WO2017125070A1 - 管件本体、管件及管件的加工方法 - Google Patents

管件本体、管件及管件的加工方法 Download PDF

Info

Publication number
WO2017125070A1
WO2017125070A1 PCT/CN2017/071916 CN2017071916W WO2017125070A1 WO 2017125070 A1 WO2017125070 A1 WO 2017125070A1 CN 2017071916 W CN2017071916 W CN 2017071916W WO 2017125070 A1 WO2017125070 A1 WO 2017125070A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
welded portion
pipe body
thickness
tubular
Prior art date
Application number
PCT/CN2017/071916
Other languages
English (en)
French (fr)
Inventor
王一奇
庄新宇
张胜利
潘勇
张志军
陈枫
Original Assignee
浙江三花智能控制股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江三花智能控制股份有限公司 filed Critical 浙江三花智能控制股份有限公司
Priority to JP2018537789A priority Critical patent/JP6807930B2/ja
Priority to KR1020187021473A priority patent/KR20180099771A/ko
Priority to US16/071,768 priority patent/US10907752B2/en
Publication of WO2017125070A1 publication Critical patent/WO2017125070A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/17Rigid pipes obtained by bending a sheet longitudinally and connecting the edges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/08Making tubes with welded or soldered seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/08Making tubes with welded or soldered seams
    • B21C37/0815Making tubes with welded or soldered seams without continuous longitudinal movement of the sheet during the bending operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/08Making tubes with welded or soldered seams
    • B21C37/09Making tubes with welded or soldered seams of coated strip material ; Making multi-wall tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/15Making tubes of special shape; Making tube fittings
    • B21C37/154Making multi-wall tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/14Soldering, e.g. brazing, or unsoldering specially adapted for soldering seams
    • B23K1/16Soldering, e.g. brazing, or unsoldering specially adapted for soldering seams longitudinal seams, e.g. of shells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/19Soldering, e.g. brazing, or unsoldering taking account of the properties of the materials to be soldered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/02Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to soldering or welding
    • B23K31/027Making tubes with soldering or welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K33/00Specially-profiled edge portions of workpieces for making soldering or welding connections; Filling the seams formed thereby
    • B23K33/004Filling of continuous seams
    • B23K33/006Filling of continuous seams for cylindrical workpieces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/02Rigid pipes of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C1/00Manufacture of metal sheets, metal wire, metal rods, metal tubes by drawing
    • B21C1/16Metal drawing by machines or apparatus in which the drawing action is effected by other means than drums, e.g. by a longitudinally-moved carriage pulling or pushing the work or stock for making metal sheets, bars, or tubes
    • B21C1/22Metal drawing by machines or apparatus in which the drawing action is effected by other means than drums, e.g. by a longitudinally-moved carriage pulling or pushing the work or stock for making metal sheets, bars, or tubes specially adapted for making tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/06Tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/10Pipe-lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/34Coated articles, e.g. plated or painted; Surface treated articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • B23K2103/22Ferrous alloys and copper or alloys thereof

Definitions

  • the invention relates to the technical field of refrigeration systems, in particular to a pipe body and a pipe member made of the pipe body.
  • the invention also relates to a method of processing a tubular member.
  • the valve and the pipeline parts are generally made of copper material, but the copper material is expensive, and the large amount of copper material will greatly increase the product cost. , lost the advantage in the industry competition. If ordinary carbon steel is used instead of copper, carbon steel is easily corroded and is not suitable for refrigeration systems with high cleanliness requirements.
  • FIG. 1a is a cross-sectional view of a tube member in the prior art
  • FIG. 1b is a partial enlarged view of a portion A in FIG.
  • the pipe member 1' is formed by bending and then welding the pipe body, and the welding faces 1'a at both ends of the pipe body are in the form of oblique grooves. After bending, the inner ends of the two welding faces 1'a have a certain distance, so that welding Thereafter, the weld bead 2' of the tubular member 1' is in the fan-shaped configuration shown in Fig. 1b.
  • Another object of the present invention is to provide a method of processing the above tubular member.
  • the present invention provides a pipe body having a welded portion at both ends of the pipe body, and the thickness of the welded portion gradually decreases from the inside to the outside along the width direction of the pipe body.
  • the outer end of the welded portion is located at a middle portion in the thickness direction of the tubular body.
  • the thickness of the welded portion is tapered from the inside to the outside along the width direction of the tubular body, and the outer end of the welded portion is located at the middle of the tubular body, so that the tubular body is bent and welded at both welded portions.
  • the pipe part is formed, and the welded portion is substantially X-shaped.
  • the joint surface area of the welded portion is obviously increased, and at the same time, since the outer end of the welded portion is located in the middle of the thickness of the pipe body, after welding
  • the base material of the part plays a supporting role in the entire welding part, which greatly improves the tensile strength of the welded part;
  • the welded part of the X-shaped structure makes the base material and the solder substantially symmetrical with respect to the center of the wall thickness of the pipe, which can improve the
  • the force direction relieves the deformation direction and the stress effect to a certain extent. When subjected to a large lateral tensile force, it is not easy to crack from the inner wall of the pipe member; therefore, the pipe member made of the pipe body has high reworkability.
  • the circumferential surface of the welded portion is formed by sequentially connecting two or more straight segments and/or arc segments.
  • the circumferential surface of the welded portion sequentially includes three straight segments: a first straight segment, a second straight segment, and a third straight segment, wherein the second straight segment forms an outer end surface of the welded portion.
  • the second straight line segment is parallel to the thickness direction of the pipe body, and the length of the second straight line segment is 0.1 to 0.5 times the thickness of the pipe body; the first straight line segment and the third straight line segment The length is 1 to 3 times the thickness of the pipe body.
  • the angle between the first straight segment and the thickness direction of the tubular body and the angle between the second straight segment and the thickness direction of the tubular body are both in the range of 20o to 80o.
  • the circumferential surface of the welded portion includes two arc segments: a first arc segment and a second arc segment, wherein the junction of the first arc segment and the second arc segment forms the welding The outer end of the part.
  • the circumferential surface of the welded portion further includes a transition arc segment, and the first arc segment and the second arc segment are connected by the transition arc segment.
  • the radius of the first arc segment and the second arc segment are both 0.5 to 8 times the thickness of the pipe body.
  • the circumferential surface of the welded portion is symmetrical with respect to a center in the thickness direction of the tubular body.
  • the circumferential surface of the welded portion has a semi-elliptical structure.
  • the semi-elliptical long radius is 0.25 to 3 times the thickness of the tubular body, and the semi-elliptical short radius is 0.25 to 0.75 times the thickness of the tubular body.
  • the present invention also provides a pipe member which is formed by bending a pipe body and is welded.
  • the pipe body is the pipe body according to any one of the above, and the weld of the pipe member has an X-shaped structure.
  • the pipe member is specifically a composite pipe, and the pipe body includes a first layer body and a second layer body fixed inside and/or outside the first layer body, the first layer body and the second layer body The material is different.
  • the first layer body is a steel material
  • the second layer body is a copper material
  • the invention also provides a method for processing a pipe fitting, comprising the following steps:
  • the tube body in step b is extruded into a circular tubular shape, and the end faces of the two welded portions of the tubular body are maintained at a predetermined distance;
  • Step d further includes the following steps:
  • step d Perform precise correction on the pipe fitting formed in step d;
  • step f Perform eddy current testing on the accurately corrected tube in step e, and then perform secondary annealing treatment for a predetermined time.
  • step f the precisely corrected pipe is sent to a vacuum furnace of a preset temperature for secondary annealing.
  • step a preparing a first layer body and a second layer body different in material, in the first layer body
  • the second layer body is fixed to the inner side and/or the outer side, and the first layer body and the second layer body are rolled together by rolling to form a pipe body.
  • the predetermined distance is 1 to 3 times the thickness of the pipe body.
  • Figure 1a is a schematic cross-sectional view of a pipe member of the prior art
  • Figure 1b is a partial enlarged view of the portion A of Figure 1a;
  • 2a is a schematic cross-sectional view of another tube member in the prior art
  • Figure 2b is a partial enlarged view of the portion B of Figure 2a;
  • FIG. 3 is a schematic structural view of a welded portion of a pipe body according to a first embodiment of the present invention
  • Figure 4 is a schematic view showing the welding structure of the pipe member using the welded portion shown in Figure 3;
  • Figure 5 is a schematic cross-sectional view showing a pipe member according to a first embodiment of the present invention.
  • FIG. 6 is a schematic structural view of a welded portion of a pipe body in a second embodiment of the present invention.
  • Figure 7 is a schematic view showing the welding structure of the pipe member using the welded portion shown in Figure 6;
  • FIG. 8 is a schematic structural view of a welded portion of a pipe body in a third embodiment of the present invention.
  • Figure 9 is a schematic view showing the welding structure of the pipe member using the welded portion shown in Figure 8.
  • Figure 10 is a schematic structural view showing a welded portion of a pipe body in a fourth embodiment of the present invention.
  • Figure 11 is a schematic view showing the welding structure of the pipe member using the welded portion shown in Figure 10;
  • FIG. 12 is a schematic structural view of a welded portion of a pipe body according to a fifth embodiment of the present invention.
  • Figure 13 is a schematic view showing the welding structure of the pipe member using the welded portion shown in Figure 12;
  • Figure 14 is a schematic view showing the structure of a welded portion of a pipe body in a sixth embodiment of the present invention.
  • Pipe member 100 pipe body 10, first layer body 10a, second layer body 10b, welded portion 11, weld seam 20;
  • the first arc segment 114, the second arc segment 115, and the transition arc segment 116 are identical to each other.
  • the existing pipe fittings are bent and welded by the pipe body. It has been found that the welded parts of the pipe fittings are fan-shaped or inverted triangles. Therefore, in the welded part, the inner wall of the pipe fittings is outwardly walled, the wall thickness of the pipe members is gradually reduced, and the solder is gradually increased, mainly relying on the solder.
  • the strength of the solder is usually smaller than the strength of the material of the pipe, so that when the flaring, bending, etc. are reworked, the inner wall and the outer wall are inconsistent in force and deformation, and cracks easily start from the inner wall, and the cracks are rapidly along the joint line to the outer wall. Extending, causing the pipe to break and cannot be used. To this end, this paper proposes a solution, which is described in detail below.
  • the pipe member provided by the invention is mainly formed by bending and welding the pipe body, wherein the length of the pipe body is the length of the pipe member after molding, the width of the pipe body is substantially the circumferential dimension of the pipe member after molding, and the thickness of the pipe body is the shape of the pipe after molding. Wall thickness. That is, after the tubular body is bent in the width direction, both ends in the width direction are welded to form a tubular member.
  • the orientation words and the like referred to below are all referred to herein by the length, width and thickness of the pipe body.
  • the pipe body provided by the invention has a welded portion at both ends thereof, and the thickness of the welded portion gradually decreases from the inner side to the outer side along the width direction of the pipe body, and the outer end of the welded portion is located at a middle portion in the thickness direction of the pipe body.
  • the “middle portion” herein refers to the center of the thickness direction of the pipe body and a section adjacent to the center.
  • the pipe member formed by bending and bending the pipe body has a substantially X-shaped welded portion, and the joint surface area of the welded portion is significantly increased compared with the existing fan-shaped structure or the inverted triangular structure, and at the same time, due to the welded portion
  • the outer end is located in the middle of the thickness of the pipe body.
  • the base material of the part plays a supporting role in the whole welding part, which greatly improves the tensile strength of the welded part; in addition, the welded part of the X-shaped structure makes the base material and the solder
  • the center of the wall thickness of the pipe is generally symmetrical, which can improve the direction of the force, and relieve the deformation direction and the stress effect to a certain extent. When subjected to a large lateral tension, it is not easy to crack from the inner wall of the pipe; therefore, the pipe fitting using the welded structure has High reworkability.
  • tubular body provided by the present invention has various specific structures, and the present invention will be further described in detail below with reference to the accompanying drawings and specific embodiments.
  • FIG. 3 is a schematic structural view of a welded portion of a pipe body according to a first embodiment of the present invention
  • FIG. 4 is a schematic view showing a welded structure of a pipe member using the welded portion shown in FIG.
  • a schematic cross-sectional view of the tube of the first embodiment is provided.
  • the circumferential surface of the welded portion 11 of the tubular body 10 sequentially includes three straight segments: a first straight segment 111, a second straight segment 112, and a third straight segment 113, wherein the second straight segment 112 forms a welded portion.
  • the second straight line segment 112 is parallel to the thickness direction of the tubular body 10, and its center coincides with the center of the tubular body 10 in the thickness direction; the first straight line segment 111 and the third straight line segment 113 are symmetric with respect to the second straight line segment 112. That is, the length L1 of the first straight line segment 111 and the length L3 of the third straight line segment 113 are equal.
  • the weld bead 20 of the molded tubular member 100 is completely symmetrical in the radial direction and the circumferential direction, as shown in Fig. 5, so that the uniformity of the force at the welded portion is better.
  • the outer end of the welded portion 11 is located in the middle of the weld bead 20 to provide a supporting effect, so that the tensile strength of the welded portion is improved.
  • the length L2 of the second straight line segment 112 may be set to be 0.1 to 0.5 times the thickness of the tubular body 10
  • the length L1 of the first straight line segment 111 and the length L3 of the third straight line segment 113 may be set to 1 of the thickness of the tubular body 10 ⁇ 3 times.
  • each straight line segment can be appropriately selected according to the requirements of the pipe and the application.
  • an angle ⁇ between the first straight line segment 111 and the thickness direction of the pipe body 10 (shown in FIG. 3 ), and an angle between the third straight line segment 113 and the thickness direction of the pipe body 10 (not shown) may be according to the pipe.
  • application requirements are selected in the range of 20o ⁇ 80o.
  • the outer end faces of the two welded portions 11 have a predetermined distance d, which is generally 1 to 3 times the thickness of the tubular body 10, so as to help ensure the flow of solder during welding.
  • the properties of the solder and the base material are well fused to increase the strength of the weld bead 20.
  • FIG. 6 is a schematic structural view of a welded portion of a pipe body according to a second embodiment of the present invention
  • FIG. 7 is a schematic view showing a welded structure of a pipe member using the welded portion shown in FIG.
  • This embodiment is identical to the basic structure of the foregoing first embodiment, except that in this embodiment, The length L1 of the first straight section 111 of the welded portion 11 is greater than the length L3 of the third straight section 113, and the welded portion of the tubular member 100 is as shown in FIG.
  • FIG. 8 is a schematic structural view of a welded portion of a pipe body according to a third embodiment of the present invention.
  • FIG. 9 is a schematic view showing a welded structure of a pipe member using the welded portion shown in FIG.
  • This embodiment is also consistent with the basic structure of the first embodiment described above, except that in this embodiment, the length L1 of the first straight section 111 of the welded portion 11 is smaller than the length L3 of the third straight section 113, and the welded portion of the pipe member is as Figure 9 shows.
  • the relevant parameter ranges of the straight line segments are the same as those in the first embodiment, and are not described again.
  • the circumferential surface of the welded portion 11 is formed by three straight segments. It can be understood that it is practical to form the circumferential surface of the welded portion 11 only by two straight segments, that is, it is omitted.
  • the second straight line segment such that the junction of the first straight line segment and the third straight line segment forms a tip end, which is disadvantageous to the flow of the solder during the soldering process, so the foregoing three embodiments may be preferred.
  • the circumferential surface of the welded portion 11 may be formed by a plurality of straight line segments, which will not be described one by one.
  • FIG. 10 is a schematic structural view of a welded portion of a pipe body according to a fourth embodiment of the present invention.
  • FIG. 11 is a schematic view showing a welded structure of a pipe member using the welded portion shown in FIG.
  • the circumferential surface of the welded portion 11 of the tubular body 10 includes a first arc segment 114 and a second arc segment 115, wherein the junction of the first arc segment 114 and the second arc segment 115 forms a weld.
  • first arc segment 114 and the second arc segment 115 are connected by the transition arc segment 116 to ensure a smooth transition of the joint between the two, thus facilitating the solder to wet the base material and flow during the soldering process.
  • the radius of the first arc segment 114 and the second arc segment 115 is 0.5 to 8 times the thickness of the pipe body 10 .
  • the radius R1 of the first arc segment 114 is greater than the radius R2 of the second arc segment 115.
  • the outer end faces of the two welded portions 11 also have a predetermined distance d, which is 1 to 3 times the thickness of the tubular body 10, in order to improve the soldering during the welding process. fluidity.
  • FIG. 12 is a schematic structural view of a welded portion of a pipe body according to a fifth embodiment of the present invention
  • FIG. 13 is a schematic view showing a welded structure of a pipe member using the welded portion shown in FIG.
  • This embodiment is identical to the basic structure of the foregoing fourth embodiment, except that in this embodiment, the radius R1 of the first arc segment 114 of the welded portion 11 is smaller than the radius R2 of the second arc segment 115.
  • first arc segment 114 and the second arc segment 115 may have the same radius, and the center of the joint is located at the center of the thickness of the pipe body 10, so that the pipe is formed after the pipe is formed.
  • the structure is completely symmetrical and the force on the welded part is more uniform.
  • the circumferential surface of the welded portion 11 may be connected by two or more straight segments and arc segments in addition to the above-mentioned manner formed by several straight segments or formed by several arc segments. form.
  • FIG. 14 is a schematic structural view of a welded portion of a pipe body according to a sixth embodiment of the present invention.
  • the circumferential surface of the welded portion 11 has a semi-elliptical structure, which is disposed so as to facilitate processing.
  • the semi-elliptical structure has a long radius R of 0.25 to 3 times the thickness of the tubular body 10, and the short radius r of the semi-elliptical structure is 0.25 to 0.75 times the thickness of the tubular body 10.
  • the long axis of the semi-elliptical structure is along the width direction of the pipe body 10, and the short axis is along the thickness direction of the pipe body 10. It can be understood that the actual setting can be reversed. That is, the long axis is along the thickness direction of the pipe body 10, and the short axis is along the width direction of the pipe body 10.
  • the material of the pipe body 10 may be a single material or a composite material.
  • the pipe body 10 includes a first layer body 10a and a second layer body 10b fixed to the inner side and the outer side of the first layer body 10a, wherein the first layer body 10a and the second layer body 10b The material is different.
  • the first layer body 10a is made of a steel material, specifically, low carbon steel is used; and the second layer body 10b is made of a copper material.
  • the present invention also provides a method for processing a pipe fitting, the processing method specifically comprising the following steps:
  • the dimensions of the respective tubular body are prepared according to the dimensions of the preformed tubular.
  • the prefabricated pipe is a composite pipe of two materials
  • the first layer body and the second layer body are rolled into one body, and are flattened and then annealed to accelerate the molecular motion of the two materials in a high temperature environment to promote the formation of the molecular bonding layer, thus forming the tube body.
  • the welded portion is processed at both ends of the pipe body, and the structure of the welded portion is as described in the previous embodiments, and will not be described again;
  • the dimensions of the weld are designed according to the properties to be achieved by the prefabricated pipe.
  • the tube body in step b is extruded into a circular tubular shape, and the end faces of the two welded portions of the tubular body are maintained at a predetermined distance;
  • the pipe body can be fed into a molding machine and bent into a circular tube shape.
  • the welding can be carried out by low-stress welding, so that the solder is fused with the base material to form a weld seam, and the weld height can be removed by mechanical processing to ensure a smooth transition between the weld and the base metal.
  • processing method further comprises the following steps after the step d:
  • step d Perform precise correction on the pipe fitting formed in step d;
  • a mold with a certain inner diameter is used to correct the pipe fitting to ensure accuracy and roundness.
  • step f Perform eddy current testing on the accurately corrected tube in step e, and then perform secondary annealing treatment for a predetermined time.
  • eddy current testing is performed by an eddy current detector to ensure high precision requirements of the pipe.
  • a secondary annealing treatment is performed for a predetermined period of time, so that the elongation and workability of the pipe can be greatly improved to meet various demands of the refrigeration system.
  • the tube can be fed into a vacuum furnace at 800 to 1000 ° C for secondary annealing treatment.
  • the test shows that after the secondary annealing treatment, the copper steel meets the tube expansion ratio of 20.7% or more, the elongation rate reaches 30% or more, and the pressure resistance is significantly improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Metal Rolling (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

一种管件本体,所述管件本体(10)的两端均具有焊接部(11),沿所述管件本体(10)的宽度方向,所述焊接部(11)的厚度自内向外逐渐减小,且所述焊接部(11)的外端位于所述管件本体(10)厚度方向的中部。该焊接结构的设置使得管件焊接处的强度增强,在进行扩口或弯曲等再加工时,不易开裂,可再加工性较高。此外,还公开了一种由上述管件本体(10)制成的管件(100)及该管件(100)的加工方法。

Description

管件本体、管件及管件的加工方法
本申请要求于2016年01月20日提交中国专利局、申请号为201610040055.4、发明名称为“管件本体、管件及管件的加工方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及制冷系统技术领域,特别是涉及一种管件本体及由该管件本体制成的管件。本发明还涉及一种管件的加工方法。
背景技术
制冷系统中,因铜质材料有良好的导热、耐腐蚀性和可加工性,阀门、管路件一般都选用铜质材料,但铜质材料价格昂贵,大量使用铜质材料将大大增加产品成本,在行业竞争中失去优势。若用普通碳钢替代铜,碳钢容易腐蚀,不适用于高清洁度要求的制冷系统。
现有制冷系统中,多用铜钢复合管来替代铜制材料制成的管件。
请请参考图1a和1b,图1a为图1a为现有技术中一种管件的横截面示意图;图1b为图1a中A部位的局部放大图。
如图所示,管件1’由管件本体弯曲后焊接形成,管件本体两端的焊接面1’a均呈斜口形式,弯曲后,两焊接面1’a的内端具有一定距离,如此,焊接后,管件1’的焊缝2’呈图1b中所示的扇形结构。
另外,也有如图2a和2b中所示的管件1’,管件本体两端的焊接面1’a也呈斜口形式,弯曲后,两焊接面1’a的内端抵接,如此,焊接后,管件1’的焊缝2’呈图2b中所示的倒三角形结构。
在使用过程中发现,上述结构的复合管容易破裂,特别是焊缝处,在扩口、弯曲等再加工时焊缝容易开裂,可再加工性差,从而无法满足多样复杂、需承受一定压力的制冷系统的需求。
除去铜钢复合管外,制冷系统中其他复合管以及单一材质的管件也存在类似问题。
有鉴于此,如何对现有管件的结构进行改进,以增强焊接处的强度,提高可再加工性,是本领域技术人员目前需要解决的技术问题。
发明内容
本发明的目的是提供一种管件本体及由该管件本体制成的管件,该管件本体的结构使得由其制成的管件的焊接处的强度增强,在进行扩口或弯曲等再加工时,不易开裂,可再加工性较高。本发明的另一目的是提供一种上述管件的加工方法。
为解决上述技术问题,本发明提供一种管件本体,所述管件本体的两端均具有焊接部,沿所述管件本体的宽度方向,所述焊接部的厚度自内向外逐渐减小,且所述焊接部的外端位于所述管件本体厚度方向的中部。
如上,本发明的管件本体,其焊接部的厚度沿管件本体的宽度方向自内而外渐缩,且焊接部的外端位于管件本体的中部,这样,管件本体弯曲后在两焊接部进行焊接形成管件,焊接部位大体呈X形,与现有的扇形结构或倒三角形结构相比,焊接部位的结合面面积明显增大,同时,由于焊接部的外端位于管件本体厚度的中部,焊接后,该部位的母材在整个焊接部位起到支撑作用,大大提升了焊接部位的抗拉强度;另外,该X形结构的焊接部位使得母材及焊料相对管件壁厚中心大体对称,能够改善受力方向,一定程度上缓解了变形方向及应力效果,在承受较大的横向拉力时,不易从管件内壁开裂;因此,采用该管件本体制成的管件具有较高的可再加工性。
所述焊接部的周面由两段以上的直线段和/或弧线段依次连接形成。
所述焊接部的周面依次包括三段直线段:第一直线段、第二直线段和第三直线段,其中,所述第二直线段形成所述焊接部的外端面。
所述第二直线段平行于所述管件本体的厚度方向,并所述第二直线段的长度为所述管件本体厚度的0.1~0.5倍;所述第一直线段和所述第三直线段的长度均为所述管件本体厚度的1~3倍。
所述第一直线段与所述管件本体厚度方向的夹角以及所述第二直线段与所述管件本体厚度方向的夹角均在20o~80o范围内。
所述焊接部的周面包括两段弧线段:第一弧线段和第二弧线段,其中,所述第一弧线段和所述第二弧线段的连接处形成所述焊接部的外端面。
所述焊接部的周面还包括过渡弧线段,所述第一弧线段和所述第二弧线段通过所述过渡弧线段连接。
所述第一弧线段和所述第二弧线段的半径均为所述管件本体厚度的0.5~8倍。
所述焊接部的周面相对所述管件本体厚度方向的中心对称。
所述焊接部的周面呈半椭圆形结构。
所述半椭圆形的长半径为所述管件本体厚度的0.25~3倍,所述半椭圆形的短半径为所述管件本体厚度的0.25~0.75倍。
本发明还提供一种管件,所述管件由管件本体弯曲后焊接成型,所述管件本体为上述任一项所述的管件本体,所述管件的焊缝呈X形结构。
由于上述管件本体具有上述技术效果,所以由该管件本体制成的管件也具有上述技术效果,此处不再赘述。
所述管件具体为复合管,所述管件本体包括第一层体和固定在所述第一层体内侧和/或外侧的第二层体,所述第一层体和所述第二层体的材质不同。
所述第一层体为钢制材料,所述第二层体为铜制材料。
本发明还提供了一种管件的加工方法,包括如下步骤:
a、制备管件本体;
b、在管件本体的两端加工出焊接部,沿管件本体的宽度方向,焊接部的厚度自内向外逐渐减小,且焊接部的外端位于管件本体厚度方向的中部;
c、将步骤b中的管件本体挤压成圆管状,并使所述管件本体的两焊接部的端面保持预定距离;
d、对两所述焊接部实施焊接形成管件。
步骤d之后还包括下述步骤:
e、对步骤d中形成的管件进行精准校正;
f、对步骤e中精准校正后的管件进行涡流检测,之后做预定时间的二次退火处理。
步骤f中,将精准校正后的管件送入预设温度的真空炉进行二次退火处理。
步骤a中,准备材质不同的第一层体和第二层体,在所述第一层体的 内侧和/或外侧固定第二层体,并通过轧制法将所述第一层体和第二层体轧制为一体,形成管件本体。
步骤c中,所述预定距离为所述管件本体厚度的1~3倍。
附图说明
图1a为现有技术中一种管件的横截面示意图;
图1b为图1a中A部位的局部放大图;
图2a为现有技术中另一种管件的横截面示意图;
图2b为图2a中B部位的局部放大图;
图3为本发明所提供第一实施例中管件本体的焊接部的结构示意图;
图4为采用图3所示焊接部的管件的焊接结构示意图;
图5为本发明所提供第一实施例的管件的横截面示意图;
图6为本发明所提供第二实施例中管件本体的焊接部的结构示意图;
图7为采用图6所示焊接部的管件的焊接结构示意图;
图8为本发明所提供第三实施例中管件本体的焊接部的结构示意图;
图9为采用图8所示焊接部的管件的焊接结构示意图;
图10为本发明所提供第四实施例中管件本体的焊接部的结构示意图;
图11为采用图10所示焊接部的管件的焊接结构示意图;
图12为本发明所提供第五实施例中管件本体的焊接部的结构示意图;
图13为采用图12所示焊接部的管件的焊接结构示意图;
图14为本发明所提供第六实施例中管件本体的焊接部的结构示意图。
其中,图1a至图2b中部件名称与附图标记之间的一一对应关系如下所示:
管件1’,焊接面1’a,焊缝2’;
其中,图3-14中部件名称与附图标记之间的一一对应关系如下所示:
管件100,管件本体10,第一层体10a,第二层体10b,焊接部11,焊缝20;
第一直线段111,第二直线段112,第三直线段113;
第一弧线段114,第二弧线段115,过渡弧线段116。
具体实施方式
现有的管件由管件本体弯曲后焊接成型,经研究发现,管件的焊接部位呈扇形或倒三角形,因此在焊接部位,由管件内壁向外壁,管件壁厚逐渐减少,焊料逐渐增多,主要依靠焊料结合,通常焊料的强度小于管件材质的强度,从而在进行扩口、弯曲等再加工时,内壁与外壁受力、变形不一致,容易从内壁开始出现裂缝,且裂缝沿着结合面线向外壁迅速延伸,致使管件破裂,无法使用。为此,本文提出了一种解决方案,具体介绍如下。
为了便于理解和描述简洁,下文结合管件及其管件本体一并说明,有益效果部分不再赘述。
本发明提供的管件主要由管件本体弯曲后焊接成型,其中,管件本体的长度为成型后管件的长度,管件本体的宽度大体为成型后管件的周向尺寸,管件本体的厚度为成型后管件的管壁厚度。也就是说,管件本体沿宽度方向弯曲后,将其宽度方向的两端部焊接形成管件。以下所涉及的方位词等均以此处管件本体的长度、宽度及厚度为参照。
本发明提供的管件本体,其两端均具有焊接部,沿管件本体的宽度方向,焊接部的厚度自内向外逐渐减小,且焊接部的外端位于管件本体厚度方向的中部。
需要指出的是,此处的“中部”指的是管件本体厚度方向的中心及临近中心的一段区域。
采用上述结构,管件本体弯曲后焊接形成的管件,其焊接部位大体呈X形,与现有的扇形结构或倒三角形结构相比,焊接部位的结合面面积明显增大,同时,由于焊接部的外端位于管件本体厚度的中部,焊接后,该部位的母材在整个焊接部位起到支撑作用,大大提升了焊接部位的抗拉强度;另外,该X形结构的焊接部位使得母材及焊料相对管件壁厚中心大体对称,能够改善受力方向,一定程度上缓解了变形方向及应力效果,在承受较大的横向拉力时,不易从管件内壁开裂;因此,采用该焊接结构的管件具有较高的可再加工性。
本发明提供的管件本体有多种具体结构,下面结合附图和具体实施例对本发明作进一步的详细说明。
请参考图3-5,图3为本发明所提供第一实施例中管件本体的焊接部的结构示意图;图4为采用图3所示焊接部的管件的焊接结构示意图;图5为本发明所提供第一实施例的管件的横截面示意图。
该实施例中,管件本体10的焊接部11的周面依次包括三段直线段:第一直线段111、第二直线段112和第三直线段113,其中,第二直线段112形成焊接部11的外端面。
该具体方案中,第二直线段112平行于管件本体10的厚度方向,且其中心与管件本体10厚度方向的中心重合;第一直线段111和第三直线段113相对第二直线段112对称,即第一直线段111的长度L1和第三直线段113的长度L3相等。
如此,成型管件100的焊缝20在径向和周向上完全对称,如图5所示,这样,焊接部位的受力均匀性更好。从图5中也可看出,焊接部11的外端位于焊缝20的中部,起到支撑作用,使得焊接部位的抗拉强度得到提升。
具体地,第二直线段112的长度L2可以设为管件本体10厚度的0.1~0.5倍,第一直线段111的长度L1和第三直线段113的长度L3可以设为管件本体10厚度的1~3倍。
实际应用时,可根据管材及应用需求适当选择各直线段的具体长度。
另外,第一直线段111与管件本体10厚度方向的夹角θ(示于图3中),及第三直线段113与管件本体10厚度方向的夹角(图中未示出)可根据管材及应用需求在20o~80o范围内选取。
此外,管件本体10弯曲后,两焊接部11的外端面之间具有预定距离d,该预定距离d一般为管件本体10厚度的1~3倍,这样设置,有助于确保焊接时焊料的流动性,使焊料与母材能够很好地熔合,以提高焊缝20的强度。
应当理解,若使两焊接部11的外端面抵接也是可行的。
请参考图6-7,图6为本发明所提供第二实施例中管件本体的焊接部的结构示意图;图7为采用图6所示焊接部的管件的焊接结构示意图。
该实施例与前述第一实施例的基本结构一致,区别在于,该实施例中, 焊接部11的第一直线段111的长度L1大于第三直线段113的长度L3,管件100的焊接部位如图7所示。
请参考图8-9,图8为本发明所提供第三实施例中管件本体的焊接部的结构示意图;图9为采用图8所示焊接部的管件的焊接结构示意图。
该实施例与前述第一实施例的基本结构也一致,区别在于,该实施例中,焊接部11的第一直线段111的长度L1小于第三直线段113的长度L3,管件的焊接部位如图9所示。
第二实施例和第三实施例中,各直线段的相关参数范围均与第一实施例中所述一致,不再赘述。
需要指出的是,上述三个实施例中,焊接部11的周面均由三段直线段形成,可以理解,实际上焊接部11的周面只由两段直线段形成也是可行,即省去第二直线段,如此,第一直线段和第三直线段的连接处形成尖端,相较而言,在焊接过程中不利于焊料的流动,故,可将前述三个实施例作为优选方案。另外,焊接部11的周面也可由更多段直线段形成,不再一一说明。
请参考图10-11,图10为本发明所提供第四实施例中管件本体的焊接部的结构示意图;图11为采用图10所示焊接部的管件的焊接结构示意图。
该实施例中,管件本体10的焊接部11的周面包括第一弧线段114和第二弧线段115,其中,第一弧线段114和第二弧线段115的连接处形成焊接部11的外端面。
进一步地,第一弧线段114和第二弧线段115通过过渡弧线段116连接,以确保两者的连接处圆滑过渡,如此,有利于焊料在焊接过程中润湿母材及流动。
具体的方案中,第一弧线段114和第二弧线段115的半径均为管件本体10厚度的0.5~8倍。
该具体方案中,第一弧线段114的半径R1大于第二弧线段115的半径R2。
同样地,该方案中,管件本体10弯曲后,两焊接部11的外端面之间也具有预定距离d,该预定距离d为管件本体10厚度的1~3倍,以期提高焊接过程中焊料的流动性。
请参考图12-13,图12为本发明所提供第五实施例中管件本体的焊接部的结构示意图;图13为采用图12所示焊接部的管件的焊接结构示意图。
该实施例与前述第四实施例的基本结构一致,区别在于,该实施例中,焊接部11的第一弧线段114的半径R1小于第二弧线段115的半径R2。
各弧线段的相关参数范围可与第四实施例中保持一致,不再赘述。
应当理解,在具体设置时,第一弧线段114和第二弧线段115的半径可相等,并两者连接处的中心位于管件本体10厚度的中心,这样,管件成型后,其焊缝结构完全对称,焊接部位的受力更均匀。
需要指出的是,在实际设置时,焊接部11的周面除了上述由几段直线段形成或由几段弧线段形成的方式外,还可以由两段以上的直线段和弧线段连接形成。
请参考图14,图14为本发明所提供第六实施例中管件本体的焊接部的结构示意图。
该实施例中,焊接部11的周面呈半椭圆形结构,如此设置,便于加工。
具体地,该半椭圆形结构的长半径R为管件本体10厚度的0.25~3倍,该半椭圆形结构的短半径r为管件本体10厚度的0.25~0.75倍。
如图14所示,该具体实施例中,所述半椭圆形结构的长轴沿管件本体10的宽度方向,短轴沿管件本体10的厚度方向,可以理解,实际设置时两者可以颠倒,即长轴沿管件本体10的厚度方向,短轴沿管件本体10的宽度方向。
以上介绍了管件本体的六种具体形式,可以理解,在上述原理的基础上,管件本体的具体形式还可做出多种变换,不再一一列举。
在实际应用中,管件本体10的材料可以为单一材料,也可以为复合材料。
以图3为例,具体方案中,管件本体10包括第一层体10a和固定在第一层体10a内侧和外侧的第二层体10b,其中,第一层体10a和第二层体10b的材质不同。
更具体地,第一层体10a为钢制材料,具体可选用低碳钢;第二层体10b为铜制材料。
可以理解,实际设置时,若仅在第一层体10a的内侧或外侧设置第二 层体10b也是可行的。
除了上述管件及其管件本体外,本发明还提供了一种管件的加工方法,该加工方法具体包括下述步骤:
a、制备管件本体;
根据预制管件的尺寸准备相应管件本体的尺寸。
若预制管件为两种材质的复合管时,准备材质不同的第一层体和第二层体,在所述第一层体的内侧和/或外侧固定第二层体,并通过轧制法将所述第一层体和第二层体轧制为一体,压平整后做退火处理,以使两种材质在高温环境下加速分子运动,促进分子结合层形成,这样,形成管件本体。
b、在管件本体的两端加工出焊接部,所述焊接部的结构如前各实施例中所述,不再赘述;
根据预制管件欲达到的性能设计焊接部的相关尺寸。
c、将步骤b中的管件本体挤压成圆管状,并使所述管件本体的两焊接部的端面保持预定距离;
该步骤中,可以将管件本体送入成型机弯曲挤压成圆管状。
d、对两所述焊接部实施焊接形成管件。
该步骤中,具体可采用低应力焊接方式焊接,使焊料与母材熔合形成焊缝,焊缝余高可采用机械加工去除,以确保焊缝与母材圆滑过渡。
进一步地,该加工方法在步骤d之后还包括下述步骤:
e、对步骤d中形成的管件进行精准校正;
采用一定内径的模具配合矫正管件,以确保精度和圆度。
f、对步骤e中精准校正后的管件进行涡流检测,之后做预定时间的二次退火处理。
具体地,通过涡流检测仪进行涡流检测,以确保管件的高精度要求。
之后进行预定时间的二次退火处理,这样,可极大地提高管材的延伸率和可加工性,以满足制冷系统的多样需求。具体地,可以将管件送入800~1000℃的真空炉进行二次退火处理。
以铜钢复合管为例,试验表明,采用二次退火处理后,铜钢符合管的扩口率达到20.7%以上,延伸率达到30%以上,耐压性有显著提高。
以上对本发明所提供的管件本体、管件及管件的加工方法均进行了详 细介绍。本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (19)

  1. 管件本体,其特征在于,所述管件本体(10)的两端均具有焊接部(11),沿所述管件本体(10)的宽度方向,所述焊接部(11)的厚度自内向外逐渐减小,且所述焊接部(11)的外端位于所述管件本体(10)厚度方向的中部。
  2. 根据权利要求1所述的管件本体,其特征在于,所述焊接部(11)的周面由两段以上的直线段和/或弧线段依次连接形成。
  3. 根据权利要求2所述的管件本体,其特征在于,所述焊接部(11)的周面依次包括三段直线段:第一直线段(111)、第二直线段(112)和第三直线段(113),其中,所述第二直线段(112)形成所述焊接部(11)的外端面。
  4. 根据权利要求3所述的管件本体,其特征在于,所述第二直线段(112)平行于所述管件本体(10)的厚度方向,并所述第二直线段(112)的长度为所述管件本体(10)厚度的0.1~0.5倍;所述第一直线段(111)和所述第三直线段(113)的长度均为所述管件本体(10)厚度的1~3倍。
  5. 根据权利要求4所述的管件本体,其特征在于,所述第一直线段(111)与所述管件本体(10)厚度方向的夹角以及所述第二直线段(112)与所述管件本体(10)厚度方向的夹角均在20o~80o范围内。
  6. 根据权利要求2所述的管件本体,其特征在于,所述焊接部(11)的周面包括两段弧线段:第一弧线段(114)和第二弧线段(115),其中,所述第一弧线段(114)和所述第二弧线段(115)的连接处形成所述焊接部(11)的外端面。
  7. 根据权利要求6所述的管件本体,其特征在于,所述焊接部(11)的周面还包括过渡弧线段(116),所述第一弧线段(114)和所述第二弧线段(115)通过所述过渡弧线段(116)连接。
  8. 根据权利要求6所述的管件本体,其特征在于,所述第一弧线段(114)和所述第二弧线段(115)的半径均为所述管件本体(10)厚度的0.5~8倍。
  9. 根据权利要求2-8任一项所述的管件本体,其特征在于,所述焊接 部(11)的周面相对所述管件本体(10)厚度方向的中心对称。
  10. 根据权利要求1所述的管件本体,其特征在于,所述焊接部(11)的周面呈半椭圆形结构。
  11. 根据权利要求10所述的管件本体,其特征在于,所述半椭圆形的长半径为所述管件本体(10)厚度的0.25~3倍,所述半椭圆形的短半径为所述管件本体(10)厚度的0.25~0.75倍。
  12. 管件,其特征在于,所述管件(100)由管件本体(10)弯曲后焊接成型,所述管件本体(10)为权利要求1-11任一项所述的管件本体,所述管件(100)的焊缝(20)呈X形结构。
  13. 根据权利要求12所述的管件,其特征在于,所述管件(100)具体为复合管,所述管件本体(10)包括第一层体(10a)和固定在所述第一层体(10a)内侧和/或外侧的第二层体(10b),所述第一层体(10a)和所述第二层体(10b)的材质不同。
  14. 根据权利要求13所述的管件,其特征在于,所述第一层体(10a)为钢制材料,所述第二层体(10b)为铜制材料。
  15. 管件的加工方法,其特征在于,包括如下步骤:
    a、制备管件本体;
    b、在管件本体的两端加工出焊接部,沿管件本体的宽度方向,焊接部的厚度自内向外逐渐减小,且焊接部的外端位于管件本体厚度方向的中部;
    c、将步骤b中的管件本体挤压成圆管状,并使所述管件本体的两焊接部的端面保持预定距离;
    d、对两所述焊接部实施焊接形成管件。
  16. 根据权利要求15所述的加工方法,其特征在于,步骤d之后还包括下述步骤:
    e、对步骤d中形成的管件进行精准校正;
    f、对步骤e中精准校正后的管件进行涡流检测,之后做预定时间的二次退火处理。
  17. 根据权利要求16所述的加工方法,其特征在于,步骤f中,将管件送入预设温度的真空炉进行二次退火处理。
  18. 根据权利要求15-17任一项所述的加工方法,其特征在于,步骤 a中,准备材质不同的第一层体和第二层体,在所述第一层体的内侧和/或外侧固定第二层体,并通过轧制法将所述第一层体和第二层体轧制为一体,形成管件本体。
  19. 根据权利要求15-17任一项所述的加工方法,其特征在于,步骤c中,所述预定距离为所述管件本体厚度的1~3倍。
PCT/CN2017/071916 2016-01-20 2017-01-20 管件本体、管件及管件的加工方法 WO2017125070A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018537789A JP6807930B2 (ja) 2016-01-20 2017-01-20 パイプ本体、パイプ及びパイプの加工方法
KR1020187021473A KR20180099771A (ko) 2016-01-20 2017-01-20 파이프 본체, 파이프 및 파이프의 제조 방법
US16/071,768 US10907752B2 (en) 2016-01-20 2017-01-20 Pipe body, pipe and method of making pipe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610040055.4 2016-01-20
CN201610040055.4A CN106989216A (zh) 2016-01-20 2016-01-20 管件本体、管件及管件的加工方法

Publications (1)

Publication Number Publication Date
WO2017125070A1 true WO2017125070A1 (zh) 2017-07-27

Family

ID=59361544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/071916 WO2017125070A1 (zh) 2016-01-20 2017-01-20 管件本体、管件及管件的加工方法

Country Status (5)

Country Link
US (1) US10907752B2 (zh)
JP (1) JP6807930B2 (zh)
KR (1) KR20180099771A (zh)
CN (1) CN106989216A (zh)
WO (1) WO2017125070A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200096139A1 (en) * 2018-09-26 2020-03-26 Afzal M. Chaudhry Non-Bursting Pipe and Method of Manufacturing Same
KR102168093B1 (ko) * 2018-12-28 2020-10-20 클래드코리아원주 주식회사 클래드 파이프의 연결을 위한 용접 방법
CN116060893B (zh) * 2023-03-31 2023-06-06 江阴市龙腾管件有限公司 一种高强合金钢大口径三通管件成形方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010014287A1 (de) * 2010-04-08 2011-10-13 Erndtebrücker Eisenwerk GmbH & Co. KG Längsnahtgeschweißtes Mehrlagenrohr und Verfahren zur Herstellung eines längsnahtgeschweißten Mehrlagenrohres
CN203215115U (zh) * 2013-04-16 2013-09-25 上海月月潮钢管制造有限公司 输送酸性介质用直缝埋弧焊复合钢管
CN203273062U (zh) * 2013-06-05 2013-11-06 浙江兆隆合金股份有限公司 钢铜复合管
CN103470873A (zh) * 2013-09-18 2013-12-25 无锡天龙钢管有限公司 Co2空调压缩机壳体专用钢管及其加工工艺
CN103978292A (zh) * 2014-05-26 2014-08-13 北京隆盛泰科石油管科技有限公司 四道焊接完成的双金属冶金复合管及其工艺方法
CN204785135U (zh) * 2015-06-30 2015-11-18 上海尊马汽车管件股份有限公司 一种汽车发动机用不锈钢焊接内整平高压管

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS473731B1 (zh) 1968-09-11 1972-02-01
JPS4738731Y1 (zh) 1970-01-26 1972-11-24
US4211042A (en) * 1978-12-22 1980-07-08 Allegheny Ludlum Steel Corporation Controlled weld area grinding to prevent the initiation of intergranular corrosion
US5494209A (en) 1992-12-28 1996-02-27 Olin Corporation Method for the manufacture of an internally enhanced welded tubing
JPH07198287A (ja) * 1993-11-24 1995-08-01 Zexel Corp 熱交換器のヘッダタンク構造
JPH08309527A (ja) * 1995-05-22 1996-11-26 Nkk Corp クラッド溶接鋼管の製造方法
EP1179380B1 (en) * 1999-08-06 2009-10-14 Sumitomo Metal Industries, Ltd. Martensite stainless steel welded steel pipe
WO2001094043A1 (fr) * 2000-06-09 2001-12-13 Nippon Steel Corporation Tube d'acier haute resistance presentant d'excellentes proprietes de formabilite et d'eclatement
JP2004306084A (ja) * 2003-04-07 2004-11-04 Nippon Steel Corp レーザ溶接とア−ク溶接の複合溶接方法
KR101169237B1 (ko) * 2005-12-16 2012-08-02 제이에프이 스틸 가부시키가이샤 우수한 용접부 특성을 갖는 전기저항 용접관의 제조 방법
CN2887514Y (zh) * 2006-02-21 2007-04-11 中国水利水电第七工程局机电安装分局 水电站压力引水钢管焊接结构
RU2427662C2 (ru) * 2006-11-30 2011-08-27 Ниппон Стил Корпорейшн Высокопрочная сварная стальная труба для трубопровода, обладающая превосходной низкотемпературной вязкостью, и способ ее изготовления
JP5251089B2 (ja) * 2006-12-04 2013-07-31 新日鐵住金株式会社 低温靱性に優れた高強度厚肉ラインパイプ用溶接鋼管及びその製造方法
CN201095025Y (zh) * 2007-11-09 2008-08-06 中国海洋石油总公司 钢制管焊接的焊口结构
CN100547103C (zh) * 2007-12-10 2009-10-07 华油钢管有限公司 一种高强度x80钢螺旋焊管制造方法
JP5176591B2 (ja) 2008-02-26 2013-04-03 Jfeスチール株式会社 溶接熱影響部靭性に優れた溶接鋼管
EP2436472B1 (en) * 2009-05-27 2023-02-01 JFE Steel Corporation Submerged arc welding method for steel plate
CN101797600B (zh) * 2010-02-23 2012-05-23 华油钢管有限公司 一种高强度x100钢级螺旋缝埋弧焊管制造方法
WO2012006350A1 (en) * 2010-07-07 2012-01-12 Composite Technology Development, Inc. Coiled umbilical tubing
WO2012036148A1 (ja) * 2010-09-14 2012-03-22 新日本製鐵株式会社 低温靭性に優れた厚肉溶接鋼管および低温靭性に優れた厚肉溶接鋼管の製造方法、厚肉溶接鋼管製造用鋼板
EP2699367A1 (en) * 2011-04-18 2014-02-26 Cladinox International Limited Methods for the production of clad steel products
JP5954009B2 (ja) * 2012-07-17 2016-07-20 Jfeスチール株式会社 溶接鋼管の製造方法
JP6693688B2 (ja) * 2013-02-15 2020-05-13 日本製鉄株式会社 低温靭性に優れたラインパイプ用溶接鋼管並びにその製造方法
JP6025620B2 (ja) * 2013-03-07 2016-11-16 株式会社神戸製鋼所 サブマージアーク溶接方法、当該サブマージアーク溶接方法を用いる鋼管を製造する方法、溶接継手、及び当該溶接継手を有する鋼管
CN103551750B (zh) * 2013-10-21 2015-11-18 番禺珠江钢管(珠海)有限公司 焊管及其制造方法
CN103801809B (zh) * 2013-12-05 2016-08-17 合肥紫金钢管有限公司 35号钢大口径厚壁多丝直缝埋弧焊钢管及其制造技术
CN203875461U (zh) * 2014-05-26 2014-10-15 北京隆盛泰科石油管科技有限公司 四道焊接完成的双金属冶金复合管
CN104028959A (zh) * 2014-06-05 2014-09-10 鞍山亚盛特钢有限公司 不锈钢复合材料的焊接方法
MX2017000077A (es) 2014-06-27 2017-05-30 Ati Properties Llc Tubos de aleacion resistentes a la corrosion de formacion por flujo y tubo manufacturado por los mismos.
CN107002194B (zh) * 2014-11-27 2022-05-17 杰富意钢铁株式会社 电阻焊钢管及其制造方法
CN104858536A (zh) * 2015-06-05 2015-08-26 江苏德创制管有限公司 一种大口径厚壁直缝埋弧焊管生产方法
CN104923928B (zh) * 2015-06-09 2017-08-29 招商局重工(江苏)有限公司 一种用于起重机臂架的q690d钢管纵缝焊接方法
CN104858555A (zh) * 2015-06-10 2015-08-26 江苏力沛电力工程技术服务有限公司 压力管道焊接工艺
CN204771228U (zh) * 2015-07-15 2015-11-18 中国葛洲坝集团机电建设有限公司 一种用于钢管管节纵缝焊接的防护棚
CN105149746B (zh) * 2015-09-30 2017-10-31 山东钢铁股份有限公司 一种耐磨钢板免预热气体保护焊接方法
CN105195872A (zh) * 2015-10-26 2015-12-30 南京奥特电气股份有限公司 一种管线钢双面埋弧免清根焊接工艺

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010014287A1 (de) * 2010-04-08 2011-10-13 Erndtebrücker Eisenwerk GmbH & Co. KG Längsnahtgeschweißtes Mehrlagenrohr und Verfahren zur Herstellung eines längsnahtgeschweißten Mehrlagenrohres
CN203215115U (zh) * 2013-04-16 2013-09-25 上海月月潮钢管制造有限公司 输送酸性介质用直缝埋弧焊复合钢管
CN203273062U (zh) * 2013-06-05 2013-11-06 浙江兆隆合金股份有限公司 钢铜复合管
CN103470873A (zh) * 2013-09-18 2013-12-25 无锡天龙钢管有限公司 Co2空调压缩机壳体专用钢管及其加工工艺
CN103978292A (zh) * 2014-05-26 2014-08-13 北京隆盛泰科石油管科技有限公司 四道焊接完成的双金属冶金复合管及其工艺方法
CN204785135U (zh) * 2015-06-30 2015-11-18 上海尊马汽车管件股份有限公司 一种汽车发动机用不锈钢焊接内整平高压管

Also Published As

Publication number Publication date
US20190032819A1 (en) 2019-01-31
JP6807930B2 (ja) 2021-01-06
JP2019510634A (ja) 2019-04-18
KR20180099771A (ko) 2018-09-05
US10907752B2 (en) 2021-02-02
CN106989216A (zh) 2017-07-28

Similar Documents

Publication Publication Date Title
JP4941054B2 (ja) 継目無ベンド管の製造方法並びに溶接継手及びその製造方法
AU2018246660B2 (en) Method for manufacturing clad steel pipe
WO2017125070A1 (zh) 管件本体、管件及管件的加工方法
CN104607512B (zh) 一种高精度大管径小弯径比的大角度管道的弯曲成形方法
MX2007003351A (es) Tapon, metodo para expandir el diametro interior de un tubo o tuberia de metal utilizando este tapon, metodo para fabricar tubos o tuberia de metal.___________________________________.
KR101256973B1 (ko) 액상 확산 접합 관 이음부 및 그 제조 방법
US20180029167A1 (en) Filler metal with flux for brazing and soldering and method of using same
JP2016165736A (ja) 接合管体及びその製造方法
JP2016032837A (ja) 接合管体及びその製造方法
CN110778804B (zh) 油气输送管及油气输送管的制作方法
WO2020175343A1 (ja) 金属管および金属管の製造方法
JP2016138731A (ja) 熱交換器
JPH09317959A (ja) 接合強度の高い鋼管の液相拡散接合用継手
KR101451504B1 (ko) 오버레이 용접스틸을 가지는 피팅류의 성형방법
CN201487408U (zh) 适合进行感应加热弯制的螺旋缝埋弧焊管
JP2002192223A (ja) 金属溶接管の製造方法
JP7251518B2 (ja) フレア加工性に優れる鍛接鋼管およびその製造方法
KR101235230B1 (ko) 세미심리스 튜브의 제조방법
CN116060893B (zh) 一种高强合金钢大口径三通管件成形方法
CN112025219B (zh) 利用不锈钢的延展性加工丝接用内衬不锈钢弯头的方法
JP4975354B2 (ja) 高強度溶接鋼管の製造方法
WO2018036366A1 (zh) 一种复合管的接口结构及管组件
CN114877151A (zh) 一种复合管全通径高压连接结构及其连接方法
JP2022126989A (ja) 鍛接鋼管及びその製造方法
JP2002059215A (ja) 成形性及びバースト特性に優れた高強度鋼管およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17741101

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018537789

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187021473

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17741101

Country of ref document: EP

Kind code of ref document: A1