、エンジン回転速度の変化に基づいて推定する装置が知られている(例えば、特許文献1参照)。
 しかしながら、従来装置にあっては、エンジン回転速度(=エンジン回転数)の変化に基づいて接触タイミングを推定するようにしているため、アクセル踏み込みによるドライブ状態では、接触タイミングを誤推定してしまう場合がある。そして、ロックアップクラッチがロックアップ容量を持ち始める適正なタイミングからずれた接触タイミングに基づき、ロックアップクラッチを締結させるランプ制御を開始すると、前後G変動による車両挙動変化が生じる、という問題があった。
 即ち、アクセル足放しコースト状態では、タービン回転速度(=タービン回転数)の変化が無い、或いは、変化が小さいため、エンジン回転速度の変化により接触タイミングを推定することが可能である。しかし、例えば、コースト減速走行からのアクセル踏み込みにより再加速が行われる場合、ドライブ状態であることでエンジン回転速度とタービン回転速度の何れの速度も変化してしまう。このため、エンジン回転速度の変化だけを監視すると、接触タイミングを誤推定してしまう場合がある。
特開2005-133781号公報
 本発明は、上記問題に着目してなされたもので、ロックアップクラッチを解放状態から締結状態に移行する走行シーンのとき、ロックアップクラッチの締結による車両挙動変化を低減する車両のロックアップ制御装置を提供することを目的とする。
 上記目的を達成するため、本発明は、駆動源と変速機の間に配置され、ロックアップクラッチを有するトルクコンバータと、ロックアップ制御手段と、を備える。
 ロックアップ制御手段は、ロックアップクラッチが解放状態のときにロックアップ締結条件が成立すると、ロックアップ差圧指示を初期差圧まで立ち上げた後、所定の傾きによるランプ差圧により昇圧させてロックアップクラッチを締結する。
 この車両のロックアップ制御装置において、ロックアップ制御手段は、ロックアップ差圧指示を初期差圧からランプ差圧に切り替えるランプ開始タイミングを、トルクコンバータの入出力回転速度の比である速度比に基づいて決める。
 よって、ロックアップ差圧指示を初期差圧からランプ差圧に切り替えるランプ開始タイミングが、トルクコンバータの入出力回転速度の比である速度比に基づいて決められる。即ち、トルクコンバータの速度比は、(速度比=タービン回転数/駆動源回転数)の式であらわされるというように、タービン回転数の変化と駆動源回転数の変化を共に反映する指標値である。加えて、トルクコンバータの速度比は、ロックアップクラッチが解放状態での速度比からロックアップ容量を持ち始める速度比に移行するとき、駆動源回転数の上昇が抑えられることで速度比に変化が見られる点に着目した。
 従って、トルクコンバータの速度比の変化を監視することで、ロックアップクラッチがロックアップ容量を持ち始める適正なランプ開始タイミングを検知できる。
 この結果、ロックアップクラッチを解放状態から締結状態に移行する走行シーンのとき、ロックアップクラッチの締結による車両挙動変化を低減することができる。
実施例1のロックアップ制御装置が適用されたエンジン車の全体システム構成を示す全体システム図である。 無段変速機の目標プライマリ回転数を決めるノーマル変速線の一例を示すノーマル変速スケジュールである。 発進スリップ制御時と通常スムーズロックアップ制御時のそれぞれにおけるロックアップクラッチのLU締結車速線及びLU解除車速線の一例を示すDレンジLUスケジュールである。 実施例1のCVTコントロールユニットにおいて実行されるコースト状態からアクセル踏み込みによるドライブ状態へ移行するときにロックアップクラッチを締結するロックアップ制御処理の流れを示すフローチャートである。 発進時のロックアップ制御におけるLU差圧指示の初期差圧を示す図である。 再加速時のロックアップ制御におけるLU差圧指示の初期差圧を示す図である。 トルクコンバータの速度比に対する初動差圧特性・停止からの発進時における速度比変化特性・アンロックアップからの再加速時における速度比変化特性を示す特性比較図である。 比較例において発進時に解放状態のロックアップクラッチを締結状態へ移行するときのアクセル開度APO・エンジン回転数Ne・タービン回転数Nt・車速VSP・エンジントルクTe(コンバータ伝達トルクτNe2、クラッチ伝達トルクTLU)・速度比・LU差圧指示の各特性を示すタイムチャートである。 実施例1において発進時に解放状態のロックアップクラッチを締結状態へ移行するときのアクセル開度APO・エンジン回転数Ne・タービン回転数Nt・車速VSP・エンジントルクTe(コンバータ伝達トルクτNe2、クラッチ伝達トルクTLU)・速度比・LU差圧指示の各特性を示すタイムチャートである。 比較例において再加速時に解放状態のロックアップクラッチを締結状態へ移行するときのアクセル開度APO・エンジン回転数Ne・タービン回転数Nt・車速VSP・エンジントルクTe(コンバータ伝達トルクτNe2、クラッチ伝達トルクTLU)・速度比・LU差圧指示の各特性を示すタイムチャートである。 実施例1において再加速時に解放状態のロックアップクラッチを締結状態へ移行するときのアクセル開度APO・エンジン回転数Ne・タービン回転数Nt・車速VSP・エンジントルクTe(コンバータ伝達トルクτNe2、クラッチ伝達トルクTLU)・速度比・LU差圧指示の各特性を示すタイムチャートである。 比較例において発進時にランプ制御を行うときのアクセル開度APO・エンジン回転数Ne・タービン回転数Nt・車速VSP・タービン回転数変化量・エンジントルクTe(コンバータ伝達トルクτNe2、クラッチ伝達トルクTLU)・LU差圧指示の各特性を示すタイムチャートである。 実施例1において発進時にランプ制御を行うときのアクセル開度APO・エンジン回転数Ne・タービン回転数Nt・車速VSP・タービン回転数変化量・エンジントルクTe(コンバータ伝達トルクτNe2、クラッチ伝達トルクTLU)・LU差圧指示の各特性を示すタイムチャートである。
 以下、本発明の車両のロックアップ制御装置を実現する最良の形態を、図面に示す実施例1に基づいて説明する。
 まず、構成を説明する。
 実施例1におけるロックアップ制御装置は、トルクコンバータ及び無段変速機(CVT)を搭載したエンジン車に適用したものである。以下、実施例1におけるエンジン車のロックアップ制御装置の構成を、「全体システム構成」、「ロックアップ制御処理構成」に分けて説明する。
 [全体システム構成]
 図1は実施例1のロックアップ制御装置が適用されたエンジン車の全体システム構成を示し、図2は無段変速機のノーマル変速スケジュールを示し、図3はDレンジLUスケジュールを示す。以下、図1~図3に基づき、全体システム構成を説明する。
 車両駆動系は、図1に示すように、エンジン1と、エンジン出力軸2と、ロックアップクラッチ3と、トルクコンバータ4と、変速機入力軸5と、無段変速機6と、ドライブシャフト7と、駆動輪8と、を備えている。
 前記ロックアップクラッチ3は、トルクコンバータ4に内蔵され、クラッチ解放によりトルクコンバータ4を介してエンジン1と無段変速機6を連結し、クラッチ締結によりエンジン出力軸2と変速機入力軸5を直結する。このロックアップクラッチ3は、後述するCVTコントロールユニット12からロックアップ差圧指示(以下、「LU差圧指示」という。)が出力されると、元圧であるライン圧に基づいて調圧されたロックアップ油圧により、締結/スリップ締結/解放が制御される。なお、ライン圧は、エンジン1により回転駆動される図外のオイルポンプからの吐出油を、ライン圧ソレノイドバルブにより調圧することで作り出される。
 前記トルクコンバータ4は、ポンプインペラ41と、ポンプインペラ41に対向配置されたタービンランナ42と、ポンプインペラ41とタービンランナ42の間に配置されたステータ43と、を有する。このトルクコンバータ4は、内部に満たされた作動油が、ポンプインペラ41とタービンランナ42とステータ43の各ブレードを循環することによりトルクを伝達する流体継手である。ポンプインペラ41は、内面がロックアップクラッチ3の締結面であるコンバータカバー44を介してエンジン出力軸2に連結される。タービンランナ42は、変速機入力軸5に連結される。ステータ43は、ワンウェイクラッチ45を介して静止部材(トランスミッションケース等)に設けられる。
 前記無段変速機6は、プライマリプーリとセカンダリプーリへのベルト接触径を変えることにより変速比を無段階に制御するベルト式無段変速機であり、変速後の出力回転は、ドライブシャフト7を介して駆動輪8へ伝達される。
 車両制御系は、図1に示すように、エンジンコントロールユニット11(ECU)と、CVTコントロールユニット12(CVTCU)と、CAN通信線13と、を備えている。入力情報を得るセンサ類として、エンジン回転数センサ14と、タービン回転数センサ15(=CVT入力回転数センサ)と、CVT出力回転数センサ16(=車速センサ)と、を備えている。さらに、アクセル開度センサ17と、セカンダリ回転数センサ18と、プライマリ回転数センサ19と、CVT油温センサ20と、ブレーキスイッチ21、前後Gセンサ22、等を備えている。
 前記エンジンコントロールユニット11は、例えば、CVTコントロールユニット12からCAN通信線13を介してエンジントルクダウン制御の開始を要求するトルクダウン信号を受け取ると、アクセル開度APOに基づくトルクダウン値を得るようにエンジン1への燃料噴射量を減少させる。そして、エンジントルクダウン制御の実施中、CVTコントロールユニット12からCAN通信線13を介して受け取っていたトルクダウン信号が停止すると、ドライバ要求に応じた通常トルクを得る燃料噴射制御に復帰する。
 前記CVTコントロールユニット12は、無段変速機6の変速比を制御する変速制御、ライン圧制御、ロックアップクラッチ3の締結/スリップ締結/解放を制御するロックアップ制御、等を行う。
 前記無段変速機6の変速制御としては、無段変速機6のプライマリ回転数Npriを、ノーマル変速線により演算した目標プライマリ回転数Npri*に一致させるフィードバック制御により、変速比を無段階に変更制御するノーマル変速制御が実施される。
 ここで、「ノーマル変速線」とは、図2のノーマル変速スケジュールに示すように、車速VSPとアクセル開度APOによる運転点(VSP,APO)に基づき目標プライマリ回転数Npri*を決めるアクセル開度毎の変速線である。このノーマル変速線のうち、アクセル足放しコースト状態(アクセル開度APO=0/8)のときの変速線をコースト変速線という。
 停車からの発進時には、図2の矢印Aに示すように、アクセル踏み込み操作により運転点(VSP,APO)が最Low変速比線に沿って移動し、踏み込み後のアクセル開度APOに到達すると、車速VSPを上昇させるアップシフトが行われる。
 ドライブ走行からのコースト減速時には、図2の矢印Bに示すように、アクセル足放し操作により運転点(VSP,APO)がコースト変速線まで低下し、その後、コースト変速線に沿って運転点(VSP,APO)が移動し、車速VSPを低下させるダウンシフトが行われる。このコースト減速中にアクセル踏み込み操作により再加速を意図すると、図2の矢印Bに示すように、運転点(VSP,APO)がアクセル開度APOを高める方向に移動し、踏み込み後のアクセル開度APOに到達すると、車速VSPを上昇させるアップシフトが行われる。
 前記ロックアップクラッチ3のスリップロックアップ制御としては、発進時に実行される「発進スリップ制御」と、発進時以外の再加速時等で実行される「通常スムーズLU制御」と、を有する。「発進スリップ制御」は、図3のDレンジLUスケジュールに示すように、発進直後の低車速域に設定されたLU開始車速線(OFF→ON)と、LU開始車速線よりも高い車速に設定されたLU解除車速線(ON→OFF)と、にしたがってスリップ締結/解放の制御が行われる。「通常スムーズLU制御」は、図3のDレンジLUスケジュールに示すように、発進スリップ制御よりも高車速域に設定されたLU開始車速線(OFF→ON)と、LU開始車速線よりも低い車速に設定されたLU解除車速線(ON→OFF)と、にしたがってスリップ締結/解放の制御が行われる。即ち、ロックアップOFF領域にある運転点(VSP,APO)がLU開始車速線を横切ると、クラッチ締結指示の出力に基づいてロックアップクラッチ3のスリップ締結制御が開始され、ロックアップON領域に入る。一方、ロックアップON領域にある運転点(VSP,APO)がLU解除車速線を横切ると、クラッチ解放指示の出力に基づいてロックアップクラッチ3の解放制御が開始され、ロックアップOFF領域に入る。
 [ロックアップ制御処理構成]
 図4は、実施例1のCVTコントロールユニット12において実行されるコースト状態からアクセル踏み込みによるドライブ状態へ移行するときにロックアップクラッチをスリップ締結するロックアップ制御処理の流れを示す。以下、ロックアップ制御処理構成をあらわす図4の各ステップについて説明する。なお、この処理は、ロックアップクラッチ3が解放であるロックアップOFF条件と、アクセル足放し操作状態であるアクセルOFF条件と、が共に成立しているときに開始される。また、「LU」という記述は、「ロックアップ」の略称である。
 ステップS1では、発進や再加速を意図してアクセル踏み込み操作が行われたか否かを判断する。YES(アクセルオフ→オン)の場合はステップS2へ進み、NO(アクセルオフ→オン以外)の場合はエンドへ進む。
 ここで、アクセル踏み込み操作が行われたとの判断は、例えば、アクセル開度センサ17からのアクセル開度APOが、0/8開度(アクセル足離し状態)から、0/8開度より高い開度に移行したことで判断する。また、アクセルスイッチを用いる場合は、オフ(アクセル足離し状態)からオン(アクセル踏み込み状態)へとスイッチ信号が切り替わったことで判断する。
 ステップS2では、ステップS1でのアクセルオフ→オンであるとの判断に続き、アクセル踏み込み操作が行われたときの車速VSPに基づき、発進時であるか否かを判断する。YES(発進時)の場合はステップS3へ進み、NO(再加速時)の場合はステップS7へ進む。
 即ち、アクセル踏み込み操作が行われたときの車速VSPが、VSP≦停車判定値であれば発進時であると判断する。一方、アクセル踏み込み操作が行われたときの車速VSPが、VSP>停車判定値であれば再加速時であると判断する。
 ステップS3では、ステップS2での発進時であるとの判断、或いは、ステップS3での運転点(VSP,APO)が発進時のLU領域に無いとの判断に続き、そのときの運転点(VSP,APO)が発進時のLU領域に存在するか否かを判断する。YES(LU領域内)の場合はステップS4へ進み、NO(LU領域外)の場合はステップS3の判断を繰り返す。
 ここで、運転点(VSP,APO)が発進時のLU領域に存在するか否かは、図3に示すDレンジLUスケジュールの「発進スリップ制御」でのLU開始車速線を用いて判断される。即ち、運転点(VSP,APO)がLU開始車速線を横切る車速VSPになるまでは「LU領域外」と判断され、LU開始車速線を横切る車速VSPになると「LU領域内」と判断される。
 ステップS4では、ステップS3でのLU領域内であるとの判断に続き、発進時の初期差圧(=0点差圧+差圧α)を演算し、ステップS5へ進む。
 ここで、「発進時の初期差圧」は、図5に示すように、ロックアップ容量を持ち始めるミートポイント学習値に基づく0点差圧に、トルクコンバータ4がコンバータ状態からの初動差圧を考慮した差圧αを加えた値とする。「0点差圧」とは、ミートポイント学習値に基づいて求められるLU容量を持ち始める直前の差圧をいい、ミートポイント学習値からオフセット量を差し引くことで求められる。「初動差圧」とは、ロックアップクラッチ3が締結方向(クラッチ掴み方向)に動き出してLU容量を持つことができる差圧をいい、トルクコンバータ4の速度比と図7に示す初動差圧特性を用いて求められる。ちなみに、速度比が0.6より上の速度比領域では、図7に示すように、ロックアップクラッチ3のリターン力の方が強いため、差圧αを大にしないと、ロックアップクラッチ3を掴みにいかない。なお、「発進時の初期差圧」は、図5に示すように、ロックアップクラッチ3の初期掴みが可能なように、(0点差圧+差圧α)により設定される。なお、「差圧α」としては、初動差圧に「0点差圧」の学習誤差分を考慮した値を加えて演算しても良い。
 ステップS5では、ステップS4での発進時の初期差圧演算、或いは、ステップS6でのT<T1であるとの判断に続き、ステップS4で演算した発進時の初期差圧によるLU差圧指示を出力し、ステップS6へ進む。
 ここで、LU差圧指示の出力は、ステップS6のタイマーによる待ち時間条件を満足するまで、発進時の初期差圧を維持する。
 ステップS6では、ステップS5での初期差圧によるLU差圧指示出力に続き、初期差圧によるLU差圧指示を出力した時から起算されたタイマー値Tが、第1タイマー値T1を経過したか否かを判断する。YES(T≧T1)の場合はステップS11へ進み、NO(T<T1)の場合はステップS5へ戻る。
 ここで、「第1タイマー値T1」は、初期差圧によるLU差圧指示を出力してから、LU実差圧が、ロックアップクラッチ3が初動できる差圧まで上昇するのに要する応答遅れ時間に設定する。この「第1タイマー値T1」は、応答遅れ時間に関する多数の実験結果に基づいて取得する。なお、「第1タイマー値T1」としては、固定値により与えるようにしても良いし、例えば、CVT油温やアクセル踏み込み速度、等により可変値にて与えるようにしても良い。
 ステップS7では、ステップS2での再加速時であるとの判断、或いは、ステップS7での運転点(VSP,APO)が再加速時のLU領域に無いとの判断に続き、そのときの運転点(VSP,APO)が再加速時のLU領域に存在するか否かを判断する。YES(LU領域内)の場合はステップS8へ進み、NO(LU領域外)の場合はステップS7の判断を繰り返す。
 ここで、運転点(VSP,APO)が再加速時のLU領域に存在するか否かは、図3に示すDレンジLUスケジュールの「通常スムーズLU制御」でのLU開始車速線を用いて判断される。即ち、運転点(VSP,APO)がLU開始車速線を横切る車速VSP以下のときは、LU開始車速線を横切る車速VSPになるまでは「LU領域外」と判断される。しかし、運転点(VSP,APO)がLU開始車速線を横切る車速VSPになったとき、或いは、コースト時のロックアップ禁止が作動していることで、判断時点で既に運転点(VSP,APO)がロックアップON領域に存在するときは「LU領域内」と判断される。
 ステップS8では、ステップS7でのLU領域内であるとの判断に続き、再加速時の初期差圧(=0点差圧+差圧β)を演算し、ステップS9へ進む。
 ここで、「再加速時の初期差圧」は、図6に示すように、ロックアップ容量を持ち始めるミートポイント学習値に基づく0点差圧に、トルクコンバータ4がコンバータ状態からのエンジン回転吹け上がり防止を狙った差圧βを加えた値とする。「0点差圧」とは、ミートポイント学習値に基づいて求められるLU容量を持ち始める直前の差圧をいい、ミートポイント学習値からオフセット量を差し引くことで求められる。「エンジン回転吹け上がり防止を狙った差圧β」とは、エンジン回転吹け上がりを抑えるために必要なクラッチ伝達トルクTLU分を確保する差圧(>初動差圧)をいう。つまり、「再加速時の初期差圧」は、ロックアップクラッチ3のクラッチ伝達トルクTLUによりエンジン回転吹け上がりを抑えることが可能なように、(0点差圧+差圧β)により設定される。
 ステップS9では、ステップS8での再加速時の初期差圧演算、或いは、ステップS10での[速度比-C]<所定値であるとの判断に続き、ステップS8で演算した再加速時の初期差圧によるLU差圧指示を出力し、ステップS10へ進む。
 ここで、LU差圧指示の出力は、ステップS10の速度比条件を満足するまで、再加速時の初期差圧を維持する。
 ステップS10では、ステップS9での初期差圧によるLU差圧指示出力に続き、[速度比-C]が、所定値以上であるか否かを判断する。YES([速度比-C]≧所定値)の場合はステップS11へ進み、NO([速度比-C]<所定値)の場合はステップS9へ戻る。
 ここで、「速度比」とは、トルクコンバータ4のタービン回転数Ntとポンプ回転数(=エンジン回転数Ne)の比であり、速度比e=タービン回転数Nt/エンジン回転数Neの式を用いて算出される。タービン回転数Ntは、タービン回転数センサ15から取得し、エンジン回転数Neはエンジン回転数センサ14から取得する。「C」は、C=min(今回の速度比e(n),前回の速度比e(n-1))による速度比の値とする。「所定値」は、ゼロに近い小さな値に設定される。即ち、[速度比-C]は、速度比eの減少側への変化速度をあらわし、[速度比-C]≧所定値は、速度比eの減少側への変化が止まったことをあらわす。言い換えると、[速度比-C]≧所定値とは、図7のアンロックアップ(unLU)からの再加速時の速度比変化特性に示すように、トルクコンバータ4の速度比eが低下する状態から上昇する状態に移行する速度比変曲点を検知したことをあらわす。
 ステップS11では、ステップS6でのT≧T1であるとの判断、或いは、ステップS10での[速度比-C]≧所定値であるとの判断に続き、一定の初期差圧による差圧指示から上昇する傾斜勾配(第1上昇勾配θ1)を持つ差圧指示へと切り替え、ランプ制御にて差圧昇圧を開始し、ステップS12へ進む。
 ここで、ステップS6でのT≧T1であるとの判断は、LU差圧指示を初期差圧からランプ差圧に切り替える発進時におけるランプ開始条件の成立をあらわす。ステップS10での[速度比-C]≧所定値であるとの判断は、LU差圧指示を初期差圧からランプ差圧に切り替える再加速時におけるランプ開始条件の成立をあらわす。
 ステップS12では、ステップS11でのランプ制御による差圧昇圧の開始、或いは、ステップS15でのクラッチスリップ量>所定値であるとの判断に続き、タービン回転数Ntが上昇側へ変化するタービン回転数変化量が、判定しきい値を超えているか否かを判断する。YES(タービン回転数変化量>判定しきい値)の場合はステップS13へ進み、NO(タービン回転数変化量≦判定しきい値)の場合はステップS14へ進む。
 ここで、「タービン回転数変化量」は、[今回の目標タービン回転数Nt(n)-前回の目標タービン回転数Nt(n-1)]の式により演算される。「判定しきい値」は、LU容量を持ち始めてからLU締結までの区間において、LU容量の上昇によりエンジン回転数Neがタービン回転数Ntへの収束を開始する領域でのタービン回転数変化量に設定される。具体的には、図13のクラッチ伝達トルク特性とコンバータ伝達トルク特性の交点、つまり、エンジントルクTeを分担するクラッチ伝達トルクTLUがコンバータ伝達トルクτNe2に到達するタービン回転数変化量の実験値により、例えば、アクセル開度APO毎に設定される。
 ステップS13では、ステップS12でのタービン回転数変化量>判定しきい値であるとの判断に続き、ランプ差圧の第1上昇勾配θ1による差圧昇圧を継続し、ステップS15へ進む。
 ここで、「差圧昇圧における上昇勾配」は、ロックアップクラッチ3のスリップ締結中、エンジン回転数の落とし方を決めるパラメータであり、「第1上昇勾配θ1」は、エンジン回転落ち、ラギング感、締結ショックの要件に基づき、アクセル開度APOが高いほど傾き角度が大きく設定される。
 ステップS14では、ステップS12でのタービン回転数変化量≦判定しきい値であるとの判断に続き、第1上昇勾配θ1による差圧昇圧量を低減した第2上昇勾配θ2(<θ1)による差圧昇圧に切り替え、ステップS15へ進む。
 ここで、「第2上昇勾配θ2」は、第1上昇勾配θ1よりも低いという関係を保ちながらアクセル開度APOが高いほど傾き角度が大きく設定される。つまり、ステップS13とステップS14では、第1上昇勾配θ1と第2上昇勾配θ2をアクセル開度毎に設定しておき、そのときのアクセル開度APOによって決まる第1上昇勾配θ1と第2上昇勾配θ2を用いる。
 ステップS15では、ステップS13での差圧昇圧継続、或いは、ステップS14での差圧昇圧量低減に続き、ロックアップクラッチ3のクラッチスリップ量が、所定値以下になったか否かを判断する。YES(クラッチスリップ量≦所定値)の場合はステップS16へ進み、NO(クラッチスリップ量>所定値)の場合はステップS12へ戻る。
 ここで、「クラッチスリップ量」は、(エンジン回転数Ne-タービン回転数Nt)の式を用いて演算する。「所定値」は、スリップ回転数が無くなったとみなす判定しきい値であり、例えば、10rpm程度の値に設定される。
 ステップS16では、ステップS15でのクラッチスリップ量≦所定値であるとの判断に続き、LU容量を最大にする制御によりロックアップクラッチ3を締結し、エンドへ進む。
 ここで、「LU容量を最大にする制御」では、ロックアップクラッチ3を完全締結状態にするため、LU差圧指示を、ステップ的に最大値まで上昇させるフィードフォワード制御(FF制御)を行う。
 次に、作用を説明する。
 実施例1での作用を、「ロックアップ制御処理作用」、「発進時におけるロックアップ制御作用」、「再加速時におけるロックアップ制御作用」、「発進時におけるランプ制御作用」、「ロックアップ制御での特徴作用」に分けて説明する。
 [ロックアップ制御処理作用]
 以下、図4に示すフローチャートに基づき、ロックアップ制御処理作用を説明する。
 発進時、ブレーキオン・アクセルオフでの停車状態からブレーキ足放し操作に引き続いてアクセル踏み込み操作を行うと、図4のフローチャートにおいて、ステップS1→ステップS2→ステップS3へと進む。ステップS3では、そのときの運転点(VSP,APO)が発進時のLU領域に存在するか否かが判断され、LU領域外と判断されている間は、ステップS3の判断が繰り返される。
 ステップS3にて運転点(VSP,APO)が発進時の「発進スリップ制御」でのLU開始車速線を横切ると、ステップS3からステップS4→ステップS5→ステップS6へと進む。ステップS6にてT<T1と判断されている間は、ステップS5→ステップS6へと進む流れが繰り返される。つまり、ステップS4では、発進時の初期差圧(=0点差圧+差圧α)が演算され、ステップS5では、ステップS4で演算した発進時の初期差圧によるLU差圧指示が出力され、LU差圧指示の出力が、ステップS6のタイマーによる待ち時間条件を満足(T≧T1)するまで、発進時の初期差圧が維持される。その後、ステップS6のタイマーによる待ち時間条件を満足すると、発進時と再加速時に共通のランプ制御が開始される。
 一方、再加速時、アクセルオフによるコースト減速状態からアクセル踏み込み操作を行うと、図4のフローチャートにおいて、ステップS1→ステップS2→ステップS7へと進む。ステップS7では、そのときの運転点(VSP,APO)が再加速時のLU領域に存在するか否かが判断され、運転点(VSP,APO)がLU領域内であるとステップS8へ進む。又、運転点(VSP,APO)が領域外であると、領域外と判断されている間は、ステップS7の判断が繰り返される。
 ステップS7にて運転点(VSP,APO)がLU領域内、或いは、運転点(VSP,APO)が再加速時の「通常スムーズLU制御」でのLU開始車速線を横切ると、ステップS7からステップS8→ステップS9→ステップS10へと進む。ステップS10にて[速度比-C]<所定値と判断されている間は、ステップS9→ステップS10へと進む流れが繰り返される。即ち、ステップS8では、再加速時の初期差圧(=0点差圧+差圧β)が演算される。ステップS9では、ステップS8で演算した再加速時の初期差圧によるLU差圧指示が出力され、LU差圧指示の出力が、ステップS10の速度比条件を満足([速度比-C]≧所定値)するまで、再加速時の初期差圧が維持される。その後、ステップS10の速度比条件を満足すると、発進時と再加速時に共通のランプ制御が開始される。
 発進時、ステップS6のタイマーによる待ち時間条件を満足すると、ステップS6からステップS11へ進み、再加速時、ステップS10の速度比条件を満足すると、ステップS10からステップS11へ進む。ステップS11では、一定の初期差圧による差圧指示から上昇する傾斜勾配を持つ差圧指示へと切り替えられ、ランプ制御による差圧昇圧が開始されると、ステップS12へ進む。ステップS12では、タービン回転数Ntが上昇側へ変化するタービン回転数変化量が、判定しきい値を超えているか否かが判断される。そして、タービン回転数変化量>判定しきい値であると判断されている間は、ステップS12からステップS13へ進み、ステップS13では、ランプ差圧の第1上昇勾配θ1による差圧昇圧が継続され、ステップS15へと進む。その後、タービン回転数変化量≦判定しきい値になると、ステップS12からステップS14へ進み、ステップS14では、第1上昇勾配θ1による差圧昇圧量を低減した第2上昇勾配θ2(<θ1)による差圧昇圧に切り替えられ、ステップS15へと進む。
 ステップS15において、クラッチスリップ量>所定値と判断されている間は、ステップS12→ステップS13→ステップS15へと進む流れ、或いは、ステップS12→ステップS14→ステップS15へと進む流れが繰り返される。その後、ステップS15において、クラッチスリップ量≦所定値と判断されると、ステップS15からステップS16→エンドへと進み、ステップS16では、LU容量を最大にする制御によりロックアップクラッチ3が締結される。
 このように、発進時と再加速時とでは、ロックアップ差圧指示を初期差圧からランプ差圧に切り替えるランプ開始条件が、タイマー条件(発進時)か速度比条件(再加速時)かというように相違する。しかし、
・LU領域であれば即座にLU制御を開始する。
・初期差圧を0点指示差圧より高い差圧に設定する。
・初期差圧の高さで維持する初期差圧キープ状態を作る。
・ランプ制御にてタービン回転数変化量が小さくなると上昇勾配を緩やかにする。
という点で共通する。
 [発進時におけるロックアップ制御作用]
 アクセル踏み込み操作による発進時、車速VSPがLU領域に入ると初期差圧(=下限圧)によるLU制御を開始し、初期差圧から直ちに第3上昇勾配θ3によるランプ制御に移行してLU締結するものを比較例とする。以下、比較例での発進時におけるロックアップ制御作用を、図8に示すタイムチャートにより説明する。
 時刻t1において発進を意図してアクセルペダル踏み込み操作を行うと、時刻t1からエンジントルクTeが上昇し、エンジン回転数Neがロックアップ制御開始時刻t2に向かって上昇する。この時刻t1以降の発進開始域でのタービン回転数Ntは、車速VSPの上昇に従って上昇する特性を示す。
 時刻t2において、車速VSPが「発進スリップ制御」でのLU開始車速線を横切ると、ロックアップ差圧指示を下限圧による初期差圧まで立ち上げた後、直ちに第3上昇勾配θ3によるランプ差圧により昇圧させるロックアップ制御が開始される。時刻t2からはロックアップ差圧指示に対して油圧応答遅れを持つ実差圧(LU差圧指示の破線特性)が徐々に上昇し、時刻t3にてLU容量を持ち始める油圧になる。よって、LU容量を持たない時刻t2~時刻t3の間は、ロックアップクラッチの締結負荷が無く、エンジン回転数Neが時刻t2よりも高い回転数域まで吹け上がる。
 時刻t3にてLU容量を持ち始める油圧になると、クラッチ伝達トルクTLUの上昇にしたがってコンバータ伝達トルクτNe2が低下するというように、時間の経過にしたがってエンジントルクTeの分担比のうち、クラッチ伝達トルクTLUの分担比が増加する。そして、時刻t4にてロックアップクラッチの実差圧が初動できる差圧になると、エンジン回転数Neが時刻t5に向かって落ち込む。なお、エンジントルクTeは、コンバータ伝達トルクτNe2分とクラッチ伝達トルクTLU分とイナーシャトルクIe・dωe分とによって分担されるが、以下の説明ではイナーシャトルク分を省略する。
 時刻t5にてエンジン回転数Neとタービン回転数Ntの回転数差(=クラッチスリップ量)がほぼ一致するまで収束し、エンジントルクTeをクラッチ伝達トルクTLUにより分担する状況になると、ロックアップクラッチが締結される。
 このように、比較例では、初期差圧が低い下限圧に設定されるため、時刻t2にてロックアップ制御が開始されても、時刻t2からLU容量を持ち始める油圧になる時刻t3までの間、エンジン回転数Neの上昇を許す。この結果、図8の矢印Dで囲まれるエンジン回転数特性に示すように、エンジン回転数Neの吹け上がりが生じる。
 さらに、ランプ制御での上昇勾配を、時刻t2からできる限り早期にLU容量を持ち始める油圧となるように、第3上昇勾配θ3としているため、タービン回転数Ntに向かうエンジン回転数Neの低下勾配が大きくなり、時刻t5の領域において締結ショックが生じる。
 これに対し、アクセル踏み込み操作による発進時、車速VSPがLU領域に入ると初期差圧(=0点差圧+差圧α)によるLU制御を開始し、初期差圧の維持後、第1上昇勾配θ1(<θ3)によるランプ制御に移行してLU締結するものを実施例1とする。以下、実施例1での発進時におけるロックアップ制御作用を、図9に示すタイムチャートにより説明する。
 時刻t1において発進を意図してアクセルペダル踏み込み操作を行うと、時刻t1からエンジントルクTeが上昇し、エンジン回転数Neがロックアップ制御開始時刻t2に向かって上昇する。この時刻t1以降の発進開始域でのタービン回転数Ntは、車速VSPの上昇に従って上昇する特性を示す。
 時刻t2において、車速VSPが「発進スリップ制御」でのLU開始車速線を横切ると、ロックアップ差圧指示を初期差圧(=0点差圧+差圧α)まで立ち上げ、立ち上げた初期差圧を維持するロックアップ制御が開始される。時刻t2からはロックアップ差圧指示に対して油圧応答遅れを持つ実差圧(LU差圧指示の破線特性)が上昇し、時刻t3にてLU容量を持ち始める油圧になる。
 LU容量を持ち始める時刻t3からはクラッチ伝達トルクTLUの上昇にしたがってコンバータ伝達トルクτNe2が低下するというように、時間の経過にしたがってエンジントルクTeの分担比のうち、クラッチ伝達トルクTLUの分担比が増加する。そして、時刻t4にて時刻t2からの経過時間が第1タイマー値T1による設定時間になると、ロックアップクラッチ3の実差圧が初動できる差圧になり、時刻t4から第1上昇勾配θ1(<θ3)によるランプ差圧により昇圧される。
 よって、初期差圧からランプ差圧に切り替わる時刻t4からエンジン回転数Neの低下を開始し、時刻t5にてエンジン回転数Neとタービン回転数Ntの回転数差(=クラッチスリップ量)がほぼ一致するまで収束し、エンジントルクTeをクラッチ伝達トルクTLUにより分担する状況になると、ロックアップクラッチ3が締結される。
 このように、実施例1では、一定の初期差圧が比較例に比べて高く設定されるため、時刻t2にてロックアップ制御が開始されると、その直後の時刻t3にてLU容量を持ち始める油圧になり、その後のエンジン回転数Neの上昇が抑えられる。この結果、図9の矢印Eで囲まれるエンジン回転数特性に示すように、エンジン回転数Neの吹け上がりが抑えられる。なお、図9のエンジン回転数特性のハッチング部分は、比較例に対するエンジン回転数Neの吹け上がり抑制効果代である。
 さらに、ランプ制御での上昇勾配を、第3上昇勾配θ3より緩やかな勾配にてランプ差圧が上昇する第1上昇勾配θ1としているため、タービン回転数Ntに向かうエンジン回転数Neの低下勾配が小さくなり、時刻t5での締結ショックが抑えられる。このとき、初期差圧が比較例に比べ高く設定されているため、ランプ差圧の上昇勾配が小さくてもロックアップクラッチ3の完全締結に移行するまでの時間が長くなるのを抑制できる。
 [再加速時におけるロックアップ制御作用]
 コースト減速走行からのアクセル踏み込み操作による再加速時、車速VSPがLU領域に入ると初期差圧(=下限圧)によるLU制御を開始し、初期差圧から直ちに第3上昇勾配θ3によるランプ制御に移行してLU締結するものを比較例とする。以下、比較例での再加速時におけるロックアップ制御作用を、図10に示すタイムチャートにより説明する。
 時刻t1において再加速を意図してアクセルペダル踏み込み操作を行うと、時刻t1からエンジントルクTeが上昇し、エンジン回転数Neがロックアップ制御開始時刻t2に向かって上昇する。この時刻t1以降の再加速開始域でのタービン回転数Ntは、車速VSPの上昇に従って上昇する特性を示す。
 時刻t2において、車速VSPが「通常スムーズLU制御」でのLU開始車速線を横切ると、ロックアップ差圧指示を下限圧による初期差圧まで立ち上げた後、直ちに第3上昇勾配θ3によるランプ差圧により昇圧させるロックアップ制御が開始される。時刻t2からはロックアップ差圧指示に対して油圧応答遅れを持つ実差圧(LU差圧指示の破線特性)が徐々に上昇し、時刻t3にて低開度での学習時の0点になり、時刻t4にてLU容量を持ち始める油圧になる。よって、LU容量を持たない時刻t2~時刻t4の間は、ロックアップクラッチの締結負荷が無く、エンジン回転数Neが時刻t2よりも高い回転数域まで吹け上がる。
 時刻t4にてLU容量を持ち始める油圧になると、クラッチ伝達トルクTLUの上昇にしたがってコンバータ伝達トルクτNe2が低下するというように、時間の経過にしたがってエンジントルクTeの分担比のうち、クラッチ伝達トルクTLUの分担比が増加する。そして、時刻t4からは、エンジン回転数Neが時刻t5に向かって落ち込む。
 時刻t5にてエンジン回転数Neとタービン回転数Ntの回転数差(=クラッチスリップ量)がほぼ一致するまで収束し、エンジントルクTeをクラッチ伝達トルクTLUにより分担する状況になると、ロックアップクラッチが締結される。
 このように、比較例では、初期差圧が低い下限圧に設定されるため、時刻t2にてロックアップ制御が開始されても、時刻t2からLU容量を持ち始める油圧になる時刻t4までの間、エンジン回転数Neの上昇を許す。この結果、図10の矢印Fで囲まれるエンジン回転数特性に示すように、エンジン回転数Neの吹け上がりが生じる。
 さらに、ランプ制御での上昇勾配を、時刻t2からできる限り早期にLU容量を持ち始める油圧となるように、第3上昇勾配θ3としているため、タービン回転数Ntに向かうエンジン回転数Neの低下勾配が大きくなり、時刻t5の領域において締結ショックが生じる。
 これに対し、コースト減速走行からのアクセル踏み込み操作による再加速時、車速VSPがLU領域であると即座に初期差圧(=0点差圧+差圧β)によるLU制御を開始し、初期差圧の維持後、第1上昇勾配θ1(<θ3)によるランプ制御に移行してLU締結するものを実施例1とする。以下、実施例1での再加速時におけるロックアップ制御作用を、図11に示すタイムチャートにより説明する。
 時刻t1において発進を意図してアクセルペダル踏み込み操作を行うと、時刻t1において車速VSPがLU領域であることで、ロックアップ差圧指示を初期差圧(=0点差圧+差圧β)まで立ち上げ、立ち上げた初期差圧を維持するロックアップ制御が開始される。時刻t1からはロックアップ差圧指示に対して油圧応答遅れを持つ実差圧(LU差圧指示の破線特性)が上昇し、時刻t2にてLU容量を持ち始める油圧になる。
 LU容量を持ち始める時刻t2からはクラッチ伝達トルクTLUの上昇にしたがってコンバータ伝達トルクτNe2が低下するというように、時間の経過にしたがってエンジントルクTeの分担比のうち、クラッチ伝達トルクTLUの分担比が増加する。よって、時刻t2から時刻t3までの間において、エンジン回転数Neの吹き上がり抑制が開始される。そして、時刻t3にて速度比eの変曲点(e=0.6~0.7)が検知されると、その後、第1上昇勾配θ1(<θ3)によるランプ差圧により昇圧される。
 よって、ロックアップクラッチ3の実差圧が初動できる差圧になる時刻t4からエンジン回転数Neが低下を開始する。そして、時刻t5にてエンジン回転数Neとタービン回転数Ntの回転数差(=クラッチスリップ量)がほぼ一致するまで収束し、エンジントルクTeをクラッチ伝達トルクTLUにより分担する状況になると、ロックアップクラッチ3が締結される。
 このように、実施例1では、一定の初期差圧が比較例に比べて高く設定されるため、時刻t1にてロックアップ制御が開始されると、その直後の時刻t2にてLU容量を持ち始める油圧になり、その後のエンジン回転数Neの上昇が抑えられる。この結果、図11の矢印Gで囲まれるエンジン回転数特性に示すように、エンジン回転数Neの吹け上がりが抑えられる。なお、図11のエンジン回転数特性のハッチング部分は、比較例に対するエンジン回転数Neの吹け上がり抑制効果代である。
 さらに、ランプ制御での上昇勾配を、第3上昇勾配θ3より緩やかな勾配にてランプ差圧が上昇する第1上昇勾配θ12としているため、タービン回転数Ntに向かうエンジン回転数Neの低下勾配が小さくなり、締結ショックが抑えられる。このとき、実施例1では、初期差圧が比較例に比べ高く設定されているため、ランプ差圧の上昇勾配が小さくてもロックアップクラッチ3の完全締結に移行するまでの時間が長くなるのを抑制できる。
 加えて、アクセル踏み込み操作による再加速時、車速VSPがLU領域であると即座に初期差圧によるLU制御を開始するため、解放されているロックアップクラッチ3がアクセル踏み込み操作から応答良く締結される。
 [発進時におけるランプ制御作用]
 アクセル踏み込み操作による発進時、車速VSPがLU領域に入ると初期差圧(=0点差圧+差圧α)によるLU制御を開始し、初期差圧の維持後、ランプ制御に移行してLU締結する。このランプ制御において、タービン回転数変化量にかかわらず、上昇勾配を第1上昇勾配θ1にするものを比較例とする。以下、比較例での発進時におけるランプ制御作用を、図12に示すタイムチャートにより説明する。なお、時刻t3までの作用は、図9の場合と同様であるので説明を省略する。
 図12の時刻t4にて時刻t2からの経過時間が第1タイマー値T1による設定時間になると、ロックアップクラッチ3の実差圧が初動できる差圧になり、時刻t4から第1上昇勾配θ1(>θ2)によるランプ差圧により昇圧される。
 このように、比較例では、時刻t4からのランプ制御での上昇勾配を、タービン回転数Ntの変化量に関わらず第1上昇勾配θ1としている。この結果、タービン回転数Ntの変化量が小さい、つまり、エンジン回転数Neの上昇量に比べエンジンタービン回転数Ntの上昇量が小さい状態でロックアップクラッチ3のLU容量が増大されると、タービン回転数Ntに向かうエンジン回転数Neの低下勾配(回転落ち)が大きくなり、図12の矢印Hで囲まれた締結領域において締結ショックが生じる。
 これに対し、アクセル踏み込み操作による発進時、車速VSPがLU領域に入ると初期差圧(=0点差圧+差圧α)によるLU制御を開始し、初期差圧の維持後、ランプ制御に移行してLU締結する。このランプ制御において、タービン回転数変化量が判定しきい値を超えている間は第1上昇勾配θ1とするが、タービン回転数変化量が判定しきい値以下になると第2上昇勾配θ2(<θ1)とするものを実施例1とする。以下、実施例1での発進時におけるロックアップ制御作用を、図13に示すタイムチャートにより説明する。なお、時刻t3までの作用は、図9の場合と同様であるので説明を省略する。
 図13の時刻t4にて時刻t2からの経過時間が第1タイマー値T1による設定時間になると、ロックアップクラッチ3の実差圧が初動できる差圧になり、時刻t4からランプ差圧により昇圧される。ここで、時刻t4から時刻t5に到達するまでは、タービン回転数変化量が判定しきい値を超えているために第1上昇勾配θ1とされる。しかし、タービン回転数変化量が判定しきい値以下になる時刻t5になると、上昇勾配が、第1上昇勾配θ1から第2上昇勾配θ2(<θ1)に切り替えられ、LU締結時刻t6まで第2上昇勾配θ2が維持される。
 このように、実施例1では、ランプ制御での上昇勾配を、タービン回転数変化量が判定しきい値を超えている間は第1上昇勾配θ1とするが、タービン回転数変化量が判定しきい値以下になると第2上昇勾配θ2(<θ1)としている。この結果、タービン回転数Ntの変化量が小さい状態でロックアップクラッチ3のLU容量が増大しても、タービン回転数Ntに向かうエンジン回転数Neの低下勾配(回転落ち)が小さくなり、図13の矢印Iで囲まれた締結領域において締結ショックが抑制される。そして、ランプ制御での上昇勾配を全域にて第2上昇勾配θ2にする場合に比べ、ロックアップ制御に要する時間が短縮化され、ロックアップクラッチ3の締結応答性が向上する。
 [ロックアップ制御での特徴作用]
 実施例1では、LU差圧指示を初期差圧からランプ差圧に切り替えるランプ開始タイミングを、トルクコンバータ4の入出力回転速度の比である速度比eに基づいて決める。
 即ち、トルクコンバータ4の速度比eは、(速度比e=タービン回転数Nt/エンジン回転数Ne)の式であらわされるというように、タービン回転数Ntの変化とエンジン回転数Neの変化を共に反映する指標値である。加えて、トルクコンバータ4の速度比eは、ロックアップクラッチ3が解放状態での速度比eからLU容量を持ち始める速度比eに移行するとき、エンジン回転数Neの上昇が抑えられることで速度比eに変化が見られる点に着目した。従って、トルクコンバータの速度比eの変化を監視することで、ロックアップクラッチ3がLU容量を持ち始める適正なランプ開始タイミングを検知できる。この結果、ロックアップクラッチを解放状態から締結状態に移行する走行シーンのとき、ロックアップクラッチ3の締結による車両挙動変化が低減される。
 実施例1では、ロックアップクラッチ3を解放しているアクセル足放しコースト減速からのアクセル踏み込み操作による再加速時、トルクコンバータ4の速度比eが低下する状態から上昇する状態に移行する速度比変曲点を検知したら、LU差圧指示を初期差圧からランプ差圧に切り替える。
 即ち、図7及び図11に示すように、再加速時においては、ロックアップクラッチ3が解放状態の間は、速度比eが1以上の値から速度比eが低下する。しかし、ロックアップクラッチ3がLU容量を持ち始める速度比e(e=0.6~0.7)になると、エンジン回転数Neの上昇が抑えられることで速度比eが1に向かって上昇に転じ、速度比eに変曲点があらわれる点に着目した。
 従って、コースト減速からのアクセル踏み込みによる再加速時、適正なランプ開始タイミングを精度よく検知することで、ロックアップクラッチ3の締結による車両挙動変化が低減される。
 実施例1では、LU差圧指示を初期差圧まで立ち上げると、速度比変曲点が検知されるまでの間、初期差圧を一定に保つ。
 即ち、LU差圧指示をランプ差圧により上昇させる前までは、初期差圧を一定に保つことで、この初期差圧の出力中、LU差圧指示とLU実差圧の乖離が回避され、その後のランプ差圧の上昇において、ロックアップクラッチ3が締結する際の急締結が防止される。
 従って、コースト減速からのアクセル踏み込みによる再加速時、初期差圧を一定に保つことで、ロックアップクラッチ3の締結による車両挙動の変化が低減される。
 実施例1では、初期差圧を、LU容量を持ち始めるミートポイント学習値に基づく0点差圧に、トルクコンバータ4のコンバータ状態からのエンジン回転吹け上がりを抑えるクラッチ伝達トルクTLUに相当する差圧βを加えた値とする。
 即ち、一定の初期差圧を出力している区間において、ロックアップクラッチ3を掴み始めるだけでなく、クラッチ伝達トルクTLUの発生を意図することで、早期にエンジン回転吹け上がり抑制作用が開始される。そして、クラッチ伝達トルクTLUを増加し、エンジン回転数Neを低下させる次のランプ制御へ移行する。
 従って、エンジン搭載車において、LU制御が開始されてからエンジン回転吹け上がり抑制開始までの無駄時間が短縮され、エンジン回転吹け上がりが整然と抑制される。
 実施例1では、コースト減速走行からのアクセル踏み込み操作による再加速時、アクセル踏み込み操作時の運転点(VSP,APO)がLU領域に存在すると、LU差圧指示を即座に初期差圧まで立ち上げる。
 例えば、コースト減速走行からの再加速時、締結ショックを回避するため、アクセル踏み込み操作から所定時間(例えば、1秒)が経過するまでLU制御を禁止すると、禁止時間がLU制御開始までの待ち時間となり、エンジン回転吹け上がりを促すことになる。
 これに対し、アクセル踏み込み操作時の運転点(VSP,APO)がLU領域に存在すると、LU差圧指示を即座に初期差圧まで立ち上げ、LU制御の開始待ち時間が省かれる。
 従って、再加速時、運転点(VSP,APO)がLU領域であることを条件とし、アクセル踏み込み操作時からLU制御開始までの待ち時間が省かれ、エンジン回転吹け上がりが応答良く抑制される。
 次に、効果を説明する。
 実施例1のエンジン車のロックアップ制御装置にあっては、下記に列挙する効果が得られる。
 (1) 駆動源(エンジン1)と変速機(無段変速機6)の間に配置され、ロックアップクラッチ3を有するトルクコンバータ4と、
 ロックアップクラッチ3が解放状態のときにロックアップ締結条件が成立すると、ロックアップ差圧指示(LU差圧指示)を初期差圧まで立ち上げた後、所定の傾きによるランプ差圧により昇圧させてロックアップクラッチ3を締結するロックアップ制御手段(CVTコントロールユニット12)と、
 を備える車両(エンジン車)のロックアップ制御装置において、
 ロックアップ制御手段(CVTコントロールユニット12、図4)は、ロックアップ差圧指示(LU差圧指示)を初期差圧からランプ差圧に切り替えるランプ開始条件を、トルクコンバータ4の入出力回転速度の比である速度比eに基づいて決める。
 このため、ロックアップクラッチ3を解放状態から締結状態に移行する走行シーンのとき、ロックアップクラッチ3の締結による車両挙動変化を低減することができる。
 (2) ロックアップ制御手段(CVTコントロールユニット12、図4)は、ロックアップクラッチ3を解放しているアクセル足放しコースト減速からのアクセル踏み込み操作による再加速時、トルクコンバータ4の速度比eが低下する状態から上昇する状態に移行する速度比変曲点を検知したら、ロックアップ差圧指示(LU差圧指示)を初期差圧からランプ差圧に切り替える。
 このため、(1)の効果に加え、コースト減速からのアクセル踏み込みによる再加速時、適正なランプ開始タイミングを精度よく検知することで、ロックアップクラッチ3の締結による車両挙動変化を低減することができる。
 (3) ロックアップ制御手段(CVTコントロールユニット12、図4)は、ロックアップ差圧指示(LU差圧指示)を初期差圧まで立ち上げると、速度比変曲点が検知されるまでの間、初期差圧を一定に保つ。
 このため、(2)の効果に加え、コースト減速からのアクセル踏み込みによる再加速時、初期差圧を一定に保つことで、ロックアップクラッチ3の締結による車両挙動の変化を低減することができる。
 (4) 駆動源として、エンジン1を有し、
 ロックアップ制御手段(CVTコントロールユニット12、図4)は、初期差圧を、ロックアップ容量(LU容量)を持ち始めるミートポイント学習値に基づく0点差圧に、トルクコンバータ4のコンバータ状態からのエンジン回転吹け上がりを抑えるクラッチ伝達トルクTLUに相当する差圧βを加えた値とする。
 このため、(1)~(3)の効果に加え、エンジン搭載車において、ロックアップ制御が開始されてからエンジン回転吹け上がり抑制開始までの無駄時間が短縮され、エンジン回転吹け上がりを整然と抑制することができる。
 (5) ロックアップ制御手段(CVTコントロールユニット12、図4)は、コースト減速走行からのアクセル踏み込み操作による再加速時、アクセル踏み込み操作時の運転点(VSP,APO)がロックアップ領域(LU領域)に存在すると、ロックアップ差圧指示(LU差圧指示)を即座に初期差圧まで立ち上げる。
 このため、(4)の効果に加え、再加速時、運転点(VSP,APO)がロックアップ領域(LU領域)であることを条件とし、アクセル踏み込み操作時からロックアップ制御開始までの待ち時間が省かれ、エンジン回転吹け上がりを応答良く抑制ことができる。
 以上、本発明の車両のロックアップ制御装置を実施例1に基づき説明してきたが、具体的な構成については、この実施例1に限られるものではなく、請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。
 実施例1では、速度比に基づくランプ開始タイミングの検知例として、トルクコンバータ4の速度比eが低下する状態から上昇する状態に移行する再加速時における速度比変曲点の検知例を示した。しかし、速度比に基づくランプ開始タイミングの検知例としては、LU容量を持ち始めるとトルクコンバータの速度比の上昇傾きが低下する側に移行することが検知される発進時における速度比勾配変化点の検知例であっても良い。
 実施例1では、LU差圧指示を初期差圧まで立ち上げると、ランプ開始タイミングが検知されるまでの間、初期差圧を一定に保つ例を示した。しかし、ランプ開始タイミングが検知されるまでの間、LU差圧指示を変化させても良い。
 実施例1では、再加速時の初期差圧として、LU容量を持ち始めるミートポイント学習値に基づく0点差圧に、トルクコンバータ4のコンバータ状態からのエンジン回転吹け上がりを抑えるクラッチ伝達トルクTLUに相当する差圧βを加えた値とする例を示した。しかし、再加速時の初期差圧としては、例えば、発進時と同様に、LU容量を持ち始めるミートポイント学習値に基づく0点差圧に、トルクコンバータのコンバータ状態からの初動差圧を考慮した差圧αを加えた値とする例であっても良い。
 実施例1では、コースト減速走行からのアクセル踏み込み操作による再加速時、アクセル踏み込み操作時の運転点(VSP,APO)がLU領域に存在すると、LU差圧指示を即座に初期差圧まで立ち上げる例を示した。しかし、再加速時、アクセル踏み込み操作時の運転点(VSP,APO)がLU領域に存在しても、速度比に基づくランプ開始タイミングが検知されるまで待って、LU差圧指示を初期差圧まで立ち上げる例としても良い。
 実施例1では、本発明のロックアップ制御装置を、トルクコンバータと無段変速機を搭載したエンジン車に適用する例を示した。しかし、本発明のロックアップクラッチ制御装置は、駆動源にエンジンとモータが搭載されたハイブリッド車に対しても適用することができるし、駆動源にモータが搭載された電気自動車に対しても適用することができる。また、変速機として、副変速機付き無段変速機や有段の自動変速機を搭載した車両にも適用できる。要するに、ロックアップクラッチを有するトルクコンバータを、駆動源と変速機の間に備えた車両であれば適用できる。

Claims (5)

  1.  駆動源と変速機の間に配置され、ロックアップクラッチを有するトルクコンバータと、
     前記ロックアップクラッチが解放状態のときにロックアップ締結条件が成立すると、ロックアップ差圧指示を初期差圧まで立ち上げた後、所定の傾きによるランプ差圧により昇圧させて前記ロックアップクラッチを締結するロックアップ制御手段と、
     を備える車両のロックアップ制御装置において、
     前記ロックアップ制御手段は、前記ロックアップ差圧指示を前記初期差圧から前記ランプ差圧に切り替えるランプ開始条件を、前記トルクコンバータの入出力回転速度の比である速度比に基づいて決める、車両のロックアップ制御装置。
  2.  請求項1に記載された車両のロックアップ制御装置において、
     前記ロックアップ制御手段は、前記ロックアップクラッチを解放しているアクセル足放しコースト減速からのアクセル踏み込み操作による再加速時、前記トルクコンバータの速度比が低下する状態から上昇する状態に移行する速度比変曲点を検知したら、前記ロックアップ差圧指示を前記初期差圧から前記ランプ差圧に切り替える、車両のロックアップ制御装置。
  3.  請求項2に記載された車両のロックアップ制御装置において、
     前記ロックアップ制御手段は、前記ロックアップ差圧指示を前記初期差圧まで立ち上げると、前記速度比変曲点が検知されるまでの間、前記初期差圧を一定に保つ、車両のロックアップ制御装置。
  4.  請求項1から請求項3までの何れか一項に記載された車両のロックアップ制御装置において、
     前記駆動源として、エンジンを有し、
     前記ロックアップ制御手段は、前記初期差圧を、ロックアップ容量を持ち始めるミートポイント学習値に基づく0点差圧に、前記トルクコンバータのコンバータ状態からのエンジン回転吹け上がりを抑えるクラッチ伝達トルクに相当する差圧を加えた値とする、車両のロックアップ制御装置。
  5.  請求項4に記載された車両のロックアップ制御装置において、
     前記ロックアップ制御手段は、コースト走行状態からのアクセル踏み込み操作による再加速時、アクセル踏み込み操作時の運転点がロックアップ領域に存在すると、前記ロックアップ差圧指示を即座に前記初期差圧まで立ち上げる、車両のロックアップ制御装置。
PCT/JP2017/003263 2016-02-01 2017-01-31 車両のロックアップ制御装置 WO2017135204A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201780008375.4A CN108603592B (zh) 2016-02-01 2017-01-31 车辆的锁止控制装置
JP2017565541A JP6563042B2 (ja) 2016-02-01 2017-01-31 車両のロックアップ制御装置
EP17747360.0A EP3412938A4 (en) 2016-02-01 2017-01-31 VEHICLE LOCK CONTROL DEVICE
US16/073,127 US10619731B2 (en) 2016-02-01 2017-01-31 Lock-up control device for vehicle
KR1020187024006A KR102042951B1 (ko) 2016-02-01 2017-01-31 차량의 로크업 제어 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-017069 2016-02-01
JP2016017069 2016-02-01

Publications (1)

Publication Number Publication Date
WO2017135204A1 true WO2017135204A1 (ja) 2017-08-10

Family

ID=59500853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003263 WO2017135204A1 (ja) 2016-02-01 2017-01-31 車両のロックアップ制御装置

Country Status (6)

Country Link
US (1) US10619731B2 (ja)
EP (1) EP3412938A4 (ja)
JP (1) JP6563042B2 (ja)
KR (1) KR102042951B1 (ja)
CN (1) CN108603592B (ja)
WO (1) WO2017135204A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10672207B2 (en) 2017-01-20 2020-06-02 Polaris Industries Inc. Diagnostic systems and methods of a continuously variable transmission

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10619731B2 (en) 2016-02-01 2020-04-14 Jatco Ltd Lock-up control device for vehicle
EP3412939A4 (en) * 2016-02-01 2019-02-06 Jatco Ltd. LOCK CONTROL DEVICE FOR VEHICLE
CN110539749B (zh) * 2019-08-12 2021-10-08 浙江万里扬股份有限公司 车辆、车辆的控制方法和存储介质
CN115217928B (zh) * 2022-02-07 2023-11-10 广州汽车集团股份有限公司 应用于设备中液力变矩器的控制方法及装置、存储介质
CN115479120B (zh) * 2022-10-26 2023-10-13 广西柳工机械股份有限公司 液力变矩器的闭解锁方法、闭解锁系统及液力变矩器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63303256A (ja) * 1987-05-30 1988-12-09 Komatsu Ltd ロックアップクラッチ油圧制御装置
JP2009047081A (ja) * 2007-08-21 2009-03-05 Nissan Motor Co Ltd 車両の加速ショック軽減装置
JP2009180361A (ja) * 2008-02-01 2009-08-13 Denso Corp 車両のパワートレイン制御装置
JP2010286040A (ja) * 2009-06-11 2010-12-24 Jatco Ltd 自動変速機のロックアップ制御装置
JP2012117624A (ja) * 2010-12-02 2012-06-21 Jatco Ltd コーストストップ車両およびその制御方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5417621A (en) 1993-12-22 1995-05-23 Ford Motor Company Driveaway lockup strategy for an infinitely variable tranmission with a hydrokinetic torque converter
GB2319817B (en) * 1994-02-23 1998-10-07 Luk Getriebe Systeme Gmbh Control method for a torque transfer system and torque transfer system for carrying out the control method
JP2003097696A (ja) * 2001-09-25 2003-04-03 Jatco Ltd トルクコンバータのコースト時ロックアップ容量制御装置
JP4013725B2 (ja) * 2002-10-17 2007-11-28 日産自動車株式会社 トルクコンバータの制御装置
US7220216B2 (en) 2003-10-29 2007-05-22 Aisin Seiki Kabushiki Kaisha Lock-up clutch control device
JP2005133782A (ja) 2003-10-29 2005-05-26 Aisin Seiki Co Ltd ロックアップクラッチ制御装置
JP4517626B2 (ja) 2003-10-29 2010-08-04 アイシン精機株式会社 ロックアップクラッチ制御装置
EP1531288B1 (en) 2003-11-12 2011-03-02 Nissan Motor Co., Ltd. Power transmission device having a torque converter with a lockup clutch and lockup control method for torque converter
JP2007170524A (ja) * 2005-12-21 2007-07-05 Toyota Motor Corp 自動変速機のライン圧制御装置
JP2008032109A (ja) * 2006-07-28 2008-02-14 Aisin Seiki Co Ltd ロックアップクラッチの制御装置
WO2013073394A1 (ja) * 2011-11-18 2013-05-23 ジヤトコ株式会社 自動変速機の制御装置
US9057435B2 (en) * 2012-03-29 2015-06-16 Jatco Ltd Vehicle startup control device and startup control method
EP3190019B1 (en) 2014-09-03 2018-11-28 Nissan Motor Co., Ltd Lock-up clutch control device for vehicle
EP3412939A4 (en) * 2016-02-01 2019-02-06 Jatco Ltd. LOCK CONTROL DEVICE FOR VEHICLE
US10619731B2 (en) 2016-02-01 2020-04-14 Jatco Ltd Lock-up control device for vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63303256A (ja) * 1987-05-30 1988-12-09 Komatsu Ltd ロックアップクラッチ油圧制御装置
JP2009047081A (ja) * 2007-08-21 2009-03-05 Nissan Motor Co Ltd 車両の加速ショック軽減装置
JP2009180361A (ja) * 2008-02-01 2009-08-13 Denso Corp 車両のパワートレイン制御装置
JP2010286040A (ja) * 2009-06-11 2010-12-24 Jatco Ltd 自動変速機のロックアップ制御装置
JP2012117624A (ja) * 2010-12-02 2012-06-21 Jatco Ltd コーストストップ車両およびその制御方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10672207B2 (en) 2017-01-20 2020-06-02 Polaris Industries Inc. Diagnostic systems and methods of a continuously variable transmission
US11430272B2 (en) 2017-01-20 2022-08-30 Polaris Industries Inc. Diagnostic systems and methods of a continuously variable transmission
US12118835B2 (en) 2017-01-20 2024-10-15 Polaris Industries Inc. Diagnostic systems and methods of a continuously variable transmission

Also Published As

Publication number Publication date
JP6563042B2 (ja) 2019-09-04
JPWO2017135204A1 (ja) 2018-12-06
KR102042951B1 (ko) 2019-11-08
US10619731B2 (en) 2020-04-14
EP3412938A4 (en) 2019-02-06
EP3412938A1 (en) 2018-12-12
CN108603592B (zh) 2020-02-14
US20190040950A1 (en) 2019-02-07
KR20180102176A (ko) 2018-09-14
CN108603592A (zh) 2018-09-28

Similar Documents

Publication Publication Date Title
WO2017135205A1 (ja) 車両のロックアップ制御装置
JP6563042B2 (ja) 車両のロックアップ制御装置
JP6069519B2 (ja) ロックアップクラッチの制御装置
WO2013031409A1 (ja) コーストストップ車両
KR101962562B1 (ko) 자동 변속기의 제어 장치 및 제어 방법
JP5790670B2 (ja) 車両の制御装置
WO2017069071A1 (ja) 車両のセーリングストップ制御方法及び制御装置
US10443717B2 (en) Control method and control device for transmission mechanism
KR101959157B1 (ko) 자동 변속기의 제어 장치 및 제어 방법
JP7106207B2 (ja) 自動変速機のロックアップ制御装置
JP2018115700A (ja) 車両のロックアップクラッチ制御装置及び制御方法
JP5533556B2 (ja) 車両の制御装置
JP6019051B2 (ja) ベルト無段変速機及びその制御方法
JP4774715B2 (ja) 無段変速機を搭載した車両の制御装置
JP7058909B2 (ja) ベルト式無段変速機の制御装置
JP5935549B2 (ja) 車両のエンジン自動停止制御装置
WO2019221066A1 (ja) 自動変速機のロックアップ制御装置
JP2003130207A (ja) ロックアップクラッチの制御装置
JP2019152314A (ja) 車両の制御装置及び車両の制御方法
JP2019100474A (ja) 車両の変速制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17747360

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2017565541

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187024006

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187024006

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2017747360

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017747360

Country of ref document: EP

Effective date: 20180903