WO2017122761A1 - 無方向性電磁鋼板とその製造方法 - Google Patents

無方向性電磁鋼板とその製造方法 Download PDF

Info

Publication number
WO2017122761A1
WO2017122761A1 PCT/JP2017/000925 JP2017000925W WO2017122761A1 WO 2017122761 A1 WO2017122761 A1 WO 2017122761A1 JP 2017000925 W JP2017000925 W JP 2017000925W WO 2017122761 A1 WO2017122761 A1 WO 2017122761A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
less
steel sheet
hot
electrical steel
Prior art date
Application number
PCT/JP2017/000925
Other languages
English (en)
French (fr)
Inventor
正憲 上坂
中西 匡
鍋島 誠司
智幸 大久保
尾田 善彦
宏章 中島
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2017522434A priority Critical patent/JP6451967B2/ja
Priority to CN201780006482.3A priority patent/CN108463569B/zh
Priority to EP17738513.5A priority patent/EP3404124B1/en
Priority to RU2018125734A priority patent/RU2696887C1/ru
Priority to US16/070,043 priority patent/US11008633B2/en
Priority to KR1020187019168A priority patent/KR102095142B1/ko
Publication of WO2017122761A1 publication Critical patent/WO2017122761A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/064Dephosphorising; Desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/068Decarburising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a non-oriented electrical steel sheet used as an iron core material for electrical equipment and a method for manufacturing the same.
  • Patent Document 1 discloses that Sb or Sn is contained in a slab containing C: 0.02 wt% or less, Si or Si + Al: 4.0 wt% or less, Mn: 1.0 wt% or less, and P: 0.2 wt% or less.
  • a technique for increasing the magnetic flux density has been proposed. However, this technique has a large variation in magnetic properties, and it is necessary to perform two cold rollings with short-time annealing after hot rolling, resulting in high manufacturing costs.
  • Patent Document 2 discloses that C: 0.008 wt% or less, Si: 4 wt% or less, Al: 2.5 wt% or less, Mn: 1.5 wt% or less, P: 0.2 wt% or less, S: 0.
  • the MnO composition ratio (MnO / (SiO 2 + Al 2 O 3 + CaO + MnO)) of the oxide inclusions present in the hot-rolled sheet containing 005 wt% or less and N: 0.003 wt% or less is controlled to 0.35 or less.
  • a technique for reducing the number of inclusions extending in the rolling direction and improving crystal grain growth has been proposed.
  • this technique has a problem that when the Ca concentration is high and the Al concentration is low, the magnetic characteristics, particularly the iron loss characteristics become unstable.
  • Patent Document 3 As a non-oriented electrical steel sheet with a reduced Al content, for example, in Patent Document 3, the texture is improved by reducing the Al content to 0.017 mass% or less, preferably 0.005 mass% or less.
  • techniques for increasing the magnetic flux density have been proposed.
  • JP 05-171280 A Japanese Patent Laid-Open No. 10-060532 Japanese Patent No. 4126479
  • Patent Document 3 since the technique disclosed in Patent Document 3 employs the one-time rolling method at room temperature for cold rolling, a sufficient effect of improving the magnetic flux density cannot be obtained.
  • This problem can be solved by making the cold rolling two or more cold rollings with intermediate annealing interposed therebetween, but another problem arises that the manufacturing cost increases. It is also effective for improving the magnetic flux density that the cold rolling is so-called warm rolling in which the plate temperature is raised to about 200 ° C.
  • warm rolling in which the plate temperature is raised to about 200 ° C.
  • new equipment correspondence and complicated process management are required.
  • Patent Document 3 when Al is reduced but N is not reduced, AlN is finely precipitated during cooling of hot-rolled sheet annealing, and grain growth during recrystallization annealing is suppressed, and iron is reduced. It is described that the loss is deteriorated.
  • the Al content is reduced, non-oriented electrical steel sheets with high magnetic flux density and low iron loss can be produced at low cost without the need for new equipment and complicated process management. The fact is that it is difficult to manufacture well.
  • the present invention has been made in view of the above-mentioned problems of the prior art, and its purpose is to provide a non-oriented electrical steel sheet having a low Al content and excellent recyclability, a high magnetic flux density and a low iron loss. It is to provide a method for manufacturing the steel sheet at low cost with high productivity.
  • the inventors made extensive studies by paying attention to the relationship between the component composition of the oxide inclusions present in the steel sheet and the magnetic properties.
  • it is effective to increase grain growth in hot-rolled sheet annealing and finish annealing.
  • Si is added, Al is reduced as much as possible, and then the Ca alloy is added, so that the concentration ratio of total Ca to total oxygen in the steel (T.Ca) /T.O) within the proper range is important, and preferably, sol.
  • the present invention relates to C: 0.0050 mass% or less, Si: 0.1 to 5.0 mass%, Mn: 0.02 to 3.0 mass%, sol. Al: 0.0050 mass% or less, P: 0.2 mass% or less, S: 0.0050 mass% or less and N: 0.0040 mass% or less, with the balance being a component composition comprising Fe and inevitable impurities
  • the total Ca concentration (T.Ca) in the steel is 0.0010 to 0.0080 mass% and the total oxygen concentration (TO) is 0.0100 mass% or less
  • the non-oriented electrical steel sheet has a concentration ratio (T.Ca/TO) of 0.50 or more and 2.0 or less.
  • the non-oriented electrical steel sheet of the present invention is sol.
  • the Al concentration ratio (sol. Al / Si) is 0.0020 or less.
  • the present invention relates to C: 0.0050 mass% or less, Si: 0.1 to 5.0 mass%, Mn: 0.02 to 3.0 mass%, sol. Al: 0.0050 mass% or less, P: 0.2 mass% or less, S: 0.0050 mass% or less and N: 0.0040 mass% or less, with the balance being a component composition comprising Fe and inevitable impurities Steel sheet having a total Ca concentration (T.Ca) in the steel of 0.0010 to 0.0080 mass%, a total oxygen concentration (TO) of 0.0100 mass% or less, and a sheet thickness cross section in the rolling direction.
  • T.Ca total Ca concentration
  • TO total oxygen concentration
  • composition ratio of CaO size in the thickness direction with respect to SiO 2 in the oxide inclusions of more than 0.2 [mu] m (CaO / SiO 2) is non-directional, which is 0.50 to 4.0 It is a magnetic steel sheet.
  • the non-oriented electrical steel sheet according to the present invention is against (CaO + SiO 2 + Al 2 O 3 ) in an oxide-based inclusion having a thickness in the thickness direction of 0.2 ⁇ m or more, which exists in a thickness-thickness section in the rolling direction.
  • Al composition ratio of 2 O 3 Al 2 O 3 / (CaO + SiO 2 + Al 2 O 3) is equal to or more than 0.15.
  • non-oriented electrical steel sheet of the present invention may be one or more selected from Sn: 0.01 to 0.1 mass% and Sb: 0.01 to 0.1 mass% in addition to the above component composition. It contains two types.
  • the non-oriented electrical steel sheet of the present invention further includes Cu: 0.01 to 0.5 mass%, Ni: 0.01 to 0.5 mass%, and Cr: 0.01 to 0. 1 type or 2 types or more chosen from 0.5 mass%, It is characterized by the above-mentioned.
  • non-oriented electrical steel sheet of the present invention may be one or more selected from REM: 0.0001 to 0.0050 mass% and Mg: 0.0001 to 0.0050 mass% in addition to the above component composition. It contains two types.
  • this invention hot-rolls the hot-rolled sheet after hot-rolling the slab containing any of the above-described component compositions and oxide inclusions into a hot-rolled sheet.
  • a non-oriented electrical steel sheet that is cold-rolled and subjected to finish annealing, wherein the coil winding temperature in the hot rolling is 550 ° C. or higher. Propose.
  • the present invention hot-rolls a slab containing any of the above-described component compositions and oxide inclusions into a hot-rolled sheet, and after performing hot-rolled sheet annealing, cold-rolled,
  • a method for producing a non-oriented electrical steel sheet, which is subjected to finish annealing, is characterized in that the hot-rolled sheet annealing is performed at a temperature of 900 to 1150 ° C.
  • the present invention is a method for producing a non-oriented electrical steel sheet according to any one of the above, wherein after the desulfurization treatment and the dephosphorization treatment are performed on the hot metal, the molten steel refined in the converter is vacuum degassed. After decarburizing C to 0.0050 mass% or less, an element and / or alloy for component adjustment is added, and then a CaSi alloy is added to the ladle, and the total Ca concentration in the steel (T.Ca) 0.0010 to 0.0080 mass%, the total oxygen concentration (TO) is 0.0100 mass% or less, and the concentration ratio of total Ca to total oxygen (T.Ca/TO) is 0.50 or more and 2.0.
  • the manufacturing method of the non-oriented electrical steel sheet characterized by the following is proposed.
  • a non-oriented electrical steel sheet having high magnetic flux density, low iron loss, and excellent recyclability can be provided at low cost without the need for new facilities and complicated process management. It becomes.
  • composition of C, S, O, Ca and N has a range is due to variations during melting and is not intended.
  • reheating the slab to a temperature of 1100 ° C.
  • it is hot-rolled to form a hot-rolled sheet having a thickness of 2.3 mm, pickled, cold-rolled, and then cooled to a final thickness of 0.50 mm. It was made into a rolled sheet and was subjected to finish annealing at a temperature of 1000 ° C.
  • the inclusions are mainly composed of oxide inclusions made of CaO, SiO 2 , Al 2 O 3, and the oxide inclusions of the steel sheet having a high iron loss are in a form extending in the rolling direction.
  • the inventors further changed the amount of Si, Al and Ca added as deoxidizers in order to change the component composition of the oxide inclusions in the above component steels.
  • C 0.0015-0.0035 mass%
  • Si 1.5-2.0 mass%
  • Mn 0.4 mass%
  • P 0.07 mass%
  • S 0.0010-0. 0030 mass%
  • Al 0.0001 to 0.0050 mass%
  • N 0.0015 to 0.0025 mass%
  • Sn 0.02 to 0.04 mass%
  • Ca less than 0.0001 mass% to 0.0050 mass%
  • T.I. O Various steels having a component composition of 0.0020 to 0.0070 mass% were melted.
  • the composition of said C, S, and N has a range.
  • it is hot-rolled to form a hot-rolled sheet having a thickness of 2.3 mm, pickled, cold-rolled, and then cooled to a final thickness of 0.50 mm. It was made into a rolled sheet and was subjected to finish annealing at a temperature of 1000 ° C.
  • the composition of 100 or more oxide inclusions having a cross section (L cross section) in the rolling direction of the finish annealed plate is analyzed with a scanning electron microscope (SEM), and the average composition of the oxide inclusions ( mass%).
  • oxides such as Si, Al, and Ca oxides such as Mn and Mg were recognized in the oxide inclusions, but they were as small as 10 at% or less, and thus were not considered in the calculation of the composition ratio.
  • some oxides are complexed with sulfides. In that case, only the oxides were evaluated and the oxide composition ratio was determined.
  • FIG. 1 shows the relationship between (CaO / SiO 2 ) and (Al 2 O 3 / (SiO 2 + Al 2 O 3 + CaO)) in an oxide inclusion and iron loss W 15/50. is there. From this figure, when (CaO / SiO 2 ) in the oxide inclusions is less than 0.50, the iron loss greatly increases and deteriorates, and (CaO / SiO 2 ) in the oxide inclusions. Even if is 0.50 or more, it can be seen that when (Al 2 O 3 / (SiO 2 + Al 2 O 3 + CaO)) exceeds 0.15, the iron loss tends to deteriorate. In addition, the tendency for the steel plate with a higher iron loss to have the oxide type inclusion of the form extended
  • the component composition of oxide inclusions present in the steel is controlled within an appropriate range, and is elongated in the rolling direction during hot rolling. It is considered effective to prevent this.
  • FIG. 1 is based on the above considerations, and shows the experimental results as a ratio of the total Ca concentration (mass%) to the total oxygen concentration (mass%) in the steel during melting (T.Ca/TO) and Sol.
  • Si concentration (mass%) in steel during steel melting For the Si concentration (mass%) in steel during steel melting.
  • ratio (sol.Al/Si) of Al concentration (mass%) and iron loss W15 / 50 is shown. From this figure, it is found that the iron loss is very high when the steel (T.Ca/TO) is less than 0.50, and even if the steel (T.Ca/TO) is 0.50 or more, the steel It was confirmed that when the medium (sol. Al / Si) exceeds 0.0020, the iron loss is slightly increased.
  • the present invention has been developed based on the above novel findings.
  • C 0.0050 mass% or less
  • C is a harmful element that causes magnetic aging and deteriorates the iron loss of the product plate.
  • the content exceeds 0.0050 mass%, the above-described deterioration becomes significant, so 0.0050 mass%.
  • it does not prescribe
  • Si 0.1 to 5.0 mass%
  • Si is an element effective for increasing the electrical resistance of steel and reducing iron loss, and is also an element added as a deoxidizer for steel, so it is contained in an amount of 0.1 mass% or more.
  • the upper limit is set to 5.0 mass%.
  • it is in the range of 1.5 to 5.0 mass%. More preferably, it is in the range of 1.6 to 3.8 mass%.
  • Mn 0.02 to 3.0 mass%
  • Mn is an element effective in increasing the electrical resistance of steel and reducing iron loss, and has the effect of preventing hot brittleness, so it is contained in an amount of 0.02 mass% or more.
  • an upper limit shall be 3.0 mass%.
  • the range is preferably from 0.15 to 2.5 mass%, more preferably from 0.15 to 1.0 mass%.
  • P 0.2 mass% or less
  • P is an element useful for improving the punching workability because it has a large effect of increasing the hardness of steel with a small amount of addition, and is added appropriately according to the required hardness. can do.
  • the upper limit is made 0.2 mass%.
  • it is in the range of 0.04 to 0.15 mass%.
  • S becomes a sulfide, forms precipitates and inclusions, not only deteriorates the magnetic properties of the product plate, but also harms manufacturability (hot rollability). preferable. Therefore, in the present invention, it is limited to 0.0050 mass% or less. In particular, when importance is attached to the magnetic characteristics, it is preferably 0.0025 mass% or less. In addition, since it is so preferable that there is little S, a minimum in particular is not prescribed
  • Al 0.0050 mass% or less
  • Al is an element effective for increasing the electrical resistance of steel and reducing iron loss, and is also an element added as a deoxidizer for steel.
  • Al is desired to be less than 0.05 mass%, and the lower the better.
  • Al is further reduced, and sol. It is limited to 0.0050 mass% or less with Al (acid-soluble Al). Preferably, it is 0.0020 mass% or less.
  • N 0.0040 mass% or less
  • N is a harmful element that deteriorates the magnetic properties as in the case of C described above.
  • the above-described adverse effect becomes significant, so it is limited to 0.0040 mass% or less. .
  • it is 0.0030 mass% or less.
  • it does not prescribe
  • T. T. et al. Ca 0.0010 to 0.0080 mass% Ca becomes CaS to form coarse precipitates, and suppresses the precipitation of fine sulfides such as MnS, thereby improving the grain growth and reducing the iron loss.
  • T.I. It is made to contain 0.0010 mass% or more by Ca (total Ca density
  • the upper limit is made 0.0080 mass%.
  • it is in the range of 0.0015 to 0.0050 mass%.
  • the total Ca concentration (T.Ca) is a Ca concentration composed of the sum of acid-soluble Ca and acid-insoluble Ca in steel.
  • T. T. et al. O 0.0100 mass% or less If the O (total O concentration in the steel) exceeds 0.0100 mass%, the amount of oxide increases to inhibit grain growth and deteriorate iron loss characteristics, so the upper limit is made 0.0100 mass%. Preferably it is 0.0060 mass% or less.
  • the total O concentration (T.O) is a concentration of O consisting of the sum of acid-soluble O and acid-insoluble O.
  • T. T. et al. Ca / T. O 0.50 or more and 2.0 or less
  • the ratio of total Ca concentration to total O concentration in steel needs to be 0.50 or more and 2.0 or less. is there. If the ratio is less than 0.50, the oxide inclusions show a form stretched in the rolling direction, which inhibits grain growth and deteriorates iron loss characteristics.
  • the upper limit is set to 2.0 because if it exceeds 2.0, the coarse oxide inclusions become the starting point of cracking, and the productivity is significantly impaired. Preferably they are 0.60 or more and 1.8 or less.
  • the non-oriented electrical steel sheet of the present invention has a sol.
  • the Al concentration ratio (sol.Al/Si) is preferably limited to 0.0020 or less.
  • (sol.Al/Si) exceeds 0.0020, the oxide inclusions are stretched in the rolling direction, which may hinder grain growth and deteriorate iron loss characteristics. More preferably, it is 0.0015 or less.
  • the sol. Al represents acid-soluble Al. To be exact, it should be specified by (T.Al-sol.Al) / Si, but the reason for specifying by (sol.Al/Si) is sol. Al and T.W. Al is correlated, and sol. This is because Al can be analyzed more easily.
  • the non-oriented electrical steel sheet of the present invention can further contain the following components in addition to the above components.
  • Sn and Sb both improve texture and improve magnetic properties
  • the upper limit is preferably set to 0.1 mass%. More preferably, each is in the range of 0.02 to 0.05 mass%.
  • Ni and Cr are: Since it is an element effective for increasing the specific resistance of a steel sheet and reducing iron loss, it can be contained. In order to acquire the said effect, it is preferable to add 0.01 mass% or more, respectively. On the other hand, since these elements are more expensive than Si and Al, the amount of each added is preferably 0.5 mass% or less.
  • Mg and REM are sulfides that are more stable than MnS and Cu 2 S at high temperatures. Since it is an element that has the effect of forming and improving magnetic properties, it can be contained. In order to acquire the said effect, it is preferable to add Mg and REM 0.0001 mass% or more, respectively. On the other hand, even if contained excessively, the effect is saturated and economically disadvantageous, so the upper limit is preferably set to 0.0050 mass%.
  • the balance other than the above components is Fe and inevitable impurities.
  • V included as an inevitable impurity is 0.004 mass% or less
  • Nb is 0.004 mass% or less
  • B is 0.0005 mass% or less
  • Ni is 0.05 mass% or less
  • Cr is 0.05 mass% or less
  • Cu is 0.1 mass% or less
  • Ti is within a range of 0.002 mass% or less.
  • oxide inclusions present in the steel sheet of the present invention will be described.
  • the (CaO / SiO 2 ) of oxide inclusions having a size in the thickness direction of 0.2 ⁇ m or more present in the thickness cross section in the rolling direction of the product plate is 0. .50 or more, and (Al 2 O 3 / (SiO 2 + Al 2 O 3 + CaO)) is preferably 0.15 or less.
  • the oxide inclusions are stretched by hot rolling, which inhibits grain growth in hot annealing, hot rolling sheet annealing, and finish annealing after hot rolling, thereby deteriorating magnetic properties. .
  • CaO / SiO 2 is 0.60 or more and (Al 2 O 3 / (SiO 2 + Al 2 O 3 + CaO)) is 0.10 or less.
  • the component composition of oxide inclusions present in the steel sheet is analyzed by SEM (scanning electron microscope) for 100 or more oxide inclusions existing in a cross section (L cross section) parallel to the rolling direction of the steel sheet. This is the average value.
  • the oxide inclusions of the present invention include those present in combination with other compounds such as sulfides.
  • the non-oriented electrical steel sheet of this invention can be manufactured using normal equipment and normal processes used for manufacturing non-oriented electrical steel sheets.
  • hot metal with reduced S concentration by applying hot metal pretreatment etc. is decarburized in a converter to reduce the carbon concentration, and then decarburized C to an extremely low concentration region with a vacuum degassing apparatus. At the same time, it is denitrified.
  • Si or Si alloy is added, and after deoxidation, the Si concentration is adjusted to a predetermined concentration, and then other components for adjusting components such as metal Mn are adjusted. Add elements and alloys to adjust final components.
  • a desulfurizing agent such as CaO may be added during the vacuum degassing process.
  • a Ca alloy (CaSi alloy) is added to the molten steel.
  • an addition method of the Ca alloy an injection method, an iron clothing wire addition method, or the like can be used. What is important here is that it is necessary to control (T.Ca/T.O) in the molten steel whose components are adjusted to 0.50 or more and 2.0 or less. Thereby, an iron loss characteristic can be improved.
  • the molten steel melted by the method described above is used as a steel material (slab) by a continuous casting method or an ingot-bundling rolling method.
  • the slab is then subjected to hot rolling, and the reheating temperature SRT of the slab prior to the hot rolling is preferably in the range of 1000 to 1250 ° C.
  • the SRT exceeds 1250 ° C., not only is energy loss large and uneconomical, but the high-temperature strength of the slab is reduced, which may cause manufacturing problems such as slab dripping.
  • the temperature is lower than 1000 ° C., the hot deformation resistance increases and it is difficult to perform hot rolling.
  • the subsequent hot rolling may be performed under normal conditions.
  • the plate thickness to be hot-rolled is preferably in the range of 1.5 to 2.8 mm from the viewpoint of securing productivity. If it is less than 1.5 mm, rolling troubles in hot rolling increase, while if it exceeds 2.8 mm, the cold rolling reduction rate becomes too high and the texture deteriorates.
  • a more preferable hot-rolled sheet thickness is in the range of 1.7 to 2.4 mm.
  • the steel sheet (hot-rolled sheet) after hot rolling may be omitted or subjected to hot-rolled sheet annealing, but it is advantageous to omit it from the viewpoint of reducing manufacturing costs.
  • the coil winding temperature after hot rolling needs to be 550 ° C. or higher. If it is less than 550 ° C., the self-annealing after coil winding becomes insufficient, the recrystallization rate of the steel sheet before cold rolling decreases, ridging occurs, and the magnetic flux density decreases.
  • a preferable winding temperature is 600 ° C. or higher.
  • the soaking temperature of hot-rolled sheet annealing needs to be in the range of 900 to 1150 ° C. If the soaking temperature is less than 900 ° C., the rolled structure remains and the effect of improving the magnetic properties cannot be sufficiently obtained. On the other hand, if the temperature exceeds 1150 ° C., the crystal grains become coarse and cracks are likely to occur during cold rolling, which is also disadvantageous economically.
  • the temperature is preferably 950 to 1050 ° C.
  • the coil winding temperature may be 550 ° C. or higher.
  • the hot-rolled sheet after the hot rolling or after the hot-rolled sheet annealing is made into a cold-rolled sheet having a final thickness by one or more cold rollings sandwiching the intermediate annealing.
  • the thickness of the cold-rolled sheet (final sheet thickness) is not particularly specified, but is preferably in the range of 0.10 to 0.60 mm. This is because if the thickness is less than 0.10 mm, the productivity decreases, while if it exceeds 0.60 mm, the iron loss reduction effect is small. In the case where the iron loss is regarded as important, the range of 0.10 to 0.35 mm is preferable.
  • the steel sheet (cold rolled sheet) cold-rolled to the final thickness is then subjected to finish annealing by continuous annealing.
  • the soaking temperature of this finish annealing is preferably in the range of 700 to 1150 ° C.
  • the soaking temperature is less than 700 ° C., recrystallization does not proceed sufficiently, and not only good magnetic properties cannot be obtained, but also the shape correction effect by continuous annealing cannot be obtained.
  • the temperature exceeds 1150 ° C. energy loss increases and becomes uneconomical.
  • the finish-annealed steel sheet is then preferably coated and baked with an insulating coating on the steel sheet surface as necessary in order to further reduce iron loss.
  • the insulating coating is preferably an organic coating containing a resin when it is desired to ensure good punchability. Moreover, when importance is attached to weldability, it is preferable to use a semi-organic film or an inorganic film.
  • 1 to 37 steel was melted and formed into a slab by a continuous casting method.
  • Si, Ca and Al were added as deoxidizers.
  • CaSi was used as the Ca source.
  • the addition amounts of these deoxidizers and CaSi were appropriately adjusted according to the contents of O, N, and S in the molten steel.
  • the slab was reheated to a temperature of 1080 to 1180 ° C. and then hot-rolled to obtain a hot-rolled sheet having a thickness of 2.3 mm.
  • the coil winding temperature was set to 600 ° C. (constant).
  • the non-oriented electrical steel sheet manufactured under the conditions suitable for the present invention is excellent by increasing the coil winding temperature after hot rolling to 550 ° C. or higher even when hot-rolled sheet annealing is not performed. It can be seen that it has magnetic properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

Cを0.0050%以下まで脱炭し、Siを添加し、Alを極力低減した上でCaを添加して、C:0.0050%以下、Si:0.1~5.0%以下、Mn:0.02~3.0%、sol.Al:0.0050%以下、P:0.2%以下、S:0.0050%以下、N:0.0040%以下、T.Ca:0.0010~0.0080%、T.O:0.0100%以下で、(T.Ca/T.O)が0.50以上2.0以下の鋼を溶製してスラブとし、該スラブを550℃以上で巻き取る熱間圧延した後、冷間圧延し、仕上焼鈍を施す、または、該スラブを熱間圧延し、900~1150℃の温度で熱延板焼鈍を施した後、冷間圧延し、仕上焼鈍を施すことにより、低Al含有量で、リサイクル性に優れかつ磁気特性にも優れる無方向性電磁鋼板を製造する。

Description

無方向性電磁鋼板とその製造方法
 本発明は、電気機器の鉄心材料等として用いられる無方向性電磁鋼板とその製造方法に関するものである。
 近年、省エネルギーへの要求が高まるのに伴い、家庭用エアコン等に用いられるモータには、消費電力が少なく、エネルギー効率が高いことが求められている。そのため、モータの鉄心材料に用いられる無方向性電磁鋼板に対しても、高性能な特性、例えば、モータの鉄損を低減するために、低鉄損であることや、モータの銅損を低減するために高磁束密度であること等が強く要求されるようになってきている。
 無方向性電磁鋼板の鉄損を低減する方法としては、従来、SiやAl,Mn等の鋼の固有抵抗を高める元素の添加量を増量し、渦電流損を低減する方法が用いられてきた。しかし、この方法では、磁束密度の低下を免れない。そこで、鉄損を低減するだけでなく、磁束密度を高める技術が幾つか提案されている。
 例えば、特許文献1には、C:0.02wt%以下、SiもしくはSi+Al:4.0wt%以下、Mn:1.0wt%以下、P:0.2wt%以下を含有するスラブに、SbやSnを添加することで、高磁束密度化を図る技術が提案されている。しかし、この技術は、磁気特性のバラツキが大きく、また、熱間圧延後、短時間焼鈍を挟んだ2回の冷間圧延を行う必要があるため、製造コストが高くなるという問題がある。
 また、特許文献2には、C:0.008wt%以下、Si:4wt%以下、Al:2.5wt%以下、Mn:1.5wt%以下、P:0.2wt%以下、S:0.005wt%以下、N:0.003wt%以下を含有する熱延板中に存在する酸化物系介在物のMnO組成比率(MnO/(SiO+Al+CaO+MnO))を0.35以下に制御することで、圧延方向に伸びた介在物の数を減らし、結晶粒の成長性を向上する技術が提案されている。しかし、この技術は、Ca濃度が高く、Al濃度が低い場合、磁気特性、特に鉄損特性が不安定となるという問題がある。
 ところで、最近、鉄資源をリサイクルする観点から、鉄心材を打抜加工する際に発生するスクラップを鋳物銑の原料に再利用することが多くなっている。しかし、鋳物銑に含まれるAl量が0.05mass%以上になると、鋳物中に鋳巣(引け巣)が生じ易くなるため、スクラップ中に含まれるAlの含有量を0.05mass%未満に制限することが望まれている。
 Alの含有量を低減した無方向性電磁鋼板としては、例えば、特許文献3には、Al含有量を0.017mass%以下、好ましくは0.005mass%以下に低減することで、集合組織を改善し、磁束密度を高める技術が提案されている。
特開平05-171280号公報 特開平10-060532号公報 特許第4126479号公報
 しかしながら、上記特許文献3に開示の技術は、冷間圧延に室温における1回圧延法を採用しているため、十分な磁束密度の向上効果が得られない。この問題は、上記冷間圧延を、中間焼鈍を挟む2回以上の冷間圧延とすることで解消されるが、製造コストが上昇するという別の問題が生じる。また、上記冷間圧延を、板温を200℃程度に昇温して圧延する、いわゆる温間圧延とすることも、磁束密度の向上には有効である。しかし、温間圧延を行うためには、新たな設備対応や煩雑な工程管理が必要となるという問題がある。さらに、上記特許文献3には、Alを低減しても、Nを低減しない場合には、熱延板焼鈍の冷却中にAlNが微細析出して再結晶焼鈍時の粒成長が抑制され、鉄損が劣化することが記載されている。
 上記のように、Alの含有量を低減した場合には、新たな設備対応や煩雑な工程管理を必要とせずに、高磁束密度で低鉄損の無方向性電磁鋼板を低コストで生産性よく製造することが難しいのが実情である。
 本発明は、従来技術が抱える上記問題点に鑑みてなされたものであり、その目的は、低Al含有量でリサイクル性に優れ、かつ、高磁束密度で低鉄損の無方向性電磁鋼板を提供するとともに、その鋼板を低コストで生産性よく製造する方法を提案することにある。
 発明者らは、上記の課題を解決するべく、鋼板中に存在する酸化物系介在物の成分組成と磁気特性との関係に着目して鋭意検討を重ねた。その結果、無方向性電磁鋼板の磁束密度を高め、鉄損を低減するためには、熱延板焼鈍や仕上焼鈍における粒成長性を高めることが有効であり、そのためには、鋼素材中のC濃度を極低炭素領域まで脱炭した後、Siを添加し、Alを極力低減した上で、Ca合金を添加することで、鋼中の全Caと全酸素との濃度比(T.Ca/T.O)を適正範囲に制御することが重要であり、好ましくは、sol.Al(酸可溶Al濃度)とSiとの濃度比(sol.Al/Si)を適正化することが、さらに好ましくは、上記鋼に含まれる酸化物系介在物中のCaO、SiO,Alの組成を適正範囲に制御することが有効であることを見出し、本発明を開発するに至った。
 すなわち、本発明は、C:0.0050mass%以下、Si:0.1~5.0mass%、Mn:0.02~3.0mass%、sol.Al:0.0050mass%以下、P:0.2mass%以下、S:0.0050mass%以下およびN:0.0040mass%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する無方向性電磁鋼板であって、鋼中の全Ca濃度(T.Ca)が0.0010~0.0080mass%、全酸素濃度(T.O)が0.0100mass%以下で、全酸素に対する全Caの濃度比(T.Ca/T.O)が0.50以上2.0以下である無方向性電磁鋼板である。
 本発明の上記無方向性電磁鋼板は、Siに対するsol.Alの濃度比(sol.Al/Si)が0.0020以下であることを特徴とする。
 また、本発明は、C:0.0050mass%以下、Si:0.1~5.0mass%、Mn:0.02~3.0mass%、sol.Al:0.0050mass%以下、P:0.2mass%以下、S:0.0050mass%以下およびN:0.0040mass%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する無方向性電磁鋼板であって、鋼中の全Ca濃度(T.Ca)が0.0010~0.0080mass%、全酸素濃度(T.O)が0.0100mass%以下で、圧延方向の板厚断面内に存在する、板厚方向の大きさが0.2μm以上の酸化物系介在物中におけるSiOに対するCaOの組成比(CaO/SiO)が0.50~4.0である無方向性電磁鋼板である。
 本発明の上記無方向性電磁鋼板は、圧延方向の板厚断面内に存在する、板厚方向の大きさが0.2μm以上の酸化物系介在物中における(CaO+SiO+Al)に対するAlの組成比(Al/(CaO+SiO+Al))が0.15以下であることを特徴とする。
 また、本発明の上記無方向性電磁鋼板は、上記成分組成に加えてさらに、Sn:0.01~0.1mass%およびSb:0.01~0.1mass%のうちから選ばれる1種または2種を含有することを特徴とする。
 また、本発明の上記無方向性電磁鋼板は、上記成分組成に加えてさらに、Cu:0.01~0.5mass%、Ni:0.01~0.5mass%およびCr:0.01~0.5mass%のうちから選ばれる1種または2種以上を含有することを特徴とする。
 また、本発明の上記無方向性電磁鋼板は、上記成分組成に加えてさらに、REM:0.0001~0.0050mass%およびMg:0.0001~0.0050mass%のうちから選ばれる1種または2種を含有することを特徴とする。
 また、本発明は、上記のいずれかに記載の成分組成と酸化物系介在物を含有するスラブを熱間圧延して熱延板とした後、上記熱延板に熱延板焼鈍を施すことなく冷間圧延し、仕上焼鈍を施す無方向性電磁鋼板の製造方法であって、上記熱間圧延におけるコイル巻取温度を550℃以上とすることを特徴とする無方向性電磁鋼板の製造方法を提案する。
 また、本発明は、上記のいずれかに記載の成分組成と酸化物系介在物を含有するスラブを熱間圧延して熱延板とし、熱延板焼鈍を施した後、冷間圧延し、仕上焼鈍を施す無方向性電磁鋼板の製造方法であって、上記熱延板焼鈍を900~1150℃の温度で施すことを特徴とする無方向性電磁鋼板の製造方法を提案する。
 また、本発明は、上記のいずれかに記載の無方向性電磁鋼板の製造方法であって、溶銑に脱硫処理および脱燐処理を施した後、転炉で精錬した溶鋼を真空脱ガス処理してCを0.0050mass%以下まで脱炭した後、成分調整用の元素および/または合金を添加し、その後、取鍋内にCaSi合金を添加し、鋼中の全Ca濃度(T.Ca)を0.0010~0.0080mass%、全酸素濃度(T.O)を0.0100mass%以下、全酸素に対する全Caの濃度比(T.Ca/T.O)を0.50以上2.0以下とすることを特徴とする無方向性電磁鋼板の製造方法を提案する。
 本発明によれば、高磁束密度かつ低鉄損で、リサイクル性にも優れる無方向性電磁鋼板を、新たな設備対応や煩雑な工程管理を必要とせずに、低コストで提供することが可能となる。
鋼板中に存在する酸化物系介在物の成分組成が鉄損W15/50に及ぼす影響を示すグラフである。 鋼板中の(T.Ca/T.O)と(sol.Al/Si)が仕上焼鈍後の鉄損W15/50に及ぼす影響を示すグラフである。
 発明者らは、無方向性電磁鋼板の集合組織を改善し、磁気特性を向上する方策を検討するため、先述した特許文献3に開示された鋼の成分系をベースとし、Alの含有量を極力低減し、P,SnおよびCaを添加した成分系、具体的には、C:0.0015~0.0035mass%、Si:1.6mass%、Mn:0.1mass%、P:0.07mass%、S:0.0010~0.0030mass%、sol.Al:0.001mass%、N:0.0015~0.0025mass%、O:0.0020~0.0070mass%、Ca:0.0020~0.0040mass%およびSn:0.04mass%の成分組成を有する種々の鋼を溶製した。なお、上記C,S,O,CaおよびNの組成が範囲を有しているのは、溶製時のばらつきによるもので、意図したものではない。
 次いで、上記スラブを、1100℃の温度に再加熱した後、熱間圧延して板厚2.3mmの熱延板とし、酸洗した後、冷間圧延して最終板厚0.50mmの冷延板とし、1000℃の温度で仕上焼鈍を施した。
 このようにして得た仕上焼鈍後の鋼板について、圧延方向(L)および圧延方向に対して直角方向(C)からエプスタイン試験片を切り出し、鉄損W15/50(磁束密度1.5T、周波数50Hzで励磁したときの鉄損)をJIS C2552に準拠して測定したところ、鉄損W15/50が大きく変動していた。
 そこで、鉄損の変動原因を解明するため、上記仕上焼鈍後の鋼板について、圧延方向に平行な断面(L断面)を走査型電子顕微鏡(SEM)で観察し、鋼板中に存在する介在物の成分組成を分析した。その結果、上記介在物は、主にCaO、SiO、Alからなる酸化物系介在物からなること、鉄損が高い鋼板の酸化物系介在物は、圧延方向に延伸した形態のものが多いこと、また、それらの延伸した介在物は、SiOに対するCaOの組成(mass%)比(CaO/SiO)が低く、(CaO+SiO+Al)に対するAlの組成(mass%)比(Al/(CaO+SiO+Al))が高い傾向にあることが認められた。さらに、素材成分についても調査した結果、鉄損が高い鋼板は、鋼溶製時、即ち、鋼素材のT.Oに対するT.Caの組成(mass%)比(T.Ca/T.O)が低く、Siに対するsol.Alの組成(mass%)比(sol.Al/Si)が高い傾向が認められた。
 そこで、発明者らは、さらに、上記成分系の鋼において、酸化物系介在物の成分組成を変化させるため、脱酸剤として添加するSi,AlおよびCaの添加量を種々に変えた成分系、具体的には、C:0.0015~0.0035mass%、Si:1.5~2.0mass%、Mn:0.4mass%、P:0.07mass%、S:0.0010~0.0030mass%、sol.Al:0.0001~0.0050mass%、N:0.0015~0.0025mass%、Sn:0.02~0.04mass%、Ca:0.0001mass%未満~0.0050mass%およびT.O:0.0020~0.0070mass%の成分組成を有する種々の鋼を溶製した。なお、上記C,SおよびNの組成が範囲を有しているのは、溶製時のばらつきによるもので意図したものではない。
 次いで、上記スラブを、1100℃の温度に再加熱した後、熱間圧延して板厚2.3mmの熱延板とし、酸洗した後、冷間圧延して最終板厚0.50mmの冷延板とし、1000℃の温度で仕上焼鈍を施した。
 このようにして得た仕上焼鈍後の鋼板について、圧延方向(L)および圧延方向に対して直角方向(C)からエプスタイン試験片を切り出し、鉄損W15/50(磁束密度1.5T、周波数50Hzで励磁したときの鉄損)をJIS C2552に準拠して測定した。
 また、仕上焼鈍板の圧延方向の断面(L断面)の存在する100個以上の酸化物系介在物の成分組成を走査型電子顕微鏡(SEM)で分析し、酸化物系介在物の平均組成(mass%)を求めた。なお、酸化物系介在物中には、Si,Al,Ca以外に、MnやMg等の酸化物が認められたが、10at%以下と少量であったため、組成比率の計算では考慮しなかった。また、酸化物の中には硫化物と複合しているものもあるが、その場合は酸化物のみ評価し、酸化物組成比率を求めた。
 図1は、酸化物系介在物中の(CaO/SiO)および(Al/(SiO+Al+CaO))と、鉄損W15/50との関係を示したものである。この図から、酸化物系介在物中の(CaO/SiO)が0.50未満では、鉄損が大きく上昇し、劣化すること、また、酸化物系介在物中の(CaO/SiO)が0.50以上でも、(Al/(SiO+Al+CaO))が0.15を超えると、鉄損が劣化する傾向があることがわかる。なお、鉄損が高い鋼板ほど、圧延方向に延伸した形態の酸化物系介在物が多くなり、結晶粒径も小さくなっている傾向が認められた。
 酸化物系介在物中の(CaO/SiO)が低下する、あるいは、(Al/(SiO+Al+CaO))が上昇すると、介在物の融点が低下するため、熱間圧延時に圧延方向に変形し易くなって、圧延方向に延伸した形態となる。この延伸した介在物は、冷間圧延で破断した形態になるが、このような形態の介在物が存在すると、仕上焼鈍時に結晶粒の成長が抑制されて結晶粒が小さくなり、磁壁の移動を阻害するため、鉄損特性が劣化する。したがって、仕上焼鈍後の鋼板(製品板)の磁気特性を向上するには、鋼中に存在する酸化物系介在物の成分組成を適正範囲に制御し、熱間圧延時に圧延方向に伸長するのを防止するのが有効であると考えられる。
 上記図1から、鉄損を低減するためには、酸化物系介在物中の(CaO/SiO)を高めることが重要であり、そのためには、鋼中のCa濃度を高めることや、鋼中O濃度を低減することが有効であると考えられる。その理由は、以下のように考えている。
 SiO、AlおよびCaOの酸化物標準生成エネルギーは、CaOが最も低く、次いでAlで、最も高いのがSiOであるため、鋼中の酸素はまずCaOを生成し、残った酸素がAlを生成し、最後にSiOを生成すると考えられる。したがって鋼中の酸素量を低減すれば、酸化物系介在物中の(CaO/SiO)が上昇すると考えられ、また、鋼中の(T.Ca/T.O)を高めれば、酸化物系介在物中の(CaO/SiO)も上昇すると考えられる。
 さらに、酸化物系介在物中の(Al/(SiO+Al+CaO))を減少することで鉄損は低下しているが、そのためには、鋼中のAlを低減する必要がある。しかし、Alを低減するには限界がある。そこで、鋼中のSiとCaの含有量を高めて、鋼中のAl/(Ca+Si)≒Al/Si(CaはSiと比較して少ないため無視する)を下げることで、(Al/(SiO+Al+CaO))を低減することができると考えられる。
 図1は、上記の考察に基づき、上記実験結果を、鋼溶製時の鋼中の全酸素濃度(mass%)に対する全Ca濃度(mass%)の比(T.Ca/T.O)および鋼溶製時の鋼中のSi濃度(mass%)に対するsol.Al濃度(mass%)の比(sol.Al/Si)と、鉄損W15/50との関係を示したものである。この図から、鋼中(T.Ca/T.O)が0.50未満では鉄損が非常に高く、また、鋼中の(T.Ca/T.O)が0.50以上でも、鋼中(sol.Al/Si)が0.0020を超えると、鉄損がやや高くなることが確認された。
 本発明は、上記の新規な知見に基いて、開発したものである。
 次に、本発明の無方向性電磁鋼板(製品板)の成分組成について説明する。
C:0.0050mass%以下
 Cは、磁気時効を起こして製品板の鉄損を劣化させる有害元素であり、特に、0.0050mass%を超えると、上記劣化が顕著となるので、0.0050mass%以下に制限する。好ましくは0.0030mass%以下である。なお、下限については、少ないほど好ましいので、特に規定しない。
Si:0.1~5.0mass%
 Siは、鋼の電気抵抗を高めて鉄損を低減するのに有効な元素であり、また、鋼の脱酸剤として添加する元素でもあるため、0.1mass%以上含有させる。しかし、Siが5.0mass%を超えると、磁束密度が低下する他、鋼が脆化し、冷間圧延中に亀裂を生じる等、製造性を大きく低下させる。よって、上限は5.0mass%とする。好ましくは1.5~5.0mass%の範囲である。さらに好ましくは1.6~3.8mass%の範囲である。
Mn:0.02~3.0mass%
 Mnは、Siと同様、鋼の電気抵抗を高めて鉄損を低減するのに有効な元素であり、また、熱間脆性を防止する効果を有するため、0.02mass%以上含有させる。一方、3.0mass%を超えると、磁束密度が低下するため、上限は3.0mass%とする。好ましくは0.15~2.5mass%、より好ましくは0.15~1.0mass%の範囲である。
P:0.2mass%以下
 Pは、微量の添加で鋼の硬さを高める効果が大きいため、打抜加工性を向上するのに有用な元素であり、要求される硬さに応じて適宜添加することができる。しかし、Pの過剰な添加は、冷間圧延性の低下をもたらすので、上限は0.2mass%とする。好ましくは、0.04~0.15mass%の範囲である。
S:0.0050mass%以下
 Sは、硫化物となって析出物や介在物を形成し、製品板の磁気特性を低下させるのみならず、製造性(熱間圧延性)を害するので、少ないほど好ましい。そこで、本発明では0.0050mass%以下に制限する。特に、磁気特性を重視する場合には0.0025mass%以下とするのが好ましい。なお、Sは少ないほど好ましいので、下限は特に規定しない。
sol.Al:0.0050mass%以下
 Alは、Siと同様、鋼の電気抵抗を高めて鉄損を低減するのに有効な元素であり、また、鋼の脱酸剤としても添加される元素である。しかし、前述したように、スクラップを鋳物銑の原料としてリサイクルする観点から、Alは0.05mass%未満であることが望まれており、低いほど好ましい。さらに、本発明では、集合組織を改善し、磁束密度を高めるため、Alをさらに低減し、sol.Al(酸可溶Al)で0.0050mass%以下に制限する。好ましくは、0.0020mass%以下である。
N:0.0040mass%以下
 Nは、前述したCと同様、磁気特性を劣化させる有害元素であり、特に、低Al材では、上記の悪影響が顕著となるので、0.0040mass%以下に制限する。好ましくは0.0030mass%以下である。なお、下限については、少ないほど好ましいので、特に規定しない。
T.Ca:0.0010~0.0080mass%
 Caは、CaSとなって粗大な析出物を形成し、MnS等の微細な硫化物の析出を抑制するため、粒成長を改善し、鉄損を低減する効果がある。上記効果を得るため、本発明では、T.Ca(鋼中の全Ca濃度)で0.0010mass%以上含有させる。しかし、0.0080mass%を超える添加は、Ca硫化物やCa酸化物の量が増加し、却って粒成長を阻害して鉄損特性が劣化するため、上限は0.0080mass%とする。好ましくは0.0015~0.0050mass%の範囲である。ここで、上記全Ca濃度(T.Ca)とは、鋼中の酸可溶Caと酸不可溶Caの和からなるCaの濃度である。
T.O:0.0100mass%以下
 Oは、T.O(鋼中の全O濃度)で0.0100mass%を超えると、酸化物の量が増加して粒成長を阻害し、鉄損特性を劣化させるため、上限は0.0100mass%とする。好ましくは0.0060mass%以下である。ここで、上記全O濃度(T.O)とは、酸可溶Oと酸不可溶Oの和からなるOの濃度である。
T.Ca/T.O:0.50以上2.0以下
 先述したように、鋼中の全O濃度に対する全Ca濃度の比(T.Ca/T.O)は、0.50以上2.0以下とする必要がある。上記比が0.50未満では、酸化物系介在物が圧延方向に延伸した形態を示すようになるため、粒成長を阻害し、鉄損特性が劣化するためである。また、上限を2.0とするのは、2.0を超えると、粗大化した酸化物系介在物が割れの起点となり、製造性を著しく損なうようになるためである。好ましくは0.60以上1.8以下である。
sol.Al/Si:0.0020以下
 本発明の無方向性電磁鋼板は、鉄損特性をさらに改善するため、上記成分組成を満たすことに加えて、鋼中のSi濃度に対するsol.Al濃度の比(sol.Al/Si)を、0.0020以下に制限することが好ましい。(sol.Al/Si)が0.0020を超えると、酸化物系介在物が圧延方向に延伸した形態となり、粒成長を阻害し、鉄損特性が劣化するおそれがあるためである。より好ましくは0.0015以下である。ここで、上記sol.Alは、酸可溶Alを表す。正確には、(T.Al-sol.Al)/Siで規定すべきであるが、(sol.Al/Si)で規定する理由は、sol.AlとT.Alは相関があり、sol.Alの方が容易に分析できるからである。
 また、本発明の無方向性電磁鋼板は、上記成分に加えてさらに、下記成分を含有することができる。
Sn:0.01~0.1mass%およびSb:0.01~0.1mass%のうちから選ばれる1種または2種
 SnおよびSbは、いずれも集合組織を改善し、磁気特性を向上する効果を有する。上記効果を得るためには、単独または複合して、それぞれ0.01mass%以上添加するのが好ましい。しかし、過剰に添加すると、鋼が脆化し、鋼板製造の過程で板破断やヘゲ等の表面欠陥を引き起こすため、上限はそれぞれ0.1mass%とするのが好ましい。より好ましくは、それぞれ0.02~0.05mass%の範囲である。
Cu:0.01~0.5mass%、Ni:0.01~0.5mass%およびCr:0.01~0.5mass%のうちから選ばれる1種または2種以上
 Cu,NiおよびCrは、鋼板の比抵抗を高めて鉄損を低減すのに有効な元素であるため、含有させることができる。上記効果を得るためには、それぞれ0.01mass%以上添加するのが好ましい。一方、これらの元素は、SiやAlと比較して高価であるため、それぞれの添加量は0.5mass%以下とするのが好ましい。
REM:0.0001~0.0050mass%およびMg:0.0001~0.0050mass%のうちから選ばれる1種または2種
 MgおよびREMは、高温でMnSやCuSよりも安定な硫化物を形成し、磁気特性を向上させる効果を有する元素であるため、含有させることができる。上記効果を得るためには、MgおよびREMを、それぞれ0.0001mass%以上添加するのが好ましい。一方、過剰に含有させても、効果が飽和し、経済的に不利となるため、上限はそれぞれ0.0050mass%とするのが好ましい。
 本発明の無方向性電磁鋼板は、上記成分以外の残部は、Feおよび不可避的不純物である。ただし、本発明の作用効果を害しない範囲内であれば、他の元素の含有を拒むものではなく、例えば、不可避的不純物として含まれるVは0.004mass%以下、Nbは0.004mass%以下、Bは0.0005mass%以下、Niは0.05mass%以下、Crは0.05mass%以下、Cuは0.1mass%以下、Tiは0.002mass%以下の範囲内であれば許容される。
 次に、本発明の鋼板中に存在する酸化物系介在物について説明する。
 優れた磁気特性を得るためには、製品板の圧延方向の板厚断面内に存在する、板厚方向の大きさが0.2μm以上の酸化物系介在物の(CaO/SiO)を0.50以上とし、また、(Al/(SiO+Al+CaO))を0.15以下とすることが好ましい。上記範囲を外れると、酸化物系介在物が熱間圧延により延伸し、熱延後の自己焼鈍や熱延板焼鈍、仕上焼鈍における粒成長性を阻害して、磁気特性を劣化させるからである。より好ましくは、CaO/SiOが0.60以上で、(Al/(SiO+Al+CaO))が0.10以下である。なお、鋼板中に存在する酸化物系介在物の成分組成は、鋼板の圧延方向に平行な断面(L断面)に存在する酸化物系介在物をSEM(走査型電子顕微鏡)で100個以上分析したときの平均値である。なお、本発明の酸化物系介在物には、硫化物等の他の化合物と複合して存在するものも含まれる。
 次に、本発明の無方向性電磁鋼板の製造方法について説明する。
 なお、本発明の無方向性電磁鋼板は、無方向性電磁鋼板の製造に用いられている通常の設備および通常の工程で製造することができる。
 まず、溶銑予備処理等を施してS濃度を低減した溶銑を、転炉で脱炭処理して炭素濃度を低減した後、さらに、真空脱ガス処理装置で、Cを極低濃度領域まで脱炭すると同時に脱窒処理する。その後、好ましくはC濃度が0.0050mass%以下に達した後、SiやSi合金を添加し、脱酸を兼ねてSi濃度を所定の濃度に調整した後、金属Mnなど成分調整用の他の元素や合金を添加して最終成分調整を行う。また、S濃度を低減するために、真空脱ガス処理中にCaOなどの脱硫剤を添加してもよい。なお、合金の一部は転炉出鋼時に添加してもよい。
 その後、溶鋼中にCa合金(CaSi合金)を添加する。Ca合金の添加方法は、インジェクション法や、鉄被服ワイヤ添加法などを用いることができる。
 ここで重要なことは、成分調整した溶鋼中の(T.Ca/T.O)を0.50以上2.0以下に制御する必要があることである。これにより、鉄損特性を改善することができる。
 上記(T.Ca/T.O)を0.50以上に制御するには、溶鋼中に添加するCa合金(CaSi合金)を高めたり、真空脱ガス装処理で脱酸時間等を十分に確保して、酸素量を低減したりすることが有効である。もちろん、これらは(T.Ca/T.O)が2.0を超えない範囲内で行う必要がある。
 なお、Alの添加量を極力制限し、(sol.Al/Si)を0.0020以下に制御することも重要である。これにより、鉄損特性をより改善することができる。
 次に、上記に説明した方法で溶製した溶鋼を、連続鋳造法または造塊-分塊圧延法等で鋼素材(スラブ)とする。
 上記スラブは、その後、熱間圧延を行うが、上記熱間圧延に先だつスラブの再加熱温度SRTは、1000~1250℃の範囲とするのが好ましい。SRTが1250℃を超えると、エネルギーロスが大きく、不経済となるだけでなく、スラブの高温強度が低下し、スラブ垂れなどの製造上のトラブルが生じるおそれがある。一方、1000℃を下回ると、熱間における変形抵抗が増大し、熱間圧延することが困難となるためである。
 続く熱間圧延は、通常の条件で行えばよい。なお、熱間圧延する板厚は、生産性を確保する観点から、1.5~2.8mmの範囲とするのが好ましい。1.5mm未満では、熱延での圧延トラブルが増加し、一方、2.8mm超えでは、冷延圧下率が高くなり過ぎて、集合組織が劣化するからである。より好ましい熱延板厚は1.7~2.4mmの範囲である。
 熱間圧延後の鋼板(熱延板)は、その後、熱延板焼鈍を施しても、省略してもよいが、製造コストを低減する観点からは、省略した方が有利である。ただし、熱延板焼鈍を省略する場合には、熱間圧延後のコイルの巻取温度を550℃以上とする必要がある。550℃未満では、コイル巻き取り後の自己焼鈍が不十分となり、冷間圧延前の鋼板の再結晶率が低下し、リジングが発生したり、磁束密度が低下したりするためである。好ましい巻取温度は600℃以上である。
 一方、熱延板焼鈍を行う場合には、熱延板焼鈍の均熱温度は900~1150℃の範囲とする必要がある。均熱温度が900℃未満では、圧延組織が残存し、磁気特性の改善効果が十分に得られない。一方、1150℃を超えると、結晶粒が粗大化し、冷間圧延で割れが発生し易くなる他、経済的にも不利となるからである。好ましくは950~1050℃の温度である。
 なお、熱延板焼鈍を行う場合でも、コイル巻取温度を550℃以上としてもよいことは勿論である。
 次に、上記熱間圧延後あるいは熱延板焼鈍後の熱延板は、1回または中間焼鈍を挟む2回以上の冷間圧延により最終板厚の冷延板とする。この際、磁束密度を高めるためには、板温を200℃に上昇して圧延するいわゆる温間圧延を採用するのが好ましい。また、冷延板の厚さ(最終板厚)については特に規定しないが、0.10~0.60mmの範囲とするのが好ましい。0.10mm未満では、生産性が低下し、一方、0.60mm超えでは鉄損低減効果が小さいからである。なお、鉄損を重視する場合には、0.10~0.35mmの範囲とするのが好ましい。
 最終板厚に冷間圧延した鋼板(冷延板)は、その後、連続焼鈍で仕上焼鈍を施す。この仕上焼鈍の均熱温度は700~1150℃の範囲とするのが好ましい。均熱温度が700℃未満では、再結晶が十分に進行せず、良好な磁気特性が得られないだけでなく、連続焼鈍による形状矯正効果も得られない。一方、1150℃を超えると、エネルギーロスが大きくなり、不経済となる。
 次いで、上記仕上焼鈍した鋼板は、その後、鉄損をより低減するため、必要に応じて鋼板表面に絶縁被膜を塗布・焼付けることが好ましい。なお、上記絶縁被膜は、良好な打抜き性を確保したい場合には、樹脂を含有した有機被膜とするのが好ましい。また、溶接性を重視する場合には、半有機被膜や無機被膜とするのが好ましい。
 表1に示した成分組成が異なるNo.1~37の鋼を溶製し、連続鋳造法でスラブとした。上記鋼の溶製に際しては、脱酸剤としてSi,CaおよびAlを添加した。Ca源としてはCaSiを用いた。これらの脱酸剤やCaSiの添加量は、溶鋼中のOやN,Sの含有量に応じて適宜調整した。
 次いで、上記スラブを1080~1180℃の温度に再加熱した後、熱間圧延して板厚2.3mmの熱延板とした。この際、コイル巻取温度はすべて600℃(一定)とした。
 次いで、上記熱延板を酸洗した後、冷間圧延して最終板厚0.50mmの冷延板とし、均熱温度1000℃に10sec間保持する仕上焼鈍した後、絶縁被膜を被成し、無方向性電磁鋼板(製品板)とした。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 次いで、上記のようにして得た製品板の圧延方向に平行な断面(L断面)を走査型電子顕微鏡(SEM)で観察し、100個以上の酸化物系介在物の成分組成を分析し、CaO、SiOおよびAlの平均値を求めて、(CaO/SiO)、(Al/(SiO+Al+CaO))の値を算出した。
 また、上記製品板の圧延方向(L)および圧延方向に対して直角方向(C)からエプスタイン試験片を切り出して、磁束密度B50(磁化力5000A/mにおける磁束密度)および鉄損W15/50(磁束密度1.5T、周波数50Hzで励磁したときの鉄損)をJIS C2552に準拠して測定した。
 上記測定の結果を表1に併記した。この結果から、本発明に適合する鋼板は、鉄損W15/50が低くて、磁束密度B50も高く、優れた磁気特性を有していることがわかる。
 表2に示した成分組成がほぼ同じNo.1~8の鋼を、実施例1と同様にして溶製し、連続鋳造法でスラブとした。次いで、上記スラブを1150℃の温度に再加熱した後、熱間圧延して板厚2.3mmの熱延板とし、酸洗し、冷間圧延して最終板厚0.50mmの冷延板とし、その後、均熱温度1000℃に10sec間保持する仕上焼鈍し、絶縁被膜を被成し、無方向性電磁鋼板(製品板)とした。この際、上記熱間圧延後のコイル巻取温度を表2に示したように、520~650℃の範囲で変化させた。なお、鋼5および8は、熱間圧延した後、連続焼鈍で均熱温度1000℃に30sec間保持する熱延板焼鈍を施した例である。
[規則91に基づく訂正 07.04.2017] 
 次いで、上記のようにして得た製品板について、実施例1と同様にして、SEMで介在物を分析し、介在物中のCaO、SiOおよびAlの平均比率および、(CaO/SiO)、(Al/(SiO+Al+CaO))を算出するとともに、磁束密度B50および鉄損W15/50を測定した。
 上記測定の結果を表2に併記した。この結果から、本発明に適合する条件で製造する無方向性電磁鋼板は、熱延板焼鈍を施さない場合でも、熱間圧延後のコイル巻取温度を550℃以上に高めることで、優れた磁気特性を有することがわかる。
Figure JPOXMLDOC01-appb-T000003
 表3に示した成分組成が異なるNo.1~19の鋼を、実施例1と同様にして溶製し、連続鋳造法でスラブとした。次いで、上記スラブを1150℃の温度に再加熱した後、熱間圧延して板厚1.9mmの熱延板とし、酸洗し、冷間圧延して最終板厚を0.20~0.50mmの範囲で変化させた冷延板とし、その後、均熱温度1000℃に10sec間保持する仕上焼鈍し、絶縁被膜を被成し、無方向性電磁鋼板(製品板)とした。なお、上記熱間圧延後のコイル巻取温度は600℃とした。
[規則91に基づく訂正 07.04.2017] 
 次いで、上記のようにして得た製品板について、実施例1と同様にして、SEMで介在物を分析し、介在物中のCaO、SiOおよびAlの平均比率および、(CaO/SiO)、(Al/(SiO+Al+CaO))を算出するとともに、磁束密度B50および鉄損W15/50を測定した。
 上記測定の結果を表3に併記した。この結果から、本発明に適合する条件で製造する無方向性電磁鋼板は、板厚を変化させた場合でも、優れた磁気特性を有することがわかる。
Figure JPOXMLDOC01-appb-T000004

Claims (10)

  1. C:0.0050mass%以下、Si:0.1~5.0mass%、Mn:0.02~3.0mass%、sol.Al:0.0050mass%以下、P:0.2mass%以下、S:0.0050mass%以下およびN:0.0040mass%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する無方向性電磁鋼板であって、
    鋼中の全Ca濃度(T.Ca)が0.0010~0.0080mass%、全酸素濃度(T.O)が0.0100mass%以下で、全酸素に対する全Caの濃度比(T.Ca/T.O)が0.50以上2.0以下である無方向性電磁鋼板。
  2. Siに対するsol.Alの濃度比(sol.Al/Si)が0.0020以下であることを特徴とする請求項1に記載の無方向性電磁鋼板。
  3. C:0.0050mass%以下、Si:0.1~5.0mass%、Mn:0.02~3.0mass%、sol.Al:0.0050mass%以下、P:0.2mass%以下、S:0.0050mass%以下およびN:0.0040mass%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する無方向性電磁鋼板であって、
    鋼中の全Ca濃度(T.Ca)が0.0010~0.0080mass%、全酸素濃度(T.O)が0.0100mass%以下で、圧延方向の板厚断面内に存在する、板厚方向の大きさが0.2μm以上の酸化物系介在物中におけるSiOに対するCaOの組成比(CaO/SiO)が0.50~4.0である無方向性電磁鋼板。
  4. 圧延方向の板厚断面内に存在する、板厚方向の大きさが0.2μm以上の酸化物系介在物中における(CaO+SiO+Al)に対するAlの組成比(Al/(CaO+SiO+Al))が0.15以下であることを特徴とする請求項3に記載の無方向性電磁鋼板。
  5. 上記成分組成に加えてさらに、Sn:0.01~0.1mass%およびSb:0.01~0.1mass%のうちから選ばれる1種または2種を含有することを特徴とする請求項1~4のいずれか1項に記載の無方向性電磁鋼板。
  6. 上記成分組成に加えてさらに、Cu:0.01~0.5mass%、Ni:0.01~0.5mass%およびCr:0.01~0.5mass%のうちから選ばれる1種または2種以上を含有することを特徴とする請求項1~5のいずれか1項に記載の無方向性電磁鋼板。
  7. 上記成分組成に加えてさらに、REM:0.0001~0.0050mass%およびMg:0.0001~0.0050mass%のうちから選ばれる1種または2種を含有することを特徴とする請求項1~6のいずれか1項に記載の無方向性電磁鋼板。
  8. 請求項1~7のいずれか1項に記載の成分組成と酸化物系介在物を含有するスラブを熱間圧延して熱延板とした後、上記熱延板に熱延板焼鈍を施すことなく冷間圧延し、仕上焼鈍を施す無方向性電磁鋼板の製造方法であって、
    上記熱間圧延におけるコイル巻取温度を550℃以上とすることを特徴とする無方向性電磁鋼板の製造方法。
  9. 請求項1~7のいずれか1項に記載の成分組成と酸化物系介在物を含有するスラブを熱間圧延して熱延板とし、熱延板焼鈍を施した後、冷間圧延し、仕上焼鈍を施す無方向性電磁鋼板の製造方法であって、
    上記熱延板焼鈍を900~1150℃の温度で施すことを特徴とする無方向性電磁鋼板の製造方法。
  10. 請求項1~7のいずれか1項に記載の無方向性電磁鋼板の製造方法であって、
    溶銑に脱硫処理および脱燐処理を施した後、転炉で精錬した溶鋼を真空脱ガス処理してCを0.0050mass%以下まで脱炭した後、成分調整用の元素および/または合金を添加し、その後、取鍋内にCaSi合金を添加し、鋼中の全Ca濃度(T.Ca)を0.0010~0.0080mass%、全酸素濃度(T.O)を0.0100mass%以下、全酸素に対する全Caの濃度比(T.Ca/T.O)を0.50以上、2.0以下とすることを特徴とする無方向性電磁鋼板の製造方法。
PCT/JP2017/000925 2016-01-15 2017-01-13 無方向性電磁鋼板とその製造方法 WO2017122761A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2017522434A JP6451967B2 (ja) 2016-01-15 2017-01-13 無方向性電磁鋼板とその製造方法
CN201780006482.3A CN108463569B (zh) 2016-01-15 2017-01-13 无取向性电磁钢板及其制造方法
EP17738513.5A EP3404124B1 (en) 2016-01-15 2017-01-13 Non-oriented electrical steel sheet and production method thereof
RU2018125734A RU2696887C1 (ru) 2016-01-15 2017-01-13 Лист из нетекстурированной электротехнической стали и способ его изготовления
US16/070,043 US11008633B2 (en) 2016-01-15 2017-01-13 Non-oriented electrical steel sheet and production method thereof
KR1020187019168A KR102095142B1 (ko) 2016-01-15 2017-01-13 무방향성 전기강판과 그 제조 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-005821 2016-01-15
JP2016005821 2016-01-15
JP2016-230983 2016-11-29
JP2016230983 2016-11-29

Publications (1)

Publication Number Publication Date
WO2017122761A1 true WO2017122761A1 (ja) 2017-07-20

Family

ID=59311629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/000925 WO2017122761A1 (ja) 2016-01-15 2017-01-13 無方向性電磁鋼板とその製造方法

Country Status (8)

Country Link
US (1) US11008633B2 (ja)
EP (1) EP3404124B1 (ja)
JP (1) JP6451967B2 (ja)
KR (1) KR102095142B1 (ja)
CN (1) CN108463569B (ja)
RU (1) RU2696887C1 (ja)
TW (1) TWI622655B (ja)
WO (1) WO2017122761A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019099854A (ja) * 2017-11-30 2019-06-24 日本製鉄株式会社 無方向性電磁鋼板
WO2020071048A1 (ja) * 2018-10-02 2020-04-09 Jfeスチール株式会社 無方向性電磁鋼板及びその素材となるスラブ鋳片の製造方法
JP2021011592A (ja) * 2019-07-03 2021-02-04 Jfeスチール株式会社 溶鋼の精錬方法
WO2022113263A1 (ja) * 2020-11-27 2022-06-02 日本製鉄株式会社 無方向性電磁鋼板およびその製造方法、ならびに熱延鋼板

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI680190B (zh) 2018-02-16 2019-12-21 日商日本製鐵股份有限公司 無方向性電磁鋼板及無方向性電磁鋼板的製造方法
KR102533366B1 (ko) * 2018-11-26 2023-05-16 제이에프이 스틸 가부시키가이샤 무방향성 전자 강판의 제조 방법
KR102477535B1 (ko) * 2019-01-24 2022-12-14 제이에프이 스틸 가부시키가이샤 무방향성 전자 강판과 그의 제조 방법
TWI688658B (zh) * 2019-03-20 2020-03-21 日商新日鐵住金股份有限公司 無方向性電磁鋼板
TWI682039B (zh) * 2019-03-20 2020-01-11 日商日本製鐵股份有限公司 無方向性電磁鋼板及其製造方法
CN112143963A (zh) * 2019-06-28 2020-12-29 宝山钢铁股份有限公司 一种磁性能优良的无取向电工钢板及其连续退火方法
CN112143964A (zh) * 2019-06-28 2020-12-29 宝山钢铁股份有限公司 一种极低铁损的无取向电工钢板及其连续退火工艺
CN112143961A (zh) * 2019-06-28 2020-12-29 宝山钢铁股份有限公司 一种磁性能优良的无取向电工钢板及其连续退火方法
CN112430779A (zh) * 2019-08-26 2021-03-02 宝山钢铁股份有限公司 一种高频铁损优良的无取向电工钢板及其制造方法
CN114729415B (zh) * 2019-11-12 2024-02-13 Lg电子株式会社 无取向电钢板及其制造方法
TWI753650B (zh) * 2019-11-15 2022-01-21 日商日本製鐵股份有限公司 無方向性電磁鋼板之製造方法
WO2021167086A1 (ja) * 2020-02-20 2021-08-26 日本製鉄株式会社 無方向性電磁鋼板用熱延鋼板
US20230106818A1 (en) * 2020-04-10 2023-04-06 Nippon Steel Corporation Non-oriented electrical steel sheet, core, cold-rolled steel sheet, method for manufacturing non-oriented electrical steel sheet, and method for manufacturing cold-rolled steel sheet
CN116888295B (zh) * 2021-03-31 2024-03-19 日本制铁株式会社 无取向性电磁钢板、电机铁芯、无取向性电磁钢板的制造方法及电机铁芯的制造方法
CN115198169B (zh) * 2021-04-09 2023-07-07 宝山钢铁股份有限公司 一种无瓦楞状缺陷的高磁感低铁损无取向电工钢板及其制造方法
CN114231697A (zh) * 2021-12-21 2022-03-25 湖南华菱涟源钢铁有限公司 一种含铝电工钢连铸高效生产的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000219917A (ja) * 1999-01-28 2000-08-08 Nippon Steel Corp 磁束密度が高く鉄損の低い無方向性電磁鋼板の製造法
JP2000219916A (ja) * 1999-01-28 2000-08-08 Nippon Steel Corp 磁束密度が高く鉄損の低い無方向性電磁鋼板の製造法
JP2001316729A (ja) * 2000-04-28 2001-11-16 Kawasaki Steel Corp 鉄損が低くかつ磁束密度の高い無方向性電磁鋼板の製造方法
JP2004068084A (ja) * 2002-08-06 2004-03-04 Jfe Steel Kk 回転機用高磁束密度無方向性電磁鋼板及び回転機用部材
JP2015040308A (ja) * 2013-08-20 2015-03-02 Jfeスチール株式会社 無方向性電磁鋼板とその熱延鋼板
JP2016047943A (ja) * 2014-08-27 2016-04-07 Jfeスチール株式会社 無方向性電磁鋼板およびその製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4950336A (en) 1988-06-24 1990-08-21 Nippon Steel Corporation Method of producing non-oriented magnetic steel heavy plate having high magnetic flux density
JPH0711026B2 (ja) * 1988-06-24 1995-02-08 新日本製鐵株式会社 磁束密度の高い無方向性電磁厚板の製造法
JP2500033B2 (ja) 1990-12-10 1996-05-29 川崎製鉄株式会社 磁気特性が優れかつ表面外観の良い無方向性電磁鋼板の製造方法
JPH09263908A (ja) * 1996-03-26 1997-10-07 Sumitomo Metal Ind Ltd 無方向性電磁鋼板およびその製造方法
JP3378934B2 (ja) 1996-08-19 2003-02-17 新日本製鐵株式会社 磁気特性と表面性状の優れた無方向性電磁鋼板の製造方法
RU2362829C2 (ru) * 2004-11-04 2009-07-27 Ниппон Стил Корпорейшн Нетекстурированный электротехнический стальной лист, улучшенный по потерям в сердечнике
JP4648910B2 (ja) 2006-10-23 2011-03-09 新日本製鐵株式会社 磁気特性の優れた無方向性電磁鋼板の製造方法
JP4510911B2 (ja) * 2008-07-24 2010-07-28 新日本製鐵株式会社 高周波用無方向性電磁鋼鋳片の製造方法
CN101358317B (zh) * 2008-09-05 2010-09-22 首钢总公司 一种高硅含钙的无取向电工钢的制备方法
CN103305659B (zh) * 2012-03-08 2016-03-30 宝山钢铁股份有限公司 磁性优良的无取向电工钢板及其钙处理方法
JP5892327B2 (ja) * 2012-03-15 2016-03-23 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
JP6057082B2 (ja) * 2013-03-13 2017-01-11 Jfeスチール株式会社 磁気特性に優れる無方向性電磁鋼板
MX2016015754A (es) * 2014-07-02 2017-04-10 Nippon Steel & Sumitomo Metal Corp Lamina de acero magnetico de grano no orientado y metodo de fabricacion para la misma.
EP3184660B1 (en) * 2014-08-21 2020-03-25 JFE Steel Corporation Non-oriented electrical steel sheet and manufacturing method thereof
CN107075640A (zh) * 2014-10-30 2017-08-18 杰富意钢铁株式会社 无取向性电磁钢板和无取向性电磁钢板的制造方法
JP6020863B2 (ja) * 2015-01-07 2016-11-02 Jfeスチール株式会社 無方向性電磁鋼板およびその製造方法
JP6406522B2 (ja) * 2015-12-09 2018-10-17 Jfeスチール株式会社 無方向性電磁鋼板の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000219917A (ja) * 1999-01-28 2000-08-08 Nippon Steel Corp 磁束密度が高く鉄損の低い無方向性電磁鋼板の製造法
JP2000219916A (ja) * 1999-01-28 2000-08-08 Nippon Steel Corp 磁束密度が高く鉄損の低い無方向性電磁鋼板の製造法
JP2001316729A (ja) * 2000-04-28 2001-11-16 Kawasaki Steel Corp 鉄損が低くかつ磁束密度の高い無方向性電磁鋼板の製造方法
JP2004068084A (ja) * 2002-08-06 2004-03-04 Jfe Steel Kk 回転機用高磁束密度無方向性電磁鋼板及び回転機用部材
JP2015040308A (ja) * 2013-08-20 2015-03-02 Jfeスチール株式会社 無方向性電磁鋼板とその熱延鋼板
JP2016047943A (ja) * 2014-08-27 2016-04-07 Jfeスチール株式会社 無方向性電磁鋼板およびその製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019099854A (ja) * 2017-11-30 2019-06-24 日本製鉄株式会社 無方向性電磁鋼板
WO2020071048A1 (ja) * 2018-10-02 2020-04-09 Jfeスチール株式会社 無方向性電磁鋼板及びその素材となるスラブ鋳片の製造方法
JPWO2020071048A1 (ja) * 2018-10-02 2021-02-15 Jfeスチール株式会社 無方向性電磁鋼板及びその素材となるスラブ鋳片の製造方法
US20210332463A1 (en) * 2018-10-02 2021-10-28 Jfe Steel Corporation Non-oriented electrical steel sheet and method for manufacturing slab used as material for the same
RU2768098C1 (ru) * 2018-10-02 2022-03-23 ДжФЕ СТИЛ КОРПОРЕЙШН Лист из неструктурированной электротехнической стали и способ изготовления сляба, используемого в качестве материала для него
JP2021011592A (ja) * 2019-07-03 2021-02-04 Jfeスチール株式会社 溶鋼の精錬方法
JP7047818B2 (ja) 2019-07-03 2022-04-05 Jfeスチール株式会社 溶鋼の精錬方法
WO2022113263A1 (ja) * 2020-11-27 2022-06-02 日本製鉄株式会社 無方向性電磁鋼板およびその製造方法、ならびに熱延鋼板
JP7492162B2 (ja) 2020-11-27 2024-05-29 日本製鉄株式会社 無方向性電磁鋼板およびその製造方法、ならびに熱延鋼板

Also Published As

Publication number Publication date
US11008633B2 (en) 2021-05-18
KR102095142B1 (ko) 2020-03-30
RU2696887C1 (ru) 2019-08-08
US20190017138A1 (en) 2019-01-17
TWI622655B (zh) 2018-05-01
KR20180089500A (ko) 2018-08-08
EP3404124A4 (en) 2018-12-26
TW201726939A (zh) 2017-08-01
CN108463569A (zh) 2018-08-28
JP6451967B2 (ja) 2019-01-16
CN108463569B (zh) 2020-08-11
EP3404124A1 (en) 2018-11-21
JPWO2017122761A1 (ja) 2018-01-18
EP3404124B1 (en) 2021-08-04

Similar Documents

Publication Publication Date Title
JP6451967B2 (ja) 無方向性電磁鋼板とその製造方法
JP6020863B2 (ja) 無方向性電磁鋼板およびその製造方法
KR101499371B1 (ko) 무방향성 전기 강판의 제조 방법
JP6844125B2 (ja) 方向性電磁鋼板の製造方法
WO2012086534A1 (ja) 無方向性電磁鋼板の製造方法
US10006109B2 (en) Non-oriented electrical steel sheet and hot rolled steel sheet thereof
KR20190077025A (ko) 무방향성 전기 강판 및 그 제조 방법
JP2017122247A (ja) 方向性電磁鋼板の製造方法
WO2016111088A1 (ja) 無方向性電磁鋼板およびその製造方法
JP2000129410A (ja) 磁束密度の高い無方向性電磁鋼板
JP2023507592A (ja) 無方向性電磁鋼板およびその製造方法
KR102142511B1 (ko) 방향성 전기강판 및 그의 제조방법
JP2014152393A (ja) 方向性電磁鋼板の製造方法
JP2019178379A (ja) 方向性電磁鋼板の製造方法
JP2009209428A (ja) 著しく磁束密度が高い方向性電磁鋼板の製造方法
JP2000017330A (ja) 鉄損の低い無方向性電磁鋼板の製造方法
JP2002080948A (ja) 打ち抜き加工性に優れた無方向性電磁鋼板
JP2021509149A (ja) 方向性電磁鋼板およびその製造方法
KR102528345B1 (ko) 무방향성 전자 강판 및 그의 소재가 되는 슬래브 주편의 제조 방법
JP7486436B2 (ja) 一方向性電磁鋼板の製造方法
JP2019137881A (ja) 方向性電磁鋼板の製造方法
JP2004292833A (ja) 下地被膜を有しない、打ち抜き加工性の良好な方向性電磁鋼板の製造方法
JPH1112700A (ja) 鉄損の低い無方向性電磁鋼板
JP2003027197A (ja) 高周波特性に優れた無方向性電磁鋼板

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017522434

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17738513

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187019168

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187019168

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017738513

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017738513

Country of ref document: EP

Effective date: 20180816